
• I

Copyright 1989 Digital Equipment Corporation.
Distributed only by perm.is~on-o£;~~Equipm_t'~~J"poration.

~ • .'. .' ". ,'",. f; • ')O:;.;<:':-.;t .' . "

Last modified on.Th!J,J,an 26 15:30:29 PST 1989 byglassman '"
modi~:e,~,~n Sun Aug 16 16:17:02 1987byellis:' , ...

----_._----- ---. -'---'--- -- ------.. ----- .. --- - -- --- -- -- -- - - _ - _- ---- - ---<- --- -.. ~-- -_._"------------ -- -_._- ._----- ----- - -- -- _ .. _----_ .. --_ .. " - - -- -- - - -

•

i "f') 1'.;'.;'

Tinylisp Reference Manual 15 February 1989

Table of Contents

1. Introduction
2. Some Examples of the Language
3. Symbolic Expressions

3.1. Whitespace and Comments
3.2. Numbers
3.3. Characters and Texts
3.4. Lists and Vectors
3.5. Symbols and Modules
3.6. Extended Object Syntax

4. Tinylisp Expressions
5. Formatting Style
6. Control Flow
7. Binding and Assignment
8. Procedures
9. Modules
10. Quoting and Backquoting
11. Predicates
12. Basic Datatypes

12.1. Types
12.2. Characters
12.3. Booleans
12.4. Numbers
12.5. Texts
12.6. Readers and Writers
12.7. Lists
12.8. Vectors
12.9. CharSets
12.10. Tables
12.11. Records

13. Exceptions
14. Threads and Synchronization
15. FOR

-16. Dynamic Variables ---. ---- ------ -- .- --- --
17. Reading and Printing Symbolic Expressions
18. Evaluation and Read-Eval-Print Loops
19. Source and Object Files
20. Debugging
21. Defining Special Forms
22. Finding Your Way Around the Built-in Modula-2+ Packages
23. Including Tinylisp in an Application

23.1. An Example
23.2. The Declaration Language
23.3. Declaration Forms
23.4. Contents of the .def file

24. Tinylisp Performance
Index

i

1
1
2
3
3
4
5
5
6
6
8
8
9

11
13
14
15
15
16
17
17
17
19
20
20
20
21
22
23
23
24
25
28--
30
31
31
32
34
35
37
38
38
39
42
42
44

Tinylisp Reference Manual 15 February 1989 1

1. Introduction

Tinylisp is a language intended for "programming-in-the-small" in SRC's Modula-2+
environment. It is a lexically scoped Lisp implemented as a package that can be
bound into any Modula-2+ application, providing that application with instant
programmability. The Ivy text editor uses Tinylisp to implement its predefined
commands and to allow users to write their own commands; future applications may .
include a shell based on "vbtkit" dialogs.

The Tinylisp language itself is a small, modem Lisp that provides a fairly rich set of
traditional control and data structures (including threads), with two-level naming
based on modules. All the basic Modula-2+ packages are directly accessible from
Tinylisp, including Text, List, Table, Thread, FileStream, Rd, Wr, as, Time, Math,
and RegExpr.

Tinylisp can directly manipulate integers, characters, booleans, longreals, and any
opaque-ref types provided by the particular application, and Tinylisp can call
procedures that traffic in these types. Using compi.l.e tl.i., a stub generator similar
to RPC's fl.ume, application implementers define which of the application's
procedures and datatypes will be accessible from Tinylisp. It is the responsibility of
the application implementer to define Modula-2+ interfaces that are suitable for
programming-in-the-small.

This document is not a tutorial; it assumes familiarity with Modula-2+ and its
environment and some passing familiarity with Lisps. While reading, I suggest that
you run ti.nyl.i.sp, a program which repeatedly reads Tinylisp expressions,
evaluates them, and prints the results. Try experimenting with simple expressions
and procedures as you read about the language.

2. Some Examples of the Language

Later sections provide a more exact definition of the language. Here are just a few
examples to give the flavor of the language and its relationship to Modula-2+.

First, the classic factorial:

(DEFINE (Fact n)
(IF «= n 0)

1
ELSE

(* n (Fact (- n 1»»)

Here's a procedure which enumerates through a list of texts, and returns (as a list)
all those texts which contain the character 'A':

(DEFINE (FindA texts)
(FOR (text IN texts)

(WHEN (>= (Text. Fi.ndChar text 0 'A') 0»
(LIST text»)

This next procedure copies one file to another, translating all characters to
uppercase, and returning the output file on success or nil if the files couldn't be read

-or written: ----------------------- -------- - --------

2 Tinylisp Reference Manual

(DEFINE (UpperFi~e inFi~e outFi~e)

(TRY

15 February 1989

(LET (rd (Fi~eStream.OpenRead () inFi~e)

wr (Fi~eStream.OpenWrite () outFi~e»

(TRY
(LOOP

(Wr. PutChar
wr
(Char.ToUpper (Rd.GetChar rd»»

EXCEPT Rd.EndOfFi~e)
(Wr . C~ose wr)
(ad. C~ose rd)
outFile)

EXCEPT OS.Error
0))

You can find larger examples of Tinylisp in /proj/packages/tiny~isp/t~ and in
Ivy.

3. Symbolic Expressions

Tinylisp source programs are represented syntactically using symbolic expressions. A
symbolic expression is a Lisp-like data structure composed of integers, characters,
booleans, reals, texts, symbols (Lisp-like atoms), modules (collections of symbols),
lists, vectors, and any other ref types supplied by Modula-2+ clients. Symbolic
expressions can be read and printed using the same syntax. Printing an expression
and then reading it back in will produce an identical or isomorphic symbolic
expression. The Sx interface completely defines symbolic expressions, and provides
Read and Print procedures.

While we normally talk about the printed representation of symbolic expressions, it's
important to remember that Tinylisp itself is defined in terms of the expressions
themselves, not their printed representation.

If you are familiar with Lisps and their s-expression syntax, you may wish to skip
this section on the first reading.

The basic symbolic expression types are represented using the Modula-2+ ref types:

integer
longreal
boolean
character
text
symbol
module
list
vector

Ref. Integer
Ref.Lon9Rea~

Ref.Boo~ean

Ref.Char
Ten.T
SxSymbo~.T

SxMod~e.T

List.T
Ref.Vector

Examples of symbolic expressions:

13 -4. Oe9 "he~~o wor~d" , a' Wire. T
(10 23 45)
[15 32 -4]
(Emp~oyee (Sa~ary 10000) (Pension 4a) (Name "John R. E~~is"»

Tinylisp Reference Manual 15 February 1989

Overview of symbolic expression syntax:

-23

Of3H

2.3e9

#True

#Fa~se

#Undefined
, a'

"he~~o"

He~~o

X.Y

x .. z
x.
o
(e ••.

[e ••.

{Wire 3}

#<Rd "a. out">

#1 1#

#" ... "#

a decimal integer

a hex integer

a longreal

the boolean TRUE

the boolean FALSE

the undefined value

a character

a text

a symbol in the current module

a public symbol Y in the module x

a public or private symbol Z in the module x
the module X

nil

a list of expressions

a vector of expressions

read/print syntax for client-supplied types

print syntax for client-supplied types that can't be read

block comment

a block text, with newlines allowed

3.1. Wbitespace and Comments

Arbitrary amounts of whitespace between expressions (spaces, tabs, newlines,
returns, formfeeds, comments) are ignored.

Block comments are indicated with:

#1 This comment can go anywhere 1#

Block comments nest.

3.2. Numbers

Decimal integers have syntax similar to Modula-2+, except they include an optional
sign:

integer

digit

hexinteger

hexdigit

Examples:

- -- 23-- - -1--

-> ["-" I "+"] digit+

-> "0" I "1" I ... I "9"

-> ["-" I tI+"] digit hexdigit* ("B" I tlhtl)

-> digit I "atl I "A" I ... I tift I tlFtI

OFF3AH -4FH OFFFFFFFFH

3

(An unsigned hex integer represents a 32-bit unsigned quantity; a tI_" in front of a hex
integer yields the two's complement of the unsigned quantity.)

4 Tinylisp Reference Manual

Longreals have the syntax:

longreal

exponent

Examples:

1.5 -.3

-> ["-" 1"+"] digit+ "." digit* [exponent]

-> ["_" I "+"] "." digit+ [exponent]

-> ["_" I "+"] digit+ exponent

-> ("E" I "e") [["_" I "+"] digit+]

12e5 -12e-11

3.3. Characters and Texts

Characters have Modula-2+ syntax:

, a' , \n' , \' ,

The set of recognized escapes is:

newline

tab

return

formfeed

backspace

escape

15 February 1989

\n

\t

\r

\f

\b

\e

\ddd

\\

the ASCII character represented by octal digits ddd

the character \

\' the character'

\" the character"

\x the character "x" for any other graphic x

Texts also have Modula-2+ syntax:

"he110 wor1d"

Texts have the same escapes as characters. Only printable ASCII characters are
allowed in texts and characters (, , .. '-'); to get any other character into a text,
use the \ escape.

Block texts have the syntax:

I"He110 wor1d"l

Block texts may extend across lines (the newlines will be included as part of the
actual text); the only recognized escape is \ "I, which includes a "I in the text. Block
texts are useful for constructing texts that otherwise would have multiple levels of
escaping (for example, RegExpr patterns).

Tinylisp Reference Manual 15 February 1989

3.4. Lists and Vectors

Lists are indicated with parentheses surrounding an arbitrary number of sub
expressions separated by whitespace:

(1 2 3) (1 (, a' , b') "he~~o " 3. 0)

NIL is represented using the empty list:

o
Vectors are like lists, but using brackets:

[1 2 3] [(1 2) 3 [4 5]]

The empty vector 0 is not the same as NIL; it is a vector with 0 elements.

3.5. Symbols and Modules

Symbols are like traditional Lisp atoms, unique objects with print names stored in
lookup tables. Printing a symbol and then reading it back in will yield the exact
same symbol. Any sequence of non-white-space characters that aren't otherwise
interpreted as integers, reals, delimiters, etc. are taken to be a symbol name:

He~~o funny-bone & + !=

Special characters can be included in a symbol's name by using \, which just forces
the following character to be treated as if it were a letter:

A\ B \3\1

5

The first example is the symbol with the name "A B", the second is the symbol with
the name "31", not the integer 31. (The use of \ in symbols is different from its use in
texts.)

To avoid symbol name conflicts between applications, there are multiple naming
spaces for symbols called modules. A module is simply a named table mapping
names onto symbols. Some symbols are public, accessible outside the module, and
others are private, accessible only in that module. The fully qualified read/print
name of the public symbol Y in the module X is:

X.Y

The full read/print name of the private symbol Z in the module X is:

x .. z

The module X itself is referenced as:

x.
Module names have the same syntax rules as symbol names. There is a separate,
flat space of module names. An attempt to reference a module that doesn't exist is an
error.

For fully qualified symbol names of the form X. Y or X •• Y, module X must exist and
contain a symbol Y, and in the case ofx. Y, the symbol must be public. The form
x .. Y allows access to both public and private symbols in x.

