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1. INTRODUCTION 

The Source Language (SL) and Intermediate Language (IL) of the LISP 2 system 
proposed for implementation on the IBM 8/360 are described in this document. 
The LISP 2 system for the S/360 is an extension of the LISP ? system currently 
operating on the Q-32 computer. Included in this document are descriptions of 
the syntax and semantics of data, tokens, types, expressions, variables. blocks, 
and declaratives. Specifications for other portions of tIle LISP 2 system for 
the IBM S/360 are included in other documents in this series (TM-34l7). 

2. TYPES. DATA, AND 'roKENS 

2.1 TERMINOLOGY 

A field is a container or box capable of holding a representation of informa­
tion. The contents of a field are known as a setting. One possible kind of 
setting is a locator, which is a rule for finding either a single field or a 
collection of fields. 

A ~ is the external representation of a computational object to be pro­
cessed by a LISP 2 program. A data structure is the internal representation 
of a computational object to be processed by a LISP 2 program. A datum is in 
the form of a sequence of characters; a data structure is in the form of a 
collection of fields and settings. One of these settings is the value of the 
data structure. If the data structure consists of a: single setting, then the 
value is that setting; otherwise the value is a locator from wh:l.ch the 
remaining parts of the data structure may be found. In either case, the value 
is a single setting. 

Implicitly associated with every value is a type, which is a rule for deter­
mining the computational object represented by the value. Two values are said 
to be identical if and only if they have both the same setting and the same 
type. The operation of reading a datum results in obtaining a value whose 
associated data structure represents the same computational object as the 
datum; the operation of printing a value results in obtaining a datum that 
repr:esents the same computational object as the data structure associated with 
the value. 

2.2 

2.2.1 

TYPE IN FORMA'I'I ON 

Syntax of Types 

type :: simple-type I array-type I functional-type I n-tuple-type 

simple-type .: GENERAL I BOOLEAN I REAL I INTEGER I BITf) I J"UNC'I'IONAL 

------_.-. 
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r: -." array-type • ( simple-type J ARRAY (dimensionality 1 

functional-type :: FUNCTIONAL (result-descriptor 
{. parameter-descriptor}* [. indef-para.meter­
descriptor]) 

parameter-descriptor - {[variable-reference-modeJ! Itypel ![coordinate]} 

result-descriptor :: parameter-descriptor I NOVALUE ! {TJNFIELDEDlltype} 

indef-parameter-descriptor :: {[ variable-reference-mode] !Itype II INDEF} 

coordinate - (unsigned-integer unsigned-integer) 

~ array-type:: (ARRAY [simple-type J {( [integer J integer)} *) 

functional-type :: (FUNCTIONAL result-descriptor 

IsLl 
L2::J 

{parameter-descriptor}* [indef-parameter-descriptor]) 

parameter-descriptor. :: (f[variable-reference-mode] II type II [coordinate] } ) 

result-descriptor :: parameter-descriptor I NOVALUE I {UNF'IELDED II type} 

indef-parameter-descriptor :: ({ [variable-reference-mode) 
II simple-type II INm~F} ) 

coordinate - (unsigned-integer • unsigned-integer) 

variable-reference-rnode :; DIRECT I HDITlECT 

n-tuple-type :: identifier 

Data TyPes 

The various data structures in LISP 2 and their types are given in Table 1. 

Arrays and n-tuples must have the proper number of elements; each element must 
be convertible to the expected type for the array or n-tuple component. All 
data is composed of one or more tokens. The following transformations may be 
used for data. 8L, and IL. 

~ space token .. space space token 

~ token space ~token space space ) 

------------~~ ---~---
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Table 1. Data Types 

Datum Type 

Number: 
Real REAL 
Integer .. INTEGER 
Octal BITS 
Unsigned-real REAL 
Unsigned-integer INTEGER 
Unsigned-octal BITS 

Boolean BOOLEAN 

String GENERAL 

Symbol SYMBOL 

Function-specifier FUNCTIONAL 

Nil GENERAL· 

Node NT.UPLE 

N-tuple NTUPLE 

Array ARRAY 

2.3 DATA SYNTAX W datum:: nonsymbol-element I symbol I nil I node 

_ numberlbooleanlstringln-tuplelarray 
lrunction-~pecifier 

non symbol-element 

node :: (datum*+l [. datum]) 

nil ;: () INIL 

symbol ;: identifier I character-datum I- special-spelling Imark-operator 

- -- - -------------"--'"--.--------------~----" 

_--'--'-____________ : __ l __ 
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2.4 

array :: larray-typer dimensionality array-element*+11 

array-element :: datwn larray-element*+ll 

dimensionality :: l{[integer: J integer}!+ll 

function-specifier :: lFUNCTION compound-var-narnel 

n-tuple ::: In-tuple-name datwn*+ll 

n-tuple-name :: identifier 

TYPE CONVERSION 

TM-3417/200!OO 

Under certain conditions, a value x of type ~ may be given ~hen a value of 
a different type S is expected. In this case, there may be.a value y of type 
8 that can be used in place of x. This valuey is then called the homomorph 
of x in @. A homomorph of a value will usually (but not al~ays) represent the 
same computational object as the original value. A given value of type a may 
or may not have a homomorph in a different type S. A value is converted from 
type a to type a by finding the homomorph of the given value in S, if it exists. 
If it does not exist, the conversion is illegal. (See Table 2.) 

8 is said to be a subtype of a if every value in a can be converted to a and if 
the conversion does not change the actual setting. The subtype relationships 
among the different types are shown in the lattice of Figure 1. Here the fact 
that a is a subtype of a is expressed by placing a below a in the diagram and 
drawing a line between them. A large circle represents a collection of types 
rather than a single type. 

Every value has a homomorph in the type GENERAL. This homomorph represents the 
same computational object as the original value. If a value of any type what­
soever is converted to GENERAL and back again, the resulting value is always 
identical to the original one. There exist class predicates for INTEGER, BITS, 
REAL, BOOLEAN, and FUNCTIONAL that are true for values in these respective 
types, and also for their homomorpha in GENERAL; they are false for all other 
"al'.es. In other ~ords. these class predicates do not distinp;uish bet~een 
vel.lues and their homomorphs in GENERAL. 

There is an obvious correspondence between the different syntactic classes of 
data and the set of possible types. It should be noted that NODE is a 
particular n-tuple type. The values corresponding to strings are in type 
GEN~RAL. Reading a datum d in a syntactic class a results in a value v which 
is in type GENERAL, but is a homomorph of a value in the type a' that corres­
ponds to a. 

._-------------

) 
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Table 2. Conversion of Type a to Type e 

~ 
BOOLEAN 

INTEGER 

BITS 

REAL 

GENERAL 

FUNCTIONAL 

ARRAy 

l_ U • setting is unchanged 

X • Dot permitted 

T '" constant TRUE -

B 

U 

T 

T 

T 

GP 

T 

T 

I B R 

X X X 

U IB F 

BI U BR 

E RB U 

GI GB GR 

X X X 

X X X 

H '" homomorph requiring change of setting 

G F A 

H X X 

H X X 

H X X 

H X X 

U RH RH 

H A X 

U X A 

TM-34l7/200/00 

GI '" if homomorph of a number, convert to that number and then to 
INTEGER" if NIL, then return 0; otherwise illegal 

GP = if FALSE then return FALSE. otherwise return !ill!. 
GB = if homomorph of a number then convert to that number and 

then to BITS; if NIL. then return OQ; otherwise illegal 

GR '" if homomorph of a number. then convert to that number and 
thEm to REAL; if NIL, then return 0.0; otherwise illegal 

E '" apply ENTlER function 

F '" apply FLOAT ·function 

RH '" restricted homomorph; if given value is a homomorph ol'n 
value of the desired type, take that value. otherw:l.se illegal 

BI.'" convert to positive integer; illegal if sign bit is negative 

IB = convert to bit sequence; -0 treated like +0; other negative 
numbers illegal 

