
G 

0 

0 

0 

0 

VAX LISP/VMS 
System Access Programming Guide 

Order Number: AA-GH75A-TE 

May 1986 

This document contains Information required by a LISP language 
programmer to make use of routines and other facilities offered by 
the VMS operating system. 

Operating System and Version: Vlv<JVMS Version 4.2 

Software Version: 

digital equipment corporation 
maynard, massachusetts 

VAX. LISPNMS Version 2.0 



First Printing, May 1986 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may be used or copied only in accordance with the terms of such 
license. 

No responsibility is assumed for the use or reliability of software on 
equipment that is not supplied by Digital Equipment Corporation or its 
affiliated companies. 

© Digital Equipment Corporation 1986. 
All Rights Reserved. 

Printed in U.S.A. 

A postage-paid READER'S COMMENTS form is included.on the last page of 
this document. Your comments will assist us in preparing future 
documentation. 

The following are trademarks of Digital Equipment Corporation: 

DEC 
DECUS 
MicroVAX 
VAXstation 
DECnet 
ULTRIX-32 
ULTRIX-32m 

UNIBUS 
VAX 
MicroVAX II 
VAXstation II 
ULTRIX 

PDP 
VMS 
MicroVMS 
AI VAXstation 
ULTRIX-11 

0 

c 

0 

c 



PREFACE 

CHAPTER 1 

1.1 
1.2 
1. 3 
1.4 

CHAPTER 2 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.4 
2.3 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.4.3.1 
2.4.3.2. 
2.4.3.3 
2.4.3.4 
2.4.3.5 
2.4.4 
2.4.5 
2.4.6 
2.4.7 
2.4.7.1 
2.4.7.2 
2.4.7.3 
2.4.7.4 
2.5 
2.5.1 
2.5.2 
2.5.3 

2.6 
2.6.1 
2.6.2 
2.6.3 

CONTENTS 

PART I 
GUIDE TO SYSTEM ACCESS PROGRAMMING 

OVERVIEW OF SYSTEM ACCESS FACILITIES 

THE CALL-OUT FACILITY 
ALIEN STRUCTURES 
INTERRUPT FUNCTIONS 
CONTROLLING INTERRUPTIONS AND SYNCHRONIZING 
EXECUTION 

CALLING EXTERNAL ROUTINES 

STEPS TO TAKE IN CALLING AN EXTERNAL ROUTINE 
STANDARD VAX CALLING CONVENTIONS 

Transfer of Control 
Argument Lists 
Mechanisms for Passing Arguments 
Values Returned by Functions 

LINKING A SHAREABLE IMAGE 
DEFINING AN EXTERNAL ROUTINE 

External Routine Name and Options 
External Routine Name 
External Routine Options 

Checking the Return Status 
Naming the Entry Point 
Specifying the Shareable Image 
Specifying the Result Data Type 
Checking the Argument Data Types 

Documentation String 
Argument Descriptions 
Argument Name 
Argument Options 

Access Capability 
LISP Data Type 
Passing Mechanism 
VAX Data Type 

CALLING AN EXTERNAL ROUTINE 
How to Call an External Routine 
What the CALL-OUT Macro Does 
How the CALL-OUT Macro Uses Internal Data 
Structures 

DATA TYPE CONVERSIONS 
Converting LISP Objects to VAX Data Types 
Arguments with :IN-OUT Access 
:ASCIZ VAX Type 

iii 

v LI 

1-1 
1-2 
1-3 

1-3 

2-2 
2-3 
2-4 
2-4 
2-4 
2-4 
2-5 
2-6 
2-7 
2-7 
2-7 
2-8 
2-8 
2-8 
2-9 
2-9 
2-9 

2-10 
2-10 
2-10 
2-11 
2-11 
2-11 
2-12 
2-13 
2-13 
2-13 

2-14 
2-14 
2-14 
2-16 
2-16 

c 

0 

c 

0 

c 



0 

0 

0 

0 

0 

2.6.4 
2.7 
2.7.1 
2.7.2 
2.8 
2.9 

2.9.1 
2.9.2 
2.9.3 
2.9.4 
2.10 

CHAPTER 3 

3.1 
3.2 
3.3 

3.3.1 
3.3.2 
3.3.2.1 
3.3.2.2 
3.3.2.3 
3.3.2.4 
3.3.2.5 
3.3.3 
3.4 
3.4.1 
3.4.2 
3.4.2.1 
3.4.2.2 
3.4.3 
3.4.3.1 
3.4.3.2 
3.4.3.3 
3.4.4 
3.4.4.1 
3.4.4.2 
3.4.4.3 
3.4.4.4 
3.5 
3.6 
3.6.1 
3.6.2 
3.7 

