
(
~

The views, conclusions, or recommendations expressed in this document do II!JI neces­
sarily reflect the official views or policies of aaencies of the United States Government.
Th~ research reported in this paper was sponsored

by the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the '
Electronic Systems Division, Air Force System!5 Command
under contract F1962867coo04, Information Prc~essing
Techniques, with the System Development Corporation.

System Development Corporation / 2500 Colorado Av.nu./ Santa Monlea, California I04OI
Information International Inc./11161 Plco Boulevard / Los Anp'lS, California 90014

LISP 2 Language Specifications

ABSTRACT

lr~c 3417/200/00

A~~.D aa Fi ~JI Fl.~
c?'~1 s

IElEASE v a l_"...,ll{,.V",--

~
for J. I. Schwartz

DATE 'AlE 1 Of .J!lL.'.IES
4/26/67

(Page 2 is blank)

This document describes the proposed syntax and semantics
for the LISP 2 Source Language (SL) and Intermediate
Language (IL) to be implemented on the IBM 8/360 computer.
The syntax of tokens is also included.

J

- -------- ----- ------------------

(
\

26 April 1967

Section 1.

2.
2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5

3.
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2

4.
4.1
4.2
4.3
4.4
4.4.1
4.l~.2
4.5
4.5.1
4.5.2

3

TABLE OF CONTENTS

Introduction

Types, Data, and Tokens
Terminology
Type Information
Syntax of Types
Data Types
Data Syntax
Type Conversion
Tokens and their Syntax

Expressions
Constants
Syntax of Constants
Semantics of Constants
Variables
Syntax of Variables
Semantics of Variables
Simple Expressions

•

Syntax of Simple Expressions
Semantics of Simple Expressions
Conditional Expressions

..

Syntax of Conditional Expressions
Semantics of Conditional Expressions
Function Definitions
Syntax of Function Definitions
Semantics of Function Definitions
Block Expressions
Syntax of Block Expressions
Semantics of Block Expressions

Blocks ..

..

Syntax of Blocks
Semantics of Blocks
Compound-Statements
GO Statements

and Block Statements

Syntax of GO Btatements
Semantics of GO statements
Return Statements
Syntax of Return Statements
Semantics of Return statements

..

•

TM-3417/200/00

5
5
5
5
6
7
8

12

13
16
16
16
17
17
17
19
19
20
24
24
24
26
26
27
28
28
28

29
29
31
33
33
33
311

34
34
34

Fig. 1 Lattice of Types 11

Table 1 Data Types • 7
Table 2 Conversion of Type Cl to Type B 9
Table 3 Table of Operators 14
Table 4 Optional Transformations for Elimination of

Spaces between Cl and B 15
Table 5 Semantics of Assignment Expression 22

)
/

--------~------~-~----

(26 April 1967 5 TM-3417/200/00

1. INTRODUCTION

The Source Language (SL) and Intermediate Language (IL) of the LISP 2 system
proposed for implementation on the IBM 8/360 are described in this document.
The LISP 2 system for the S/360 is an extension of the LISP ? system currently
operating on the Q-32 computer. Included in this document are descriptions of
the syntax and semantics of data, tokens, types, expressions, variables. blocks,
and declaratives. Specifications for other portions of tIle LISP 2 system for
the IBM S/360 are included in other documents in this series (TM-34l7).

2. TYPES. DATA, AND 'roKENS

2.1 TERMINOLOGY

A field is a container or box capable of holding a representation of informa­
tion. The contents of a field are known as a setting. One possible kind of
setting is a locator, which is a rule for finding either a single field or a
collection of fields.

A ~ is the external representation of a computational object to be pro­
cessed by a LISP 2 program. A data structure is the internal representation
of a computational object to be processed by a LISP 2 program. A datum is in
the form of a sequence of characters; a data structure is in the form of a
collection of fields and settings. One of these settings is the value of the
data structure. If the data structure consists of a: single setting, then the
value is that setting; otherwise the value is a locator from wh:l.ch the
remaining parts of the data structure may be found. In either case, the value
is a single setting.

Implicitly associated with every value is a type, which is a rule for deter­
mining the computational object represented by the value. Two values are said
to be identical if and only if they have both the same setting and the same
type. The operation of reading a datum results in obtaining a value whose
associated data structure represents the same computational object as the
datum; the operation of printing a value results in obtaining a datum that
repr:esents the same computational object as the data structure associated with
the value.

2.2

2.2.1

TYPE IN FORMA'I'I ON

Syntax of Types

type :: simple-type I array-type I functional-type I n-tuple-type

simple-type .: GENERAL I BOOLEAN I REAL I INTEGER I BITf) I J"UNC'I'IONAL

------_.-.

,

'1'r~-31117/200/oo

r: -." array-type • (simple-type J ARRAY (dimensionality 1

functional-type :: FUNCTIONAL (result-descriptor
{. parameter-descriptor}* [. indef-para.meter­
descriptor])

parameter-descriptor - {[variable-reference-modeJ! Itypel ![coordinate]}

result-descriptor :: parameter-descriptor I NOVALUE ! {TJNFIELDEDlltype}

indef-parameter-descriptor :: {[variable-reference-mode] !Itype II INDEF}

coordinate - (unsigned-integer unsigned-integer)

~ array-type:: (ARRAY [simple-type J {([integer J integer)} *)

functional-type :: (FUNCTIONAL result-descriptor

IsLl
L2::J

{parameter-descriptor}* [indef-parameter-descriptor])

parameter-descriptor. :: (f[variable-reference-mode] II type II [coordinate] })

result-descriptor :: parameter-descriptor I NOVALUE I {UNF'IELDED II type}

indef-parameter-descriptor :: ({ [variable-reference-mode)
II simple-type II INm~F})

coordinate - (unsigned-integer • unsigned-integer)

variable-reference-rnode :; DIRECT I HDITlECT

n-tuple-type :: identifier

Data TyPes

The various data structures in LISP 2 and their types are given in Table 1.

Arrays and n-tuples must have the proper number of elements; each element must
be convertible to the expected type for the array or n-tuple component. All
data is composed of one or more tokens. The following transformations may be
used for data. 8L, and IL.

~ space token .. space space token

~ token space ~token space space)

------------~~ ---~---

l

26 April 1967 7 TM-34l7/200/00

Table 1. Data Types

Datum Type

Number:
Real REAL
Integer .. INTEGER
Octal BITS
Unsigned-real REAL
Unsigned-integer INTEGER
Unsigned-octal BITS

Boolean BOOLEAN

String GENERAL

Symbol SYMBOL

Function-specifier FUNCTIONAL

Nil GENERAL·

Node NT.UPLE

N-tuple NTUPLE

Array ARRAY

2.3 DATA SYNTAX W datum:: nonsymbol-element I symbol I nil I node

_ numberlbooleanlstringln-tuplelarray
lrunction-~pecifier

non symbol-element

node :: (datum*+l [. datum])

nil ;: () INIL

symbol ;: identifier I character-datum I- special-spelling Imark-operator

- -- - -------------"--'"--.--------------~----"

_--'--'-____________ : __ l __

26 April 1967 8

2.4

array :: larray-typer dimensionality array-element*+11

array-element :: datwn larray-element*+ll

dimensionality :: l{[integer: J integer}!+ll

function-specifier :: lFUNCTION compound-var-narnel

n-tuple ::: In-tuple-name datwn*+ll

n-tuple-name :: identifier

TYPE CONVERSION

TM-3417/200!OO

Under certain conditions, a value x of type ~ may be given ~hen a value of
a different type S is expected. In this case, there may be.a value y of type
8 that can be used in place of x. This valuey is then called the homomorph
of x in @. A homomorph of a value will usually (but not al~ays) represent the
same computational object as the original value. A given value of type a may
or may not have a homomorph in a different type S. A value is converted from
type a to type a by finding the homomorph of the given value in S, if it exists.
If it does not exist, the conversion is illegal. (See Table 2.)