Symbolic expressions are always read relative to a current module. An unqualified
symbol name (one without an explicit module) is looked up in the current module,
and if not found, a new private symbol of that name is created in the module.

6 Tinylisp Reference Manual 15 February 1989

Modules can inherit other modules for the purpose of name lookup. Unqualified
symbol names are looked up first in the current module, then in its ancestors (in
depth first order). If the the name is not found, a new symbol of that name is created
in the current module.

A symbol X. Y can be imported into some other module M, so that the symbol can be
named with both x. Y and M. Y. But the symbol continues to be owned by X, and it
will always print as X. Y.

Printing of expressions is always done relative to a current module. The module
name of a symbol x. Y will be omitted if that symbol is accessible from the CUITent
module, that is, if the reader, given the same CUITent module and the input "Y",
would return the symbol x. Y.

It is possible to have symbols owned by no module (for example, if a symbol is deleted
from a module). Such symbols print as:

.X

For more details on symbolic expressions and symbols and modules, see the Sx,
SxModule, and SxSymbol interfaces.

3.6. Extended Object Syntax

The { ... } notation provides a way of smoothly extending the syntax to include other
ref types. For example, suppose I have a Modula-2+ ref type called Wire that has two
parts, a name and a length. I could define a read/print syntax for Wires that looks
like:

{Wi.re name "ground" ~ength 3S}

Using the facilities in SxSyntaxTable, my program could register a print procedure
for the type Wire that would print Wires out using the above syntax, and it could
register a "curly" read procedure to read in the same syntax.

For some kinds of objects, a read syntax doesn't make sense. Such objects are
printed with the < ... > notation. For example, readers (Rd. TS) can't be read, so they
print as:

#<Rd.T Odff3a04H>

The reader will raise an error ifit tries to read such an object.

4. Tinylisp Expressions

Tinylisp is an expression language; every construct returns a value and may be used
wherever an expression is allowed.

Tinylisp expressions are represented as symbolic expressions (see section 3, page 2).

The simplest Tinylisp expression is a constant, any symbolic expression that is not a
list or symbol. Examples:

integers: 32 -lS OfH

booleans: #True #Fa~se

chars: ' a' , \n'

longreals: 3. 4.Se9 -1.2334e-4

Tinylisp Reference Manual 15 February 1989

texts: "He.l.lo wor.ld\n"

Symbols represent the names of Tinylisp variables:

x
Emp.loyees . tab.le

+

7

Variables are bound to locations where values can be stored, and the value of a
variable is the current contents of its location. Several Tinylisp forms create lexically
nested variable scopes.

If a list begins with one of a small set of reserved symbols, it is interpreted as a
special form with special evaluation rules. Examples:

(QUOTE (1 2 3»
(IF boo.lean 3 ELSE 4)
(PRce (a b) (+ a b»

By convention, the names of special forms are in uppercase.

All other lists represent procedure application:

(f e ...)

The value is the result of applying the value of expression £, which should be a
procedure, to the values of the expressions e. . .. The expressions £ and e ... are
always evaluated, but the evaluation order is unspecified. If f doesn't evaluate to a
procedure, or if the wrong number of arguments are given, an exception will be
raised.

Examples of procedure application:

(+ 3 4 5)
(Wr . PutChar wr 'a')
(Initia.lize)
«Tab.le.Get tab.le keyword) arg1 arg2)

By convention, each word in a procedure name is capitalized.

Both Tinylisp and Modula-2+ are strongly typed, but unlike Modula-2+, typechecking
in Tinylisp occurs at runtime when expressions are evaluated. The exception
System. NarrowFau.lt is raised whenever a value of the wrong type is encountered
during evaluation. In this manual, I use the phrase "evaluates to a boolean" or
"evaluates to an integer" to indicate that a specific type is expected.

Because Tinylisp is built on top ofModula-2+ and can call arbitrary Modula-2+
procedures, any Modula-2+ exception can be raised during evaluation.

A simple meta-syntax is used below to describe valid Tinylisp expressions. As an
example, look at the syntax for IF:

(IF b1 e1... [ELSIF bi ei ...]... [ELSE en ...])

Uppercase names like IF represent themselves; lowercase names like bl and e1 are
placeholders for arbitrary Tinylisp expressions. Brackets enclose optional items, and
" ••• It means the previous item can occur 0 or more times.

Many of the examples given show both the expression and the result of its
evaluation; to avoid confusion, I use "=>" as a shorthand for "evaluates to the value":

(+ 7 2) => 9
(List. Tai.l '(a b c» => (b c)

8 Tinylisp Reference Manual 15 February 1989

5. Formatting Style

Lisp syntax can be just as readable as Algol-style syntax, provided it is formatted
properly. The examples given for each construct defined below illustrate proper
style. Also, the Ivy text editor provides a Tinylisp pretty-print command that
implements an acceptable style; use it.

6. Control Flow

(IF bl el ... [ELSIF b~ e~ ...] ... [ELSE en ...])

(& e ...)

(I e ...)

(CASE e

A traditional if-elsif-else. The expressions b~ are evaluated to booleans
in turn until one evaluates to true, and then the corresponding e~ are
evaluated in order. If no b~ evaluates to true and the ELSE is present,
the en are evaluated. The value of the IF is- the value of the last e~ or en
evaluated; it is undefined if no e~ are evaluated. Examples:

(IF « x 2) (: = x 4) (P x y»
(IF « x 2)

(:= x 4)
ELSIF (= x 2)

(:= x 5)
(P x y)

ELSIF (= x 3)
(Q x y)

ELSE
(:= x (+ x 1»)

Conditional "and". Returns true if all the expressions evaluate to true,
false otherwise. Evaluation of the expressions goes from left to right and
stops as soon as one evaluates to false. Example:

(& (> x 4) ~sF~rst (TestF~ag y»

Conditional "or". Returns false if all the expressions evaluate to false,
true otherwise. Evaluation of the expressions goes from left to right and
stops as soon as one evaluates to true.

[(v v. •• => e ...)] ..•
[(=> e ...)])

Evaluates e and then each expression v in turn, until the first one that is
equal (=) to e, or until the default arm is reached. The corresponding
e. . . of the selected arm are then evaluated, and the value of the last is
the value of the CASE. An exception is raised if e doesn't equal any v and
there is no default arm. Example:

Tinylisp Reference Manual 15 February 1989

(CASEQ e

(CASE (Fact n)
(0 1 2 =>

(+ n 1»
(4 =>

(=>

(:= n 4)
(F n x»

(* n n»)

[(v v. .. => e .•.)] .••
[(=> e ...)])

Like CASE, except that == is used instead of =.
(LOOP [~abe1] e ••.)

(EXIT)
(EXIT e)

Repeatedly executes the expressiQ.ns e. . .. Executing EXIT terminates
the loop, supplying a value for the loop expression. Example:

(LOOP
(IF (Rd. EOF rd) (EXIT»
(Wr.PutChar wr (Rd.GetChar rd»)

(EXIT 1abe~ e)

Exits the innermost loop with the value of e, or the named loop if a
1abe1 is given. If no e is given, the value is undefined.

(ASSERT be •••)

Ifb evaluates to false, the expressions e .•. are evaluated, and an
assertion-failed exception is raised with the resulting list of values.
Example:

(ASSERT (= ~ 0) "The 1.ist 1 .is non-n.i~" 1)

See also FOR, section 15, page 25.

7. Binding and Assignment

(LET ([var v] • ••)
e ...)

9

Defines a lexical scope containing the new variables var initialized to the
values v, which are evaluated outside of the scope in unspecified order.
The expressions e ... are evaluated in the scope, the value of the last one
becoming the value of the LET. Example:

(:= x 4)
(LET (x (+ 1 2)

y (+ xl»
(+ x y»

(LET* ([var v] •..)
e ...)

=> 8

Like LET except that each v is evaluated in the scope of the preceding
variables var. Equivalent to:

10 Tinylisp Reference Manual

(LET (var1 v1)
(LET (var2 v2)

(LET (varn vn)
e ...) »

Example:

(:= x 4)
(LET* (x (+ 1 2)

Y (+ x 1»
(+ x y» => 7

15 February 1989

(LET ([pattern v] •••
e ...)

(LET* ([pattern v] ..•
e ...)

-
In addition to simple variable binding, LET and LET* also provide a very
simple form of list pattern matching, called destructuring. For example:

(LET «x y) '(3 4»
(+ x y»

evaluates to 7; x is bound to the first element of (3 4), and y to the
second.

The patterns can be

A simple variable, which is initialized to the corresponding
value.

() , representing a dummy variable or placeholder that will
match any corresponding value.

A list of patterns (p1 p2 .•. pn). The expression v
must evaluate to an n-element list, and the sub-patterns
p.i are matched against the corresponding elements.

A list of patterns (p1 p2 ... pn-1 @ pn). The expression
v must evaluate to a list of at least n-1 elements. The
sub-patterns p1 through pn-1 are matched against the first
n-1 elements, and pn is matched against the rest of the list
(which maybe empty).

Example:

(:= var e)

(LET «x y @ rest) '(a bed»
(L.ist.L.ist rest y x»

=> «c d) b a)

Sets the value of the variable var to be the value of e, and returns that
value.

(:= form e)

Syntactic sugar for updating -aggregate structures. The recognized forms
and their equivalents are:

(:= (L.ist.F.irst 1) e) -> (L.ist.SetF.irst 1 e)

Tinylisp Reference Manual 15 February 1989

(:= (L~st.Ta~1 1) e) -> (L~st.SetTa~1 1 e)

(:= (List . Nth 1. i) e) -> (List. SetNth 1. i e)

(:= (List . NthTai1. 1. i) e) -> (List. SetNthTail. 1. i e)

(:= (@ v i) e) -> (Vector.Set v i e)

(:= (record-accesser r) e)
-> updates a field of a record r with the value e,
returning e.

11

(:= $x e) -> sets the value of the dynamic variable $x to be
e, returning e.

(DSET pattern e)

Evaluates e, assigns to the variables in pattern the matching values in
e, and returns the value of e. The patterns are the same as in LET.
Example:

(SET var e)

(DSET (x Y @ z) '(1 2 3 4»
x
y
z

=>
=>
=>
=>

(1 2 3 4)
1
2
(3 4)

Assigns the variable var the value of expression e. This is a primitive
form for building constructs like : =.

(DEFINE var e)

Assigns the value of e to the global variable var, whose name must be a
symbol in the current module. (As a convention, DEFINE should be used
in preference over : = to initialize global variables; also, DEFINE prevents
you from redefining a pre-defined name such as Read.)

8. Procedures

(PROC (var ...) e ...)

Evaluates to an unnamed procedure with formal parameters var ...
(which must be symbols) and body e When invoked, the procedure
evaluates the expressions e ... and returns the value of the last one.
The body of PROC is closed over the outermost, top-level scope, not over
any enclosing procedures or LETs. That is, any free names inside the
body always refer to global variables (that's why PROC is not called
LAMBDA). Example:

(PROC (x y)
(P x y)
(IF «= x y) x ELSE y»

(PROC var e ...)

