The views, conclusions, or recommendations expressed in this document do not neces-

sarily reflect the official views or policies of agencies of the United States Government. TM" 3417/200/00

The research reported in this paper was sponsored 7 "
by the Advanced Research Projects Agency Information MTHOR 1 e Fiptnfomma Tomdd
Processing Techniques Office and was monitored by the - W ﬂ ﬂ
Electronic Systems Division, Air Force Systems Command Py Abrahdms

under contract F1962867C0004, Information Prc:essing

Techniques, with the System Development Corporstion, ncm:%//d :Z .
Barnect
, RELErsE (Ll b, Sidvave~
TE@[H] MEM@ Eisaldsiold

a working paper fr J, I, Schwartz
PAGE 1 OF_LU8 PagEs

System Development Corporation / 2500 Colorado Avenus / Santa Monica, California 90406 TE
Information International Inc./ 11161 Pico Boulevard / Los Angeles, California 90064 h/26/67

(Page 2 is blank)

LISP 2 Language Specifications

ABSTRACT

This document describes the proposed syntax and semantics
for the LISP 2 Source Language (SL) and Intermediate
Language (IL) to be implemented on the IBM S/360 computer,
The syntax of tokens is also included,

s

26 April 1967 3 ’ TM-3L417/200/00

TABLE OF CONTENTS

Page

Section 1. Introduction . v + ¢ « v ¢ + ¢ & & s 5
2. Types, Data, and Tokens . . . + + « + o b
2.1 Teminclogy o . 5
2.2 Type Information . . o N 5
2.2.1 Synt&x of Types ob . . S
2.2.2 Datsa Types 6
2 . 3 Data Synt&x . . . » 7
2.4 Type Conversion ., o s 4 e s s e e '8
2.5 Tokens and their Syntax L 12
3. ExpreSSionS 13
3.1 Constants 16
3.1.1 Syntax of Constants e e s e e 5 e e s 16
3.1.2 Semantics of Constants c s 4 e e & s e 16
3 . 2 Variables 17
3.2.1 Syntax of Variables I L T) 17
3.2.2 Semantics of Varisbles ¢ & s s e s & 17
3.3 Simple Expressions s e e % s e e 19
3.3.1 Syntax of Simple Expressions o v e e e 19
3.3.2 Semantics of Simple Expressions o v e e s 20
3.k Conditional Expressions .+ « « o o o« o 2L
3,4,1 Syntax of Conditional Expressions 24
3.4,2 Semantics of Conditional Expressions 24
3.5 Function Definitions . e e s e e e 26
3.5.1 Syntax of Function Definitlons « e e e e 26
3.5.2 Semantics of Function Definitions e 0+ e 27
3.6 Block Expressions e e e e e e e e 28
3.6.1 Syntax of Block Expressions .+ .« « « & o+ 28
3.6.2 Semantics of Block Expressions . « « « « 28
)4 . Blocks 29
h . 1 Qynta.x of Blocks 29
L,2 Semantics of Blocks o« b e e e e e s 31
4.3 Compound-Statements and Block Statements N 33
h.h GO Statements . N 33
4.4,1 Syntax of GO Statements . + . « . + . 33
4. 4,2 Semantics of GO Statements . . . + .« .+ 3k
l‘ . 5 Return Statements 3h
4,5.1 Syntax of Return Statements . . « .+ + . 3k
4.5.,2 Semantics of Return Statements« . . 3k

26 April 1967

Section

LR R S i i s~ gl g g g g g g

A1V, AV,]
.- o o
N

Fig. 1

Table
Table
Table
Table

Table

Fw o

wi

TABLE OF CONTENTS (Cont.)

Conditional Statements . . .,

Syntax of Conditional Statements .

Semantics of Conditionsl Statements

FOR Statements ¢ v« e
Syntex of FOR Statements .«
Semantics of FOR Statements .
CASE and CASEGO Statements . .

Syntax of CASE and CASEGO Statements
Semantics of CASE and CASEGO Statements

TRY Statements « v s e s
Syntax of TRY Statements .« s
Semantics of TRY Statements .
Code Stetements P

Syntax of Code Statements .

Semantics of Code Statements .

Declare Statements ¢ e e
Syntax of Declare Statements .
Semantics of Declare Statements

Index to Syntax Equations .

Lattice of Types

Data Types .« « ¢ « « o
Conversion of Type o to Type B
Table of Operators

L]

»

Optional Transformations for Elimination of

Spaces between o and B . . .

Semantics of Assignment Expression

.

.

TM-3417/200/00

® & & e o * & & & e o s & e @

11

&0

15
22

r'/‘\\ A

26 April 1967 5 TM-3L417/200/00

1. INTRODUCTION

The Source Language (SL) and Intermediate Language (IL) of the LISP 2 system
proposed for implementation on the IBM S/360 are described in this document.
The LISP 2 gystem for the S/360 is an extension of the LISP 2 system currently
operating on the Q-32 computer. Included in this document are descriptions of
the syntax and semantics of data, tokens, types, expressions, variables, blocks,
and declaratives., OSpecifications for other portions of tne LISP 2 system for
the IBM S/360 are included in other documents in this series (TM=3417),

2, TYPES, DATA, AND TOKENS

2.1 TERMINOLOGY

A field is a container or box capable of holding & representation of informa-
tion., The contents of a field are known as a setting. One possible kind of
setting is a locator, which is a rule for finding either a single field or a
collection of fields.,

A datum is the external representation of a computational object to be pro-
cessed by a LISP 2 program. A data structure is the internal representation
of & computational object to be processed by a LISP 2 program, A datum is in
the form of a sequence of characters; a data structure is in the form of a
collection of fields and settings., One of these gettings is the value of the
date structure, If the data structure consists of & single setting, then the
value is that setting; otherwise the value is a locator from which the
remaining parts of the data structure may be found, In either case, the value
is a single setting.

Implicitly assoclated with every value is a type,; which is a rule for deter-
mining the computational object represented by the value, Two values are said
to be identical if and only if they have both the same setting and the same
type. The operation of reading a datum results in obtaining & value whose
associated data structure represents the same computational object as the
datum; the operation of printing & value results in obtaining a datum that
represents the same computational object as the data structure associated with
the value, '

2.2 ° TYPE INFORMATION
2.2.1 Syntax of Types

SL type = simple-type[array—typeIfunctional-typeIn-tuple-type
{ IL

simple~type 2 GENERAL|BOOLEAN |REAL|INTEGER|BITS|FUNCTIONAL

D6 April 1067

SL

P

IL

SL
IL

24242

¢ T™=3417/200/00

array-type = [simple-type] ARRAY [dimensionality]

i

functional-type = FUNCTIONAL (result-descriptor
{, parameter-descriptor}, [, indef-parameter-
descriptor])

parameter-descriptor = {[variable-reference-mode]||type||[coordinate]}
result-descriptor = parameter-descriptorINOVALUEI{UNFIELDEDIltype}

indef-parameter-descriptor = {[variable-reference—mode]|[type||INDEF}

it

céordinate (unsigned-integer unsigned-integer)

LI

array-type (ARRAY [simple-type] {([integer] integer)},)

functional-type = (FUNCTIONAL result-descriptor ,
{parameter-descriptor}* [indef-parameter-descriptor])

parameter-descriptor = ({[variable-reference-mode]||type||[coordinatel})
result-descriptor = parameter-deseriptor |NOVALUE|{UNFIELDED||type}

indef-parameter-descriptor = ({[varieble-reference-mode]
| | simple-type| | INDEF})

coordinate = (unsigned-integer . unsigned-integer)

varieble-reference-mode 3 DIRLCT |I4DIRECT

n-tuple-type = identifier

Data Txges

The various data structures in LISP 2 and their types are given in Table 1,

Arrays and n-tuples must have the proper number of elements; each element must
be convertible to the expected type for the array or n-tuple component, All
data is composed of one or more tokens, The following transformations may be
used for data, SL, and IL.

