
0

·o

0

0

0

VAX LISP/ULTRIX
System Access Programming Guide

Order Number: M-EV40A-TE

May 1986

This document contains Information required by a LISP language
programmer to make use of routines and other facllltles offered by
the VMS operating system.

Operating System and Version: UL TRIX-32 Version 1.2
ULTRIX-32m Version 1.2

Software Version: VAX LISP/ULTRIX Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1986

The information in this document is subject to change without notice c,
and should not be construed as a commitment by Digital Equipment _,
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1986.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of
this document. Your comments will assist us in preparing future
documentation.

The following are trademarks of Digital· Equipment'torporation:

DEC
DECOS
MicroVAX
VAXstation
DECnet
ULTRIX-32
ULTRIX-32m

UNIBUS
VAX
MicroVAX II
VAXstation II
ULTRIX

PDP
VMS
MicroVMS
AI VAXstation
ULTRIX-11

o·

0

0

0

O PREFACE

CHAPTER 1

1.1
1.2
1. 3

O CHAPTER 2

0

0

0

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.3.1
2.3.3.2
2.3.3.3

2.3.3.4
2.3.3.5
2.3.4
2.3.5 .
2.3.6
2.3.7
2. 3'. 7 .1
2.3.7.2
2.3.7.3
2.3.7.4
2.4
2.4.1
2.4.2
2.4.3

2.5
2.5.1
2.5.2
2.5.3
2.5.4

CONTENTS

PART I
GUIDE TO SYSTEM ACCESS PROGRAMMING

OVERVIEW OF SYSTEM ACCESS FACILITIES

THE CALL-OUT FACILITY
ALIEN STRUCTURE~
CONTROLLING INTERRUPTIONS AND SYNCHRONIZING
EXECUTION

CALLING EXTERNAL ROUTINES

STEPS TO TAKE IN CALLING AN EXTERNAL ROUTINE
STANDARD VAX CALLING CONVENTIONS

Transfer of Control
Argument Lists
Mechanisms for Passing Arguments
Values Returned by Functions

DEFINING AN EXTERNAL ROUTINE
External Routine Name and Options
External Routine Name
External Routine Options

Checking the Return Status
Naming the Entry Point
Nam'ing the Object File and/or Required
Libraries
Specifying the Result Data Type
Checking the Argument Data Types

Documentation String
Argument Descriptions
Argument Name
Argument Options

Access Capability
LISP Data Type
Passing Mechanism
VAX Data Type

CALLING AN EXTERNAL ROUTINE
How to Call an External Routine
What the CALL-OUT Macro Does
How the CALL-OUT Macro Uses Internal Data
Structures

DATA TYPE CONVERSIONS
Converting LISP Objects to VAX Data Types
Arguments with :IN-OUT Access
:ASCIZ VAX Type
Converting VAX Data Types to LISP Object~

iii

vii

1-1
1-2

1-3

2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6

2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-9
2-9

2-10
2-10
2-10
2-11
2-11

2-12
2-12
2-12
2-14
2-14
2-14

2.6
2.7

2.7.1
2.7.2
2.7.3
2.7.4
2.8

CHAPTER 3

3.1
3.2
3.3

3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.3
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.3
3.4.3.1
3.4.3.2
3.4.3.3
3.4.4
3.4.4.1
3.4.4.2
3.4.4.3
3.4.4.4
3.5
3.6
3.6.1
3.6.2
3.7

CHAPTER 4

4.1
4.2
4.3

ERRORS DURING EXTERNAL ROUTINE EXECUTION
SUSPENDING A LISP SYSTEM CONTAINING EXTERNAL
ROUTINE DEFINITIONS

Acquiring Memory
Initializing Data
Using Open Files
Having Rooted File Names

EXAMPLES OF USING THE CALL-OUT FACILITY

DEFINING . .,. AND CREATING ALIEN STRUCTURES

DEFINING AN ALIEN STRUCTURE DATA TYPE
WHAT THE DEFINE-ALIEN-STRUCTURE MACRO DOES
ALIEN STRUCTURE NAME, OPTIONS, AND DOCUMENTATION
STRING

Alien Structure Name
Options

Naming Access Functions
Naming the Constructor Function
Naming the Copier Function
Naming the Predicate Function
Specifying a Print Function

Documentation String
ALIEN STRUCTURE FIELD DESCRIPTIONS

Field Name
Field Type

Given Field Types
User-Defined Field Types

Field Positions
Start and End Positions
Gaps Between Field Positions
Overlapping Fields

Field Options
Initial Value
Read-Only Value
Repeated Field
Similar-Field Distances

EXAMPLES OF ALIEN STRUCTURE DEFINITIONS
CREATING AN ALIEN STRUCTURE

Initializing and Changing Data Fields
Allocating Memory

ADDITIONAL ALIEN STRUCTURE MACRO AND FUNCTIONS

INTERRUPT LEVELS, CRITICAL SECTIONS, AND
SYNCHRONIZATION

USING INTERRUPT LEVELS
CRITICAL SECTIONS
SYNCHRONIZING PROGRAM EXECUTION

iv

2-15

2-16
2-16
2-16
2-17
2-17
2-17

3-2
3-3

3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-9

3-10
3-10
3-10
3-11
3-14
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-22
3-22
3-23
3-24

4-1

0

0

0

0

4-2 0
4-3

INDEX

O FIGURES

TABLES

0

0

0

2-1
3-1

2-1
2-2

2-3
2-4
2-5
3-1
3-2
1
2
3
4

PART II
OBJECT DESCRIPTIONS

ALIEN-FIELD Function
ALIEN-STRUCTURE-LENGTH Function
CALL-OUT Macro
CRITICAL-SECTION Macro
DEFINE-ALIEN-FIELD-TYPE Macro
DEFINE-ALIEN-STRUCTURE Macro
DEFINE-EXTERNAL-ROUTINE Macro
WAIT Function

Calling External Routines
Internal Storage of FAMILY-REC

Keywords Specifying External Routine Options
Keywords Specifying External Routine Argument
Options
Values of the :MECHANiSM Keyword
Conversion Table from LISP Type to VAX Type
Conversion Table from VAX Type to LISP Type
Alien Structure Field Types
Values Used with Memory-Space Keywords
DEFINE-ALIEN-STRUCTURE Options
DEFINE-ALIEN-STRUCTURE Field Options
DEFINE-EXTERNAL-ROUTINE Options
DEFINE-EXTERNAL-ROUTINE Argument Options

v

1
3
6
8
9

12
18
23

2-2
3-21

2-6

2-9
2-10
2-12
2-15
3-11
3-23

12
15
18
21

0

0

0

0

0

0

0

0

0

0

PREFACE

Manual Objectives

The VAX LISP/ULTRIX System Access- Programming Guide provides
information that lets you, as a LISP programmer, make use of the
programming interface of the ULTRIX-32 operating system. The routines
included with the operating system give you access to capabilities not
normally accessible from the LISP environment.

Intended Audience

This manual is intended for programmers with a good knowledge of both
LISP and the programming interface to the ULTRIX-32 operating system.

Structure of This Document

An outline of the organization and chapter content of this manual
follows:

PART I: GUIDE TO SYSTEM ACCESS PROGRAMMING

Part I consists of four chapters, which explain how
LISP interface to operating system routines.

to use the VAX

• Chapter 1 provides an overview of the VAX LISP system access
facilities.

• Chapter 2 shows how to define an external (system) routine and
how to call it from LISP.

•

•

Chapter 3 explains alien structures, which allow you to
exchange data between LISP and routines written in other
languages.

Chapter 4 shows how you can control the execution
functions by assigning them interrupt levels.
protect sections of code against interruption and
program to wait until an event occurs or
information becomes available.

vii

of keyboard
You can also

cause your
some needed

PREFACE

PART II: OBJECT DESCRIPTIONS

Part II contains full descriptions of the functions, macros,
variables, and constants involved with system access. Each function
or macro description explains the function's or macro's use and shows
its format, applicable arguments, return value, and examples of use.
Each variable or constant description explains the variable's or
constant's use and provides examples of its use.

Associated Documents

The following documents are relevant to VAX LISP/ULTRIX programming:

• VAX LISP/ULTRIX User's Guide

• COMMON LISP: The Language

• ULTRIX-32 Programmer's Manual

• VAX Architecture Handbook

Conventions Used in This Document

The-following conventions are used in this manual:

Convention

()

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

0

0

,0

[] Square brackets enclose elements that are option~!. Q
For example:

{ }

[doc-string]

A horizontal ellipsis means that the element preceding
the ellipsis can be repeated. For example:

function-name .•.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

viii

0

Convention o{ }*

0

0

0

&OPTIONAL

&REST

UPPERCASE

lowercase
italics

bold

PREFACE

Meaning

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code, which can be
repeated zero or more times. For example:

{keyword value}*

In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

CALL-OUT external-routine &REST routine-arguments

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname
&KEY :LISTING :MACHINE-CODE

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

Defined LISP characters, functions, macros, variables,
and constants are printed in uppercase characters;
however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters . .
Names of ULTRIX commands and command options in the
text (NOT in the examples) are in bold type.

ix

Convention

command(n)

<RET>

<CTRL/x>

Black print

Red print

PREFACE

Meaning

The (n) after a command is the section number of
ULTRIX-32 Programmer's Manual that contains
description of that command. For example:

theo
a

vi(l)

A symbol
indicates
example:

with
that

a 1-
you

<RET> or <ESC>

to 3-character abbreviation
press a key on ~he terminal. For

In examples, carriage returns are implied at the end of
each line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.

CTRL/x indicates a control key sequence where you hold
down th~ CTRL key while you simultaneously press
another key. For example:

<CTRL/C> or <CTRL/Y>

0

The system echoes control key sequences as Ax;
therefore, in examples of output, <CTRL/x> is shown a·s Q
Ax. For example:

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In examples, output lines and prompting characters that Q
the system displays are in black print. For example:

Lisp> (CDR '(ABC))
(BC)
Lisp>

In examples, user input is shown in red print.
example:

Lisp> (CDR '(ABC))
(BC)
Lisp>

x

For

0

0

PART I

0 GUIDE TO SYSTEM ACCESS PROGRAMMING

0

0

0

0

0

0

0

0

CHAPTER 1

OVERVIEW OF SYSTEM ACCESS FACILITIES

The VAX LISP system is layered on top of the ULTRIX operating system. Oif you restrict your use of LISP to COMMON LISP functions and use the
utilities provided with VAX LISP, you may hardly notice the operating
system. VAX LISP, however, provides various means of access to the

0

0

facilities of the operating system. This chapter provides a broad
view of those means of access. The remainder of this manual describes
them in detail.

The ULTRIX operating system offers the following general facilities to
any programmer, including the LISP programmer:

• System calls and other library routines. The libraries are
shipped with the operating system. Some routines provide an
interface to operating system capabilities, such as I/0,
scheduling, and notification of external events. Other
routines set or retrieve parameters about a process or the
entire system.

• A multilanguage programming environment. Routines written in
a language that conforms to the VAX Calling Standard can be
called by, and can return values to, routines written in other
languages. For example, a LISP program can call a routine
written in ULTRIX C.

The remainder of this chapter briefly describes each of the facilities
that let yo.u work with operating system facilities. The chapters that
follow describe ,each facility in greater detail.

1.1 THE CALL-OUT FACILITY

As a VAX LISP programmer, your primary means of access to routines
external to LISP is the call-out facility. To use the call-out

O facility, you must first identify a system call or library routine
that you want to use, or write and debug a routine in another
language. Information about system calls and library routines is in

1-1

OVERVIEW OF SYSTEM ACCESS FACILITIES

Sections 2 and 3 of the ULTRIX-32 Prograrruner's Manual. This
documentation has information about the arguments that each routineQ
expects, its effects, and the value, if any, that it returns.

If you write a routine in another language, you must be aware of the
routine's arguments. The VAX data types and passing mechanisms of
those arguments are especially important.

Once you have identified or written an external routine, you must
define it, using the DEFINE-EXTERNAL-ROUTINE macro. This macro makes
known to LISP the location and arguments of an external routine and
sets up a mechanism whereby arguments expressed in LISP data types can
be converted to the proper VAX data types for the external routine.

The CALL-OUT macro calls a defined external routine, passing it the
arguments you specify and returning a value if the external routine
returns a value.

1.2 ALIEN STRUCTURES

0

The DEFINE-EXTERNAL-ROUTINE macro can specify arguments for most
common VAX data types. However, to pass more complex data you must
define an alien structure that corresponds to the structure of the
data in an external routine. An alien structure definition has two Q
general purposes:

• To define a precise layout for a portion of memory.

• To instruct LISP how to interpret fields in that memory,
allowing you to access those fields using LISP data types.

An alien structure definition provides a template for instances of
that structure, similar to a COMMON LISP structure definition created Q
by the DEFSTRUCT macro. The DEFINE-ALIEN-STRUCTURE macro defines an
alien structure and also provides a constructor function, field
accessor functions, a type predicate, and so on.

You pass an instance of an alien structure to an external routine
using CALL-OUT. Since DEFINE-ALIEN-STRUCTURE provides precise control
over the memory layout of the structure, you can set up the alien
structure so that the external routine can properly map its own data
types into it. The external routine can 'access or modify fields in
the structure. When CALL-OUT returns, the modified structure is again
available for LISP to interpret as LISP data.

1-2

OVERVIEW OF SYSTEM ACCESS FACILITIES

1.3 CONTROLLING INTERRUPTIONS AND SYNCHRONIZING EXECUTION
(\
....__.,/ VAX LISP allows you to control the way functions can interrupt each

other. You can also synchronize program execution by causing the
program to wait until an event occurs or information becomes
available.

0

0

0

0

A function that is specified with BIND-KEYBOARD-FUNCTION can also have
an interrupt level specified. The interrupt level is an integer.
When the function is called on to execute, it can do so only if its
interrupt level is higher than the level at which VAX LISP is
operating. By using interrupt levels, you can ensure that functions
that must interrupt other functions can do so.

Some parts of code -- for example, those that modify data structures
must never be interrupted. You can use the CRITICAL-SECTION macro

to protect such code from any interruption.

If your program has to wait for the execution of a keyboard function,
VAX LISP provides the WAIT function. The WAIT function halts normal
LISP execution until a testing function that you specify returns
non-NIL.

1-3

0

0

0

0

0

0

0

0

0

0

CHAPTER 2

CALLING EXTERNAL ROUTINES

VAX LISP has a facility that lets you call routines written in other
languages from within a VAX LISP program. Using this facility, VAX
LISP programs can call routines written in C and other compiled
languages supported by ULTRIX. The routines must be provided in an
object file acceptable as input to the ld(l) linker.

Programs written in other VAX languages cannot call VAX LISP
functions. The reason is that most functions written in LISP depend
on an entire LISP environment being present at run time. As an
example of this dependency, take garbage collection. If the LISP
function that was called from another language, for example, FORTRAN,
ran out of dynamic memory, if would normally cause a garbage
collection in the LISP environment. However, since the whole LISP
environment is not present when the LISP function is called, the
FORTRAN program would have to deal with the memory- management tasks
normally performed by the garbage collector. This would require the
FORTRAN program to have knowledge of the internals of the LISP system.

This chapter covers the following:

• Lists the steps to take in calling an external routine.

• Describes the standard VAX calling conventions.

