: UNl\["EP "sf\T ‘E’%i &
INSTITUT Fléfti\rﬁ\lH o (m. y)
U, DATENV RARBEN i\ FOn
AM WEICHSELGARTEN 9- 8620 EPU\NCJEN

e g A

STANFORD ARTIFICIAL INTELLIGENCE PROJECT Decémber 27; 1943
Memo No. 11 : - ' :

AN‘ALGEBRAIC SIMPLIFY PROGRAM IN LISP

. by Dean Wooldridge Jr.

.. MAbstract: A program which performs "obvious"
i (non-controversial) simplifying
" transformations on algebraic expressions
- (written in LISP prefix notation) is
Sy ~ described. Cancellation of inverses and
= = . consolidation of sums and products are the
- basic accomplishments of the progrem;
_however, if the user desires tc do 80, he
‘may request the progream to perform special
' ‘tasks, such as collect common factors from
T S ~ products in sums or expand products. '
? O .. Polynomials are handled by routines which
| ey ovi . - take advantage of the special form of
} s oY : e : polynomials; in particular, division (not
| .. cancellation) is always done in terms of ‘
| | ~ polynomials. The program (run on the IBM 7090)
is slightly faster than.a human; however the
computer does not need to check its work'by
repeating the simplification. :

Although the program is usable - no bugs are
known to exist - it is by no means a finished
-~ project. A rewriting of the simplify system
| : .. 1s anticipated; this will eliminate much of
i T SR the existing redundancy eand other inefficiency, .
SN, o ~ as well as implement an identity-recognizing '
J‘scheme. ‘

| The research reperted here was supported in parf by the Advanced Research
| @ Projects Agency of the Office of the Secretary of Defense (SD-183)

 Introduction

j uLansﬁase,‘Fr'}

~ ‘Descriptor Lists

" Contents

e

L Appendii ;'1isting\of fhe:prdgram .- pages 1-26 ’:7:

LISp SIMPLIFICATION

The formidable lengths and complexities of the algebraic
expressions with which engineers and physicists must often deal demonstrates .
the need for machines which can transform such expressions into forms which
may be more conveniently handled. Although heuristics play an important part
in simplifying arithmetlc expressions, there is a large emount of "dogwork"
involved which could quickly and efficiently be done by a computer. In this
paper is described a LISP 1.5 program, called Simplify, which applies. various

simplifying transformations to arbitrary arithmetic expressions,

Simplify and its adjuncts were written to.be used on-line in a timew'

',.sharinérsystem. The user is not expected to be familiar with LISP. However,
' this memo consists of a rather detailed description of the program and does,

~ therefore, assume familiarity with the contents of the LISP 1.5 manual (a non-
LISP “user)s manual" for the simplify program will be availsble at a later

“date)e ' In fact, the purpose of this paper is to describe the system in :
. sufficient detall to qualify the reader to improve the system (and, in the

likely event that. bugs still exist, to debug the sys’cem).

Comparison of descriptions in this memo with the listings of the h:f

) sections of. ‘the program being described will frequently yield rather gross

discrepancies. If the differences cannot be attributed to the failure of this f
memo to discuss all the tedious details of bookkeeping, then the differences -

> are related to features of the program which are described elsewhere 1n the

report.

The Language of Simglify

, . The language understood and used by simglify is the LISP S-expression }"i
'~ notation. ,The meanings of the atoms which represent arithmetic g erations are
1s the

the same as the meanings given in the LISP 1.5 menual; viz. if e

' s.,S-expression corresponding to the Algolic expression ey then.

i Simplify also has the dbility to handle polynomials; which are represented as

‘Simglifx

C(adb 4. ..+ 2)¥= (PLUS eﬂb&. .‘.'z}%);v o
. (~a)¥ = (MINUS ¥); e R
(e -b)F= (DIFFERENCE gt bi&), S Syl
. (axbx.o.x 2t = (mms amu. o zﬁ),
(a.”l)’ﬁ' (RECIP a%), L , “ L
~ (a /)%= (quorzENT. asb%), and o
() (mer S D). S

follows'

(Z: ‘é x)ﬁ? (POLY:x’*a#o . ai#)

Polynomlals wi

In this paper, as in the LISP Programmer‘s Manual, we shall use lower
‘case’ letters as variables whose values are S-expressions. A symbol whose value

is its name is written in upper case, rather than being quoted.. e.g., "POLY" = -
k'corresponds to the Sqexpression (QUOTE POLY), etc° bg_,, S Ol R

_ The main portion of the simglif program consists of two supervisor i
functions, simplify and simp, and nine simp” functions: -8impatom, simplus,
simpminus, simpdlfference, simptimes, simprecip, simpquotient, simpexpt, and.

. simpoly..

' Simgatom(s) terminates recursion for simgliﬁy'by returning cons(s,NIL),

it has, however, another reason for existence, and this will be discussed 1n the ,
section on the "descriptor 1ists feature of the program.’,‘ e

The argument of simplify is either an stom, in which case simgatom is
called, or an expression of the form: . ; : i

(op & o6 2), in. which case simg £y calls sim 2

,simp[op;conc[simplify[a], e o o ,simglif y[2];(op 8o z)]

Thus, simplify simplies its arguments on all levels, starting at the 10west.

Simp applies to 1ts second argument, which is a 1ist of terms or factors,l}‘

the function whose name is stored on the property list of op after the indicator
FSIMP; e.g. if op = RECIP, then the value of simp 1s simprecip[(a)l. If the
simplified expression turns out to be the same as the original :expression, which
is carried along as the third argument of simp, then the original expression is
returned, rather than clogging the memory with duplicating list structures. If
FSIMP does not’ eppear on the property 1list of op; then simg returns ((op a coe z))

2

’be discussed in more detail in a later section of this memo. f;‘ |

“list, if simplifylxT = (

Each of the simp functions, except simpatom and simpoly, looks for

‘for the occurrence of the atom UNDEFINED in its argument (the simp functions

have only one argument), s. If UNDEFINED is found, then the simp function
returns : : .

cons[cons[UNDEFINED,cons[op,s]] NIL]. Expressions not containing UNDEFINED
which, nevertheless, “give rise to UNDEFINED expressions are:

(RECIP 0);
(QUOTIENT x 0); and’
(EmPT 0 0).,

(Note that, since simplify begins simplifying on the lowest level of the input
5% then simplifyl (RECIP x)] = ((UNDEFINED RECIP o)g

The purpose of the extra pair of parentheses in the outputs of simplify and .

the simp functions will be discussed in the section on descriptor lists.)’

The following descriptions of the operations of the simp functions -

(excluding simpatom, which was. described above and will be discussed again
later, and simpoly, which will be described in the section on polynomials,
assume. that the argument, s, does not contain the atom UNDEFINED,-

Simpminus[s] returns the 1list whose only element is given by°,"

if s ;f(n) and numberp[n] then minus[n]

;fif,s,='((MINUS a) then a;
4f s = ((DIFFERENCE a b)) then

car[simpdifference[list[b;alll;
ifs=((POLYxa_ ... ao)) then . , C
‘ (POLY x car?simpminus[a 11. .. car[simpminus[ao]});

~otherwise cons (MINUS;a).

Simgdifference[s], where s = (a b), has the value:

simplus[cons[a;simpminus(b]]]:

Simprecipls] returns the list whose only element is:

if s = (n) and numberpln] then:
if zerop[d1'¥ﬁzﬁ“(UNDEFINEn RECIP o),
otherwise recip[n];
g(RECIP a) then a}
(EXPT a b)) then :
N (EMPT a car[simpminus[b]]), ' ' L
. if s = ((MINUS &)) Then o '
_ : car[simpminus[simprecip[cons[a,NIL]]]1
(the minus sign is brdéught to the outside of the
 expression);
otherwise cons[RECIP;s].

-
H
nn

Simpquotient[s], where s = (a b), calls polyquotient to perfOrn the -

division & / b. If the remainder thus producsd is zero (or & zero polynomialy
(POLY x 0 0 ... 0)), then simpquotient returns the list whose only elemént is
the quotient. If the division produces & ncn-zerc remainder, then

simpquotient{s] ’simptimes[cons{a,simpreciplo)};,

3

‘In the follow1ng dlscussions of 31mpexpt, simplus, and simptimes,k

we shall omit mention of the effects of the "expand" and "factor" features on
the operations of these functions. Expand and factor will be discussed in
detail later in the paper, - :

. The value of simge fsT is the list whose only element is: given‘by. 8

if s = ((EXPT ab) e £, ,, z) then :
, car[31mpexpt[cons[a,simptimes[list[b,e]]]]],
if s éf(d @) b . « . 2) then ’ P
. 1f zeropla] then (UNDEFINED EXPT 0 o), e T e
 otherwise 0; - e R e
(l a) then 1; x,”?”d‘.. B
{a'n) and numberp[n] then. ot e e o
o if zerop[n] then 1; E
”“‘%.if onepln] thena; .
" 1P numberpln] then expt[a,n]s
mlnuspﬁn] then . R
i car elmprele[simpexgt[list[a,minus[n]]]]],- ‘
: "Iotherwise conleXPT,sj Fs o
otherwise cons[EXPT, s]

’quJif
*:;1f

n II

Slmplus[s] 1initializes the program variebles n and tm by setting

k‘vthem to 0 and NIL, respectively. n is used to store the sum of all mimeric -ﬁ?~b

~ terms in the»argument of simplus, and tm holds the "term list", which is a
~ 1list of listed pairs:” the car of each pair is a 'term from the argument of L
= simplus, and the cadr is the number of occurrences of that term in-the argument."af'

' For example, the term erm 1ist which would be generated in response to the

. 1ist (A (TIMES B 3) (PLUS ABC)) is: RO SRR .
({(c1) (B4) (A 2)). We shall consider in some detail the functions which o :

generate the term list° collectorl and collect.

o Collect makes use of the predicate mequal[x,y) which is true if .
g al[x,y] or if x and y are both sums(or both products-- more. generally, both

- expressions whose cars are eq and which have the flag COMMUTE on their property

lists) and contain the same terms, though not necessarily in the same order. - .
Collectle;m;s] searches the list s until it finds an element whose car is .

 megual to e. The cadr of that element is increased by m, and collect terminates.
If no such element of s is found, then the value of collect is cConsllistle;m]; tm].

