
•

o

o

STANFORD ARTIFICIAL INTELDlGENOE PROJECT
Memo No.13

THE lNEW LISP SYSTEM (LISP 1.55)

by Dean E. Wooldriige

Abstract: The new ,LISP system is
describecfl... Although
differing .only slightly,
it is tho~§ht to be an
improvement ,on the.old
system.

Prof. D~., H. Stoya n
UN1VERslj.J.\r EF?LANGEN " NURNBERG
INSTITUT FUR MATHGAATISCHE MASCH1NEN
U. DATENVERARSEITUNG (INFmlMlITIK VIII)
AM WEICHSELGARTEN 9 . 8520 EFiLANGEN

February 20, 1964.

·The research reported hex'e was supported in part by the Advanc·ed Research
Projects Agency. of the Offic€ of the Secreta~y of Defense '(SD-183).

""", ;,

'\'
\

",1

t4J/1:
"

4$1 Wiwa; $, .:i $i4bMa = Alab IUXi i4lU; .4$. .W 4 i4A ;; ai!

WtwSiF'5iNB"-" Tl¥2Jr v

o

o

o

THE NEW LISP SYSTEM (LISP 1.55) -

The new LISP system (LISP 1.55) differs somewhat from the old
system, but. only in (generally) inessential details. It is hoped that the
changes will be widely hailed as improvements.

Verbos and the Garbage Collector
The garbage collector now prints its message in a single-spaced

format; thus, the amount of paper generated by a program with many consles
is substantially less than formerly. Furthern10re, the garbage collector
printout may be suspended by executing verbos (NIL]; and the printout may be
reinstated by executing verbos [XTX]. -

Flap Trap
Every now and then a state of affairs known as floating-point trap

occurs - this results when a floating-point arithmetic instruction generates
a number whose exponent is too large in magnitude for the eight-bit field
reserved for it. When this trap occurs and the offending exponent is negative,
the obvious thing to do is to call the result zero. The old system, however,
simply printed out a IIflap trap" error message and went on to the next part of
the program. The new system stores a floating-point zero in the accumulator
when an underflow occurs. (There has, as yet, been no request to have
tlinfinityll stored in the accumulator when an overflow occurs.)

Time, et al.
_ The original LISP system (c 1958) had -the unfortunate habit of

printing, when. evalquote was entered or exited (at the beginning of a packet -
just after the TEST, TST, DEBUG, SET, or SETSET card was read - and at-the end
of a packet - just before the overlord card following STOP)) •••)) was read),
tiThe time has come, the walrus said, ••• " (see the LISP 1.5 MaoE.'ll, page 51),
with the date and time inserted therein. The reaction of the new LISP
programmer to this was a polite, but insincere, smile; whereas the more
experienced LISP people had considerable difficulty tolerating it politely_
Stanford's versions of LISP have, wisely, avoided using this printout.

However, the new system does print the time upon entering and leaving
evalquote. In fact, two times are printed,- but-in a neat, concise, impersonal
manner which, it is felt, is more suitable in the "Age of Automation" than the
quote from Lewis Carroll. The times are printed in minutes and millisec<Jnds;
the first time is the age of the packet - by definition, this is zero when
evalquote is first entered - and the second time is the age of the system being
used. Thus, when evalquote is exited, the time printout tells how much time
was spent in the execution of the packet, and how much time has been spent in
execution of SET or SETSET packets since the birth of the system plus the time
spent in the most recent packet.

It is also possible to determine how much time is required- to execute
a given function. Timel(] initializes two time cells to zero and prints out,
in the same format as the evalquote printout, two times, and these are both
zero. Time[] prints (again in the evalquote time printout format) the time
since the last execution of timer] and the time since the last execution of
timel[]. The use of the time and timel functions has no effect on the times
recorded by evalquote.

=mAsaii:U:M;XU .i : : a_ (11-. UM @ v -UcUUt

~.

l
I
~. ,
~\

o

o

o

LAP and Symtab
Heretofore, LAP has not only returned the symbol table as its

value, but printed it out as ·well. This phenomenon is familiar to those who
have had much at all to do with LAP or the compiler. The LAP in the new
system always printedthe function name and the octal location in which the
first word of the assembled function is stored (if the assembled function is
not a SUBR or FSUBR, then only the octal origin of the asse~mbledcode is
printed). The printout is left-justified on the I utput page and has the
form: IIFUNCTIOWtNAME (ORIGINAL x.xxxxQ) ".

The value of LAP is still the symlol table, but the printing of the
symbol table may be suspended by executing symtab[NIL]j and the printing may
be restored by exec'uting symtab P~T*].

Non-printing Compiler
The problem of the verbosity of the compiler is only slightly abated

by the symtab function. The remainder of the trouble may be cured by
executing listing[NIL]. This turns off the printout of the LAP code generated
by the compiler. And, of course, the printout may be reinstated by executing
listing[xT*]. Thus, for a perfectly quiet (except for the ORIGIN printout by
LAP), one need. only execute symtab[NIL] and listing[NIL] before compiling.

Tracecount (Alarm-Clock Trace)
The trace feature of LISP is quite useful, but, with very little

encouragement, it can generate waste-baskets full of useless output. Often a
programmer will find tpat his output (without tracing) consists of many lines
of garbage collector printout, an error message, and a few cryptic remarks
concerning the condition of the push-down list at the time the error occurred.
In such a situation, one wishes he could begin tracing only a short time before
the occurrence of the error. The tracecount function permits exactly this.
Tracecount[x] causes tracing (of·those functions designated to be traced by
the trace function, as before) to begin after x number of function entrances.,
Furthermore, when the tracecount feature has been activated, by execution of
tracecount[x], the blank space in the garbage collector printout will be used
to output the number of functions 'entered at the time of that garbage
collection, each time the arguments of value of a traced functlon are printed
the number of function entrances will also be.printed, and if an error occurs,
the number of function entrances. accomplished before the error occurreflwill
be 12rinted.