• Explains and gives examples of how to define and call external
routines.

• Shows how data types are converted from LISP objects to VAX
objects and vice versa.

e Explains the errors that can occur while executing an external
routine.

• Shows how a LISP system
definitions is suspended.

2-1

containing external routine

CALLING EXTERNAL ROUTINES

2. ~ STEPS TO TAKE IN CALLING AN EXTERNAL ROUTINE

For a LISP program to call an external routine, you must:

1. Write the external routine.

2. Compile iL

3. Debug it.

4. Define it in LISP.

5. Call it from LISP.

Figure 2-1 illustrates these steps. Note that VAX LISP currently has
no way to debug external routines.

Create, compile, and debug
external routine

ULTRIX Environment i
Invoke VAX LISP

i
Define external routine to
LISP

LISP Environment l
Call out to external routine

ML0-246-86

Figure 2-1: Calling External Routines

2.2 STANDARD VAX CALLING CONVENTIONS

0

0

0

0

The VAX Procedure Calling Standard defines a uniform method for
language routines to call one another -- see the VAX Architecture. 0 Handbook. However, Interpreted and compiled VAX LISP programs cannot
conform to this standard because of the nature of the LISP language.

2-2

0

0

CALLING EXTERNAL ROUTINES

For this reason, VAX LISP provides a facility that lets you call
routines written in other VAX languages that do conform to the
standard. Thus, to call an external routine, that routine must follow
the VAX Procedure Calling Standard. The next four sections briefly
summarize how VAX LISP calls external routines conforming to this
standard.· These sections cover the following areas with which the
standard deals:

• How external routines receive and return control

• How arguments are passed

• Which mechanisms are used to pass arguments

• How function values are returned

2.2.1 Transfer of Control

VAX LISP calls external routines with a CALLG instruction. External
routines return control to the programs that call them with a RET
instruction.

Q 2.2.2 Argument Lists

0

0

Arguments are passed to an external routine in an argument list. The
LISP system constructs this argument list each time a LISP program
calls an external routine. The list is a sequence of longword
(4-byte) entries. The first byte of the first entry.in the list is an
argument count, indicating the number of longwords that follow in the
list.

The succeeding longwords contain either a data value, a pointer to a
data value, or a pointer to a descriptor of a data value, depending on
the specified passing mechanism. The limit is 254 arguments.

2.2.3 Mechanisms for Passing Arguments

The VAX Procedure Calling Standard defines three mechanisms by which
, arguments are passed to external routines:

• By immediate value

• By reference

The argument list contains the value.

The argument list contains the address
of the value.

2-3

CALLING EXTERNAL ROUTINES

• By descriptor -- The argument list contains the address Q
of a descriptor of the value.

Section 2.3.7.3 describes how to specify an argument's passing
mechanism.

2.2.4 Values Returned by Functions

An external routine can be a subroutine or a function. A subroutine
is invoked only to produce side effects, and returns no value as a
result of its execution. A function, on the other hand, returns a
value after execution and might produce side effects. The function
value is returned in one of two ways.

•

•

If the data type is scalar and requires 32 bits
storage, the value is returned in register RO.

or less

If the data type is scalar and
storage, the low-order bits
register RO, and the high-order
in register Rl.

requires from 33 to 64 bits of
of the value are returned in
bits of the value are returned

2.3 DEFINING AN EXTERNAL ROUTINE 0
Programs written in VAX LISP cannot call external routines the same
way as programs written in other ULTRIX languages. When a program
calls an external routine, the ·program must specify information about
the routine. Other ULTRIX languages specify the information by
compiling code into object modules that are linked by the ULTRIX
linker. Since VAX LISP does not create object modules that can be
linked, it must specify information about an external routine anothero
way.

To call an external routine, you must provide an object (.o) file that
is acceptable as input to the ld(1) linker. To do so, compile the
external routine. Then, enter VAX LISP and define the routine in
LISP, using the DEFINE-EXTERNAL-ROUTINE macro. This definition
provides LISP with the information needed to· build an argument list,
link, and call the routine. A description of the
DEFINE-EXTERNAL-ROUTINE macro is provided in Part.II.

2-4

0

0

0

CALLING EXTERNAL ROUTINES

The format for defining an external routine is:

(DEFINE-EXTERNAL-ROUTINE (routine-name keyword-1 value-1
keyword-2 value-2

[doc-string]
(argument-name keyword-1 value-1

keyword-2 value-2
...)

(argument-name ...) ...)

...)

The following example illustrates an external routine definition. The
keywords used in this example are explained in the next sections. An
illustration of calling out to this external routine is given in
Section 2.4.1.

Lisp> (DEFINE-EXTERNAL-ROUTINE (SYSTEM :ENTRY-POINT "_system")
"This lets you use shell commands from VAX LISP."
(COMMAND :LISP-TYPE STRING :VAX-TYPE :ASCIZ))

SYSTEM

The external routine name SYSTEM in this example identifies the shell
command system(3). This definition lets you call other shell commands
from VAX LISP.

Q 2.3.1 External Routine Name and Options

When you define an external routine, you must specify a name for it.
In addition, you can specify options that provide the LISP system with
information about how to call the external routine.

Q 2.3.2 External Routine Name

0

The external routine name is a symbol that uniquely identifies that
routine among all external routines being defined. The name also
serves as the entry-point name unless a different entry-point name is
specified with the :ENTRY-POINT option (see Section 2.3.3.2).

Note that COMMON LISP symbols generally have uppercase print names
while ULTRIX routine names are usually in lowercase.

2.3.3 External Routine Options

You can assign specific characteristics to an
specifying options in the routine's definition.
of a keyword-value pair.

2-5

external routine by
Each option consists

CALLING EXTERNAL Rou·11Nt~

Specify external routine options in a list whose first element is the
name of the routine the options characterize. The format in which to Q
specify the name and options is:

(name keyword-1 value-1 keyword-2 value-2 ...)

Option values are not evaluated. Table 2-1 alphabetically lists the
option keywords you can use. The next sections explain each option in
detail. For examples of how to use these options, s~e Section 2.8.

Table 2-1: Keywords Specifying External Routine Options

Keyword Purpose

:CHECK-STATUS-RETURN

:ENTRY-POINT

:FILE

:RESULT

:TYPE-CHECK

To check the return status

To name the entry point

To specfy the object file(s) and any
required libraries

To define the data type of the result

To check the data types of the arguments

2.3.3.1 Checking the Return Status - The :CHECK-STATUS-RETURN keyword
specifies whether the call-out facility is to examine the contents of
register RO on return from the external routine. The default is NIL,
which means that no checking is done. If you specify an integer, the

0

0

RO register is assumed to contain a status code. If the result
returned by the RO is equal to that integer, a continuable error is Q
signaled. The presence of this option implies that the external
routine returns an integer; thus, you should not specify the :RESULT
option with this option.

2.3.3.2 Naming the Entry Point - The :ENTRY-POINT keyword specifies
the entry-point name of an external routine. You must specify this
keyword with a string that represents the name of the entry point that
is to be cal~ed if that string is different from the name you specify
for the external routine. (The default entry point is the print name
of the external routine.) You must add underscores to the name if
using a language that adds underscores.

2-6

0

0

CALLING EXTERNAL ROUTINES

NOTE

By default, COMMON LISP symbols have uppercase print
names and by convention, ULTRIX compiled languages
have lowercase entry-point names.

2.3.3.3 Naming the Object File and/or Required Libraries - The :FILE
keyword specifies an external routine's object file name. You must
use this keyword unless you are calling a routine in the C library,
which is always linked in last. Specify the :FILE keyword with a
string that represents the ULTRIX file name of the external routine's
object file or archive library.

For more than one object file or library, specify them as a list of
.strings in the order n~eded. The files are linked in the order Q specified, and the C library is linked last.

NOTE

If the specified entry point is already available in
LISP, modified versions of the routine are not used.

Q 2. 3. 3. 4 Specifying
specifies the type
default is NIL, which
returns no value.

the Result Data Type - The :RESULT keyword
of value returned by the external routine. The
means that the routine is a subroutine and

If the routine does return a value, then the :RE.SULT keyword can
specify the LISP (or both a LISP and a VAX) data type that the
external routine is to return to the LISP system. Specify the value Owith :RESULT as a LISP data type. If the VAX type of the returned
value does not correspond with the LISP data type, use a list of the
format (:LISP-TYPE lisp-type :VAX-TYPE vax-type). See Table 2-4 for

0

valid result types. Do not specify both the :CHECK-STATUS-RETURN
keyword and the :RESULT keyword.

2.3.3.5 Checking the Argument Data Types - The :TYPE-CHECK keyword
specifies that the data types of the arguments passed to an external
routine be checked for compatibility with the argument descriptions.

You can specify the keyword with either Tor NIL. If you specify T,
the LISP system generates code that checks the type of actual LISP
objects when you call the CALL-OUT macro. If the types of the
routine's defined and actual arguments are incompatible, an error is
signaled. If you specify NIL (the default value), the system does not
generate type-checking code. ·

2-7

CALLING EXTERNAL ROUTINES

NOTE

Type checking adds considerabl~ overhead to
call-out process.

the

2.3.4 Documentation String

You can include a documentation string for an external
string is optional and is attached to the symbol as
string of type EXTERNAL-ROUTINE. Place the string in
after the name arid options list.

2.3.5 Argument Descriptions

routine. The
a documentation
the definition

External routines usually accept one or more arguments. The argument
descriptions determine the number, order, and characteristics of the
arguments that you can pass to a routine.

If the default characteristics are adequate, then an argument
description is nothing more than the name of the argument. Otherwise,
the·argument description is a list whose first element is the name and
whose remaining elements specify the characteristics.

2.3.6 Argument Name

An argument name is a symbol that names the argument. The symbol must
be either unique within the routine's definition or NIL if no name is
desired. Unique names make some call-out error messages easier to
understand.

2.3.7 Argument Options

You can define the characteristics of an external routine argument by
specifying options iri the argument description. Each option consists
of a keyword-value pair. Specify options in a list whose first
element is the name of the argument they' characterize. The format is:

(argument-name keyword-1 value-1 keyword-2 value-2 •..)

Option values are not evaluated. Table 2-2 is an alphabetical list of
the argument-option keywords with the values they define:

2-8

0

0

0

0

0

CALLING EXTERNAL ROUTINES

Table 2-2: Keywords Sp.ecifying External Routine Argument Options
o,-----------------------------------v----a-lu ___ e ___ ~

Keyword

:ACCESS

:LISP-TYPE

:MECHANISM

Defined

Access
capability

LISP type

Passing
mechanism

Options

:IN (default)
: IN-OUT

see Table 2-4
INTEGER (default)

:VALUE
:REFERENCE (default except for

:VAX-TYPE :TEXT)
:DESCRIPTOR (default for

:VAX-TYPE :TEXT)

O:vAX-TYPE VAX data type see Table 2-5
(default depends on LISP type)

2.3.7.1 Access Capability - The :ACCESS keyword specifies .the access
capability for an argument. The possible values are :IN for input
access and :IN-OUT for both input and output access. The default is

O
:IN. Since external routines cannot allocate LISP objects, :OUT is
not a possible value.

If an argument has input access, it is assumed to be read-only, and
the external routine may not modify it. If it is modified, the
results are unpredictable.

If an argument has both input and output access, the external routine
can obtain the argument's value and optionally modify it. The

O
argument must be specified as a form acceptable to SETF. The CALL-OUT
macro passes the argument to the external routine and uses SETF to
reassign the new value after the routine returns. See Section 2.5.2
for more details.

0

2.3.7.2 LISP Data Type - The :LISP-TYPE keyword defines the LISP data
type of an argument. Specify this keyword with the types shown in
Table 2-4. The LISP· type defaults to INTEGER.

If the values you specify for the LISP data type and the VAX data type
are incompatible, an error is signaled.

2-9

CALLING EXTERNAL ROUTINES

2.3.7.3 Passing Mechanism - The :MECHANISM keyword defines the
mechanism by which an argument is to be passed to an external routine. Q
With the :MECHANISM keyword, you can specify one of the three values
in Table ~-3. These values correspond to the three defined mechanisms
described in Section 2.2.3.

Table 2-3: Values of the :MECHANISM Keyword

Value
Name

:VALUE

:REFERENCE

:DESCRIPTOR

Corresponding
VAX Mechanism

Immediate Value

Reference

Descriptor

Description

The immediate value mechanism
passes a copy of the argument in
the argument list. You can use
this mechanism only for
arguments that have input access o
and that have data types
requiring no more than a
longword of storage.

The reference mechanism passes
the address of the argument in
the argument list.

The descriptor mechanism passes o
the address of an argument
descriptor in the argument list.
The descriptor is a data
structure that contains the
address of the argument, as well
as its data type and size.

2.3.7.4 VAX Data Type - The :VAX-TYPE keyword defines the VAX data O
type of the argument. Specify this keyword with the types in Table
2-4. The default depends on the LISP type, also in Table 2-4.

2.4 · CALLING AN EXTERNAL ROUTINE

This section describes how to call an 'external. routine, what the
CALL-OUT macro does, and how the CALL-OUT macro uses internal data
structures.

2-10

0

0

0

0

CALLING EXTERNAL ROUTINES

2.4.1 How to Call an External Routine

You call an external routine by using
with:

the VAX LISP

• The defined name of the external routine.

CALL-OUT macro

• Arguments to be passed to the external routine. These must
be compatible with the arguments defined in the call to the
DEFINE-EXTERNAL-ROUTINE macro.

The format for calling an external routine is:

(CALL-OUT routine-name argl arg2 ..•)

The following is an
SYSTEM defined in
shell commands from
date gives the time

example of calling out to the external routine
Section 2.3. This external routine lets you use

within LISP. In this example, the shell command
and date:

Lisp> (CALL-OUT SYSTEM "date")
Fri Jun 28 15:52:53 EDT 1985
Lisp>

If you specify fewer arguments to the CALL-OUT macro than those
defined, the remaining defined arguments are not included in the
argument list. The count in the first longword of the list reflects
this situation. If you specify more ·arguments than those defined, an
error is signaled.

If an argument evaluates to NIL, a zero is placed in the corresponding
argument list longword. The zero is normally used to mean that an
optional argument is not desired.

0 2.4.2 What the CALL-OUT Macro Does

0

The CALL-OUT macro produces code that performs
operations:

the following

1. Checks all arguments if the :TYPE-CHECK option is specified.

2. On the first call to an external routine, reads the routine
into memory.

3. Creates an argument list, using the arguments provided.

4. Transfers control to the external routine.

5. Returns any specified result from the external routine, or no
values if there is no result.

2-11

CALLING EXTERNAL ROUTINES

2.4.3 How the CALL-OUT Macro Uses Internal Data Structures

When you define an external routine, an internal
created and associated with the symbol naming that
structure is then used by both the CALL-OUT macro
LISP code. Therefore, you must ensure that an
defined before it is called.

data structure is
routine. This data
and the resulting
external routine is

In particular, when running LISP functions,
containing the definition is loaded before
external routine.

make sure the file
calling out to that

2.5 DATA TYPE CONVERSIONS

The internal representation of LISP objects differs from the standard
VAX format for the corresponding data types. The call-out facility
converts the LISP argument to a VAX data type before passing the
argument to an external routine. Likewise, after the external routine
returns, the call-out facility converts the resulting VAX data to a
LISP object before the it can return the data to the LISP system.