- Thus, collect brings up to date the record of the number of occurrences of the

H~sdb-expression e in the expression being simplifieda-that record being stored on

the term list, tm. For example, if the expression

- (PLUS A (TIMES 2 B) A 3 C) is to be simplified (assume that the second level has =
already been simplified), then simplus initializes n to O and tm to NIL, and calle‘{’

" collectorl[(A (TIMES 2 B) A 3 c);1l, which causes

collect[A;1;NIL] to be executed. The result is & new value for tm: ((A l))
Now EBIlectoxl calls itself: collectorl[({TIMES 2 B) A 3 C);1], which again calls

~collect, etc., until the original list of terms 1s exhausted. The growth of the

term list may be summarized as follows:

collector ~ - "~ collect i : resultsdf: .
arguments . - arguments = S n Cootm
(A (TIMES 2 B) A 3 c), A, 1, NIL 0 S (a)

 ((tTmms 2B) A3C), 1 (mMES 2B), 1, ((A1)) o ((B2)(a'1))

o

(A3¢), 1 e&» A, 1,((2)(a 1)) (@2ﬂké)

(3¢), 1 3L (B2)(a2) 3 ((B2)(a2)
(c), 1 | ¢, 1, ((B2)(a2) - 3 - ((c1)(s2a)(a2))
Nill,l Return to simplus. S . '

The value of collectorl[r,mm] vwhere r is initially the 1ist, s, of

the terms of the sum beTng simplified is:

pros 2[| o :

(if nulllr] then NIL, T o
otherwise: - R L
Cli A numberp[car[r]] then . . S
_setqln;plus[times(n;mm]; car[r]]] S R
~(recall that the purpose se of n is to hold the value of the
‘numeric portlon of the expression, the purpose of mm will
" be made clear below): , ‘
if atom[car[r]] then collect[car[r],,mm,tm],
if eglcaar(r];PLUS] - then collector[cdar[r],mm]
- . (delete nested PLUS operationms: :
b %PLUS A (PLUS B C)) = (PLUS ‘A B c)), o
" 1P eqlcaar[r];MINUS] then :
gcollectorl[cdar[r]°minus[mm]] o
-(the appearance of (MINUS e) is recorded ‘as -1
appearance of e rather than as 1 occurrence of
(MINUS e); thus, (MINUS (MINUS e)) is recorded as
”l occurrence of e; this is the reason for the"
argument mm)l; = -
if eglcaar[r];TIMES] then
if numberp[cadr[car[r]]] then
" collectlcaddr(carlr]];times[cadar[r];mm];tm]
(if a numeric factor other than one is involved in a
product, then simptimes places this factor at the
 front of the 1ist of factors; thus, by the time
_simplus sees the product, if a numeric factor. (not 1)
~ appears, then it is necessarily the first factor;
similar remarks may be made with respect to. simglus
- and non-zero numeric terms);
A “otherwise collectlcarlr] smm;tm)
;Z othervise collectlcarlr]; mm,tm]),

“ collectorl[cdr[r],mm,tm]

After it causes the term list to be generated, simplus must rewrite
the term list as a conventional arithmetic expression. For this purpose, .
collect2 is called. The effect of collect2 is to generate an output list, lo,
whose K’'th member is car[simptimes(%: mk]] where tmy is the k'th member of the
term list (the argument of simptimes must be a 1list of factors; each element
of tm is a list of two elements: an expression and the number of occurrences

of that expression) Collect? may be summarized by:

magcon[tm;)‘[x]5sim£times[car[x]]]].

=

. The flnal actlcn* perfoxmed by 51mplus are to cons n onto lo if n'
is non-zero; to cons PLUS onto the new lo if lo contains more than one element-»f'
"~ if the list contains only one element, 1ts car 1s taken as the newv lo, and this
last llSt 1s cons’ ed onto NIL. ‘ ; - S

: The remaining simp function to be discussed in this section, Lo
simptimes[s] is similar to simplus: na and tm are initially set to 1 and NIL,J'
- respectively; and collectorl is called to°generate the term list. However; the
tests made by collectorl when this function 1s called by simptimes differ from =
“‘the tests described above in ‘the discussion of simplus. Simplus and simgtimes MR
;,’actually call collectorl via collector, whose six arguments specify which tests>,,~ B
are to be made. .The main&changes ‘are the following replacements in the BRI
descriptions glven aboveA”Vreplace plus by times; PLUS by TIMES; MINUS by
QRECIP, and TIMES»by‘EXPT One additional test is made; and collectorl, when

if numberp[car[r] then,setg[n,times[n,mm,car[r]]],
if atomlcarlr]] then collectlcarlrl;mm;tmly
if. eq[cé"~Tr] TIMES] Then collector[cdar[r],mm],~,-
if _gﬁcaar[r] RECIP] then collectorlfcdar[rl,minus[mm]]
{mm again keeps . track of inverses--this time inverses A L
© under multiplication. rather than inverses under addition);; e
“1f eqlcaarlr];EXPT)} then = . s T
l’k‘collectlcadr[car[r]] car[81mgt1mes[list[mm,
- caddrlcarlri]]]]“tm]] TR
(the reason for using simptimes, rather than tlmes,
T will be e7plained below); IRUENE I
f.if eglcaar[r];MINUS] then %
- prog2 !setq[n,minus[n]] collectorl[cdar[r] mm]} :
(this test is not made when collectorl is called by
e simglus, if a factor is preceded by a minus sign, then
~:.the minus sign is, in effect, transferred to the numeric RS
Zportion of ‘the product; thus, a simplified product contains gju»’f='*'
%no negative factors, except, perhaps, a negative numeric

otherW1se coliect[car[r],mm,tm]){

The use of simEtlmev in the statement which is executed when
car[s] is found to be an exponential form allows the collection of non-numeric
numbers of occurrences of sub-expressions; e.g. suppose that s = ((EXPT a b)‘..)
Then we mey collect b occurrences of a, even if b is not & number. .Thus
simplify[(TIMES (EXPT A 3)(EXPT A((PLUS B 1)))] = ((EXPT A (PLUS % B))).
Collect must he modified, but only slightly, in order to accommodate this more
, general mode of collectlng when collect finds a record of an expression in the
'I. term list, instead of adding m to cadrlcar[s]] (s is that portion of the term
-~ 'list whose car contains the record of the expression currently being collected),
‘collect will cons m onto cadr[car[s]] : e AR o ,

_ After the term iist has been produced, simptimes calls collect2.:
The normal function of collect2 when called by simptimes is analogous to its
- function when called by simplus; only one word is changed in the summary.

Ve have: mupcon[tm; M [xT;simpexptlcar(x]]]1] (simpexpt replaces simptimes). .

However, to moke possible collection of like factors with not necessarily
numeric exponents, we must modify collect2 when it is called by simptimes:

mapcon[tm;%[[xJ;51mpexpt[cons[caar[x];simplus[cdr[x]]]]]].

v . Finally, :if'n is'zero,"simptimes returns (0); otherwise, if n is
not equal to one, then n is cons’ed onto lo, the output of collect?2; if
~ this last list contains only one element, then simptimes returns that list,
:‘.‘ otherwise c':tl'nptimes returns cons[cons[TIMES lo] NILl.

‘ m'Th1= is the basic Simpllfy programo It has the disadvantages that -f fk

:'*j.lt permibs the user no coanoL over the form of the output of the program

"~(unless, of course, the user is willing to understand LISP and the simglify
g""program well enough to make it behave in a desired mannez) and it does not
'make use of the polynomial format to simplify and speed up symbolic arithmetic
eperations (particulazly'diviglon) In order to eliminate these shortcomings,
the program has been expanded (by a factor of about three in the number’ of -
cards comprising the deck). The new functions of the program are described
in the following pages. - P ons oL the Pt g ol

3 Iactor *?" ’

N R The following question is suvgested by the operation of 31mptimes.
GI" O if we can collect non-numeric numbers of occurrences of sub-expressions in -
products (simplify[(TIMES X (EXPT X B))l = ((EXPT X (PLUS 1 B)))), then why
. don't we collect non-numeric numbers of occurrences of sub—expressions in
sums? . Then we would have, for example, ' o :

o ,_simpllfy[(PLus (TIMES X A)(Tnms B X)) = ’((TIMES X (PLUS B A)))

g .Brief reflection reveals tbat this latter trick requires some care'because of i

. the commutativity and associativity of multiplication* when ve see (EXPT X A),;.

- there is doubt that we. should collect A occurrences of X; but, when ve see .
},(TIMES A B), do we have currences of B or B occurrences of A? %

, ,'We have bypassed this difficulty by requiring the user of the program
to"speclfy what is to be done when collecting in products.» before calling A
simplify, he’ gives evalquote the arguments FACTOR (r) Factor[r] is the function

]aeflist[nst[iist[FAcmoR cond[[atom[r] m:L] [T,r]]] COLFLAG]]

iﬁFactor is delined so that the user’ need not be concerned with the details of
_using deflist and manipulatlng property 'lists.; ‘

L R L If the argument, r, of factor‘is an atom, then th null 1ist will be
"};put onto ‘the property ‘1ist of FACTOR after the indicator COLFLAG. -In this case
[j]s1mplify will not collect non-numeric numbers of occurrences of expressions in

£ . a list, then the variebles 1n the list will be factored from,
O ail sums in which factoring is possible, if factoring of more than one listed
;iﬂﬁvaxieble is nossibie, ‘the variable which appears first in the factor list r,

: r'w1ll be factored first., For example’ ,,3j R - O

if r = (X Y2), then slmplify[(PLUS (TIMES A X)(TIMES B x))]

< ((emEs X (PLUSA B))); L SRS
NIL (or any other atom, or any list not containing X), then .Fs.v,cy
then simplify[(PLUb (fvaQ A X)(TIMES B x))] i L
- ((PLUS (TIMESIA_X)('FIMES B x))), =

ll'

it

| simplify[(PLUS (‘I‘IMES A X)(TIMES BX Y)('I‘IMFS ¢yl
((PLUS ('I‘IMES Y (PLUS (TIMES X B) C))(TIMES x A))) S
» The factoring is accomplished in twc stages, we shall first consider'f

the ordering of the factors in products (only products are affected by the e
ordering procedure) - In the process of unwinding the term list‘genereted by_V;'

collectorl and collect, collect2 calls collect3[x;colist], where x is the

arithmetic expression generated by collectZ in correspondence to the first
element on the term list and ¢olist is the factor list (as specified by the
most recently executed "factor[r]" call). (Colist is & program varieble available
to collect?2.) ‘

Collect3 finds the first element of colist which’ appears in x, the
remainder of colist is dropped; ' this new list is returned gs the value of
- collect3, and it replaces the old value of colist. Collect3 1s executed for -
- its effect as well aB 1ts value: 1f x is found to have.an element in common
with colist, then x is set aside--stored as the value of the program varieble
vsav. The next time collect3 is called (x is now the arithmetic expression
corresponding to the second element of the term list), if the first element of
" colist which appears in x turns out to be the last element of colist (which is

i? . the 'first element of the factor list which appeared in the expression s
- corresponding to the first element of the term list), then x is cons’ed onto

' ‘vsav, the value of collect3 is colist, and control returns tg collect2, which
eventually calls collect3 with the third arithmetic expression and so on.