8 is said to be a subtype of a if every value in a can be converted to a and if
the conversion does not change the actual setting. The subtype relationships
among the different types are shown in the lattice of Figure 1. Here the fact
that a is a subtype of a is expressed by placing a below a in the diagram and
drawing a line between them. A large circle represents a collection of types
rather than a single type.

Every value has a homomorph in the type GENERAL. This homomorph represents the
same computational object as the original value. If a value of any type what­
soever is converted to GENERAL and back again, the resulting value is always
identical to the original one. There exist class predicates for INTEGER, BITS,
REAL, BOOLEAN, and FUNCTIONAL that are true for values in these respective
types, and also for their homomorpha in GENERAL; they are false for all other
"al'.es. In other ~ords. these class predicates do not distinp;uish bet~een
vel.lues and their homomorphs in GENERAL.

There is an obvious correspondence between the different syntactic classes of
data and the set of possible types. It should be noted that NODE is a
particular n-tuple type. The values corresponding to strings are in type
GEN~RAL. Reading a datum d in a syntactic class a results in a value v which
is in type GENERAL, but is a homomorph of a value in the type a' that corres­
ponds to a.

._-------------

)

26 April 1967 9

Table 2. Conversion of Type a to Type e

~
BOOLEAN

INTEGER

BITS

REAL

GENERAL

FUNCTIONAL

ARRAy

l_ U • setting is unchanged

X • Dot permitted

T '" constant TRUE -

B

U

T

T

T

GP

T

T

I B R

X X X

U IB F

BI U BR

E RB U

GI GB GR

X X X

X X X

H '" homomorph requiring change of setting

G F A

H X X

H X X

H X X

H X X

U RH RH

H A X

U X A

TM-34l7/200/00

GI '" if homomorph of a number, convert to that number and then to
INTEGER" if NIL, then return 0; otherwise illegal

GP = if FALSE then return FALSE. otherwise return !ill!.
GB = if homomorph of a number then convert to that number and

then to BITS; if NIL. then return OQ; otherwise illegal

GR '" if homomorph of a number. then convert to that number and
thEm to REAL; if NIL, then return 0.0; otherwise illegal

E '" apply ENTlER function

F '" apply FLOAT ·function

RH '" restricted homomorph; if given value is a homomorph ol'n
value of the desired type, take that value. otherw:l.se illegal

BI.'" convert to positive integer; illegal if sign bit is negative

IB = convert to bit sequence; -0 treated like +0; other negative
numbers illegal

RB" REAL to INTEGER, then INTEGEH to BITS

GR '" BI'l'S to INTEGER. then INTEGER to REAL

A '" types must agree exactly, else illegal

26 April 1967 10 TH-3417/200/00

The simple-type corresponding to a given type is the highest node in the
lattice of types (as given in Figure 1) that is connected to the given type.
In specifying the type of an array, the simple-type that describes its
elements is always used. In specifying the type of a function, simple-types are
ordinarily used in the valuation-descriptor and in the parameter-descriptors.
If a type that is not a simple-type is used in this context, it is semantically
equivalent to the corresponding simple-type. If the reference mode is omitted
in a parameter-descriptor, DIRECT is assumed; if a reference mode is omitted in
a result-descriptor, UNFIELDED is assumed. If a coordinate is omitted with a
reference mode of DIRECT or INDIREC'r, a standard coordinate. which may depend
on the type, is assumed. In the case of the 360, the standard coordinate is
(0 • 32), independent of type,

A value is unique if there are no other values with the same type that represent
the same computational object. If the values in a type a are unique, then the
values in all subtypes of a are unique. A value is invariant if the computa­
tional object that it represents cannot be changed by program operations. A
value is alterable if it can be made to represent a different computational
object through program operations. The data structure associated with an
alterable value is also said to be alterable. An alterable data structure
~onsists of a skeleton and a substrate. The skeleton consists of a collection
of fields, and possibly settings also, that cannot be changed by program opera­
tions. The substrate consists of a collection of settings that can be changed
by program operations; these settings are the contents of certain fields of
the skeleton.

Values within the types INTEGER, BITS, REAL, BOOLEAN, and FUNCTIONAL are unique.
The homomorphs in GENERAL of values within these types are invariant but not
unique. The values in SYMBOL are unique, and the homomorphs of these values in
GENERAL are also unique. Arrays and n-tuples are alterable, though special
cases of them may be invariant. N-tuples and arrays may be constructed either
uniquely or non-uniquely. These terms will be explained for the special case
of nodes, but the explanation applies equally for any other n-tuple or array
type. The procedure for constructing a node has as input a set of values of
known type, and as output a single value that represents the desired node.
When a node is constructed uniquely, the node construction procedure will
abra.ys give the same value as output each time it is called with the same set
c~ inputs. When a node is constructed non-uniquely, calling the node construc­
tion procedure twice with the same set of values as input will, in general,
yield two different values as output.

The substrate of a uniquely constructed n-tuple or array consists of the collec­
ted substrntes of the values from which it was constructed. The substrate of a
non-uniquely constructed n-tuple or array consists of the contents of the fields
of that n-tuple or nrray. 'l'hus an n-tuple or array whose component parts are
invariant will itself be invariant. A constant is--by definition--invariant,
and possibly unique. It is an error to attempt to modify a constant, though
this error will not always be detected.

J

)

,~,

typed
ARRAY

GENERAL INTEGER
o

dimensional
A..'tffiAY

typed
dimensional
ARRAY

BITS
o

REAL

o
FUNCTIONAL BOOLEAN

o

FUNCTIONAL
subtypes

Figure 1. Lattice of Types

(

I\)
C'\

.G"
~
1-'­
~

~
\0
C'\
~

~
~

~
I

LV
.j::""
.......
~
N
o
o
........
o o

26 April 1967 12 TM-34l7/200/00

2.5 TOKENS AND THEIR SYNTAX

Some of the characters in the kernel language, particularly mark-operators,
may be replaced in specific implemeritations by multiple characters, dot-

. operators, or res.erved words. The special characters of LISP 2 and their
meaning are given iil Table 3. In token syntax, the term "character" will be
defined for specific implementation and the terms "letter", "digit", and
"octal-digit" refer to the conventional sub-classes of characters.

identifier :: 11 terall genid

literal :: letter {letter I digit I.}*

character-datum :: ¢ character

string :: # {non-string-delimiter I 'character }*+l #

non-string-delimiter :: {any character other than "#",

special-spelling :: % string

genid :: %G string

boolean :: ~I~

compound-var-name :: identifier$identifier

array-typer :: ARRAY$simple-type

punctuator :: 'I: I ; 1.1 (I) lill

sign :: + 1-
dot-operator:: {'}*+l [letter] {letterldigitl.}*

decimal :: digit*+l

unsigned-integer - decimal E decimal I decimal

",,,
t

unsigned-octal .=: octal-digit*+l Q decimal I octal-digit*+l Q

exponent - E {sign decimal I decimal}

fraction _ decimal • decimal I decimal • I • decimal

or "G"}

.... c ' '. ___ ,.. w' ,.._'$'.!.;.,. , . ..",'!!lJ.I~_y'" • t , ' it ' .. lrtc.wW').' .,. *"' '. b ••• •

(

26 April 1967 13 TM-34l7/200/00

unsigned-real :: fraction exponent I fraction

integer ;: sign unsigned-integer

octal :: sign unsigned-octal

real :: sign unsigned-real

number - integer I octal I real

token -

I unsigned-integer I unsigned-octal I unsigned-real

literal I character-datum I special-spelling

I mark-operator I string Igenidlboolean

larray-typer

Icompound-var-namelpunctuatorlsign

I dot-operator I octal I integer I real

lunsigned-octal!unsigned-integerlunsigned-reaJ,

In the kernel language, all tokens are required to be separated by at least one
space. Spaces may be eliminated between tokens according to the optional
transformation summarized in Table 4. In the table, an "X" indicates that the
space between a and 8 is required; no "X" means the space may be eliminated.

