Friday, February &4, 1377 13:34:47 Al:PRATT;LSPLUG 380 Page 2

LISP - AN AMICUS CURIAE BRIEF
Y. R. Pratt
1718777

—- To the complexity of
building a single interface
betueen people, machines,
and problems, which has .

made this brief so long.

The department is presently consfdering the available choices
of facilities for a department-uide educational computing resource.
One such facility must be a language or languages. O0Of all the
facilities (editors, processors, mass storage media, consoles, etc),
“the choice of language has the greatest impact on the student, if not
on the professional programmer. This is because every encounter he
has uwith softuware, whether on a machine, in the class-room, or in an
exam, must go throunh the medium of language. For example, at present
the only choice of facilities critical to the department’s various

algorithms courses (6.846, 6.873, 6.851J and 6.854J) is that of

| anguage.

The Ad Hoc Committee on Educational Computing Resources has
narroued the choice to APL, PASCAL (or a similar algebraic
block-structured ianguage) and LISP, but appears to be unui[ling to
narrou the choice any further, and instead proposes to make all three
available on an equal footing. The obvious democratic advantages of
such a solution are counter-balanced by the increaéed maintenance

costs associated uith promising full support for a variety of

Friday, February &4, 1977 13:34:47 Al:PRATT:LSPLUG 388

languages. " Moreover, the choice of utility language for general
classroom use (e.g. for expressing algorithms) will still be at the
discretion of the individual instructor, requiring the students to be
proficient in all languages supported for this purpose by the .
department. HWhile it is reasonable to require our students to knou
all the department’s languages by the time they graduate, it is
unreasonable to expecf them to knou them all by the end of their first
.year. Nor is it reasonable to expect them to knou them all equally
well; in fact, given the demands we already place on our students’
time, it seems unfair to demand a complete mastery of more than one
language. A working knowledge of a variety of languagss is wWithout
doubt a vital part of a computer science education, but we should not
confuse working knouledge with complete mastery uhen choosing a
'Ianguage for a course on the basis that the student has been exposed

to it at some time during his education,

This position paper is intended to supply the committee with
information about LISP that can come only from someone uho has used
LISP extensively yct who has also had a compa-abie exposure o other
Ianguages competitive uith LISP. In my oun case | used the
implementation of ALGOL due to Randell and Russel! (8] from 1364 to
1969 at the Basser Computing Department of the University of Sydney,
and also taught ALGOL for approximately fifty contact hours in several
departmental "crash courses". My LISP experience extends from 13970 to
now. [t is hoped that the deeper understanding of LISP that this
papef attempts to supply uill be of value to the committee in
determining the optimal number of fanguages to be given full support

by the departmepnt.

There being no universally agreed on dialect of LISP to date,

Page 2.1

Friday, February &4, 1377 13:34:47 Al:PRATT;LSPLUG 339

-I have chosen to describe MACLISP, the dialect implemented at MIT.
{The major alternative dialects are INTERLISP, formerly BBN-LISP, and
UCI-LISP, a derivative of Stanford's LISP 1.6.) Even uith such a
concrete object as an implementation there is room for interpretation
of what has been implemented. Thus it must be realized that the

follouing represents one individual's perspective on orne dialect of
LISP.

To a non-L1SP-user, LISP's most forbidding aspect is its
notation, and so it is appropriate before entering the main discussion
to say a word or tuwo about this. To many LISP users the standard
notation offers advantages such as simplicity, ease of learning, and

the appearance of being data (as indeed it actually is). Houwever,

those who feel comfortable with algebraic languages and do not require

anything else need not be put off by the standard notation. HMACLISP
has an alternative extensible algebraic syntax (called "CGOL") which
-is similar to that of popular algebraic languages such as ALGOL and
PL/I, excepf that, being just a notational variant of LISP, it
inherits thc many advantages of LISP that we document belou. Item S,
of section A contains an ALGOL program together uith its remarkably

similar translation into this algebraic variant of LISP.

A. HMERITS OF LISP.

There are ten sections belou, uith first sentences as followus.

1. LISP is yersatile,

2. LISP is efficient.
3. LISP uses a standard character set.

4. LISP is interactive.

Page 2.2

Friday, February -4, 1977 13:34:47 Al:PRATT;LSPLUG 388

s. LISP is modular.

_ 6. LISP is notation-independent.
7. LISP is applicative.
8. LISP is uidely Qsed in academia.
3. LISP is used by half the HIT Computer Science faculty.
18. No other language enjoys all the above advantages of LISP.
1. LISP is versatile. Although LISP 'is caricatured by non-LISP

users as being of use mainly for manipulation of irregularly
structured data, this caricature does little justice to the careful
uwork done by McCarthy, Levin and others in the formative years of LISP
(around 1368) in developing a mathematically clean yet general
programming language. Certainly Artificial Intelligence applications
were a concern during that development; after all, Al uas the nutrient
medium within which LISP developed. Yet the Ianguage has managed to
remaip remarkably free of the concessions one might expect to arise
from such pressures, and is in our vieu one of the most

domain-independent languages currently enjoying wide usage..

We may illustrate LISP’s versatility by reference to its data

types. These are:

numbers integers (unlimited size), reals:

bit vectors various applications, e.g. PASCAL‘s'séts
booleans " T and NIL (for false) B

atoms serving double duty as strings and variables
lists for which LISP is best knoun

property lists various app!ications; e.g. PASCAL's records
arrays unrestricted as to type or dimension
function(al)s using LAMBOA and APPLY

Page 2.3

Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 380

programs using EVAL and QUOTE

In the MACLISP implementation the above data types are almost
"first-class citizens," a term used by the implementors of POP-2 (5]
“to describe a data type that can be passed as a parameter, returned by

é.function as a value, assigned to a variable, and tested for
equality. LISP's data types include some for which equality cannot be
decided, namely the last tuo. If we rule out the last réquirement.

then all LISP data types are first-class citizens.

It is hard to appreciate uhat first-class citizenship really
means until one has programmed uwith and without it. A generation of
LISP programmers has capitalized on this asset of LISP in order to
express themselves more economically yet more clearly. The examples
one finds in textbooks and manuals of LISP generally confine
themselves to lists and numbers, but the same style carries over to
the other data types of LISP when they are made available as
first-class citizens. | for one can vouch for many occasions on which
this attribute, applied to arrays, property lists, functions and
programs has been of value. For some (Joe Ueizenbaum for example),
the first-class citizenship of the data types FUNCTION and PROGRAM
truly set LISP apart from other languages. Around MIT the notion of
"procedural embedding of knowledge,” starting uith theses by Carl
Hewitt and Terry Winograd, has capitalized on this asset of LISP. A
good programming style can be developed along these lines in which one
stores information in small modules that can be evaluated by LISP uhen
they need to be queried. The advantage of this style is that such
information can be made context-dependent because |ike all LISP code
it has access to the environment. [Moreover a ﬁodule can be

"intelligent” about what it returns, possibly calling on other modules

Page 2.4

Friday, February 4, 1977 13:34:47 AT:PRATT;LSPLUG 388

for help before making up its mind. Carl Hewitt has built a uhole
programming language [2] based solely on this philosophy and has
demonstrated hou ACTORS (an apt term for the active modules of
information that characterize this style of programming) can by
"themselves supply the only foundations needed for a versatile and
efficient programming language, using methods analogous to the
corresponding demonstration for the pure lambda-calculus. Some of my
oun softuare benefits from this style of programming, which is only
possible for me as an ordinary LISP user because of LISP's according

programs first-class citizen status.