. However, if the first element of colist which appears in x is not the last

S»element of colist, then vsav is cons'ed onto the output list of collect?2
- lo, x is stored in vsav,and .collect3 returns that portion of colist which Coi
precedes the element after the first element which appears in x, and ¢ontrol e

0 returns to collect2

. vsav, x. is cons ed onto lo, and collect3 returns colist..

Pl Note that at any instant the value of colist is that sublist of the
factor list whose last element is the first element of the factor list vhich

appears in any of the expressions generated so far by collect2.. Vsav contains

"~ a list of expressions generated so far by collect? which contain the last

element of colist. And, lo is a list of expressions which have been studied and

whlch do not contain any element of colist.

" When the term list is exhausted collecte appends vsav onto lo,
producing a list with the property that all elements which contain the first
 member of the factor list which appears (at any level) in the 1ist are at the .
beginning of the list,_ , -

U P \) - v - ,
: _ ~An example of the Opexation of the ordering process may help to make
o the ‘above description more. meaningful. Suppose that we execute the two
, instructlons.,- . . : N '

 FACTOR((V W X ¥ 4))
' SIMPLIFY((TIMES 3W (PLUS W Z)- X (PLUS 4 Y) X U z))

The term list which will be generated is:

((z 1)(u 1)((PLUS & Y)’l)((PLus W Z) 1)(X 2)(W 1)). We shall watch the values
of the variubles x, colist, vsav, and 1o as cotlcct? unwinds the term list:

SIf x andcolist have no elements in common, then no change is made in :ff“i

colist

S e v VXY z) RIS e
2. T e R ey e
C(eoskY) . (VWXY)

C(emswz) (VW)

The term llst»is empty, so collect2 a pends vsav to;lo*
(W (pLUS W Z)(EXPT X 2} (PLUS T Y) Z U). The first element of the factor list
ojwhich appedred in the~term 1list was W, and all elements of the final list which
~ contain W appear at the® front of the 1ist ‘output: by collect2. Finally, the . -
 numeric factor and the operation indicator are replaced, -and the result liated'
 simplify[(TIMES 3 W (PLUS W Z) X (PLUS & ¥) X U 2)]

.__(z()___‘ TVES 3 W ('PLUS W 7) (EXPT X 2)(PLUS u x) z U))

e : Th fsecond phase of the factoring process is accomplished by changing
 collectorl, when called by simplus, for the case when eglcaar[r];TIMES] = T.'
© . The procedure 1s straightforward:. simplusprime effectively causes the numeric i
. - factor of the product (simptimes slways puts the numeric factor at the front of '
, - the list of factors) to be set aside temporarily; the list of non-numeric factors
is examined by simplus2, which determines the first element, say e, of the factor_
_* 1list which appears in the first non-numeric factor. of . the product; simglus3 T
‘separates the list of factors into a list whose elements all contain e and & list Sl
whose elements do not contain e (sileuSQ and simglus3 make use of the fact that .
the list of factors has been ordered by collect3--thus, only the first element ’
''need be studied in order to determine the first member of the factor list .
/. ~ appearing in the list of factors; and a single pass through the 1ist of factors S
" is the maximum amount of effort required to split the 1ist); .these two lists are
. made into legitimate products by simptimes, and the numeric factor of the original
- product.is included in the product not contalning e; and the product containing e S
: is collected onto the term list with‘the product‘not containing e used as the n i
'ﬁEifnumbe of occ rences” i ‘

. Perhaps all this
‘example,, We execute°

aovbe made more clear by making use of the previous

S FACTOR((V WX Y 2)) A e

i SIMPLIFY((PLUS A (‘I‘IMES 3 W (PLUS W z) x (PLUS 1; Y) x U z)))

After simplification is accomplished on the second level of the expression, *;\:: ,ri¥
simplus is called:. hat s ‘ ‘ ST IRy

~ simplus[(A (TmEs 3 W (PLUS W Z)(EXPT x 2)(PLUS u x) z U))]

10

Collectorl w1ll see A set the term iist to ((A l)), and on to the second .
term. The first element of this term, TIMES, sends control of the program to t
the group of functions described above:; simplusprime sets 3 off to the side;
simplus? looks at the first element, W, of the remaining list and determines that
“the first element of the factor list which appears in W is W; simplus3 strips off

© the elements containing W from the 1list of factors, forming two lists:

L products; for exampler simplify[(PLUS X (EXPT X 2))] = ((PLUS X (EXPT X 2)))1,
“. whether or not X is on ‘the factor list; simplify will not give us the result
o ((TIMES X (PLUS 1 X))) ‘At first, this Seems a rather serious limitation; i

(W (.. W2Z))and ((ExPT X 2) (PLUS & Y) 2 U), simplusl mekes products of these '
two 1lists (replacing the numeric. factor, 3, in the’ second list) and, finally,
calls:

' collect[(T]MES W (PLUS w z)) (TIMES 3 (Expr x 2)(PLUS u r) z U), ((A J.))]

f It will be noted that the scheme described above will not factor

7;'however, it has ‘one advantage (in addition to the’ programming difficulties it
- avolds): the factored output is in a- form which may be converted to polynomial

. notation with considerable ease. " Of course, once we have rewritten = L
- (PLUS X (EXPT X 2)) in the form (POLY X 1.1 0), it is not difficult ta drop the. S

“tailing zéro and multiply the result by X: (TIMES X (POLY X 1 1}). " This,

'ﬁ!'[kthen, may be changed into (TIMES X (PLUS X l) ‘This scheme appears to be a- very'fic:'

2 roundabout way, of. factoring, but its implementation is stralghtforvard and makes -
. “use of much of the.code which already exists;. factoring directly would be

bf'dlfficult to code and would reguire considerably more: memory for the program k
"than factorlng by means of polynomial manipulation.‘ ' S : :

ks I7One further feature of thls factoring mechanism deserves mention"
u'consider a case in which & sum contains several products 1nvolving the first

element of the factor list, say: (PLUS (TIMES A X Y)((TIMES B X Y)(TIMES € X))

- and the. factor list is. (X;Y) ‘Then the term list which will be generated for . 7
simplus will be: ((X (C (TIMES Y B)(TIMES Y A)))).- Collect2 will use simplus
to form a sum of the number of occurrences of X, and 31mplus wlll factor Y from

~ the sum ‘

, "simplus[(C (TIMES ¥ B)('I‘IMES Y A))] ((PLUS c (‘I‘IMES Y (PLUS B A)))) Thus, A
the factor feature accomplishes factoring whenever possible-- on- any level of
the expression, and decisions as to which variable should be factored when more
thah one: might be factored are made by referring to the factor list--the first

‘ '»variable on the factor list is factored first, the second variable second, -and

“so on. (Note, in the above ‘example, that if the factor list were (Y X), then,_ ;g,ﬁu,,
f'girm-__;}_%f_x[(PLUS: (TIMES AX Y)(T]MES BX Y)(TIMES c x))] ' ' S
_((PLUS (‘I‘JMES r x (PLUS A B))(TH/[ES X c))))

S

Polynomialslp

‘ R J;‘Afset of function_ which manipulate polynomial expressions ‘has been

. ‘ included in simplify; this was done’ in order to take advantage of the speed

' v~~gﬁifand ease. of dealing with polynomials.« In particular, division of. polynomials
10 \may be programmed in a straightforward manner.pw N) L R

i The definition ofvsimplus, simptimes, and simpquotient have been
S modified from the forms described earlier by, the inclusion of calls to the
”~n-polynomial functions whenever appropriate. o : ST

, is the zero polynomial,

: (POLY x 07 s . 0), then simpoly return), otherwise simpoly returns-the-

;polynomial derived from s by dropping all leading zeroes: :
[(PoLY x0.01)] ‘

_ : p , ; '
fexpression,” the. procedure\may ‘be summarized. by;the program.

.prog[(u v W)
;’"'Setgtu, 0],
etalv;NIL
etqlwireverselcddr[s]]];
wsetq[v,conslcar181mptimes[list[car[w] car[simpexpt
g[u,addl[u]l’
psetg[w,cdr[w]],
“condl[w;golalll;
7return[car[simplus[v]]]

The actual polyunwrite program - is written in the form of recursive and pseudo=:
 recursive functions, rather .than in the form of a program; the program rewrites “
i~ polynomials as non-polynomial expressions on every level.of the original =~ ;
-7 -~ expression. . -After the coefficients of a polynomial have: been”polyunwritten, ,
. “the polynomial itself must be transformed, and this process takes place in the.
. manner deséribed in the program,. beginning with the low-order coefficient = =
5 (car[reverse[cddr[s}]]) and ‘working up to the high-ordér coefficient (caddr(s]),
. the program builds up a sum by raising: the polynomial varisble (cadr[s]i to the
' same power'(u) as the order of the coefficient (car(w]) currently under “
;f;“consideration, then multiplying this expression’ by the current -coefficient, and
 cons'ing that product to the list (v) of terms. If s is not a polynomial, then
-polyunwritelwillv"polyunwrite" any‘polynomials which appear in 8.

\ . o atoms, then polywrite[s r] searches T until finda
an element, X, which appears in s; then polywrite calls itself: polywrite[s,x]

-~ If s and T have no élement in common, then olywrite returns s if s is not a
polynomlal, and returns polywrite[s cadr[s]i if s is a polynomial. ,;~f} RS

';When x is atomic, polywrite[s,x] writes the expression s as a f;'~
’polynomial in x. 'If s does not contain x, then polywrite returns (POLY x s).
. If s is'a polynomial in x and none of the coefficients of s contains x, then = ==~ g
: polywritels;x] = - If neither of these cases is satisfied, then the factor © ,ZL
list is set aside, and a ‘new. factor list produced which contains the single element X. o

Then'polywrite calls simpl’fylpolyunvritels]]. The output of simplify will

- scanned, polywritel pits x and POLY on the front of harray, and returns the
polynomial to Bolywrite.»- : : . ,

o Eolywritel makes a polynomial of the coefficient list, harray, cons'es this
vpolynomial to the list of terms which were set aside by olywrite3, and then
(EXP

~‘accommodate. the k'th element. Similarly, on the lower end, -setarray will extend 4
~the: list in order to accommodate low-numbered elements. As it is used now, =
 setarray is made to believe that there is a zero'th element, and it is never

~ these restrictions are by no means necessary; setarray was written with the

~third element of the’ polynomlal specifies the order of the low-order coefficient)

. may be written as a list of six elements, (POLY X 998 1 0 1), rather than a list of -

permits greater speed of manlpulation.

almost be a polynomial: no two terms will involve the same power of x, except
constant terms; and in every term involving x, the factor containing x will be
the first factor. Then, Bolywrite must rearrange the terms, combine all the
constant terms, and drop the factors containing x.