Evaluates to an unnamed procedure that accepts any number of formal
parameters. The list of parameters is bound to the single formal var (a
symbol). For example, this procedure takes any number of arguments
and returns their sum:

12 Tinylisp Reference Manual 15 February 1989

(PROC l.
(LET (sum 0)

(LOOP
(XI' (== 1 0) (EXXT sum»
(:= sum (+ sum (List.First l.»)
(:= 1 (List.Tail. 1»»)

(RETURN)
(RETURN e)

Returns from the lexically enclosing procedure with the value of e
(undefined if e isn't given). Normally it isn't necessary to use RETURN,
since the value of a procedure is the value of the last expression in its
body.

(DEFXNE (p var ...) e ...)

Defines the global variable p (a symbol) to be a named procedure with
formal parameters var. . . and body e. . .. The name p must be a
symbol in the current module. Example:

(DEFXNE (PrintObject wr object)
(XI' (== wr 0) (:= wr $so»
(PrintF wr "#<Object %t>" (ObjectName object»
0)

(DEFXNE (p var1 ... varn-1 [@ varn]) e ...)

Defines a procedure with possibly a variable number of arguments,
allowing formal parameter destructuring (as in LET). Formal parameters
var1 through varn-1 are de structured-bound to the first n-1 arguments
(n-1 >= 0), and varn is bound to the list of the remaining arguments.
This is equivalent to:

(DEFXNE p
(PROC temp

(LET «var1 ... varn-1 [@ varn]) temp)
e ...)))

For example:

(Apply P 1)

(DEFXNE (AddT~ (secs1 usecs1) (secs2 usecs2»
'(, (+ secsl secs2) ,(+ usecs1 usecs2»)

(T~.Now) => (555401027 388671)
(AddT~ (Time.Now) '(1 500000»

=> (555401028 888671)

(Apply P e1 e2 ... en 1)

The first form applies procedure p to arguments taken from list 1:

(p 11 12... l.n)

where 1 has the form (11 12 ... 1n).

The second form applies procedure p to:

(p el e2 ... en 11 l.2 ... 1n)

Examples:

Tinylisp Reference Manual 15 February 1989 13

(App1y + 0) => 0
(App1y + ' (1 2 3» => 6
(App1y + 1 2 3 0) => 6
(App1y + 1 2 3 ' (4 5 6» => 21

9. Modules

All identifier names in Tinylisp are represented as symbols. To avoid the name
conflict problems of a flat name space, symbolic expressions provide modules, named
collections of symbols. Superficially, modules provide the same two-level naming of
identifiers that Modula-2+ provides. Reread the section on symbolic expressions for
the basic concepts of symbols and modules. See SxModule for other operations on
modules.

Tinylisp has two distinguished modules, Lisp. and Work.. Lisp. contains the
special forms and procedures that form the core of Tinylisp (for example, IF, +, and
: =); by convention, every other Tinylisp module inherits Lisp., allowing those
names to be referenced without qualification. The reader, printer, and read-eval-
print loop use Work. as the default current module; Work. thus serves as a
workspace that won't affect other modules.

The dynamic variable $modu1e contains the current module used by the Tinylisp
reader and printer (initially Work.). You can change the current module of a read
eval-print loop using the MODULE form (preferable to using : =).

(MODULE name [INHERITS modu1e modu1e .••])

Creates a module with the given name (which must be a text) if it doesn't
already exist and makes it the current module. By default, the module
inherits symbols from Lisp ••

If the optional INHERITS is present, then the module inherits symbols
from the given modules. (If the module previously existed, then its list of
inherited modules is changed to those given.)

(PUBLIC symbo1 •••)

Marks each of the symbols as public, allowing them to be accessed from
outside the module by using their fully qualified form, e.g.
Paragraph. Fi11. The symbols must be local to the current module.

(LMPORT symbo1 •••)

Imports each of the external symbols into the current module, obviating
the need to fully qualify them within the current module. The symbols
continue to be owned by their original module.

(SHADOW symbo1 .•.)

If the symbols do not already exist locally in the current module, then
they are created, possibly "shadowing" any inherited symbols of the same
name.

For example, the procedure Lisp. Load is accessible simply as Load
within most modules, since most modules inherit Lisp. by default. But
if a module tries to define its own procedure Load, an error will be raised,
since Load is not local to that module. So the module must first do
(SHADOW Load) to create a local symbol of the same name. This
indicates to readers that a globally accessible name has been redefined in

14 Tinylisp Reference Manual 15 February 1989

this module.

Here's an example of a trivial module that has one public procedure, one private
procedure, and two private global variables.

(MODULE " Stack")

(PUBLIC Push)

(DEFINE stack (Vector.New 10»
(DEFINE top -1)

(DEFINE (Push x)
(ASSERT (! (Full» "Stack overflow")
(:= top (+ top 1»
(:= (stack top) x)
x)

(DEFINE (Full)
(= top (Vector.High stack»)

10. Quoting and Backquoting

(QUOTE e)

Evaluates to the symbolic expression e itself. This provides constant
constant lists and symbols, which otherwise would be interpreted
according to the normal Tinylisp evaluation rules:

(QUOTE (a b c»
(QUOTE employee)

=> (a b c)
=> employee

BACKQUOTE (,) is usually preferable to QUOTE.

'e (BACKQUOTE e)
, x (UNQUOTE x)
,@l (UNQUOTE-SPLICING 1)

BACKQUOTE provides an easy, template-based method of constructing lists
and vectors. The expression 'e is eqivalent to (QUOTE e) if it doesn't
contain any occurrences of ,x or ,@l.

Each occurrence of the form , x within the expression 'e is replaced by
the value of the expression x. And each occurrence of the form , @l is
replaced by the value of the expression 1, which must be a list, with its
parenthesis "stripped away" before insertion.

Examples:

(:= a 3) => 3
(:= b ' (4 5 6» => (4 5 6)
'(a ,a (, (+ a 4) "hello") => (a 3 (7 "hello"))
'(123 ,@b 7) => (1 2 3 4 5 6 7)
, [, b ,@b "fun"] => [(4 5 6) 4 5 6 "fun"]

'e is equivalent to (BACKQUOTE e), ,x to (UNQUOTE x), and, @l to
(UNQUOTE-SPLICING 1).

While the { ... } syntax for objects such as records and other aggregate
types may occur inside backquote templates, the forms ,x and , @l may

Tinylisp Reference Manual 15 February 1989

not occur inside those objects.

11. Predicates

(! x)

Evaluates x to a boolean and returns its negation.

As in most languages, including Modula-2+, there are two common kinds of
"equality", structural isomorphism and object identity.

(= x y)
(List. Equal x y)

15

Compares the structure of x with the structure of y, returning true iff one
of the_following is true:

(!= x y)

(= x y)

(!= x y)

(= x y) (x and yare the same object)

x and y are lists or vectors whose elements are =
x and y are texts with the same characters

x and yare booleans, integers, characters, or
longreals with the same value

x is a longreal and y is an integer that, converted
to a longreal, has the same value (or vice versa)

(! (= x y».

Returns true iff x and y are the same identical object, that is, if their
representation is the same Modula-2+ ref. (This is the same as
Modula-2+ =.) = is currently an order of magnitude faster than =. Nil,
booleans, symbols, and characters are represented as unique objects, so
= may be used to compare them. But integers, longreals, and texts do
not have unique representations, so = should be used to compare them.

(! (= x y».

12. Basic Datatypes

16 Tinylisp Reference Manual 15 February 1989

12.1. Types

Types are first-class objects in Tinylisp. The basic symbolic expression and Tinylisp
types are:

Boo~ean.T

Char.T
Exception.T
Integer.T
List.T
LongRea~.T

N.il.T
Procedure.T

Specia~Form.T

SxModu~e.T

SxSymbo~.T

Text.T
Thread.T
Type.T
Undef.ined.T
Vector.T

(Actually, these are global variables whose values are the types, but for convenience
we use the global variable name.)

The type of #Undefined is Undefined. T. The type of () is N.i~ . T.

(Type.Of e)

Returns the type of e.

(NARROW e t)

Evaluates e and t, raising an exception if e is non-nil and isn't of type t.
Returns e.

(NARROWN e t)

Evaluates e and t, raising an exception if e doesn't have type t. If e is
nil, then t must be Ni~ . T. Returns e.

(TYPECASE e
[(t to.. => e •••)] ..•
[(=> e ...)])

Equivalent to:

(CASEQ (Type.Of e)
[(t t... => e ...)] ...
[(=> e •••)])

Unlike the Modula-2+ TYPECASE, nil doesn't automatically go to the first
arm; use an explicit N.i~ . T to catch nil. Example:

(TYPECASE x
(Ni~.T =>

(»
(Integer. T =>

(+ x x»
(List.T =>

(Recurse (List.First x»
(Recurse (List.Tai~ x»»

Tinylisp Reference Manual

12.2. Characters

Char.T

Char.First
Char.Last

15 February 1989

The first and last characters (in ASCII order).

(Char.Ord char)

Returns the ASCII value of char.

(Char. Val i)

Interprets integer i as an ASCII code and returns the corresponding
character.

(Char.ToOpper char)

Returns the uppercase version of char if it is lowercase, returns char
otherwise.

(Char.ToLower char)

Returns the lowercase version of char if it is uppercase, returns char
otherwise.

(Char.ToContro1 char)

Returns the control-character version of char, equivalent to
(Va1 (BitAnd (Ord char) OlFH».

12.3. Booleans

Boolean.T

#True

fFalse

12.4. Numbers

Tinylisp provides two number types, integers and longreals. Integers are 32-bit
Modula-2+ INTEGERs, and longreals are 64-bit Modula-2+ LONGREALs.

Integer.T

LongRea1.T

Integer. First
Integer.Last

The smallest and largest integers.

Unless stated otherwise, the following procedures operate on both integers and
longreals. If the operands are all integer, the result is an integer. If the operands
are alllongreals or mixed integers and longreals, the integers are converted to
longreals and the result is a longreal.

(+ x ...)

Addition. (+) returns o.

17

18

(* x ...)

(- x ...)

(I x ...)

Tinylisp Reference Manual

Multiplication. (*) returns 1.

Subtraction.
(-) returns O.
(- e) returns O-e (negation).
(- el e2 ... en) returns el-e2- ... -en.

Division.
(I) returns 1.
(I e) returns lIe.
(I el e2 ... en) returns el I e2 I ... I en.

(Min x ...)

Minimum. (Min) returns Integer. Last.

(Max x •..)

Maximum. (Max) returns Integer. Fi.rst.

(Rem x y)

15 February 1989

The remainder of I x I I I y I , with the sign of the result the same as x.
If x or y are longreals, they are truncated to integers first.

(Moci x y)

Mathematical mod:

if y * 0, x - y * Floor (x I y)

ify = 0, x.

(Abs x)

The absolute value of x.

(Floor x)

The largest integer i. such that i. <= x.

(Cei.li.ng x)

The smallest integer.i such that.i >= x.

(Trunc x)

x rounded towards O.

(Round x)

x rounded to the nearest integer.

(Float x)

x converted to longreal.

Tinylisp Reference Manual

« x y)

«= x y)
(= x y)
(>= x y)
(> x y)

15 February 1989 19

Arithmetic comparisons.

The following bit operations operate on the 32-bit two's complement represention of
integers and return integers:

(B.itNot x)

Ones complement of x.