3. EXPRESSIONS

An expression designates a computational procedure. The result obtained from
carrying out the procedure is a valuation, and the process of carrying out the
procedure is called evaluation of the expression. A valuation has one of four
reference modes: NOVALUE, UNFIELDED, DIRECT, or INDIRECT. When the valuation
has reference mode NOVALUE, the expression is evaluated for its side effects
alone and does not produce a value. Valuations in the other three reference
modes consist of settings as follows:

Mode - Setting

UNFIELDED value

DIRECT value

INDIRECT
. L-I -..--l

I..---......:~~ value

r- .------------------------------ ..

26 April 1967 14 TM-34l7/200/00

Table 3. Table of Operators

Kernel lanp;uage characters and their meaninp; as SL operators:

+ addition 1\ and

subtraction v or

* multiplication 'I" not

/ real division = equal

+ integer division ~ unequal

\ integer remainder < less than

+ exponentiation :S less than or equal

+ assignment > greater than

-+ loc-assignment ;:: greater
")

than or equal /

0 cons - synonym definition

~ character-datwn

)

/~'"

1

2

3

4

5

6

7

I
I

8

(-~

Table 4. Optional Transformations for Elimination of Spaces Between a and B

1 2 3 4 5 6 7

string
genid
special-spelling
punctuator

character-da.tum

sign X

mark-operator X

dot-operator X X X

integer
octal X X X
real

literal
compound-var-name X X X X
boolean

unsigned-integer
unsigned-octal X X

unsigned-real
----- --- ~ .-~----- ~-~

An "X" indica"t.es tha.t the space between Ct and 8 is required; no "X" :::eans
the space :::ay be e:i::inated.

:

8

X

X

X

X

X

--

('

f\)

0'\

~
0;
......
I-'

I-'
'.0
0'\
~

I-'
VI

'j
-'" I
ev
:::-
I-'
-l
"­
'\)
o
o
"­
o
o

~ April 1967 16 TM-3417/200/00

Here a box indicates a field and a pointer to a box indicates a locator of that
field. An UNFIELDED valuation consists of a value only. A DIRECT valuation
consists of a field containing a value. An INDIRECT valuation consists of a
value in a field. a locator of that field, and a second field that contains the
locator.

Of the reference modes, NOVALUE is the least'restrictive and INDIRECT is the
most restrictive. When a valuation in one reference mode appears in a context
where a valuation in a different reference mode is required, then reference
mode conversion is possible if the desired reference mode is less restrictive
than the given one. In this case, the conversion is accomplished simply by
discarding the irrelevant parts of the valuation. Thus, in converting from
DIRECT to UNFIELDED, the field containing the value is disregarded, and only
the setting of the field is considered.

)

Every field has associated with it a coordinate. The coordinate is (in general)
machine-dependent. and consists of two integers: the length of the field in bits.
and the position within a computer word of the initial bit. Both DIRECT and
INDIRECT valuations have coordinates associated with them, at least implicitly;
the coordinate of a DIRECT or INDIRECT valuation describes the field that con­
tains the value. The coordinate of a field containing a locator is standard.
and therefore need not be specified. ~

3.1 CONSTANTS

3.1.1 §lntax of Constants

~ constant :: autonym I 'datum

l IL J constant - autonym I (QUOTE datum)

ISLI autonym _ nonsymbol-element I character-datum I special-spelling
~
3.l.2 Semantics of Constants

A constant has the reference mode UNFIELDED and a value corresponding to the
datum that is part of the constant. "QUOTE" or II,,, are used in order to
distinguish between data and programs. Autonyms are data which. because of
their syntax. can never be confused with parts of a program.

)

26 April 1967 17

3.2

3.2.1

EJ
EJ

SLl
.~

3.2.2

VARIABLES

Syntax of Variables

var-name :: untail ed-var-nsme I tailed-var-name

tailed-var-name :: compound-var-name

untailed-var-name :: first-name

compound-var-name - first-name$section-name

var-name :: untailed-var-name I tailed-var-name

tailed-var-name ;: (first-name • section-name)

untailed-var-name :: first-name

first-name :: identifier

section-name - identifier

Semantics of Variables

TM-3417/200/00

A variable is a collection of valuations. These valuations are known as the
bindings of the variable. At any time, at most one binding of a variable is
said to be active, and this valuation is said to be the active binding of the
variable. When a variable is evaluated, its valuation is given by the currently
active binding. The contents of the value field of a DIRECT binding or the
contents of the locator field of an INDIRECT binding are known as the active
assignment of the variable. During the time that a binding is active, the
assignment of its variable may change, but the field in which the assignment
is to be found will not change.

There are two kinds of variables: lexical variables and section variables. A
lexical variab~e has a first-name associated with it; a section variable has a
first-name and a section-name associated with it. A lexica.l variable is always
designated by an untailed-var-name; a section variable may be designed either
by a tailed-var-name or an unta.iled-var-name. At any time, there exists a
section-list, which is a list of section-names. 'l'he first sect.1on-name on the
section-list is the current section. SectIon variables I\r~ in one of three
categories: PUBLIC, STATIC, or OPTIONAL.

26 April 1967
18 TM-3417/200/00

Variables are described by variable declarations, which may appear either in
DECLARE statements made on the supervisor level or in block headings and
function definitions. Associated with every variable declaration in a block
heading or function definition is a lexical scope. The lexical scope of a
variable declaration in a block heading consists of the statements within the
block; the lexical scope of a variable declaration in a function definition
consists of the expression that defines the function. However, if the lexical
scope incl,udes a block or function that also declares a variable usinp: the
same var-name as the outer· declaration, then the lexical scope of the outer
declaration excludes the lexical scope of the inner one.

When an expression is in the form of a var-name, then the following rules,
applied sequentially at compile time, determine the variable to which it refers:

1. If the var-name lies within the lexical scope of a
variable declaration using that var-name, then the
var-name refers to that variable.

2. If the var-name is tailed, then it refers to a section
variable in the section named by the section-nan,e.

3. If a section variable whose first-name is the same as
the var-name exists in any section on the section
list, then the var-name refers to the one of these
whose section appears first on the section list.

If none of these rules apply, then an error condition exists.

The active binding of a variable is determined at run time. A DECLARE state­
ment establishes an active binding for each variable that it declares, and
this binding never disappears thereafter, though it may be superseded tempor­
arily. Upon entering a. block or function. active bindings are established for
each variable declared by the block or function, and the previous active
bindings of these variables become inactive. The nature of each of these new
bindings is determined by its variable declaration. Upon exit from a block or
function, the bindings created by it disappear.

,.\ variable may have any of the four reference modes. However, the reference
mode UNFIELDED is always used for variables whose values are fixed function
definitions, and the reference mode NOVALUE is always used for macros. From
the restrictions on assignments, it then follows that assignments cannot be
made to variables denoting either fixed functions or macros. furthermore.
variables denoting mucros cannot be evaluated.

)

)
/

(

\

(

~.

26 April 1967 19 TM-34l1!200/00

3.3

~. ~

SIMPLE EXPRESSIONS

Syntax of Simple Expressions

expression - simple-expression I assignment_expreasion
! funargl conditional-expression

assignment-expression - {var-namelform} {+I~} expression.

simple-expression :: disjunction

disjunction _ conjunction {\1 conjunction}*

conjunction - negation {I\ negation} *

negatton - relation I '" negation

rela.tion - construct {relator co.nstruct} *

relator :: = I" I < I:s; I > I ~
construct :: sum {o sum}*

sum :: [+1-] term {{+!-} term}*

term -= factor {{*In factor}*

factor :: power I factor {\ I +} power

power :: primary [t power]

primary :: basic-expression 1 (expression) Iblock-expression

form :: operator ({ operand};

operator :: var-name

expression :: basic-expression! conditional-expression Iblock-expression
'! funarg .

form :: (operator opera.nd*)

operator :: mark-operator I var-name

operand :: expression

funarg :: function-defin~tion

basic-expression :: constant 1 var-name I form

26 April 1967 20 TM-3417/200/00

3.3.2 Semantics of Simple Expressions

The syntactic hierarchy for nonconditional-expressions in SL specifies the
hierarchy of the various operators, and thus the implicit"parenthesization.
The parenthesization is explicit in IL. The semantics of SL expressions
employing operators are specified by giving the translation of these expressions
into IL and then giving the semantics of the corresponding forms in IL.

