STANFORD ARTIFICIAL INTELLIGENCE PROJECT September 26, 1963,
Memo No. 8
(Preliminary)

STORAGE CONVENTICNS IN LISP 2

by John McCarthy

Abstract: Storage conventions and a basic set
of functions for LISP 2 are proposed,
Since the memo was written, a way of
supplementing the features of this
system with the unique storage of list
structure using a hash rule for
computing the address in a scparate
free storage area for lists has been
found.

The research veported here was supported in part by the Advanced Reseavch Projects
Agency of the Office of the Secretary of Defemse (SD-183).

At the LISP 2 meeting in July, considerable discussion was devoted to
the problem of allowing a wide variety of new types of entities, but no definite
conclusions were reached. In the last few weeks a newv approach to types has
been developed that simplifies the problem greatly. The simplicity comes from
separating the problem of computation types {ec.g. integer vs real) from the
problem of storage types and solving the storage type problem by itself,

Here 1s the solution. The basic entity in the system iz list structure
as in LISP 1.5. However, a word with negative sign is a storage layout word and
can say any of the following things:-

1. TFollouing me in memory is a block of n vords none of twhich have
relocatable addresses or decrements.

2. Follouing me in memory is a block of n words ecach of which has
relocatable address and decrement.

3. Follouing me i3 a block of n words vhose relocatability is
determined by bits in as many of the vords that immediately
follou me as is necessary (Both address and decrement relocate
if either does).

4, Pollouing me is a block of n words of program, The bits that
immediately follow say vhich words have relocatable address parts.

In each case the address part of the layout word may contain a type
name {e.g. real or inteper) usable for determining computation type and serving
to dlstlnguish the type in sets defined by the direct union operation of
YA Basis"

The first advantape of this scheme is that the marker of the packing
garbage collector can knov how to trace the storage from the layout vords alone;
it does not have to refer to separate type definition statements.

The second advantage of this scheme is that the public pushdowm list
can be made to include layout words just like freec storage itself., This
simplifies the marker vhich can now simply start marking at the head of the
pushdovn list.

We would like to include the LISP 2 program itself and its subvouiine
in the free storage area and have it referred to from the top of the pushdowm
list. This would mean that parts of the system could be excised, and the garbage
collector would automatically pack everything clse,

We shall nou reviev the garbage collector for LISP 2 vhich is
substantially as discussed at the July conference. It operates in four phases.

1. Marking, In a eparate table two bits are reserved for each word of

free storage and this table is initially set to all zeroes. The marker stavts at
the head of the pushdown list and traces the memory sivuciure determined by lict
tructure and the layout vords. Each word that it finds has one of _?"ec entwics

o 3
'“‘ nas

(i

made in the mark table according to vhether it deoesn't veloec um|
as ad nd decrc.hat

address relocation only (certain program words), orv hxs
relocatable {ilist structure). Layocut words are of the

[o e

Moo

&
SV PCe

)
o
A2
s
I
Qs F3
=

As in LISP 1.5, marking proceeds in both directions im a list word so that all
vords accessible from the pushdovm list are marked, Relocatable addresces in
program are not traced further however.

2. Listing upnmarked vords., A lincar gweep is made through the free stera
area and every vword not marked in the mark table is put into a chain., Each vor
of the chain has the number of unmarked words preceding it put in its address p

ae
d
avt,

3. Relocating addresses. In ancther linear swecep through storage each woud
that has a relocatable address or decrement indicated in the mark table is
modified., The amount of modification is determined by looking in the locatiom
referred to and counting backwards till an ummarked word is found. This word has
the amount of modification in its address part.

4, Moving. A third linear sueep moves each word the required amount.

Associated with this memory structure arce a number of functions. As in
| i .

LISP 1.5 ve have car, cdr, and cons. Supplementing car | x] and cdr ij is
cur [x| (contents of the word in remister) vhose value is the full vord contents
of the register vlicse addrece - m. Words in a block specified by a layout word
are obtained by functions like car |z + 3 Jor cur [x -+ 311

Supplementing cons | x; vy jand corresponding to the fivst three typos of
laycut vords listed above we have the following functions:

mlkl [n; type; Wis... ;vnj

vhose value is the location of a layocut word of the first kind, labelled with
type in its address part and folloved by n words with contents wy; ...3 W3

k2 [n; type; ap; di; ...ay; d;ij

vhose value is the location of a layout word labelled wiih type and followed by

n words vhose address and decrement parts are specified by the arguments Ay, dy,-0ean,

Wi Wn |
mk3 [:n; type; Ty,...Tr1; J

al5d1; T apdy,

Here the ¥y, Ty specify the relocatability of the n following words and the w's or
a-d pairs give the entries themselves. We do not define a mk4 function, at least
for the present.

The analogues of rplaca and rplacd will exist only in the pro n fe
vhich will be as like ALCOL 60 as is veasonable. One will write in the M-lansuage

cwr.[x~% 3] : o= 3,14
— —
or cwadr {x+ 3| : = 4.2
or caddr {ﬁ_] + = {(PLUS A B}

“3=

Besides these functions which are analogous to LISP 1.5 we also want
to be able to regerve an array in storage for later assignment statements. This
is accomplished by the functions:-

declare 1 [p; typej
declare 2 [n; type]
and declare 3 [n; type; ry; ... ri]

which have as value the location of the layout word of a new block of a given
type but do not actually put anything into the block (It is set to all zeroes).

The storage scheme described above provides the ability to use most of
the kinds of entity proposed at the conference without making any commitments to
specific computation types.

In their present form the functions are unsafe. For example if x is
the location of a layout word specifying a block of three unrelocatable words,
then cwr(x -4) does not depend on the quantity represented by x but belongs in
another block, and even x + 1 will not be a legitimate LISP 2 entity since it
is not the lccation of either list structure or specification words. This
suggests that these functions not be used directly, but that the compiler
generate the appropriate functions when reading type definition statements.
Thus the compiler might generate A[[xJ; ewr [x + 1] and A[[x]; cur {x + 2}]
to pick up the real and imaginary parts of a complex number. Tor the time
being, however, a very poverful and easy to produce system can be made from the
basic functions. Misuse of the basic functions will lead to obscure bugs
because the marker will become confused.

JMcC/ate.

	STANFORD-AIM-80001_a
	STANFORD-AIM-80002_a
	STANFORD-AIM-80003_a
	STANFORD-AIM-80004_a