(B.itAnd x y)

Logical-and of x and y.

(B.itOr x y)

Logical-or of x and y.

(B.itXor x y)

Logical-exclusive-or of x and·y.

(B.itSh.i£tLe£t x n)

x shifted left by n bits, with zeroes inserted on the right.

(B.itSh.i£tRight x n)

x shifted right by n bits, with zeroes inserted on the left.

(BitExtraet nos)

Returns bits 0 through 0+8-1 as a two's complement integer.

(Bit Insert n 0 8 d)

Returns d with bits 0 through o+s-l replaced by the s least significant
bits ofn.

12.5. Texts

See the Text interface for full details. Differences in the Tinylisp interface:

Text.T

(Text.Cat text ...)

Concatenates any number of texts.

(Text. Compare text1 text2 [ignoreCase])

Compares the texts text1 and text2, returning one of the symbols
Base. Lt, Base. Eq, Base. Gt.

20 Tinylisp Reference Manual 15 February 1989

12.6. Readers and Writers

All the procedures from Rd and Wr are available to Tinylisp; see those interfaces for
details.

12.7. Lists

See the List interface for full details. Differences in the Tinylisp interface:

List.T

(List. List e ...)

Returns a list of any number of arguments.

(List.Append 1 ...)

Appends any number of lists.

(List.AppendD 1 ...)

Destructively appends any number of lists.

(List. TTail 1)

(List.Tail (List.Tail 1»

(List.TTTail 1)

(List.Tail (Li.st.Tail (List.Tail 1»)

(List.SetFirst 1 e)

Destructively sets the first element of a list to be e.

(List.SetTail 1 e)

Destructively sets the tail of a list to be e.

(List.Sort 1 [compareProc compareProcArg])
(List.SortD 1 [compareProc compareProcArg])

Sorts (or destructively sorts) a list 1. The compareProc should return
one of the symbols Base. Lt, Base. Eq, Base. Gt. See the List interface
for more details.

12.8. Vectors

Vectors are one-dimensional O-based arrays (Modula-2+ Ref. Vectors).

Vector.T

(@ v i)
(Vector. Get vi)

Returns element i from vector v, raising System. NarrowFault if i isn't
an integer or is out of range.

(:= (@ v i) e)
(Vector.Set v i e)

Sets the value of element i of vector v to be e.

(Vector.New size)

Tinylisp Reference Manual 15 February 1989

Returns a new vector of size (an integer) elements.

(Vector.Number v)

The number of elements in vector v.

(Vector. Hi.gh v)

(- (Vector.Number v) 1)

(Vector.Copy v)

Returns a new vector with the same elements as v.

(Vector.Expand v size)

21

Returns a new vector with (Max size (Number v» elements, with the
first (Number v) elements copied from v.

12.9. CharSets

CharSets are Modula-2+ Ref. CharSets. You construct a CharSet with a pair of
curlies (see section 3.6, page 6) and a text that specifies the members. If you need to
specify hyphen explicitly as part of the character set, you have to put it first in the
text (and that initial hyphen can't begin a sequence).

{CharSet.T "aeiou"}

{CharSet.T "a-z"}

{CharSet.T "-, .\"'''}

(CharSet.Inc~ charSet char)

Returns a new CharSet containing all the elements of charSet plus
char.

(CharSet.Exc~ charSet char)

Returns a new CharSet containing all the elements of charSet except
char.

(CharSet.Oni.on charSetA charSetB)

Returns a new CharSet containing all the elements of charSetA and
charSetB.

(CharSet.Difference charS etA charSetB)

Returns a new CharSet containing all the elements in charS etA but not
in charSetB.

(CharSet.Intersection charSetA charSetB)

Returns a new CharSet containing all the elements in both charSetA
and charSetB.

(CharSet.SymDifference charSetA charSetB)

Returns a new CharSet containing all the elements in either charSetA
or charSetB but not in both.

(CharSet.Equa~s charSetA charSetB)

Returns #True if all the elements in charSetA are also elements of
charSetB; otherwise #Fa~se.

22 Tinylisp Reference Manual 15 February 1989

(CharSet.Distinct charSetA charSetB)

Returns #True if at least one element is in either of the two CharSets but
not in both; otherwise #Fal.se.

(CharSet.Subset charSetA charSetB)

Returns #True if every element of charS etA is also an element of
charSetB; otherwise #Fal.se.

(CharSet.Superset charSetA charSetB)

Returns #True if every element of charSetB is also an element of
charSetA; otherwise #Fal.se.

(CharSet.In charSet char)

Returns #True if char is an element of charSet; otherwise #Fal.se.

12.10. Tables

The Tinylisp interface to the Table package is slightly different from the Modula-2+
interface because ofvAR. parameters. See Table for details on these procedures and
on the other procedures not described here.

Tabl.e.T

(Tabl.e.New [hashProc hashProcArg compareProc compareProcArg
initial.Size maxChainLength])

Creates a new Tabl.e . T, by default using the procedures List. Hash and
List. Compare to compare arbitrary s-expression keys using isomorphic
structure equality (=).

('l'abl.e. Get tabl.e key)

Returns the value associated with key in the table, returning
#Undefined if not found.

('l'abl.e.Put tabl.e key val.ue)

Puts a key/value pair in the table, returning true iff the key was
previously in the table.

('l'abl.e.Del.ete tabl.e key)

Deletes a key/value pair from the table, returning the old value if the key
was present, #Undefined if not.

Tabl.e.RefHash
Tabl.e.RefCompare

Tables created with these hash and compare procedures will object
equality (=) for comparing keys.

Tinylisp Reference Manual 15 February 1989

12.11. Records

Though it is not possible to access Modula-2+ record types directly, Tinylisp does
provide a simple way to define new record types that can be used only from within
Tinylisp.

(DEFINE-RECORD r fie~d ... [(fie~d ...)])

23

Defines the global variable r to be a record type with the given field
names; r must a symbol in the current module, and the field names must
also be symbols. A special-form accesser whose name is r: field is
defined for each field, and a special form r: New is defined for creating
new instances of that type.

Example:

(DEFINE-RECORD Emp~oyee name sa~ary age)

(:= e (Employee:New)) => {Employee}
(.-.- (Emp~oyee:name e) "John") => "John"
(.-.- (Emp~oyee:age e) 30) => 30
e

=> {Employee name "John" age 30}
(Employee:name e) => "John"
(Emp~oyee:salary e) => ()

The r: New form allows the specification of one or more field names with
associated initial values; missing fields are initialized to nil. Example:

(Emp~oyee:New name "John" age (+ 30 1»
=> {Emp~oyee name "John" age 31}

The optional (field ...) at the end of a DEFINE-RECORD form specifies
which fields, if any, should be suppressed when records of that type are
printed. Normally, the printer only suppresses nil-valued fields.

13. Exceptions

A Tinylisp exception is a first-class object of type Exception. T. Otherwise they
have the same semantics as Modula-2+ exceptions.

(DEFINE-EXCEPTION exception)
(DEFINE-EXCEPTION exception (»

Defines a new, named exception and assigns it to the global variable
exception, whose name must a symbol in the current module. The
second form defines an exception with a single parameter. Example:

(DEFINE-EXCEPTION Il~ega~Character)

(~SE exception)
(~SE exception e)

Evaluates exception to an exception and raises it. The value e is
evaluated and passed as a parameter to the exception if it requires one.

(TRY e. .. FINALLY f ...)

Like the Modula-2+ TRY FINALLY. The expressions e ... are evaluated
in tum, and the value of the last one is returned. The expressions f ..
are evaluated on exit from the TRY, even if the exit is caused by a

24 Tinylisp Reference Manual 15 February 1989

procedure RETURN, a loop EXIT, or an exception. Example:

(LET (rd (Fi.~eStream.Open 0 "/etc/passwd"»
(TRY

(ReadPasswordFi.~e rd)
FINALLY

(Rd. Cl.ose rd»)

(TRY
e ...

[EXCEPT exception
e ...] ...

[EXCEPT (exception exception ... (»
e ...] ...

[EXCEPT (exception exception ... var)
e ...] ...)

Similar to the Modula-2+ TRY EXCEPT statement. The expressions in the
body are evaluated, and if no exceptions are raised, the TRY exits with the
value of the last expression. If one of the EXCEPT clauses catches a raised
exception, then the expressions of that clause are evaluated and the TRY
exits with the value of the last one. The second form of the EXCEPT
clause allows multiple exceptions to be named on the same EXCEPT
clause. The third form allows the specification of a formal parameter
that will be bound to the argument of the caught exception; that
parameter is lexically scoped over that one EXCEPT clause only.

The exceptions must be symbols naming exceptions, or else the symbol
ELSE, which catches all exceptions.

Example:

(TRY
(:= wr (Fil.eStream.OpenWrite 0 "/tmp/output"»
(LOOP (Wr.PutChar wr (Rd.GetChar rd»)

EXCEPT Rd.EndOfFil.e
(Wr . C~ose wr)

EXCEPT (OS.Error ec)
(PrintF $se "Error opening fi~e: %t\n"

(OS.errMessage ec»)

(TRY e ... PASSING (exception exception ... »

Evaluates the expressions e. . . and returns the value of the last one. If
any exceptions are raised, all except the named ones are converted to
System. Fail..

14. Threads and Synchronization

Tinylisp provides threads, mutexes, and condition variables, and the operations in
the Thread interface. Differences in the Tinylisp interface:

Thread.T

Thread.Mutex

Thread. Condition

(LOCK m e •.•)

Tinylisp Reference Manual 15 February 1989

Like the Modula-2+ LOCK statement. Evaluates m to a mutex, acquires
the mutex, evaluates the expressions e ... , releases the mutex, and
returns the value of the last expression. Equivalent to:

(LET (temp m)
(TRY

(Thread. Acquire temp)
e ...

FINALLY
(Thread.Release temp»)

(Thread. NewMutex)

Returns a new, initialized mutex.

(Thread. NewCondition)

Returns a new, initialized condition.

(Thread.GetCPUT~ thread)

25

Returns the CPU time of a thread as a pair (seconds mi.croseconds).

(Thread.~lThreads)

Returns all the existing threads as a List. T.

15. FOR

(FOR [label] clause ...)

A higher-level looping construct for uniformly manipulating sequences
(lists, vectors, texts, readers, integer ranges, or client-supplied
sequences). One or more of the clauses below can be present, and they
can be composed. EXIT can be used to terminate the loop prematurely
but not to return a value -- only the result clauses can return a value for
the loop. Read the examples at the end first to get the flavor.

Don't try to fit a square peg into a round hole -- if a complicated loop
doesn't immediately fit into the FOR sequence idiom, use LOOP instead.

Initialization clauses:

(VAR. [var v] ...)

Initializes the new variables var to the values v, evaluating each v in the
scope of the previous' vars (like LET*). The variables exist only in the
scope of the FOR.

26 Tinylisp Reference Manual 15 February 1989

Iteration clauses: These iterate a control variable through the elements of a
sequence. The FOR expression defines a new lexical scope in which the control
variables are implicitly declared; anywhere a variable name var is allowed, a general
de structuring pattern may be given. If more than one iteration clause is present, the
sequences are iterated in parallel. At the top of each iteration, all the sequences are
tested for termination, and if any of them have terminated the FOR terminates; only
if none of the sequences have terminated will the control variables be stepped to the
next elements of the sequences.