CHAPTER 4 

4.1 

Converting VAX Data Types to LISP Objects 
CALLING SYSTEM SERVICES 

Defining System Services 
Calling out to System Services 

ERRORS DURING EXTERNAL ROUTINE EXECUTION 
SUSPENDING A LISP SYSTEM CONTAINING EXTERNAL 
ROUTINE DEFINITIONS 

Acquiring Memory with LIB$GET_VM 
Initializing Data 
Using Open Files 
Using Logical Names 

EXAMPLES OF USING THE CALL-OUT FACILITY 

DEFINING AND CREATING ALIEN STRUCTURES 

DEFINING AN ALIEN STRUCTURE DATA TYPE 
WHAT THE DEFINE-ALIEN-STRUCTURE MACRO DOES 
ALIEN STRUCTURE NAME, OPTIONS, AND DOCUMENTATION 
STRING 

Alien Structure Name 
Options 

Naming Access Functions 
Naming the Constructor Function 
Naming the Copier Function 
Naming the Predicate Function 
Specifying a Print Function 

Documentation String 
ALIEN STRUCTURE FIELD DESCRIPTIONS 

Field Name 
Field Type 

Given Field Types 
User-Defined Field Types 

Field Positions 
Start and End Positions 
Gaps Between Field Positions 
Overlapping Fields 

Field Options 
Initial Value 
Read-Only Value 
Repeated Field 
Similar-Field Distances 

EXAMPLES OF ALIEN STRUCTURE DEFINITIONS 
CREATING AN ALIEN STRUCTURE 

Initializing and Changing Data Fields 
Allocating Memory 

ADDITIONAL ALIEN STRUCTURE MACRO AND FUNCTIONS 

INTERRUPT FUNCTIONS 

OVERVIEW OF INTERRUPT FUNCTIONS 

iv 

2-16 
2-17 
2-18 
2-18 
2-19 

2-20 
2-20 
2-20 
2-21 
2-21 
2-21 

3-2 
3-3 

3-4 
3-5 
3-5 
3-6 
3-6 
3-7 
3-7 
3-8 
3-9 

3-10 
3-10 
3-10 
3-11 
3-14 
3-14 
3-14 
3-15 
3-15 
3-16 
3-16 
3-17 
3-18 
3-18 
3-19 
3-22 
3-22 
3-23 
3-24 

4-2 



0 

0 

0 

0 

0 

4.2 
4.2.1 
4.2.2 
4.2.2.1 
4.2.2.2 
4.2.2.3 
4.3 
4.3.1 
4.3.1.1 
4.3.1.2 
4.3.1.3 
4.3.2 

4.3.2.1 
4.3.2.2 
4.3.3 
4.3.4 

CHAPTER 5 

INDEX 

5.1 
5.2 
5.3 

ASYNCHRONOUS EVENTS IN VMS 
ASTs 
Routines that Cause ASTs 

System Routines 
VAX LISP Routines 
Keyboard Functions 

ESTABLISHING LISP INTERRUPT FUNCTIONS 
Defining an Interrupt Function 

Passing Arguments to Interrupt Functions 
Specifying the Interrupt Level 
Automatic Removal of Interrupt Functions 

Associating an Interrupt Function with an 
Asynchronous Event 

Calling Out to System Routines 
Using VAX LISP Functions 

Removing an Interrupt Function from LISP 
Suspending Systems Containing Interrupt 
Functions 