2. LISP is efficient., Another myth popular among non-LISP users
is that to use LISP one resigns oneself to gross inefficiency.
To put this shibboleth to the test, members of the MACSYMA project
took some numerical benchmark programs of the sort that one would
normally think of as being well-suited to FORTRAN compilation, and
compared their running times under each of an {admittedly old} FORTRAN
compiler and the LISP compiler used at MIT on ITS [1]. Both
compilations were performed on the same machine, a POP-18. The LISP
compiler won! UWith a fittle thought it becomes apparent that
inefficient object code does not inhere in a language but rather is
'the result either of the program demanding something difficult such as
a complicated parameter-passing task, or of the compiteq—uritere not
doing a good job. After all, why should the FORTRAN statement
A(I,J) = B(1,K)1xC(K,J)
and the LISP statement
(STORE (A I J) (TIMES (B i K} (CK J))
produce different object code? In fact, in the experiment cited
above, the slight superiority of the LISP code (involving an

insignificant factor of about 1.2) was traceable not to the code

Pags 2.5

Friday, February 4, 1877 13:34:47 Al:PRATT;LSPLUG 380 Page 2.6

generated'for the arithmetic parts of the program, uhich uas almost
identical in each case, but rather to the more efficient procedure
calling in LISP. This | feel convincingly disposes of the argument
that FORTRAN (and hence presumably most other high level languages) is

more appropriate uhen efficiency is needed.

Abraham Bers' Plasma Dynamics group at MIT, which although in
EECS is not a part of the Computer Science laboratcries (LCS and Al),
does'considérab!e "number crunching,” having used several hundred
hours of computer time for a variety of heavily numerical problems.
John L. Kulp of that group has experimented with a few numerical
problems using FORTRAN on MULTICS and the 378/168, and LISP (under
MACSYMA) on a PDP18 with a KL-18 processor. Although the arithmetic
unit on the 168 has tuice the speed of that on the KL-18, that group
has chosen to do most of their work on the POP-18 ir LISP/MACSYHA,
both because that factor of two is considerably diluted by the
éssociated and inevitable non-numeric processing and because of the
advantages of LISP over FORTRAN. (It should be noted that MACSYMA
uses an algebraic notation, removing any notational advantage FORTRAN
may possess over the standard LISP notation.) One complaint expressed
to me by Charles Karney, another member of the group, uas that LISP
did not offer double precision reals or complex numbers. This is one
area uhere FORTRAN'’s dedication to numerical applications puts it
ahead of LISP. Houever, this shortcoming of LlSé is in the category
of implemenﬁatfon—dependent defects, and could be rectified uithout
doing violence to the LISP 'language per se. UWhether the department

has the resources to rectify these defects is a question, houever.

In none of the above arguments have ue claimed that one cannot

urite LISP programs that are inefficient. In a language as versatile

Friday, February 4, 1977 13:34:47 A1:PRATT;LSPLUG 388

as LISP it is inevitable that the user uill want to take advantage of
constructs that linguistically express perfectiy uhat he is trying to
say but computationally present obatacles to efficient code ‘
generation.. Our position on this is that the default should be that
the programmer fee! no compunctions about using to the full the
features of a language, but that on those occasions uwhen it truly is
the case that the machine's time is worth more than the programmer’ s
(together uith the time of those who have to read his code) then the
programmer should know which constructions to avoid to permit the
optimizer to do as good a job uith his code as a good FORTRAN
optimizer can do. Thus a systems programmer uriting widely used
systems code in LISP might as a general policy avoid heavy use of
functions that do considerable uwork to keep the environment in a
consistent state such as code associated with LISP's "special”
variables. (If systems programming in LISP sounds !ike a
contradiction in terms, it suffices to point to the MACLISP compiler,
which is implemented in LISP. Much of the system code associated with

hichard Greenbiatt’s LISP machine is also written in LISP.)

3. LISP uses a standard character set. Essentially atl
general-purpose terminals on the market nou adhere pretty closely to
the ASCI! standard character set. It would be next to unthinkable for
a language designer today to propose a language that made heavy use of

a radically different character set, so this claim aimost goes wuithout

saying.

4, LISP is interactive. If one uants to knou the value of 1+1
while "talking to" LISP, one types (PLUS 1 1)} (or 1+1) and LISP
replies 2 without further ado. [f one uants to get a big job

underuay, one simply invokes the top-level function of that job in

Page 2.7

Friday, February 4, 1377 13:34:47 Al:PRATT;LSPLUG 388

exactliy the same way. And of course one’s program can aluways type
directiy to the user and accept input from him at any time. Perhaps
more significantiy, one can interact with one’s program while it is
running, interrupting to both modify and/or examine the environment.
In pouerful languages like LISP, environment examination is made more
complicated by the complexity of the environment: nevertheless LISP

provides the tools needed to explore nested contexts and complex data

structures. -

5. LISP is medular. One of the joys of programming in LISP is
that almost everything one does can be done incrementally, either on
‘the user’s command or under program control. [f one is running a LISP
'program and wants to interrupt it to urite another function, one can
dp S0 on tbe spot uwithout having to re-read the uho}e program back
into LISP. 1 one takes a dislike to the behavior cf the lexical
analyzer, its behavior can be modified on the spot, either locally or
by wholesale and instantaneous replacement uith a neu analyzer. If
the routine used by the top-fevel listen loop to print the answer is
inappropriate to the task, it can be changed in one command; in fact,
the entire top-level listen loop can be replaced. 1f a given
system-defined function such as PLUS is not to the user's taste he can
simply supply his own, uithout having to change every occurrence of
PLUS in his prograﬁ to a user-defined name. Even the READ function
invoked by the top-level listen loop can be replaced with a user’
supplied function, an advantage so important that we afford it special

" treatment in the next section.