(x := s [TO f] [BY d])

Iterates x through the sequence s, s + d, s + 2d, ... , s + nd such that s + nd
<= f. TO f defaults to TO Integer. Last. BY d defaults to BY 1. All
expressions are evaluated once on entry to the FOR.

(x := s [DOWN-TO f] [BY d])

(x IN 1)

Iterates x through the sequence s, s - d, s - 2d, ... , s - nd such that s - nd
>= f. £ defaults to Integer. Fi.rst, d defaults to 1 (d should always be
positive).

(x IN-VECTOR v)
(x IN-TEXT t)
(x IN-RD rd)

Steps x through the elements of a list, the characters of a text or Rd. T, or
the elements of a vector (all evaluated once on entry to the FOR). For IN
and IN-VECTOR, x may be a de structuring pattern (see LET).

Body clauses:

(WHILE e)

(UNTIL e)

(DO e •••)

(WHEN e)

Stops iteration when e is false.

Stops iteration when e is true.

Evaluates the expressions e ... each time through the loop.

If e is false, then execution of any succeeding DO, WHILE, UNTIL, or
result-producing clauses is suppressed for the current iteration of the
loop only.

(BIND [var v] ••.)

Declares var as a local variable and sets it to e at this point each time
through the loop. var may be a destructuring pattern. Equivalent to:

Tiuylisp Reference Manual 15 February 1989

(VAR var v)
(DO (DSET var v»

Result-producing clauses. At most one may be given; if none is given, the result of
the FOR is O.

(RESUL'l' e ...)

(LIST e)

When iteration stops, evaluates e. . . and returns the value of the last
one.

27

Evaluates e each time through the loop, returning a list of the values. -

(VECTOR e)

(TEX'l' e)

(SOME e)

(EVERY e)

Evaluates e each time through the loop, returning a vector of the values.

Evaluates e to a character each time through the loop, returning a text of
those characters.

Evaluates e to a boolean each time through the loop, exiting with true the
first time e evaluates to true. Returns false if every e evaluated to false.

Evaluates e to a boolean each time through the loop, exiting with false
the first time e evaluates to false. Returns true if every e evaluated to
true.

(REDUCE f i. e)

Returns (. .. (f (f (f i. el) e2) e3) ..•) as the value of the
loop, where where ei. is the value of e each time through the loop. f is
evaluated once on entry.

The clauses may occur in any order, though they will be implicitly regrouped
according to this order:

vARclauses

I terator clauses

Body clauses

Result clauses

Expressions in the clauses are evaluated in the scope of all the preceding VAR and
iterator control variables of the loop (in the regrouped order).

28 Tinylisp Reference Manual

Examples:

(FOR (i := 1 TO 5) (LIST (* i i»)
=> (1 4 9 16 25).

(FOR (x IN 1)
(i := 0)
(WHEN (! = x 0»
(LIST i»

steps x through the elements of list 1 in parallel with
stepping i from 0, returning a list of those i for which
x is non-nil.

(FOR (x IN-VECTOR v) (DO
(Test x)
(Print x»

steps x through the elements of vector v, evaluating the
DO body each time through.

(FOR «x y) IN '((a 1) (b 2) (c 3»)
(LIST (List.List y x»)

=> ((1 a) (2 b) (3 c».

(FOR (c IN-1m rd)

(WHEN (! = c ' '»
(TEXT c»

reads the characters from rd and puts all except blanks into a
text.

(FOR (x := 1)
(WHILE (Pred x»
(REDUCE + 0 (* x x»)

steps x from 1 until (Pred x) is false, returning the sum of
the squares of all preceding x.

16. Dynamic Variables

15 February 1989

In addition to providing lexically scoped variables, Tinylisp also provides dynamically
scoped variables. Such variables are referenced by preceding them with a $:

$x

Each thread has its own set of nested dynamic scopes, and a single, shared,
outermost global scope includes the all the threads' scopes. DYNAMIC-BIND creates
new, nested scopes. The binding of a variable $x is taken from the most recent
dynamically enclosing DYNAMIC-BIND that binds $x, or the global scope if there is no
such enclosing DYNAMIC-BIND.

Dynamic variables have a limited usefulness for conveniently passing around thread
specific global values such as $80 (standard output). It costs about two orders of
magnitude more to reference a dynamic variable compared to a lexical variable. The
dynamic variables used by Tinylisp itself are:

Tinylisp Reference Manual 15 February 1989 29

$si

$so

$se

$modul.e

$el.ision

standard input

standard output

standard error

the current module

the amount of elision the read-eval-print loops Eval.. Loop
and Debug should use when printing values

$r the last value printed by the read-eval-print loops

(DYNAMIC-BIND ([$var v] ••.)
e ...)

Creates a new dynamic scope for the current thread in which the dynamic
variables $var are initialized to the values of the corresponding
expressions v (which are evaluated outside of the scope of the
DYNAMIC-BIND). The expressions e .•. _are evaluated, the dynamic scope
removed, and the value of the last expression returned.

Example:

(DEFINE (P)
(DYNAMIC-BIND ($z 4)

'(,$x ,$y ,$z»)

(:= $x 1)
(DYNAMIC-BIND ($y 2

$z 3)
(P))

(DynamicVal.ue.Get symbol. thread)

=> 1

=> (1 2 4)

Returns the current binding in the given thread of the dynamic variable
whose name is symbol.. If the thread is nil, it defaults to Thread. Sel.£.
$x is syntactic sugar for:

(DynamicVal.ue • Get 'x 0)

(DynamicVal.ue.Put symbol. e thread)

Assigns the current binding in the given thread of the dynamic variable
whose name is symbol. to be the value e. If the thread is nil, it defaults
to Thread. Sel.f. The syntactic sugar:

(:= $x e)

is equivalent to:

(DynamicVal.ue.Put 'x e (»

(DynamicVal.ue.CopyBindings £romThread toThread)

A new thread created by Thread. Fork inherits only the global dynamic
scope. This operation copies the current dynamic scopes from
fromThread to toThread. If either is nil, it defaults to Thread. Sel.f.
The scopes are copied, so if the source thread then exits a dynamic scope,
that won't affect the scopes of destination thread (and vice versa).
However, the variable locations (the slots to which the variables are
bound) are shared, so assignments to a particular variable binding in one
thread will be visible to the other.

This operation costs at least as much as a Thread. Fork, maybe

30 Tinylisp Reference Manual 15 February 1989

considerably more.

17. Reading and Printing Symbolic Expressions

The following procedures read and write symbolic expressions; see the Sx interfaces
for full details and other procedures. In all the procedures, the module parameter
defaults to $module, and syntaxTable defaults to TinylispSyntaxTable.
Elisions (Sx. Elision) are represented in Tinylisp as either nil, meaning no elision,
or a list (depth length).

(Read rd [module syntaxTable])

Reads the next symbolic expression from the reader rd. Raises
Rd. EndOf!'ile if there are no more expressions in the reader, and
ReadError on any kind of syntax error.

(ReadDel.im.itedList rd char [mod,ue syntaxTable])

Repeatedly reads symbolic expressions from the reader rd until char is
encountered, returning the expressions in a list. There may be
whitespace between the last expression and char. Raises ReadError if
any syntax error is encountered or end-of-file is encountered at any point.

(Scan!' rd format [module syntaxTable])

Formatted input, returning the results in a list. The format codes are
similar to those of Modula-2+'s Rd. Scan!', plus an additional %r which
calls Read to read an s-expression.

(Print wr value [elision module syntaxTable])

Prints a symbolic expression to wr, which must be an FWr (a formatted
writer). The default values of $so and Sse are FWrs.

(PP wr value [elision module syntaxTable])

Same as Print, except that wr may be an arbitrary writer, and the
output is always terminated with a newline.

(PrintList wr value [elision module syntaxTable])

Prints a list without using any client-supplied print procedure defined for
that list.

(Print!' wr for.mat arg ... [elision module syntaxTable])

Formatted output using format strings similar to those ofModula-2+'s
Wr . Print!', plus an additional format code %p for printing an arbitrary
value with Print, plus additional codes for controlling FWrs (formatted
writers). See the Sx interface for more details.

Tinylisp Reference Manual 15 February 1989

18. Evaluation and Read-Eval-Print Loops

(Eva~.Loop lsi so se prompt])

Invokes a read-eval-print loop using the given i/o streams and prompt,
which default to $si, $se, $ so, and > . The loop repeatedly reads an
expression from the input, evaluates it, and prints its result.

31

Each expression evaluation occurs in a new thread. If an error occurs
during evaluation (an unhandled exception or trap) or a Pause is
executed, the Tinylisp debugger is invoked automatically on the thread.
If the application has enabled control-C interrupts, then typing control-C
during the evaluation will invoke the debugger on the thread.

The dynamic variable $e~ision specifies the elision to use when
printing values (see Print); this defaults to (20 200). The variable $r
is set to be the value of the last evaluated expression.

(Eva~ sexpr)

Evaluates sexpr, which should be a Tinylisp s-expression. Equivalent
to:

(App~y (Procedure.Compi~e '(PROC () ,expression»
0)

Example:

(Eva~ '(+ x y»

19. Source and Object Files

Tinylisp does not have a separate compiler and interpreter -- all source expressions
are compiled on-the-fly. When a source file is loaded (read in to Tinylisp), Tinylisp
automatically creates a corresponding object file, which can be loaded much faster.
By convention, source files end in ". tl", object files end in ". to" .

Object files normally don't contain the source s-expressions of defined procedures
(this saves space and time). Without the source s-expressions available, Debug can
show only the name of a procedure and its arguments, not the expressions inside the
procedure.

(Load fi~ename [retainSource])

Loads a source or object file, reading and evaluating each expression in
the file, returning the name of the file, and creating an object file if
necessary.

The action taken depends on the form of fi.~ename (a text):

myfi~e.t~

myfi.~e.to

myfile

The source file is loaded, and the object file
myfi.le . to is created.

The object file is loaded.

The newer of myfile . tl and myfile . to is
loaded, and myfi.le . to is created if myfi.~e . t~
is newer.

Load won't create an object file (and it won't complain) if it doesn't have
sufficient file-ac~ss privileges.

32 Tinylisp Reference Manual 15 February 1989

If an object file is created and retainSource is true, the source s
expressions for procedures will be included in the object file. By default,
the source is not stored in the object files; this saves time and space, but
it also prevents the debugger from showing the source inside those
procedures.

(LoadSource filename
[objectFilename [retainSource [errorWr [skipFirstLine]]]])

Reads and evaluates the source expressions in filename. If
objectFilename is non-nil, creates an object file with that name,
raising os . Error if it doesn't have write access. If retainSource is
true, then source s-expressions for procedures are retained in the object
file. If errorWr is non-nil, syntax and compilation errors are printed to
it. If skipFirstLine is true, then the first input line is skipped (for
shell scripts).

(LoadObject filename)

Loads an object file.