INTERRUPT LEVELS, CRITICAL SECTIONS, AND 
SYNCHRONIZATION 

USING INTERRUPT LEVELS 
CRITICAL SECTIONS 
SYNCHRONIZING PROGRAM EXECUTION 

PART II 
OBJECT DESCRIPTIONS 

ALIEN-FIELD Function 
ALIEN-STRUCTURE-LENGTH Function 
CALL-OUT Macro 
COMMON-AST-ADDRESS Parameter 
CRITICAL-SECTION Macro 
DEFINE-ALIEN-FIELD-TYPE Macro 
DEFINE-ALIEN-STRUCTURE Macro 
DEFINE-EXTERNAL-ROUTINE Macro 
FORCE-INTERRUPT-FUNCTION Function 
GET-INTERRUPT-FUNCTION Function 
INSTATE-INTERRUPT-FUNCTION Function 
UNINSTATE-INTERRUPT-FUNCTION Function 
WAIT·Function 

v 

4-2 
4-3 
4-4 
4-4 
4-4 
4-4 
4-5 
4-5 
4-6 
4-6 
4-7 

4-7 
4-7 
4-8 

4-10 

4-10 

5-1 
5-2 
5-3 

1 
3 
6 
8 
9 

10 
13 
19 
24 
25 
27 
32 
33 



FIGURES 

2-1 Calling External Routines 2-3 0 
3-1 Internal Storage of FAMILY-REC 3-21 

TABLES 

2-1 Keywords Specifying External Routine Options 2-8 
2-2 Keywords Specifying External Routine Argument 

Options 2-10 
2-3 Values of the :MECHANISM Keyword 2-12 
2-4 Conversion Table from LISP Type to VAX Type 2-15 
2-5 Conversion Table from VAX Type to LISP Type 2-17 
3-1 Alien Structure Field Types 3-11 
3-2 Values Used with Memory-Space Keywords 3-23 
1 DEFINE-ALIEN-STRUCTURE Options 13 

0 2 DEFINE-ALIEN-STRUCTURE Field Options 16 
3 DEFINE-EXTERNAL-ROUTINE Options 19 
4 DEFINE-EXTERNAL-ROUTINE Argument Options 22 

0 

0 

0 
vi 



0 

PREFACE 

Manual Objectives 

The VAX LISP/VMS System Access Programming Guide provides information 

O 
that lets you, as a LISP programmer, make use of the programming 
interface of the VMS operating system. The routines included with the 
operating system give you access to capabilities not normally 
accessible from the LISP environment. 

Intended Audience 

This 
OLISP 

manual is intended for programmers with a good knowledge of 
and the programming interface to the VMS operating system. 

both 

Structure of This Document 

An outline of the organization and chapter content of this manual 
follows: 

PART I: GUIDE TO SYSTEM ACCESS PROGRAMMING 

~?art I consists of five chapters, which explain how to use the VAX 
LISP interface to operating system routines. 

0 

• Chapter 1 provides an overview of the VAX LISP system access 
facilities. 

• Chapter 2 shows how to define an external (system} routine and 
how to call it from LISP. 

• Chapter 3 explains alien structures, which allow you to 
exchange data between LISP and routines written in other 
languages. 

o Chapter 4 describes interrupt functions, which you can use to 
handle asynchronous events in the operating system. 

vii 

I 



PREFACE 

• Chapter 5 shows how you can control the execution of keyboard 
functions and interrupt functions by assigning them interrupt C' 
levels. You can also protect sections of code against 
interruption and cause your program to wait until an event 
occurs or some needed information becomes available. 

PART II: OBJECT DESCRIPTIONS 

Part II contains full descriptions of the functions, macros, 
variables, and constants involved with system access. Each function 
or macro description explains the function's or macro's use and shows 
its format, applicable arguments, return value, and examples of use. 
Each variable or constant description explains the variable's or 
constant's use and provides examples of its use. 

Associated Documents 

The following documents are relevant to VAX LISP/VMS programming: 

e VAX LISP/VMS User's Guide 

• COMMON LISP: The Language 

• VAX/VMS Linker Reference Manual 

• Introduction to VAX/VMS System Routines 

• VAX/VMS System Services Reference Manual 

• VAX/VMS Run-Time Library Routines Reference Manual 

• VAX/VMS Record Management Services Reference Manual 

• VAX/VMS Utility Routines Reference Manual 

• VAX Architecture Handbook 

For a complete list of VAX/VMS software documents, 
Introduction to the VAX/VMS Documentation Set. 

Conventions Used in This -Document 

The following conventions are used in this manual: 

Convention Meaning 

see 

( ) Parentheses used in examples of LISP code indicate 
beginning and end of a LISP form. For example: 

(SETO NAME LISP) 

viii 

the 

the 

0 

c 

0 

c. 



Convention 

0 [ ] 

0 { } 

{ } * 

0 

&OPTIONAL 

0 

&REST 

0 

PREFACE 

Meaning . 

