
o

o

o

Prof. Dr. H, Stovan
lJN1VERsl:ri~r EnL.ANGEN • NURNBERG
INSIITUT FUFi MATHi:'MAT1SCHE MASCHINEN
u. r)AiENVERARBflTUNG (INFOHMATIK VIII)
AM WE2ICHSELGARrEN 9 . 8520 ERLANGEN

STAl\l1i'unD ARTIFICIAJ-J INTELLIGENCE PROJECtr
Memo NOolO

December 18, 1963

IMPROVEMENTS IN LISP DEBUGGING

Abstract:

by S. R. Russell

Experience with writing large
LISP programs and helping
students learning LISP
suggests that spectacular
improvements can be made in
this area. These improvements
are partly an elimination of
sloppy coding in LISP 1.5, but
mostly an elaboration of DEFINE,
the push down list backtrace,
and the current tracing facility.
Experience suggests that these
improvements would reduce the
number of computer runs to debug
a program by a third to a half.

~rhe research reported here was supported in part by the Advanced Research
f'rojects Agency of' the Off tee of the Secretary of Defense (SD-183)

d!S!:Z .LiM£$$I.4Z#\ iX$... seULi

o

o

o

~;
I

Introduction

The ability to write and debug large programs quickly is a
very valuable one. We are still in the unfortunate situation that a
well-informed programmer can design in a few weeks a program that cannot
be written in less than several months or debugged in less than several
years. LISP can claim virtues in the actual programming, but in debugging
it has no great virtue. It is to more effective debugging that these
proposals are addressed.

The two effects I hope to achieve are:-

1. Protecting the student and casual user from needless
mystery when it is not too hard to do so.

2. Giving everyone, especially the expert with a large
program, the relevant information about his bugs,
producing as few irrelevancies as possible.

In both these respects current versions of LISP are sadly lacking.

These features are 'worth a noticeable time sacrifice in the
running speed of programs although they do not necessarily demand it, as
debugging of LISP :i.tself and LISP programs have consumed far more time than
all the tlproduction" runs of LISP. There is no indication that this
situation will change in the near future.

euauuzu:aes& ithiiUi ii4 $ \$.£S2,;o11

1. Changes in error recognition

o Very few people \-/llo have debugged a LISP program have escaped

o

o

from the mysteries of LISP's subconscious. It takes only a small bug to take
car or cdr of an atom and this is sufficient to introduce invalid list
structure.

Until quite recently, I, as one of the proprietors of the code that
permitted this easy access to LISP's subconscious, maintained that this was
the way it should be.· Reflection, however, has shown that it would have taken
less of my time to have prevented easy entry into the subconscious originally
than it has subsequently taken to explain away its appearance to baffled users.

'Faking car or cdr of an atom should give an explicit error message.
This is commO'n occurrence, but currently it merely gives strange list structure
and strange results which needlessly compound: tbe mystery.

To access property lists' special func tions mus,t exist, but these can
be either a special version of cdI' or some more elaborate functions such as
FLAG 0'1' PROP which give more freedom of arranging and rearranging atom
storage.

The cost in running time of recognl.zl.ng this error will vary with
storage conventions. When it is high, an artifact may be added to use
unprotected versions of car and cdI' for speed in debugged programs ..

For no good reason calling a function with the wrong number of
arguments is not flagged in a lucid way. This, too, is a common occurrence
and should be checked explicitly by the functions that actually do the calling,
or by define.

2. Backtracing

In LISP 1.5 the occurrence of an error causes a 'backtrace", or
listings of all the functions that have blocks saved on the push down list.
In compiled program this is quite informative, but the interpreter, because
of some clever coding, leaves a track of "CONS COND MAPLIST CONS COND
MAPLIST ••.••.•• " which is not very helpful.

A major improvement in backtracing would be to print the arguments
to each function in the back trace. This will pinpoint the immediate cause
of the error, and also detail the cause of the cause, etc., saving much effort
and frequently a rerun with,tracing.

The arguments of compiled functions are readily available if stored
on the push down list and can be found if stored elsewhere, but a small
'agreement between the interpreter and the backtracer is necessary ,to make the
interpreter's tracks meaningful. It is also necessary to put every function
call on the push down list, rather than just the truly recursive ones.

3. Tracing

The cuprent TRACE facility is effective, but tends to wallpaper~ A
worthwhile addition is Minskey's 18.larm clockll. A count of function calls or
some such thing is kept and printed when an error occurs at the end of a
function.

2

Ea sua k, .\,. . MS .. a , .. k#.iZl J. ,.2L.; L, iU) 1 ,

o

o

o

If tracing is desired at some point well along in a function the
value of this counter when tracing should start is given, and no tracing is
done until that point. This will cause considerable reduction in paper
generated'.

Dean Woold~idge has patched this into LISP 1.5 to help with obscure
errors in his simplify program, and it has been quite useful.

4. Diagnostic Define

At least for checking purposes, there should be a version of DEFINE
or an M-expression to S-expression translator that checks function calls for
proper number of arguments, undefined functions makes listsof bound, unbound,
and program variables, checks for proper list format, and generally checks for
as many of the common errors as is possible. Useful byproducts of such checking
are lists of functions and variables used.

At the last LISP 2 conference I was rather loudly opposed to the' idea
of a large define program. My mind was changed by reading the ALGOL
translater for the B5000. It is well commented and neatly paragrapned, f and I
found I could read it almost like a novel. Students using this translator
seemed to benefit from the relatively good error checking it provides. I now
feel that the gain from such an approach is worth considerable effort.

5. Notes on debugging a version of LISP

The above detailed debugging aids especially atom-proof car and cdr
will of course be of service to the person writing a new version of LISP, but
there are a few more that would save unt~ld hours of decoding dumps.

A printout of the list structure storage area, that puts out actual
locations of list structure. It must mark as it prints to avoid printing the
same thing more than once. I,have no definite ideas as to what the appearance
of this should be, but it seems that its output should be no more voluminous
than an ordinary dump.

A printout of storage assignments whenever they are set would be most
helpful. I am unduly biased by the last few runs I had debugging LISP but it
seems that I have spent half my time decoding octal dumps to get this
information. '

3

	STANFORD-AIM-100001_a
	STANFORD-AIM-100002_a
	STANFORD-AIM-100003_a
	STANFORD-AIM-100004_a