space token = space space token

(§§> token space == token space space

26 April 1967

2.3

SL
IL

7
Table 1., Data Types
Datum Type
Number:
Real REAL
Intgger INTEGER
Octal BITS
Unsigned-real REAL
Unsigned-integer INTEGER
Unsigned-octal BITS
Boolean BOOLEAN
String GENERAL
Symbol SYMBOL
Function-specifier FUNCTIONAL
Nil GENERAL
Node NTUPLE
N-tuple NTUPLE
Array ARRAY

DATA SYNTAX

datum

nonsymbol-element | symbol |nil|node

TM-3L417/200/00

nonsymbol-element = number |boolean |string |n-tuple|array
| function-specifier

node =
nil =

symbol

(datum*+l [f datum])

()|NIL

identifier|character-datum'special—spellinglmark—operator

26 April 1967 8 TM-3417/200/00

array = [array-typer dimensionality array-element*+ll
array-element = datum lprray-element*+ll
dimensionality = [{[integer:] integer};+Ll
function-specifier = [FUNCTION compound-var-name]

n-tuple = [n-tuple-name datum*+Ll

n~tuple-name = identifier

2.k TYPE CONVERSION

Under certain conditions, a value x of type a may be given when a value of

a different type B is expected. 1In this case, there may be a value y of type

B that can be used in place of x., This value y is then called the homomorph

of x in 8. A homomorph of & value will usually (but not always) represent the
seme computational object as the original value. A given value of type a may
or may not have a homomorph in a different type B. A value is converted from
type a to type 8 by finding the homomorph of the given value in B, if it exists.
If it does not exist, the conversion is illegal. (See Table 2,)

B is said to be a subtype of o if every value in B can be converted to o and if
the conversion does not change the actual setting. The subtype relationships
among the different types are shown in the lattice of Figure 1. Here the fact
that B is a subtype of a is expressed by placing B below a in the diagram and
drawing & line between them., A large circle represents a collection of types
rather than a single type.,

Every value has a homomorph in the type GENERAL. This homomorph represents the
same computational object as the original value. If a value of any type what-
soever is converted to GENERAL and back again, the resulting value is always
identical to the original one. There exist class predicates for INTEGER, BITS,
REAL, BOCLEAN, and FUNCTIONAL that are true for values in these respective
tvpes, and also for their homomorphs in GENERAL; they are false for all other
‘ralues, In other words, these class predicates do not distinguish between
values and their homomorphs in GENBRAL.

There is an obvious correspondence between the different syntactic classes of
data and the set of possible types. It should be noted that NODE is a
particular n-tuple type. The velues corresponding to strings are in type
GENERAL, Reading a datum d in a syntactic class a results in a value v which
is in type GENERAL, but is & homomorph of a value in the type o' that corres-
ponds to a.

N

26 April 1967 9 TM=3L417/200/00

Table 2, Conversion of Type a to Type 8

a ° B |I |B |R |G |F |A
BOOLEAN U | x | X H | x | x
INTEGER T IB H | x | x
BITS T |BI|U |BR|H | X |X
REAL T |E [RB|U |H | X |X
GENERAL GP | GI| GB|GR | U | RH | RH
FUNCTIONAL | T X | H X
ARRAY T [X | X | X |U

= getting is unchanged
not permitted

= constant TRUE

I =]
R

= homomorph requiring change of setting

GI = if homomorph of & number, convert to that number and thén to
INTEGER;, if NIL, then return O, otherwise illegal

GP = if FALSE then return FALSE, otherwise return TRUE

GB = if homomorph of & number then convert to that number and
then to BITS; if NIL, then return 0Q; otherwise illegal

GR = if homomorph of a number, then convert to that number and
thén to REAL; if NIL, then return 0.0; otherwise illegal

E = apply ENTIER function
= apply FLOAT function

RH = restricted homomorph; if given value is a homomorph of n
value of the desired type, take that value; otherwise illegal

Bl = convert to positive integer; illegal if sign bit is negative .

IB = convert to bit sequence; -0 treated like +0; other negative
numbers illegal

RB ¥ REAL to INTEGER, then INTEGER to BITS
GR = BITS to INTEGER, then INTEGER to REAL

A = types must agree exactly, else illegal

26 April 1967 10 TM-3417/200/00)

The simple-type corresponding to a given type is the highest node in the
lattice of types (as given in Figure 1) that is connected to the given type.

In specifying the type of an array, the simple-type that describes its

elements is always used. In specifying the type of a function, simple-types are
ordinarily used in the valuation-descriptor and in the parameter-descriptors,

" If a type that is not a simple-type is used in this context, it is semantically
equivalent to the corresponding simple-type. If the reference mode is omitted
in a parameter-descriptor, DIRECT is assumed; if a reference mode is omitted in
&8 result-descriptor, UNFIELDED is assumed, If a coordinate is omitted with =
reference mode of DIRECT or INDIRECT, a standard coordinate, which may depend
on the type, is assumed. In the case of the 360, the standard coordinate is
(0 . 32), independent of type.

A velue is unigue if there are no other values with the same type that represent
the same computational object, If the values in & type a are unique, then the
values in all subtypes of a are unique. A value is invariant if the computa-
tional object that it represents cannot be changed by program operations, A
value is alterable if it can be made to represent a different computational
object through program operations. The data structure associated with an
alterable value is also said to be alterable., An alterable data structure

ronsists of a skeleton and & substrate. The skeleton consists of a collection \
of fields, and possibly settings also, that cannot be changed by program opera- /)

tions. The substrate consists of a collection of settings that can be changed
by program operations; these settings are the contents of certain fields of
the skeleton, _

Values within the types INTEGER, BITS, REAL, BOOLEAN, and FUNCTIONAL are unique.
The homomorphs in GENERAL of values within these types are invariant but not
unique. The values in SYMBOL are unique, and the homomorphs of these values in
GENERAL are also unique. Arrays and n-tuples are alterable, though special
cases of them may be invariant, N-tuples and arrays may be constructed either
uniquely or non~uniquely. These terms will be explained for the special case
of nodes, but the explanation applies equally for any other n~tuple or array
type. The procedure for constructing a node has as input a set of values of
known type, and as output a single value that represents the desired node.

When a node is constructed uniquely, the node construction procedure will
always give the same value as output each time it is called with the same set
¢f inputs. When a node is constructed non-uniquely, calling the node construc-
tion procedure twice with the same set of values as input will, in general,
yield two different values as output.

The substrate of a uniquely constructed n-tuple or array consists of the collec-

ted substrates of the values from which it was constructed. The substrate of a

non-uniquely constructed n-tuple or array consists of the contents of the fields

of that n-tuple or array, Thus an n-tuple or array whose component parts are

invariant will itself be invariant. A constant is--by definition--invariant, ‘
and possibly unique. It is an error to attempt to modify a constant, though)
this error will not always he detected, ‘/)

GENERAL INTEGER BITS
O O

SYMBOL n-tuple

dimensional
ARRAY

typed
dimensional
ARRAY

Figure 1.