RB" REAL to INTEGER, then INTEGEH to BITS 

GR '" BI'l'S to INTEGER. then INTEGER to REAL 

A '" types must agree exactly, else illegal 
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The simple-type corresponding to a given type is the highest node in the 
lattice of types (as given in Figure 1) that is connected to the given type. 
In specifying the type of an array, the simple-type that describes its 
elements is always used. In specifying the type of a function, simple-types are 
ordinarily used in the valuation-descriptor and in the parameter-descriptors. 
If a type that is not a simple-type is used in this context, it is semantically 
equivalent to the corresponding simple-type. If the reference mode is omitted 
in a parameter-descriptor, DIRECT is assumed; if a reference mode is omitted in 
a result-descriptor, UNFIELDED is assumed. If a coordinate is omitted with a 
reference mode of DIRECT or INDIREC'r, a standard coordinate. which may depend 
on the type, is assumed. In the case of the 360, the standard coordinate is 
(0 • 32), independent of type, 

A value is unique if there are no other values with the same type that represent 
the same computational object. If the values in a type a are unique, then the 
values in all subtypes of a are unique. A value is invariant if the computa­
tional object that it represents cannot be changed by program operations. A 
value is alterable if it can be made to represent a different computational 
object through program operations. The data structure associated with an 
alterable value is also said to be alterable. An alterable data structure 
~onsists of a skeleton and a substrate. The skeleton consists of a collection 
of fields, and possibly settings also, that cannot be changed by program opera­
tions. The substrate consists of a collection of settings that can be changed 
by program operations; these settings are the contents of certain fields of 
the skeleton. 

Values within the types INTEGER, BITS, REAL, BOOLEAN, and FUNCTIONAL are unique. 
The homomorphs in GENERAL of values within these types are invariant but not 
unique. The values in SYMBOL are unique, and the homomorphs of these values in 
GENERAL are also unique. Arrays and n-tuples are alterable, though special 
cases of them may be invariant. N-tuples and arrays may be constructed either 
uniquely or non-uniquely. These terms will be explained for the special case 
of nodes, but the explanation applies equally for any other n-tuple or array 
type. The procedure for constructing a node has as input a set of values of 
known type, and as output a single value that represents the desired node. 
When a node is constructed uniquely, the node construction procedure will 
abra.ys give the same value as output each time it is called with the same set 
c~ inputs. When a node is constructed non-uniquely, calling the node construc­
tion procedure twice with the same set of values as input will, in general, 
yield two different values as output. 

The substrate of a uniquely constructed n-tuple or array consists of the collec­
ted substrntes of the values from which it was constructed. The substrate of a 
non-uniquely constructed n-tuple or array consists of the contents of the fields 
of that n-tuple or nrray. 'l'hus an n-tuple or array whose component parts are 
invariant will itself be invariant. A constant is--by definition--invariant, 
and possibly unique. It is an error to attempt to modify a constant, though 
this error will not always be detected. 

J 

) 
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2.5 TOKENS AND THEIR SYNTAX 

Some of the characters in the kernel language, particularly mark-operators, 
may be replaced in specific implemeritations by multiple characters, dot-

. operators, or res.erved words. The special characters of LISP 2 and their 
meaning are given iil Table 3. In token syntax, the term "character" will be 
defined for specific implementation and the terms "letter", "digit", and 
"octal-digit" refer to the conventional sub-classes of characters. 

identifier :: 11 terall genid 

literal :: letter {letter I digit I.}* 

character-datum :: ¢ character 

string :: # {non-string-delimiter I 'character }*+l # 

non-string-delimiter :: {any character other than "#", 

special-spelling :: % string 

genid :: %G string 

boolean :: ~I~ 

compound-var-name :: identifier$identifier 

array-typer :: ARRAY$simple-type 

punctuator :: 'I: I ; 1.1 ( I ) lill 

sign :: + 1-
dot-operator:: {'}*+l [letter] {letterldigitl.}* 

decimal :: digit*+l 

unsigned-integer - decimal E decimal I decimal 

",,, 
t 

unsigned-octal .=: octal-digit*+l Q decimal I octal-digit*+l Q 

exponent - E {sign decimal I decimal} 

fraction _ decimal • decimal I decimal • I • decimal 

or "G"} 

.... c ........ ' '. ___ ,.. ..... w' ,.._'$'.!.;.,. ....... , . ..",'!!lJ.I~_y'" • t ..... , ........ ' .... it ..... ' .. lrtc.wW').' .,. *"' ..... '. b ••• • ........ . 
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unsigned-real :: fraction exponent I fraction 

integer ;: sign unsigned-integer 

octal :: sign unsigned-octal 

real :: sign unsigned-real 

number - integer I octal I real 

token -

I unsigned-integer I unsigned-octal I unsigned-real 

literal I character-datum I special-spelling 

I mark-operator I string Igenidlboolean 

larray-typer 

Icompound-var-namelpunctuatorlsign 

I dot-operator I octal I integer I real 

lunsigned-octal!unsigned-integerlunsigned-reaJ, 

In the kernel language, all tokens are required to be separated by at least one 
space. Spaces may be eliminated between tokens according to the optional 
transformation summarized in Table 4. In the table, an "X" indicates that the 
space between a and 8 is required; no "X" means the space may be eliminated. 

3. EXPRESSIONS 

An expression designates a computational procedure. The result obtained from 
carrying out the procedure is a valuation, and the process of carrying out the 
procedure is called evaluation of the expression. A valuation has one of four 
reference modes: NOVALUE, UNFIELDED, DIRECT, or INDIRECT. When the valuation 
has reference mode NOVALUE, the expression is evaluated for its side effects 
alone and does not produce a value. Valuations in the other three reference 
modes consist of settings as follows: 

Mode - Setting 

UNFIELDED value 

DIRECT value 

INDIRECT 
. L-I -..--l 

I..---......:~~ value 

r- .------------------------------ .. 
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Table 3. Table of Operators 

Kernel lanp;uage characters and their meaninp; as SL operators: 

+ addition 1\ and 

subtraction v or 

* multiplication 'I" not 

/ real division = equal 

+ integer division ~ unequal 

\ integer remainder < less than 

+ exponentiation :S less than or equal 

+ assignment > greater than 

-+ loc-assignment ;:: greater 
") 

than or equal / 

0 cons - synonym definition 

~ character-datwn 

) 



/~'" 

1 

2 

3 

4 

5 

6 

7 

I 
I 

8 

(-~ 

Table 4. Optional Transformations for Elimination of Spaces Between a and B 

1 2 3 4 5 6 7 

string 
genid 
special-spelling 
punctuator 

character-da.tum 

sign X 

mark-operator X 

dot-operator X X X 

integer 
octal X X X 
real 

literal 
compound-var-name X X X X 
boolean 

unsigned-integer 
unsigned-octal X X 

unsigned-real 
----- --- ~ .-~----- ~-~ 

An "X" indica"t.es tha.t the space between Ct and 8 is required; no "X" :::eans 
the space :::ay be e:i::inated. 

: 

8 

X 

X 

X 

X 

X 

--

(' 

f\) 

0'\ 

~ 
0; 
...... 
I-' 

I-' 
'.0 
0'\ 
~ 

I-' 
VI 

'j 
-'" I 
ev 
:::-
I-' 
-l 
"­
'\) 
o 
o 
"­
o 
o 
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Here a box indicates a field and a pointer to a box indicates a locator of that 
field. An UNFIELDED valuation consists of a value only. A DIRECT valuation 
consists of a field containing a value. An INDIRECT valuation consists of a 
value in a field. a locator of that field, and a second field that contains the 
locator. 

Of the reference modes, NOVALUE is the least'restrictive and INDIRECT is the 
most restrictive. When a valuation in one reference mode appears in a context 
where a valuation in a different reference mode is required, then reference 
mode conversion is possible if the desired reference mode is less restrictive 
than the given one. In this case, the conversion is accomplished simply by 
discarding the irrelevant parts of the valuation. Thus, in converting from 
DIRECT to UNFIELDED, the field containing the value is disregarded, and only 
the setting of the field is considered. 