Square brackets enclose 
For example: 

[doc-string] 

elements that are optional. 

Square brackets do not indicate optional elements when 
they are used in the syntax of a directory name in a 
VAX/VMS file specification. Here, the square bracket 
characters must be included in the syntax. 

A horizontal ellipsis means that the element preceding 
the ellipsis can be repeated. For example: 

function-name ... 

In function and macro format specifications, braces 
enclose elements that are considered to be one unit of 
code. For example: 

{keyword value} 

In function and macro format specifications, braces 
followed by an asterisk enclose elements that are 
considered to be one unit of code, which can be 
repeated zero or more times. For example: 

{keyword value}* 

In function and macro format specifications, the word 
&OPTIONAL indicates that the arguments after it are 
defined to be optional. For example: 

PPRINT object &OPTIONAL package 

Do not specify &OPTIONAL when you invoke a function or 
macro whose definition includes &OPTIONAL. 

In function and macro format specifications, the word 
&REST indicates that an indefinite number of arguments 
may appear. For example: 

CALL-OUT external-routine &REST routine-arguments 

Do not specify &REST when you invoke the function or 
macro whose definition includes &REST. 

ix 



Convention 

&KEY 

UPPERCASE 
characters 

lowercase 
italics 

<RET> 

CTRL/x 

PREFACE 

Meaning 

In function and macro format specifications, the word 
&KEY indicates that keyword arguments are accepted. 
For example: 

COMPILE-FILE input-pathname 
&KEY :LISTING :MACHINE-CODE 

Do not specify &KEY when you invoke the function or 
macro whose definition includes &KEY. 

DCL commands and qualifiers, and defined LISP 
functions, macros, variables, and constants are printed 
in uppercase characters; however, you can enter them in 
uppercase, lowercase, or a combination of uppercase and 
lowercase characters. 

Lowercase italics in function and macro descriptions 
and in text indicate arguments that you supply; 
however, you can enter them in lowercase, uppercase, or 
a combination of lowercase and uppercase characters. 

A symbol 
indicates 
example: 

with 
that 

a 
you 

<RET> or <ESC> 

1- to 3-character abbreviation 
press a key on the terminal. For 

In examples, carriage returns are implied at the end of 
each line. However, the <RET> symbol is used in some 
examples to emphasize carriage returns. 

CTRL/x indicates a control key sequence where you hold 

0 

0 

0 

down the CTRL key while you simultaneously press Q 
another key. For example: 

CTRL/C or CTRL/Y 

The system echoes control key sequences as Ax; 
therefore, in examples of output, CTRL/x is shown as 
Ax. For example: 

.... C or A Y 

A vertical ellipsis indicates that all the information 
that the system would display in response. to the 
particular function call is not shown; or, that all the 
information a user is to enter is not shown. 

x 

0 



Convention 

OBlack print 

Red print 

0 

0 

0 

0 

PREFACE 

Meaning 

In examples, output lines and prompting characters that 
the system displays are in black print. For example: 

$ LISP/COMPILE 
$_File(s): MYPROG.LSP 

In examples, user input is shown in red print. 
example: 

$ LISP/COMPILE 
$_File(s): MYPROG.LSP 

xi 

For 



0 

0 

0 

0 

0 



0 

PART I 

0 GUIDE TO SYSTEM ACCESS PROGRAMMING 

0 

0 

0 



0 

0 

0 

0 

0 



0 

CHAPTER 1 

OVERVIEW OF SYSTEM ACCESS FACILITIES 

The VAX LISP system is layered on top of the VMS operating system. If 

O you restrict your use of LISP to COMMON LISP functions and use the 
utilities provided with VAX LISP, you may hardly notice the operating 
system. VAX LISP, however, provides various means of access to the 
facilities of the operating system. This chapter provides a broad 
view of those means of access. The remainder of this manual describes 
them in detail. 

The VMS operating system offers the following general facilities to 
any programmer, including the LISP programmer: 

0 • System services and other system routines. The routines are 
shipped with the operating system. Some routines provide an 
interface to operating system capabilities, such as I/0, 
scheduling, and notification of external events. Other 
routines set or retrieve parameters about a process or the 
entire system. There is a large family of math routines and a 
group of routines that can manage the screen of a video 
terminal. 