LISP’s modularity is important not only to a single programmer
but to groups of programmers cooperating on a project. UWhen one

develops a LISP program for a specific application, it can be used

Page 2.8

Friday, February &4, 1377 13:34:47 Al:PRATT;LSPLUG 388

later as a subrouﬁine of somebody else’'s program. Hhile this is true
to a limited extent of most languages, it holds to a much greater
extent in LISP., An example of this modularity concerns a
program-proof-checker that Steve Litvintchouk, a graduate student of
mine, has been uriting in LISP., He complained to me that entering
afatements about programs into the computer was painfully slou because
he uas using standard LISP notation. So | made up a formal definition
of the notation u; had been using in class, implemented it one
afternoon, loaded it into a LISP that already had Litvintchouk's
program loaded {after a few debugging runs of course) and ue uere then
able to talk to his program in the notation we wanted. (Sample:

[Y: =X45] <Y: =Y-1%x>X=Y asserts that after setting Y to X45, it is
possible by iterating Y:=Y-1 to reach a state in uhfch X=Y. Ue uere
firing of wuriting (([J G=Y (+ X5))) ((e> (x (=Y (- Y 1)))) (=X
Y))) to express the same thing.) The remarkable'thing about this
particular exercise is that | had no idea what his code looked like at
the time as I had not then gotten around to reading it, and he héd no
idea hou one might go about changing notation in LISP. Yet despite
this mutual ignorance, and uithout'making any changes to his code, ue
were able to accomplfsh tn a quite simple way what would require major

surgery to the program in almost any other language.

6. LISP is notation-independent. HMathematically speaking, LISP
programs form a set containing "atoms" and closed under the pairing
" function CONS. Hou such programs are to be represented is an
implementation-dependent issue. 'In any implementation there are at
least tuo representations, internal (consisting in the ‘interpreted
case of a graph whose nodes are computer words and whose edges are
_pointers, and in the compiled case of a stéing of machine

instructions) and external (consisting traditionally of fully

Page 2.3

Friday, February &, 1877 13:34:47 A1:PRATT;LSPLUG 388

parenthesized prefix (foruward Polish notation) expressions). Houever,
this does not exhaust the possible representations of LISP programs by
any means, a.point that is frequently over-looked and yet one that uas
made right at the outset by McCarthy, who used what he called MLISP
notation, an algebraic notation that PL/] users would feel much more
comfortable uith than the fully parenthesized prefix notation. An
implementation of MLISP exists at Stanford, and is the notation of
choice for LISP users there. At MIT an MLISP-like notation called
CGOL is available to the LISP user: at any time, even half-uay through
running his program, he can simply say (CGOL) and from then on he can
rephrase‘
(QUOTIENT (PLUS (MINUS B) (SORT (DIFFERENCE (EXPT B 2)
(TIMES 4 A C))))

(TIMES 2 A)) '

as

(-b+sqrt (bxx2-4xaxc))/ (2xa)

or

(MAPCAR * (LAMBDA (I J) (PRINT (CAT "[Buy | 1 *] for | J | dollars.|}))
SHOPPINGLIST '
PRICELIST)

as

for i in shoppinglist, j in pricelist do

print "Buy " * i " for "~ j ~ " dollars.,”

and so on. The versatility of LISP in comparison to most other
programming |anguages becomes more apparent in an algebraic notation
‘Eecause.a more direct comparison is possible without the distraction
of having to allou for radically different styles bf notation. (An '
aside having nothing to do uith notation: although all programming

languages deserving of the name can express the first of the above

Page 2.18

Friday, February 4, 1977 13:34:47 AT:PRATT;LSPLUG 388

examples, very feu can cope uwith the second quite so directiy.)

MACSYMA users also use an MLISP-like algebraic notation - in
" fact MACSYMA's parser is just the CGOL parser modified {by Michael
Genesereth) to handle typed expressions. Unlike CGOL in plain LISP,
MACSYMA notation is the default laﬁguage for MACSYMA users.

The CGOL notation inherits LISP's modularity, in that it can
be extended painlesglg by the user even while in the middle of running
a program. This legacy of LISP's puts this algebraic notation ahead
of afmost all other available algebraic programming languages with
respect to syntactic extensibility., Oniy a feu researﬁh systems come
close to this level of convenience, such as Bell Laboratories’
recently developed YACC (Yet Another Compiler-Compiler) system, a
version of uhich has been developed by Alan Snyder at MIT uhere it is
used as the "front-end" of Barbara Liskov’'s CLU language. Even these
advanced systems do not offer the fast incremental extensibility of
this syntactic front-end to LISP [6,8]. UWhile this may at first
appear to be due to some sort of hreakthrough in extensible language

work, it is really just a spin-off of LISP's excellent modularity.

It may be instructive to compare an ALGOL program taken.

" verbatim from the Communications of the Association for Compgtihg
Machinery, Algorithm 482 [3], nith its rendering in this algebraic
dialect of LISP. UWe give the ALGOL version first, changing only its

comment section for the sake of brevity.

comment We are g]ven a set of touns numbered 1 to n. There are k one-uay
roads leading out of each toun in such a uay that if you ever go on a

trip you can aluays get back home again, though not necessarily by

Page 2.11

Friday, February &4, 1877 13:34:47 A1:PRATT;LSPLUC 388

retracing your steps. Houever, it is not guaranteed that you can
aluays get to the toun of your choice. The problem is to group the

touns into equivalence classes of mutually accessible touns.

The roads are represented by an array im{l:n, 1l:k) such that
imlr,q) is the g-th toun accessible from toun r. You are given tuo
arrays indll:n] and orbll:n] to store the results in. Toun i is to be
in the indﬁi]-th equivalence class. Orblil is a2 list of touns
arranged so that each équiva!ence class is in a contiguous block; the
first toun of each block is stored uith its sign bit complemented (in
particular toun 1 will appear in orbll] as -1) to distinguish the

beginning of the block.

(The problem uas stated in CACHM in group-theoretic terms, uith
orb referring to orbits of group elements, but the ALGOL solution

given in CACH solves the more general problem ue have just described.):

procedure orbits{ind, orb, im, n, k)
value n, k3 integer n, k:
integer array ind, orb, im;

beain

integer q, r, s, j, nt, ns, norb;

for j :=1 step 1 until n do indlj]l := B;

norb ¢= B: ns 1= 1;

for r :=1 step 1 until ndo if indlr] = 8 then
begin
norb := norb + 1; ind(r] t¢= norb;-

nt := ns; orblng] = -ry 5 1= r;

ns t= ns + 1;

Page 2.12

Friday, February &, 1377 13:34:47 Al:PRATT;LSPLUG 3889

for j := 1 step 1 until k do
beain
g := imls, jl:
if indlg) = 8 then
beain A
nt := nt + 1; orblnt] := gq; indiq]l := norb
end
end;
if ns < nt then
begin & := orbinsl; go to a end

end
end

The follouwing is the LISP rendering of the above procedure,
using the algebraic dialect. For direct comparison -ue have adhered as

closely as possible to the layout of the above program.

define "ORBITS"(ind, orb, im, n, k)3
(
ned q, r, 8, j, nt, ns, norb;
for j inl to n do ind(j) := B;
norb := B; ns := 1;
for r inl ton<do if ind(r) = 8 then
(prog; ' . " % necessitated by the presence of {ugh) goto %
norb := norb + 1; ind{r) := norb;

nt = ns; orb{ns) t= -ry 8 = r;

ns t= ns + 1;
for j inl to Kk do
(

Page 2.13

Friday, February 4, 1977 13:34:47 Al :PRATT;LSPLUG 388 Page 2.14

q := imls,j)s
if ind(ql = 8 then
(.
nt := nt + 1; orbint) := g; ind{g) := norb
)
);
if ns <= nt then

(s := orblns); go a)

)
)
The only differences in this example are:
ALGOL Lisp
albl alb) {arrays)
begqin end () (block delimiters)
integer new (type declarations .inessential)
procedure (and rélated text) define (and related text)
for i :=1 gstep 1 until n for i inl ton
a: (and associated goto) a; (and associated prog and go)
value) redundant (arrays may be values in LISP)

- <= (< not in ASCI1 standard)

None of these differences are particularly significant.
However, we were fortunate that the goto did not leave a block, which

would have precluded as direct a translation.