) 

Every field has associated with it a coordinate. The coordinate is (in general) 
machine-dependent. and consists of two integers: the length of the field in bits. 
and the position within a computer word of the initial bit. Both DIRECT and 
INDIRECT valuations have coordinates associated with them, at least implicitly; 
the coordinate of a DIRECT or INDIRECT valuation describes the field that con­
tains the value. The coordinate of a field containing a locator is standard. 
and therefore need not be specified. ~ 

3.1 CONSTANTS 

3.1.1 §lntax of Constants 

~ constant :: autonym I 'datum 

l IL J constant - autonym I (QUOTE datum) 

ISLI autonym _ nonsymbol-element I character-datum I special-spelling 
~ 
3.l.2 Semantics of Constants 

A constant has the reference mode UNFIELDED and a value corresponding to the 
datum that is part of the constant. "QUOTE" or II,,, are used in order to 
distinguish between data and programs. Autonyms are data which. because of 
their syntax. can never be confused with parts of a program. 

-----------------

) 
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3.2 

3.2.1 

EJ 
EJ 

SLl 
.~ 

3.2.2 

VARIABLES 

Syntax of Variables 

var-name :: untail ed-var-nsme I tailed-var-name 

tailed-var-name :: compound-var-name 

untailed-var-name :: first-name 

compound-var-name - first-name$section-name 

var-name :: untailed-var-name I tailed-var-name 

tailed-var-name ;: (first-name • section-name) 

untailed-var-name :: first-name 

first-name :: identifier 

section-name - identifier 

Semantics of Variables 

TM-3417/200/00 

A variable is a collection of valuations. These valuations are known as the 
bindings of the variable. At any time, at most one binding of a variable is 
said to be active, and this valuation is said to be the active binding of the 
variable. When a variable is evaluated, its valuation is given by the currently 
active binding. The contents of the value field of a DIRECT binding or the 
contents of the locator field of an INDIRECT binding are known as the active 
assignment of the variable. During the time that a binding is active, the 
assignment of its variable may change, but the field in which the assignment 
is to be found will not change. 

There are two kinds of variables: lexical variables and section variables. A 
lexical variab~e has a first-name associated with it; a section variable has a 
first-name and a section-name associated with it. A lexica.l variable is always 
designated by an untailed-var-name; a section variable may be designed either 
by a tailed-var-name or an unta.iled-var-name. At any time, there exists a 
section-list, which is a list of section-names. 'l'he first sect.1on-name on the 
section-list is the current section. SectIon variables I\r~ in one of three 
categories: PUBLIC, STATIC, or OPTIONAL. 



26 April 1967 
18 TM-3417/200/00 

Variables are described by variable declarations, which may appear either in 
DECLARE statements made on the supervisor level or in block headings and 
function definitions. Associated with every variable declaration in a block 
heading or function definition is a lexical scope. The lexical scope of a 
variable declaration in a block heading consists of the statements within the 
block; the lexical scope of a variable declaration in a function definition 
consists of the expression that defines the function. However, if the lexical 
scope incl,udes a block or function that also declares a variable usinp: the 
same var-name as the outer· declaration, then the lexical scope of the outer 
declaration excludes the lexical scope of the inner one. 

When an expression is in the form of a var-name, then the following rules, 
applied sequentially at compile time, determine the variable to which it refers: 

1. If the var-name lies within the lexical scope of a 
variable declaration using that var-name, then the 
var-name refers to that variable. 

2. If the var-name is tailed, then it refers to a section 
variable in the section named by the section-nan,e. 

3. If a section variable whose first-name is the same as 
the var-name exists in any section on the section 
list, then the var-name refers to the one of these 
whose section appears first on the section list. 

If none of these rules apply, then an error condition exists. 

The active binding of a variable is determined at run time. A DECLARE state­
ment establishes an active binding for each variable that it declares, and 
this binding never disappears thereafter, though it may be superseded tempor­
arily. Upon entering a. block or function. active bindings are established for 
each variable declared by the block or function, and the previous active 
bindings of these variables become inactive. The nature of each of these new 
bindings is determined by its variable declaration. Upon exit from a block or 
function, the bindings created by it disappear. 

,.\ variable may have any of the four reference modes. However, the reference 
mode UNFIELDED is always used for variables whose values are fixed function 
definitions, and the reference mode NOVALUE is always used for macros. From 
the restrictions on assignments, it then follows that assignments cannot be 
made to variables denoting either fixed functions or macros. furthermore. 
variables denoting mucros cannot be evaluated. 

) 

) 
/ 
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3.3 

~. ~ 

SIMPLE EXPRESSIONS 

Syntax of Simple Expressions 

expression - simple-expression I assignment_expreasion 
! funargl conditional-expression 

assignment-expression - {var-namelform} {+I~} expression. 

simple-expression :: disjunction 

disjunction _ conjunction {\1 conjunction}* 

conjunction - negation {I\ negation} * 

negatton - relation I '" negation 

rela.tion - construct {relator co.nstruct} * 

relator :: = I" I < I:s; I > I ~ 
construct :: sum {o sum}* 

sum :: [+1-] term {{+!-} term}* 

term -= factor {{*In factor}* 

factor :: power I factor {\ I +} power 

power :: primary [t power] 

primary :: basic-expression 1 (expression) Iblock-expression 

form :: operator ({ operand}; 

operator :: var-name 

expression :: basic-expression! conditional-expression Iblock-expression 
'! funarg . 

form :: (operator opera.nd*) 

operator :: mark-operator I var-name 

operand :: expression 

funarg :: function-defin~tion 

basic-expression :: constant 1 var-name I form 
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3.3.2 Semantics of Simple Expressions 

The syntactic hierarchy for nonconditional-expressions in SL specifies the 
hierarchy of the various operators, and thus the implicit"parenthesization. 
The parenthesization is explicit in IL. The semantics of SL expressions 
employing operators are specified by giving the translation of these expressions 
into IL and then giving the semantics of the corresponding forms in IL. 

A disjunction 

in SL translates into 

" , (v cl c2 ••• cn ) 
, 

in IL wherec. is the IL translation of c .• 
1 1 

The translations of conjunctions 
n in SL translates into ('" n '.> and constructs are analogous. A negation ~ 

in IL. A relation 

cl r l c2 r 2 ••• r c n n+l 

in SL translates into 
, , , 

(RELATION Cl r l c2 r 2 ••• r n cn+l ) 

in IL. A sum in 8L translates into a form whose operator is "+". A term t 
preceded by "+" translates into t'; a term t preceded by "-" translates into 
(- t'). The translation of a term is analogous, with "*" behaving like "+" 
and "/" behaving like "_". The operators ""'", "-+-", "f", "\", and "t" are all 
binary, and the parse in 8L determines their operands. The SL expression 
a x ~. where a and b are operands and x isa binary operator, translates into 
(x a b') in IL. 

The operator of a form must designate either a function. an array, or a macro. 
If the operator designates a function, then the form is evaluated as follows: 

1. The operands of the form are evaluated. The order 
of evaluation is not guaranteed. 

2. A binding is created for each variable that is a 
parameter of the function. The valuations obtained 
in Step 1 are then assigned to the corresponding 
variables. None of these assignments are performed 
until all of the arguments are evaluated. If a 
parameter is'DIRECT. the rules for ordinary assign­
ment apply. if the parameter is INDIRECT the rules 
for loc-assignment apply. 

) 
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3. The bindings created in Step 2 are activated and the 
expression defining the function is evaluated. A 
valuation is obtained unless the result-declaration 
of the function is NOVALUE. After the evaluation is' 
completed, the bindings created in Step 2 disappear. 