2.5.1 Converting LISP Objects to VAX Data Types

The call-out facility must convert the arguments for an external
routine from a LISP object to a VAX data type. This conversion is
controlled by the :LISP-TYPE and :VAX-TYPE options in an argument
definition. Table 2-4 shows the valid combinations of LISP data types
and VAX data types. For each LISP type, the default VAX type is
marked with an asterisk.

Table 2-4 also shows the passing mechanisms (V = Value, R = Reference,
and D = Descriptor) that are valid for each combination. In addition,
the table specifies the descriptor class and data type that will be
included in the argument descriptor when passing by descriptor. The
descriptor formats, descriptor class, and data type codes are
described in the Introduction to VAX/VMS System Routines.

Table 2-4: Conversion Table from LISP Type to VAX Type

0

0

0

0

LISP
Type Default VAX Type

Mechanisms
Allowed

Descriptor
Class/
Data Type

CHARACTER *
INTEGER

:UNSIGNED-BYTE

:BIT

V,R,D

.V,R,D

Scalar/BU

Scalar/LUO

2-12

CALLING EXTERNAL ROUTINES

Table 2-4 (cont.)

O~~~~~~~~~~~~~~~~~
Descriptor
Class/ LISP

Type

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

ONTEGER

INTEGER

INTEGER

SINGLE-FLOAT

DOUBLE-FLOAT
/·,

~_)ouBLE-FLOAT

LONG-FLOAT

STRING

STRING

c=,IMPLE-BIT-VECTOR

SIMPLE-BIT-VECTOR

ALIEN-STRUCTURE

(ARRAY C_HARACTER)

(SIMPLE-ARRAY BIT)

(A~RAY
(UNSIGNED-BYTE 8))

(ARRAY
(UNSIGNED-BYTE 16))

OARRAY
(SIGNED-BYTE 32))

Default VAX Type
Mechanisms
Allowed

:BYTE V,R,D

:UNSIGNED-BYTE V,R,D

:WORD V,R,D

:UNSIGNED-WORD V,R,D

* :LONGWORD V,R,D

:UNSIGNED-LONGWORD V,R,D

:QUADWORD R,D

:UNSIGNED-QUADWORD R,D

* :F-FLOATING V,R,D

* :G-FLOATING R,D

:D-FLOATING R,D

* :H-FLOATING R,D

:TEXT R,D

* :ASCIZ R

* :BIT R,D

:UNSIGNED-LONGWORD V,R,D

* :UNSPECIFIED R,D

* :UNSIGNED-BYTE R,D

* :BIT R,D

* :UNSIGNED-BYTE R,D

* :UNSIGNED-WORD R,D

* :LONGWORD R,D

2-13

Data Type

Scalar/B

Scalar/BU

Scalar/W

Scalar/WU

Scalar/L

Scalar/LU

Scalar/Q

Scalar/QU

Scalar/F

Scalar/G

Scalar/D

Scalar/H

Scalar/T

Scalar/V

Scalar/LU

Scalar/Z

Array/BU

Array/V

Array/BU

Array/WU

Array/L

CALLING EXTERNAL ROUTINES

Table 2-4 (cont.)

LISP Mechanisms
Allowed

Descripto\-./
Class/

Type Default VAX Type Data Type

(ARRAY SINGLE-FLOAT) * :F-FLOATING R,D Array/F

(ARRAY DOUBLE-FLOAT) * :G-FLOATING R,D Array/G

(ARRAY LONG-FLOAT) * :H-FLOATING R,D Array/H

2.5.2 Arguments with :IN-OUT Access

Arguments with both
external routine.
modified value will
from the original
constants or shared

input and output access can be modified by the
If the argument is a character or a number, the

be made into a new LISP object that is distinct
argument. This action ensures that you can pass

data objects and they will not be modified.

If the argument is not a character or a number, then the argument will
be directly modified by the external routine, and no copy is made.
This means that all array arguments are modified in place.

2.5.3 :ASCIZ VAX Type

Every simple string is guaranteed to have a zero byte at the end,
following the last actual character. Thus you do not have to be
concerned about adding the zero byte when passing simple strings as
ASCIZ arguments.

0

0

If an ASCIZ argument has :IN-OUT access and is modified by placing a Q
zero byte somewhere in the middle of the string, VAX LISP will not
notice this and shorten the string. You must take care of this
situation yourself.

2.5.4 Converting VAX Data Types to LISP Objects

The call-out facility must convert the VAX data resulting from the
execution of an external routine to a LISP object before the facility
can return the data to the LISP system. Table 2-5 shows the· valid
combinations of LISP data types and VAX data types. It also specifies
the location of the result on return from the external routine. The
default cases, marked with an asterisk, require that you specify only. Q
the LISP type with the :RESULT keyword (see Section 2.3.3). All other
cases require that you specify both the LISP and the VAX types. Since

2-14

CALLING EXTERNAL ROUTINES

you must always specify the LISP type, that type is in the first
ocolumn of the table.

Table 2-5: Conversion Table from VAX Type to LISP Type

LISP Type Default

CHARACTER *

INTEGER

INTEGER

O INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

OINTEGER

INTEGER

SINGLE-FLOAT

DOUBLE-FLOAT

DOUBLE-FLOAT

OSIMPLE-BIT-VECTOR

*

*

*

VAX Type

:UNSIGNED-BYTE

:BIT

:BYTE

:UNSIGNED-BYTE

:WORD

:UNSIGNED-WORD

:LONGWORD

:UNSIGNED-LONGWORD

:QUADWORD

:UNSIGNED-QUADWORD

:F-FLOATING

:G-FLOATING

:D-FLOATING

:UNSIGNED-LONGWORD

2.6 ERRORS DURING EXTERNAL ROUTINE EXECUTION

Location
of Result

Low-order
byte of RO

RO, unsigned

RO, -signed

RO, unsigned

RO, signed

RO, unsigned

RO, signed

RO, unsigned

R0/R1, signed

R0/R1, unsigned

RO

R0/R1

R0/R1

RO, unsigned

VAX LISP/ULTRIX sets up its own error handlers for a number of ULTRIX
signals. This allows the binding of control keys (see the VAX
LISP/ULTRIX User's Guide, Chapter 2) and allows ULTRIX-caught errors
to be signaled in LISP. Changing the default handlers on calling-out
can cause unpredictable results. The signals to avoid are:

SIGBUS
SIGEMT
SIGFPE

SI GILL
SIGINT
SIGIOT

SIGPIPE
SIGQUIT
SIGSEGV

SIGSYS
SIGTRAP
SIGTSTP

SIGXFSZ

0
2-15

CALLING EXTERNAL ROUTINES

2. 7 SUSPENDING A LISP SYSTEM CONTAINING EXTERNAL ROUTINE DEFINITIONS

You can suspend a LISP system after having called out to external O
routines. When you suspend such a system, you must be aware of
restrictions to ensure correct operation on resuming. The
restrictions exist because external routines and their data are loaded
into memory outside the LISP environment, and all such memory is lost
in a suspended system. When the system is resumed, external routines
are reloaded when first called, but any other program state will not
be maintained. Unpredictable results can occur from the following:

• Memory acquired with brk(2), sbrk(2), and malloc(3)

• Data initialization

• Open files

• Unrooted file names in the
DEFINE-EXTERNAL-ROUTINE macro

:FILE option of theO

2. 7 .1 Acquiring Memory

Memory acquired in an external routine is deleted when you exit the
LISP system and is not restored on resuming LISP. This prevents youc
from storing data in acquired memory across a suspend/resume cycle.)
Thus, you should store data as a LISP object with a special variable
pointing to the data.

2.7.2 Initializing Data

When an external routine contains code that sets flags faro
initialization and takes branches based on those flags, the flags are
reset when the routine is relinked. As a result, the first time you
call the routine after a resume operation, the routine executes as if
it were executing for the first time, causing a problem if you want to
retain the saved data during a suspend/resume cycle.

If you want to retain data across a suspend/resume
produce code that depends on an initialization flag.
following methods:

cycle, do not
Use one of the

• Retain data as individual LISP objects and pass them as
arguments to the external routine.

• Store data in statically allocated alien structures
them as arguments to the external routine.

2-16

and pass

0

CALLING EXTERNAL ROUTINES

Undesired side effects do not occur if external routines are defined
C-""'\with the DEFINE-EXTERNAL-ROUTINE macro and the resulting system is
~suspended before a call to any external routine.

0

0

0

0

2.7.3 Using Open Files

When a LISP system is suspended and later resumed, any files opened by
external routines before the suspend are not reopened by VAX LISP.
Thus, make sure you explicitly open and close files if you need to.

2.7.4 Having Rooted File Names

If the suspended system is resumed in a process attached to a
different working directory than at the original suspend time, the
initial call-out after resume will fail to find unrooted file names.
To avoid this problem, always use rooted file names (complete
pathnames) in the :FILE option of the DEFINE-EXTERNAL-ROUTINE macro.

2.8 EXAMPLES OF USING THE CALL-OUT FACILITY

The following examples show both how to define external
how to call out to them.

1. Lisp> (DEFINE-EXTERNAL-ROUTINE (SYSTEM

routines

:ENTRY-POINT "_system"
:TYPE-CHECJ{ T)

(COMMAND :LISP-TYPE STRING
:VAX-TYPE :ASCIZ))

SYSTEM

and

The external routine SYSTEM (also defined in Section 2.3)
lets you use shell commands from VAX LISP.

Lisp) (CALL-OUT SYSTEM "date")
Fri Jun 28 15:52:53 EDT 1985
Lisp>

Calling out to SYSTEM with the shell command date gives the
time and date.

2-17

CALLING EXTERNAL ROUTINES

2. Lisp> (DEFINE-EXTERNAL-ROUTINE (RENAME

RENAME

:ENTRY-POINT "_rename"
:CHECK-STATUS-RETURN -1)

"This external routine renames the specified
file to the specified new name."
(FROM :LISP-TYPE STRING :VAX-TYPE :ASCIZ)
(TO :LISP-TYPE STRING :VAX-TYPE :ASCIZ))

Lisp> (CALL-OUT SYSTEM "ls *.lsp"}
test.lsp

Lisp> (CALL-OUT RENAME "test.lsp"
"program.lsp")

0
Lisp> (CALL-OUT SYSTEM "ls *.lsp")
program.lsp
Lisp> (CALL-OUT RENAME "program.lsp"

"/etc/program.lsp")

Continuable error .•••

Debug 1>

The first call-out in this example is to the external routine
SYSTEM defined in the first example. The ls shell command
lists any files with a lsp file type, which happens to be one
file, test.lsp.

The second call-out is to the external routine RENAME. This
routine lets you use the shell subroutine rename from LISP.
Since no error occurs, the ·value O is returned. The next
call-out to the ls command shows that the RENAME routine was
successful.

In the last call-out to the external routine RENAME, the
routine returned a -1 indicating a protection violation. The
consequent error invoked the debugger.

3. Lisp> (DEFINE-EXTERNAL-ROUTINE (DELETE-DIRECTORY
:ENTRY-POINT "_rmdir"
:CHECK-STATUS-RETURN -1)

"This lets you delete a director~"
(DIRECTORY-NAME :LISP-TYPE STRING

:VAX-TYPE :ASCIZ))

DELETE-DIRECTORY
Lisp> (CALL-OUT DELETE-DIRECTORY "subdirectory_a")
0

2-18

0

0

0

0

0

0

0

0

0

0

CALLING EXTERNAL ROUTINES

Lisp> (CALL-OUT DELETE-DIRECTORY "subdirectory_b")

Continuable error

Debug 1>

In this example, subdirectory_a is successfully deleted,
indicated by the routine returning a 0. However,
subdirectory_b does not exist, causing a continuable error,
and the debugger is invoked.

2-19

0

0

0

0

0

0

0

0

0

0

CHAPTER 3

DEFINING AND CREATING ALIEN STRUCTURES

A structure in COMMON LISP is a collection of fields and field values.
It is similar to a record in Pascal or a typeqef in Candis a useful
data-management tool. See COMMON LISP: The Language for a full
explanation of structures.

An alien structure is a VAX LISP data type used to exchange data
between LISP programs and external routines utilizing VAX data
structures that LISP code cannot ordinarily access. Like a COMMON
LISP· structure, the definition of an alien structure causes the
definition of a number of functions for the creation of alien
structures, the accessing of fields or slots, and so on. The "alien"
in the name "alien structure" refers to the structure's double
purpose:

• To access data coded in a language foreign to LISP

• To make data coded in LISP available to a ditferent language

Typical alien structures are represented internally
collections of integers, floating-point numbers,
vectors.

as byte-aligned
strings, and bit

VAX LISP provides macros that let you define, create, and access alien
structures. These
call-out facility;
external poutines
complicated for the

macros are used primarily with the VAX
they are used to create argument values

that have arguments or control blocks
call-out facility to convert (see Chapter 2).

This chapter describes:

• How to define an alien structure

• What the DEFINE-ALIEN-STRUCTURE macro does

• Components of an alien structure definition

3-1

LISP
for
too

DEFINING AND CREATING ALIEN STRUCTURES

• Examples of how to define alien structures

• How to create alien structures

The c~apter also lists functions and macros you can use with the
DEFINE-ALIEN-STRUCTURE macro. See Part II for a summary description
of the DEFINE-ALIEN-STRUCTURE macro.

3.1 DEFINING AN ALIEN STRUCTURE DATA TYPE

Before you can create an alien structure, you
structure. You define the structure with
DEFINE-ALIEN-STRUCTURE macro. This macro is similar
macro described in COMMON LISP: The Language.

must define that
the VAX LISP

to the DEFSTRUCT

0

The DEFINE-ALIEN-STRUCTURE macro does not create a structure; rather O
this macro creates a definition of a structure. The LISP system
treats this definition as a data type that you can then use to create
individual structures of that type. This is different from the DEFUN
(define function) macro that creates the function it defines.

The DEFINE-ALIEN-STRUCTURE macro is·similar to the DEFSTRUCT macro in
that both create a new compound data type (the data type contains more
than one named component) and access, constructor, copier, predicate,
and print functions. The DEFSTRUCT macro is different from the Q
DEFINE-ALIEN-STRUCTURE macro in the kind of objects their defined data
types contain. The DEFSTRUCT macro defines a type containing LISP
objects while the DEFINE-ALIEN-STRUCTURE macro defines a type
containing non-LISP objects.

The format of an alien structure definition is:

DEFINE-ALIEN-STRUCTURE name-and-options
[doc-string]
{field-description}*

The following is an example alien structure definition:

(DEFINE-ALIEN-STRUCTURE SPACE
"An example alien structure definition"
(AREA-1 :SIGNED-INTEGER O 4)
(AREA-2 :SIGNED-INTEGER 4 8))

The preceding definition defines an alien structure named SPACE. This
new data type is defined as an object consisting of two fields,.AREA-1
and AREA-2, which are stored internally as VAX 32-bit integers. The
numbers in the definition specify the structure's field lengths in
bytes. See Sections 3.3 and 3.4 for a description of the components.
of an alien structure definition.

