
A SOLU~"ION OF THE FUNCTIONAL ARGUMENTS PROBLEM IN LISP

by' John McCarthy
Dean E. Wooldridge, Jr.

VIc propose to handle the functional argument problem by introducing a

i~!ction called function (differenu from the function function in LISP 1.5)
and m8..dng the following change in programs using functional arguments:

rather than i'Trite "f'unction[t..[[al ; ••• ;an];<expr>]]", we write

llfunction[[al ; ••• ;an];<expr>;[sl; ••• ;sm]]lI, where the si are

variables used in the expression <expr> (or in functions called as a result

of the fact that <expr> is called) which must be evaluated at the time the

functional argument is set up. "function[[al ; ••• ;an];<expr>;NIL]" will

be interpreted as t..[[al ; ••• ;an];<expr>] and all arguments and

parameters of <expr> will be evaluated at the time <expr> is called (this is

consistent with the behavior of LISP before the addition of the FUNCTION­

FUNARG hack).
/:::::-c .- l>l C ;-, __ Ie...,. /' r ~ f ev- "!

function [Cal; ••• ;an] ;<expr>; [sl; ••• ;sm)] generates and define_s

(Gsymbol (LAMBDA (sl ••• sm) <expr»); replaces itself (using rplaca

and rplacd) with: (FUNCTION (al ••• an) Gsymbol (sl ••• sm)); and

returns a pointer to: (LAMBDA (al • •• an)(Gsymbol (QUOTE ;1) ...
(QUOTE sm))L where 8i = eval[si] -(or, in LISP 1.5, eval[si;$ALIST)).

Subsequent calls of function recognize that the second argument is a

LISP-generated symbol and behave as above except that Gsymbol is not

again defined. k
J1c -'-;'i')~Jc.",-v· l.·:o,_,O/~?-.,;.r;I.,c/;-(~o".",o J c;rr,"(ut«-.eu...-h.. ,-,,- .'I-!~ C /'C,,"o_7t...+
•. (J_ ('. ,~ ~_ \..... I

The definition of Gsymbol is compiled at compile time; and the main

program is compiled with code to list the si and place a pminter to this list

in the second 1vord of the two-word block on the push-down list which

contains the functional argument. The first word of the functional

argument block is to be loaded 1n th a transfer to Gsymbol. The arguments

a. are placed on the push-down list in the same manner as are arguments
J.

of fllllctions 1'Thich are not arguments of GSY!llbol. Functional arguments

which require no special treatment use o~ one word on the push-down list.

;.

- 2 -

Consider the following example:

c=) test[x;u] ~ if atom[x] then u[] else

test[ca.:dx];r..[[];test[cdr[x];u]]], where the last x (in

•.. test[cdr[x]; •••) is to have the value that. was current at the

time t.est.[car[x]; • • •] was entered. In the new notation, this' function­

vwuld be-written:

test[x;ul = if atom[x] then u[] else

test[car[x};fundion[[];.!LI!J- test[-cdr[xl;u];[x]]. Or, if uis

j?ermitted to be modified and the value-of u at the time the functional

- .s.rgUl'llent call is set up is desired, t.hen the definition becomes:

tGs'c[x;u] = if atom[x] theri u[] else

test[ca~[xJ ; function [[] ;test[cdr[x] ;ul; [x;ull].

To illustrate the ·X*~Fr..iLL POWER**!l- of this scheme, we present:

testr*[x;y;f;p;u] =
if p[x] then f[x] else

if atom[x] then u[y] else

testr*[car[x];y;f;p;f'unction[[y];testr*[cdr[x);y;f;p;u];[x;p;u]]]. o (We wish to aclmowledge our indebtedness to Prof. Harold McIntosh of the

Instituto Iibrx±.!.mlld:: Politecnico Nacional of Mexico City, whose contribution

to the above example is obvious.)

o

Here it is asstuned that y and f are constant but that p and u may not be, and,

of courae, x is definitely not constant. After functional argument

juggling by the read routine, define, or the function function, the

internal representation of this definition may be as the following

S-expression:

(TESTR-)<- (LAMBDA (X Y F P U)(COND

«p X)(F X»

«ATOM X)(U Y»

(T (TESTR7« (CAR X) Y F P (FUNCTION (Y)'{GsymbolO: P U»»

»L
where Gsymbol is defined as:

(Gsymbol (LM{BDA* (X PU)(TESTR* (CDR X) Y F P U»),

and the meaning of "LAMBDA*" will be made clear shortly.

- ;5 -
, .

For the purpose of illustrating a way in which this scheme might be

C) implemented by the compiler, we shall follm" these conventions:

o

o

Arguments of functions are transmitted via the push-down list.

Values of functions are returned in the accumulator.

List pointers are true address pointers.

Function argument pOinters are in decrement fields.

Called functions clock up and down the push-down list pointer (in

index PDX).

The push-dovm list eA~andstowards higher locations.

The last cell of a functionts push-down block saves the return address,

vlhich +.he function picks up from the subroutine index (SEX).

Arguments are evaluated by the calling function.

The appearance of the push~down list at the time of execution of .

Gs~rmbol is indicated on the page following the sample code.

On the 7090, testr* might be compiled as shown mn the ~ next pages.

TESTRX- TXI -i(-+l.PDX, -8

0 PXA O)SRX
STO O;PDX
CLA -7,PDX
STO l,PDX
XEC -4,PDX
TZE *+3
XEC -5,PDX

"J~"

TRil . RETURi'J
.. j~4

TSX ATOM,SRX
TZE ~~~·+·5

CI/\. -:-1.: PDX 7)

STO l,PDX
XEC -3.,PDX
TR.!\' RETURN

.;~

TSX CAR,SRX
STO -1 PDX
J?XA o PDX
PAC O .. SRX
TXI ')\'+1 <::lID{ 7 ,)..:>. : ..