4. If the valuation obtained in Step 3 is of the same 
type, reference mode, and coordinate as was declared 
for the function, then this valuation is the valua­
tion of the entire form. If the reference mode 
declared for the function is NOVALUE. then no valua­
tion is obtained for the form. If the reference 
mode is UNFIELDED, then type conversion will be 
performed if the type of the valuation obtained from 
the expression does not agree with the type declared 
for the function. If the reference mode is DIREC'l' 
or INDIRECT, then the type and coordinate of the 
valuation obtained from the expression must agree 
with the t.ype .and coordinate declared for the function 
or an error condition exists. 

If the operator designates an array. then the values of the successive 
operands are its subscripts. The valuation' of the form has reference mode 
DIRECT and the type subspecified for the array. The valuation .consists of 
the field containing the designated element within the array. The subscripts 
are evaluated in an unspecified order and converted to type INTEGER in order 
to find the desired array element. 

If tle operator designates a macro, then the macro specifies a transformation 
to b~ applied to the form at compile time. The transformed form replaces the 
original one. Macros always operate on the IL version ofa form. In order .to 
determine the valuation of a form whose operator is a macro, the explanation 
of that specific macro must be consulted. Although macros are variables, their 
reference mode is NOVALUE and therefore they can only be used in the context of 
form operators. Assignments cannot be made to them, nor can they be evaluated 
by themselves or passed as functional arguments. 

Assignment expressions are used in order to transmit a valuation from one field 
to another. They are also used implicitly in the transmission of arguments to 
functions. The transmission occurs as a side effect of the evnluation of the 
assignment expression. the valuation of either kind of assignment expression 
is always the valuation of its second operand. There are two kinds of assIgn­
ment expressions: ordinary aSSignment expressions and loc-assignment expressions. 
The operator "." designates ordinary assignment and the opera.tor It .... " designates 

--- . -"- -'- -._-_ .... _. ---- -_._-" 
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Table 5. Semantics of Assignment Expressions 

~ '~Ol]'t 
a+1 Cl + S a-+1 a -+ S .~ refer- - -

ence mode ._. 

NOVALUE X X X X 

UNFIELDED 1 X 3 X 

DIRECT 1 2 4 X 

INDIRJ<:CT 1 2 5 6 

X = not permitted 

1. Obtain the value of S. Convert it to type ~ if such conversion 
is permissible; illegal otherwise. Valuation is UNFIELDED. 

2. Place value obtained from B in the value field of a. 

3. Valuation is a locator of a newly obtained field with standard 
coordinate whose setting is the value of S. 

4. a and S must have the same type and the same coordinate. The 
valuation S is a locator of the field containing the value of S. 

5. a and B must have the same type and the same coordinate. The 
valuation is the locator that locates the field containing the 
value of S. 

6. Replace the locator part of Cl by the valuation of St which is 
also a locator, i.e., put the contents of the locator field 
of S into the locator field of a. 

) 

) 

) 
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loc-assignment. An ordinary assignment expression transmits a value only; a 
loc-assignment expression transmits a locator of a field containing a value. 
The most useful and common case of lac-assignment is the transmission of a 
binding of a variable. If A and B are variables, evaluation of the loc­
assignment expression A ~ B causes the active binding of B to be transmitted 
to A (which must have reference mode INDIRECT). Thereafter, any change to the 
value of B will cause the same change to be made to the value of A. and 
conversely. 

The semantics of assignment expressions are given in greater detail in Table 5. 
In order to determine the effect of an assig'llllent expression, the reference 
modes of its operands must be known. First,-the table is used to determine 
the valuation obtained from the second operand. This is done by looking in the 
column corresponding to the second operand of the appropriate kind of assign­
ment expression and the row corresponding to the reference mode of that operand. 
Then the column corresponding to the first operand of the assignment expression 
and the row corresponding to the reference mode of this operand is used to 
determine what is done with the valuation obtained from the second operand. 

When a value is copied from one field to another, the new value is identical 
to the old one. Consequently, both values have the same substrate. A change 
to the substrate of a value changes the substrate of all identical values in 
the same way. Thus, for instance, if a nonuniquely constructed array is trans­
mitted through assignment from one variable to another, changes to the elements 
of the array via one of these variables will change the datum represented by 
the value of the other variable. Furthermore, if a constant is assigned to a 
variable, then the value of that variable is invariant and any attempt to 
modify its associated data structure is an error. 

The form (A p P2 ••• po) has value FALSE if any Pi has value FALSE,and TRUE 
otherwise. T~e express~on is evaluated from left ~o right only far enough 
to determine its value. i.e., if any p. is false, the remaining Pj for j > i 
are not evaluated. (A) has value TRUE: 

The form (v Pl P2 ••• Pn) has value TRUE if any Pi has value 'rHUE, and FALSE 
otherwise. The expression is evaluated from left to right only far enough to 
determine its value, i.e •• if any Pi is TRUE. then the remaining Pj for j > j 

are not evaluated. (v) has value ~. 

A form (CASE see ••• e ) is evaluated by evaluating s to obtain an 
1 2 n 

integer x. If this integer is in the range 1 s x s n. then the value of the 
entire CASE expression is ext otherwise the value is en' 
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A form whose operator is RELATION causes a sequence of tests to be performed 
to yield a BOOLEAN value. The tests are performed from left to right as 
specified by the relations; if all the tests are satisfied the result is TRllli, 
and otherwise the result is FALSE. The eva.luation proceeds only far enough 
to determine the value of the RELATION expression. It is guaranteed that none 
of the quantities in the relation are evaluated more than once. 

The arithmetic operations "+" and "*" are ct:rried oct by means of macros. The 
type of the value obtained from the operation is determined by the following 
rules, applied sequentially, 

1. If all of the operands are of type INTEGER or BITS, 
then the result is of type INTEGER. 

2. If none of the operands are of type GENERAL, then 
the result is of type REAL. 

3. If none of the operands are of type REAL or homomorphs 
in GENERAL of type REAL, the result is of type GENERAL 
and is a homomorph of a value of type INTEGER • 

. 4. Otherwise, the result is of type GENERAL and is a 
homomorph of a value of type REAL. 

The operator "_" expects a single argument. If the argument is BITS or 
INTEGER the result is INTEGER. otherwise REAL. The operator "/" expects a 
single argument of type REAL, and forms its reciprocal. also of type REAL. 
The operators "t" and "\" have arguments and value of type INTEGER. 

3.4 CONDITIONAL EXPRESSIONS 

Syntax of Conditional Expressions 

conditional-expression - {IF predicate THEN consequentELSE}*+l 

{terminal-expressionlJ\} 

8 ELSEA {E'LsE} ".. empty 

® EWE· A ELSE ..... ELSE ELSE 

{ELSE} 

~) ELSE IF c conditional-expression 

J 

) 
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conditional-expression - (IF {predicate consequent}* 

[terminal-expression]) 

~ predicate , expression 

consequent :: expression 

terminal-expression :: expression 

3.4.2 Semantics of Conditional Expressions 

TM-34l7/200/00 

The symbol '~' is used in the SL kernel language for conditional-expressions 
in order to force explicit indication of the grouping of the parts of nested 
conditional-expressions. In translating to IL, a ':A..' at the end of a 
conditional-expression indicates that the terminal-expression is omitted. 

In evaluating a cQnditional-expression, the predicates are evaluated in turn 
and the resulting values are converted to BOOLEAN. As soon as one of the 
evaluations results in~. the corresponding consequent is evaluated, and 
its valuation becomes the valuation of the entire conditional-expression. 
Neither the predicates following the first true predicate nor the consequents 
other than the one corresponding to the first true predicate are evaluated. 
If none of the predicates are true, then the valuation of the conditional­
expression is the valuation of its terminal-expression, if there is one. If 
none of the predicates are true and there is no terminal-expression, then an 
error condition exists. 