REAL FUNCTIONAL BOOLEAN
O @) - 0

FUNCTIONAL
subtypes

Lattice of Types

5

1T L96T Trady 92

00/002/LTHE=NL

26 April 1967 12 T™M-3417/200/00

2.5 TOKENS AND THEIR SYNTAX

Some of the characters in the kerne; languege, particularly mark-operators,
may be replaced in specific implementations by multiple characters, dot-

. operators, or reserved words. The sgpecial characters of LISP 2 and their
meaning are given in Table 3. In token syntax, the term "character" will be
defined for specific implementation and the terms "letter", "digit", and
"octal-digit" refer to the conventional sub-classes of characters,

! T identifier = literal|genid

literal = letter {letter|digit].l},

character-~datum = ¢ character

string = # {non-string-delimiter|'character}, , #
non-string-delimiter = {any character other than "#", "'", or "<:§:>"}
special-spelling = % string . o

genid.z %G string

mark-operator = +[=[*|/[¢|\[4]+|¢|o|alv]v]|=|#]<[s]>]2

boolean = TRUE|FALSE |

compound-var-name = identifier$identifier

array-typer = ARRAY$simple-type

punctuator =
sign = +|-

dot-operator = {.} [letter] {letter|digit|.},

¥4 1
decimal = digit, ,

unsigned-integer = decimal E decimal|decimal
unsigned-octal = octal-digit*+l Q decimalloctal-digit*+l Q

exponent = E {sign decimal|decimal}

fraction = decimal . decimal|decimal .| . decimal

A./’/

N\

omalbadd s e

f‘\\

26 April 1967 13 TM=3417/200/00

unsigned-real = fraction exponent | fraction

integer = sign unsigned-integer

octal

1

sign unsigned-octal _
real = sign unsigned-real
number = integer|octal|real

Iunsigned-integer]unsigned-octalIunsigned-real

[FH]

token literal|character-datum|special-spelling

Imark-dperator|string|genid|boolean
|array-typer

| compound-var-neme | punctuator |sign
|dot-operator|octal|integer|real

|unsigned-octal unsigned-integer |unsigned-real

In the kernel language, all tokens are required to be separated by at least one
space. Speces may be eliminated between tokens according to the optional
transformation summarized in Table 4, In the table, an "X" indicates that the
space between a and B is required; no "X" means the space may be eliminated,

3. EXPRESSIONS

An expression designates a computational procedure, The result obtained from
carrying out the procedure is a valuation, and the process of carrying out the
procedure is called evaluation of the expression. A valuation has one of four
reference modes: NOVALUE, UNFIELDED, DIRECT, or INDIRECT, When the valuation

has reference mode NOVALUE, the expression is evaluated for its side effects
alone and does not produce & value, Valuations in the other three reference
modes consist of settings as follows:

Mode Setting
UNFIELDED value
DIRECT value ‘
INDIRECT ' P——'I

value

26 April 1967

1k

TM=3L17/200/00

Table 3, Table of Operators

Kernel language characters and their meaning as SL operators:

+

addition
subtraction
multiplication
real division
integer division
integer remainder
exponentiation
assignment
loc-assignment

cons

A

and

or

not

equal

unequal

less than

less than or equal
greater thén

greatef than or equai
synonym definition

character-datum

7 Y

Table 4. Optional Transformations for Elimination of Spaces Between a and 8

L96T TI4dy 92

ST

B8
o 1 2 3 L 5 6 T 8
string
1 genid
special-spelling
punctuator
2 character-datum
3 sign X X
4 mark-operator X
5 dot-operator | X X X X
integer
6 octal X X X X
real
literal
T compound-var-name X : X X X X
boolean '
unsigned-integer
8 unsigned-octal X X X
unsigned-real

An "X" indicates thet the space between o and 3 is required; no "X" means
the space may be elirminated,

00/00¢/ LTHE=KHL

26 April 1967 16 TM-3417/200/00

Here a box indicates a field and a pointer to a box indicates & locator of that
field, An UNFIELDED valuation consists of a value only. A DIRECT valuation
consists of a field containing a value, An INDIRECT valuation consists of a >

Xalu: in a field, a locator of that field, and a second field that contains the
ocator, .

Of the reference modes, NOVALUE is the least'restrictive and INDIRECT is the
most restrictive. When a valuation in one reference mode appears in a context
where a valuation in a different reference mode is required, then reference
mode conversion is possible if the desired reference mode is less restrictive
than the given one., In this case, the conversion is accomplished simply by
discarding the irrelevant parts of the valuation. Thus, in converting from
DIRECT to UNFIELDED, the field containing the value is disregarded, and only
the setting of the field is considered.

Every field has associated with it a coordinate, The coordinate is (in general)
machine-dependent, and consists of two integers: the length of the field in bits,
and the position within a computer word of the initial bit., Both DIRECT and
INDIRECT valuations have coordinates associated with them, at least implicitly;
the coordinate of & DIRECT or INDIRECT valuation describes the field that con-
tains the value. The coordinate of a field containing a locator is standard,

and therefore need not be specified.

3.1 CONSTANTS

3.1.1 Syntax of Constants

SL constant = autonym|'datum

IL constant = autonym|(QUOTE datum)

?i autonym = nonsymbol-element|character-datum|special-spelling

3.1.2 Semantics of Constants

A constant has the reference mode UNFIELDED and & value corresponding to the
datum that is part of the constant., "QUOTE" or "'" are used in order to
distinguish between data and programs. Autonyms are data which, because of
their syntax, can never be confused with parts of a program. '

/ ™

26 April 1967 17 TM=-3417/200/00

3.2 VARIABLES
3.2.1 Syntax of Variables
SL var-neme = untailed-var-neme|tailed-var-name
tailed-var-name = compound-var-name
untailed-var-name = first-name
T compound-var-name 3= first-name$section-name
IL var-neme = untailed-var-name|tailed-var-name
tailed-var-name 3 (first-name . section-name)
untailed-var-name = first-name
SL first-name = identifier
1L | section-name = identifier
3.2.2 Semantics of Varisbles

A variable is a collection of valuetions. These valuations are known as the
bindings of the variable. At any time, at most one binding of a variable is
said to be active, and this valuation is said to be the active binding of the
variable. When a variable is evaluated, its valuation is given by the currently
active binding., The contents of the value field of a DIRECT binding or the
contents of the locator field of an INDIRECT binding are known as the active
assignment of the variable, During the time that a binding is active, the
assignment of its variable may change, but the field in which the assignment

is to be found will not change.

There are two kinds of variables: lexical variables and section variables, A
lexical variable has a first-name associated with it; a section variable has a
first-name and a section-name associated with it. A lexical variable is always
designated by an untailed-var-name; & section variable may be designed either
by a tailed-var-name or an untailed-var-name, At any time, there exists a
section=list, which is a list of section-names, The first section-name on the
section-1list is the current section. Section variables are in one of three
categories: PUBLIC, STATIC, or OPTIONAL.

26 April 1967 TM=3417/200/00

18

Variables are described by variable declarations, which may appear either in
DECLARE statements made on the supervisor level or in block headings and
function definitions. Associated with every variable declaration in a block
heading or function definition is a lexical scope., The lexical scope of a
variable declaration in a block heading consists of the statements within the
block; the lexical scope of a variable declaration in a function definition
consists of the expression that defines the function. However, if the lexical
scope Includes a block or function that also declares a variasble using the
same var-neme as the outer declaration, then the lexical scope of the outer
declaration excludes the lexical scope of the inner one,

When an expression is in the form of a var-name, then the following rules,
applied sequentially at compile time, determine the variable to which it refers:

1. If the var-name lies within the lexical scope of a
variable declaration using that var-neme, then the
var-name refers to that variable,

2, If the var-name is tailed, then it refers to a section
variable in the section named by the section-nane,

3. If a section variable whose first-name is the same as
the var-name exists in any section on the section
list, then the var-name refers to the one of these
whose section appears first on the section list,

If none of these rules apply, then an error condition exists.

The active binding of a variable is determined et run time, A DECLARE state-
ment establishes an active binding for each variable that it declares, and
this binding never disappears thereafter, though it may be superseded tempor-
arily. Upon entering & block or function, active bindings are established for
each variable declared by the block or function, and the previous active
bindings of these variables become inactive. The nature of each of these new
bindings is determined by its variable declaration. Upon exit from & block or
function, the bindings created by it disappear.

A variable may have any of the four reference modes. However, the reference
mode UNFIELDED is always used for variables whose values are fixed function
definitions, and the reference mode NOVALUE is always used for macros, From
the restrictions on assignments, it then follows that assignments cannot be
made to variables denoting either fixed functions or macros. Turthermore,
variables denoting mecros cennot be evaluated.