Polywrite calls Eolywrite (via polywrite l and polywrite2) Term by
term, polywrite3 scans the output of simplify, determines the power of x
involved in that term, and gives back a list, (k a), of the power of ‘x and the
coefficient. Polywrite2 calls setarray, which simplus'es a onto the k'th
element of the coefficient list, harray. When the output of simplify has been

: The polynomial format used by the program has no provision for e
negative powers of x.. . Therefore," it polywrite3 sees a negative power of x, this
term is set aside until the remainder of the simplifl output is scanned. Then;

cons’es PLUS to'that list. Thus, polywrite[(PLUS A (mms 2 T X 2))
) ('REcIP x)), x] (PLUS (POLY x 2 o"(P’ "L"U‘s"'A ‘B))(RECIP x))

7'7 If setarray is asked to modify the k’th element of harray, but harray's":
last element is numbered less than Xk, then setarray will lengthen the list to .

asked. to store data in negative elements (polywrite3 sees to this). However,
thought in mind that it mlght prove'useful to uEE_Ef53Tynomial format such as:
(POLY x -3 AOB o o 1) (PLUS (TIMES A (EXPT X 2)) B (EXPT X -ﬂ) (here, the
Such a format has the advantage that, for example, (PLUS (EXPT X 1000)(EXPT X 998))

.1003 elements, of which only four are non-zero: (POLY X1010. .. 0) The
polynomial convention which was adopted for simplify was simpler to implement and

Polyplus, polytimes, and ‘polyquotient refurn 0 if & zero polynomial
results from the addition, multiplication, or division, respectively; returns
the constant term if the result is a polynomial ot zero degree; and returns the
polynomial result otherwise. Each of these functions has two arguments--the "
expressions to be manipulated, and the output is an expression--not a list whose

first element is an arithmetic éxpression, as in the case of the simp functions.

The forms of the input and output for the polysimp functions seemed worthwhile

simplifications when they were decided upon; however, they render impossible the
use of descriptor lists in the polynomial package (see the section on descriptor
lists). (This mistake‘w1ll not be repeated in future versions of simplify) ‘

- If neither nor z is a polynomial then polyplus[y,z]
car[simplus[list[y,z]]] Otherwise, if z is a polynomial, then y is revritten as
a polynomial in terms of the variable of z; if z is not a polynomial, then z is
rewritten in terms of cadr[y] Now polyplus has two polynomials in the same
variable; the coefficient lists arereversed and given to polyplusl, which adds
corresponding coef:icients, from low-order to high-order, until one 1list is

15

:!U]list of terms conteins one element: y; similarly for. zf ‘then each element of

~j,f Land the resulting products are summed by simplus. Thus,

| "'f:goiytimes[(mus A lB) . (DIFFERENCE A B)]

vwf;both y and z are polynomials, then y is Tewritten in terms of cedrlz];. otherwise,

' other argument. The coefficient lists of the two polynomials are then "multiplied"'

. coefficient 1list. The coefficient 1ist of z is multiplied
by term, by the low-order coefficient of y, and the resulting list:is the initial

i -~coefficient list.of 2z is multiplied by the second low-order coefficient of. Y and,

‘,f,polynomial, then z is rewritten in terms of the variable of y; .otherwise,

)f"?degree polynomial: than z, then check will be set to T by polyquotientG .and
- (TIMES y (RECIP z)) will be returned by polyquotient.. (fIl is also set: to NIL by

l“ﬁeihausted then whatevcr renains of the other list is (effectively) reversed_;»

- and appended to the sum coefficient list. The output of polyplusl is the list of
~coefficients (in descending order) of- the sum polynomial, to which polyplus need
'only append the list (POLY/x), where b4 is the variable of the polynomials.

Lo IR neither argument of polytimes[y,z] is a polynomial then the
‘“product of y by z is expanded by olyexgandl‘ both y and z are expressed 8s A
‘lists of terms of a sum (if y is not a sum--i.e., ‘eq(car(y);PLUS) = NIL--then the

‘each list of terms is multiplied (by simptimes) by each element of the other list,"%"‘

'(PLUS (E}CET A a)a(z'vn:mus (EXPT B 2)))

Z] is e~polynomial::;iff

When at?least,one rgument O Eolytimes[y,
kuf~the non-polynomial argument is made into a polynomial in the variable of the

_ together by a succession of ‘maplists and "shifting" of the fartiel product) ARy
using simptimes),. term §

| value of the partial product. Zero 1is cons? ed onto. the partial. product,< the

. the resulting list’ is ‘added, term by term, to the partial product list, forming &
. new ‘partial product to which is cons'ed zero, and the multiplication is?g;ﬁ;g A

- repeated; using the third low-order coefficient of y; and so on, until the = - = S

_product of the coefficient 1list of.z by thé high-order coefficient of y has been fff R

~ included -in the partial product. The variable of the polyngmials and POLY are =

”J:then successively cons’ed onto: the partial product list and golytimes returns i

the resulting polynomial.;ﬂ_} g , BED Y

AT Polyquotient[y,z] writes both its arguments as polynomials in the first
. member of the factor list which appears in either y or z. If no member of the'
' factor list appears in y or z, or if the factor list is null, then: 1if z 1s a“
-polynomial, then y is rewritten as a polymomial in the variable of - 2; if y is a

. polyquotient returns a list of the form (TIMES y car[s1mprecip[list[z]]]} ;'
_ (lf carly] TIMES then rpolyguotient fe'burns nconc_ﬁ,r,slmpreclp [Iistlz]]

i : The rewriting of y”and z (when possible) is perfbrmed under the = ‘.,
g_direction of polyquotientl, which gives the rewritten arguments to polyquotient2.
-Polyquotient2 initializes the”’ program variable check - to NIL; if y is a lower-.gsf

- polyquotient2--this is necessary to prevent errors from occurring when various : v
simp functions, which use the program variable fl, are called by the polyquotientl‘v,_'
: functions—-fl is described in the sectlon on descriptor 1ists) L

Polyquotient2 gives the coefficient lists of y and z to»golyquotienth

- which initializes the program variables .signal and ldcof to T end NIL, -
respectively, and calls polyquotient5. Signal will be set .to NIL. by polyquotientG

when the division process is in its next-to-last ‘iteration--the last iteration is SO
performed differently from the others; - after the last iteration, the value of the AR
slgnal is set to the list of coefficients of the quotient polynomial. AR ;

o the example sbove, this list is (o 0)

" (simplifications are made where possible), where.q, r, and z are the quotient,

During each iteretion, ldcof stores the quotient of the first
coefficient of the reduced numerator currently considered by the first coefficient
~of z; ldcof will be multiplied by each of the other coefficients of the reduced
numerator, and the resulting list will be subtracted term by term, from the
' reduced numerator. Consider the quotient°

(3a + 6ab + abe + 2b c)/(a + 2b); or, in polynomial notation. o
poly(a;3,6b+be, 2 c)/poly(a,l,zb). We shall follow the progress of the division°

ldcof : denominator = . vnnumerator
. coefficients - - coefficients
‘ Lo .J‘ L%hg"’s; il“'$&%m%% '
3r=3 o 38

Ihus, ldcof contains ‘the coefficient of the quotient 1ist which vas generated by
the most recent iteration; the quotient coefficient list is obtained by listing
all the values taken on by ldcof during the division: in the example, this list
-1s (3 bc), and in the quotient polynomial is poly(a;3,bc), or 3a + be. After the
last iteration, the value of ldcof is set to the remeinder coefficient list, in

- The reduction of the numerator is accomplished by polyquotient6 which
' carries out the process of "long division ; 8s is indicate@vin the example above.

. The output of polyquotienth is a listed pair; the first member is the
1dst of coefficients of the quotient polynomiasl; +the second is the 1list obtained
from the remainder polynomial coefficient list by dropping all leaeding zeroes.

In the example, the output of polyquotienth would be: ((3 (TIMES bc)) NIL) This
list is given to polyquotient3 , ‘

. Polyquotient3 returns (TIMES y (RECIP z)) if check has been set to .-
If the remainder 1list is null, then polyquotient3 makes a polynomial of ‘the
quotient list and returns. When the division yields a non-zero remainder,
 polyquotient3 will return an expression of the form (PLUS q (QUOTIENT r 2))

remainder, and divisor, respectively, if & non-null list is stored on the property
‘list of the atom SIMPLIFY after the indicator REMAINDER. If no such list or g
indicator exists, then polyquotient3 returns an expression of the form:

(TIMES y car[simprecip{1istlz]]]). -

The function polyremainder is provided to erable the user to store the
an expression on the property list of SIMPLIFY after the indicator REMAINDER.
Polyremainder[NO] has the same effect as polyiemainder[NIL]—-polyquotient will
return a quotient only if the remainder is zero.

15

e we now have the faenlity +to deal with either polynomlal or non-polynomial";,¢
’f;expressions. There seems to be no convenient way of dealing with the two types of T
_-expressions simultaneously; thus, if a polynomial and a non-polynomial ‘both 3
. appear in a.sum, we might either- polyunwrite the polynomial or polywrite the uf'“ L
"4~3”non-polynom1al, and then simplify..waever, ‘another scheme has been adopted--one o
" 'which minimizes the amount of polywriting and _polyunwriting--we- simply handle the =
" two types of expressions separately as long as possible, and, in 'the final stages ,”'
- of simplus and simptimes we shall give to polyplus and polytimes, :espectively, the
)fjob of making a 31mplif1ed polynomlal of the sum or product. l», AR T e

: The program variable psav i set to 0 (l) by simplus (simptimes) e
: ollectz, then, tests car[simplus[car[tm]]] (or car[simptimeslcar[tm]]J]) to see if
it is a polynomial--if so, the expression is added (multiplied) by polyplus "
‘(polytimes)into psav, rather than: ‘being cons'ed onto the output list. If this'
est falls, then collect?2 acts in the manner ‘described . previously (other i
modifications to collect2 will be discussed later, but we assume for now that-they d,4,~-
do'not exlst). When the term list is ‘exhausted, psav contains the sum ‘(produet) . ;
of all polynomial expressions which were represented in the term list ‘and the ?}1~z>

LT When simplus (simptimes) prepares the final- simplified expression 4t
vchecks ‘the value of psav. If this value is still O (1), then the numeric portion =
and the PLUS (TIMES) are put into the output list, according to the rules previously =~
. described. However,: if psav is not st111 0 (1), then polypius (polytimes) 1s called]fl‘
' to add (multiply) psav into the non-polynomial part of the output expression, and
“the numeric part and PﬁUS (TIMES) are listed with the resulting polynomial -

o o expression if necessa.ry i

S - Thus, any sum or product involving a polynomial term or factor will be
\fgsimplified to a polynomial. It is, however, & simple matter to cause such sums or

. products, to be simplified to expressions involving no polynomials--we need only
call simplify[polyunwrite[e]], rather than simplify[e].; L

. simgeggt[(A (MINUS B))]

Recipmode‘,

: The fact that the reciprocal of an expression, e, may be represented
as (RECIP e) or as (EXPT e -1) leads us to add another feature to the simplify
program: recipmode. This function sets the constant RECIPMODE to T or NIL, -
according as the single argument of recipmode is R or some other S-expressioﬁ,
respectively.