If all of the consequents and the terminal-expression of a conditional­
expression have the same type, then the type of the valuation of the 
conditional-expression is that type. Otherwise the type of the valuation of 
the conditional-expression is GENERAL, and type conversion is performed when 
the conditional-expression is evaluated. The reference mode is the most 
restrictive of the reference modes of the various consequents and the 
terminal-expression. 
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3.5.1 

FUNCTION ·DEFINITIONS 

Syntax of Function Definitions 

function .. definition :: FUNCTION pa.rameter-list (result-dec1arationl 
{i parameter-declaration}*: body 

parameter-list :: ({parameter}: [. indef-parameter]) 

. S (. indef-parameter) ~ (indef-parameter) 

parameter-declaration :: {parameter}:+l {[variab1e-reference-mode] II 
(parameter-storage-mode]I I 
[type-declaration] I I [coordinate]} 

indef-parameter :: var-name (indef-name) 

type-declaration :: type I LIKE var-name 

result-declaration - {[ variable-reference-mode] II 
[t~e-declaration]1 I (coordinate]} 

I NOVALUE I {UNFIELDEDI I [type-declaration]} 

function-definition :: (FUNCTION [result-declaration ] 
parameter-declaration-list body) 

result-declaration - ([reference-mode) [type-declaration] 
[coordinate] ) I NOVALUE Ie UNFIELDED 
[type-declaration]) 

type-declara.tion - ty~ LIKE var-name) 

~ (type) c result-declaration ... type 

parameter-declaration-list - (single-parameter-declaration* 

[indef-parameter-declaration]) 

aingle-parameter-declaration :: parameter I (parameter 
[type-decla.ration] tparameter-storage-mode] 
[variable-reference~ode] [coordinate]) 

indef-parameter-declaration :: (indef-name [type-declaration] 
[variable-reference~ode] INDEF parameter) 

J 

) 
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lSi! 
~ 

parameter :: var-name 

indef-name :: untailed-var-name 

parameter-storage-mode :: LEXICAL IPUBLIC 

body :: - expression 

Semantics of Function Definitions 

A function-definition is an expression whose value is a function. The function 
does not have a name associated with it unless the function-definition appears 
as part of a named-function-definition in a DECLARE statement on the top level. 
Because of the behavior of free variables in a function-definition, evaluation 
of a function-definition at different times may yield effectively different 
functions. 

At run time, a function-definition is subject to two processes: evaluation and 
application. These two processes occur at different times and in different 
contexts. A function-definition may be evaluated once and applied many times; 
application occurs whenever a FUNCTIONAL variable whose value is the function 
appears as the operator of a form which is being evaluated. 

The variables named within a function-definition can be divided into three 
groups: 

1. Variables that are used as parameters of the function or are 
declared in a block within the function-definition (bound variables). 

2. Variables that are not parameters of the function 
but are lexically bound from outside the function­
definition (funarg-variables). A variable in this 
group is declared in a block or function-definition 
that contains the function-definition in question. 

3. Variables that do not lie within the lexical scope 
of any declaration (free variables). 

A function-definition on the top level does not have any outer lexical context 
and hence can only have bound variables and free variables. 

At the time of evaluation of a function-definition,-the va.luation of each of 
its funarg-variables is obta.ined and saved. During the applica.tion of the 
function, new bindings Il.re crea.ted for the funarg-v8-riables, Ilnd the preoerved 
valuations are assigned to these bindings. These bindlngs flrl! creRted A.fter 
the arguments of the function are evaluated, but before the body of the function 
is evaluated; they disappe(t.r after the evaluation of the body of the functIon. 
The bound variables of the function receive the valuations obtained from the 

___________ LL _______________________________________________ _ 
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arguments, and the free variables of the function obtain the valuations given 
by their currently active bindings. 

An unnamed function prints out as "[FUNCTION]"; this form does not correspond 
to any datum, and hence cannot be read back in. 

The parameter-declarations of a function-definition are treated like the block­
variable-declarations for a block, except that the parameters of a fUnction do 
not have presets. Both the rules for defaulting of attributes and the rules 
for d ~termining the variable designated by a given var-name are the same. The 
resul~-declaration determines the type, reference mode, and coordinate of the 
valuation returned by the function; since these attributes describe a valuation 
rather than a variable, no storage mode is required.' 

If the parameter-list for a function-definition contains an indef-llarameter, 
then the function expects an indefinite number of arguments. In matching 
arguments against parameters when the function is applied, the ordinary para­
meters, if any, are matched first. The remaining parameters constitute the 
indef-argument, which is a list of valuations. The length of this list is 
assigned to the indef-name upon entrance to the function; the indef-name is 
implicitly assumed to be a LEXICAL INTEGER DIRECT variable with standard 
coordinate. The list of valuations is formed into a one-dimensional array, and 
this array is then assigned to the var-name of the indef-parameter. Within the 
body of the function-definition, then, the indef-arguments of the function are 
treated as elements of this array, and the indef-name gives the length of this 
array. 

3.6 

3.6.1 

BLOCK EXPRESSIONS 

Syntax of Block Expressions 

I ~~ I block-expression - begin-block I do-block 

3.6.2 Semantics of Block Expressions 

The valuation of a block-expression is obtained by executing the block­
expression according to the rules for block execution until an implicit or 
explicit return-statement belonging to the block-expression is encountered. 
The valuation associated with this return-statement then determines the valua­
tion of the entire block-expression. If there is more than one return-statement 
belonging to a given blOCk-expression, then the type of the valuation of the 
block-expression is the same as the type of the valuations of the return­
statements if they are all the same, and GENERAL otherwise. The reference mode 

) 

) 
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of the valuation is the most restrictive of the reference modes of the valua­
tions of the return-statements. If the valuations of the return-statements 
differ in coordinate. however, the valuation of the block-expression will have 
reference mode UNFIELDED. 

The labels belonging to a block-expression are not visible outside the block­
expression. 

4. 

4.1 

BLOCKS 

SYNTAX OF BLOCKS 

block :: begin-block! do-block 

do-block :: DO {statement ;} * END 

begin-block - BEGIN {block-var iable-declarat ion }! 
{statement ;}* END 

block-variable-declaration :: bl,ock-variable-preset! 
block-variable-attr ibut ion 

block-variable-preset :: {block-variable [{-+!+} preset]} :+1 

block-variable-attribution :: {bloCk-variable}:+l attribute*+l 

attribute :: variable-reference-rnode I parameter-storage-mode! 
type-declaration! coordinate . 

statement·:: label* [unlabeled-statement] 

@ ; END c block ~ END 

label- identifier: 
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fSLl 
I-=:J 

block :: begin-block! do-block 

begin-block = (BEGIN (block-variable-list) statement*) 

do-block:: (DO statement*)! (BEGIN nil statement*) 

block-variable-list = {(block-variable [type-declaration] 
[parameter-storage-mode) [variable-reference-mode] 
(coordinate] [preset)}*+l 

@ (block-variable) c block-variable-list ~ block-variable 

statement :: label* statement-unit I label 

statement-uni t :: (LABEL label statement-unit) I unlabeled-statement 

label ::: identifier 

block-variable :: var-name 

preset :: expression 

compound-statement 

block-statement 

go-st at ement 

conditional-statement 

case-statement 

unlabeled-statement - casego-statement 

return-statem~nt 

for-statement 

code-statement 

try-statement 

xpression 

compound-statement - do-block I (compound-statement) 

block-statement :: begin-block! (block-statement) 

J 

\ 
~) 

) 
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4.2 SEMANTICS OF BLOCKS 

A block may appear in either a statement context or an expression context. A 
block is evaluated in the same way, independent of the context in which it 
appears; however, a block appearing in expression context produces a valuation, 
while a block.appearing in statement context does not. 