A disjunction

in SL translates into

" , (v cl c2 ••• cn)
,

in IL wherec. is the IL translation of c .•
1 1

The translations of conjunctions
n in SL translates into ('" n '.> and constructs are analogous. A negation ~

in IL. A relation

cl r l c2 r 2 ••• r c n n+l

in SL translates into
, , ,

(RELATION Cl r l c2 r 2 ••• r n cn+l)

in IL. A sum in 8L translates into a form whose operator is "+". A term t
preceded by "+" translates into t'; a term t preceded by "-" translates into
(- t'). The translation of a term is analogous, with "*" behaving like "+"
and "/" behaving like "_". The operators ""'", "-+-", "f", "\", and "t" are all
binary, and the parse in 8L determines their operands. The SL expression
a x ~. where a and b are operands and x isa binary operator, translates into
(x a b') in IL.

The operator of a form must designate either a function. an array, or a macro.
If the operator designates a function, then the form is evaluated as follows:

1. The operands of the form are evaluated. The order
of evaluation is not guaranteed.

2. A binding is created for each variable that is a
parameter of the function. The valuations obtained
in Step 1 are then assigned to the corresponding
variables. None of these assignments are performed
until all of the arguments are evaluated. If a
parameter is'DIRECT. the rules for ordinary assign­
ment apply. if the parameter is INDIRECT the rules
for loc-assignment apply.

)

26 April 1967 21 TM-3417/200/00

3. The bindings created in Step 2 are activated and the
expression defining the function is evaluated. A
valuation is obtained unless the result-declaration
of the function is NOVALUE. After the evaluation is'
completed, the bindings created in Step 2 disappear.

4. If the valuation obtained in Step 3 is of the same
type, reference mode, and coordinate as was declared
for the function, then this valuation is the valua­
tion of the entire form. If the reference mode
declared for the function is NOVALUE. then no valua­
tion is obtained for the form. If the reference
mode is UNFIELDED, then type conversion will be
performed if the type of the valuation obtained from
the expression does not agree with the type declared
for the function. If the reference mode is DIREC'l'
or INDIRECT, then the type and coordinate of the
valuation obtained from the expression must agree
with the t.ype .and coordinate declared for the function
or an error condition exists.

If the operator designates an array. then the values of the successive
operands are its subscripts. The valuation' of the form has reference mode
DIRECT and the type subspecified for the array. The valuation .consists of
the field containing the designated element within the array. The subscripts
are evaluated in an unspecified order and converted to type INTEGER in order
to find the desired array element.

If tle operator designates a macro, then the macro specifies a transformation
to b~ applied to the form at compile time. The transformed form replaces the
original one. Macros always operate on the IL version ofa form. In order .to
determine the valuation of a form whose operator is a macro, the explanation
of that specific macro must be consulted. Although macros are variables, their
reference mode is NOVALUE and therefore they can only be used in the context of
form operators. Assignments cannot be made to them, nor can they be evaluated
by themselves or passed as functional arguments.

Assignment expressions are used in order to transmit a valuation from one field
to another. They are also used implicitly in the transmission of arguments to
functions. The transmission occurs as a side effect of the evnluation of the
assignment expression. the valuation of either kind of assignment expression
is always the valuation of its second operand. There are two kinds of assIgn­
ment expressions: ordinary aSSignment expressions and loc-assignment expressions.
The operator "." designates ordinary assignment and the opera.tor It " designates

--- . -"- -'- -._-_ _. ---- -_._-"

26 April 1967 22 TM-3417/200/00

Table 5. Semantics of Assignment Expressions

~ '~Ol]'t
a+1 Cl + S a-+1 a -+ S .~ refer- - -

ence mode ._.

NOVALUE X X X X

UNFIELDED 1 X 3 X

DIRECT 1 2 4 X

INDIRJ<:CT 1 2 5 6

X = not permitted

1. Obtain the value of S. Convert it to type ~ if such conversion
is permissible; illegal otherwise. Valuation is UNFIELDED.

2. Place value obtained from B in the value field of a.

3. Valuation is a locator of a newly obtained field with standard
coordinate whose setting is the value of S.

4. a and S must have the same type and the same coordinate. The
valuation S is a locator of the field containing the value of S.

5. a and B must have the same type and the same coordinate. The
valuation is the locator that locates the field containing the
value of S.

6. Replace the locator part of Cl by the valuation of St which is
also a locator, i.e., put the contents of the locator field
of S into the locator field of a.

)

)

)

26 April 1967 23 TH-34l7/200/00

loc-assignment. An ordinary assignment expression transmits a value only; a
loc-assignment expression transmits a locator of a field containing a value.
The most useful and common case of lac-assignment is the transmission of a
binding of a variable. If A and B are variables, evaluation of the loc­
assignment expression A ~ B causes the active binding of B to be transmitted
to A (which must have reference mode INDIRECT). Thereafter, any change to the
value of B will cause the same change to be made to the value of A. and
conversely.

The semantics of assignment expressions are given in greater detail in Table 5.
In order to determine the effect of an assig'llllent expression, the reference
modes of its operands must be known. First,-the table is used to determine
the valuation obtained from the second operand. This is done by looking in the
column corresponding to the second operand of the appropriate kind of assign­
ment expression and the row corresponding to the reference mode of that operand.
Then the column corresponding to the first operand of the assignment expression
and the row corresponding to the reference mode of this operand is used to
determine what is done with the valuation obtained from the second operand.

When a value is copied from one field to another, the new value is identical
to the old one. Consequently, both values have the same substrate. A change
to the substrate of a value changes the substrate of all identical values in
the same way. Thus, for instance, if a nonuniquely constructed array is trans­
mitted through assignment from one variable to another, changes to the elements
of the array via one of these variables will change the datum represented by
the value of the other variable. Furthermore, if a constant is assigned to a
variable, then the value of that variable is invariant and any attempt to
modify its associated data structure is an error.

The form (A p P2 ••• po) has value FALSE if any Pi has value FALSE,and TRUE
otherwise. T~e express~on is evaluated from left ~o right only far enough
to determine its value. i.e., if any p. is false, the remaining Pj for j > i
are not evaluated. (A) has value TRUE:

The form (v Pl P2 ••• Pn) has value TRUE if any Pi has value 'rHUE, and FALSE
otherwise. The expression is evaluated from left to right only far enough to
determine its value, i.e •• if any Pi is TRUE. then the remaining Pj for j > j

are not evaluated. (v) has value ~.

A form (CASE see ••• e) is evaluated by evaluating s to obtain an
1 2 n

integer x. If this integer is in the range 1 s x s n. then the value of the
entire CASE expression is ext otherwise the value is en'

26 April 1967 24 TM-34l7/200/00

A form whose operator is RELATION causes a sequence of tests to be performed
to yield a BOOLEAN value. The tests are performed from left to right as
specified by the relations; if all the tests are satisfied the result is TRllli,
and otherwise the result is FALSE. The eva.luation proceeds only far enough
to determine the value of the RELATION expression. It is guaranteed that none
of the quantities in the relation are evaluated more than once.

The arithmetic operations "+" and "*" are ct:rried oct by means of macros. The
type of the value obtained from the operation is determined by the following
rules, applied sequentially,

1. If all of the operands are of type INTEGER or BITS,
then the result is of type INTEGER.

2. If none of the operands are of type GENERAL, then
the result is of type REAL.

3. If none of the operands are of type REAL or homomorphs
in GENERAL of type REAL, the result is of type GENERAL
and is a homomorph of a value of type INTEGER •

. 4. Otherwise, the result is of type GENERAL and is a
homomorph of a value of type REAL.

The operator "_" expects a single argument. If the argument is BITS or
INTEGER the result is INTEGER. otherwise REAL. The operator "/" expects a
single argument of type REAL, and forms its reciprocal. also of type REAL.
The operators "t" and "\" have arguments and value of type INTEGER.