0 • A multilanguage programming environment. Routines written in 
a language that conforms to the VAX Calling Standard can be 
called by, and can return values to, routines written in other 
languages. For example, a LISP program can call a numeric 
analysis routine written in FORTRAN. 

The remainder of this chapter briefly describes each of the facilities 
that let you work with operating system facilities. The chapters that 
follow describe each facility in greater detail. 

1.1 THE CALL-OUT FACILITY 

As a VAX LISP programmer, your primary means of access to routines C~xternal to LISP is the call-out facility. To use the call-out 
facility, you must first identify a system routine that you want to 

1-1 



OVERVIEW OF SYSTEM ACCESS FACILITIES 

use, or write and debug a routine in another language. Information 
about system routines is in Volume 5 of the VAX/VMS document set, or Q 
the MicroVMS FORTRAN Programming Support Manual of the MicroVMS 
document set. This documentation has information about the arguments 
that each routine expects, its effects, and the value, if any, that it 
returns. 

If you write a routine in another language, you must be aware of the 
routine's arguments. The VAX data types and passing mechanisms of 
those arguments are especially important. 

Once you have identified or written an external routine, you must 
define it, using the DEFINE-EXTERNAL-ROUTINE macro. This macro makes 
known to LISP the location and arguments of an external routine and 
sets up a mechanism whereby arguments expressed in LISP data types can 
be converted to the proper VAX data types for the external routine. 

The CALL-OUT macro calls a defined external routine, passing it the O 
arguments you specify and returning a value if the external routine 
returns a value. 

1.2 ALIEN STRUCTURES 

The DEFINE-EXTERNAL-ROUTINE macro can specify arguments for most Q 
common VAX data types. However, to pass more complex data you must 
define an alien structure that corresponds to the structure of the 
data in an external routine. An alien structure definition has two 
general purposes: 

• To define a precise layout for a portion of memory. 

• To instruct LISP how to interpret fields in that memory, 
allowing you to access those fields using LISP data types. 

An alien structure definition provides a template for instances of 
that structure, similar to a COMMON LISP structure definition created 
by the DEFSTRUCT macro. The DEFINE-ALIEN-STRUCTURE macro defines an 
alien structure and also provides a constructor function, field 
accessor functions, a type predicate, and so on. 

You pass an instance of an alien structure to an external routine 
using CALL-OUT. Since DEFINE-ALIEN-STRUCTURE provides precise control 
over the memory layout of the structure, you can set up the alien 
structure so that the external routine can properly map its own data 
types into it. The external routine can access or modify fields in 
the structure. When CALL-OUT returns, the modified structure is again 
available for LISP to interpret as LISP data. 

1-2 

0 



0 

0 

0 

0 

0 

OVERVIEW. OF SYSTEM ACCESS FACILITIES 

1.3 INTERRUPT FUNCTIONS 

Normally, LISP is a synchronous environment; that is, events 
programs occur at times that can be predicted from the code 
data. Events such as garbage collections that interrupt the 
flow of program execution do so in a way that is transparent 
programs. 

in LISP 
and the 

normal 
to user 

In the operating system, however, all events do not happen in a 
synchronous fashion. Some events are asynchronous; that is, they 
occur at unpredictable points in the program, although you can predict 
that they will eventually occur. For example: 

• An I/0 request is issued. Later, at an unpredictable point in 
the execution of the program, the I/0 operation completes. 

• A timer is set. The time of its expiration can be predicted 
but not the program state at that time. 

• A workstation user moves the pointing device or presses a 
pointer button. 

A number of system routines initiate operating system activities that 
complete asynchronously. These routines start the activity and then 
return; they do not wait for the activity to complete. All these 
routines allow you to request notification of completion. In VAX 
LISP, this notification takes the form of an interrupt function. 

An interrupt function is a function that you write and that is 
designed to execute as the result of an asynchronous event in the 
operating system. Once you have written the interrupt function, you 
make it known to VAX LI SP by using the INSTATE-.INTERRUPT-FUNCTION 
function, which returns an identifier for the interrupt function. You 
then use CALL-OUT to pass this identifier, along with a VAX LISP 
constant, to a system routine that initiates an asynchronous activity. 
When the activity completes, your interrupt function will execute. 

1.4 CONTROLLING INTERRUPTIONS AND SYNCHRONIZING EXECUTION 

VAX LISP allows you to control the way functions can interrupt each 
other. You can also synchronize program execution by causing the 
program to wait until an event occurs or information becomes 
available. 