When. the. value of RECIPMODE is T, then simpexgt changes all

’exponential expressions with negative exponents (a symbolic expression whose

first element is MINUS +s considered by simpexpt to be negative) into
reciprocals of expressions with non-negative exponents: For example, when the
value of RECIPMODE is T, sim e t[(A =3)] = ((RLCIP (EXPT A 3))), and

((rE (ExPTAB))) s

If recigmode[x] x ¥ R is executed then subsequent calls of sim t

Cwill eause any expression whose Pirst, element is RECIP and which is to be raised
~toa _power to be relieved of the prefix RECIP and to be raised to the negative

of the original exyonent' simpexgt[(A —3)] ((EXPT A -3)); and simgefgt [((REGIP A)

‘- -3)] ((RECIP A 3))

7

~:mod1f1ed to accomplish such expansion, when desired.

”Jif?fiputting the expanded products into ‘the output list.‘,;

. term list representing

simplus[((TIME' "'Y' 'B“)'(‘Tnvms Y AN, etc. ,;

L \pruui

. It is sometime ‘convetient. to be able t° exple~boa:product of sume as “_\.
4 sun of products; e.g. (a + b)(c +dd) = ac + ad +be + bd. Collccte hasgbeen e

L The expand list " which is stored on the property list of SIMPLIFY
.after the indicator EXPAND, is 8 list of atomic symbols. - The occurrence of at

 least one of the elements of the expand list in a product of .sums initiates the .

- expansion process.. The expand list may be set by‘the user by means of the
bE function expand[x] where z is the desired expand list.:,i ’f:'

Since the expansion;of products of sums is applicable only when

if.collecté is called by simptimes, we consider the unwinding of the term list. i e
enerated by simptimes Zactually, of course, the term list is generated by

“expand 1list occurs in the. exnression sthen the expression is. cons'ed onto the .
“output list in the usual manncr.’ However, 'if the expression does contain one or

" more élemenbs of the expand list then the expression is multiplied (by polytimes)e
" by the current value of psav, ‘and the ‘resulting product replaces the old value of - -ff’

"7,psav. 'The machinery which handles polynomial factors also handles the task of

5 o «aThe result of making this very simple addition to collect2 is
*%»demonstrated by~the following example: 1if we execute expand[(XSl, then

' simplifyl (PLUS X (TIMES (PLUS A B)(PLUS C X)))] = ((PLUS X (TIMES A c)(TmES A X) S

44 TTINES B C)(TIMES B X)))= and simplifyl(PLUS X (TIMES (PLUS A B)(PLUS C D)))} =
= .((PLUS X (TIMES (PLUS A B)(PLUS C D)))) (in this second case, the single
E element, X, of the expand list does not appear in the product of sums)

; wgl»A problem may sometimes arise in the event that both the expand and
factor lists contain an element which may be factored from a sum of products;
 example best describes the difficulty: suppose that expand[(Y)] and factor E(Y)] ca
- have been ‘executed, and we want to compute simplify[(PLUS (TIMES Y A)(TIMES Y B))].
_ After simplification on the two lowest levels (Y, A, ¥, B, (TIMES Y A), and e
. (TIMES Y B)), simplusl g(TIMES Y A)(TIMES Y B))] is caZL'Led., Simplus generates the

‘“appears in both ‘the argument of simptimes and in the expand list, simptimes calls ';Ls

yi}fj polytimes[Y; (PLUS B A)], which expands its arguments into a list oE’ZEBEEE€s,i
' ‘which is made into a sum by simplus..-Thus, polytimes[Y;(PLUS B A)]
= simplus[((TIMES Y B)(‘I‘IMES_—L)TTY)

~the evaluation of this. expression requires
. evaluation of simplus(((TIMES.Y A)(TIMES Y B))] which requires the value of

Pt This non-terminating recursion problem has been avoided by simply turninsbgﬁi;b

off the expand feature before collect2 calls simptimes (when collect2 is called by - -
simplus): . the expand list is saved, the null list put in its place on the property
list of SIMPLIFY and after simptimes is executed the expand 1ist is replaced.

The expand list also affects the output of simpexpt, 11 a product RETA

containing en element of the expand list is raised to a power, then simpexpt will L

 return the product of powers of factors: expand[(X)] and simplifyl(EXPT = = -
~ (TIMES A X) 3)] yield ((TIMES (EXPT A 3)(EXPT X 3))) Furthermore, if the exponent

‘collector when called by simptimes). Collect2 compares: the algebraic expression ffffff
. produced by the call. simpexptfcax[tm]] with the expand list. ~ If no element of. the;&ﬂ“

e PLUS B A) occurrences of Y, then collects, in the process -
" 6f generating the output list, calls simptimes[(Y (PLUS B A)]]. But, because ¥

is 8 fixed-point number gzeaxer than Z2ero,. say n,. and the expression ﬁo.be
raised to the n'th power is a sum, then simptimes will be called n-l times. by
simpexpt in order to generate & sum of products: expand[(X)] and
’—""‘"simpnf"y'[(mcpcr (TIMES (PLUS A X) B) 2)] yield -

({TIMES (PLUS (EXPT A 2)(‘I‘IMES 2A X)(EXPT X 2))(}3)@1' B 2))).

‘Bonsideration of expand leads us to. another feature of collect2::

the handling{o? sums of reciprocals which involve members of the expand list..
If recipmodelR] has been executed, then when collect2 is called by simplus,.
.. the program varisble rsav _(initialized by simplus) 1s used to. store the product
. of all expressions seen by collect2 which. involve at least one member of the
" expand list and which are preceded by RECIP.. For example, if the expand list

is (B €), then simplusf (A (RECIP B) D (RECIP C)(RECIP B))j will generate the

term tist: (((RECIP C) 1)(D 1)((RECIP B) 2)(A 1)). We shall follow the

o development of rsav and tm (the term: List) as the output list is generated.

| rsav Q;, : j,g~‘¢ff . ;7 ;j.tﬁ 3 ”5pﬁf‘ '4' e‘.,.lo’
(eI ©) 1) (0 1) (ReeT? B 2)(a o v
. (e Rac) @
(C) ,,,/_(((RECIP B) RICED R i ((Tms D ¢) 1)‘
(BC) A D) e ((T]:MES 2 c)(TmEs BDC)B)
" (BC) NIL ((TIMES A B C)(TIMES 2 c)(TmEs B D c) By

: : : Each time a reciprocal expression 1s found in the term 1ist eaeh
_element of the output 1list is multiplied by the expression (after deleting
RECTP from the expression by taking its cadr?, the product of rsav by the
- number of occurrences of the reciprocal expression is cons’ed onto the output
list, and the expression which appeared reciprocated is cons’ed onto rsav. -
Furthermore, every term to be included in the output 1ist, but which does. not
result from a reciprocal expression in.the term list, is multiplied by the
current vaelue of rsav, 'and,this product is cons'd onto lo. Thus, when the term
" 1ist-is exhausted, the product of.the terms of lo is the numerator of the final
- result, and the product of ‘the terms of rsav is the denominator of the final-
answer. In the process of putting the finishing touches on the simplified
expreassion, simplus replaces.rsav by car[simptimes[rsav]]; pute the mmeric
term and PLUS onto the output list generated by collect2, if necessary; then
gives these two 1ists to polyquotient whose output is returned by sigplu .
. We have, then:

simplus[(A (RECIP B) D (RECIP C)(RECIP B))] = ((TIMES (PLUS (TIMES A BC)
('I‘IMES 2-C)(TIMES B D c) B) . (RECIP (TIME:S B 0)))).

Another function of eollect2, one which was not demonstrated by the
example, is to multiply psav by the reciprocated expression (after, of course,
+ deleting RECIP) when the elements of lo are multiplied by the reciprocated :
expression.

19

S v When collect?2 is salled by simptimes, ‘and if RECIPMODE = R, then 4"”"
rsav is also used, to store a list of all reciprocated expressions found on the
" term list. In this case, however, the elements of lo are not modified when a

: *7’ reciprocal expression appears. The final phase of simptimes generates the

quotient of the product of the. terms of lo and the product of the terms of
 rsav: 'simptimesf(A (RECIP B) D (RECIP C)(RECIP B))ﬁ) = ((TIMES A D (RECIP -
(TIMES C (EXPT B 2))))). The handling-of reciprocal expressions when simptimes
‘pcalls collecte 13 1ndependent of the expand list.,”mA N

PSRN S If RECIPMODE # R then simpezpt will change reciprocals into s i
x_,-exponential expressions.v Collecte will not put such expressions on rsav, and the A
.. final result will not have the form of an expression multiplied by the reeiprocal REYARE

:3 of another expression. ' : ‘ : TS

20

Descriptor Lists

Our discussion o what the 51mplify program does is now complete
(the operator package, which will be considered later, is not considered to
be part of the simplify program, but is an auxiliary program). However, &
study of the listing of the program reveals that some things are done in strange
ways--namely, simplify (and the simpfunctions) returns a list whose only element
is the simplified expression; these lists are generated by the function
trigsimg rather than by a straightforward cons or list; " &nd the function
descmap (in simp) oPerates on the output of the simpfunations.