3.4 CONDITIONAL EXPRESSIONS

Syntax of Conditional Expressions

conditional-expression - {IF predicate THEN consequentELSE}*+l

{terminal-expressionlJ\}

8 ELSEA {E'LsE} ".. empty

® EWE· A ELSE ELSE ELSE

{ELSE}

~) ELSE IF c conditional-expression

J

)

(
~-

26 February 1967 25

conditional-expression - (IF {predicate consequent}*

[terminal-expression])

~ predicate , expression

consequent :: expression

terminal-expression :: expression

3.4.2 Semantics of Conditional Expressions

TM-34l7/200/00

The symbol '~' is used in the SL kernel language for conditional-expressions
in order to force explicit indication of the grouping of the parts of nested
conditional-expressions. In translating to IL, a ':A..' at the end of a
conditional-expression indicates that the terminal-expression is omitted.

In evaluating a cQnditional-expression, the predicates are evaluated in turn
and the resulting values are converted to BOOLEAN. As soon as one of the
evaluations results in~. the corresponding consequent is evaluated, and
its valuation becomes the valuation of the entire conditional-expression.
Neither the predicates following the first true predicate nor the consequents
other than the one corresponding to the first true predicate are evaluated.
If none of the predicates are true, then the valuation of the conditional­
expression is the valuation of its terminal-expression, if there is one. If
none of the predicates are true and there is no terminal-expression, then an
error condition exists.

If all of the consequents and the terminal-expression of a conditional­
expression have the same type, then the type of the valuation of the
conditional-expression is that type. Otherwise the type of the valuation of
the conditional-expression is GENERAL, and type conversion is performed when
the conditional-expression is evaluated. The reference mode is the most
restrictive of the reference modes of the various consequents and the
terminal-expression.

26 April 1967 26 TM-3417/200/00

3.5.1

FUNCTION ·DEFINITIONS

Syntax of Function Definitions

function .. definition :: FUNCTION pa.rameter-list (result-dec1arationl
{i parameter-declaration}*: body

parameter-list :: ({parameter}: [. indef-parameter])

. S (. indef-parameter) ~ (indef-parameter)

parameter-declaration :: {parameter}:+l {[variab1e-reference-mode] II
(parameter-storage-mode]I I
[type-declaration] I I [coordinate]}

indef-parameter :: var-name (indef-name)

type-declaration :: type I LIKE var-name

result-declaration - {[variable-reference-mode] II
[t~e-declaration]1 I (coordinate]}

I NOVALUE I {UNFIELDEDI I [type-declaration]}

function-definition :: (FUNCTION [result-declaration]
parameter-declaration-list body)

result-declaration - ([reference-mode) [type-declaration]
[coordinate]) I NOVALUE Ie UNFIELDED
[type-declaration])

type-declara.tion - ty~ LIKE var-name)

~ (type) c result-declaration ... type

parameter-declaration-list - (single-parameter-declaration*

[indef-parameter-declaration])

aingle-parameter-declaration :: parameter I (parameter
[type-decla.ration] tparameter-storage-mode]
[variable-reference~ode] [coordinate])

indef-parameter-declaration :: (indef-name [type-declaration]
[variable-reference~ode] INDEF parameter)

J

)

(

26 April 1967 27 'I'~1-341'r /200/00

lSi!
~

parameter :: var-name

indef-name :: untailed-var-name

parameter-storage-mode :: LEXICAL IPUBLIC

body :: - expression

Semantics of Function Definitions

A function-definition is an expression whose value is a function. The function
does not have a name associated with it unless the function-definition appears
as part of a named-function-definition in a DECLARE statement on the top level.
Because of the behavior of free variables in a function-definition, evaluation
of a function-definition at different times may yield effectively different
functions.

At run time, a function-definition is subject to two processes: evaluation and
application. These two processes occur at different times and in different
contexts. A function-definition may be evaluated once and applied many times;
application occurs whenever a FUNCTIONAL variable whose value is the function
appears as the operator of a form which is being evaluated.

The variables named within a function-definition can be divided into three
groups:

1. Variables that are used as parameters of the function or are
declared in a block within the function-definition (bound variables).

2. Variables that are not parameters of the function
but are lexically bound from outside the function­
definition (funarg-variables). A variable in this
group is declared in a block or function-definition
that contains the function-definition in question.

3. Variables that do not lie within the lexical scope
of any declaration (free variables).

A function-definition on the top level does not have any outer lexical context
and hence can only have bound variables and free variables.

At the time of evaluation of a function-definition,-the va.luation of each of
its funarg-variables is obta.ined and saved. During the applica.tion of the
function, new bindings Il.re crea.ted for the funarg-v8-riables, Ilnd the preoerved
valuations are assigned to these bindings. These bindlngs flrl! creRted A.fter
the arguments of the function are evaluated, but before the body of the function
is evaluated; they disappe(t.r after the evaluation of the body of the functIon.
The bound variables of the function receive the valuations obtained from the

___________ LL ___ _

26 April 1967 TJv1-3417/200/00

arguments, and the free variables of the function obtain the valuations given
by their currently active bindings.

An unnamed function prints out as "[FUNCTION]"; this form does not correspond
to any datum, and hence cannot be read back in.

The parameter-declarations of a function-definition are treated like the block­
variable-declarations for a block, except that the parameters of a fUnction do
not have presets. Both the rules for defaulting of attributes and the rules
for d ~termining the variable designated by a given var-name are the same. The
resul~-declaration determines the type, reference mode, and coordinate of the
valuation returned by the function; since these attributes describe a valuation
rather than a variable, no storage mode is required.'

If the parameter-list for a function-definition contains an indef-llarameter,
then the function expects an indefinite number of arguments. In matching
arguments against parameters when the function is applied, the ordinary para­
meters, if any, are matched first. The remaining parameters constitute the
indef-argument, which is a list of valuations. The length of this list is
assigned to the indef-name upon entrance to the function; the indef-name is
implicitly assumed to be a LEXICAL INTEGER DIRECT variable with standard
coordinate. The list of valuations is formed into a one-dimensional array, and
this array is then assigned to the var-name of the indef-parameter. Within the
body of the function-definition, then, the indef-arguments of the function are
treated as elements of this array, and the indef-name gives the length of this
array.

3.6

3.6.1

BLOCK EXPRESSIONS

Syntax of Block Expressions

I ~~ I block-expression - begin-block I do-block

3.6.2 Semantics of Block Expressions

The valuation of a block-expression is obtained by executing the block­
expression according to the rules for block execution until an implicit or
explicit return-statement belonging to the block-expression is encountered.
The valuation associated with this return-statement then determines the valua­
tion of the entire block-expression. If there is more than one return-statement
belonging to a given blOCk-expression, then the type of the valuation of the
block-expression is the same as the type of the valuations of the return­
statements if they are all the same, and GENERAL otherwise. The reference mode

)

)

(
'---

(
"-

26 April 1967 29 TM-3417/200/00

of the valuation is the most restrictive of the reference modes of the valua­
tions of the return-statements. If the valuations of the return-statements
differ in coordinate. however, the valuation of the block-expression will have
reference mode UNFIELDED.

The labels belonging to a block-expression are not visible outside the block­
expression.

4.

4.1

BLOCKS

SYNTAX OF BLOCKS

block :: begin-block! do-block

do-block :: DO {statement ;} * END

begin-block - BEGIN {block-var iable-declarat ion }!
{statement ;}* END

block-variable-declaration :: bl,ock-variable-preset!
block-variable-attr ibut ion

block-variable-preset :: {block-variable [{-+!+} preset]} :+1

block-variable-attribution :: {bloCk-variable}:+l attribute*+l

attribute :: variable-reference-rnode I parameter-storage-mode!
type-declaration! coordinate .

statement·:: label* [unlabeled-statement]

@ ; END c block ~ END

label- identifier:

26 April 1967 30 TM-3417/200/00

fSLl
I-=:J

block :: begin-block! do-block

begin-block = (BEGIN (block-variable-list) statement*)

do-block:: (DO statement*)! (BEGIN nil statement*)

block-variable-list = {(block-variable [type-declaration]
[parameter-storage-mode) [variable-reference-mode]
(coordinate] [preset)}*+l

@ (block-variable) c block-variable-list ~ block-variable

statement :: label* statement-unit I label

statement-uni t :: (LABEL label statement-unit) I unlabeled-statement

label ::: identifier

block-variable :: var-name

preset :: expression

compound-statement

block-statement

go-st at ement

conditional-statement

case-statement

unlabeled-statement - casego-statement

return-statem~nt

for-statement

code-statement

try-statement

xpression

compound-statement - do-block I (compound-statement)

block-statement :: begin-block! (block-statement)

J

\
~)

)

l

(

26 April 1967 31 TM-3417/200/00

4.2 SEMANTICS OF BLOCKS

A block may appear in either a statement context or an expression context. A
block is evaluated in the same way, independent of the context in which it
appears; however, a block appearing in expression context produces a valuation,
while a block.appearing in statement context does not.