The evaluation of a block proceeds in the following manner: 

1. A binding is created for each block-variable, and an initial 
valuation is assigned to this binding. The initial valuation 
is determined by evaluating the preset, if it is given; otherwise 
it is determined by default. None of these assignments are 
performed until all of the presets have been evaluated; if any 
of the block-variables appear as part of one of the presets, the 
previously active binding of such a block-variable is used. If 
a block-variable is DIRECT, then the rules for ordinary assign­
ment are used. (In the context of a block-variable-preset, no 
distinction is made between "-+-" and "+"; the method of assign­
ment is determined strictly from the reference-mode of the block­
variable. ) 

2. The statements in the block are executed until a termination 
occurs. Termination will result from execution of a GO state­
ment whose label lies outside the block; from evaluation of an 
EXIT expression. from execution of a RETURN statement; or from 
execution of the last statement of the block without a transfer 
of control. (There is always an implicit "RETURN NIL" statement 
at the end of a block.) The statements of the block are executed 
sequentially unless a transfer of control or a block te!wination 
occurs. When control is transferred to a label, the statement 
execution sequence continues with the statement following that 
label. 

3. After termination, the bindings created upon block entrance disappear. 

The declarations for a block-variable specify, either implicitly or explicitly, 
four attributes and a preset. The four attributes are: reference mode, storage 
mode, type, and coordinate. For a block specified in SL, the block-variables 
are determined by collecting them from the block-variable-decll:l.rations. A 
block-variable may appear in any number of block-variable-declarations, and the 
attributes of a block-vuriable are collected from all declarations in which it 
appears. If any of the attributes are contradictory, an error condition exists. 
For a block specified in IL, each block-variable is given just once in the 
block-variable-list, and its attributes and initial valuation appear along with 
it. In either case, omitted attributes and presets are deterMined by default. 
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If the reference mode of a block-variable is not given, it is defaulted to 
DIRECT. If the storage mode is not given, it defaults to PUBLIC if the block­
variable is represented either by a tailed-var-name or by an untailed-var-name 
whose first name is the same as that of a section-variable of the current 
section. Otherwise the storage-mode defaults to LEXICAL. If preset is given 
explicitly, then the default type is the type of the preset; otherwise, the 
default type of the current section is used. The default coordinate is the 
standard one for the type of the block-variable. 

If a block-variable is tailed, then it designates a section variable of the 
section named by the section-name; otherwise, the variable that it designates 
depends upon the storage-mode of the block-variable. If the storage-mode is 
PUBLIC (either explicitly or by default). then the block-variable designates a 
section variable of the current section whose first-name is the same as the 
var-name; otherwise, the block-variable designates a lexical variable. 

If the type of a block-variable is determined by LIKE, then the associated 
var-name must either be a tailed-var-name or must agree with a PUBLIC or 
;3TATIC section-variable in the current section. In this case, the type of the 
block-variable is taken to be the same as that of the section variable named 
by the var-name. 

The type, reference mode, and coordinate of a block_variable which is a section 
variable must be the same as those specified in the top-level declaration of 
the section variable. 

If a preset is not explicitly given for a block-variable, then it is determined 
by default from the type of the block-variable. The standard default presets 
are as follows: 

GENERAL 

INTEGER 

BI'l'S 

REAL 

BOOLEAN 

Any functional-type 

Any n-tuple type 

Dimensional, typed array 

Dimensional array 

Other 

Preset 

nil 

o 
OQ 

0,0 

FALSE 

error trap 

n-tuple with default component 
values 

array as specified, with elements 
defaulted according to type of 
array 

GENERAL ARRAY with nil elements 

nil 

) 
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Every block has a set of labels (possibly empty) that belong to that block. 
The labels that belong to the block consist of those labels that are directly 
attached to the statements of the block, plus those labels. that belong to any 
conditional-statement or compound-statement of the block. There must be no 
duplications among the labels that belong to a block. The labels that belong 
to a block-expression or a block-statement within an outer block do not belong 
to the outer block. 

In parsing the statements of a block, the possible parses are considered in the 
order in which they appear in the syntax equation for unlabeled-statement. It 
therefore follows that a statement will be considered as an expression if and 
only if it cannot be considered as any other kind of statement. When an 
expression is encountered in a context where a statement is expected. the 
expression is evaluated and the valuation is discarded. An expression appearing 
in statement context may have the reference mode NOVALUE. 

4.3 COMPOUND-STATEMENTS AND BLOCK-STATEMENTS 

When a block appears in a statement context, it is either a compound-statement 
or a block-statement, and never a block-expression. A block enclosed in 
parentheses is treated exactly as though the parentheses were removed. 

A block-statement declares at least one block-variable, while a compound­
statement does not declare any block-variables. The labels within a compound­
statE .. nent are visible from outside the compound-statement, while the labels 
within a block-statement are not visible from outside the block-statement. 
Hence the labels that belong to a compound-statement are not allowed to duplicate 
the labels that belong to the block containing the compound-statement, but the 
labels that belong to a block-statement are allowed to duplicftte the labels 
that belong to the block containing it. 

4.4 GO STATEr~NTS 

4.4.1 S:;ntax of GO statements 

~, go-statement :: GO label 

0 go-statement - (GO label) 
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Semantics of GO Statements 

A go-statement causes a transfer of control to its label. The label is found 
by the following algorithm: 

1. Let the scope of the go-statement be the innermost 
block-statement or block-expression that contains 
the go-statement. 

2. If the label belongs to the scope, then the go­
statement transfers control to that label. 

3. If the scope is a block-expression or there is no 
block surrounding the scope, then the label is 
undefined and an error condition exists. 

4. Let the new scope be the innermost block-statement 
or block-expression that surrounds the old scope, .and 
return to Step 2. 

4. 5 RETURN S'l'ATEMENTS 

4.5.1 §lntax of Return Stutements 

r SL I return-statement-= RETURN expression 

~ return-statement .= (RETURN expression) 

4.5.2 Semantics of Return Statements 

A return-statement causes termination of the innermost block-expression 
containing it, and thus also causes termination of all block-statements and 
compound-statements that contain the return-statement and are contained within 
this block-expression. As each of these blocks is terminated, the bindings of 
its block-variables disappear. A return-statement produces a valuation obtained 
by evaluating the expression that is part of the return-statement. If it is 
desired to terminate a block-statement or compound-statement without termina.tinp; 
the block or blocks that surround it. then an explicit transfer of control to 
the end of the block-statement or compound-statement should be used. 

) 

\ 
/ 
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4.6 

4.6.1 

CONDITIONAL STATEMENTS 

Syntax of Conditional Statements 

condi tional-statement - {IF' predica.te 'l'HEN statement-consequent 
ELSE}*+1 [t~rminal-statementlJ\] 

@ ELSE./\. {ELSE} ==;) {E'LsE} 

@ ELSE IF c conditional-statement ~ IF 

statement-consequent :: statement 

terminal-statement ::: statement 

[;] conditional-statement - (IF {predicate statement-consequent} * 
[terminal-statenent]) 

statement-consequent - statement-unit 

terminal-statement :: statement-unit 

4.6.2 Semantics of Conditional Statements 

In translating an 8L conditional-statement to 1L, a "f\" ut the end of the 
conditional-statement indicates that the terminal-statement is to be omitted. 
In order to evaluate a conditional-statement, the successive predicates are 
evaluated in turn, and the resulting values are converted to BOOLEAN. As soon 
as one of the evaluations results in TRUE, the corresponding statement­
consequent is executed. Unless this execution causes a transfer of control, 
control then passes to the next statement in the block. If none of the 
predicates evaluate to TRUE, then the terminal-statement is executed. If there 
is no terminal-statement or the terminal-statement is ''./\.'', then no action is 
taken and control passes to the next statement in the block. 

It is permissible to transfer control to a label within a conditional-statement; 
the effect is the same o.s if control had reached the label through normal 
execution of the conditional-statement. The la.bels thut belonp: to A. conditiona.l­
statement Hre the labels that belong to its statement-cotlsequf'nt!'l t~.nd to Us 
terminal-stlltement. 'l'he In.bela tha.t belong to a conditloIlfll-ntntcmcnt nloo 
belong to the block that contains the conditional-stl-ltement. 