.:7 /J ;:)':'- . PiCA O.,SRX
~; ·/-CI ,,.., ') -;'TXI ~:-+l, SRX,3

PiCA O,SRX

0
STO 3 PDX
TX:C ':~+l SRX,l
PXl\ O,SRX
STO 4 PDX
CLA ')
STO 1,PDX
TSX LIST,SRX

~~ ..

STO 6,.PDX
CLA -1 PDX
STO IjPDX
CLA -6 PDX
STO 2,PDX
CLA -5 .. PDX
STO 3,PDX
CLA -4,PDX
STO 4,PDX

,.,,, CLA CALL
STO 5,PDX
TSX TESTRl!-, SRX

or.
RE'l'URN XC.t.\.

CLA. O;PDX
PAX O,SRX
XCA
TXI .)(.+ 1 PDX, 8

0 TRA 1,SRX
.. j(.

C/\LL TSX Gsymbol,SRX

~------------ _._._---

- 4 -

save return address
x

p
go if not(p[x]]
f (smart compiler remembers that x is still

in the right place on the push-down mist)

go if not[atom[x]]
y

u

save car[x]

pointer to x

pointer to p

pointer to u

number of arguments of list

list values of x, p, and u current at time of
setting up functional argument

car[x] previously set aside

y

p

Gsymboi

restore return index

restorepush-dqwn'list
return '

Gsymbol TXI ~~+ 1, PDX,-l
CLA O,SRX

0 STA ~~+l

!ifl&l. 'H~,PDX

TXI ':--I-l,PDX, -5
PXA O,SID{
STO O,PDX
STQ 1,PDX
TSX CAR,SRX

..,-
PDC O,SRX
CLA O,SRX
STO -4,PDX
TSX CADR,SRX
PDC O,SRX
CLA O,SRX
STO -3,PDX
TSX CADDR,SRX
PDC O,SRX
CLA O,SRX
STO -2,PDX
CLA 1,SRX
STO -l,PDX

-~~

~k iE- * *
~x-

CLA -4tPDX
STO 1,PDX

(, TSX CDR,SRX
,J STO 1,PDX

CLA -5,PDX
STO 2,PDX
CLA -ll,PDX

,\'

~~.

"x-
oK ..

·i~

STO 3,PDX
CLi\.. -3,PDX
STO 4,PDX
CLi\.. -2,PDX
STO 5,PDX
CLA -~,PDX
STO 6,PDX
TSX TESTR*,SRX
XCA
CLA O,PDX
PAX O,SRX
XCA
TXI *+1,PDX,6
TRA 1,SRX

U

*

- 5 ..

pick up XEC that called Gsymbol

pick up list of x, p, and u
clock up push-down pointer

, get true pointer to saved x

saved x is second argument of Gsymbol
get true pointer to saved p

saved p is third argument of Gsymbol
get true pointer to saved u

saved u is fourth argument'of Gsymbol

utakes two push-down list words

*
saved x

cdr[x]
y

* * '* * * *

f from most recent entry to TESTR* -- since
Gsymbol is .. compiled as a sub compilation of
TESTR*, and can be called only by TESTR*, it
knows where the arguments of TESTR* may be
found on the push-down list and need not use
free (special) variable mechanism

saved p

saved u, word 1

saved u, word 2

restore 'return index

restore ;push-down,list
return,'

;1

---------- --,._-----._-_.

"-c .

(J

(j--c
'-'

- 6 -

Push-doi'in list configuration for the execution of testr°x-[• • •]:

Location relative to push-down
index

-7
-6
-5
-)+

-3
-2

-1

o

contents
-!t
x

Y

f (TSX f,Sruc)

p (TSX p,SRX)

u (TSX u,SBX)
u ' (PZE "v-'r) '"

~< .. ~)'" (temporary storage)

<return> «<PDX points here during initial execution
of testr-l<o

(mK:l1 Gsynib<?l is entered, the push-down list is :ramm m expanded as follows.)

1 y

2 x . (saved)

:; p (saved)

4 1i (saved)

5 u (saved)

6 -<retur~ «<PDX points here during execution of Gsymbol

(Gsyrnbol sets the -arguments for the next testr~!- call into the next five cells
.'" on the push-dO'm1 list and goes to Xa:rl TESTR~".) .

--_._-_._-_ _----_. ---_. __ ... _ .. _. __

· ,
~r ,.

(' '--')

o

.,
j

/.'
;'

- 7 -

The meaning of· IIWlBDkXolI is now apparent: Gsymbol is formally defined as a

function 1-li th one argument; but it really has four -- the last three of which

it sets up for itself on the pash-dOioffi list. Furthermore, since Gsymbol

can only be called by testr* and it is not recursive, it really needn't

take up space on the push-down list. Thus, Gsymbol might be a function of

one argument "tvhich really has no arguments at all -- and which is, in fact,

not even a function. The first part of Gsymbol -- d01-ffi to the line of

asterisks -- is the FEXPR,part of the function, and might well be coded as

a separate linlting routine -- McCarthy' s IIrudimentary apply_ II

We have glossed over the problem of telling functions which call

functionals how many push-do~m .words the arguments of the functional use;

this difficulty, we believe, may be overcome by some sort of simple

modification of the calling sequence for functional arguments .-- a scheme

which w'ould pack subroutine locations and list pointers into one "lord on the

push-down list, for example.