A function that is specified with BIND-KEYBOARD-FUNCTION or 
INSTATE-INTERRUPT-FUNCTION can also have an interrupt level specified. 
The interrupt level is an integer. When the function is called on to 
execute, it can do so only if its interrupt level is higher than the 
level at which VAX LISP is operating. By using interrupt levels, you 
can ensure that functions that must interrupt other functions can do 
so. 

1-3 



OVERVIEW OF SYSTEM ACCESS FACILITIES 

Some parts of code -- for example, those that modify .data structures Q 
must never be interrupted. You can use the CRITICAL-SECTION macro 

to protect such code from any interruption. 

If your program has to wait for the execution of a 
or an interrupt function, VAX LISP provides the 
WAIT function halts normal LISP execution until a 
that you specify returns non-NIL. 

1-4 

keyboard function 
WAIT function. The 

testing function 

0 

0 

0 

0 



0 

CHAPTER 2 

CALLING EXTERNAL ROUTINES 

VAX LISP has a facility that lets you call routines written in other 

O languages from within a VAX LISP program. Using this facility, VAX 
LISP programs can call routines written in languages that adhere to 
the VAX Procedure Calling Standard such as: 

• c and FORTRAN 

• VMS and RMS system services 

• Run-time library (RTL) routines 

QTo call an external routine, the routine must follow the VAX Procedure 
Calling Standard. In addition, if you call a routine that is not in 
the RTL or that is not a system service, the routine must be linked 
into a position-independent shareable image. 

The call-out facility cannot call external routines. that require an 
extensive, nonstandard software environment. Routines written in APL 
and interpreted BASIC are examples of such routines. You can use VMS 

Osubprocess and mailbox facilities to communicate with such routines. 
VAX LISP provides functions for subprocess operations (see Part II). 

Programs written in other VAX languages cannot call VAX LISP 
functions. The reason is that most functions written in LISP depend 
on an entire LISP environment being present at run time. As an 
example of this dependency, take garbage collection. If the LISP 
function that was called from another language, for example, FORTRAN, 
ran out of dynamic memory, if would normally cause a garbage 
collection in the LISP environment. However, since the whole LISP 

, environment is not present when the LISP function is called, the 
FORTRAN program would have to deal with the memory management tasks 
normally performed by the garbage collector. This would require the 
FORTRAN program to have knowledge of the internals of the LISP system. 

0 
2-1 



CALLING EXTERNAL ROUTINES 

The Introduction to VAX/VMS System Routines contains detailed 
information about calling external routines and passing arguments. Q 
You should be familiar with these subjects before you use the VAX LISP 
call-out facility. 

A routine that can be called is termed a "procedure" in the previously 
mentioned manual. This chapter, however, uses the expression 
"external routine" to maintain consistency with the VAX LISP language 
terminology. 

This chapter covers the following: 

• Lists the steps to take in calling an external routine • 

• Describes the standard VAX calling conventions • 

• Explains and gives examples of how to define and call external Q 
routines, including system services. 

• Shows how data types are converted from LISP objects to VAX 
objects and vice versa. 

• Explains the errors that can occur while executing an external 
routine. 

• Shows how a LISP system 
definitions is suspended. 

containing external routine Q 

2.1 STEPS TO TAKE IN CALLING AN EXTERNAL ROUTINE 

For a LISP program to call an external routine, you must: 

1. Write the external routine. 

2. Compile it. 

3. Debug it. 

4. Link it into a VMS shareable image. 

5. Define it in LISP. 

6. Call it from LISP. 

Figure 2-1 illustrates these steps. Note that VAX LISP currently has 
no way to debug external routines. 

2-2 

0 

c 



CALLING EXTERNAL ROUTINES 

Create, compile, and debug 

external routine 0 
VMS Environment 

+ 
Link external routine into 
a VMS shareable image 

i 
Invoke VAX LISP 

0 ~ 
Define external routine to 
LISP 

LISP Environment i 
Call out to external routine 

0 
ML0-244-86 

Figure 2-1: Calling External Routines 

0 2.2 STANDARD VAX CALLING CONVENTIONS 

The VAX Procedure Calling Standard defines a uniform method for 
routines to call one another -- see the Introduction to VAX/VMS System 
Services. This standard prescribes how routines receive and return 
control, how arguments are passed, and how function values are 
returned. By means of the standard call conventions, most languages 
used with the VAX/VMS operating system can call library routines and 

, routines written in other VAX native-mode languages. Interpreted and 
compiled VAX LISP programs cannot conform to the standard because of 
the nature of the LISP language. For this reason, VAX LISP provides a 
facility that lets you call routines written in other VAX languages 
that do conform to the standard. The next four sections briefly 
summarize how VAX LISP calls routines conforming to the VAX Procedure 

ocalling Standard. 