These features of the program have been incorporated in order to make
vpossihle the addition of an identity-recognizing routine (in this connection;
the trigonometric identities immediately come to mind--hence, the name trigsimg)

It is intended that after simplification of a sub»expression, trigsimp

.‘~[;will be given an opportunity to study the output expression by comparing its

properties with a list of properties stored on the property list of the main
connective of the simplified expression. Paired with each set of properties on
this list will be a message, or descriptor, which indicates conditions to be
looked for on higher levels of simplification of the original expression. If the
expression seen by trig51§£ has any of the properties on the sppropriate list of
. - property-descriptor pairs, then- the expression is list'ed with the correaponding
¢,descriptor, anduthis llst is returned. . e ,

i R For example suppose we wish to sdbstitute 1 for o
'(PLUS (EXPT (SIN x). 2)(EXPT (cos x) 2)) whenever possible, where x is an
. arbitrary expressions. Then the following information (in some convenient
‘representatlon) w1ll be stored on the property list of EXPT:

If the expression is of the form (EXPT (SIN x) 2) (dr :
‘ (EXpT (COS x) 2)), then look for PLUS as the main connective
- ..on the next-higher level and for another term of the form
(EXPT (COS x) 2) (or (EXPT (SIN x) 2)) in the sum; - then, 1if
-~ these conditions are also met, subtract one occurrence of -
(EXPT (SIN x) 2) and of (EXPT (cos x) 2) from that sum and
add l. :

(There may, of course, be other property-descriptor palrs in this 1list). The
portion of this statement following the first "then" is the descriptor; for
brevity, let this descriptor be denoted by D. Now consider the simplification
. of (PLUS (EXPT (COS A) ?(EXPT (SIN A) 2)). Simpexpt is called twice; in both .
~ cases, the output expressions from simpexpt satisfy properties which appear on

- the list of property-descriptor pairs stored on the property list of EXPT, Thus,

‘the outputs of simpexpt are ((EXPT (COS A) 2) d) and ((EXPT (SIN A) 2) D). On

~ the next-higher level of simplification, simplify calls simp, which saves the

- descriptors (this is why the second argument of simp must be a list of lists of
expressions, contrary to the simplified description given prev1ously) from each
of the elements of its second argument; simp lists the car's of the elements of
its second argument, sends this list to the a appropriate simpfunction, saves the
new descriptors generated by the simpfunction, and then calls descma
("descriptor map" function), which sees if any of the conditions of the original
descriptors are satisfled by the expression output by the simpfunction-»if 80,
then the instructions given in the descriptor are dbeyed. :

21

In our example,751mp saves the descriptors D and D,yithen cells |

* simplus, which returns ((PIUS (EXPT (COS A) 2) (EXPT (SIN 4) 2))); no new

descriptors are generated by simplus, and descmap is called. Descmap finds -
‘that both (SIN A) and (COS A) raised to the second powers appear in the sum.
~ .Therefore, descmap obeys the instructions. indicated in the descriptor list:
subtract (EXPT (SIN A) 2) and (EXPT (COS A) 2) and add 1. The result is 1,
"which is cons'ed onto the "new descriptor list" which was saved by simp before o
descmap was called~-in this case, the list is NIL--and the output of sim p is (l) '

SRS R The 1nstruct10ns followed by descmap may require that no

i*substitutionsbe made, but that a new descriptorbe cons ‘ed onto the "new
_‘»*descriptor list." Thus, it is 30351b1e to recognize identities involving
f;;iarbitrarily complex expressions. N e gl ¢ ,

LT The‘polynomia functions were'written under the belief that the 1fﬂrwi S
1descriptor 1ist feature’ ‘would not’ ‘be necessary when dealing with polynomials,
. and that writing and understanding the code would be simpler without including e
~ the descriptor lists in® the’ outputs of the polynomial functions. Belatedly, it
-was recognized that this was a serious omission--that the usefulness of the

ji zidentity-recogn1z1ng scheme is- serlously impaired by not being able to recognize o
. - special forms when they appear in polynomial expressions. The changes which are ;' S
“required in the polynomial package are, in essence, simple and straightforward.ﬂ

‘/V‘hfiof debugging the remainder f the simplify system and preparing this report.',

‘iVl“the indicated SubStltUthnS.fﬂ'

QHowever, -since many changes are. required this task has‘been postponed in favor Qf'l

i : A»set of programs exists (complete with bullt-in bugs) which e
,,;?ftranslates identities into descriptor-instruction pairs, stores these pairs. on
i 'the property lists-of the apprOpriate atoms, recognizes identities, and makes ;,.5

The first of hese"functions, equiv(s), is given a list of listed

'“'triplets, ((xx,er). ..). The first element, x.,.of a triplet specifies 3 *tf‘

'which of the atoms appearing in the second element e, is to be regarded as .

i;»"free -~i.e. representing an arbitrary expression. Because. of the difficulty
- of recognizing identities increases much faster than the number of free

- variables in the general form, we restrict ourselves to such. substitutions as

- "f(x) 1is to be replaced by g(x)," but "£(x, yy...,2) is to be replaced by

s g(x,y,...,z)“ is" outside the scope of our. program. Thus, each triplet involves

"Q‘JFOnly one free varisble. The third element .r, of the triplet is an expression o

, ;lwhich is to replace e whenever e occurs. More precisely, e and r are forms; if
.. for any S-expression, x; e(x) occurs in an expression being simplified, then
,;ae(x)”is to be replaced by r(x).-¢~_;pvﬁ_v__‘; k% e e

: Equiv processes its list of triplets in the following manner,,‘

Step l,_ The lowest level of the expression e is fOund
L ’and the descriptor-instruction pair which will
,-“'subsequently be generated will be stored on the S ; ~ La

- property list of the main connective of the first , i : R

' sub-expression of e which occurs on the lowest level. - ERRRNM 1
. This main connective need not be one. of the i ‘ ARSI P
arithmetic 0peration atoms. PR .

22

Consider the examples

Step 2: All variables (includinv the free varleble, f, if

it occurs) which appear in the lowest-level
sub-expression found in step 1 are listed, and this list
becomes the first element of the descriptor-instruction
pair. The free variable is specially-marked so that it
will be recognized as free when the descriptor list is
used later by trlgsimp. This list ofvariables is
listed. : ' :

K3

Step 3: Iﬁ working its way out of the recursion which took

it to the lowest-level sub-expression, equiv proceeds as
follows on each level except the last:
a) .The main connective of the next-higher level
sub- expression, X,, and the cdr of the next~
- .+ " 'higher level sub-expression are listed.
~ b) This list becomes the last element. of the 1owest
..o " level sublist of the partial descriptor-
~ instruction list sent up from the previous level
: of recursion of equiv--if that partial descriptor-
-*. instruction list contained more than just the list
- of variables generated in step 1. Otherwise the
-~ variable list is listed with the list generated in
part a of thlS step ‘

Step h The flnal step in the generation of the descriptor-

. instruction pair is to form the list (RPLAC r) and to -
place this list in the partial descriptor-instruction

‘ 1lst according to part b of step 3. -

l) We wish to replace (EXPT I2) by -1. I is a particular atom, not a free

variable.

;lStep l'

-Step 2

- Step 3:

'M'Sgeﬁfh:'

2)
" x is free. .

- Step

We wish to replace (RECIP (TAN x)) by (QUOTIENT (COS x)(SIN x)).

In this case, the first element of the triplet may be any atom,

- say x. Equiv[((X (EXPT I 2) -1))] generates the descriptor—instruction
-list, which we denote by di:

The lowest level sub~exPression is the expression itself.
(EXPT I2).

= (1 2)). |
SinCe the lowest-level sub- expression is also the highest-
level sub-expression, step 3 is omitted. .

= ((I 2)(RPLAC -l)) This 1list goes onto the property.
list of EXPT

This time
Equivl ((x (RECIP (TAN X)) (QUOTIENT (COS X)(SIN X))))] generates

di as follows:

Step 1:

2:
Step 3:
Step b:

The lowest- levelsubaexPress1on is (TAN X)

ai = ((x.)).
Sdi = ((xﬁ)(RECIP xf ((TAN xi)))) .
dai = ((x) (RECIP xf ((TAN xf))(RPLAC (QUOTIENT (cos x,)

(SIN xf)) })), and this list
goes onto the property list of TAN,

235

de The function trnﬂsimp and lt ‘satellites perform the comparison of -.
‘ T eXpressions with the descriptors and make substitutions when called for. All
" the work is done by trigsimp,’ and descuap is no longer needed; -however the
equiv-trigsimp package represents only one pos ible use of the descriptor list
- Teature--the fact that these functions exist in punched card form is not to be
‘fs_construed as a final commitment to this partlcular ucheme---»therefore, descmap
: flhas not been deleted from the 51mplify system S o

S o When a 51mpfunction want° to prepare an output expre531on whose car ,
is the name of the arithmetic operation corresponding to that simpfunctioﬁﬂr—hen AL
ksmmplus wants to return ((PLUS x y z)), when simpminus wants to return
T(MINGS x)), etc.), then trigsimplopje] computes .the value of the simpfunction. '
“Op is the name of the arithmetic operation corresponding to the simpfunction, and e
‘e is a list of arguments of that operation.” As the simplify system now stands, .. -
‘trigsimplopse] = listlcons[op;el]. The 1dentity-recognizing trigsimg “nowever,
,proceeds in the followlng manner'” ‘ P TR

Step l~” The descriptor lists from the previous level of
_‘:simplification are. stored as fg. 7o k, S
tep 2: Fs is. searched for an entry whose car is op.‘ If such
. an entry is found, then the sublist of fs whichgfollows
.. that entry replaces fs, and control goes to step 3. ;gf‘;:
S gOtherwise, fs is set to NIL and control goes to Step k.
p-3: .. The selected entry from fs is one of“the instruction
fllists generated by equiv, but with the second .element, ..
A - Xp, réplaced. by an expression. (op ae as 1s). Xg is ;gu{=
. ‘ SR Skt ~jrepla.ced by ae- whenever xf oceurs in as, and’ this mew oo
: o o list is compared by compare, which will be described =~ -
‘!‘below, with e, If the comparison ylelds a-positive.
J_result, ‘then the program goes to step 5 ' Otherwise,
" coutrol returns to step 2.. .
T Step 4: The descrlptor—instruction pairs list from the
: property list of op is ‘searched for an entry whose car
~ (the car of each descriptor-instruction pair is the .
- varisble list constructed in step 2 of eguiv) compares - .
~positively with e. :If such’a descriptor-instruction pair .
L 1s found, then 1s is set 40 the cadr of that pair (the ;ff
.. instruction list of the paur), ae is set to the value of -
 compare, and the program g¢:s to step 5 cherwise, N
-t trigsimp returns listlcons[oupjell. . -
.. Step 5: If is is of the form (RPLAC r), then trigsimp o
B - substitutes ae for Xp Wnenever xg occurs in r,. simplifies
. the result, ‘and returns the output of simplify. B e S
- Otherwise, 1s has the form (op' x, as'"is'). In this
fcase, trigsimp returns cons[cons[op,e] list[op';ae,as' is‘]]

In diSCUSSing comg [0p,sl 82], we «onsider two cases (var is e program'?s

variable) e v
1) ‘The flag COMMUTE appears on the property list of 0p.
»;, In this case, we have:
' Hag Step 1: Set var to NIL.