The attentive reader may have noticed that the "tor i in"
construct used earlier to scan a shopping list uas used in this

example to scan the list of integers 1 to n. [f the user types the

Friday, February &4, 1377 13:34:47 AT:PRATT:LSPLUG 388

expression "l ton" by itself, he uill get back that list; for obvious
reasons the system does not do this explicitly in "for i in 1 tb n”
but instead just steaailg increments the variable i to simulate
scanning that list. This supplies a nice example of hou one can unify
language constructs (in this case the tuo notions of scanning a list
‘ and successively incrementing a register) if one is uilling to let the
optimizer {(in this case, a source-level optimizer) take over the task
of deciding whether scanning or incrementing is required. This is
already an essential point in APL, uhere for some programs the naive
implementation can be disastrous, for example uhere one uants to
search. the vector iota 1088888 (or 1 to 1088888 in LISP.notation) for
" the number of integers less than a million expressible in tuo ways as
fhe sum of tuo cubes. A smart APL interpreter uill only generate and
keep around as much of iota 1008088 as it needs at any one moment,

avoiding demanding an unavailable amount of memory.

Let us emphasize again the role the notation plays in this
example, uﬁich.is to shou that a LISP program need not be very
different from a typical ALGOL program. To stress that the notation
only supplies some windou-dressing in this demoﬁstration. ue restate

the above program in the notation preferred by the majority of LISP

users.

(DEFUN ORBITS (IND ORB IM N K)
(PROG (Q R S J NT NS NORB)
(00 ((J 1. (ADDL 1))
((GREATERP J N))
(STORE (IND J} 8.))
(SETQ NORB 8. NS 1.)
(00 ((R 1. (ADDL R)1)

Page 2.15

Friday, February &4, 1977 13:34:47 Al:PRATT;LSPLUG 380 Page 2.16

((GREATERP R N})
(COND ((ZEROP (IND R))
(PROG NIL
(SETQ NORB {ADD1 NORB))
(STORE (IND R) NORB)
(SETQ NT NS)
(STORE (ORB NS) (MINUS R))
(SETQ S R)
A (SETG NS (ADDL NS))
(00 ((J 1. (ADDL J)))
((GREATERP J K))
(PROGN (SETQ O (IM S J))
(COND ((EQUAL {INO O} 8.}
(SETQ NT (ADDL NT))
(STORE (ORB NT) Q)
(STORE (IND Q)
NORB))11)
(COND ((NOT (GREATERP NS NT))
(SETQ S (ORB NS))
(GO A1) 1IN

The abové comparison is a little like having 3 race betueen a

Ford and a Porsche uhere the drivers are required to behave
identically. After a feu seconds the Porsche driver starts to grumble
about being in third gear when he should be in fifth. In the above
example there are some clumsy programming constructs that are the
result of programming in a language that does not provide adequately
_for irregularliy structured data. Actually, the input of this example
(the array im) is regularly structured, but the result (the array orb)

attempts clumsily (using the sign bits of its entries) to represent

Friday, February &, 1377 13:34:47 Al:PRATT;LSPLUG 388

.the irregularly structured ansuer.

We give belou another version of the same algorithm, this time
relaxing the constraint that we have to mimic the ALGOL solution as
closely as'possiblé. First ue observe that the array im is really the
only input data required. Second, we suggest that im be represented
as a vector of lists, allowing a variable number of roads to leave

each toun. (In the group-theoretic special case of this problem, k is

. fixed, corresponding toc having k generators of an n element group, but ’

the solution given in CACHM makes no essential use of k being fixed.)
Third, we suggest that the ansuwer be an array (corresponding to ind in
the above program} uwhose i-th element is a list of touns accessible
from toun i (numbering these equivalence lists as in the above

programs seems pointless).

All variables except adi (array dimensions of im) correspond

to variables used in the above programs, though they may not be of the

same type.

As before te give the algorithm in both notations, with the
preferred notation first this time to avoid giving to much prominence
to the CGOL notation, which plays no essential role in the point being

made by this second LISP version of the program.

(DEFUN ORBITS (IM)
(PROG (ADI IND N NT)
“(SETQ ADI (ARRAYDIMS IM))
(SETQ IND (APPLY *ARRAY (CONS NIL AOI))

N (SuBl (CADR ADI))
(D0

Page 2.17

Friday, February &, 1977 13:34:47 AL:PRATT:LSPLUG 388

{(R 1. (ADD1 R)J)
((GREATERP R N)}
(COND

C(NULL (IND R))

. (STORE (IND R) (SETQ NT (LIST R)))
{MAPC

* (LAMBDA (S)
{MAPC
' (LAMBDA (Q) (COND ((NULL (IND @))

(STORE (IND @) (IND R))
(RPLACD NT (LIST @)
(SETQ NT (CDR NT}1)))

(In S)))
(IND R))) 1))
(RETURN IND)}))

The CGOL version of the above, for the sake of those feu who

find something objectionable about the above notation, is:

define "ORBITS" im;
let adi = arrag&ims ims
let ind = arrayinil . adil, n = cadr(adi) - 1, nt = nil;
for r inl tondo if null ind(r) then
(ind(r} := nt := [r]s
for 8 in ind(r) do
for q in im(s) do if null indl(qg) then

{ind(q) := ind(r); cdr nt := [gql: nt := cdr nt))s
ind

, The DO-loop (the outermost for-loop in the CGOL version)

looks

Page 2. 18

Friday, February &4, 13977 13:34:47 Al:PRATT;LSPLUG 339

for touns not yet in equivalence classes (LISP initializes untyped
arrays to NIL, whence the NULL test). UWhen a neu town R is found, a
length-one equivalence fist (LIST R) (in CGOL: [r)) is started for it,
and NT is set to the fast LISP cell of the list (uhich initially is
also the first)., Then for each toun S on the list, touns reachable
from S that as yet belong to no list are put at the end.of this list.
(Since "(MAPCAR ... (IND R))" does not make a separate copy of the
list (IND R) before scanning it, putting more touns on fhe end of the
list fbrces the MAPCAR to consider those touns as well, which is uhat
we want here. Thougﬁifhis is not good LISP stgle; it is houw one would
use LISP to do what uas done in the ALGOL program, uhich is not good
style either.) UWhen all touns have been put into classes, the array
IND is returned. To use the subroutine on input array X to find out
Hhat touwns are accessible from towun I, say ((ORBITS X} I} which will
compute the IND array and then apply it to I.. This of course is an
inefficient use of ORBITS; usually one uill say (SETQ X (ORBITS Y))

and later say (X I) for each | of interest.