3-2

0

0

0

0

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

3.2 WHAT THE DEFINE-ALIEN-STRUCTURE MACRO DOES

When the LISP system evaluates the definition of an alien
the DEFINE-ALIEN-STRUCTURE macro automatically creates:

structure,

• New data type

The name you give to the alien structure becomes a LISP data
type. For example, the preceding definition creates the data
type SPACE, which is a subtype of ALIEN-STRUCTURE.

• Access functions

•

•

Access functions are created that can access the data in
data field of the defined alien structure. There are as
access functions as there are data fields in the
structure. The DEFINE-ALIEN-STRUCTURE macro by default
each access function by prefixing each data field name
the name of the alien structure and a hyphen(-).

each
many

alien
names
with

In the preceding example, the access functions SPACE-AREA-1
and SPACE-AREA-2 are created automatically. These 1-argument
functions return the LISP integers corresponding to the VAX
integers stored in the fields AREA-1 and AREA-2. Although
these functions have only one argument, access functions can
have one or two arguments, depending on the complexity of the
field the functions access.

These access functions are acceptable access forms in a call
to the SETF macro (unless :READ-ONLY Twas specified as a
field option -- see Section 3.4.4).

Constructor function

A constructor function, whose default name is the new
data-type name with the prefix "MAKE- 11 , is created. A
constructor function is used to create alien structures after
you define them. For example, the preceding definition
automatically creates a constructor function named MAKE-SPACE.
You would use this function to create structures of type
SPACE. See Section 3.6 for information on keyword arguments
the constructor function accepts.

Copier function

A copier function, whose default name is the new data-type
name beginning with the prefix "COPY-", is created. A copier
function is a 1-argument function that can make a copy of a
created alien structure. This copy is not a copy of a
structure's definition, but a copy of a specific alien
structure.

3-3

----- ---------------

DEFINING AND CREATING ALIEN STRUCTURES

For example, the preceding definition creates a copier
function named COPY-SPACE. This function is a 1-argument o
function that returns a copy of its argument if the argument I

(the alien structure) is of type SPACE.

It is sometimes
structu~e before
destructively.

• Predicate function

useful to preserve a copy of an alien
passing it to a routine that modifies it

A predicate, whose default name is the new data-type name
ending with the suffix "-P", is created. A predicate is a
1-argument function that determines whether its argument is an
occurrence of the defined alien structure. For example, the
preceding definition automatically creates a 1-argument
predicate named SPACE-P. This function returns T if its o
argument is of type SPACE.

• Print function

A print function is created. However, this print function
prints only the memory address of an individual structure.
This print function does not print the contents of an alien
structure's data fields. For example, the following line
would be displayed on your output device as the value of an O individual alien structure having the default print function:

#<Alien Structure SPACE #x5036E8>

The initial pound(#) character and the two angle brackets
(< >) are part of the standard COMMON LISP syntax used to
print nonreadable objects. The name Alien Structure
identifies the object as an alien structure. The word SPACE
identifies the structure's user-defined data type. The number O #x5036E8 is the memory address of that structure.

If you want the print function to show the data in an alien
structure, you must specify your own print function. See
Section 3.3.2.5 on specifying a print function.

3.3 ALIEN STRUCTURE NAME, OPTIONS, AND DOCUMENTATION STRING

When you define an alien structure, you must specify a name for the
structure. In addition, you can specify options that apply. to the
structure as a whole and a documentation string.

3-4

0

DEFINING AND CREATING ALIEN STRUCTURES

3.3.1 Alien Structure Name

O When specifying the alien structure's
as a symbol as in the preceding
example:

name without options, specify it
definition of type SPACE. For

0

0

0

0

(DEFINE-ALIEN-STRUCTURE SPACE
...)

If you specify options, specify the alien structure's name as the
first element of a list whose other elements are separate lists for
each option. For example:

(DEFINE-ALIEN-STRUCTURE (SPACE (option-1) (option-2) ••.)
...)

NOTE

To use the same symbol both as the name of an
structure data type and also as the name
structure (DEFSTRUCT) data type is an error.

3.3.2 Options

alien
of a

By specifying options in
definition, you can:

the name field of an alien structure's

• Change the default names of the access functions

• Change the default name of the constructor function

• Change the default name of the copier function

• Change the default name of the predicate function

• Specify your own print function

You can also request that the access, constructor, copier, and
predicate functions not be generated at all.

Specify an option as· a list that contains a keyword and
I value. You can specify more than one option at a time.
is:

a symbol
The format

(alien-struc-name (keyword-1 value-1) (keyword-2 value-2) •••)

You can use the following keywords.
keyword in detail.

The next sections explain each

3-5

DEFINING AND CREATING ALIEN STRUCTURES

• :CONC-NAME -- to name access functions

• :CONSTRUCTOR -- to name the constructor function

• :COPIER -- to name the copier function

• :PREDICATE to name the predicate function

• :PRINT-FUNCTION -- to specify your own print function

3.3.2.1 Naming Access Functions - By default, the
DEFINE-ALIEN-STRUCTURE macro produces names for an alien structure's
access functions by prefixing each field name with the name of the
alien structure and a hyphen(-). For example, the default names of

0

the access functions created by the preceding definition are Q
SPACE-AREA-1 and SPACE-AREA-2.

If you want
functions,
string (the
definition.

to change the default names of an alien structure's access
specify the :CONC-NAME (concatenated name) keyword with a
prefix you want the names to have) in your alien structure

For example:

Lisp> (DEFINE-ALIEN-STRUCTURE (SPACE (:CONC-NAME "GALAXY-"))
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE

When the LISP system evaluates the preceding definition,
DEFINE-ALIEN-STRUCTURE macro· produces access functions
GALAXY-AREA-1 and GALAXY-AREA-2. If you specify NIL with
:CONC-NAME keyword, the function names are the same as the
names, AREA-1 and AREA-2.

the
named

the
field

0

The access functions can be used with SETF to change the value of a Q
field.

3.3.2.2 Naming the Constructor Function - By default, the
DEFINE-ALIEN-STRUCTURE macro produces a name for an alien structure's
constructor function by prefixing the string "MAKE-" to the alien
structure's name. For example, the default na~e of the constructor
function created by the preceding definition is MAKE-SPACE.

If you want to change the default name of a constructor function,
specify the :CONSTRUCTOR keyword with a string (the name you want) in
your alien structure definition. For example:

3-6

0

0

0

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

Lisp> (DEFINE-ALIE.N-STRUCTURE (SPACE (: CONSTRUCTOR CREATE-SPACE))
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE

The LISP system does not hyphenate your new name with the name of the
structure, though it is appropriate for you to do that in the new name
you create. For example, when the LISP system evaluates the preceding
definition, the macro names the constructor function CREATE-SPACE.

If you specify NIL with the :CONSTRUCTOR keyword, the
DEFINE-ALIEN-STRUCTURE macro does not define a constructor function
and you cannot create alien structures of that type.

NOTE

Alien structure contructor functions do
argument list, although DEFSTRUCT
functions do take an argument list.

not take an
constructor

3.3.2.3 Naming the
DEFINE-ALIEN-STRUCTURE
copier function by
structure's name.
preceding definition

Copier Function - By default, the
macro produces a name for an alien structure's

prefixing the string "COPY-" to the alien·
For example, the default copier function of the
is COPY-SPACE.

If you want to change the name of the copier function, specify the
:COPIER keyword with a string (the name you want) in your definition
of an alien structure. For example:

Lisp> (DEFINE-ALIEN-STRUCTURE (SPACE (:COPIER REPRODUCE-SPACE))
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE

When the LISP system evaluates the preceding definition, the
DEFINE-ALIEN-STRUCTURE macro produces a copier function named
REPRODUCE-SPACE. If you specify NIL with the :COPIER keyword, the
DEFINE-ALIEN-STRUCTURE macro does not define a copier function.

3.3.2.4 Naming the Predicate Function - By default, the
DEFINE-ALIEN-STRUCTURE macro produces the name of the predicate
function by attaching the string "-P" to the end of the alien
structure's name. For example, the default name of the predicate
function created by the preceding definition is SPACE-P.

3-7

DEFINING AND CREATING ALIEN STRUCTURES

If you want to change the name of the predicate function, specify the
:PREDICATE keyword with a string (the name you want) in your Q
definition of an alien structure. For example:

Lisp> (DEFINE-ALIEN-STRUCTURE· (SPACE (:PREDICATE CHECK-SPACE))
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE

When the LISP system evaluates the preceding definition, the
DEFINE-ALIEN-STRUCTURE macro produces the predicate function
CHECK-SPACE. If you specify NIL with the :PREDICATE keyword, the
DEFINE-ALIEN-STRUCTURE macro does not define a predicate function.

NOTE

,Be aware that if you create a field with the name P,
then there will be a name conflict between the default
predicate function and the default access function of
the P field. For example, with an alien struture of
type SPACE, both the predicate function and the access
function of the P field would have the same name,
SPACE-P.

3.3.2.5 Specifying a Print Function - You can use the :PRINT-FUNCTION
keyword option to specify the function that is to print an alien
structure. You might want to do this since the default print function
prints only the memory address of a structure; it does not print the
contents of the structure's data fields. To alter the print
representation of an alien structure, specify a print function in that
alien structure's definition. The following example is of an alien
structure definition specifying a print function:

(DEFINE-ALIEN-STRUCTURE (SPACE (:PRINT-FUNCTION SPACE-PRINT))
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

If you specify a print function in an alien structure definition, you
also must have previously defined that print function. This print
function can be defined to have an arbitrary action. However, the
print function definition must have three arguments:

• A NAME indicating the alien structure to be printed

• A STREAM indicating the stream to print to

• An INTEGER indicating the current print depth

3-8

0

0

ol

DEFINING AND CREATING ALIEN STRUe'TUl=tES

These three arguments are requirements of a structure's user-defined

O print function as specified by COMMON LISP. However, the last
argument, indicating the current print depth, is more useful with a
structure than an alien structure. Consequently, that argument is
often ignored with alien structures as in the following example of an

0

0

0

0

alien structure print-function definition:

(DEFUN SPACE-PRINT (ALIEN STREAM DEPTH)
(DECLARE (IGNORE DEPTH))
(FORMAT STREAM "#<Space: area-1 = -d, area-2 = -d>-%"

(SPACE-AREA-1 ALIEN)
(SPACE-AREA-2 ALIEN)))

In the preceding example, the three arguments are ALIEN, STREAM, and
DEPTH. The ALIEN argument refers to the individual alien structure to
be printed. The STREAM argument is the stream to which to print.

The DEPTH argument is ignored here by using the DECLARE special form.
The DEPTH argument can be compared with the value of *PRINT-LEVEL*,
allowing you to control how deep the printer will print. This
argument is useful with structures since you may wish to restrict the
printer from printing all the information in a complex structure.
However, this argument is ignored in this example because the fields
of the alien structure are immediate objects, and so it is unnecessary
to abbreviate the data fields printed.

If you want to use the DEPTH argument, see the
variable description in COMMON LISP:. The Language.

the *PRINT-LEVEL*

The following example is the output as printed by the previous,
user-defined print function:

Lisp> (SETF EXAMPLE-3 (MAKE-SPACE :AREA-1 6 :AREA-2 5))
#<Space: area-1 = 6, area-2 = 5>
Lisp> EXAMPLE-3
#<Space: area-1 = 6, area-2 = 5>

In the preceding example, the MAKE-SPACE function creates an
individual structure of the previously defined type SPACE. In
addition, the preceding, user-defined print function displays the
contents of the new alien structure's data fields~ -

For more information on creating print functions for structures and on
formatting them, see COMMON LISP: The Language.

3.3.3 Doc·umentation String

You can include a documentation string for an alien structure. The
string is optional and is attached to the symbol as a documentation
string of type STRUCTURE. Place the string in the definition after
the na~e and options list as in the example in Section 3 .1.·

3-9

---------------------- --- .

DEFINING AND CREATING ALIEN STRUCTURES

3.4 ALIEN STRUCTURE FIELD DESCRIPTIONS

Alien structures are composed of data fields, each of
description in the alien structure definition.
description contains:

which has a CJ
A data-field

• Field name

• Field type

• Start and end positions

• Options

When you define an alien structure, specify a field description as a
list of the preceding elements whose first element is the field's
name. Use this format:

(data-field-name type start-position end-position options)

For example:

(FIELD-1 :TEXT O 9 :OCCURS 10 :OFFSET 15)

The following sections describe the elements in a field description.

3.4.1 Field Name

An alien structure's field name is
FIELD-1 is a field name in the
constructor functions refer to field
values of their respective fields.

3.4.2 Field Type

Alien structure field types specify a
data in a field and a LISP data type.
structure data in both directions:

a symbol naming
previous example.
names to access

that field.
Access and

and set the

relationship between the VAX
The LISP system converts alien

• When storing the data in a field, the system converts LISP
objects into VAX data.

• When accessing the data in a field, the system converts VAX
data into LISP objects.

In the previous example, :TEXT is a field type.

3-10

0

0

0

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

3.4.2.1 Given Field Types - Table 3-1 lists the field types defined
by VAX LISP. See Chapter 2 for more information on these types.

Table 3-1: Alien Structure Field Types

Type Internal Storage Representation

:ASCIW

:VARYING-STRING

:ASCIZ

VAX character string; the first
word of the data vector contains
of the number of characters
string. You must allocate two
addition to the maximum length
string to hold this count.

A synonym for :ASCIW.

16-bit
a count
in the

bytes in
of the

VAX character string terminated with the
NULL character (O's in the last
byte(s)). You must allocate enough
space for the terminating 0. On
accessing this slot, the returned LISP
string terminates at the first NULL
character.

0 :TEXT VAX nonvarying character string;
allocate one byte for every character in
the string.

:STRING A synonym for :TEXT.

:SIGNED-INTEGER Signed two's complement integer

:UNSIGNED-INTEGER

0 :BIT-VECTOR

Unsigned integer

Unsigned integer

0

: F-FLOJ).TING F_floating data

:G-FLOATING G_floating data

:D-FLOATING D_floating data

NOTE

When you access a VAX :D-FLOATING type, the accessor
converts it into a LISP DOUBLE-FLOAT, which is
equilvalent to a VAX :G-FLOATING type.

:H-FLOATING H_floating data

3-11

DEFINING AND CREATING ALIEN STRUCTURES

Table 3-1 (cont.)

Type Internal Storage Representation

:POINTER (See below)·

:SELECTION (See below)

The :POINTER and the :SELECTION types have the,following explanations:

:POINTER

If you want your alien structure to contain the address of the data in
another alien structure, specify the :POINTER field type in one of the

0

data fields. This field type indicates that the field contains a VAX
pointer pointing to the start of the data area of another alien Q
structure.

NOTE

The alien structure pointed to must not be dynamically
allocated. Otherwise, after a garbage collection, the
pointer will no longer point to the specified data
field. For a description of how to statically
allocate alien structures, see Section 3.6.2.

The format for using a :POINTE~ field type is:

(:POINTER [name] [:DISPLACED value])

The optional name argument is the type of alien structure pointed to.

0

If you specify this argument, the field's update function checks that Q
the new value of this field (the name you give it when you create an
instance of the structure) points to a structure of the specified
type.

The optional :DISPLACED keyword causes the stored VAX pointer to point
to the start of the alien structure data area plus the number of bytes
specified for the value. You can omit the parentheses if you do not
specify the field name and the :DISPLACED keyword. The following
example is of a data field with the type :POINTER.