The evaluation of a block proceeds in the following manner:

1. A binding is created for each block-variable, and an initial
valuation is assigned to this binding. The initial valuation
is determined by evaluating the preset, if it is given; otherwise
it is determined by default. None of these assignments are
performed until all of the presets have been evaluated; if any
of the block-variables appear as part of one of the presets, the
previously active binding of such a block-variable is used. If
a block-variable is DIRECT, then the rules for ordinary assign­
ment are used. (In the context of a block-variable-preset, no
distinction is made between "-+-" and "+"; the method of assign­
ment is determined strictly from the reference-mode of the block­
variable.)

2. The statements in the block are executed until a termination
occurs. Termination will result from execution of a GO state­
ment whose label lies outside the block; from evaluation of an
EXIT expression. from execution of a RETURN statement; or from
execution of the last statement of the block without a transfer
of control. (There is always an implicit "RETURN NIL" statement
at the end of a block.) The statements of the block are executed
sequentially unless a transfer of control or a block te!wination
occurs. When control is transferred to a label, the statement
execution sequence continues with the statement following that
label.

3. After termination, the bindings created upon block entrance disappear.

The declarations for a block-variable specify, either implicitly or explicitly,
four attributes and a preset. The four attributes are: reference mode, storage
mode, type, and coordinate. For a block specified in SL, the block-variables
are determined by collecting them from the block-variable-decll:l.rations. A
block-variable may appear in any number of block-variable-declarations, and the
attributes of a block-vuriable are collected from all declarations in which it
appears. If any of the attributes are contradictory, an error condition exists.
For a block specified in IL, each block-variable is given just once in the
block-variable-list, and its attributes and initial valuation appear along with
it. In either case, omitted attributes and presets are deterMined by default.

21) April 1967 32 TH-3417/200/00

If the reference mode of a block-variable is not given, it is defaulted to
DIRECT. If the storage mode is not given, it defaults to PUBLIC if the block­
variable is represented either by a tailed-var-name or by an untailed-var-name
whose first name is the same as that of a section-variable of the current
section. Otherwise the storage-mode defaults to LEXICAL. If preset is given
explicitly, then the default type is the type of the preset; otherwise, the
default type of the current section is used. The default coordinate is the
standard one for the type of the block-variable.

If a block-variable is tailed, then it designates a section variable of the
section named by the section-name; otherwise, the variable that it designates
depends upon the storage-mode of the block-variable. If the storage-mode is
PUBLIC (either explicitly or by default). then the block-variable designates a
section variable of the current section whose first-name is the same as the
var-name; otherwise, the block-variable designates a lexical variable.

If the type of a block-variable is determined by LIKE, then the associated
var-name must either be a tailed-var-name or must agree with a PUBLIC or
;3TATIC section-variable in the current section. In this case, the type of the
block-variable is taken to be the same as that of the section variable named
by the var-name.

The type, reference mode, and coordinate of a block_variable which is a section
variable must be the same as those specified in the top-level declaration of
the section variable.

If a preset is not explicitly given for a block-variable, then it is determined
by default from the type of the block-variable. The standard default presets
are as follows:

GENERAL

INTEGER

BI'l'S

REAL

BOOLEAN

Any functional-type

Any n-tuple type

Dimensional, typed array

Dimensional array

Other

Preset

nil

o
OQ

0,0

FALSE

error trap

n-tuple with default component
values

array as specified, with elements
defaulted according to type of
array

GENERAL ARRAY with nil elements

nil

)

/

(

26 April 1967 33 TM-3417/200/00

Every block has a set of labels (possibly empty) that belong to that block.
The labels that belong to the block consist of those labels that are directly
attached to the statements of the block, plus those labels. that belong to any
conditional-statement or compound-statement of the block. There must be no
duplications among the labels that belong to a block. The labels that belong
to a block-expression or a block-statement within an outer block do not belong
to the outer block.

In parsing the statements of a block, the possible parses are considered in the
order in which they appear in the syntax equation for unlabeled-statement. It
therefore follows that a statement will be considered as an expression if and
only if it cannot be considered as any other kind of statement. When an
expression is encountered in a context where a statement is expected. the
expression is evaluated and the valuation is discarded. An expression appearing
in statement context may have the reference mode NOVALUE.

4.3 COMPOUND-STATEMENTS AND BLOCK-STATEMENTS

When a block appears in a statement context, it is either a compound-statement
or a block-statement, and never a block-expression. A block enclosed in
parentheses is treated exactly as though the parentheses were removed.

A block-statement declares at least one block-variable, while a compound­
statement does not declare any block-variables. The labels within a compound­
statE .. nent are visible from outside the compound-statement, while the labels
within a block-statement are not visible from outside the block-statement.
Hence the labels that belong to a compound-statement are not allowed to duplicate
the labels that belong to the block containing the compound-statement, but the
labels that belong to a block-statement are allowed to duplicftte the labels
that belong to the block containing it.

4.4 GO STATEr~NTS

4.4.1 S:;ntax of GO statements

~, go-statement :: GO label

0 go-statement - (GO label)

26 April 1967 34 TM-3417/200/00

Semantics of GO Statements

A go-statement causes a transfer of control to its label. The label is found
by the following algorithm:

1. Let the scope of the go-statement be the innermost
block-statement or block-expression that contains
the go-statement.

2. If the label belongs to the scope, then the go­
statement transfers control to that label.

3. If the scope is a block-expression or there is no
block surrounding the scope, then the label is
undefined and an error condition exists.

4. Let the new scope be the innermost block-statement
or block-expression that surrounds the old scope, .and
return to Step 2.

4. 5 RETURN S'l'ATEMENTS

4.5.1 §lntax of Return Stutements

r SL I return-statement-= RETURN expression

~ return-statement .= (RETURN expression)

4.5.2 Semantics of Return Statements

A return-statement causes termination of the innermost block-expression
containing it, and thus also causes termination of all block-statements and
compound-statements that contain the return-statement and are contained within
this block-expression. As each of these blocks is terminated, the bindings of
its block-variables disappear. A return-statement produces a valuation obtained
by evaluating the expression that is part of the return-statement. If it is
desired to terminate a block-statement or compound-statement without termina.tinp;
the block or blocks that surround it. then an explicit transfer of control to
the end of the block-statement or compound-statement should be used.

)

\
/

--------------_._------------ --

26 April 1967 35 TM-3417/200/00

4.6

4.6.1

CONDITIONAL STATEMENTS

Syntax of Conditional Statements

condi tional-statement - {IF' predica.te 'l'HEN statement-consequent
ELSE}*+1 [t~rminal-statementlJ\]

@ ELSE./\. {ELSE} ==;) {E'LsE}

@ ELSE IF c conditional-statement ~ IF

statement-consequent :: statement

terminal-statement ::: statement

[;] conditional-statement - (IF {predicate statement-consequent} *
[terminal-statenent])

statement-consequent - statement-unit

terminal-statement :: statement-unit

4.6.2 Semantics of Conditional Statements

In translating an 8L conditional-statement to 1L, a "f\" ut the end of the
conditional-statement indicates that the terminal-statement is to be omitted.
In order to evaluate a conditional-statement, the successive predicates are
evaluated in turn, and the resulting values are converted to BOOLEAN. As soon
as one of the evaluations results in TRUE, the corresponding statement­
consequent is executed. Unless this execution causes a transfer of control,
control then passes to the next statement in the block. If none of the
predicates evaluate to TRUE, then the terminal-statement is executed. If there
is no terminal-statement or the terminal-statement is ''./\.'', then no action is
taken and control passes to the next statement in the block.