/ 26 April 1967 19 ' TM=3417/200/00

3.3
3.3.1

SL

IL

SL
IL

SIMPLE EXPRESSIONS

Syntax of Simple Expressions

expression = simple-expressionIaasignment expression
| funarg|conditional-expression

assignment—expression z {var-name|form} {+|+} expression

simple-expression = disjunction

disjunction = conjunction {v conjunction},

conjunction = negation {a negation},

negation = relation|~ negation

relation = construct {relstor construct}'

relator = =|#|<|s|>|2 »

construct = sum {o sum},

sum = [+]-] term {{+[-} term},

term = factor {{*|/} factor},

factor = power|factor {\|+} power

power = primary [+ power]

primary = basic-expression|(expression)|block-expression

form = operator ({operand}))

operator = var-name

expression = basic-expression]conditional-expressionlblock-expression
’ lfunarg

form = (operator operand,)

operator 3 mark-operator | var-nane

operand = expression

funarg = function-definition

basic-expression = constant|var-name]|form

26 April 1967 20 . TM-3h17/2oo/oo ;>

3.3.2 Semantics of Simple Expressions

The syntactic hierarchy for nonconditional-expressions in SL specifies the
hierarchy of the various operators, and thus the implicit parenthesization.,

The parenthesization is explicit in IL, The semantics of SL expressions
employing operators are specified by giving the translation of these expressions
into IL and then giving the semantics of the corresponding forms in IL.

A disjunction

Cc v C v vV C
1 2 o0 n

in SL translates into
| | L
(v cl C2 te Cn)

1]
in IL where. c, is the_IL translation of c,, The translations of conjunctions
and constructs are analogous, A negation ~ n in SL translates into (~ n')
in IL, A relation N

see ¥ C

€1 T1 % T2 n Sn+l
in SL translates into .)
, /
o ' ' '
(RELATION € Ty Cy Ty eee T cn+l)

in IL, A sum in SL translates into a form whose operator is "+", A term t

preceded by "+" translates into t'; a term t preceded by "-" translates into
(- t'). The translation of a term is analogous, with "*" behaving like "+"
and "/" behaving like "-", The operators "»", "«" ":" "\"_ and "4" are all

binary, and the parse in SL determines their operands. The SL expression

? X b, Y?ere e and b are operands and x is a binary operator, translates into
xa b in IL.

The operator of a form must designate either a function, an array, or a macro.
If the operator designates a function, then the form is evaluated as follows:

1l. The operands of the form are evaluated, The order
of evaluation is not guaranteed,

2. A binding is created for each variable that is a
parameter of the function., The valuations obtained
in Step 1 are then assigned to the corresponding
variables. None of these assignments are performed
until all of the arguments are evaluated, If a
parameter is DIRECT, the rules for ordinary assign-
ment apply; if the parameter is INDIRECT the rules
for loc~assignment apply, | >

26 April 1967 21 TM-3417/200/00

3. The bindings created in Step 2 are activated and the
expregssion defining the function is evaluated., A
valuation is obtained unless the result-declaration
of the function is NOVALUE, After the evaluation is-
completed, the bindings created in Step 2 disappear,

L, If the valuation obtained in Step 3 is of the same
type, reference mode, and coordinate as was declared
for the function, then this valuation is the valua-
tion of the entire form., If the reference mode

~declared for the function is NOVALUE, then no valua-

- tion is obtained for the form. If the reference

. mode is UNFIELDED, then type conversion will be
performed if the type of the valuation obtained from
the expression does not agree with the type declared
for the function, If the reference mode is DIRECT
or INDIRECT, then the type and coordinate of the
valuation obtained from the expression must agree
with the type and coordinate declared for the function
or an error condition exists.,

If the operator designates an array, then the values of the successive
operands are its subscripts, The valuation of the form has reference mode
DIRECT and the type subspecified for the array., The valuation consists of
the field containing the designated element within the array. The subscripts
are evaluated in an unspecified order and converted to type INTEGER in order
to find the desired array element,

If tle operator designates a macro, then the macro specifies a transformation
to be applied to the form at compile time. The transformed form replaces the
original one. Macros always operate on the IL version of a form., In order to
determine the valuation of a form whose operator is a macro, the explanation

of that specific macro must be consulted., Although macros are variables, their
reference mode is NOVALUE and therefore they can only be used in the context of
form operators. Assignments cannot be made to them, nor can they be evaluated
by themselves or passed as functional arguments. /

Assignment expressions are used in order to transmit a valuation from one field
to another. They are also used implicitly in the transmission of arguments to
functions. The transmission occurs as a side effect of the evaluation of the
assignment expression; the valuation of either kind of assignment expression

is always the valuation of its second operand. There are two kinds of eassign-
ment expressions: ordinary assignment expressions and loc-assignment expressions.
The operator "+" designates ordinary assignment and the operator "+" designates

26 April 1967 22 T™M=-3L17/200/00

1.

2.

3.

Table 5. Semantics of Assignment Expressions
1 -

Dte

X a + a +« B o+ B a -+
refer- ¢ 2 - - - B
ence mode

NOVALUE X X X X
UNFIELDED 1 X 3 X
DIRECT 1 2 Y X
INDIRECT 1 2 5 6

X = not permitted

Obtain the value of B. Convert it to type e if such conversion
is permissible; illegal otherwise. Valuation is UNFIELDED.

Place value obtained from 8 in the value field of a.

Valuation is a locator of a newly obtained field with standard
coordinate whose setting is the value of 8,

a and B must have the same type and the same coordinate., The
valuation 8 is a locator of the field containing the value of 8.

a and B must have the same type and the same coordinate. The
valuation is the locator that locates the field containing the
value of B,

Replace the locator part of a by the valuation of 8, which is
also & locator, i.e., put the contents of the locator field
of B into the locator field of a.

26 April 1967 23 TM-3417/200/00

loc-assignment. An ordinary assignment expression transmits a value only; a
loc-assignment expression transmits a locator of a field containing a value,
The most useful and common case of loc-~assignment is the transmission of a
binding of a variable, If A and B are variables, evaluation of the loc-
sssignment expression A -+ B causes the active binding of B to be transmitted
to A (which must have reference mode INDIRECT), Thereafter, any change to the
value of B will cause the same change to be made to the value of A, and
conversely. '

The semantics of assignment expressions are given in greater detail in Table 5,
In order to determine the effect of an assigiment expression, the reference
modes of 1its operands must be known. First,:the table is used to determine

the valuation obtained from the second operand, This is done by looking in the
column corresponding to the second operand of the appropriate kind of assign-
ment expression and the row corresponding to the reference mode of that operand,
Then the column corresponding to the first operand of the assignment expression
and the row corresponding to the reference mode of this operand is used to
determine what is done with the valuation obtained from the second operand.

When a value is copied from one field to another, the new value is identical

to the old one, Consequently, both values have the same substrate, A change
to the substrate of a value changes the substrate of all identical values in
the same way. Thus, for instance, if a nonuniquely constructed array is trans-
mitted through assignment from one variable to another, changes to the elements
of the array via one of these variables will change the datum represented by
the value of the other variable, Furthermore, if a constant is assigned to a
variable, then the value of that variasble is invariant and any attempt to
modify its associated data structure is an error,

The form (A p, P, +.+ p_) has value FALSE if any p, has value FALSE,and TRUE
otherwise. T%e gxpress?on is evaluated from left %o right only far enough
to determine its value, i,e., if any p, is false, the remaining p, for § > i
are not evaluated. (A) has value TRUE. J

The form (v Py Py oo pn) has value TRUE if any p; has value TRUE, and FALSE
otherwise. The expression is evaluated from left to right only far enough to

determine its value, i.e., if any Py is TRUE, then the remaining pj for 3§ > 1
are not evaluated., (V) has value pALSE.
A form (CASE s e, e_ ... e_) is evaluated by evaluating s to obtain an

integer x. If this integer is in the range 1 s x s n, then the value of the
entire CASE expression is eyd otherwise the value is e '

26 April 1967 ol TM-3417/200/00) -

A form whose operator is RELATION causes a sequence of tests to be performed
to yield a BOOLEAN value. The tests are performed from left to right as
specified by the relatlons; if all the tests are satisfied the result is TRUE,
and otherwise the result is FALSE, The evaluation proceeds only far enough

to determine the value of the RELATION expression, It is guaranteed that none
of the quantities in the relation are evaluated more than once.