(AREA-1 (:POINTER SPACE) 0 4)

3-12

0

0

0

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

:SELECTION

The :SELECTION field type lets you enumerate all the possible data
values of a field. The format for using a :SELECTION field type is:

(:SELECTION sO sl s2 ..•)

If you specify the :SELECTION type, the DEFINE-ALIEN-STRUCTURE macro
associates each element in the list (sn) with an unsigned integer
corresponding to the element's position in the list. For example,
take the following alien structure definition with one field of type
:SELECTION.

Lisp> (DEFINE-ALIEN-STRUCTURE MAP
(STATE (:SELECTION "MASSACHUSETTS" "NEW

YORK" "CALIFORNIA"
"NEW HAMPSHIRE") 0 4))

MAP

This defines a MAP structure whose MAP-STATE field can have one of the
following values ("MASSACHUSETTS" "NEW YORK" "CALIFORNIA" "NEW
HAMPSHIRE"). The field is internally stored as an unsigned-integer
indicating the position of the value in the selection list
("MASSACHUSETTS" "NEW YORK" "CALIFORNIA" "NEW HAMPSHIRE").

The DEFINE-ALIEN-STRUCTURE macro uses the EQUALP function to compare
the LISP object you give when creating an alien structure with the
item in the selection list of the definition. Next, an instance of a
MAP structure is created, with its MAP-STATE field initialized to
"MASSACHUSETTS":

Lisp> (SETF GEO (MAKE-MAP :STATE "MASSACHUSETTS."))
#<Alien Structure MAP #x47D95C>

Then, the ALIEN-FIELD function is used
unsigned integer:

to access

Lisp> (ALIEN-FIELD GEO :UNSIGNED-INTEGER O 4)
0

the field as an

Notice the actual value stored in the field is O since "MASSACHUSETTS"
is the O'th element of the list. Next, the MAP-STATE accessor
function accesses the field as an unsigned integer and uses that
integer as an -index into the selection list, returning the

I corresponding element:

Lisp> (MAP-STATE GEO)
"MASSACHUSETTS"

Finally, the SETF form places "CALIFORNIA" in the field and
ALIEN-FIELD function verifies that "CALIFORNIA" is in position 2.

3-13

the

DEFINING AND CREATING ALIEN STRUCTURES

Lisp> (SETF (MAP-STATE GEO) "CALIFORNIA")
"CALIFORNIA"
Lisp> (ALIEN-FIELD GEO :UNSIGNED-INTEGER O 4)
2

3.4.2.2 User-Defined Field Types - In addition to the given
types, you can define your own field types with
DEFINE-ALIEN-FIELD-TYPE macro. See Part II for a description of
macro.

3.4.3 Field Positions

field
the

this

0

You position a field in an alien structure's data area by specifying o
start and end values in the field specification. These arguments are
rational numbers that determine the start and end positions of the
field. For example, in the following field description, the O and the
4 are the start and end positions of the field:

(AREA-1 :SIGNED INTEGER O 4)

3.4.3.1 Start and End Positions - The -start position is inclusive and Q
the end position is exclusive. That is, the first field in an alien
structure's data area starts in position 0, and the last position in a
field is the position preceding the field's end-position value. For
example, if a field's start position is O and its end position is 4,
the field occupies positions Oto 3.

Each field is measured in units of 8-bit bytes. The position value,
therefore, can be a ratio; that is, you can specify fields within
arbitrary bit boundaries. For example, a field with a start value of Q
1/2 starts on the fifth bit of the data area. However, because the
units are 8-bit bytes, a start or end value with a denominator that
does not divide 8 (for example, 1/3) causes an error when you call the
DEFINE-ALIEN-STRUCTURE macro.

Some exceptions: all values that are .'strings or are of type
:F-FLOATING, :G~FLOATING, :D-FLOATING, or :H-FLOATING must begin and
end on byte boundaries; that is, their start and end positions must be
fixnums, not ratios.

The LISP system does not evaluate the start and end positions when it
expands the DEFINE-ALIEN-STRUCTURE macro.

3-14

0

0

0

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

3.4.3.2 Gaps Between Field Positions - A gap is memory space that you
can allocate as part of an alien structure. For example, if you use
the :OFFSET keyword (see Section 3.4.4.4), you might produce gaps in
an alien structure. See the second example in Section 3.5 for an
illustration of gaps.

Even though gaps can exist between fields or at the beginning of a
field -- if the first field does not start at 0, only the ALIEN-FIELD
function (see Section 3.7) can access gaps. The LISP system does not
generate forms that access or set fields that include gaps;. that is,
LISP-level code does not process gaps.

3.4.3.3 Overlapping Fields - Alien structure fields can overlap,
letting you access data from more than one field at a time or from one
field in a number of ways. If you change the data in a field that
overlaps other fields, the other overlapping fields are also changed.

Overlapping fields are useful when you want data to be interpreted in
more than one way. The following definition defines an alien
structure that contains fields that overlap. The individual BIT
fields overlap the NUMBER field, though they do not overlap one
another:

Lisp> (DEFINE-ALIEN-STRUCTURE MASK
(NUMBER :UNSIGNED-INTEGER O 4)
(BIT-0 :UNSIGNED-INTEGER 0 1/8)
(BIT-1 :UNSIGNED-INTEGER 1/8 2/8)
(BIT-2 :UNSIGNED-INTEGER 2/8 3/8)
(BIT-3 :UNSIGNED-INTEGER 3/8 4/8)
(BIT-4 :UNSIGNED-INTEGER _4/8 5/8))

MASK

If you specify different values for overlapping fields when you
initialize them (see Section 3.4.4.1 on initializing fields), the
field values that result are undefined. For example, consider an
alien structure of the previously defined MASK type where the number
field overlaps the bit fields. If you create an instance of MASK with
the MAKE-MASK function, and you initialize the number and bit fields
to conflicting values (for example, (MAKE-MASK :NUMBER O :BIT-2 1)),
the result is undefined.

The next example shows the creation of the alien structure NEWMASK of
1 the previously defined type MASK:

Lisp> (SETF NEWMASK (MAKE-MASK))
#<Alien Structure MASK #x50C600>

3-15

DEFINING AND CREATING ALIEN STRUCTURES

The following are two ways to set bits 2 and 4 in NEWMASK and to clear O I
all other bits:

. I

Lisp> (SETF (MASK-NUMBER NEWMASK) (+ 4 16))
20

Lisp> (SETF (MASK-NUMBER NEWMASK) 0
(MASK-BIT-2 NEWMASK) 1
(MASK-BIT-4 NEWMASK) 1)

1

3.4.4 Field Options

By specifying options in the data-field descriptions of an alien
structure's definition, you can define the following characteristics Q
of that structure's data fields.

• Whether a field has an initial value

• Whether a field is read-only

• Whether a field repeats and· how often

• The distance between similar fields

Specify a data-field option as a keyword and a value. Include that
option in a list whose first element is the name of the field the
option characterizes. You can ~pecify more than one option at a time.
The format is:

(field-name keyword-1 value-1 keyword-2 value-2 ...)

0

you can use the following keywords.
keyword in detail.

The next sections explain each Q
• :DEFAULT -- Gives an initial value to a field

• :READ-ONLY -- Tells if a field can be set

• :OCCURS Tells the number of times· a field repeats

• :OFFSET Tells the distance between ~imilar fields

3.4.4.1 Initial Value - To specify an initial value for a field,
specify that value with the :DEFAULT keyword in the alien structure's
definition. Then, when you create an instance of a structure with Q
initialized fields, you do not have to spec-ify values for those
fields. Instead, the LISP system automatically puts, your initial

3-16

DEFINING AND CREATING ALIEN STRUCTURES

values in the fields .you create. For example, in the following data Q field specification of an alien structure definition, the value of the
NUM-CHILDREN field is initialized to 2.

0

0

0

0

(NUM-CHILDREN :UNSIGNED-INTEGER 68 72 :DEFAULT 2)

You can override the default field value for an alien structure's
field on creating the structure. To do so, place new values in the
initialized fields when you create a specific instance of a defined
structure. For example, in the following creation of an alien
structure of type FAMILY-REC, the :NUM-CHILDREN field is initialized
to 3.

(SETF EXAMPLE-4 (MAKE-FAMILY-REC :NUM-CHILDREN 3))

The default field value can also be changed after creation of an alien
structure by using the SETF macro with the accessor function of that
field.

NOTE

By default, the initial contents of a field are
unpredictable.

3.4.4.2 Read-Only Value - The :READ-ONLY keyword lets you specify
whether a field can be accessed or set. The value you specify with
this keyword can be either Tor NIL. NIL is the default.

If you specify T, the DEFINE-ALIEN-STRUCTURE macro. generates access
functions that are not acceptable access forms in a call to the SETF
macro. That is, if you specify the keyword-value pair :READ-ONLY Tin
a data-field description, you cannot use the SETF macro on the
accessor function for that field after you create an individual
structure having such a field; you can only access the field.

On the other hand, if you specify NIL (the default), the
DEFINE-ALIEN-STRUCTURE macro generates access functions that are
acceptable place indicators in a call to the SETF macro. That is, if
you specify the keyword-value pair :READ-ONLY NIL in a data field (or
omit the keyword altogether), you can write data in that field with
the SETF form.

For example, in the following definition, the default value of the
AREA-2 field is 4. This value can be accessed but not changed after
you create an individual structure from this definition. However, the
value of the AREA-1 field, which defaults to 2, can be changed after
you create an individual structure from this definiton.

3-17

DEFINING AND CREATING ALIEN STRUCTURES

(DEFINE-ALIEN-STRUCTURE (SPACE (:PRINT-FUNCTION #'SPACE-PRINT))
(AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 2) 0
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 4

: READ-ONLY T))

3.4.4.3 Repeated Field - A field can be repeated within an alien
structure. By specifying a positive integer with the :OCCURS keyword,
you determine the number of times the field is repeated. For example,
the following line indicates that the NAME field occurs 20 times with
its first occurrence between bytes 20 and 30.

(NAME :TEXT 20 30 :OCCURS 20)

If you do not specify the :OCCURS keyword, the access function takes
the field name as its argument, and the field occurs once. If you
specify this keyword, the access function takes the field name and an Q
index for arguments. The index is an integer that indicates the
occurrence of the field. The first occurrence of the field has an
index of 0. Consider the following definition:

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE
(AREA-1 :UNSIGNED-INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8 :OCCURS 4))

SPACE

When the LISP system evaluates the previous definition, the access
functions AREA-i and AREA-2 have the following formats:

(SPACE-AREA-1 field)
(SPACE-AREA~2 field index)

3.4.4.4 Similar-Field Distances - You can specify how far apart
similar fields are by using the :OFFSET keyword. This option makes
sense only if used with the :OCCURS keyword.

A field offset is the distance in 8-bit bytes from the start of one
occurrence of a field to the start of the next occurrence of that
field. Specifying an offset lets you acces~ data files that consist
of repeated substructures. You defipe an offset value by specifying a
rational number with the :OFFSET keyword·. For example, the following
line indicates that 24 8-bit bytes come between iach occurrence of the
CHILD-NAME field:

(CHILD-NAME :TEXT 72 92 :OCCURS 20 :OFFSET 24)

If you specify a value that is greater than the field length (as in
the previous example), the DEFINE-ALIEN-STRUCTUR~ macro produces gaps
in the alien structure. You can fill them by defining one or more

3-18

0

0

0

DEFINING AND CREATING ALIEN STRUCTURES

other fields with th~ :OCCURS and the :OFFSET keywords; that is, you
Qcan interleave different fields.

0

0

0

0

The LISP system does not evaluate the value you specify with the
:OFFSET keyword when it expands the DEFINE-ALIEN-STRUCTURE macro. The
offset defaults to the length of the field.

3.5 EXAMPLES OF ALIEN STRUCTURE DEFINITIONS

This section provides two examples of how to define an alien
structure.

1.

2.

Lisp> (DEFINE-ALIEN-STRUCTURE MY-ALIEN (FIELD-1 :TEXT O 9))
MY-ALIEN

This form defines an alien structure named MY-ALIEN, which
contains one field named FIELD-1. The structure is a string
that begins on the first byte and is 10 characters long.

The following example shows a C record structure definition:

STRUCT PERSON { /* A structure representing a person. */
CHAR NAME[20];
UNSIGNED INT AGE;
} ;

STRUCT FAMILYREC { /* A structure representing a family. */
CHAR SURNAME[20];
STRUCT PERSON FATHER;
STRUCT PERSON MOTHER;
UNSIGNED INT NUMCHILDREN;
STRUCT PERSON CHILD[20];
} ;

3-19

DEFINING AND CREATING ALIEN STRUCTURES

An equivalent LISP record structure definition:

Lisp> (DEFINE-ALIEN-STRUCTURE FAMILY-REC
"A record structure definition."

(SURNAME :ASCIZ O 20)
(FATHER-NAME :ASCIZ 20 40)
(FATHER-AGE :UNSIGNED-INTEGER 40 44)
(MOTHER-NAME :ASCIZ 44 64)
(MOTHER-AGE :UNSIGNED-INTEGER 64 68)
(NUM-CHILDREN :UNSIGNED-INTEGER 68 72 :DEFAULT 2)
(CHILD-NAME :ASCIZ 72 92 :OCCURS 20 :OFFSET 24)
(CHILD-AGE :UNSIGNED-INTEGER 92 96 :OCCURS 20

:OFFSET 24))

FAMILY-REC

0

This form defines an alien structure named FAMILY-REC which Q
has 46 fields indicating the members of a family and their
ages. The definition contains the :DEFAULT, :OCCURS, and
:OFFSET keywords.

The only fields that repeat are the CHILD-NAME and the
CHILD-AGE fields since 20 children's names are possible in
this family record. The de·fault number of children, however,
is two.

The name fields are strings that can be up to 20 characters Q
in length. The age fields are integers that can be up to
four characters in length. There is a gap between each
occurrence of the CHILD-NAME field since the field contains
20 bytes but repeats itself every 24 bytes. This gap is
filled by the CHILD-AGE field.

The following diagram illustrates how storage is internally allocated
for the preceding FAMILY-REC alien structure. Only the first part of Q
the alien structure is shown since the rest of the structure would be
repeated in a similar way. The numbers indicate bytes; for example,
the surname field occupies bytes O through 19. The names identify the
fields.

3-20

0

0

19

39
43

0
63
67

71

0 91
95

115
119

0

0 Fig_ure 3-1:

DEFINING AND CREATING ALIEN STRUCTURES

Internal Storage of FAMILY-REC

3-21

0

"' SURNAME

20

'> FATHER-NAME

40 - FATHER-AGE

44

'> MOTHER-NAME

64 i--- MOTHER-AGE

NUM-CHI LOREN 68 -
72

'> CHI LD-NAME-1

92 - CHILD-AGE-1 ,,
96

'> CH I LD-NAM E-2

116 - CHILD-AGE-2

ML0-245-86

DEFINING AND CREATING ALIEN STRUCTURES

3.6 CREATING AN ALIEN STRUCTURE

Once you have defined an alien structure data type, you can create
individual alien structures of that data type. To do so, specify a
call to the constructor function of the data type you want (see
Section 3.2). For example, in the following expression, the SETF
macro gives the symbol EXAMPLE-1 a valuG of the alien structure of
type SPACE, created when the LISP system evaluates the form
(MAKE-SPACE).