20. Debugging

Tinylisp provides a simple set of tools for debugging, including a same-address-space
debugger, rudimentary methods of setting breakpoints, and the tried-and-true print
statement (combined with very fast turnaround).

The debugger lets you examine, continue, and destroy threads containing Tinylisp
procedure calls. From the debugger you can examine variable values and see the
s-expression source location of each procedure on a stack. When Tinylisp is bound
into an application, threads that encounter an error (an unhandled exception or trap)
simply suspend themselves, without stopping the entire address space and waiting
for Loupe.

Every expression evaluated by a read-eval-print loop is forked oft'as a separate
thread, and the loop will invoke the debugger on that thread automatically if it
suspends because of an unhandled exception or other error. Also, typing control-C to
the read-eval-print loop will suspend the current thread and invoke the debugger on
it.

Users can also invoke the debugger explicitly to examine other threads. (The read
eval-print loop will tell you if there are other threads needing debugging.)

The debugger has no problems suspending a thread currently executing a Tinylisp
procedure. But if the thread's current procedure is a Modula-2+ procedure, the
debugger must wait until the thread returns to a Tinylisp procedure. This of course,
could take a long time; so the debugger has an alert command which alerts a
running thread, politely asking it to stop. All Modula-2+ packages which could
possibly take a very long time to execute should respond to such alerts; but it is likely
that many don't.

You can use Loupe freely to examine a program containing Tinylisp. However,
beware that when a thread gets a trap or unhandled exception, all other threads
continue executing. Also, Loupe doesn't know how to print stack frames for Tinylisp
procedures; but there is a file of Loupe macros that provide minimal tools for
examining such frames and printing s-expressions. Within Loupe do:

Tinylisp Reference Manual 15 February 1989

<"/proj/packages/t:i.ny~:i.sp/t:i.ny~i.sp.~p"
ca11 he~pO

(Debug [thread [si. so se prompt]])

Explicitly invokes the Tinylisp debugger. If a thread is specified, it
becomes the debugger's current thread; otherwise the debugger selects
one of the stopped threads needing debugging. Normally $s.i, $8e, and
$80 are used as the i/o streams, but these can be supplied explicitly.

33

The Debug commands are typical stack-debugging commands; do he~p to
see specifics.

Unlike Loupe, the debugger does not allow you to set arbitrary breakpoints or
singlestep through an expression. You can however, set breaks on entry to and exit
from a procedure by invoking Break, and you can pause procedures at selected points
by explicitly inserting calls to Pause. And of course, you can insert print
statements.

(Break [proc [:i.nExpr [outExpr]]])

Sets a breakpoint on entry to and exit from the given procedure; the
calling thread will suspend (notify Debug) on entrance to the procedure
and on exit. If the s-expression .inExpr is supplied, then the procedure
breaks on entry only when that Tinylisp expression evaluates to true;
.inExpr is evaluated in the context of the formal parameters of the
procedure. If the s-expression outExpr is supplied, then the procedure
breaks on exit only when the expression evaluates to true; outExpr is
evaluated in a context containing the formal parameters and the special
variable RESULT containing the procedure's return value.

Example:

(DEFINE (Fact n)
(XF «= n 0) 1 ELSE (* n (Fact (- n 1»»

(Break Fact '«= n 4»

You can resume threads from breaks by using the debugger's continue
command.

If no arguments are given, then a list of all the procedures currently
having breaks is returned.

(Unbreak proc ...)

Removes the entry breakpoints from all of the given procedures. If no
arguments are given, then all breakpoints are removed.

(Pause e ...)

Evaluates the expressions e. . . and then suspends the procedure and
thread executing the Pause. The values of e ... are displayed when the
debugger examines that thread. The debugger's cont:i.nue command
resumes threads suspended by Pause.

34 Tinylisp Reference Manual 15 February 1989

21. Defining Special Forms

A special form is an expression that doesn't have the normal procedure-call
evaluation semantics; examples include IF, PROC, LOOP, and : =. There are only a
small number of primitive special forms in the language; all the other special forms
are defined as source-to-source expansions that occur at compile time (so-called
"macros").

The expansions are defined by Modula-2+ or Tinylisp procedures. When the Tinylisp
compiler encounters a form whose first element is a symbol whose value is a special
form, then the expansion procedure is called on the form; the result returned by the
expansion procedure is then recursively expanded until no more expansions can
occur.

(Specia1For.m.New name proc arq)

Defines a special form whose name is the symbol name and-whose
expansion is defined by proc. To expand an occurrence of a special form
£, the compiler calls

(proc arq £)

and uses the result as the expansion.

(SOURCE e ...)

The debugger shows the source of a procedure before special-form
expansion, and it needs help to identify in the fully expanded procedure
which forms are original and which are the result of expansions. A
special form should wrap each source expression e in an expansion with
(SOURCE e). This tells the debugger that e was in the original form and
not generated as part of the expansion.

(SyntaxError sexpr)

This exception should be raised by an expansion procedure whenever it
finds an s-expression sexpr that's syntactically incorrect.

As an example, here's a special form (Time e) that times the evaluation of e,
returning a list of the result of e and its time. (Time e) expands to:

(LET* (time (Time. Now)
resu1t (SOURCE e»
(s m) (Time. Subtract (Time. Now) time»

(List.List resu1t (+ s (* m le-6»»

The definition ofT.ime is:

Tinylisp Reference Manual 15 February 1989

(DEFINE Time
(Specia~Form.New

'Time
(PROC (arg form)

()))

(IF (! = 2 (List. Length form»
(RAISE SyntaxError form»

(LET (tempTime (SxMod~e.GenerateSy.mbo~

$modu1.e "time")
tempResu~t (SxModu~e.GenerateSy.mbo~

$modu~e "time"»
'(LET* (, tempTime

(Time.Now)
., tempResu~t

(SOURCE ,@(List.Tai~ form»
(s m)

(Time.Subtract (Time.Now)
- , tempTime))

(List.List ,tempResu~t
(+ s (* m 1.e-6»»»

Because special forms define new syntax with new evaluation rules, they are both
extremely powerful and quite dangerous if misused. If in doubt, don't use them.

35

Implementation restriction: If a special form is redefined after a procedure using it is
defined (compiled), then the debugger may not correctly show source locations within
that procedure.

22. Finding Your Way Around the Built-in Modula-2+ Packages

The power of Tiny lisp derives from its ability to invoke many Modula-2+ packages
directly. Most of the commonly used packages in "srclib" are built in to standard
Tinylisp configurations:

FWr, List, LocalPipe, Math, NullIO, Params, Random, RegExpr, Table,
Text, Rd, Thread, Time, TimeConv, Tty, UnixFile, Wr

(This list is approximate, since the particular Tinylisp configuration in an application
may include more or less.)

You should rely directly on the Modula-2+ interfaces themselves for documentation.
Usually, the Tinylisp interface is identical. But because Tinylisp deals with only a
subset of the full range of Modula-2+ types and doesn't have the notion ofVAR
parameters, some procedures will have small differences in argument types and
results.

For example, a Modula-2+ Time . T is a record of two integers, but Tinylisp can't deal
with Modula-2+ records directly. So for simplicity, the Tinylisp versions of the
procedures deal in two-element lists of the form (seconds microseconds).

Unfortunately, with our limited resources, it isn't possible for us to document all
these minor differences here. (And applications like Ivy will provide interfaces to
their own packages.) But no worries, mate: A few simple rules and tools will help you
quickly and reliably find out what you need to know.

First, to see if a procedure is in Tinylisp at all, get to a read-eval-print loop and type
the name of the procedure or module:

36 Tinylisp Reference Manual 15 February 1989

Time.Add

If you see something like:

#<Procedure.T Time.Add 2>

then you'll know the procedure is defined and takes 2 arguments. Similarly, to see if
a module is present, type the name of the module (with a trailing dot):

Time.

and Tinylisp will give a read error if the module doesn't exist.

If you're not sure of the name or its spelling, use Apropos:

(Apropos text)

Returns a list of all the public symbols that have text as part of their
name or their module's name. Case distinctions are ignored. (I.e. this is
grep over the all the public symbols.r Example:

(Apropos "char")
=> (Char.First Char.Last Char.Ord Char.T

Char.ToContro1 Char.ToLower Char.ToUpper
Char.Va1 Rd.CharsReady Rd.FindChar
Rd.GetChar Rd.UngetChar
SxSyntaxTab1e.CharQuote Text.FindChar
Text.FromChar Text.GetChar Wr.PutChar)

Suppose you know the Modula-2+ procedure is present in Tinylisp, but you're not
sure if the Tinylisp interface is any different. If the procedure accepts and returns
only refs, integers, cardinals, numeric subranges, characters, booleans, reals,
longreals, enumerated types, or procedures, and it has no V AR parameters, then the
interface will be similar. If the Modula-2+ procedure has default parameters, they
can be defaulted from Tinylisp as well.

Tinylisp provides the following automatic conversions (with full, safe checking):

Tinylisp integers, booleans, longreals, and characters are
converted to Modula-2+ INTEGER, BOOLEAN, REAL,
LONGREAL, and CHAR.

Tinylisp integers are converted to Modula-2+ numeric subranges and
cardinals.··

A resulting Modula-2+ INTEGER, BOOLEAN, REAL,
LONGREAL, or CHAR is converted to its Tinylisp equivalent.

Enumerated-type parameters and results are represented in Tinylisp
as symbols of the same name. For example, Text. Compare
returns one of the symbols Base. Lt, Base. Eq, or
Base. Gt . Remember to use a backquote in front of the symbols
passed to enumerated-type parameters.

For most casual use, simply try invoking the procedure from the read-eval-print loop.

If the procedure deals with non-Tinylisp types or you want to know for sure what the
interface is, you must look at the special Tinylisp-Modula-2+ interface files that
define the Modula-2+ names accessible from Tinylisp.

By convention, these interface files end in ".tli" (Tiny Lisp Interface) and are stored
with the other interface files in /proj / {topaz, u1trix} / {friends, pub1ic} .

Tinylisp Reference Manual 15 February 1989

Three interfaces define the standard TinyIisp namespace:

TLl:nit . t~i The names forming the core of the Tinylisp language itself.

TLLi.bl:nit . tli The standard srclib Modula-2+ packages accessible from
Tinylisp.

TLOSl:nit . t~i The as interface and friends.

The complete interface specification language is defined in section 23, but the
interfaces should be fairly perspicuous to anyone familiar with both Tinylisp and
Modula-2+.

For example, consider Text. Compare. In TLLibl:nit . tli we find the line

(MODULE Text)

and a little later:

(PROCEDURE Compare ("Text.T" "Text.T" & SOOLEAN)
(ENUM "Sase.Comparison"»

This defines the Tinylisp interface to Text. Compare. It declares the procedure to
take two texts and an optional boolean, and converts the result, a Modula-2+
enumerated type Sase. Comparison, into one of the Tinylisp symbols Sase. Lt,
Sase. Eq, or Sase. Gt.

23. Including Tinylisp in an Application

Tinylisp is implemented as a Modula-2+ library that can be bound into any
application program.