The arithmetic operations "+" and "#" are cerried out by means of macros, The
type of the value obtained from the operation is determined by the following
rules, applied sequentially:

1. If all of the operands are of type INTEGER or BITS,
then the result is of type INTEGER.,

2. If none of the operands are of type GENERAL, then
the result is of type REAL,

3. If none of the operands are of type REAL or homomorphs
in GENERAL of type REAL, the result is of type GENERAL
and is a homomorph of & value of type INTEGER.,

4, Otherwise, the result is of type GENERAL and is a
homomorph of & value of type REAL,

N

The operator "-" expects a single argument., If the argument is BITS or

INTEGER the result is INTEGER, otherwise REAL., The operator "/" expects a
single argument of type REAL, and forms its reciprocal, also of type REAL,
The operators "+" and "\" have arguments and value of type INTEGER,

3.k CONDITIONAL EXPRESSIONS
3.kl Syntax of Conditional Expressions
SL conditional-expression = {IF predicate THEN consequent ELSE}*+1

{terminal-expression|/\}
@ ELSE/\ (EISE} ~» empty {ELSE)
7 ELSE /\ ELSE —> ELSE ELSE

OT \ ELSE IF ¢ conditional-expression = Il

26 February 1967 25 TM-3417/200/00

IL conditional-expression = (IF {predicate consequent}*
{terminal-expression])
SL predicate = expression
consequent = expression
terminal-expression = expression
3.b4,2 Semantics of Conditional Expressions

The symbol "A" is used in the SL kernel language for conditional-expressions
in order to force explicit indication of the grouping of the parts of nested
conditional-expressions. In translating to IL, a "A" at the end of a
conditional-expression indicates that the terminal-expression is omitted,

In evaluating a conditional-expression, the predicates are evaluated in turn
and the resulting values are converted to BOOLEAN, As soon as one of the
evaluations results in TRUE, the corresponding consequent is evaluated, and
its valuation becomes the valuation of the entire conditional~expression.
Neither the predicates following the first true predicate nor the consequents
other than the one corresponding to the first true predicate are evaluated,
If none of the predicates are true, then the valuation of the conditional-
expression is the valuation of its terminal-expression, if there is one, If
none of the predicates are true and there is no terminal-expression, then an
error condition exists.

If all of the consequents and the terminal-expression of a conditional-
expression have the same type, then the type of the valuation of the
conditional-expression is that type. Otherwise the type of the valuation of
the conditional-expression is GENERAL, and type conversion is performed when
the conditional-expression is evaluated. The reference mode is the most
regtrictive of the reference modes of the various consequents and the

terminal-expression,

26 April 1967 o6 TM=3417/200/00

FUNCTION DEFINITIONS

3.5
3.5.1 Syntex of Function Definitions
SL function~definition = FUNCTION parameter-list [result-declaratior]
{; perameter-declaration},: body
parameter-list = ({parameter}} [, indef-parameter])
(, indef-parameter) => (indef-parameter)
parameter-declaration = {para.meter};+ { [variable-reference-mode] | |
[parameter-storage-mode]
[type-declaration]||[coordinate]}
indef-parameter = var-name (indef-neme) '
type-declaration = type|LIKE var-name

result-declaration = {[variable-reference-mode]||
e-declaration]||[coordinate]}
yTNOVALUE]{UNFIELDED|| type-declaration]}

(FUNCTION [result-declaration]

IL function-definition =
parameter-declaration-list body)
result-declaration = ([reference-mode] type-declaratlon]
[coordinate])|NOVALUE](UNFIELDED
[type-declaration])
type-declaration = type|(LIKE var-name)
(type) c result-declaration == type

(single~parameter-declaration,
[indef-parameter-declaration])
1Y

parameter-declaration-list

: parameter|(parameter
parameter-storage-mode]

single~parameter-declaration
(type-declaration]
[variable-reference-mode] [coordinate])

indef-paremeter-declaration = (indef-name [type-declaration]
[variable-reference-mode] INDEF parameter)

)

(\ 26 April 1967 27 T™=3417/200/00

SL parameter I var-name
IL

indef-name = untailed-var-name

parameter-storage-mode = LEXICAL |PUBLIC

body = - expression

3.5.2 Semantics of Function Definitions

A function-definition is an expression whose value is a function. The function
does not have a name associated with it unless the function-definition appears
as part of a named-function-definition in a DECLARE statement on the top level,
Because of the behavior of free variables in a function-definition, evaluation
of & function-definition at different times may yield effectively different
functions.

At run time, a function-definition is subject to two processes: evaluation and
application. These two processes occur at different times and in different
contexts, A function-definition may be evaluated once and applied many times;
application occurs whenever a FUNCTIONAL variable whose value is the function
appears as the operator of a form which is being evaluated,

(The variables named within & function-definition can be divided into three
groups:

l. Variebles that are used as parameters of the function or are
declared in a block within the function-definition (bound variables).

2. Variables that are not parameters of the function
but are lexically bound from outside the function-
definition (funarg-variables), A variable in this
group 1s declared in a block or function-definition
that contains the function-definition in question,

3. Variables that do not lie within the lexical scope
of any declaration (free variables).

A function-definition on the top level does not have any outer lexical context
and hence can only have bound variables and free variables,

At the time of evaluation of a function-definition, the valuation of each of

its funarg-variables is obtained and saved, During the application of the
function, new bindings are created for the funarg-variables, nnd the preserved
valuations are assigned to these bindings., These bindings are created after

the arguments of the function are evaluated, but before the body of the function
is evaluated; they disappear after the evaluation of the body of the function,
The bound variables of the function receive the valuations obtained from the

26»April 1967 28 TM~3417/200/00

arguments, and the free variables of the function obtaln the valuations given
by their currently active bindings.,

An unnamed function prints out as "[FUNCTION]"; this form does not correspond
to any datum, and hence cannot be read back in,

The parameter~declarations of a function-definition are treated like the block-
variable-declarations for a block, except that the parameters of a function do
not have presets. Both the rules for defaulting of attributes and the rules
for d:termining the variable designdted by a given var-name are the same, The
resuli~declaration determines the type, reference mode, and coordinate of the
valuation returned by the function; since these attributes describe a valuation
rather than s variable, no storage mode is required.: '

If the parameter-list for a functlon-definition contains an indef-parameter,
then the function expects an indefinite number of arguments, In matching
arguments against parameters when the function is applied, the ordinary para-
meters, if any, are matched first. The remaining parameters constitute the
indef-argument, which is a list of valuations. The length of this list is
assigned to the indef-name upon entrance to the functionj the indef-name is
implicitly assumed to be a LEXICAL INTEGER DIRECT variable with standard
coordinate, The list of valuations is formed into a one-dimensional array, and
this array is then assigned to the var-name of the indef-parameter, Within the
body of the function-definition, then, the indef-arguments of the function are
treated as elements of this array, and the indef-name gives the length of this
array.