(SETF EXAMPLE-1 (MAKE-SPACE))

Constructor functions accept two types of optional keywords:

• Keywords for initializing data fields

• Keywords affecting_allocation of alien structures

3.6.1 Initializing and Changing Data Fields

The constructor function for an alien structure accepts keyword
arguments to initialize data fields. Each keyword is the name of a

0

0

data field prefixed by a colon. For example, when the LISP system
evaluates the following definition, the MAKE-SPACE constructor Q
function accepts two data-initialization keywords named :AREA-1 and
:AREA-2.

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE
(AREA-1 :UNSIGNED~INTEGER O 4)
(AREA-2 :UNSIGNED-INTEGER 4 8))

SPACE

When you create an individual alien structure, you can assign values Q
to the structure's fields with the initialization keywords. For
example:

Lisp> (SETF EXAMPLE-1 (MAKE-SPACE :AREA-1 5 :AREA-2 10))
#<Alien Structure SPACE #x403B80>

You can also initialize the fields by specifying the :DEFAULT keyword
(see Section 3.4.4.1) with a value when you define the structure. For
example, the fol}owing AREA fields have default ipitial values of 6
and 12:

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE

SPACE

(AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 6)
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 12))

3-22

0

DEFINING AND CREATING ALIEN STRUCTURES

A data initialization you make with the constructor function overrides
()a default in the same field in the alien structure definition.

If you want to change a field value after you have created it, you can
change it with the SETF macro if the field definition allows the
change. (see Section 3.4.4.2). For example, the field AREA-1 is set
to 28 in the following SETF form:

Lisp> (SETF (SPACE-AREA-1 EXAMPLE-!) 28)
28

3.6.2 Allocating Memory

In addition to the keywords defined by the data fields, all

() constructor functions also accept two keywords that affect data
allocation, :ALIEN-DATA-LENGTH and :ALLOCATION.

()

()

()

Table 3-2: Values Used with Memory-Space Keywords

Keyword Value

:ALIEN-DATA-LENGTH integer

3-23

The number of bytes of memory to
be allocated for the alien
structure's data vector.

This keyword allows efficient
use of storage when you are
using alien structures as data
buffers for variable size
records. The default is large
enough to store the defined
alien structure. A length
larger than the default allows a
larger than normal alien
structure to be allocated; the
"extra" data can be accessed
with the ALIEN-FIELD function.
If an alien structure is
constructed with a smaller size
than the default, it is an error
to access or set the omitted
fields.

See the description of the
ALIEN-STRUCTURE-LENGTH function
in Part II for an example of
default byte allocations.

DEFINING AND CREATING ALIEN STRUCTURES

Table 3-2 (cont.)

Keyword

:ALLOCATION value

Value

The type of allocation to be
used for the alien structure.
Valid values are :DYNAMIC and
:STATIC. :DYNAMIC is the
default.

If :STATIC is" specified, the
alien structure is allocated in
static space and its virtual
address is not changed during a
garbage collection (see the VAX
LISP/ULTRIX User's Guide).

3.7 ADDITIONAL ALIEN STRUCTURE MACRO AND FUNCTIONS

In addition to the DEFINE-ALIEN-STRUCTURE macro, VAX LISP provides the
following alien structure macro and functions:

• DEFINE-ALIEN-FIELD-TYPE macro -- Defines alien structure field

0

0

types.

• ALIEN-STRUCTURE-LENGTH function -- Returns the
alien structure.

length of an O
• ALIEN-FIELD function -- Can be used to access arbitrary fields

in an alien structure.

Descriptions of the macro and functions are in Part II.

3-24

0

0

0

0

0

0

0

CHAPTER 4

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION

This chapter discusses VAX LISP facilities that let you control the
priorities of keyboard functions. You can use these facilities to
control a system in which multiple keyboard functions might interfere
with each other or with code that must execute as a unit.

This ~hapter discusses the following subjects:

4.1

• Section 4.1 describes the system of interrupt levels. You can
specify an interrupt level with the BIND~KEYBOARD-FUNCTION
function.

• Section 4.2 describes critical
prevent a section of code
execution.

sections, .
from being

which you use to
interrupted during

• Section 4.3 describes the WAIT function, which you can use to
suspend execution of your program until a_ keyboard function
executes.

USING INTERRUPT LEVELS

You can use the :LEVEL keyword to assign an interrupt level to a
function you specify with BIND-KEYBOARD-FUNCTION. The interrupt
level, which is an integer between O and 7, controls when a function
can execute. A function executes only if its interrupt level is
greater than LISP'S current interrupt level. For example, if you
define two keyboard functions with BIND-KEYBOARD-FUNCTION, one at
level 2 and one at level 3, the second function can interrupt the
first but not the other way around.

When it is not executing a keyboard function, VAX LISP can be
interrupted by functions at any of the interrupt levels. Certain
low-level LISP functions-run at very high interrupt levels because
they cannot be safely interrupted. Normally, however, a function at
any interrupt level will interrupt LISP execution.

4-1

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION

VAX LISP keyboard input operates at interrupt
any function with an interrupt level less
from the keyboard. Functions that operate at
obtain keyboard input.

level 6, meaning that
than 6 can perform input
level 6 or 7 cannot

When you use BIND-KEYBOARD-FUNCTION, you should carefully consider
which interrupt level to use. You must ensure that the function is
able to interrupt other functions that it needs to interrupt and that
the function can in turn be interrupted as necessary. Furthermore, if
the function performs input from the keyboard, its level must be less
than 6. Some guidelines are:

• In general, do not use interrupt levels 6 or 7.
interrupt levels may interefere with VAX
operation.

Use of these
LISP's normal

0

• If you bind control characters to the DEBUG and BREAK Q
functions, use an interrupt level high enough to interrupt
functions you wish to debug, but less than 6.

• In this framework, choose interrupt levels for your keyboard
functions that allow them to interrupt and to be interrupted
as appropriate.

Functions that execute at interrupt level 7 can interrupt any LISP
code not in a critical section, including lo.w-level LISP code not Q
normally interruptible. Functions that execute at level 7 may leave
your program in an inconsistent state. Therefore, functions that
execute at level 7 must terminate by executing a THROW to some tag,
such as CANCEL-CHARACTER-TAG. Typically, you should not use interrupt
level 7 except to effect an emergency exit back to LISP'_s top level.
(<CTRL/C> is bound to a function that executes at level 7; therefore,
you can always use <CTRL/C> to get back to top level.)

4.2 CRITICAL SECTIONS 0
A critical section consists of forms contained in the body of. a
CRITICAL-SECTION macro. The execution of forms in a critical section
cannot be interrupted by any keyboard function, at any level. Use a
critical section in situations where the execution of code must not be
interrupted. For example, a function that manipulates a data
structure may temporarily leave the data structu.re in an inconsistent
state during its execution. An interrupting function that tries to
use the data structure can find it invalid. The manipulating function I
can use a critical section to make sure that it cannot be interrupted
while the_ data structure is invalid.

Interrupts'that occur during the execution of a critical section are.
queued. When the critical section ends, the inte.rrupts are serviced. Q

4-2

0

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION

Since a critical section cannot be interrupted, it cannot perform
keyboard input. A critical section also cannot be stopped with
<CTRL/C>. For this reason, you must be careful not to allow any
infinite loops in a critic~l section. Should an infinite loop occur,
you have no recourse but to terminate the LISP image.

You should test your code thoroughly before you make it into a
critical section. Critical sections should be short and error free.
If an error does occur in a critical section, VAX LISP invokes the
debugger and temporarily removes the restrictions on interrupts so
that you can type to the debugger. If you continue from the debugger,
LISP restores the restrictions on interrupts before continuing.
However, LISP is open to interruptions while you are debugging the
code.

0 4.3 SYNCHRONIZING PROGRAM EXECUTION

Sometimes a program must stop execution until an event occurs or some
piece of information becomes available. VAX LISP provides the WAIT
function to allow such synchronization.

The WAIT function takes two required arguments. The first is a reason
for the wait, typically a string. The second is a testing function

0 -that LISP calls to determine if the wait condition has been satisfied.
The WAIT function accepts any number ~f arguments following the second
argument. These arguments are used as arguments to the testing
function.

When the WAIT function is called, it causes normal program execution
to halt. VAX LISP then repeatedly calls the testing function. When
the testing function returns a non-NIL value, the WAIT function
returns, and execution continues.

Q The testing function you specify in a call to the WAIT function can be
any function. However, r~member the following points:

0

• The testing function should be short and error free. VAX LISP
calls the testing function once before establishing the WAIT
state. An error that occurs on this initial call can be
debugged normally. However, if an error occurs in the testing
function after the WAIT state has been established, the LISP
system will be left in an inconsistent state and will have to
be terminated.

• The testing function should not have side effects, since it is
called at unknown intervals.

• The dynamic state of LISP is not guaranteed d~ring execution
of the testing function. Therefore, the testing function
cannot reely on the values of special variables. You should
pass it arguments instead.

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION

I
One way to use WAIT is with a keyboard function that modifies a data I
structure accessed by the testing function. The data structure can be Q I
a cons cell, a structure, or an array. For the testing function, · use
an accessor function appropriate for that data structure. When the
keyboard function modifies the data structure, the testing function
returns non-NIL and execution continues.

For example, the following forms set up a variable called FLAG, which
is then used in a WAIT function:

(SETF FLAG (LIST NIL))
(BIND-KEYBOARD-FUNCTION

#\FS
#'(LAMBDA() (SETF (CAR FLAG) T)))

(WAIT "Wait for CTRL/\" #'CAR FLAG)

In this example, the value of FLAG is a list whose only element is
NIL. BIND-KEYBOARD-FUNCTION binds <CTRL/\> to a function that changes
the element of FLAG to T. The WAIT function specifies CAR as its
testing function, with FLAG given as the argument. As long as the
testing function returns NIL, the WAIT function blocks further
execution. When the user types <CTRL/\>, the first element of FLAG is
set to T, the testing function returns T, the WAIT function returns,
and normal execution continues.

4-4

0

0

0

0

PART II

0 OBJECT DESCRIPTIONS

0

0

0

0

0

0

0

0

0

0

0

OBJECT DESCRIPTIONS

ALIEN-FIELD Function

Accesses the value of a field of a specified type from an alien
the alien structure's predefined structure. The function ignores

fields.

You can modify alien structures if you use the ALIEN-FIELD function
with the SETF macro. This function is most useful for debugging a
program that uses alien structures. The function can also be used to
write your own accessing functions, for example, to access unnamed
gaps in an alien structure.

For more information about alien structures, see Chapter 3.

Format

ALIEN-FIELD alien-structure field-type start end

Arguments

alien-structure

The alien structure from which a field value is to be accessed.

field-type

start

The type
argument
structure
or a list

of the field from which a value is to be accessed. This
can be either a keyword that names a built-in alien
field type, a symbol (for a user-defined field type),
whose first element names the field type.

0
A rational number that specifies the start position
bytes) of a field in the alien structure's data area.
is inclusive and zero-based. Default: none.

(in 8-bit
This value

0

end

A rational number that specifies the end position
bytes) of a field in the alien structure's data area.
is exclusive~ Default: none.

Return Value

The value of a field of the specified alien structure.

1

(in 8-bit
This value

OBJECT DESCRIPTIONS

ALIEN-FIELD Function (cont.)

Example

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE
(AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 22)
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 2764))

SPACE
Lisp> (SETF SPACE-RECORD (MAKE-SPACE))
#<Alien Structure SPACE #x45FA60>
Lisp> (SPACE-AREA-1 SPACE-RECORD)
22
Lisp> (SPACE-AREA-2 SPACE-RECORD)
2764
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER
22
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER
2764
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER
11871289606166

This example illustrates:

0 4)

4 8)

0 8)
0

• If you specify the ALIEN-FIELD function with the same field
types and positions that are in the definition of an alieno
structure, the data you access is the same as if you had
accessed it with that structure's default accessor functions.

• If you specify the ALIEN-FIELD function with different field
types and positions from those in a defined alien structure,
the data you access could be different depending on the field
type and field positions you specify.

2

0

0

OBJECT DESCRIPTIONS

ALIEN-STRUCTURE-LENGTH Function

OReturns the length of a~ alien structure in bytes.

0

0

0

0

Format

ALIEN-STRUCTURE-LENGTH alien-structure

Argument

alien-structure

The alien structure whose length is to be returned.

Return Value

The length of the alien structure in bytes

Example

The following examples illustrate the
ALIEN-STRUCTURE-LENGTH macro. The diagram
illustrates why it returns a specific value.

1. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLEl

use of the
after each example

(NAME :STRING O 20 :OCCURS 3 :OFFSET 20))
EXAMPLE!
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLEl))
60

0
+

I
+--
I

namel

offset
r
I
+---

20
+

I
--+

I

name2

offset = 20

3

40
+

name3

60
+

·------··-. ··- --------------------------------

OBJECT DESCRIPTIONS

ALIEN-STRUCTURE-LENGTH Function (cont.)

2. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE2
(NAME :STRING O 20 :OCCURS 3 :OFFSET 10))

EXAMPLE2
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE2))
40

0
+

20
+

+------------+
namel

+------------+
+------------+

name2
+------------+

40
+

I +------------+
+-----+ name3

+------------+
+--- offset= 10

In EXAMPLE2, the offset overlaps so that the last part of the
information stored in NAMEl becomes the first part of the
information stored in NAME2 and so on.

3. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE3
(NAME : STRING O 20 :OCCURS 2· :OFFSET 40))

EXAMPLE3
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE3))
60

0 20 40 60
+ + + +
---------------------------------------+
I namel I gap I name2 I
---------------------------------------+
I I
+--------offset---------+
I I I

I
+--- offset= 40

In EXAMPLE3 and EXAMPLE4, the gaps are cpunted as part of the
length of the structure.

4

ol

0

0

0

0

OBJECT DESCRIPTIONS

ALIEN-STRUCTURE-LENGTH Function (cont.)

() 4. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE4 (NAME :STRING 20 40))

()

()

()

()

EXAMPLE4
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE4))
40

0 20 40
+ + +
--------------------------+
I gap I namel
--------------------------+

5

OBJECT DESCRIPTIONS

CALL-OUT Macro

Calls a defined external routine. If you specify an external routine
that has not been defined with the DEFINE-EXTERNAL-ROUTINE macro, the
LISP system signals an error.

For information about how to use the VAX LISP call-out facility, see
Chapter 2.

Format

CALL-OUT external-routine &REST arguments

Arguments

external-routine

The name of a defined external routine.

arguments

Arguments to be passed to the external routine. The arguments
correspond by position to the arguments defined for the routine.
The LISP system evaluates the argument expressions before the
external routine is called. If you specify fewer arguments than

0

0

were specified in the definition, the argument list will contain Q
only the number of arguments actually supplied. LISP signals an
error if you supply more arguments than were specified in the
definition.

Return Value

If the :RESULT option of the DEFINE-EXTERNAL-ROUTINE
specified, the external routine's result is returned.
no value is returned.

6

macro was
Otherwise,

0

0

0

0

0

0

0

OBJECT DESCRIPTIONS

CALL-OUT Macro (cont.)