Step 2: If null[sa] then return null[sl], o
Otherwiue, Tif null[sl] then: :
If nulllvar] then return NIL; ‘
Othervise, return ‘ ‘
car[uimp]0p,manlist[s2,A[[x] list[ﬁar[x]]]]
NIL
Step 3: If car[al] = %,, then set var to T and sl to cdr(sl];
-~ then go t0 step 2.
tStep k: If an expression appears in s2-which 1s arithmetically
‘equivalent to car[sl], ther delete that expression from s2,
set s2 equal to the new list thus obtained; set sl to
cdr{sl], and go to ‘step 2. If no such expression appears
Cin 52 ~then return NIL. .. S :

17;2) ‘The flag COMMUTE does not appear on the proPerty list. of op.
Then e e .

gf'Step 1: Set var to NIL.
Step 2: "If nulllsl], then: ,
: v If nall[s2] then return T;
) Othervise, return NIL. o
L - If nullls2], then return NIL.
" Step 3: If car[slj = Xp, then: ‘ '
Lo IF v var = NIL, then set var ‘to car[sE] and
- to to step L. - R
Otherwise.v,' :
- If car[s2] and var are arithmetically equivalent
‘then go to step 4. :
Othexwise, return NIL.
. If car[sl] # x., then'go to step 5.’

Step 4: Set sl to cgr{sl 1; set s2 to cdr[s2] : '
~ Step 5: If car(sl) and car[s2] are arithmetically equivalent,~
then set sl to cdr[sl], set s2 to cdr[sel and go to

step 2, Otherwise, return NIL.

51 and 32 are arithmeticall{ equivalent" if and only if
sim g[DIFFERENCE,list{list[sl 1ist[sd]] NIL}<= (0).

: Thus, if op represents a commutatlve operation, then compare checks for
~..set equality (that is, the order of the elements is of no importance) between sl -

and s2; and, if Xg appears in sl, then compare returns the expression that must ‘
be substituted for x¢y in order to obtain set equality, if such an expression exists.
; Furthermore, if op represents a non-commutative operation, then compare checks for
equality of n-tuples; and, if X, appears in 'sl, then compare returns the
.expression (if it exists) which must replace Xp in order to obtain n-tuple equality,

- The descriptions of trigsimp and compare seem to leave quite smple
opportunity for confusion. Therefore, we offer the demonstrativn, of their
- operationst ' ’ :

. We are dealing with a function, f, and w1sh to recognize that f(x,x+A) = x.
Ve inform the simplify system of this identity by calling equiv[((X (F X(PLUS X A))
- X))1, vhich places on the property list of PLUS the descriptor-instruction pair list;
(((x) (F x, (PLUS x, A))(RPLAC x£)))). We shall watch the progress of trigsim
as tﬁe expression (PL S (F B (PLUS X A))(F(PLUS B C)(PLUS A B C))) is simplified.

2. -

S . On the - thlrd level of olmpllilcation, while deallng with (F B (PLUS x A)), :
' sinplus calls trlf°lmD[PLUu,(y A)] :

Step 1: fs is set to IL since the next-lower level of '
simplification prodxced no descriptor list.,“

Step 2: fs = NIL, so go to step k. : o :

Step 3: The car of the only element of the descrlptor- .
instruction pairs list on the property list of PLUS
is found by compare to be equal (in the set sense) to

(X<A) if x, 1s replaced by X; thus, is is set to .

o (FPx fPLUS xg A))(RPLAC Af)) and ae is set to X.;‘v

'?Step 5: 1is is not of the form (RPLAC r), so trigsimp . . =

" returns ((PLUS X A) F X (xf (PLUS xp. A))(”'"Tfigf)), o o

-and this»is he !value of sxmplus. SR S

trig51m2 has just generated; the section of. simp mp which handles expressions to .
‘which none of the simpfunctlono 1s appllcable calls trlgsimp[F,(B (PLUS X A))]
tep _;et“to ((FX (x (PLUSx A))(RPLACx). i
.:Step 2 The car of the element of fs is F, so set fs to ;41v‘,¢?
o cdr[fs] == in this case, NIL. T

- ‘Replacev by X in (x (PLUS X, A)), yieldin i
~{x (PLUS X A)f Compare[F; (X (PL § X A)) (B (PLUS x A))]
'*- NIL so’ xeturn to step step 2.

fs is NIL, 0.g0 to step h

fﬁf:Step b There is nO\descriptor-instruction pairs list on the
pronerty list of F, so trlgsimg returns ((F B (PLUS X A))),'
wh*ch 1s the value of 51mp. o S ST TR ,»'

, Simpllmy goes on now to the second term in the sum: (F (PLUS B C)
’;,(PLUS A B C)). On the oecond lowest level of simplification, 31mplus calls
'.“1‘tr1gsimE[PLUS (A B c)] e 5 et

Sten l No descriptor lists were generated on the atomic 1evel
; of simpliflcation, 80 set fs to NIL,H ’ e

."f NIL so go to step L.

Step h The car of ‘the only element of the descriptor-instruction 8

i ; pairs list for PLUS is (x. A), so is is set to (F-(x. (PLUS Xp A))

" (RPLAC x)), ‘and compare[PLUS;(x. A);(A B ¢)] is calf o X :q‘:
Compare proceeds as follows (PLU has COMMUTE on its prOperty,~ o
listS '~Lu1 = g s LU et S

. Step_l Set var to NIL._ ke , SN
stepfe-. Nelther sl or 82 is NIL, ‘so go on to ‘the next stepﬁ

Step 3: Car(sl) = x.; set var to T; set sl to (A);
. to to s step 2. s Sl e 20

. E =t : Step 2 Go on to ‘the next step., - g e
S '.keStep 3: Car(sl) # Xp, S0 g0 on to the next step.igk"ff:‘?

?‘6.[‘

-xOn the‘nextjlevel.of;simpllfication, simp saves the descriptor list that f

Sﬁep h: Se£ s2 to (B C); set'éittb NIL; go to step 2.~v

Step ?. sl is NIL, return car[simp[PLUS ((B)(C)) NIL]]
= (PLUS B C). 4 A

Trigsimp sets ae to (PLUo B C).

Step 5: 1is does not have the form (RPLAC r), so trigsim
returns ((PLUS A B C) F *(PLUS B C)(x. (PLUS: ""‘)‘)“Exf A
(RPLAC xf)), and this is the value of simplus.

: : On the next’ level of simplificaiion, simp saves the descriptor list
Just generated by trigsimp. Since F is not represented by a simpfunction, simp
* handles the)expres”“sio'“n" (F (pLUS B c)(PLUS A B c)) and calls trigsimg[F,((PLUS B c)

',(PLUSABC)] . . o . , ;

' Step1: fs is set to (e (PLUS B C)(x, (PLUS x, A)) (rPLAC xf)).

' Q}3' Step 2: The car.of the element of fs is F, so set fs to cdr[fs]a-
. in this case, NIL.

',."vStep 3: Replace x. by (PLUS B C) in (x (PLUS x A)), producing
((PLUS B C)(PEUS B C A)) (the subskl functiin, which 1s .

used by trigsimg to make this replacement, simplifies the

.results--thus, the redundant PLUS is omitted from - -

“(PLUS (PLUS B C) A).) Compare[F;[[PLUS B C)(PLUS B C A)),

- (PLUS B C)(PLUS AB c))T‘fs""’cal" led, and returns T,so go B

to step 5.

Step 5: 1is —;(RPLAC X), s0 substitute (PLUS B C) for x in Xpy

o ylelding (PLUS B E This is simplified, and the result,
((pLUS B C)), is returned by trig51m , and°this 1s' the
value of sigg _

: Finally, on the top level of 31mplification, simplus calls
trigsimp[PLUS; ((F B (PLUS X A)) B C)]. There are no descriptors left over from
lower-levels of simplification, and the second argument of trigsimp cannot be
made to match the car,of the descriptor-instruction pair for PLUS, so trigsi
and, therefore, simplus and simglify, returns ((PLUS (F B (PLUS X A)) B"'C")T"‘n! >

-"Operators L

O ML Simphi‘y has provrsion for applymg three spec1al operators - :
| differentiation and two substitution oneratorsn-to its argument. The response
~of simplify to an.expres 10":ALOh requires. the use of one of these operators }7
is quite different from sim . :fy*s normal operation; - for example, it i T
. simplify[(PLUS e, e,)] is ciiied, then e, ande, are simplified and then simplusf,
. Ts called; howevVer: if simplifr[(DIFF X e)] is executed, the function :
o airrll(X e)] is immediately called, before simplification of X and e, This is
1 the reason for our distinction between operations and 0perators. E , .

S '"%”, We shall flrst consider the differentiatlon operator. suppose that ,
L simplify[(DIFF X e)] is executed. Simplify finds that the indicator OPERATOR
. appears on . the property list :of DIFF and that DIFF1. follows the’ indicator, so"
- simplify calls daiffi[(X e)]. Diffl simply calls diff[X; car[simplify[e]]]
: 1fle e] performs a‘straiqhtforwaxd differentiation'*”

R f.e‘is a omic,&

ﬁthenliifffreturns_lxorp6)-#5f°fainéiﬁ$l971§‘6?-ié ﬂ
’f_ not eq to X LA R T R T i

If e is a sum, thcn diff differentlates each term withvrespect to
X and returns the sum of the differentiated terms VL

If e is a product then diff differentiates each factor~with :
: respect.to X and returns the appropriate sum of products.,i

If car[e] is an atom othez ‘than PLUS or 'TIMES, then aiff fetches}v_,"
from the prOperty list of car[e] a list which describes the - ﬁ's;;ff', -
- form that the differentiated expressmn must have -(this list is e T
~stored after the indicator GRADIENT). This list contains & list bty
" of variables in the general form (of which e is a special case)

‘and each of the terms which must be summed in order to, obtain -

the differentiated expression (onme term for each varisble). For

example, the list stored on the property list anUOTIENT after (Rt

the indicator GRADIENT is: ‘

(U V)(QUOTIENT v (E}CPT v 2))(QUOTIENT u (EDCPT v 2)))
_or o s
o ((u V)(RECIP V)(QUOTIDNT U (EKP‘I‘ v 2))) (If the
f};a‘indicator GRADIENT does not appear on the property list of
ygf-car[e] ‘then diff calls error.) If the number of arguments SR
. of carfe] (that is, the length of cdrle]) disagrees with the h
~:_number of arguments. in the general form, then error is :
called. “Othervise, aiff -substitutes the- expressions in
cdrle] for the corresponding varisbles in the general form,: P
. differentlates each expression of cdr[e], with respect, . .
~ to X, multiplies ‘each expression in the cdr of the general
form by the expression resulting from differentiating the-
‘corresponding element of cdr[e], and returns the simplified
- sum of these products. Thus, diff does exactly what people,’
- do when,differentiating i

If car[e] 1s not an atom, then 1t is evaluated and its value applied
- - to cdrle]. Thus, it is possible to use compound , ,
‘ T differential operators L

lc‘;f}~simplify[(SUBST x

The substitution cperators are called when simglify sees SUBST or
SUBLIS as the main connective of the input expression. The only difference
between the effects of these operators and the effects of the LISP functions
with' the same names is that the operators call simplify at appropriate times--
so that the outputs of the substitutlon operators are in simplified -form.