3.6 BLOCK EXPRESSIONS
3.6.1 Syntax of Block Expressions

SL -

e block-expression = begin-block|do-block
3.6.2 Semantics of Block Expressions

The valuation of a block-expression is obtained by executing the block-
expression according to the rules for block execution until an implicit or
explicit return-statement belonging to the block-expression is encountered,

The valuation associated with this return-statement then determines the valua-
tion of the entire block-expression. If there is more than one return-statement
belonging to a given blockeexpression, then the type of the veluation of the
block-expression is the same as the type of the valuations of the return-
statements if they are all the same, and GENERAL otherwise. The reference mode

D

26 April 1967 29 TM~3417/200/00

of the valuation is the most restrictive of the reference modes of the valua-
tions of the return-statements. If the valuations of the return-gstatements

differ in coordinate, however, the valuation of the block-expression will have
reference mode UNFIELDED,

The labels belonging to a block-expression are not visible outside the block-
expression,

b BLOCKS
L1 SYNTAX OF BLOCKS
SL block = begin-block|do-block

do-block = DO {statement ;}, END

begin-block = BEGIN {block-variable-declaration}i
{statement ;}, END

.o

block-variable-declaration = block-variable-preset |
block-~variable-sttribution

block-variable-preset = {block-variable [{+|+} preset]};+l

block-variable-attribution = {blOCR-variable};+l attribute*+l

attribute = variable-reference-modelparameter-storage«mode|
type-declarationlcoordinate

label, [unlabeled-statement]

; END c block =3.END

identifier :

1

statement -

it

label

26 April 1967 30 TM=-3417/200/00

IL block = begin-block|do-block

begin-block = (BEGIN (block-variable-list) statement,)
do-block = (DO statement,)|(BEGIN nil statement,)

block-variable-list = {(block-variable [type-declaration]
[parameter-storage-mode] [variable-reference-mode]
[coordinate] [preset])}*+l

(block-variable) c block-variable-list =3 block-variable

statement = label, statement-unit|label

statement-unit = (LABEL label statement-unit)|unlabeled-statement

label = identifier

L block-variable = var-name

preset = expression

ccompound-statement)
block-statement
go-statement
conditional-statement
case-statement
unlabeled-statement E< casego-statement g
return-statement
for-statement
code-statement

try-statement

Lexpression J
compound-statement = do-block|(compound-statement)

block-statement = begin-block|(block-statement)

|
\
_//

26 April 1967 31 TM=3L417/200/00

4.2 SEMANTICS OF BLOCKS

A block may appear in either a statement context or an expression context. A
block is evaluated in the same way, independent of the context in which it
appears; however, a block appearing in expression context produces a valuation,
while a block .appearing in statement context does not,

The eveluation of & block proceeds in the following manner:

1. A binding is created for each block-variable, and an initial
valuation is assigned to this binding. The initial valuation
is determined by evaluating the preset, if it is given; otherwise
it is determined by default, None of these assignments are
performed until all of the presets have been evaluated; if any
of the block-variables appear as part of one of the presets, the
previously active binding of such a block-variable is used. If
a block-variable is DIRECT, then the rules for ordinary assign-
ment are used. (In the context of a block-variable-preset, no
distinction is made between "-+" and "+«"; the method of assign-
ment is determined strictly from the reference-mode of the block-
variable,)

2. The statements in the block are executed until g termination
occurs, Termination will result from execution of a GO state-
ment whose label lies outside the block; from evaluation of an
EXIT expression; from execution of a RETURN statement; or from
execution of the last statement of the block without a transfer
of control. (There is always an implicit "RETURN NIL" statement
at the end of a block,) The statements of the block are executed
gsequentially unless a transfer of control or a block termination
occurs. When control is transferred to a label, the statement
execution sequence continues with the statement following that
label .

3. After termination, the bindings created upon block entrance disappear,

The declarations for a block-varisble specify, either implicitly or explicitly,
four attributes and a preset, The four attributes are: reference mode, storage
mode, type, and coordinate, TFor a block specified in SL, the block-veriables
are determined by collecting them from the block-variable-declerations. A
block-variable may appear in any number of block-variable-declarations, and the
attributes of a block-variable are collected from all declarations in which it
appears, If any of the attributes are contradictory, an error condition exists,
For & block specified in IL, each block-variable is given just once in the
block-variable-list, and its attributes and initiml valuation appear along with
it, In either case, omitted attributes and presets are determined by default.

26 April 1967 32 TM=3417/200/00

If the reference mode of a block-variable is not given, it is defaulted to
DIRECT., If the storage mode is not given, it defaults to PUBLIC if the blocke
variable is represented either by a tailed-var-name or by an untailed-var-name
whose first name is the same as that of a section-variable of the current
section, Otherwise the storage-mode defaults to LEXICAL, If preset is given
explicitly, then the default type is the type of the preset; otherwise, the
default type of the current section is used. The default coordinate is the
standard one for the type of the block-variable.

If a block-variable is tailed, then it designates a section variable of the
section named by the section-name; otherwise, the variable that it designates
depends upon the storage-mode of the block-variable, If the storage-mode is
PUBLIC (either explicitly or by default), then the block-varisble designates a
section variable of the current section whose first-name is the seme as the
var-name; otherwise, the block-variable designates a lexical variaeble.

If the type of a block-variable is determined by LIKE, then the associated
var-name must either be & tailed-var-name or must agree with a PUBLIC or
STATIC section-variable in the current section. In this case, the type of the
block-variable is taken to be the same as that of the section variable named
by the var-name, '

The type, reference mode, and coordinate of a block-variable which is a section
variable must be the same as those specified in the top-level declaration of
the section varisble,

If a preset 1s not explicitly given for a block-variable, then it is determined
by default from the type of the block-variable., The standard default presets
are as follows:

Type Preset
GENERAL nil
INTEGER 0
BITS oQ
REAL , 0.0
BOOLEAN FALSE
Any functional-type error trap
Any n-tuple type n-tuple with deféult component
‘ values
Dimensional, typed array , array as_specified, with elements
defaulted according to type of
array
Dimensional arrsy GENERAL ARRAY with nil elements

Other nil

N

26 April 1967 33 TM=3417/200/00

Every block has a set of labels (possibly empty) that belong to that block.
The labels that belong to the block consist of those labels that are directly
attached to the statements of the block, plus those labels. that belong to any
conditional-statement or compound-statement of the block, There must be no
duplications among the labels that belong to a block., The labels that belong
to a block-expression or a block-statement within an outer block do not belong
to the outer block.

In parsing the statements of a block, the possible parses are considered in the
order in which they appear in the syntax equation for unlabeled-statement., It
therefore follows that a statement will be considered as an expression if and
only if it cannot be considered as any other kind of statement. When an
expression is encountered in a context where a statement is expected, the
expression is evaluated and the valuation is discarded, An expression appearing
in statement context mey have the reference mode NOVALUE,

4.3 COMPOUND-STATEMENTS AND BLOCK~-STATEMENTS

When & block appears in a statement context, it is either a compound-statement
or & block-statement, and never a block-expression. A block enclosed in
parentheses is treated exactly as though the parentheses were removed,

A block-statement declares at least one block-variable, while a compound-
statement doeg not declare any block-variables., The labels within a compound-
statenent are visible from outside the compound-statement, while the labels
within a block-statement are not visible from outside the block-statement,

Hence the labels that belong to a compound-statement are not allowed to duplicate
the labels that belong to the block containing the compound-statement, but the
labels that belong to a block-statement are allowed to duplicate the labels

that belong to the block containing it.

L4 GO STATEMENTS

boh1 Syntax of GO Statements
SL | go-statement = GO label
IL go-statement = (GO label)

I

26 April 1967 34 TM=3417/200/00

hoy,2 Semantics of GO Statements

A go-statement causes a transfer of control to its label., The label is found
by the following algorithm:

1. Let the scope of the go-statement be the innermost
block-statement or block-expression that contains
the go-statement,

2. If the label belongs to the scope, then the gO=
statement transfers control to that label.

3. If the scope is a block-expression or there is no
block surrounding the scope, then the label is
undefined and an error condition exists,

L, Let the new scope be the innermost block-statement
or block-expression that surrounds the old scope, and
‘return to Step 2,

4,5 RETURN STATEMENTS

h.5.1 Syntax of Return Statements

-mSL retﬁrn—statement.z RETURN expression
IL return-statement : (RETURN expression)
4,5.2 Semantics of Return Statements

A return-statement causes termination of the innermost block-expression
containing it, and thus also causes termination of all block-statements and
compound-statements that contain the return-statement and are contained within
this block-expression. As each of these blocks is terminated, the bindings of
'its block-varisbles disappear. A return-statement produces a valuation obtained
by evaluating the expression that is part of the return-ststement., If it is
desired to terminate a block-statement or compound-statement without terminating
the block or blocks that surround it, then an explicit transfer of control to
the end of the block-statement or compound-statement should be used,

