A S0LUTION OF THE FUNCTIONAL ARGUMENTS PROBLEM IN LISP

by ° John McCarthy
Dean E. Wooldridge, Jr.

We propose to handle the functional argument problem by introducing a
iwaction called function (different from the function function in LISP 1.5)
and meaing the following change in programs using functional arguments:
rather than write "function[k[[al; . e ;an];<9xpr>]]“, we write
"function[[al; . e ;an];<expr>;[sl; . . e ;sm]]", where the s,
varisbles used in the expression <expr> (or in functions called as a result
of the fact that <expr> is called) which must be evaluated at the time the
functional argument is set up. "function[[al; .. ;an];<expr>;NIL]" will

are

be interpreted as A[[a ;an];<bxpr>] and all arguments and

3 0 o o
paraneters of <expr> will be evaluated at the time <expr> is called (this is
‘consistent with the behavior of LISP before the addition of the FUNCTION=-
FUNARG hack). |

e sd e e Fe s e fer ®
function[[al; o« oo ;an];<expr>;[sl; o v e ;sm]] generates and defines
(Gsymbol (LAMBDA (sl . . e sm) <expr>)); replaces itself (using rplaca
and rplacd) with: (FUNCTION (a:L . o an) Gsymbol (sl . o sm)); and
returns a pointer to: (LAMBDA (a:L . .. an)(Gsymbol (QuoTE éi) . e .
(QuoTe §m))), where Ei = eval[si]‘(or, in LISP 1.5, eval[si;$ALIST]).
Subsequent calls of function recognize that the second argument is a
LISP-generated symbol and behave as above except that Gsymbol is not
again defined.
f/:/e- R S /:;:,.-,f 14-.,-;» ;140 /.te_..«; 1/'1 e ;/‘F(;‘.,_e, / o &8 bee e_»p)é' s
“““The definition of Gsymbol is compiled at compile time; and the main
program is compiled with code to list the S and place a painter to this list
in the second word of the two-word block on the push~down list which
contains the functional argument. The first word of the functional
argunent block is to be loaded with a transfer to Gsymbol. The arguments
a; are placed on the push~down list in the same manner as are arguments
of functions vwhich are not arguments of Gsymbol. Functional arguments

which require no special treatment use only one word on the push-down list.

e

S /Oéumhrg;

v

-2 -

Consider the following example:
test[x;ul = if atom[x] then u[] else
testcar[x] ;A [[];testlecdr[x];ul]], where the last x (in
. . . test[cdr[x]; . . .) is to have the value that was current at the
time test[car[x]; . . .] was entered. In the new notation, this function

would be written: o e ' o o _

test[x;ul = if atom[x] then ul] else

test[car[x];function[[1;7x] testledr[x];ul;[x]]. Or, if u is
permitted to be modified and the value-of u at the time the functional

- argument call is set up is desired, then the definition becomes:

testlxjul = if atom[x] then ul] else ,
test[ca?[X];fUnction[[];test[cdr[x];u];[xsu]}];

To illustrate the ¥¥*FULL POWER*** of this scheme, we present:
testr¥[=x;y;Lpsul = R

if plx] then £[x] else

if atom{x] then ul[y] else

testr¥{car[x];y;fip;function] [y];testr*[car[x];y;fspsul;lx;psulll.
(We wish to acknowledge our indebtedness to Prof. Harold McIntosh of the
Instituto MemimmaXk Politecnico Nacional of Mexico City, whose contribution

tc the above example is obvious.)

Here it is assumed that y and f are constant but that p and u may not be, and,

of course, x is definitely not constant. After functional argument
Juzgling by the read routine, define, or the function function, the
internal representation of this definition may be as the following
S-expression: ' ‘
(TESTR* (LAMBDA (X Y F P U)(COND

((x)(r X))

((aToM x)(U Y))

(T (TESTR* (CAR X) Y F P (FUNCTION (Y¥){Gsymbol(X P U))))

) | .
where Gsymbol is defined as:

(Gsyubol (LAMBDA* (X P U)(TESTR* (CDR X) Y F P U))),

and the meaning of "LAMBDA*" will be made clear shortly.

..5..

For the purpose of illustrating a way in which this scheme might be
implemented by the compiler, we shall follow these conventions:

Arguments of functions are transmitted via the push-dowm list.

Values of functions are returned in the accumulator.

List pointers are true address pointers.,

Function argument pointers are in decrement fields.

Called funétions clock up and dovm the push-dovm 1list pointer (in
index PDX).

The push-down list expands towards higher locations.

The last cell of a function's push-down block saves the return address,
which *he function picks up from the subroutine index (SRX).

Arguments are evaluated by the calling function.

The appearance of the push~down list at the time of execution of

Gaymbol is indicated on the page following the sample code.

On the 7090, testr¥® might be compiled as shown a@n the = next pages.