It is permissible to transfer control to a label within a conditional-statement;
the effect is the same o.s if control had reached the label through normal
execution of the conditional-statement. The la.bels thut belonp: to A. conditiona.l­
statement Hre the labels that belong to its statement-cotlsequf'nt!'l t~.nd to Us
terminal-stlltement. 'l'he In.bela tha.t belong to a conditloIlfll-ntntcmcnt nloo
belong to the block that contains the conditional-stl-ltement.

1 __________ - ___ " _______ _

26 April 1967 36 TM-3417/200/00

FOR STATEMENTS

Syntax of FOR Statements

for-t'!tatement :::

reset-clause J
in-clause
on-clause
step-clause *

I unless-clause l
while-cla,use *

unless-clause :: UNLESS expression

while-clause - WHILE expression

reset-clause _ variable [+- initializer] RESET expression

loop-clause :: variable LOOP expression

in-clause _ variable IN expression

on-clause _ variable ON expression

step-clause _ variable [+ arithmetic-initializer] STEP
arithmetic-expression [UNTIL,relator
arithmetic-expression]

~ ~or-.tatement , (FOR (l.n-clause {
::eset-clause 1
on-clause
step-clause '

I unless-clause l
while-clnuse)

*
'"

unless-clause - (UNLESS expression)

while-clause

reset-clause

in-clause

on-clause

step-clause

loop-clause

- (WHILE expression)

- (RESET variable initializer expression)

- (IN variable expression)

- (ON variable expression)

_ (STEP variable arithmetic-initializer
arithmetic-expression [relator aritl~etic­
expression])

- (LOOP variable expression)

iterand

iterand)

26 April 1967 37

~
~

i terand :: unlabeled-statement

variable ::: var-name

Semantics of FOR Statements

TM-3411!200!OO

Each kind of clause has four attributes associated with it: a set of temporary
variables, a set of initializations. a test. and a modification. The variables
that are initialized mayor may not be temporary. Any of the attributes may be
null. A for-statement generates the following block:

BEGIN initializations

lnbl: tests

iterand

lab3: modifications

GO labl

lab2: END

A for'..statement with no clauses is equivalent to the iterand by itself. The
itera~d is implicitly surrounded by a begin-block. so that labels within the
iterand are not visible outside of the for-statement. The labels labl and lab2.
are genids.

The attributes of the various for-clauses are as follows:

1. TIeset-clause

Temporary variables: None

Ini ti ali zat ion : Set variables to initializer. if
there is one; otherwise none

Test: None

Modification: Set variables to expression

;~6 Apr il 196'(

2. In-clause

Temporary variables:

Initialization:

Test:

Mod~fication:

3. On-clause

Temporary variables:

Initialization:

Test:

Modification:

4. Step-clause

Temporary variables:

Initialization:

Test:

Modification:

5. While-clause

'l'emporary variables:

Initialization:

Test:

Modification:

TH-34l7!200/00

List iterator, called gl

Set gl to the expression; . set
variable to car(gl) if defined,
NIL otherwise

If null(gl) then go to lab2

Set gl to cdr(gl). set va.riable
to car(gl) if gl not NIL

None

Set variable to expression

If null(variable} then go to lab2

Set variable to cdr(variable)

Increment gl and terminator g2

Set gl to first expression; set
g2 to second expression if it eXists;
set variable to initia1izer if it
exists

If there is a relator part, and if
(variable relator g2) is satisfied,
then go to lab2

Set variable to variable + gl

None

None

If boolean value of expression is
FALSE, then go to lub~

None

----------~----.--~ --'-------------_. --------~------.----- ._---------'--

)

c 26 April 1967 39 Tr.T-3417/200/00

6, Unless-clause

'remporary variables:

Initialization:

Test:

Modification:

None

None

If boolean value of expression is
TRUE, then go to lab3

None

An example of a for-statement and the equivalent block it generates are given
below:

.------~

FOR X IN Ll; Y IN L2; I +- 1 STEP 1 >

LENGTH (X) UNLESS 'V NtJr.1BEHP(X) v

'V NUMBEHP(Y): SUM +- I*X*Y + SUM

BEGIN Gl +- Ll, G2 +- L2, G3 +- LENGTH(X); Gl, G2GENEHALj G3 INTEGEl\:

x +- IF NULL (Gl) THEN NIL ELSE CAR(Gl);

Y +- IF NULL (G2) THEN NIL ELSE CAR(G2);

I +- 1;

Ll: IF NULL (Gl) THEN GO L2;

IF NULL (G2) THEN GO L2;

IF I > G3 THl!:N GO L2;

I F 'V NIDlliERP (X) V 'V NUMBERP (Y) THEN GO L3;

SUl-1 +- I*X*Y + SUM;

L3: Gl +- CDR(Gl);

IF 'V NULL (Gl) THEN X + CAR(Gl);

G2 +- CDR(G2).

IF 'V NULL (G2) THEN Y + CAR(G2)

GO Ll;

L2: END

\

26 April 1967 40

4.8 CJ\f,i': AN n CAGEGO S'l'ATEMEN'rS

~;yntax of CASE and Ci\S~GO Statements

case-statement - CASE (subscript, {statement};+l)

casego-statement = CASEGO (subscript, {label}!+l)

~ IL~- case-statement - (CASE subscript statement*+l)

casego-statement .: (CAfmr.o suhscript la.bel*+ 1)

r ~t J subscript - expression

Semantics of CASE and CASEGC' Statements-.-.

TIJ[-3417/200/00

A case-statement is executed by first evaluating the subscript and converting
the result to INTEGER to obtain an integer x. If x is in the range 1 ~ x ~ n.
where n is the number of statements following the subscript, then the xth
statement is executed. Otherwise the last statement is executed. Labels
within a statement of a case-statement are not accessible from outside the
case-statement nor from within the other statements of the case-statement.

A casego-statement is exactly equivalent to the case-statement where each·
label in the casego-statement is replaced by GO x in SL or (GO x) in IL.

TRY S'l'ATEMEN'l'S

Syntax of TRY E3tatements

try-statement - 'l'fIY var-nome, stntement; statement

try-sta.tement ::: ('l'FY var-name statement statement)

Semantics of THY Statements

The semantics of a try-statement depends upon the semantics of the operator
EXIT. EXIT' acts like a function of one argument; its valuation is simply the
valuation of its argument converted to GENERAL UNFIELDED.

~ _____ ~ _______ ~ ___ ~. ___ • ____ •. t ___ . ___ • ___ • ___________ , • __ ••. __ , _____ , ... _. _, •.. ___ •
~----- .. -.. ----------

)

?6 April 1967

Execution of a try-statement begins with execution of its first statement.
If no EXIT expression is encountereu during the execution. control passes to
the statement following the try-statement. Otherwise the vA.riuble designllted
by the var-na.me is set to the valuation of the EXIT expression (using ord ina.ry .
assignment) and the second statement within the try-statement is executeo.
Control then passes to the stntement following the try-statement. Labels
within the try-statement are not accessible outside of the try-statement.

4.10 CODE STA'rEMENTS

4.10.1 ~)yntll.X of CODE f;tatements

o code-statement - CODI'; (i tem*)

o code-statement :: (CODE Hem*)

4.10.2 Semantics of CODE Statements

The successive items correspond to successive labels and instructions in a LAP
program. The syntax of item is defined in the LAP specification docur.1ent.
The effect of a code-statement is to cause execution of the LAP code that it
represents.