_/

e

26 April 1967 35 TM=3417/200/00

4.6 CONDITIONAL STATEMENTS

4,6,1 Syntax of Conditional Statements

SL conditional-statement = {IF predicate THEN statement-consequent
ELSE}*+1 [t2rminal-statement| A]

RT) FLSE /\ {ELSE}== { ELSE}

ELSE IF c conditional-statement =3 IF

statement-consequent = statement
terminal-statement = statement
IL conditional-statement = (IF {predicate statement-consequent}*

[terminal-statement])

statement-consequent = statement-unit
terminal-statement = statement-unit
4,6,2 Semantics of Conditional Statements

In translating an SL conditional-statement to IL, & "/\" at the end of the
conditional-statement indicates that the terminal-statement is to be omitted.
In order to evaluate a conditional-statement, the successive predicates are
evaluated in turn, and the resulting values are converted to BOOLEAN, As soon
as one of the evaluations results in TRUE, the corresponding statement-
conseguent is executed. Unless this execution causes a transfer of control,
control then passes to the next statement in the block. If none of the
predicates evaluate to TRUE, then the terminal-statement is executed, If there
is no terminal-statement or the terminal-statement is "/\", then no action is
taken and control passes to the next statement in the block,

It is permissible to transfer control to a label within a conditional-statement;
the effect is the seme as if control had reached the label through normal
execution of the conditional-statement, The labels thut belong to a conditional-
statement are the labels that belong to its statement-consequents and to its
terminal-statement., The labels that belong to a conditlonal-gtatement alno
belong to the block that contains the conditional-statement,

26 April 1967 36 TM-3417/200/00

b7 FOR STATEMENTS
L.7.1 Syntax of FOR Statements
SL ‘ reset-clause ;
for-statement = FOR éﬁ:gi:ﬁ:: j {:ﬁii:i;iiﬁ:ge ;* : iterand
step-clause *
unless~clause z UNLESS expression
whilewclause = WHILE expression
reset-clause = variable [« initializer] RESET expression
loop-clause = variable LOOP expression
in-clause = variable IN expression
on-clause = variable ON expression
step-clause = variable [« arithmetic-initializer] STEP
: arithmetic-expression [UNTIL relator
arithmetic-expression]
IL ¢ reget-clause
ror-stavement = (o () Sl | lmemmoseel
step-clause . *
unless-clause = (UNLESS expression)
while-clause = (WHILE expression)
reset-clause = (RESET variable initializer expression)
in-clause z (IN variable expression)
on-clause = (ON variable expression)
step-clause = (STEP variable arithmetic-initializer

arithmetic-expression [relator arithmetic-
expression])

loop-clause = (LOOP variable expression)

26 April 1967 37 TM-3417/200/00

SL jterand = unlabeled-statement
IL

variable = var-name
4,7.2 Semantics of FOR Statements

Each kind of clause has four attributes associated with it: a set of temporary
variables, a set of initializations, a test, and a modification, The variables
that are initialized may or may not be temporary, Any of the attributes may be
null, A for-statement generates the following block:
BEGIN initializations
labl: tests
iterand
lab3: modifications
GO labl
~lab2: END

A for-statement with no clauses is equivalent to the iterand by itself, The
iteraad is implicitly surrounded by a begin-block, so that labels within the

" iterand are not visible outside of the for-statement. The labels labl and lab2

are genids.
The attributes of the various for-clauses are as follows:

l. Reset-clause

Temporary variables: None

Initialization: Set variebles to initializer, if
there is one; otherwise none

Test: None

Modification: Set variables to expression

26 April 1967

3.

D

In-clause
Temporary variebles:

Initialization:

Test:

Modification:

On-clause

Temporary variables:
Initialization:
Test:

Modification:

Steg-clause

Temporary variables:

Initialization:

Test:

Modification:

While-clause

Temporary variables:

Initialization:

Test:

Modification:

38

TM=3417/200/00

List iterator, called gl

Set gl to the expression; set
variable to cer(gl) if defined,
NIL otherwise

If null(gl) then go to lab?

Set gl to cdr(gl); set variable
to car(gl) if gl not NIL

None
Set variable to expression
If null(variable) then go to lab2

Set variable to cdr(variable)

Increment gl and terminator g2

Set gl to first expression; set

g2 to second expression if it exists;
set variable to initializer if it
exists

If there is a relator part, and if
(variable relator g2) is satisfied,
then go to lab?2

Set variable to variable + gl

None
None

If boolean value of expression is
FALSE, then go to lab2

None

)

N

//\\
N

26 April 1967

6.

39 ' TM-3L17/200/00
Unless-clause
Temporary variables: None
Initiaiization: . None
Test: If boolean value of expression is

TRUE, then go to lab3

Modification: None

An example of a for-statement and the equivalent block it generates are given

below:

FOR X IN L1y Y IN L2; I « 1 STEP 1 >

LENGTH (X) UNLESS ~ NUMBERP(X) v

A NUMBERP(Y): SUM <« I¥*X*Y + SUM

BEGIN Gl « L1, G2 + L2, G3 « LENGTH(X); Gl, G2 GENERAL; G3 INTEGER ;

Ll:

L2:

. -\

X « IF NULL (Gl) THEN NIL ELSE CAR(G1);
Y « IF NULL (G2) THEN NIL ELSE CAR(G2);
I+« 1

IF NULL (Gl) THEN GO L2;

IF NULL (G2) THEN GO L2;

IF I > G3 THEN GO L2;

IF ~ NUMBERP(X)V ~ NUMBERP(Y) THEN GO L3;
SUM + I*X*Y + SUM;

Gl + CDR(G1);

IF ~ NULL (Gl) THEN X < CAR(Gl);-

G2 « CDR(G2);

IF ~ NULL (G2) THEN Y « CAR(G2)

I «I+ 15

GO L1;

END

26 April 1967 Lo TM-3417/200/00

4.8

4,8,1

SL

IL

IL

4,8,2

CASE AND CASEGO STATEMENTS

Syntax of CASE and CASEGO Statements

case-statement = CASE (subscript, {statement};+l)
casego-statement = CASEGO (subscfipt, {label};+1)
case-statement = (CASE subscript statement,)
casego-statement = (CASEGO subscript label*+l)
subscript = expression

Semantics of CASE and CASEGC Statements

A case-statement is executed by first evaluating the subscript and converting
the result to INTEGER to obtain an integer x. If x is in the range 1 < x < n,
where n is the number of statements following the subscript, then the xth
statement is executed., Otherwise the last statement is executed. Labels
within a statement of a case-statement are not accessible from outside the
case-statement nor from within the other statements of the case-statement.

A casego-statement is exactly equivalent to the case-statement where each
label in the casego-statement is replaced by GO x in SL or (GO x) in IL.

4,9
4h.9.1

SL

iL

h,9,2

TRY STATEMENTS

Syntax of TRY Statements

i

try-statement TRY var-name; statement; statement

(TRY var-name statement statement)

[H

try-statement

Semantics of TRY Statements

The semantics of a try-stateﬁent depends upon the semantics of the operator

EXIT,

EXIT acts like a function of one argument; its veluation is simply the

valuation of its argument converted to GENERAL UNFIELDED,

N

N

26 April 1967 b1 ™=3417/200/00

Execution of a try-statement begins with execution of its first statement.