The tracecount 'feature (or Alarm-Clock Trace as it is called by
Professor Marvin Minsky of M.I.T.) enables a programmer to run a job
(preceding the program by "tracecount[O] "), estimate the number of function
entrances which occur before the program generates an error condition or a
wrong answer, and run the job again, tracing only the pertinent portion of the
execution (a low line count is recommended for this purpose, as the tracecount
feature· will not turn off tracing once it has been started - the untrace
function must be used to accomplish this).

Space and Eject
A small amount of additional control over the form of the data

printed by LISP has been provided in the space and eject functions.

-2-

----------------------------------___ "'.111".'.11a.m.u.~.!.;$.;e;;.::_; .1. a .. , .. : ~II!!IIIM"'I_i¥MlIII!I" .IIII!IIJIII ... _'III!IIIPllfllJ!'li",,:"

o

o

o

Space P£T"K] causes all output to be double-spaced. Space [NIL] restores
the spacing to its original status; in partir-1llar, the output of the print
routine reverts to single-spacing, and the !'END OF EVALQUOTE OPERATOR."
printout again ejects the page before printing.

Eject[] causes a blank line with a carriage control character of 1
to be printed. The result is a skip 110 the top of the next page of output.

Esoteric Functions and ModifIcations
The following descriptions will be of interest only to that small band

of LISP users consisting of people with reserved areas on the disk file.

SAVE. A new overlord directive has been included in the system which
makes it possible to save the current status of core and the active registers on
a specified section of the disk in the event that the time estimate is exceeded.
SAVE (beginning in column 8) before a TEST, TST, DEBUG, SET, or SETSET card will
cause a clock trap to produce a transfer to a portion of overlord which saves
the current values of various registers and the location of the instruction which
would have been executed next if the clock trap had not occurred, and stores the
system on the section of the disk specified by the most recent DISK directive.
Then control returns to the monitor and program is halted.

In order to restart the saved program, it is only necessary to load a
No.2 card with LISPx, where x is the number of the area of the disk on which the

saved program is stored, in the system name column. (Of course, if the job is
to be run by the Computation Center, a #1 card is also necessary. If the job is
to be loaded on-line, then a blank card is necessary behind the #2 card - one-card
programs are not seen by the on-line card-to-tape routine). The save feature
makes it possible to run a long job in short chunks, allowing the programm~r to
look at intermediate results before spending more computer time on the program,
but allowing the program to take up where it left off, rather than having to
repeat computation previously done.

The save feature is only active during the packet immediately following
the SAVE card. Thus, if several packets are included in the program, several
SAVE cards (one for each packet) must be used in order to be sure of saving the
system.

UNTIME. This routine is not available "to the programmer, but its
mention here may prevent some anxiety. In the event that the program time
estimate is exceeded during" disk I/O, using the old system, one finds himself in
the position of having half of one system and half of another stored in core on
on the disk. This situation would be intolerable if the programmer were trying
to save some definitions on the disk so that he could use them later, or if the
save feature were active (so that the saved system would not "be quite what it.
should be). To avoid this unpleasantness, the disk I/O routines have been
modified so that the clock is, in essepce, turned off during disk reading or
writing, and two seconds automatically added to the elapsed time at the
conclusion of the read or write operation. A clock trap that would normally have
occurred during the execution of the read or write will be executed before the
I/O can take place.

-3-

o

o

•

A few programmers with very large programs have long
bemoaned the inability, in LISP, to communicate between systems stored on
different sections of the disk. The functions tape, rewind, mprint, and
mread have been designed to alleviate this difficulty. Tape[s], where s is
a list, allows the user specify up to ten scratch tapes; if more than ten
are spec ified, only the first ten are used. The value. of tape is its
argument. The initial tape settings are, from one to ten, A4, A5, A6, A7,
A8, B2, B3, B4, B5, B6. The tapes must be specified by the octal number
which occurs in the address portion of a FAP ins~-.ructi.on to rewind that
tape; that is, a four-digit octal number is required - the first (high­
order) digit is a I if channel A is desired, 2 if channel B is desired; the
second digit must be a 2; the third and fourth are the octal representa.tion
of the unit number. Thus, to spec ify that scratch tap\~s one, two, [. nd three
are to be tapes A4, El, and A5, respectively, executE: tape [(1204Q, 220lQ,l265Q)].
Only the low-order fifteen bits of the numbers in the tape list are llsedby the
tape routines, so it is possible to use decimal integers or floating-point
numbers in the tape list without generating errors.

REWIND. Rewind[x] rewinds scratch tape x, as specified in the most·
recently execut~~ tape function.

MPRINT. Mprint[x;s] prints the S-expression s on scratch tape
number x. The format of the output is identical to the normal LISP output
(it is, in fact, generated by the print routine), and is suitable for printing.
Note that if scratch tape I has been designated to be A2, then mprint[l;s]
has exactly the same effect as print[s]. The value of mprint is the list
printed.

MREAD. Mread[x] reads one S-expression from scratch tape x. The
value of mread is the expression read. Again; if scratc.h tape 1 corresponds
to tape unit A3, then mread is identical, from the programmer's point of view,
with read.

4

	STANFORD-AIM-130001_a
	STANFORD-AIM-130002_a
	STANFORD-AIM-130003_a
	STANFORD-AIM-130004_a
	STANFORD-AIM-130005_a