5.0 DECLAIm STATEMEN'fS ON THE TOP LEVEL

5.1 SYNTAX OF DECLARE STATEMENTS

~ dec lare-statement ::: DECLARE' {top-level-declarat ion; } * ;

top-level-declaration ::: section-variable-declaration
Inamed-function-definition
\ n-tuple-definition \ synonym-definition

section-variable-declaration ::: section-variable-preset
lsection-variable-attribution

section-variable-preset ::: {section-variable [{"'-I+} preset]}'
*+1

section-variable-attri bution :: {section-variable }!+l section-attribute*+l

section-attribute ::: variable-reference-mode I sectlon-H1.oral<;e-mode
Itype-ueclaration I coordinate

[[]

'I'lvJ-3 JIl"{ /200/00

named-function-defini t ion ::: sect ion-variable funct ion-defini t ion

synonym-definition - section-variable ~ expression

n-tuple-definition - n-tuple-type NTUPLE ({coordinate-spec }*.)
+1

coordinate-spec = type [coordinate]

declare-statement ::: (DECLARE top-level-declaration')f)

top-level-declaration = named-Function-definition
Isection-variable-decla.rution
In-tuple-definition
I synonym-definition

section-variable-dec1aration = section-variable
I (section-variable [type-declaration]
[section-storage-mode]
[variable-reference-mode]
[coordinate] [preset])

@ (section-variable) ~ section-variable

named-function-definition ::: (section-variable FlrIDEF
function-definition)

synonym-definition ~ (section-variable ~l- expression)

n-tuple-definition - (n-tuple-type NTUPLE (coordinlJ.te-spec*+ 1))

coordinate-spec ::: (type [coordinate])

section-yariable ::: var-name

section-storage-mode = STATIC I OPTIONAL I PUBLIC

._~_L ________ . _______ ~ ___________ _

J

)

(

('-

26 April 1967 TM-34l7/200/00

SEMANTICS OF DECLARE STATEMENTS

A,top-level declaration is used to create a section-variable or modify the
attributes of an existing section-variable. If a section-variable is in the
form of an untailed-var-name, it creates or modifies a section-variA,hle in the
current section; otherwise it creates or modifies a section-variable in the
section named by the section-name. Once a section-variable has been declared,
only its assignment may be changed, unless there are not yet any references to
that variable from assembled code or synonyms.

The top-Ievel-declarations in a sinf,le DECLARE statement are assumed to be
performed simultaneously, just like the initialization of block-variables. The
meaning of section-variable-presets and section-variable-attributions is like
that of block-variable-presets and block-variable-attributions, with the follow­
ing exceptions:

1. There are two additional storage modes: S'rA'l'IC and OP'l'IONAL.
A STA'rIC variable cannot be declared PUBLIC in any block or
function-definition, but it may be used as a free variable
of a block or function-definition.

When a section-variable is declared OPTIONAL, then a decJnrlt­
tion of a block-variable or function-definition with the some
first-name and no section-name will refer to the sectioll­
variable if it is explicitly declared PUBLIC fit the poInt or
declaration, and to a LEXICAL variable otherwise.

2. If a section-variable-preset refers to a section-variable
established by a prior DECLARE statement. then the type of the
preset does not affect the type of the section-variable, and
any necessary.type-conversions are performed.

A named-function-definition establishes a section-variable whose reference­
mode is UNFIELDED, whose type is the same as the type of the function defined
by the function-definition, and whose valuation is the function defined by the
function-definition. If this valuation is printed out, the name of the
section-variable will appear, and the resulting datum can be read bnck in.
The valuation of such a section-variable ca.n only be modified by a flubsequent
named-function-definition. A named-function-definition, being on the top
level, cannot have any funarg varla1les.

A synonym-declaration ca.uses the expression on the right to be substItuted for
the section-variable on the left whenever that section-variable is referred to
in a compiled expression or function-definition.

---------- ------~. -~--~------~

26 April 1967 44 TM-3417/200/00

An n-tuple-definition establishes a new kind of n-tuple whose successive
fields are described by the coordina.te-specs of the n-tuple-definition. For
each field, the type and coordinate of the value to be placed there a.re
specified. N-tuples cannot contain locators in their fields, so no reference
mode need be given.

)

Tr"-3)~rr /200/00

Index to Syntax Equations.

~
Equation Page Equation Page

array-type 6 nanied-function-defj. nit ion 42
assignment-expression 19 negation 19
attribute 29 n-tuple-definition lt2

begin-block 29 on-clause 36
block 29 operator 19
block-variable-attribution 29
block-variable-declaration 29 parameter-declaration 26
block-variable-preset 29 parameter-descriptor 6

parameter-list 26
case-statement 40 power 19
casego-statement 40 predicate 25
code-statement. 41 primary 19

C
conditional-expression. 24
conditiona.l-statement 35 relation 19
conjunction 19 relator 19'
consequent 25 " "reset-clause 3h
constant 16 result-declaration 2()
construct 19 result-descriptor h
coordinate 6 return-statement 34
coord·'.nate-spec 42

. ; section-attribute 41
declare-statement 41 section-variable-attrihution 41
disjunction 19 section-variable-declaration 41
do-block 29 section-variable-preset 41

simple-expression 19
expression 19 statement. 29

statement-consequent 35
factor .19 step-clause 36
for-statement 36 sum 19
form 19 synonym-declaration 42
functional-type 6
function-definition 26 ta:i.led-var-na.me 17

term 19
p;o-statement 33 term:l.nal-pxprcBFli on ,.,r.'

I ..)

termlnal-ntatcmcnt 3~
in-clause 36 top-level-dcclFl.rnt:l.orl '. L
indef-parwneter 26 trY-FIt at em en t ho
indef-parllmeter-descriptor 6 type-declaration ~6

C label 29 unless-clause 36
loop-clause 36 untailed-var-na.me 17

var-name 17

while-clause 36

26 April 1967

Equation

array
arra.y-element
A.utonym

basic-expression
block-expression
block-statement
block-variable
body

compound-statement

datum
dimensionality

first~name

funarg
function-specifier

indef-name
iterand

nil
node
non symbol-element
n-tuple
n-tuple-name
n-tuple-type

operand

narameter
yarameter-storage-mode
preset

section-name
section-stora~e-mode

section-variable
simple-type
subscript
symbol

46 TM-3417/200/00

Index to Syntax Equations (Cont,)

~
~

Page

8
8

16

19
28
30
30
27

30

7
8

17
19

8

27
37

7
7
7
8
8
6

19

27
27
30

17
42
42

·5
40
7

Equation

type

unlabeled-statement

variable
variable-reference-mode

Page·

5

30

37
6

J

)

J

c 26 April 1967 47 Tlvl-3417/200/00

Index to Syntax Equations (Cont.)

Equation
G

Page Equation Page

array-type 6 named-function-definition 42
n-tuple-definition 42

begin-block 30
block 30 on-clause 36
block-variable-list 30 operator 19

case-statement 40 parameter-declaration-list 26
casego-statement 40 parameter-descriptor 6
code-statement 41
conditional-expression 25 reset-clause 36
conditional-statement 35 result-declaration 26
constant 16 re8ult-descriptor 6
coordinate 6 return-statement 34
coordinate-spec 42

l_ se.·~tion-variable-declaration 4?
declare-statement 42 single-parameter-declaration 26
do-block 30 statement 30

statement-consequent 35
expression 19 statement-unit 30

step-clause 36
for-statement 36 synonym-definition 42
form 19
functional-type 6 tailed-var-name 17
function-definition 26 terminal-statement 35

top-level-declaration 42
go-sta.tement 33 try-statement 40

type-declaration 26
in-clause 36
indef-parameter-declaration 26 unless-clause 36
indef-parameter-descrlptor 6 untailed-var-name 17

label 30 var-name 17
loop-clause 36

while-clause 36

26 April 1967

EQuation

array-typer

boolean

character-datum
compound-var-name

decimal
dot-operator

exponent

fraction

genid

identifier
integer

literal

mark-operator

non-string-delimiter
number

octal

punctuator

~"ea.l

48
(Last page)

Index to Syntax Equations (Cont.)

Page

12

12

12
12

12
12

12

12

12

12
13

12

12

12
13

13

12

13

sign
special-spellin~

string

token

unsigned-integer
unsigned-octal
unsigned:"real

TM-3417/200/00

12
12
12

13

12
12
13

)

)