Example

Lisp> (DEFINE-EXTERNAL-ROUTINE

SYSTEM

(SYSTEM :ENTRY-POINT "_system"
:CHECK-STATUS-RETURN -1)

(COMMAND :LISP-TYPE STRING
:VAX-TYPE :ASCIZ))

In this example, the shell command system(3) is defined as an
external routine. A call to SYSTEM starts the Bourne shell in a
separate process and runs the specified command. In the
following example of calling out to SYSTEM, date is the specified
command. The :CHECK-STATUS-RETURN keyword causes an integer
result to be returned to LISP. Zero is a success status for this
call to _system.

Lisp> (CALL-OUT SYSTEM "date")
Fri Jun 28 15:2:53 EDT 1985
0

7

OBJECT DESCRIPTIONS

CRITICAL-SECTION Macro

Executes the forms in its body as a "critical section." During the
execution of a critical section, all interrupt functions are blocked
and queued for later execution. CTRL/C is also blocked, so a critical
section must neither loop nor cause errors. It is an error to perform
I/0 or to call WAIT in a critical section.

If an error shoud occur during a critical section, VAX LISP invokes
the debugger, and temporarily removes the restrictions on interrupts
so you can type to the debugger. If you continue from the debugger,
LISP restores the restrictions on interrupts before continuing.
However, LISP is open to interruptions while you are debugging the
code.

Format

CRITICAL-SECTION {form}*

Argument

form

Form(s) to be executed as a critical section.

Return Value

The value(s) of the last form executed.

Example

Lisp> (DEFUN RESTORE-TO-FREE-LIST (CONS-CELL)
(CRITICAL-SECTION

(SETF (CDR CONS-CELL) *HEAD-OF-FREE-LIST*
HEAD-OF-FREE-LIST CONS-CELL)))

RESTORE-fO-FREE-LIST

This example defines a function that restores a cons cell to the
head of a list of free cells. During the call to SETF, the list
is in an inconsistent state because the special variable
HEAD-OF-FREE-LIST does not point to the head of the list. An
interrupting function that used *HEAD-OF-FREE-LIST* to remove an
element from the list would break the list. Therefore,
RESTORE-TO-FREE-LIST uses the CRITICAL-SECTlON macro to ensure
that the SETF call completes without interruption.

8

0

0

0

0

OBJECT DESCRIPTIONS

DEFINE-ALIEN-FIELD-TYPE Macro

Cbefines alien-structure .field types.

For information about alien structures, see Chapter 3.

Format

DEFINE-ALIEN-FIELD-TYPE name lisp-type primitive-type
access-function sett-function

Arguments

name

The name of the alien-field type being defined.

Q1isp-type

A LISP data type indicating the type of LISP object to which the
field is to be mapped.

primitive-type

0
Either one of the predefined alien-field types or a type that was
previously defined with the DEFINE-ALIEN-FIELD-TYPE macro. A
LISP object of type primitive-type is extracted from the alien
structure's data when the field 'is accessed. The object is then
passed to the specified access function. Predefined alien-field
types are listed in Table 3-1.

access-function

A function of one argument (whose type is primitive-type) that
returns an object of type lisp-type.

osetf-function

A function of one argument (whose type is lisp-type) that returns
an object whose type is the type of the default SETF form, as
defined by the primitive-type argument. When the object is
returned, it is packed into the alien structure's field data.

Return Value

0

The name of the alien-field type.

NOTE

Functions that access and set field values can
take more than one argument; additional argume~ts

9

OBJECT DESCRIPTIONS

DEFINE-ALIEN-FIELD-TYPE Macro (cont.)

Examples

are optional. When the type argument in the
DEFINE-ALIEN-STRUCTURE macro's field description
is a list, the first element of the list is the
field type, and the rema1n1ng elements are
expressions the LISP system evaluates when it
evaluates the access function. .The resulting
values are passed as additional arguments to the
functions that access or set the field.

1. Lisp> (DEFINE-ALIEN-FIELD-TYPE INTEGER-STRING-8
'INTEGER
:STRING
#'(LAMBDA
(x)
(PARSE-INTEGER X :JUNK-ALLOWED T))
#'(LAMBDA
(x)
(FORMAT NIL .. - S" X)))

INTEGER-STRING-8
Lisp> (DEFINE-ALIEN-STRUCTURE TWO-ASCII-INTEGERS

(INT-1 INTEGER-STRING-8 0 8)
(INT-2 INTEGER-STRING-8 8 16))

TWO-ASCII-INTEGERS

• The call to the DEFINE-ALIEN-FIELD-TYPE macro
field type name'd INTEGER-STRING-8. The
INTEGER-STRING-8 causes an alien structure
strings to integers.

defines a
field type
to convert

• The call to the DEFINE-ALIEN-STRUCTURE macro
alien structure named TWO-ASCII-INTEGERS
fields, each of type INTEGER-STRING-8.

defines an
that has two

10

0

0

0

0

0

0

0

0

0

0

OBJECT DESCRIPTIONS

DEFINE-ALIEN-FIELD-TYPE. Macro (cont.)

2. Lisp> (DEFINE-ALIEN-FIELD-TYPE SELECTION
T
:UNSIGNED-INTEGER
#'(LAMBDA
(N)
(NTH N '(MA RI NY)))
#'(LAM~DA
(x)
(POSITION X '(MA RI NY))))

SELECTION

This is an example of how the :SELECTION type could be
implemented. The example defines an alien-field type named
SELECTION. This type defines a relationship between unsigned
integers in an alien field and LISP data objects. In
accessing the value of a field of this type, the
access-function uses the integer stored in the alien field as
an index into a list. In setting tpe value in this type of
field, the position of a LISP object in that list is used to
define the integer value stored in the alien structure.

11

OBJECT DESCHIP I IUI\I!::>

DEFINE-ALIEN-STRUCTURE Macro

Defines aiien structures. An alien structure is a collection of bytesQ
containing VAX data types.

The syntax of the DEFINE-ALIEN-STRUCTURE
DEFSTRUCT macro described in COMMON LISP:

macro is similar
The Language.

to the

For an explanation of how to define an alien structure, see Chapter 3.