Your application should provide a set of Modula-2+ interfaces containing the
procedures and opaque-ref types that are to be referenced from Tinylisp. These
interfaces should be designed specifically for programming-in-the-small; that is,
there should be only a very few exported types, simple procedures with few
arguments, and reliance on the primary s-expression types and opaque-ref types.
Interfaces that are suitable for programming-in-the-large via Modula-2+ are
probably not suitable for programming-in-the-small.

37

Tinylisp proper deals only with the s-expression types (see Sx): integer, character,
boolean, longreal, list, vector, symbol, module, and all application-supplied opaque
ref types. So your interfaces should traffic only in those types or reals or enumerated
types (if they don't, you'll have to do more work writing procedures that convert
between Tinylisp and Modula-2+).

To make the procedures and types accessible from Tinylisp, you'll have to declare
them using a special-purpose declaration language in a . t~i file, say
MyAppll:nit. t~i. Compiling MyApplJ:nit. tli. with compi.~e_tli produces
MyApp~l:nit . def, MyAppll:nit . mod, and MyApp~l:nitAs. as, which should then be
compiled and linked with the application.

Along with MyApp~J:nit . 0 and MyApp~J:nitAs . 0, you should link the application
with at least the following libraries:

dump.a dynamic.a vaxinstr.a regexpr.a tinylisp.a

The application initializes Tinylisp by first calling:

38 Tinylisp Reference Manual 15 February 1989

Tiny~isp.Initia~ize();

MyApp~Init.Initia~ize();

It can then load Tinylisp source files or invoke a read-eval-print loop using the
procedures in the Tinylisp interface.

The rest of this section describes the declaration language used in . t~i files.

23.1. An Example

Though this description is rather long, in fact it isn't hard to declare typical
Modula-2+interfaces. Here's a fragment of a . t~i file declaring the Text interface:

(MODULE Text Lisp)

(TYPE T)
(EXCEPTION EndO£Fi~e)
(EXCEPTION ScanFai~ed)

(PROCEDURE FromChar (CHAR) "Text.T")
(PROCEDURE Length ("Text . Til)
(PROCEDURE IsEmpty ("Text. Til)
(PROCEDURE SubText ("Text. Til INTEGER & :INTEGER)

:INTEGER)
BOOLEAN)
"Text .T")

This declares a Tinylisp module Text containing a number of initialized symbols
corresponding to the Modula-2+ interface of the same name. The TYPE declaration
specifies that the Tinylisp symbol Text. T should be bound to the Modula-2+ opaque
ref type of the same name. The EXCEPT:ION declarations declare Text exceptions that
Tinylisp should recognize. And the PROCEDURE declarations specify the procedures
that should be accessible from Tinylisp, declaring their formal parameter types and
any conversions that should be performed on the actual parameters.

The stub generated for this . t~i file and bound into the application creates the
Tinylisp module and initializes its symbols to the appropriate types, exceptions, and
procedures. For the procedure declarations, there are stub procedures which
dynamically check the number and types of arguments passed in from Tinylisp,
converting them if necessary, before calling the corresponding Modula-2+ procedures.

For complete examples, see /proj/packages/tiny~isp/* . t~i or
/proj/packages/ivy/*.t~i.

23.2. The Declaration Language

The input . t~i files generally contain a mixture of declarations and Modula-2+
statements. Lines beginning with n(" in the first column (but not "(*") are processed
as declarations represented as s-expressions (see Sx). All other lines are passed on
into the generated . mod or . de£ file unchanged. This allows you to specify your own
Modula-2+ conversion procedures right in the . t~i file.

The beginning of the . t~i file should always contain a Modula-2+ :IMPORT statement
importing all the interfaces referenced in the . t~i file.

By convention, Sx symbols in the declarations represent the names of Tinylisp
symbols, while quoted texts represent Modula-2+ names:

t~name -> Sy.mbo~
m2+name -> Text

Tinylisp Reference Manual 15 February 1989 39

The declarations establish a correspondence between Tinylisp symbols and
Modula-2+ names and specify the automatic conversions to be performed between
Tinylisp and Modula-2+ procedures. By default, the symbols will be matched with
Modula-2+ names of the same name; in the example above, the Tinylisp symbol
Text. T corresponds to the Modula-2+ name Text. T. This default can be overridden
by using a namepair:

namepair -> (tl.name m2+name)
-> tl.name

For example:

(MODULE Text)

(PROCEDURE Length ("Text. T") INTEGER)
(PROCEDURE (GetChar "MyText. Get Char ") ("Text. T") CHAR.)

declares the Tinylisp symbol Text. Length to correspond to the Modula-2+
procedure Text. Length, whereas the symbol Text. GetChar corresponds with the
Modula-2+ procedure MyText • GetChar.

Though Tinylisp proper deals only with ref types, the declaration language performs
a limited number of conversions between standard Modula-2+ types and their s
expression representation. These types are named in declarations as a basetype:

basetype -> REFANY I INTEGER I LONGREAL I CHAR. I BOOLEAN

23.3. Declaration Forms

(MODULE tl.name [parent-tl.name •••])

Declares a new Tinylisp module with the given parents. Successive
Tinylisp names will be qualified relative to that module. Example:

(MODULE Text Li.sp)

(SYMBOL namepai.r)

Declares a new Tinylisp symbol of the given name. If an explicit
Modula-2+ name is given in the namepai.r, then the symbol's value is
initialized to the value of the Modula-2+ variable of that name.
Examples:

(SYMBOL PROC)
(SYMBOL (si. " Stdi.o • stdin"))

The second example creates the symbol si. and initializes its value to to
the value of the Modula-2+ variable Stdi.o. stdin.

(TYPE namepai.r)

Declares a new Tinylisp type corresponding to the Modula-2+ ref type.
Examples:

(TYPE T)
(TYPE (RegExpr "REPri.vate.RegExpr"»

(EXCEPTION namepai.r [basetype])

Declares a Tinylisp exception; if basetype is given, then the Modula-2+
exception is assumed to take one argument of that type; the basetype
INTEGER can be used for Modula-2+ exceptions which return enumerated

40 Tinylisp Reference Manual 15 February 1989

or subrange types. Warning: compil.e tl.i currently doesn't verify that
the declaration matches the actual type of the Modula-2+ exception.
Examples:

(EXCEPTION EndOfFil.e)
(EXCEPTION (SyntaxError "TLProcedure.SyntaxError")

REFANY)

(ENtlM m2name tl.name ...)

Makes an enumerated type available (after a fashion) to Tinylisp.
m2name is the name ofa Modula-2+ enumerated type, and the tl.name's
should be the elements of that type, in order.

In Tinylisp, enumerated values are represented by symbols of the same
name. This declaration creates those symbols and establishes the
correspondence between the enumerated type and the symbols for later
procedure declarations. Example:

(ENtlM "Base.Comparison" Lt Eq Gt)

From Tinylisp, you would call a procedure expecting a
Base. Comparison by passing one of the symbols Base. Lt, Base. Eq, or
Base. Gt (remember to backquote literal symbols).

(PROCEDURE
fOl:2Dal.

resul.t

namepair (fol:2Dal. ... [& fOl:2Dal. ...]) resul.t)
-> basetype I m2name I REAL I (VAL m2name)

(PROCEDURE m2name) I (ENUM m2name) I
(SET set-m2name enum-m2name [base-m2name])

-> basetype I m2name I REAL I (ORD m2name) I number
o I (ENUM m2name) I
(SET set-m2name enum-m2name [base-m2name]) ,

This is the most complicated declaration, specifying a procedureJts
argument and result types, and any conversions that should be aone
between Tinylisp and Modula-2+ representations.

An & in the parameter list indicates that the succeeding parameters are
optional and will be defaulted if not supplied on a call. The number of
optional parameters should match the declaration of the Modula-2+
procedure.

The specified formal and result types needn't match exactly the types of
the Modula-2+ procedure, but they must be compatible. For example, a
type of INTEGER can be specified for a Modula-2+ formal parameter that's
a numeric subrange. Typechecking, narrowing, and bounds-checking of
actual arguments is done at run time -- type errors raise
System. NarrowFaul.t.

Details about formal and result specifications:

basetype -> REFANY I INTEGER I LONGREAL I CHAR I BOOLEAN

Specifies that the Tinylisp (Sx) representations of parameter
values are converted to these Modula-2+ types, or vice versa
for results. No conversion is done for REFANY.

m2name

REAL

Specifies that a parameter value should be narrowed to this
Modula-2+ ref type (e.g. Text. T), or that a result is of this
type.

Tinylisp Reference Manual 15 February 1989 41

Specifies that a longreal parameter should be converted to the
Modula-2+ type REAL, or that the Modula-2+ result type is
REAL and should be converted to a Tinylisp longreal.

(ENOM m2name)

Specifies that the parameter or result is of the specified
Modula-2+ enumeration type (which should have been
declared using the EN'OM declaration above). A parameter
value is expected to be one of the Tinylisp symbols of the
enumeration, and NarrowFau~t is raised otherwise. A result
is converted from the enumeration type to the corresponding
symbol.

(SET set-m2name enum-m2name [base-m2name])

Sets of enumerated types can be passed between Tinylisp and
Modula-2+ by representing them as lists of symbols. SET
declares such a conversion; set -m2name is the Modula-2+
name of the set type, enum-m2name is the Modula-2+ name of
the element type, and base-m2name is the Modula-2+ name
of the base enumeration type (if enum-m2name is a subrange).
The base enumeration type should have been declared using
the ENOM declaration above.

(VAL m2name)

Specifies that a Tinylisp integer parameter value should be
converted to the specified Modula-2+ enumeration type using
VAL.

(ORD m2name)

Specifies that a Modula-2+ enumerated-type result should be
converted to a Tinylisp integer using ORD.

(PROCEDURE m2name)

()

number

Specifies that a formal parameter should be the given
Modula-2+ procedure type. Tinylisp procedures can be passed
to such parameters (without conversion of any sort), provided
that the Modula-2+ procedure type accepts only ref
parameters and either has no result or returns a ref type.
(Warning: compi~e _ t~i can't verify this.)

Specifies that the Modula-2+ procedure doesn't return a
result, so nil will be returned to Tinylisp.

Specifies that the Tinylisp result will be the number-th
parameter value (I-based).

(PROCEDURE namepair)

This form of procedure declaration performs no conversions; the
Modula-2+ procedure is called directly. This is useful for providing n-ary
procedures. The Modula-2+ procedure should have the type:

PROCEDURE (VAR ARRAY OF REFANY): REFANY;

The arguments are passed in the open array.

42 TinyHsp Reference Manual 15 February 1989

(SPECIAL-FORM namepair)

Initializes the Tinylisp symbol to be a special form, whose expansion
procedure is the corresponding Modula-2+ name.

(EXPORT modul.e-tl.name tl.name ...)

Imports the given Tinylisp symbols tl.name ... into the module
modul.e-tl.name, using SxModul.e. Import. The symbols then belong to
both their original module and the new one.

(FOR-MOD)
(FOR-INIT)
(FOR-BEGIN)
(FOR-DEF)

These control the disposition of succeeding non-declaration lines occuring
in the. tl.i file, sending them to the current position in the . mod file, the
Init:i.al.ize procedure of the .mod, the module's main body, or the. def
file respectively. By default, such lines go to the current position in the
. mod.