For those readers wondering how hard | had to look to find an
'example better coded in LISP than ALGOL, I should say that I siﬁp!g
selected the most recent short ALGOL contribution to CACH's algorithms
section that I could find on my bookshelf. 1 originally had not
intended to give the second LISP version; but could not resist it oncé

I sau uhat the algorithm was up to.

It must be admitted that any notational change to LISP raises
the question of uhét constitutes a programming language. Must one buy
lexicon, syntax, semantics and object code as a package, or can one
shbp around like a purchaser of a component stereo? The argument of

this section has assumed that one can shop around, but uwhile component

' Page 2.193

Friday, February &, 1977 13:34:47 Al:PRATT;LSPLUG 338 Page 2.2

stereos may make sense to an electrical engineer, the concept of
component |anguages may require some getting used to. This issue
drives home the disadvantage of most languages, that you cannot use it
for its good features without also having to accept its bad features.
The situation has encouraged an attitude among language users that
permits arguments of the form, "He can’t have X because it has a bad
feature, naﬁelg its syntax.” As the computer-using community matures,
it should grow more accustomed to the idea of purchasing language
components and assembling them into their "ideal” system. As a
spin-off from this sort of technology, we may hope to see a decrease
in the number of languages available, a number which from this point
of vieuw ue can attribute to the multiplicative way in uhich options
mugt increasg when you cannot order systems component by component.
For example, if the community demands tuo kinds of lexicons, two kinds
of syntax, two kinds of semantice and tuo kinds of code-generators,
the market need supply only eight components in place of sixteen
systems. Any increase in the sizes of the component options results

in a rapid widening of this gap.

In this context the question of uhether to choose a widely
used language must be restated as whether to choose a uidélg used
component. This question is perhaps most important for the syntax
component, yhibh for the user is as at least as visible as any other
component. Although | suggested above that CGOL or MACSYMA notation
offers the algebraic-notation user an alternative to the standard
notation, other notations are equally possible, such as the very
widely knoun ALGOL notation. In fact, an ALGOL front-end has been
built for LISP {by Camilo Rueda) that adheres as closely to the
Revised ALGOL B8 report as the ASCI] character set will allow

{omitting dynamic oun as is customaryl. If the question of whether

Fridag. February 4, 13977 13:34:47 Al:PRATT;LSPLUG 388

the notation was uidely knouwn became a serious issue, the installation
of ALGOL notation is straightforuard, modulo tortuous implementation
when the (rarely used in practicel environment-handling capability of

ALGOL is given ful!l throttle.

LISP's independence of choice of notation may be of value in
an educational environment uhere, é!though a commitment to a single
language may have alreaag been made, individual instructors may
never theless have a requirement for a different notation. LISP's
ability to change notations in midstream uithout having to change
languages reduces the overhead associated with maintaining several
entire languages and their supporting maintenance teams and other
paraphernalia. For example, if APL were needed on occasion, it would
not be impossible to embed it in LISP; indeed a very compact
definition of APL is possible in LISP, Houwever it would seem only
fair to ask the users of such components to assume their maintenance
costs., There is also the question of uhether it is fair.to ask the
students to learn one notation after another as they proceed from one

course to the next.

7. LISP is applicative. That is, one can urite non-trivial
programs in LISP using only functional application. Hore
significantly, this style can be used in LISP for programs that in
most other languages would have to be uritten iteratively or .
recursively. The tuo LISP functions (strictly, functionals or
combinators) that supply this power are MAPCAR and APPLY. HAPCAR
permits a function to be applied to the elements of a list one af a
time f{coordinate-wise operation) uhile APPLY permits an operation such
as PLUS to be applied to all the elements of the list (APL's notion of

réduction. uritten +/a). APL, like LISP, offers non-applicative

Page 2.2

Friday, February &4, 13877 13:34:47 A1:PRATT;LSPLUG 388

features such as assignment and goto, but its users are.strongly .
encouraged to rely on.the applicative part of APL, and (presumably) to
ensure that this happens APL offers a bare minimum of non-applicative
control structures. A significant benefit of this style is that
reasoning about such programs can be done in the same algebraic
formalism that uwe have all been raised on since birth, instéad of
having to invent systems of logic especially to cope uHith the
non-algebraic control structures of conventional programming
languages. For example, knowing that + is associative even uhen
applied to equal—fength vectérs as opposed to scalars, ue can
.immediatelg see that (u+v)+u computes the same vector as u+{v+ul),
uhereas ue may have to argue more indirectly about the effect of the
corresponding two programs in a non-applicative {in this case
non-vector-manipulating) language. Vector spaces have been uel!

studied and their properties carry over readily to reasoning about APL

programs.

Let ys give some examples where LISP can be used as an .
applicative language. Using (APPLY (FUNCTION PLUS) A) for APL’s +/A,
uhere the APL vector A is represented as a list in LISP, and using .
(MAPCAR (FUNCTION TIMES) A B) for APL's A#B, which multiplies vectors
A and B coordinatenise to yield a neu vector of the same length as A
and é, we may get the effect of APL’s +/Ax8, uhich computes the inner
product of tuwo vectors, via (APPLY (FUNCTION PLUS) (MAPCAR (FUNCTION
TIMES) A B)). (For algebraically inclined users, CGOL offers the
variants albl for (MAPCAR (FUNCTION A) B) and aibl for (APPLY
(FUNCTION A} B). alibl] denotes the composite of these tuo, realized
in LISP as (APPLY (FUNCTION MAPCAR) (CONS (FUNCTION A) B)}.) One way
to urite a one-line matrix multiplication routine in LISP (yes, APL

has no monopoly on one-liners) would be {(in CGOL):

Page 2.22

Friday, February &, 1977 13:34:47 Al:PRATT;LSPLUG 388 Page 2.23

for i in x collect for j in listliyl] collect plusitimesii, jll .
which in the standard notation is

(MAPCAR * (LAMBOA (1) (MAPCAR '({LAMBOA (J) (APPLY 'PLUS (MAPCAR "TIMES 1 J))))

(APPLY (FUNCTION MAPCAR) (CONS (FUNCTION LIST) Y)))
X)

(The rather complicated thing being done to Y, which is a list
of lists of numbers representing a list of rous of a matrix, is simply

transposition.)