Format

DEFINE-ALIEN-STRUCTURE name-and-options
[doc-string]
{field-description}*

Arguments

name-and-options

The name-and-options argument is the name and the options of a
new LISP data type. The name argument must be a symbol. The
~~~~ons define the.characteristics of the alien structure. If 
you do not specify options, you can specify the name-and-options 
argument as a symbol: 

name 

If you specify options, specify the name-and-options argument 
a list whose first element is the name: 

(name {(keyword value)}*) 

as 

~s:~; the fcllo~ing format, 
~ey~2rd-value pairs. 

specify options as a :ist cf 

· J:eyword value) 

~c=~"'· :.. lists the keyword-value pairs that you can spe:if:y. 

Table 1: DEFINE-ALIEN-STRUCTURE Options 

Keywor~-Value Pair Description 

0 

0 

0 

:CONC-NAME name Names the access functions. The) 
value can be a symbol·or NIL. 

12 

If you specify a symbol, the 
symbol becomes a prefix in the 
access function names. If you 
wish to include a hyphen(-) ino 
the access function names, . 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

. DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Table 1 (cont.) 

Keyword-Value Pair 

:CONSTRUCTOR name 

:COPIER name 

:PREDICATE name 

13 

Description 

specify it as part of the 
prefix. If you specify NIL, the 
access function names are the 
same as the field n~mes. By 
default, the prefix is the alien 
structure name followed by a 
hyphen. 

Names the constructor function. 
The value can be a symbol or 
NIL. If you specify a symbol, 
the symbol becomes the name of 
the constructor function. If 
you specify NIL, the macro does 
not define a constructor 
function~ If you do not specify 
this keyword, the constructor 
function's name is the prefix 
MAKE- attached to the alien 
structure name. 

Names the copier function. The 
value can be a symbol or NIL. 
If you specify a symbol, the 
symbol becomes -the name of the 
copier function. If you specify 
NIL, the macro does not create a 
copier function. If you do not 
specify this keyword, the copier 
function's name is the prefix 
COPY- attached to the alien 
structure name. 

Names the predicate function. 
The value can be a symbol or 
NIL. If you specify a symbol, 
the symbol becomes the name of 
the predicate function. If you 
specify NIL, the macro does not 
define a predicate function. If 
you do not specify this keyword, 
the macro names the predicate 
function by attaching the 
structure name to the characters 
-P. 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Table 1 (cont.) 

Keyword-Value Pair 

:PRINT-FUNCTION function-name 

doc-string 

Description 

Specifies the print function for 
the alien structure. The value 
must be a function. If you do 
not specify this keyword, the 
LISP system displays the alien 
structure in the following 
format; 

#<Alien Structure name number> 

In the preceding format, name is 
the name of the alien structure 
and number is a unique 
identification number, which 
distinguishes alien structures 
that have the same name. 

0 

0 

The documentation string to be attached to the symbol that names Q 
the alien structure. The documentation string is of type 
STRUCTURE. See COMMON LISP: The Language for information on the 
DOCUMENTATION function. 

field-description 

A field description for the alien structure. 
description in the following format: 

(name type start end options) 

Specify a field 

The name argument must be a symbol. It is used to name functions 
that access and set the value of the alien structure field. 

14 

0 

0 



0 

OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE. Macro (cont.) 

The type argument determines the method by which the VAX data 
type stored in a field is converted to a LISP object and vice 
versa. Valid types are: 

:ASCIZ 
:ASCIW 
:UNSIGNED-INTEGER 
:F-FLOATING 
:D-FLOATING 
:POINTER 

:STRING 
:SIGNED-INTEGER 
:BIT-VECTOR 
:G-FLOATING 
:H-FLOATING 
:SELECTION 

Types defined with the VAX LISP 
DEFINE-ALIEN-FIELD-TYPE macro 

See Chapter 3 for more information on field types. 

O As in COMMON LISP, the start and end arguments are zero-based 
with start being inclusive and end being exclusive. 

0 

0 

0 

The start argument must be a rational number or, in some cases, a 
fixnum (see Section 3.4.3.1) that specifies the 8-bit byte start 
position of the field in the alien structure's data area. 
Default: none. See Chapter 3 for more information on field 
start positions. 

The end argument must be a rational number or, in some cases, a 
fixnum (see Section 3.4.3.1) that specifies the 8-bit byte end 
position of the field in the alien structure's data area. The 
last position a field occupies is the position that precedes the 
field's end position value. Default: none. See Chapter 3 for 
more information on field end positions. 

The options define the characteristics for the field. 
each option with a keyword-value pair: 

Specify 

keyword value 

Table 2 lists the keyword-value pairs that you can specify. 

Table 2: DEFINE-ALIEN-STRUCTURE Field Options 

Keyword-Value Pair 

:DEFAULT form 

15 

Description 

Specifies the default initial 
value that is to occupy the 
field. If the field's initial 
value was not specified in a 
call to the alien structure's 
constructor function, the form 
is evaluated when the 



UDJC\, I UC.:>\,MII"' I IVN.:> 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Table 2 ( cont. ) 

Keyword-Value Pair 

:READ-ONLY value 

:OCCURS integer 

:OFFSET rational-number 

Return Value 

The name of the alien structure. 

16 

Description 

constructor function is called. 
The value that results from the 
evaluation is the field's 
default initial value. This 
value defaults 'to NIL. 

Specifies whether the field can 
be accessed or set. The value 
can be Tor NIL. If you specify 
T, the macro generates access 

0 

functions that are. not Q 
acceptable place indicators in a 
call to the SETF macro. If you 
specify NIL, the macro generates 
access functions that are 
acceptable place indicators in a 
call to the SETF macro. The 
default is NIL. 

Specifies the number of times 
the field is to be represented ~1 

within the alien structure. The 
value must be an integer. The 
default value is 1 (which means 
no repeats). 

Specifies the distance in 8-bit 
bytes from the start of one 
occurrence of the field to the 
start of the next occurrence of Q 
the field. The value must be a 
rational number. If you specify 
a value that is greater than the 
field's length, the alien 
structure contains gaps. You 
can ~ccess the gaps with other 
field definitions. 

0 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Example 

Lisp> (DEFINE-ALIEN-STRUCTURE ET 
(SPACE-SHIP :ASCIZ O 10) 
(PHONE-NUMBER :UNSIGNED-INTEGER 10 17) 
(HO~E :ASCIZ 17 32)) 

ET 

Defines an alien structure named ET, which contains three fields 
named SPACE-SHIP, PHONE-NUMBER, and HOME. The fields SPACE-SHIP 
and HOME are defined to be strings of length 10 and 15 
respectively. The field PHONE-NUMBER is defined to be an 
unsigned integer seven bytes long. 

More examples of how to define alien structures are provided in 
Chapter 3. 

17 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro 

Defines an external routine that a LISP program is to call. You canO 
call routines defined with this macro with the VAX LISP CALL-OUT 
macro. Note that if you call out to routines that change the default 
handler of the ULTRIX signals, the results are not predictable. For 
information about how to use the VAX LISP call-out facility, see 
Chapter 2. 

Format 

DEFINE-EXTERNAL-ROUTINE name-and-options 
[doc-string] 
{argument-description}* 

Arguments 

name-and-options 

The name argument is the name of the external routine being 
defined. The name argument must be a symbol. The options define 
the characteristics of the name argument. If you do not specify 
options, you can specify the name-and-options argument as a 
symbol: 

name 

If you specify options, specify the name-and-options argument 
a list whose first element is the name: 

(name {keyword value}*) 

Specify the options with keyword-value pairs: 

keyword value 

The option values are not evaluated. 

Table 3 lists the keyword-value pairs that you can specify. 

Table 3: DEFINE-EXTERNAL-ROUTINE Options 

Keyword-Value Pair Description. 

0 

0 

:CHECK-STATUS-RETURN value Specifies whether the call-out 
facility is to check the 
severity of the value that an 
external routine returns in 
register RO. The value you. 
specify can be an integer or~1 
NIL. If you specify an integer,\, ___ .,/ 

18 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 
(-\ 
'\..___) Table 3 ( cont. ) 

Keyword-Value Pair 

0 :ENTRY-POINT string 

0 
:FILE 

{string I list-of-strings} 

0 

:RESULT type 

0 
19 

Description 

the call-out facility checks the 
return value. If the return 
value is the specified value, 
the LISP system signals a 
continuable error. If you 
specify NIL, the call-out 
facility does not check the 
return value. NIL is the 
default value. 

Names the external routine's 
entry point. The value must be 
a string. You must add lead 
underscores explicitly. Case is 
preserved. The default value is 
the print name of the external 
routine name, which is normally 
in upper case. If an entry 
point of this name is already 
accessible in the system, a new 
version of the routine is not 
linked in. 

Specifies the object file(s) or 
archive library(ies) that was 
created for the external 
routine. If multiple files are 
specified, the order is 
preserved. The C library is 
always used last. The files 
must be object files usable as 
input to the ls(l) linker. 

You must specify this option 
unless you are calling a routine 
in the C library. 

Specifies the type of LISP 
object the external routine is 
to return. The value can be a 
LISP type, a type-spec-list, or 
NIL. A type-spec-list has the 
following format: 

:RESULT (:LISP-TYPE LISP-type 
:VAX-TYPE VAX-type) 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

Table 3 (cont.) 

Keyword-Value Pair 

:TYPE-CHECK value 

Description 

See Table 2-4 for a list of 
LISP/VAX types. NIL specifies 
that the routine returns no 
value. The default value is 
NIL. If you specify this 
option, do not specify the 
:CHECK-STATUS-RETURN option. 

Specifies whether the call-out 
facility is to check the types 

C) 

of the arguments passed to the Q 
external routine for 
compatibility with the LISP 
types specified in the argument 
specification. The value can be 
Tor NIL. If you specify T, the 
facility checks the types for 
compatibility; if you specify 
NIL, the facility does not check 
the argument types. The default Q 
value is NIL. 

doc-string 

The documentation string for the symbol that names the external 
routine. The documentation string is of type EXTERNAL-ROUTINE. 
See COMMON LISP: The Language for information on the 
DOCUMENTATION function. 

argument-description 

An argument description that is to be passed to the external 
routine. Include as many descriptions as the arguments you want 
to call out to. Specify the descriptions in the following 
format: 

(name options) 

The name argument must be a unique symbol in 
NIL. The name identifies the argument and is 
messages. If you do not specify options, you 
argument-description argument as a symbol: 

name 

20 

the definition or 
used in some error 

can specify the 

0 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

O If you specify opt~ons, specify the 
first element is the name: 

argument as a list whose 

0 

0 

0 

0 

(name {keyword value}*) 

The options arguments define the characteristics of an argument. 
Specify the options with keyword-value pairs: 

keyword value 

The option values are not evaluated. 

Table 4 lists the keyword-value pairs you can specify. 

Table 4: DEFINE-EXTERNAL-ROUTINE Argument Options 

Keyword-Value Pair 

:ACCESS value 

:LISP-TYPE type 

:MECHANISM value 

21 

Description 

Specifies the type of access the 
external routine needs for the 
argument. The value can be 
either :IN or :IN-OUT. The 
default value is :IN. If you 
~pecify :IN, the argument can be 
read, but not modified by the 
external routine. If you 
specify :IN-OUT, the argument 
can be both read and 
destructively ·modified by the 
external routine. 

Specifies the LISP 
argument value 
facility is to 
external ·routine. 
and Table 2-5 for 
can specify. 

type of the 
the call-out 

pass to the 
See Table 2-4 

the values you 

Specifies the argument-passing 
mechanism the external routine 
is to expect for the argument. 
The values you can specify are 
:VALUE, :REFERENCE, and 
:DESCRIPTOR. The default value 
for all data types (except for 
the VAX-type of :TEXT) is 
:REFERENCE. 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

Table 4 (cont.) 

Keyword-Value Pair 

:VAX-TYPE type 

Return value 

Description 

Specifies the VAX data type of 
the argument value the external 
routine is to return. See Table 
2-4 and Table 2-5 for the values 
you can specify. 

The symbol that names the external routine. 

Example 

Lisp> (DEFINE-EXTERNAL-ROUTINE· 
(SYSTEM :ENTRY-POINT "_system") 
(COMMAND :LISP-TYPE STRING 

:VAX-TYPE :ASCIZ)) 

This defines the external routine SYSTEM which lets you call out 

ol 

0 

to the shell command system(3). This lets you call other shell Q 
commands from VAX LISP. 

More examples of how to define external routines are provided in 
Chapter 2. These examples also show you how to call out to 
defined external routines: 

22 

0 

0 



0 

0 

0 

OBJECT DESCRIPTIONS 

WAIT Function 

Causes the program that calls it to stop executing until a specified 
function returns non-NIL. The first argument to WAIT is a reason for 
waiting, typically a string. The second argument is a function; 
arguments to the function can be provided as additional arguments to 
WAIT. 

A program that calls the WAIT function stops executing. The function 
specified in WAIT'S second argument is called periodically with the 
arguments provided in the WAIT call. If the function returns NIL, the 
program continues to wait. When the function returns non-NIL, WAIT 
returns an undefined value, and program execution continues. 

The testing function you specify with WAIT does not execute in the 
context of the program that issued the WAIT. Therefore, the testing 
function cannot depend on the binding of special variables. You 
should pass the testing function some data structure, such as a cons 
cell, structure, or array. Pass the same data structure to an 
interrupt function that modifies the data structure. Chapter 4 
contains examples of this technique. 

For efficiency and reliability, ensure that the testing function 
executes quickly and does not cause errors. If the testing function 
encounters an error while LISP is in a WAIT state, LISP is left in an 
inconsistent state and will have to be terminated. For this reason, 
WAIT calls its testing function once before entering the WAIT state. 
Errors that occur on this initial call·can be debugged normally. 

Format 

WAIT reason function &REST arguments 

Arguments 

Q reason 

0 

The reason for the wait, typically a string. 

function 

A function that will be called periodically to determine if the 
program should continue to wait. 

arguments 
) 

Arguments to be supplied to the function given in the second 
argument. 

Return Value 

Undefined. 

23 



OBJECT DESCRIPTIONS 

WAIT Function (cont.) 

Example 

Lisp> (SETF *FLAG* (LIST NIL)) 
(NIL) 
Lisp> (BIND-KEYBOARD-FUNCTION 

#\FS 
#'(LAMBDA() (SETF (CAR *FLAG*) T))) 

Lisp> (WAIT "Wait for CTRL/\" #'CAR *FLAG*) 
(After a pause, user types CTRL/\) 
T 
Lisp> 

• The special variable *FLAG* is set to a list whose only 
element is NIL. 

• <CTRL/\> is bound to a function that sets the first element of Q 
*FLAG* to T. 

• The call to the WAIT function specifies CAR as the testing 
function and *FLAG* as the argument to the testing function. 
WAIT does not return immediately. 

• When the user types <CTRL/\>, the keyboard function sets the 
first element of *FLAG* to T, the testing function returns T, 
and the call to WAIT returns. Q 

0 

0 
24 



0 
INDEX 

Page numbers in the Index in the form c-n (for example, 2-13) refer to 
a page in Part I. Page numbers in the form n (for example, 25) refer 
to a page in Part II. 

-A-

Access function, 3-3 
defining field types, 9 
generating, 16 
naming, 13 

:ACCESS keyword 

ALIEN-FIELD function, 3-24 
description, 1 

ALIEN-STRUCTURE-LENGTH function, 
3-24 

description, 3 
:ALLOCATION keyword 

constructor function, 3-24 
Argument 

O DEFINE-EXTERNAL-ROUTINE 
2-9 I 21 

macro, access method, 2-9 
list, 2-3 
passing mechanisms, 2-4, 21 

argument description, 20 
:ASCIW keyword 

0 

0 

0 

Access method, 2-9 
Alien structure 

access function, 3-3 
defining field types, 9 
generating, 16 
naming, 13 

constructor function, 3-3, 3-17 
naming, 13 
specifying an initial value, 

16 
copier function, 3-4, 3-7 

naming, 13 . 
creating, 3-22 
defining, 3-2, 12 

examples, 3-19 
field 

See Field 
field description 

See Field 
internal storage 

(figure}, 3-22 
length, 3-24, 3 
modify, 1. 
name, 3-4, 12 
options, 12 
predicate function, 3-4, 3-7 

naming, 13 
print function, 3-4, 3-8 

Alien structure facility, 3-1 to 
3-24 

See also Call out facility 
:ALIEN-DATA-LENGTH keyword 

constructor function, 3-23 

alien structure field type, 
3-11, 15 

:ASCIZ keyword 
alien structure field type, 15 

:ASCIZ-STRING keyword 
alien structure field type, 

3-11 

-B-

BIND-KEYBOARD-FUNCTION 
specifying interrupt level, 4-1 

:BIT keyword 
VAX data type, 2-10 

:BIT-VECTOR keyword 
alien structure field type, 

3-11, 15 
BREAK function 

interrupt level for, 4-2 
:BYTE keyword 

VAX data type, 2-10 

-c-

Call-out facility, 2-1 to 2-19 
See also Alien structure 

facility 
CALL-OUT macro, 18 

description, 6 
CALLG VAX instruction, 2-3 

Index-1 



:CHECK-STATUS-RETURN keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-6, 19 
:CONC-NAME keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-6, 13 

Constructor function, 3-3 
keywords, 3-22 
keywords (table), 3-23 
naming, 13 
specifying an initial value, 

3-17, 16 
:CONSTRUCTOR keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-6, 13 

Copier function, 3-4, 3-7 
naming, 13 

:COPIER keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-7 I 13 
Cricital sections 

infinite loops in, 4-3 
Critical sections, 4-2 

debugging, 4-3 
errors in, 4-3 

CRITICAL-SECTION macro, 8 
using, 4-2 

-D-

:D-FLOATING keyword 
alien structure field type, 

3-11, 15 
VAX data type, 2-10 

Data 
initialization, 2-16 
structure 

internal, 2-12 
VAX, 3-1 

Data types 
alien structure field, 3-10 

See also Field 
alien structures, 3-3 · 
checking, 2-7, 20 
conversions, 2-12, 3-10, 15 

(table), 2-15 
LISP, 9, 20 

:LISP-TYPE keyword, 2-9 
:RESULT keyword, 2-7 

VAX, 2-10, 22 
:RESULT keyword, 2-7 
:VAX-TYPE keyword, 2-10 

INDEX 

DEBUG function 
interrupt level for, 4-2 c) 

:DEFAULT keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-17, 16 
DEFINE-ALIEN-FIELD-TYPE macro, 

3-24 
description, 9 

DEFINE-ALIEN-STRUCTURE macro 
defining an alien structure, 

3-2 . 
description, 12 to 17 
options (table), 12 

DEFINE-EXTERNAL-ROUTINE macro, 6 
argument options (table), 21 
defining external routines, 2-4 
description, 18 to 22 Q 
routine options (table), 18 

Descriptor (:DESCR) 
argument-passing mechanism, 21 

Descriptor (:DESCRIPTION) 
argument-passing mechanism, 2-4 

Descriptor (:DESCRIPTOR) 
argument-passing mechanism, 

2-10 
Documentation string, 14, 20 Q 
Dynamic memory, 3-24 , 

-B-

End position 
ALIEN-FIELD function, 1 
field, 3-14, 15 

:ENTRY-POINT keyword 
DEFINE-EXTERNAL-ROUTINE macro, O 

2-7, 19 
Errors 

in critical sections, 4-3 
External routine 

access method, 21 
alien structures, 3-1 
argument type checking, 2-7 
calling, 2-1, 2-11, 6 

(figure),.2-2 
checking data types, 20 
checking status return, 19 
data initialization, 2-16. 
data type conversion, 2-12 

(table), 2-15 
defining, 2-4, 18 
entry point, 2-7, 19 Q 
formal argument 

Index-2 



0 

0 

0 

0 

External routine 
formal argument (Cont.) 

See formal argument 
description 

image name, 2-7, 19 
name, 2-5, 18 
options, 2-5, 18 
result data type, 2-7, 20 
status return, 2-6 
suspending a LISP system, 

-F-

:F-FLOATING keyword 

2-16 

alien structure field type, 
3-11, 15 

VAX data type, 2-10 
Field 

accessing, 3-18, 1 
defining, 3-24 
description, 3-10 
end position, 3-14, 1, 15 
gaps, 3-15, 16 
index, 3-18 
initial value, 3-16, 16 
name, 3-10, 1, 14 
offset, 3-19 
options, 3-16 

(table), 15 
overlapping, 3-15 
repeated, 3-18 
repeating, 16 
setting, 3-18 
start position, 3-14, 1, 15 
type, 3-10, 3-11, 1, 15 

defining, 3-14, 9 
given 

(table), 3-11 
predefined, 9 

File 
open, 2-17 

:FILE keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

19 
Formal argument description, 2-8 

-G-

:G-FLOATING keyword 
alien structure field type, 

3-11, 15 
VAX data type, 2-10 

INDEX 

Gaps, 3-15, 16 

-H-

:H-FLOATING keyword 
alien structure field 

3-11, 15 
VAX data type, 2-10 

-I-

:IMAGE-NAME keyword 
DEFINE- macro, 2-7 

type, 

Immediate value (:IMMED) 
argument-passing mechanism, 21 

Immediate value (:VALUE) 
argument-passing mechanism, 2-4, 

2-10 
Initialization keyword, 3-22 
Input access (:IN), 2-9, 21 
Input-output access (:IN-OUT), 

2-9, 21 
Interrupt levels, 4-1 

guidelines, 4-2 

-K-

Keyboard functions 
interrupt levels, 4-1 
protecting against interruption 

by, 4-2 . 
waiting for, 4-3 

Keyboard input 
interrupt level of, 4-2 

-L-

LISP 
data type 

See Data types 
program 

calling external routines, 
2-4 

defining alien structure data 
types, 3-1 

:LISP-TYPE keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-9, 21 
:LONGWORD keyword 

VAX data type, 2-10 

Index-3 



INDEX 

-M-

:MECHANISM keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-10 t 21 
Memory 

dynamic, 3-24 
static, 3-24 

-o-

:OCCURS keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-18, 16 
:OFFSET keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-19, 16 

-P-

:POINTER keyword 
alien structure field type, 

3-12, 15 
Predicate function, 3-4 

naming, 13 
:PREDICATE keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-8, 13 

Print function, 3-4, 14 
alien structure, 3-8 

:PRINT-FUNCTION keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-8, 14 

-R-

:READ-ONLY keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-18, 16 
Reference (:REF) 

argument-passing mechanism, 21 
Reference (:REFERENCE) 

argument-passing mechanism, 2-4, 
2-10 

:RESULT keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-7 I 20 
RET VAX instruction, 2-3 
Routine argument, 6 

-s-

:SELECTION keyword 
alien structure field type, 15 

SETF macro 
access functions, 3-18 
creating alien structures, 3-3, 

3-15 
with ALIEN-FIELD function, 1 

:SIGNED-INTEGER keyword 
alien structure field type, 

3-11, 15 
Start position 

ALIEN-FIELD function, 1 
field, 3-14, 15 

Static memory, 3-24 
Status return, 2-6, 19 
Storage allocation 

alien structures, 3-24 
:STRING keyword 

alien structure field type, 
3-11, 15 

Suspended systems 
including calls to external 

routines, 2-16 

-T-

:TEXT keyword 
alien structure field type, 

3-11 
VAX data type, 2-10 

:TYPE-CHECK keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-7, 20 

-u-

:UNSIGNED-BY~E keyword 
VAX data type, 2-10 

:UNSIGNED-INTEGER keyword 
alien structure field type, 

3-11, 15 
:UNSIGNED-LONGWORD keyword 

VAX data type, 2-10 
:UNSIGNED-WORD keyword 

VAX data type, 2-10 

Index-4 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

-v-

:VARYING-STRING keyword 
alien structure field type, 

3-11 
VAX data type 

See Data types 
VAX Procedure Calling Standard, 

2-3 
:VAX-TYPE keyword 

DEFINE-EXTERNAL-ROUTINE macro, 
2-10 

INDEX 

-w-

WAIT function, 23 
arguments, 4-3 
testing function 

debugging, 4-3 
guidelines, 4-3 

using, 4-3 
:WORD keyword 

VAX data type, 2-10 

Index-5 



O I 

0 

0 

0 

0 


	Contents
	Preface
	Part I: Guide to system access programming
	1. Overview of system access facilities
	2. Calling external routines
	3. Defining and creating alien structures
	4. Interrupt levels, critical sections, and synchronization

	Part II: Object descriptions
	Index