23.4. Contents of the .def file

The .deffile generated by compil.e_tl.:i. contains an In:i.t:i.al.:i.ze procedure which
should be called by the application to initialize the stubs. It also exports one
Modula-2+ variable for each module and symbol created by the stub. This allow the
application to refer to the modules and symbols efficiently, without calling SxModul.e

operations to do name lookups.

24. Tinylisp Performance

Unlike other Lisps, Tinylisp is not interpreted; instead, it has an on-the-fly compiler
that compiles expressions and procedures directly into machine code. This results in
performance significantly better than other comparable systems (Emacs Mocklisp, for
example).

Only the basic primitive forms are open-compiled (compiled inline):

IF, &, I, CASE, CASEQ, LOOP, EXIT, ASSERT, LET, LET*,
:= (for local variables only), DSET, PROC, RETURN, QUOTE,
!, =, !=, TYPECASE, TRY, FOR

Everything else is closed-compiled as procedure calls to Modula-2+ procedures.
Tinylisp-to-Tinylisp and Modula-2+-to-Tinylisp procedure calls cost about the same
as Modula-2+-to-Modula-2+ calls, but Tinylisp-to-Modula-2+ calls cost about twice as
much, since Modula-2+ doesn't do dynamic argument checking.

Arithmetic, being closed compiled, is much more expensive than in Modula-2+, but
much less expensive than, say, Mocklisp or the shell language.

If you're curious about the quality of Tinylisp-generated code for some procedure
~Procedure,do: .

(Procedure.Disassembl.e MyProcedure $so)

So far, Ivy hasn't encountered any serious performance problems using Tinylisp as a
high-level control language manipulating the efficient Modula-2+ primitives provided

Tinylisp Reference Manual 15 February 1989 43

by Ivy.

44

Index

Text.T 19

! 15
!= 15
!== 15

#< ••• > 6
#False 2,17
#True 2,17
#Undefined 2

$elision 28, 30
$module 13, 28, 30
$r 28
$se 28
$si 28
$so 28

& 8

o
See instead: nil

* 17

+ 17

- 18

.tl 31

.tli 36, 37, 38

.to 31

I 18

:= 10
FOR 26

< 18
<= 18

= 15,18
-- 15
=> 7

> 18
>= 18

@ 10,20

, 14

Abs 18
actual

parameter 11
alert 32
and

boolean 8
application 7

interfacing 37

Tinylisp Reference Manual

Apply 12
Apropos 36
arithmetic

performance 42
arithmetic operations 17
ASSERT 9
assignment 9

de structuring 11
dynamic variable 28
variable 10

atom
See instead: symbol

BACK QUOTE 14
backquoting 14
Base.Eq 20
Base.Gt 20
Base.Lt 20
BIND

FOR 26
binding 9

dynamic variable 28
bit operations 19
BitAnd 19
BitExtract 19
BitInsert 19
BitNot 19
BitOr 19
BitShiitLeft 19
BitShiitRight 19
BitXor 19
block comment 3
block text

syntax 4
boolean 2, 17

and 8
or 8
Ref.Boolean 2

boolean predicates 15
Boolean. T 16, 17
Break 33
breakpoints 32
BY

FOR 26

CASE 8
CASEQ 9
Ceiling 18
char

Ref.Char 2
Char. First 17
Char.Last 17
Char.Ord 17
Char. T 16, 17
Char. ToControl 17
Char. ToLower 17
Char.ToUpper 17
Char.Val 17
character 2,17

syntax 4

15 February 1989

Tinylisp Reference Manual

character set 21
CharSet.Difference 21
CharSet.Distinct 21
CharSet.Equals 21
CharSet.Excl 21
CharSet.ln 22
CharSet.lncl 21
CharSet.lntersection 21
CharSet.Subset 22
CharSet.Superset 22
CharSet.SymDifference 21
CharSet. T 21
CharSet.Union 21
closure 11
comment 8
comparison 15

arithmetic 18
compile_tli 1, 87
compiler 42
compiling 81,84
condition variable 24
constant 6

list 14
symbol 14

control flow 8
control-C 81, 82
conversions

Modula-2+ 86
Curly 6
current module 5, 18, 28, 80

datatype
See instead: type

Debug 28, 81, 88
debugging 82

special forms 84
declarations

TLI 88
DEFINE 11,.12
DEFINE-EXCEPTION 28
DEFIm-RECORD 28
destructuring 10, 26

assignment 11
procedure parameters 12

DO
FOR 26

DOWN-TO
FOR 26

DSET 11
dynamic binding 28
dynamic scope 28
dynamic variable 28
DYNAMIC-BIND 29
DynamicValue.CopyBindings 29
DynamicValue.Get 29
DynamicValue.Put 29

efficiency 42
elision 28, 80
ELSE 8
ELSIF 8
Emacs 42

15 February 1989 45

ENUM
TLI declaration 40, 41

equality 15
elTors 82
Eval 81
Eval.Loop 28, 81
evaluation 81

expression 6
order 7

EVERY
FOR 27

examples 1
EXCEPT

TRY 24
exception 7, 28

TLI declaration 89
unhandled 82

Exception.T 16
EXIT 9,25
EXPORT

TLI declaration 42
expression 6

evaluation 6
symbolic 2
tinylisp 6

extended objects
syntax 6

factorial 1
FINALLY

TRY 28
Float 18
Floor 18
flow of control

See instead: control flow
FOR 25
FOR-BEGIN

TLI declaration 42
FOR-DEF

TLI declaration 42
FOR-INIT

TLI declaration 42
FOR-MOD

TLI declaration 42
formal

parameter 11
formatted input 80
formatted output 30
formatting 8
function

See instead: procedure

IF 8
IMPORT 13
importing

symbol 6,13
IN

FOR 26
IN-RD

FOR 26
IN-TEXT

FOR 26

46

IN-VECTOR
FOR 26

indenting 8
indexing 20
inheritance 5
INHERITS 13
integer 2, 17

Ref.Integer 2
syntax 3

Integer:First 17
Integer.Last 17
Integer.T 16,17
integers

iterating 26
interfacing

application 37
Modula-2+ 35, 37

interpreter 31,42
iterating

integers 26
lists 26
readers 26
texts 26
vectors 26

iteration 9, 25
Ivy 1,8,42

LET 9,10
LET* 9,10
lexical scope 9
library 35,37
Lisp. 13
list 2,20

constant 14
FOR 27
List.T 2
syntax 5

ListAppend 20
ListAppendD 20
List.Equal 15
List.List 20
List.SetFirst 20
List.SetTail 20
List.Sort 20
List.SortD 20
List.T 16,20

list 2
List. TTail 20
List. TTTail 20
lists

iterating 26
Load 31
loading files 31
LoadObject 32
LoadSource 32
LOCK 24
logical operations 19
longreal 2, 17

Ref.LongReal 2
syntax 3

LongReal.T 16, 17
LOOP 9,25

Tinylisp Reference Manual

Loupe 32

Max 18
meta-syntax

syntax 7
Min 18
Mocklisp 42
Mod 18
Modula-2+ 1

calling 35, 37
conversions 36
interfacing 35, 37
packages 35, 37

module 2, 5, 13
importing a symbol 6
inheritance 5
SxModule. T 2
syntax 5
TLI declaration 39

15 February 1989

See also: current module
mutex 24

NARROW 16
NARROWN 16
negation 15
nil 2
Nil.T 16
number 17

syntax 3

object file 31
or

boolean 8
ORD

TLI declaration 41
order

evaluation 7

packages
Modula-2+ 35, 37

parameter
actual 11
formal 11

PASSING
TRY 24

pattern matching 10
Pause 33
performance 42
PP 30
predicates 15
pretty printing 8
Print 2,30
PrintF 30
PrintList 30
private

symbol 5
PROC 11
procedure 11

application 7
TLI declaration 40, 41
variadic 11

procedure call

Tinylisp Reference Manual

performance 42
Procedure.T 16
programming in the small 1
public 13

symbol 5,13

QUOTE 14
quoting 14

RAISE 23
Rd.T 20
Read 2,30
read-eval-print loop 13,31
ReadDelimitedList 30
reader 20
readers

iterating 26
REAL

TLI declaration 40
record 23
REDUCE

FOR 27
reftype 2, 37

syntax 6
Ref.Boolean

boolean 2
Re£Char

char 2
Re£Integer

integer 2
Re£LongReal

longreal 2
Re£Vector

vector 2
Rem 18
RESULT

FOR 27
RETURN 12
Round 18

s-expression
See instead: symbolic expression

ScanF 30
scope 11,26

dynamic 28
lexical 9

sequence 25
SET 11

TLI declaration 41
set, of characters 21
SHADOW 13
shadowing

symbol 13
SOME

FOR 27
sorting 20
SOURCE 34
source file 31
special form 7, 34
SPECIAL-FORM

TLI declaration 41
SpecialForm.New 34

15 February 1989

SpecialForm.T 16
srclib 35
standard error 28
standard input 28
standard output 28
string

See instead: text
stub 37
style 8
suspension 32
Sx 2,6,37
SxModule 6
SxModule.T 16

module 2
SxSymbol 6
SxSymbol.T 16

symbol 2
SxSyntaxTable 6
symbol 2,5

as a variable 7
constant 14
importing 6,13
private 5
public 5,13
shadowing 13
SxSymbol.T 2
syntax 5
TLI declaration 39
unowned 6

symbolic expression 2,6,37
printing 30
reading 30

synchronization 24
syntax 2

extended objects 6
meta-syntax 7
special forms 34

SyntaxError 34
System.NarrowFault 7

table 22
Table.Delete 22
Table.Get 22
Table.New 22
Table.Put 22
Table.RefDompare 22
Table.RefHash 22
Table.T 22
template

de structuring 10
See instead: BACKQUOTE

text 2,19
FOR 27
syntax 4
Text.T 2

Text.Cat 19
Text.Compare 19
Text.T 16

text 2
texts

iterating 26
thread 24, 32

47

48

Thread.AlIThreads 25
Thread.Condition 24
Thread.GetCPUTime 25
Thread.Mutex 24
Thread.NewCondition 25
Thread.NewMutex 25
Thread.T 16, 24
TLI

declarations 38
TLInit.tli 36
TLLibInit. tli 36
TLOSInit. tli 36
TO

FOR 26
trap 32
Trunc 18
TRY

EXCEPT 24
FINALLY 23
PASSING 24

type 15
TLI declaration 39

Type. Of 16
Type.T 16
TYPE CASE 16
typechecking 7

Unbreak 33
undefined 2
Undefined.T 16
UNQUOTE 14
UNQUOTE-SPLICING 14
UNTIL

FOR 26

VAL
TLI declaration 41

VAR
FOR 25

variable 7
assignment 10
dynamic 28
lexical 9

variadic
procedure 11

vector 2,20
FOR 27
Ref.Vector 2
syntax 5

Vector. Copy 21
Vector. Expand 21
Vector. Get 20
Vector. High 21
Vector. New 20
Vector. Number 21
Vector. T 16, 20
vectors

iterating 26

WHEN
FOR 26

WHILE

Tinylisp Reference Manual

FOR 26
whitespace 3
Work. 13
Wr.T 20
writer 20

I 8

15 February 1989