In some respects LISP's applicative abi!itg is superior to
APL's. APL lacks a specific operator that permits coordinate-uise
application.of a scalar operator, but rather rel%es on the fact that a
scalar operation is being applied to a vector to deduce that
coordinate-uise operation is called for. HWhen a user has defined an
operation that applies equally uwell to scalars and vectors, he cannot
specify to APL uhether or not he wants to apply his operation to the
list as an entity or coordinateuise to its individual components. In
LISP one distingﬁishes these cases explicitly as (A B) versus (MAPCAR
(FUNCTION A) B) (in CGOL, a(b} versus albl). Houever,'APL does

distinguish reduction (e.g. +/3) explicitly.

8. LISP is uidely used in academia. In a large portion of the
academic computing community LISP is either a first or a second

. language.] received last week a letter from Gene Freuder, a recent
MIT graduate now teaching at Indiana, where he is their Al .
representative. He was happy to report that in his department

“everyone speaks LISP as a mother tongue."” Hhile one might not be

Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 388

surprised to hear this about a department uith.a heavy Al bias, it is
a tribute to LISP's ubiquity that it should be so honored in a
department noted primarily for its work on programming languages and
multiple-valued logic. LISP enjoys considerable use at Stanford
University, Staﬁford Research Institute, Xerox Palo Alto Research
Center, Carnegie-Mellon University, Bolt Beranek and Neuman, 1BM
Yorktoun Heights (for their SCRATCHPAD system), and can even be found
as far afield as the University of Edinburgh and Japan's
Electro-Technologica Laboratories, 1t is a sine qua non for any
laboratory planning to embark on Al research, as if is the lingua
franca of Al. Three of the above institutions (Xerox PARC, IBM and
ETL) are only semi-academic, illustrating that LISP is not confined to

universities alone.

3. LISP is used by half the HIT Computer Science facul{g; Thus
choosing LISP as the main departmental language, if one language is to
be chosen ueber alles, uould seem to involve the least upheaval.
Further, LISP as a high quality language attracts high quality
"maintenance personnel. LISP has been maintained here not onluy by Jon
. L. Uhite, a very experienced LISP systems programmer, but by some of
the sharpest graduate students in the world. Guy L. Steele, uwinner of
the 13975 George Forsythe student paper competition [18], the main
student-paper competition in the computer-science world, has been a
shining example of such help for several years dating back to his
undergraduate days. .The situation seems simply to be that the best
languages attract the be;t students, . Unless MIT suddenly experiences
a dearth of good students, a fate feu of us uant even to contemplate,
this high quality maintenance should continue at or near its present

enviably high level.

Pags 2.24

Friday, February &4, 1977 13:34:47 Al:PRATT;LSPLUG 388

10, . No other language enjoys all the above advantagés of LISP.
"This remains true even if advantages 2 and & are omitted. Let us
argue this point on a language-by-language basis, choosing (at the

risk of offending all uhose languages have been omitted} FORTRAN,

COBOL, ALGOL 68, PL/I, APL, ALGOL 68 and PASCAL. In the follouing we

omit reference to items 2, 4, and 9; the first tuo are easy to satisfy

while the last is obviously impossible.

FORTRAN: This fails on items 1, 5, 6 and 7. FORTRAN's storage
allocation facilities and control primitives are too rudimentary to
make FORTRAN useful outside the domain of numerical arrays, for which
it was designed. By bending over backuards one can do anything in
FORTRAN, as in any universal language (in Turing’'s sense); for example
Joseﬁh Weizenbaum implemented SLIP, a list processing language, in
FORTRAN, and it.is the language used for symbo! manipulation at Bell
Laboratories. However, one is sufficientiy hemmed in by petty
restrictions and inadequate data and control structures that no very

strong case can be made for it.

COBOL. COBOL has something to offer academia that FORTRAN lacks, and
that is a "data division" (to use COBOL terminology) that permits the
user to defiﬁe a rich variety of data types. This can lead to
considerable simplification of the "program division."'éince the COBOL
compiler can automaticallg make many decisions about'uhere to put
things and hou to represent them. Unfortunately COBOL's.data types
are rich in about the same sense that an Eskimo finds a richness of
snow varieties in the Arctic; this richness goes unappreciated in
other climates, and COBOL's concern with business data processing
makes it too narrou for use in other environments. (In this respect

SIMULA B7 fares much better.) UWe can rule out COBOL on the same

Pags 2.25

Friday, February &, 1877 13:34:47 Al:PRATT;LSPLUG 388

grounds as FORTRAN, together with item 8.

ALGOL 68. In item B we observed a serious lack of versatility in
ALGOL 68. This houever uas a problem having to do with ALGOL's rather
limited data types and lack of first-class citizenship for arrays. In
contrast ALGOL’s control structures are remarkably powerful; one can
do truly astonishing things with ALGOL's goto statement, such as
jumping out of a procedure body that has called itself recursively to
a great depth, resulti&g in exiting from all those levels of recursion
in response to one goto. Also ALGOL offers call by name, which
permits such useful constructs as Jensen's device for implementing a
summationAoperatér. However, not only does LISP offer facilities with
all of this pouer, but it packages the facilities better, For
example, exiting from several levels of recursion at once in LISP is
requested explicitly with the THROW operation, which "throus" a value
to a corresponding CATCH operation whose argument was responsible for
invoking the THROW. Moreover these strengths of ALGOL, such as they
_are, do not make up for its weakness in the versatility of its data
types. ALGOL fails on items 1, 3 (to a small but not terribly

important extent), 5, 6, and 7.

PL/I. PL/]l is nothing if not versatile. At least that is what IBH
had in mind when they designed it. However, to be versatile without
being modular is to be a2 super-market, where sometimes you spend more
time looking for the aisle you need than all the other operations '

combined. PL/l fails on items 5, 6 and 7, as well as 1 in my opinion.

APL. APL passes strongly on item 7 (applicative}, though not
uithout a black mark for being unable to distinguish ordinary from

coordinate-uise application explicitly. For what it attempts to be,

Page 2.26

Friday, February &4, 1377 13:34:47 Al:PRATT:LSPLUG 388

namely a vector-manipulating language, it also does uell on i tem 1.
Though ue promised to omit reference to item 4 (interactive), this is
a very strong feature of APL, and supplied me uith my one reason to
use APL considerably during a summer visit to IBM. Unfortunately,
little of my uvork happened to fit the vector mold very uell, despite
the fact that most of it was heavily numerical, and I found myself
from time to time using the embryonic 368 LISP system maintained by
Fred Blair at IBM, on the ground that the additional time | had to
spend running back and forth betueen the CP/CMS editor and LISP uas
made up for by the considerably decreased programming time in LIGP.
Thus I would fail APL on item 1, though not as seriously as the above
languages. UWhat really makes APL totally unacceptable is the
insistence on a character set so out of touch uith the ASCII standard
that the department would be locked into an unacceptabfg inflexible
(not to say expensive) situation if it were to generally adopt APL.
APL also fails on S and B.°