1 __________ - ___ " _______ .... _ 
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FOR STATEMENTS 

Syntax of FOR Statements 

for-t'!tatement ::: 

reset-clause J 
in-clause 
on-clause 
step-clause * 

I unless-clause l 
while-cla,use * 

unless-clause :: UNLESS expression 

while-clause - WHILE expression 

reset-clause _ variable [+- initializer] RESET expression 

loop-clause :: variable LOOP expression 

in-clause _ variable IN expression 

on-clause _ variable ON expression 

step-clause _ variable [+ arithmetic-initializer] STEP 
arithmetic-expression [UNTIL,relator 
arithmetic-expression] 

~ ~or-.tatement , (FOR ( l.n-clause { 
::eset-clause 1 
on-clause 
step-clause ' 

I unless-clause l 
while-clnuse ) 

* 
'" 

unless-clause - (UNLESS expression) 

while-clause 

reset-clause 

in-clause 

on-clause 

step-clause 

loop-clause 

- (WHILE expression) 

- (RESET variable initializer expression) 

- (IN variable expression) 

- (ON variable expression) 

_ (STEP variable arithmetic-initializer 
arithmetic-expression [relator aritl~etic­
expression]) 

- (LOOP variable expression) 

iterand 

iterand) 
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i terand :: unlabeled-statement 

variable ::: var-name 

Semantics of FOR Statements 

TM-3411!200!OO 

Each kind of clause has four attributes associated with it: a set of temporary 
variables, a set of initializations. a test. and a modification. The variables 
that are initialized mayor may not be temporary. Any of the attributes may be 
null. A for-statement generates the following block: 

BEGIN initializations 

lnbl: tests 

iterand 

lab3: modifications 

GO labl 

lab2: END 

A for'..statement with no clauses is equivalent to the iterand by itself. The 
itera~d is implicitly surrounded by a begin-block. so that labels within the 
iterand are not visible outside of the for-statement. The labels labl and lab2. 
are genids. 

The attributes of the various for-clauses are as follows: 

1. TIeset-clause 

Temporary variables: None 

Ini ti ali zat ion : Set variables to initializer. if 
there is one; otherwise none 

Test: None 

Modification: Set variables to expression 



;~6 Apr il 196'( 

2. In-clause 

Temporary variables: 

Initialization: 

Test: 

Mod~fication: 

3. On-clause 

Temporary variables: 

Initialization: 

Test: 

Modification: 

4. Step-clause 

Temporary variables: 

Initialization: 

Test: 

Modification: 

5. While-clause 

'l'emporary variables: 

Initialization: 

Test: 

Modification: 

TH-34l7!200/00 

List iterator, called gl 

Set gl to the expression; . set 
variable to car(gl) if defined, 
NIL otherwise 

If null(gl) then go to lab2 

Set gl to cdr(gl). set va.riable 
to car(gl) if gl not NIL 

None 

Set variable to expression 

If null(variable} then go to lab2 

Set variable to cdr(variable) 

Increment gl and terminator g2 

Set gl to first expression; set 
g2 to second expression if it eXists; 
set variable to initia1izer if it 
exists 

If there is a relator part, and if 
(variable relator g2) is satisfied, 
then go to lab2 

Set variable to variable + gl 

None 

None 

If boolean value of expression is 
FALSE, then go to lub~ 

None 

----------~----.--~ --'-------------_. --------~------.----- ._---------'--

) 
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6, Unless-clause 

'remporary variables: 

Initialization: 

Test: 

Modification: 

None 

None 

If boolean value of expression is 
TRUE, then go to lab3 

None 

An example of a for-statement and the equivalent block it generates are given 
below: 

.------~ 

FOR X IN Ll; Y IN L2; I +- 1 STEP 1 > 

LENGTH (X) UNLESS 'V NtJr.1BEHP( X) v 

'V NUMBEHP( Y): SUM +- I*X*Y + SUM 

BEGIN Gl +- Ll, G2 +- L2, G3 +- LENGTH(X); Gl, G2GENEHALj G3 INTEGEl\: 

x +- IF NULL (Gl) THEN NIL ELSE CAR(Gl); 

Y +- IF NULL (G2) THEN NIL ELSE CAR(G2); 

I +- 1; 

Ll: IF NULL (Gl) THEN GO L2; 

IF NULL (G2) THEN GO L2; 

IF I > G3 THl!:N GO L2; 

I F 'V NIDlliERP ( X) V 'V NUMBERP ( Y) THEN GO L3; 

SUl-1 +- I*X*Y + SUM; 

L3: Gl +- CDR(Gl); 

IF 'V NULL (Gl) THEN X + CAR(Gl); 

G2 +- CDR(G2). 

IF 'V NULL (G2) THEN Y + CAR(G2) 

GO Ll; 

L2: END 

\ 
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4.8 CJ\f,i': AN n CAGEGO S'l'ATEMEN'rS 

~;yntax of CASE and Ci\S~GO Statements 

case-statement - CASE (subscript, {statement};+l) 

casego-statement = CASEGO (subscript, {label}!+l) 

~ IL~- case-statement - (CASE subscript statement*+l) 

casego-statement .: (CAfmr.o suhscript la.bel*+ 1) 

r ~t J subscript - expression 

Semantics of CASE and CASEGC' Statements ...........-.-. 

TIJ[-3417/200/00 

A case-statement is executed by first evaluating the subscript and converting 
the result to INTEGER to obtain an integer x. If x is in the range 1 ~ x ~ n. 
where n is the number of statements following the subscript, then the xth 
statement is executed. Otherwise the last statement is executed. Labels 
within a statement of a case-statement are not accessible from outside the 
case-statement nor from within the other statements of the case-statement. 

A casego-statement is exactly equivalent to the case-statement where each· 
label in the casego-statement is replaced by GO x in SL or (GO x) in IL. 

TRY S'l'ATEMEN'l'S 

Syntax of TRY E3tatements 

try-statement - 'l'fIY var-nome, stntement; statement 

try-sta.tement ::: ('l'FY var-name statement statement) 

Semantics of THY Statements 

The semantics of a try-statement depends upon the semantics of the operator 
EXIT. EXIT' acts like a function of one argument; its valuation is simply the 
valuation of its argument converted to GENERAL UNFIELDED. 

~ _____ ~ _______ ~ ___ ~. ___ • ____ •. t ___ . ___ • ___ • ___________ , • __ ••. __ , _____ , ... _. _, •.. ___ • 
~----- .. -.. ----------

) 
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Execution of a try-statement begins with execution of its first statement. 
If no EXIT expression is encountereu during the execution. control passes to 
the statement following the try-statement. Otherwise the vA.riuble designllted 
by the var-na.me is set to the valuation of the EXIT expression (using ord ina.ry . 
assignment) and the second statement within the try-statement is executeo. 
Control then passes to the stntement following the try-statement. Labels 
within the try-statement are not accessible outside of the try-statement. 

4.10 CODE STA'rEMENTS 

4.10.1 ~)yntll.X of CODE f;tatements 

o code-statement - CODI'; (i tem*) 

o code-statement :: (CODE Hem*) 

4.10.2 Semantics of CODE Statements 

The successive items correspond to successive labels and instructions in a LAP 
program. The syntax of item is defined in the LAP specification docur.1ent. 
The effect of a code-statement is to cause execution of the LAP code that it 
represents. 