TESTR#

YO A s

XTI

PXA
STO
CLA
STO
XEC
VAN
XEC

TRA

TsX
TZE
CLA
8TO
P
TRA

TSX
STO
PXA
PAC
TXI
PXA
TRI
PXA
STO
™I
PXA
STO
CLA
STO
TSX

© 8TO

. -

RETURY

CLA
ST0
CIA
3T0
CLA
STO
CLA
S5TO
CILA
STO
TsX

KCA
CLA
PAX
XCA
TXI
TRA

TeX

*+1.PDX, -8

0,SRX
0,PDX
-7 PDX
1,PDX
-l PDX
43

-5 ,PDX

RETURN

ATOM, SRX

v

%5
-3, PDX
1.PDX

-3 ,PDX
RETURN

CAR,SRX

-1 PDX

0 PDX
0,8RX

*+1, 88X, T
0.SRX
*+1,8RX,3
0,SRX

% PDX

“+1 SR¥X,1 .
0,SRX

4 PDX

=3

1,PDX
LIST,SRX

6,PDX
-1 PDX
1,PDX
-6 PDX
2,PDX
-5,PDX
3,PDX
-l PDX
4, PDX
CALL
5,PDX
TESTR* , SRX

0,PDX
0 SRX

*+1 PDX.8
1 SRX

Gsymbol ,SRX

save return address
X

P

go if not[plx]] :

f (smert compiler remembers that x is still
in the right place on the push-down iist)

go if not[atom[x]]

¥y

u
save car[x]

pointer‘to b'e

pointer to p

pointer to u
number of arguments of list

list values of x; p, and u current at time of
setting up functlional argument

car[x] previously set aside
Ng
f

b

Gsymbol

restore return index

restore push-down list
return '

S

Gsymbol TXI
CLA
STA
irle)
TXI
PXA
STO
STQ
TSX
PDC
CLA
STO
TsX
PDC
CILA
STO
TSX
PDC
CLA
STO
CLA
STO

* %

CLA
STO
TSX
STO
CLA
STO
CLA

STO
CLA
STO
CILA
STO
CLA
STO
TeX
XCA
CLA
PAX
XCA
TXT
TRA

*+1,PDX, -1
0,SRX

1

#%6 PDX
*4+1,PDX, -5
0,SRX
0,PDX
1,PDX
CAR,SRX
0,SRX
0,SRX

-l , PDX
CADR,SRX
0,SRX
0,SRX

-3 ,PDX
CADDR, SRX
0,SRX
0,SRX
-2,PDX
1,SRX
-1,PDX

-45PDX
1,PDX
CDR,SRX
1,PDX
-~5,PIX
2,PDX
-11,PDX

% ,PDX

-3 ,PDX

It ,PDX
-2,PDX

5 ,PDX
-1,PIX
6,PDX
TESTR¥* , SRX

0,PDX
0,SRX

*+1,PDX,6
1,5RX

-5 -

pick up XEC that called Gsymbol

pick up list of x, p, and u
clock up push-down pointer

get true pointer to saved x

gaved x is second argument of Gsymbol
get true pointer to saved p

saved p is third argument of Gsymbol
get true pointer to saved u
saved u is fourth argument of Gsymbol
u takes two push-down list words
3 * * * % %* *
saved x

car[x]
v

£ from most recent entry to TESTR¥ -~ since
Gsymbol is compiled as a subcompilation of
TESTR*, and can be called only by TESTR*, it
knows where the arguments of TESTR* may be
found on the push-down list and need not use
free (special) variable mechanism

saved p

saved u, word 1

saved u, word 2

restore return index

restore push-down, list
return

-6 -

'/‘//

Push-down list configuration for the execution of testr*[. . .]

el

e ! B
P o™

Location relative to push-down

index ‘
& co?tents

-7 x

-6 oy

- -5 £ (TSX f£,SRX)

2 p (TSX p,SRX)

-3 ‘u (TSX w,SRX)

) ' u (PZE %)

-1 v % (temporary storage) ,
0 ‘ <returm> <<LPDX pointb here during initial executlon

of testr¥

(When Gsymbgl is entered, the push-down list is mmdz tm expanded as follows.)

1 v
B 2 x - (saved)
3 p (saved)
<j>’ Lo 7 u (saved) -
5 u (saved) - ,
B 6 <returnX <<LPDX points here during executlon of Gsymbhol

: \G“yﬂbel aeﬁs the arguments for the next testr# call into the next five cells
- -~ on the push-down list and goes ‘o bzk TESTR3,)

v

TN
N

4

-7 -

The meaning of "LAMBDA*" is now apparent: Gsymbol is formally defined as a
function with one argument; but it really has four -- the last three of which
it sets up for itself on the push-dovm list. Turthermore, since Gsymbol

can only be called by testr® and it is not recursive, it really needn't

take up space on the push-down list. Thus, Gsymbol might be a function of
one argument which really has no arguments at all -- and which is, in fact,
not even a function. The first part of Gsymbol -- down to the line of
asterisks -~ is the TFEXPR part of the function, and might well be coded as

a separate linking routine -- McCarthy's "rudimentary apply."

We have glossed over_the pfoblem of telling functions which call

functionals how many push-down words the‘arguments of the functional use;
this difficulty, we‘believe, may be overcome by some sort of simple
modification of the‘calling sequence for functional arguments -- a schene
which would pack subroutine locations and list pointers into one word on the

push~down 1list, for example.