ALGOL B8. This language is full of nice ideas. [t has been
carefully thoﬁght about by people with 2 concern for elegarce and
mathematical precision. Unfortunately the former has been sacrificed
to the latter, and to learn ALGOL 68 requires considerable patience
wuhile one discﬁvers the correspondence betueen one's programming
intuition and the hicturesque vocabulary of an ALGOL 68 programming
guide {(not to be confused with the language’s formal definition, which
is uritten in an almost inaccessible meta-language). ALGOL 68 fails

on items 6, 7 and 8. -

PASCAL. Nicklaus Wirth sensibly designed PASCAL to be simple in
concept, easy to implement, efficient, yet versatile in its data

tupes. HMoreover, he sau to it that a good implementation on a machine

Pags 2.27

Friday, February &, 1377 13:34:47 Al:PRATT;LSPLUG 3889

commonly found in universities {a large COC machine) uwas made
available. As a result, PASCAL has attracted the attention of many
computer science departments as being an ideal pedagogical language.
PASCAL's greatest drawback is the extent to which Wirth compromised
{unnecessarily in my opinion) to achieve ease of implementation. As a
result, PASCAL (like every other language above} lacks the
first-class-citizen property that makes LISP so pleasant to use yet
simple to implement in the event that you are uilling to forego
efficiency on some of the data types. | believe that this concession
to efficiency, uwhile it has many merits, detracts considerably from
PASCAL's otheruise excellent versatility. As ue have remarked
elseuhefe. efficiency should be a3 concern of the compiler as far as
possible. Nevertheless, PASCAL remains among the more attractive

possibilities.
B. DRAWBACKS OF LISP.

Most of the complaints of this section are
implementation-specific and do not inhere in the LISP language itself.
The one major exception to this is LISP’'s typelessness. 1t is
unlikely that future implementations of LISP will clear up this issue-
Without introducing substantial incompatibilities with existing LISP
softuare. Horeover, many feel that typelessness is more virtue than
vice. In contrast, the various complaints about the implementation
cannot be taken seriously from a long-term stand-point since they are
of a fairly trivial nature (except for the FUNARG problem). Moreover,
other implementations of LISP are presently in an experimental stage,
one in harduare (Richard Greenblatt’s LISP machine) and one using the
lexical scoping of the lambda calculus (Guy Steele and Gerald

Sussman). Thus implementation-specific properties of LISP are at

Page 2.23

Friday, February &, 1977 13:34:47 Al:PRATT;LSPLUG 339

present in a state of flux, and taking them into account in deciding
that LISP was inadequate would be a case of throwing out the baby With
the bathuater. Let us nou begin with my one implementation-

independent complaint.

LISP does not in any systematic way permit the user fo speci fy
the tupes of his data and variables. In fact some types are
implemented directly as other types uithout LISP being able to tell
which type is intended. For example, NIL serves double duty as the

.poolean FALSE and the empty list, as well as being recognized by LISP
as an atom (though not one that can be used as a variaple). And bit
vectors are just single-precision integers; indeed only the presence
of bit-manipulating operations permits LISP to claim that it has the

type bit vector. Though this typelessness of LISP has an advantage in

permitting the user to save programming time by not having to declare

types, there remains the fact that many bugs are detectable because
they violate tuype constraints. These violations uwill be caught by the
interpreter (if at ali) only uhen the offending portion of the code is
actually run; for this reason some LISP users compile Eheir neuly
uritten code before or even instead of debugging it,interpretivefg as
a fiﬁst'debugging step on the ground that at least the compiler does a
fair to moderate job of detecting type violations. This philosophy of
tight control over types is at the heart of the design philosophy of
Barbara Liskov’s CLU language at HIT along uith similar research
languages at- other campuses such as Carnegie-Mellon’s ALPHARD

| anguage.

Many LISP users do not agree on this point, and feel that
types, like gauges, cause more trouble than they cure by being -

themselves the major bugs in the users program. Also, for beginning

Page 2.29

Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 388

programmers, and for people uwanting the minimum "hassle" while trying
to urite a program that they know uill be correct on account of its
extreme simplicity, the added burden of having to declare types is

unreasonable. Thus this objection is at present controversial.

Another source of troubles with LISP is the classic FUNARG
problem, so named by Joel Moses [4] in an early discuésion of the
problem. Although a completely correct handling of this problem is
not at the top.of all users’ lists of demands, it is for some; also,
the formal description of LISP is simplified if one assumes that the
problem, which involves being able to pass around program-environment
pairs just like any other data, is properly taken care of. As things
stand at present, the partial solution implemented in MACLISP is
better desc%ibed operationally, leading to a more clumsy description
of LISP than is possible otheruise. Several plausible solutions
{by Richard Greenblatt, Henry Baker, Guy Steele and Gerald Sussman) are

in the air, and one may soon find its way into MACLISP.

A much igss serious complaint is that the user may not specify
a louwer bound for any array dimension other than 8. To an extent this
objection can be overcome using the notational flexibility discussed
in section 6 by permitting ali) to denote (A (PLUS I 7}) or wuhatever.
Another complaint is that with the bit-vector data type, LISP itself
only offers 36-bit bit vectors, Houever, LIBLSP (the public LISP
softuare library on the ITS machines) offers a package uritten by
_Henry Baker that confers efficient unlimited-length bit-vector
processing capability on LISP. This package really ought to be
available directly to LISP users, In my LINGUL.natural language
system, which does a considerable amount of set-oriented processing

involving set intersection and union, bit vectors have supplied a very

Page 2.38

Friday, February 4, 1377 13:34:47 Al :PRATT;LSPLUG 339

efficient implementation of sets.

A continual source of petty irritation for me is the compiler,
which overlooks many simple optimizations. However, my pique
notuithstanding, the compiler is probably the best LISP compiler
‘ available anyuhere as it does a remarkably good jcb of optimization
considering LISP's versatility. No matter what language the
department settles on, if it is as powerful as LISP, people uill be
complaining about overlooked "obvious" optimizations for quite a

while, possibly for ever.

One can come up.uith a variety of minor complaints of this
ilk, but beyond the first two major complaints about LISP's
typelessness (regarded by many others as a virtue) and lack of

environment-manipulating capability, | personally am pretty satisfied

uith the language.
C. DEPARTHENTAL REQUIREMENTS.

Though the department has asked for a good educational
language, there is no harm (if ue are considering LISP) in asking that
the research needs of the department ‘also be considered. Here are 3
number of headiﬁgs (suggested to me by Ronald Rivest) under which one

may ask about the utility of LISP.