5.0 DECLAIm STATEMEN'fS ON THE TOP LEVEL 

5.1 SYNTAX OF DECLARE STATEMENTS 

~ dec lare-statement ::: DECLARE' {top-level-declarat ion; } * ; 

top-level-declaration ::: section-variable-declaration 
Inamed-function-definition 
\ n-tuple-definition \ synonym-definition 

section-variable-declaration ::: section-variable-preset 
lsection-variable-attribution 

section-variable-preset ::: {section-variable [{"'-I+} preset]}' 
*+1 

section-variable-attri bution :: {section-variable }!+l section-attribute*+l 

section-attribute ::: variable-reference-mode I sectlon-H1.oral<;e-mode 
Itype-ueclaration I coordinate 
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named-function-defini t ion ::: sect ion-variable funct ion-defini t ion 

synonym-definition - section-variable ~ expression 

n-tuple-definition - n-tuple-type NTUPLE ({coordinate-spec }*. ) 
+1 

coordinate-spec = type [coordinate] 

declare-statement ::: (DECLARE top-level-declaration')f) 

top-level-declaration = named-Function-definition 
Isection-variable-decla.rution 
In-tuple-definition 
I synonym-definition 

section-variable-dec1aration = section-variable 
I (section-variable [type-declaration] 
[section-storage-mode] 
[variable-reference-mode] 
[coordinate] [preset]) 

@ (section-variable) ~ section-variable 

named-function-definition ::: (section-variable FlrIDEF 
function-definition) 

synonym-definition ~ (section-variable ~l- expression) 

n-tuple-definition - (n-tuple-type NTUPLE (coordinlJ.te-spec*+ 1) ) 

coordinate-spec ::: (type [coordinate]) 

section-yariable ::: var-name 

section-storage-mode = STATIC I OPTIONAL I PUBLIC 

._~_L ________ . _______ ~ ___________ _ 

J 

) 
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SEMANTICS OF DECLARE STATEMENTS 

A,top-level declaration is used to create a section-variable or modify the 
attributes of an existing section-variable. If a section-variable is in the 
form of an untailed-var-name, it creates or modifies a section-variA,hle in the 
current section; otherwise it creates or modifies a section-variable in the 
section named by the section-name. Once a section-variable has been declared, 
only its assignment may be changed, unless there are not yet any references to 
that variable from assembled code or synonyms. 

The top-Ievel-declarations in a sinf,le DECLARE statement are assumed to be 
performed simultaneously, just like the initialization of block-variables. The 
meaning of section-variable-presets and section-variable-attributions is like 
that of block-variable-presets and block-variable-attributions, with the follow­
ing exceptions: 

1. There are two additional storage modes: S'rA'l'IC and OP'l'IONAL. 
A STA'rIC variable cannot be declared PUBLIC in any block or 
function-definition, but it may be used as a free variable 
of a block or function-definition. 

When a section-variable is declared OPTIONAL, then a decJnrlt­
tion of a block-variable or function-definition with the some 
first-name and no section-name will refer to the sectioll­
variable if it is explicitly declared PUBLIC fit the poInt or 
declaration, and to a LEXICAL variable otherwise. 

2. If a section-variable-preset refers to a section-variable 
established by a prior DECLARE statement. then the type of the 
preset does not affect the type of the section-variable, and 
any necessary.type-conversions are performed. 

A named-function-definition establishes a section-variable whose reference­
mode is UNFIELDED, whose type is the same as the type of the function defined 
by the function-definition, and whose valuation is the function defined by the 
function-definition. If this valuation is printed out, the name of the 
section-variable will appear, and the resulting datum can be read bnck in. 
The valuation of such a section-variable ca.n only be modified by a flubsequent 
named-function-definition. A named-function-definition, being on the top 
level, cannot have any funarg varla1les. 

A synonym-declaration ca.uses the expression on the right to be substItuted for 
the section-variable on the left whenever that section-variable is referred to 
in a compiled expression or function-definition. 

---------- ------~. -~--~------~ 
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An n-tuple-definition establishes a new kind of n-tuple whose successive 
fields are described by the coordina.te-specs of the n-tuple-definition. For 
each field, the type and coordinate of the value to be placed there a.re 
specified. N-tuples cannot contain locators in their fields, so no reference 
mode need be given. 

) 
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Index to Syntax Equations. 

~ 
Equation Page Equation Page 

array-type 6 nanied-function-defj. nit ion 42 
assignment-expression 19 negation 19 
attribute 29 n-tuple-definition lt2 

begin-block 29 on-clause 36 
block 29 operator 19 
block-variable-attribution 29 
block-variable-declaration 29 parameter-declaration 26 
block-variable-preset 29 parameter-descriptor 6 

parameter-list 26 
case-statement 40 power 19 
casego-statement 40 predicate 25 
code-statement. 41 primary 19 

C 
conditional-expression. 24 
conditiona.l-statement 35 relation 19 
conjunction 19 relator 19' 
consequent 25 " "reset-clause 3h 
constant 16 result-declaration 2() 
construct 19 result-descriptor h 
coordinate 6 return-statement 34 
coord·'.nate-spec 42 

. ; section-attribute 41 
declare-statement 41 section-variable-attrihution 41 
disjunction 19 section-variable-declaration 41 
do-block 29 section-variable-preset 41 

simple-expression 19 
expression 19 statement. 29 

statement-consequent 35 
factor .19 step-clause 36 
for-statement 36 sum 19 
form 19 synonym-declaration 42 
functional-type 6 
function-definition 26 ta:i.led-var-na.me 17 

term 19 
p;o-statement 33 term:l.nal-pxprcBFli on ,.,r.' 

I .. ) 

termlnal-ntatcmcnt 3~ 
in-clause 36 top-level-dcclFl.rnt:l.orl '. L 
indef-parwneter 26 trY-FIt at em en t ho 
indef-parllmeter-descriptor 6 type-declaration ~6 

C label 29 unless-clause 36 
loop-clause 36 untailed-var-na.me 17 

var-name 17 

while-clause 36 
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Equation 

array 
arra.y-element 
A.utonym 

basic-expression 
block-expression 
block-statement 
block-variable 
body 

compound-statement 

datum 
dimensionality 

first~name 

funarg 
function-specifier 

indef-name 
iterand 

nil 
node 
non symbol-element 
n-tuple 
n-tuple-name 
n-tuple-type 

operand 

narameter 
yarameter-storage-mode 
preset 

section-name 
section-stora~e-mode 

section-variable 
simple-type 
subscript 
symbol 
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Index to Syntax Equations (Cont,) 

~ 
~ 

Page 

8 
8 

16 

19 
28 
30 
30 
27 

30 

7 
8 

17 
19 

8 

27 
37 

7 
7 
7 
8 
8 
6 

19 

27 
27 
30 

17 
42 
42 

·5 
40 
7 

Equation 

type 

unlabeled-statement 

variable 
variable-reference-mode 

Page· 

5 

30 

37 
6 

J 

) 
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Index to Syntax Equations (Cont. ) 

Equation 
G 

Page Equation Page 

array-type 6 named-function-definition 42 
n-tuple-definition 42 

begin-block 30 
block 30 on-clause 36 
block-variable-list 30 operator 19 

case-statement 40 parameter-declaration-list 26 
casego-statement 40 parameter-descriptor 6 
code-statement 41 
conditional-expression 25 reset-clause 36 
conditional-statement 35 result-declaration 26 
constant 16 re8ult-descriptor 6 
coordinate 6 return-statement 34 
coordinate-spec 42 

l_ se.·~tion-variable-declaration 4? 
declare-statement 42 single-parameter-declaration 26 
do-block 30 statement 30 

statement-consequent 35 
expression 19 statement-unit 30 

step-clause 36 
for-statement 36 synonym-definition 42 
form 19 
functional-type 6 tailed-var-name 17 
function-definition 26 terminal-statement 35 

top-level-declaration 42 
go-sta.tement 33 try-statement 40 

type-declaration 26 
in-clause 36 
indef-parameter-declaration 26 unless-clause 36 
indef-parameter-descrlptor 6 untailed-var-name 17 

label 30 var-name 17 
loop-clause 36 

while-clause 36 
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EQuation 

array-typer 

boolean 

character-datum 
compound-var-name 

decimal 
dot-operator 

exponent 

fraction 

genid 

identifier 
integer 

literal 

mark-operator 

non-string-delimiter 
number 

octal 

punctuator 

~"ea.l 
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12 

12 

12 
12 

12 
12 

12 

12 

12 

12 
13 

12 

12 

12 
13 

13 

12 

13 

sign 
special-spellin~ 

string 

token 

unsigned-integer 
unsigned-octal 
unsigned:"real 
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