If no EXIT expression is encountered during the execution, control passes to

the statement following the try-statement. Otherwise the variable designated
by the var-name is set to the valuation of the EXIT expression (using ordinary
assignment) and the second statement within the try-statement is executed,
Control then passes to the statement following the try-statement, lLabels

within the try-statement are not accessible outside of the try-statement,

b,10 CODE STATEMENTS

4,10.1 Syntax of CODE Otatements
SL | code-statement : CODE (itemy)
IL code-statement = (CODE item,)

I

4,10,2 Semantics of CODE Statements

The successive items correspond to successive labels and instructions in a LAP
program, The syntax of item is defined in the LAF specification document.,

The effect of a code-statement is to cause execution of the LAP code that it
represents,

5.0 DECLARE STATEMENTS ON THE TOP LEVEL

5.1 SYNTAX OF DECLARE STATEMENTS

SLs declare-statement = DECLARE’ &op-level—declaration;}*;

top~level-declaration = section-variable-declaration
| named-function-definition
|n-tuple-definition|synonym-definition

section-variable-declaration = section-variable-preset ‘
| section-variable-attribution

section-variable-preset = {section-variable [{«|+} preset]}’
*4]

section-variable-attribution = {section-variable};+l section-attribute*+i

section-attribute : variable-reference-mode|section-storage-mode
|type-declaration|coordinate

26 April 1ou7 ho TM=-3417/200/00
named-function-definition = section-variable function-definition
synonym-definition = section-varisble <+ expression

IL

n-tuple-definition = n-tuple-type NTUPLE ({coordinate-spec}? .)

*+l
coordinate~spec = type [coordinate]
declare-statement = (DECLARI top-level-declaration,)
top-level=declaration % named~function-definition

| section-variable-declaration
[n-tuple-definition
| synonym-definition

section~-variable~declaration = section-variable
| (section-variable [type-declaration)
[section-storage-mode]
[variable-reference-mode]
[coordinate] [preset])

(section-variable) —> section-variable

named~function-definition = (section-variasble FUNDEF
function-definition)

ti

synonym-definition (section-variable > expression)
n-tuple-definition : (n-tuple-type NTUPLE (coordinute—spec*+l))

coordinate-spec = (type [coordinate])

section-yariable Z var-name

section-storage-mode = STATIC|OPTIONAL|PUBLIC

B

26 April 1967 L3 ’ TM-3417/200/00

5.2 SEMANTICS OF DECLARE STATEMENTS

A top-level declaration is used to create a section-variable or modify the
attributes of an existing section-variable., If a section-varinble 1s in the
form of an untailed-var-name, it creates or modifies & section-variable in the
current section; otherwise it creates or modifies & section-variable in the
section named by the section-name. Once a section-variable has been declared,
only its assignment may be changed, unless there are not yet any references to
that variasble from assembled code or synonyms.

The top-level-~declarations in a single DECLARE statement are assumed to be
performed simultaneously, Just like the initialization of block-variables. The
meaning of section-variable-presets and section-variable-attributions is like
that of block-variable-presets and block-variable-attributions, with the follow-
ing exceptions:

1. There are two additional storage modes: STATIC and OPTIONAL.
A STATIC variable cannot be declared PUBLIC in any block or
function-definition, but it may be used as a free variable
of a block or function-definition,

When a section-variable is declared OPTTONAL, then a declara-
tion of a block-variable or function-definition with the same
first-name and no section-name will refer to the section-
variable if it is explicitly declared PUBLIC at the point of
declaration, and to a LEXICAL variable otherwise,

2. If a section-variable-preset refers to a section-variable
established by a prior DECLARE statement, then the type of the
preset does not affect the type of the section-variable, and
any necessary type-conversions are performed,

A named=-function-definition establishes a section-variable whose reference .
mode is UNFIELDED, whose type is the same as the type of the function defined
by the function-definition, and whose valuation is the function defined by the
function-definition. If this valuation is printed out, the name of the
section-variable will appear, and the resulting datum can be read back in,

The valuation of such & section-variable can only be modified by a subsequent
named-function-definition, A named-function-definition, being on the top
level, cannot have any funarg variables,

A synonym-declaration causes the expression on the right to bhe subgtituted for
the section-variable on the left whenever that section-variable is referred to
in a compiled expression or function-definition,

26 April 1967 Ly TM-3417/200/00)

An n-tuple-definition esteblishes a new kind of n-tuple whose successive
fields are described by the coordinate-specs of the n-tuple-definition. Ior
each field, the type and coordinate of the value to be placed there are
specified., N-tuples cannot contain locators in their fields, so no reference
mode need be given.

N

20 April 1067 45 ™=3417/200/00

Index to Syntax Equations

SL

Equation . Page Equation Page
array-type 6 named-function-definition 4o
assignment-expression 19 negation 19
attribute ' 29 n-tuple~definition Lo
begin-block 29 on-clause 36
block 29 operator 19

block~variable-attribution 29
block-variable-declaration 29 parameter-declaration 26
block-variable-preset 29 parameter-descriptor 6
parameter-list 26
case-statement Lo power 19
casego-statement Lo predicate 25
code-statement . L1 primary 19

conditional-expression. 24
conditional=-statement 35 relation 19
conjunction 19 relator 19
consequent 25 ‘reset-clause 36
constant 16 result-declaration 26
construct 19 result-descriptor 6
coordinate 6 return-statement 34

coord‘nate-spec ko
X} section-attribute L1
declare-statement 41 section-variable-attribution b1
disjunction 19 section-variable-declaration b1
do=block 29 section-variable-preset L1
simple-expression 19
expression 19 statement 29
statement-consequent 35
factor 19 step~-clause 36
for-statement 36 sum 19
form 19 synonym-declaration Lo

functional-type 6 -

function-definition 26 - tailed-var-name 17
) term) 19
go-statement 33 terminal-éxprension 25
terminal-sntatement 35
in-clause 36 top-level-declaration W
indef-parameter 26 try-statement ho
indef-parameter-descriptor 6 type~declaration 6
label 29 unless-clause 36
loop-clause 36 untailed-var-name 17
var-name 17
while-clause 36

26 April 1967 46 T™-3417/200/00 _;)

Index to Syntax Equations (Cont,)

SL
IL
Iiquation A Page) Lguation Page
array 8 = type 5
array~element 8 : ,
autonym 16 unlabeled-statement 30
basic-expression 19 variable : 37
block-expression 28 variable-reference-mode 6
block~statement 30
block-variable 30
body 27
compound-statement 30
datum T
dimensionality 8
first-name 17 .
funarg 19 : : /)
function-specifier 8 -
indef-name 27
iterand 37
nil T
node T
nonsymbol-element T
n-tuple 8
n-tuple-name 8
n-tuple-type] 6
operand , 19
rarameter 27 .
parameter-storage-mode 27 ;
preset 30 :
section-name 17
section-storage-mode Lo
section-variable L2
simple-type ' 5
subscript Lo
symbol T

26 April 1967 W7 TM=-3417/200/00

Index to Syntax Equations (Cont.)

IL
*
Equation Page FEquation Page
array-type 6 named-function-definition L2
‘ n-tuple-definition 4o
begin-block 30
block 30 on-clause 36
block-variable-list 30 operator 19
case~-statement Lo parameter-declaration-list 26
casego-statement ‘Lo parameter-descriptor 6
code-statement k1
conditional-expression 25 reset-clause 36
conditional-statement 35 result-declaration 26
constant 16 result-descriptor 6
coordinate 6 return-statement 34
coordinate-spec L2
' sestion~variable-declaration Lo
declare~statement Lo single-parameter-declaration 26
do=block - 30 statement 30
statement-consequent 35
expression) 19 statement-unit 30
step-clause 36
for-statement 36 synonym-definition L2
form 19
functional-type 6 tailed-var-name 17
function-definition 26 terminal-statement 35
top-level-declaration Lo
go-statement 33 try-statement Lo
type-declaration 26
in-clause 36
indef-parameter-declaration 26 unless-clause 36
indef-parameter-descriptor 6 untailed-var-name 17
label 30 var-name 17
loop-clause 36

while-clause 36

26 April 1967

Eguation

array-typer
boolean

character-datum
compound-var-name

decimal
dot-operator

exponent
fraction
genid

identifier
integer

literal

mayk-operator

non-string-delimiter

number
octal
punctuator

~eal

L8

(Last page)

Index to Syntax Equations (Cont,)

12
12

12

12

12
13

12
12

12
13

13
12

13

Egyation

sign
special-spelling
string

token
unsigned-integer

unsigned-~-octal
unsigned-real

TM-3417/200/00