In effect, simplif [(SUBST x Y e)] (the Y must be atomic) is
equivalent to simplifylsubst x3Y;el]; i.e. all occurrences of Y in e are
replaced by x and the result is simplified.. The actual operation of ‘the
substitition operators is not quite so straightforvward,.however, &8s an attempt
is made to minimize the amount of simplifying that must be done by simplifying '
some expressions at :I.ntermediate stages of the substitution process‘

Simplify[(SUBLIS ((Y

)(Yg xa) e oo (Y x)) e)] is equivalent to =
(SUBST X Do

) %y (oo 7 CF 12 Goinde o 3™ TS

'I‘he set of operators is by no means restricted to those we have

discue”sed. To illustrate the ease with which new operators maybe added to the

~ system, we propose a print operator which will cause the expression resulting
~ . from simplification of the expression immediately following the. atom PRINT in
- "the input to simplify to be printed out, but which has no other effect on the
;0pera.tion of the system. . : :

We de:f:i,nem Brintoz[s] print[simplify[cax‘[s]]] The linkage to the
fsimplify system is accomplished by merely executing deflist[((PRINT PRINTQP)),
OPERATOR]. “With these additions to the system, we have that - A

~simplify[(PLUS A (EXPT (PRINT (EXPT A 2) 3)) 2))] not only causes the

' simplified expression, ((PLUS A (EXPT A.12))), to be generated, but also causes

; 'the 1ntemediate result (ECPT A 6) to be printed as soon ag it is genera.ted.

S A user of the. system who 1is well-acquainted with his. problem might

- wish to turn on and off:the recipmode, factor, expand, polyremainder, and store-
features by means of operator calls inserted judiciously into his input L
expression, . '

29

1“ res,ro.,pcct (wu,h ..ome thuuﬂhts ior the i‘utur e)

| . P . We have .,een many examples of 31mp11fy s capabillties. : We have,
- hovever, restricted our attentlon to the right things that the system does.

.~ Ve consider now sOme of thc wrong (or, at least questionable) things that can
k ,“Qccur, ‘ : R : : : TR OE A T, e

~ t Although the program is able to collect common symbolic factors from :
~a sum of products, it cannot collect common numeric factors. - In particular,
forms such as (PLUS (MINUS e;) (MINUS e,)) appear disturbingly often in the
output of simplify as factors in products. This. particular example might be o
.+ simplified by causing collect2, when called.by simplus, to minimize the number .
CUoef “negative" terms in the output sum by negating each term and sending a . e
 message to simplus indicating that the sum.should be negated.v The general case,
"(PLUS (TIMES n e1)(TIMES nep) . . .), might be handled by simply keeping track
of the numeric factors occurring in the terms of" the ‘sum. If all terms have the
. same numeric factor, then take it outside the sum..w “A variation of this approach
% would allow minlmizing the number of terms in the output. expression ‘which contain
' npumeric factors; thus, simplif, [(PLUS (TIMES L A)(TIMES 4 B)-C)] = ((TIMES u R
(PLUS AB (‘I'IMES 0. 25 c))‘f)_‘l ~ o

’ If the factor list is non-null then polyquotient will always succeed
in rcwriting its arguments as polynomials,e The results are sometimes: S
~ unsatisfying. For example, if the factor list contains.X, then = '
 simplifyl (PLUS A (RECIP X))] = ((TIMES (POLY X A)(RECIP (POLY X1 o)))), 'rather
. tban ((TIMES (PLUS A X)(RECIP X))), which might be considered a simpler form. = =
- This difficulty may ‘be avolded by having simplus call simpquotient, instead of -
f ‘I’"}polyquotient, when quotients must be'simplifled by 31mplus (see simplusreturnal)

" The polyquotient function (and its satellites) vas carefully written ’fff,fj?

>, without the use of reverse. ‘A result of this economy is that trailing zeroes
common to both numerator and denominator are not, in general, cancelled,” Thus,

polyquotient[(POLY X 1 0);(POLY X 1 0 0)] = (TIMES (POLY X 1.0)(RECIP (POLY X 1 o o;)),

- not (RECIP (POLY X 1 0)), as might be expected. A straightforward (but brute force
~modification would correct this situation; however, considerable reworking -of - L
polyquotient is necessary in order to achieve the desired result with minimum decrease

in speed .

A e These examples emphasize the fact that the current program is not to be
‘ff"considered a finished product. It is’ the first draft--the next version will e
’gif;’probably be written 1n LISP 2o i B : :,«s"

g There is some doub about the efficiency cf using special routines to R
‘fhandle polynomials.; It appears likely that all arithmetic (except, perheps, SR

. division) will be done by the main simplify progrem in the next version of the fff,;tff,i
“-system. . At any rate, the polynomial programs should be less inﬂependent of the fh;%

e main simplify package if maximum economy is to be attained.»rjgr;v,”

' " The problem of recognizing identities 1eads to the thought of using a.
tsble -1ookup (or syntax compiler) scheme for simplification.» Then identities .-
would no longer be special cases. However, the difficulties.presented by the -
 assoclative and commutative operations case this scheme in a somewhat unfavoreble o

‘ light .

Hash codihg for simplified expressions may be a featuré-of the next
generation of simplify. There is no doubt that a large proportion of the time .
spent simplifying is devoted to repeating simplifications already done.

Perhaps we at Stanford are too involved with this particular
\simplify scheme to be able to view it without bias. Therefore, criticisms of

this paper or of the program and suggestions for the new simplify program will
-be gratefully received. .

31

. B , v. .
v

APPENDIX A

JEMARK SIMPLIFY svsren OF 17 DECEMBER 1963
SET SIMPLIFY 1 —— SIMPLIFY THROUGH SIMPQUOTIENT

SPEAK NIL
LAP.

(ALIST SUBR 0)
{CLA SBALIST)
(TRA 1 4)

;)NIL}

-

COMNON((COLF RECIPMNDE)) S ' RS I U P
'SPECIALU(FL AL COLItT IM N RSAV PSAV MM VSAV 0P INVOP .COL OPF.
KN L LOU.E R INDL INDZ NUFL)) ’ o S
SPECIALL(LINY
<PECIAL((X))

7 (LAMBDA (X)(COMTILE (DEFINE X)))((i

g (SIMPL[FY (LAMBDA (X) (ccvo _
© (AT IM X) (SIMFATOM X)) SRR R T
((AND (ATOM (CAR).)) (FLAGP (CAR X) (QUOTE OPERATORI}) = == - .
(APPLY (GET (CAR X) (QUOTE CPERATOR)) (LIST (COR’ xx) (ALISTI)
cr (SIMP (CAR X) (MAPLIST (CDR X) (FUNCTAON " T
C{LAMBDA (J) (SIMPLIFY (CAR J)))
Sy qLIST X

(SIMP (LAMBDA (OP LA 0X) (PROG (FL AL R}

C{SETQ FL NIL) ,
~ (SETQ AL-NTIL)

C(SIMPY1 LAY T

*(SETO R (APPLY (CDND '

~L(ATOM OP) (CAR (PROP ‘OP (QUOTE FSIMP)

"(FUNCTION (LAMBDA NIL (LIST
© (FUNCTION (LAMBDA (X)(TRIGSIMP op X)))

o))

'5.1)) BT x‘ o £ , ' NS
T (FUNCTION»(LAMBDA~(X)(CONS (CONS orP X) NILIYD)
Wy (LIST ALY (ALIST)))

(SETQ R (DESCMAP R RIL NIL))

(RETURN (COND : .

(LEQUAL (CAR Ry (CAR 0X)) (CONS {CAR OX) (CDR R})

g,(r R) 5 ‘
o

)))

Al

cocschp (LAMBDA (L INDl INDZ)(PROG (NUFL R)
(SETQ NUFL NIL) RGeS
{MAP FL (FUNCTION. (LAMBDA (J) (COND

C((EQ (CAAR J) ‘(QUOTE FUNC:ION)) g
(LAMBDA (X) (SETQ R (CCND -
g ;c(NuLL X) LIeT xx

,gm.”-,(‘SIMPl (CDR '.L)v) BT o

O (SETQ FL (APPENC- r}(CDAR*_"-L)’:ZFL_! Voo
(SETQ AL (CONW { CA’ARv.ll.‘)[ALYY
- {RETURN NIL) Ty i R A e

.(SIMPCALL (LAMB(A (NAME L) (PROG (FL)
(SETQ FL NIL)Y % R
(RETURN (ADPLYi NAME (COI\S L NIL,) (ALIST}) !,

’ff)));'

SIMPATOM. (LAMBDA}IA)(COND.Y s
“ "L INUMBERP AJICCNS A NIL))
(T C(LAMBDA (X)(COND Lk px
LLEQ (CAAR X)(QUOTE RPLAL))(CDAR X))
AT (CONS A XYY g
V)IGET A (0U0TE7VSIMP)))) Cit

(STMPLUS. (LAMBDA (L) (PROG (N TM COLIST VSAV U PSAV RSAV)
(COND ((INN (QUOTE UNDEFIMNED) L) (RETURN
(CONS (CONS (QUOTE UNDEFINED) (CONS (QUOTE PLUS) L1y NILY
1)
(SETQ RSAV NIL) . S
(SET2 PSAV 0)
(SETQ VSAV NIL)
(SETQ N 0) , _
(SETQ TM NIL) ‘ ERa
(COL!ECTOR L (OUOTE PLUS) (Q