1. Desktop ca!culétors. As pointed out before; one need merely type
(PLUS 1 (TIMES 2 3)) {though this is a case uhere one of the algebraic
notations, permitting 142%3, would seem preferable) to geg the ansuer
7. Although my sécretarg cannot program she has used LISP regularly

for tuo years for precisely this application, even though the bulk

Pagse 2.3t

Friday, February 4, 1377 13:34:47 Al:PRATT;LSPLUG 388

"of her arithmetic is just adding up numbers. In fact almost any
éxpression that can be typed on an SR-51, say, can be typed almost
uith no change to LISP using CGOL. Moreover, the comparatively
unlimited storage of LISP is available for storing intermediate
results. Thus a LISP terminal consisting of a calculator-sized
keyboard and a 15-digit display would already provide enormous power.
Going to a 38-character alphanumeric display would increase the
utility of such a terminal considerably. Such terminals could be so
cheap that each office in the building could have tuo or more if
necessary. HWith reasonable system design, the formalities of logging
such terminals on and off could be dispensed with. Thus LISP would be
available as a pouwerful replacement for programmable calculators, yst
lacking none of their convenience. The possibility exists of making
such terminals completely portable, at least within the building,

relying on a radio link for contact uith the department’s system.

2+ Number-crunching. We have already referred to the department’s
Plasma Dynamics group, in the section on efficiency. This supplies an

example of where LISP is already in use within the department for

"number-crunching" on a large scale.

3. Classroom language. Not surprisingly, LISP is the classroom
language for Patrick Winston's Al course. It is also one of the
languages taught in 6.831. These are tuo of the department’s core
course. In addition LISP is used (admittedly with the CGOL dialect)
in S.B&G, my algorithms course; using any other widely available

_language [uwould find many of the algorithms 1 teach awkuard to

express.

4, Publication Language. This is one area uhere the case for LISP is

Page 2.32

Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 388

ueak., ngever. the committee has already conceded that a language

need not be rejected as a teaching language just because there exists

a large body of softuare written in some other language. In other
words, on the softuare-input side, language is not a serious
consideration from the committee’s point of vieu, and they recommend
that FORTRAN be made available for softuare-input uithout at the same
time inflicting it on the students. [t would seem reasonable to apply
the argument to software-ocutput as well, making available a
publication language (say FORTRAN, to return tit for tat, though
seriously PL/1 is proﬁablg a better choice) for the purposes of

debugging programs about to be published.

In summary, | would say very simply that LISP would make an
excel lent departmental language. All things considered, it has little
serious competition from any language except PASCAL, arid even that
competition is minimal., At this point it is appropriate to include

~the ad hominem argument that LISP, an MIT product, has had a
considerable impact on the academic computing community over the past
decade and a half, and along uwith magnetic core storage, CTSS, MULTICS
and MACSYMA has been responsible for making MIT among the world's most

influential sources of Computer Science ideas.
Bibliography.

1] Fateman, Richard J. "Reply to an Editorial.” SIGSAM Bulletin
25, 9-11. (March 1973).

{21 Heuwitt, C. E., P. Bishop, and R. Steiger. "A Universal
Modular ACTOR Formalism for Artificial Intelligence," Proc. 1JCAI
3, p. 235. 1373.

Page 2.33

Friday, February &4, 1977 13:34:47 A1:PRATT;LSPLUG 388

(3] McKay, John and E. Regener. "Transitivity Sets.” Algorithm
482, CACHM 17, 8, 478. (August 1974).

[4] Hosge, Joel. "The Function of FUNCTION in LISP." Al Memo 199,
MIT Al Lab (Cambridge, June 1378}, '

[5] Popplestone, R. J. "The Design Philosophy of POP-2." HMachine
Intelligence 3 (ed. 0. Hichie), 393-482, Edinburgh U. Press, 1968.

(6] Pratt, V. R, "Top Doun Operator Precedence.” Proc. ACH
SIGACT/SIGPLAN Conf. on Principles of Programming Languages (POPL 1),
Boston. (October 1373).

7] e, "A Linguistics Oriented Programming Language.”

Proc. 3rd International Joint Conference on Al, Stanford, 13973.

8 e, "CGOL - an Alternative External Representation
For LISP Users.” HMIT Al Lab Working Paper 83. 1376.

9] Randell, B. and L. J. Russeil. ALGOL 68 Implementation.

Academic Press, London, 1964.

{10} Steele, Guy Lewis Jr. "Multiprocessing Compactifying Garbage
Collection.” Comm. ACM 18, 9, 4395-508. (September 1375).

Page 2.34

	Pratt-LISP_Amicus_Curiae_Brief-19770001_a
	Pratt-LISP_Amicus_Curiae_Brief-19770002_a
	Pratt-LISP_Amicus_Curiae_Brief-19770003_a
	Pratt-LISP_Amicus_Curiae_Brief-19770004_a
	Pratt-LISP_Amicus_Curiae_Brief-19770005_a
	Pratt-LISP_Amicus_Curiae_Brief-19770006_a
	Pratt-LISP_Amicus_Curiae_Brief-19770007_a
	Pratt-LISP_Amicus_Curiae_Brief-19770008_a
	Pratt-LISP_Amicus_Curiae_Brief-19770009_a
	Pratt-LISP_Amicus_Curiae_Brief-19770010_a
	Pratt-LISP_Amicus_Curiae_Brief-19770011_a
	Pratt-LISP_Amicus_Curiae_Brief-19770012_a
	Pratt-LISP_Amicus_Curiae_Brief-19770013_a
	Pratt-LISP_Amicus_Curiae_Brief-19770014_a
	Pratt-LISP_Amicus_Curiae_Brief-19770015_a
	Pratt-LISP_Amicus_Curiae_Brief-19770016_a
	Pratt-LISP_Amicus_Curiae_Brief-19770017_a
	Pratt-LISP_Amicus_Curiae_Brief-19770018_a
	Pratt-LISP_Amicus_Curiae_Brief-19770019_a
	Pratt-LISP_Amicus_Curiae_Brief-19770020_a
	Pratt-LISP_Amicus_Curiae_Brief-19770021_a
	Pratt-LISP_Amicus_Curiae_Brief-19770022_a
	Pratt-LISP_Amicus_Curiae_Brief-19770023_a
	Pratt-LISP_Amicus_Curiae_Brief-19770024_a
	Pratt-LISP_Amicus_Curiae_Brief-19770025_a
	Pratt-LISP_Amicus_Curiae_Brief-19770026_a
	Pratt-LISP_Amicus_Curiae_Brief-19770027_a
	Pratt-LISP_Amicus_Curiae_Brief-19770028_a
	Pratt-LISP_Amicus_Curiae_Brief-19770029_a
	Pratt-LISP_Amicus_Curiae_Brief-19770030_a
	Pratt-LISP_Amicus_Curiae_Brief-19770031_a
	Pratt-LISP_Amicus_Curiae_Brief-19770032_a
	Pratt-LISP_Amicus_Curiae_Brief-19770033_a
	Pratt-LISP_Amicus_Curiae_Brief-19770034_a
	Pratt-LISP_Amicus_Curiae_Brief-19770035_a
	Pratt-LISP_Amicus_Curiae_Brief-19770036_a