2-3 

., ,. 



CALLING EXTERNAL ROUTINES 

2.2.1 Transfer of Control 

VAX LISP calls external routines with a CALLG instruction. External ~ 
routines return control to the programs that call them with a RET 
instruction. 

2.2.2 Argument Lists 

Arguments are passed to an external routine in an argument list. The 
LISP system constructs this argument list each time a LISP program 
calls an external routine. The list is a sequence of longword 
(4-byte) entries. The first byte of the first entry in the list is an 
argument count, indicating the number of longwords that follow in the 
list. 

The succeeding longwords contain either a data value, a pointer to a Q 
data value, or a pointer to a descriptor of a data value, depending on 
the specified passing mechanism. The limit is 254 arguments. 

2.2.3 Mechanisms for Passing Arguments 

The VAX Procedure Calling Standard defines three mechanisms by which Q 
arguments are passed to external routines: 

• By immediate value -- The argument list contains the value. 

• By reference --·The argument list contains the address 
of the value. 

• By descriptor The argument list contains the address 
of a descriptor of the value. 

Section 2.4.7.3 describes how to specify an argument's passing 
mechanism. 

2.2.4 Values Returned by Functions 

An external routine can be a subroutine or a func~ion. A subroutine 
is invoked only to produce side effects, and returns no value as a 
result of its execution. A function, on the other hand, returns a 
value after execution and might produce side effects. The function 
value is returned in one of two ways. 

• If the data type is scalar and requires 32 bits or less of. 

0 

storage, the value is returned in register RO. ~ 

2-4 



0 

0 

CALLING EXTERNAL ROUTINES 

• If the data type is scalar and requires from 33 to 64 bits of 
storage, the low-order bits of the value are returned in 
register RO, and the high-order bits of the value are returned 
in register Rl. 

2.3 LINKING A SHAREABLE IMAGE 

Before a LISP program can call external routines, you must link the 
required object modules into one or more position-independent VMS 
shareable images. The following example links the object modules 
TEST.OBJ and FUN.OBJ into a shareable image called MYIMAGE.EXE. The 
linker option UNIVERSAL is used to list the entry points that are 
available to LISP through the call-out facility. As the values of the 
UNIVERSAL option in the following example are taken from SYS$INPUT, 
<CTRL/Z> is used to specify the end of file. 

$ LINK/SHAREABLE=MYIMAGE TEST,FUN,SYS$INPUT:/OPTIONS 
UNIVERSAL=ENTRY_1,ENTRY_2,ENTRY_3 
<CTRL/Z> 

The number of individual shareable images that can be mapped into VAX 
LISP depends on VMS shareable image restrictions and the available 
address space. 

Q If you specify a base address as an option in a command that invokes 
the VMS linker or if the linker issues a warning message that informs 
you that the shareable imag~ is based, you cannot call external 
routines in that image. 

You can call external routines in shareable images that contain 
writable sections. Routines that are written in VAX-11 FORTRAN, which 
use COMMON blocks, are examples of routines that produce such code. A 

O shareable image contains a writable section if the external routine 
contains a program section (PSECT) that has the write (WRT) and the 
share (SHR) attributes. To determine whether a program section in a 
shareable image has these attributes, examine the image's map file. 

0 

Before you can call an external routine in a shareable image that 
contains writable sections, you must either install the shareable 
image with the VMS INSTALL utility or do the following: 

1. Link all routines that refer to the writable, shareable PSECT 
into the same shareable image in a single invocation of the 
VMS Linker. 

2. Supply an additional option to the linker that changes the 
attributes of the PSECT in question from writable, shareable 
to writable, not shareable. 

2-5 



CALLING EXTERNAL ROUTINES 

For example, suppose you have two routines which access a named COMMON 
block called SHARED_SPACE. These routines exist in different source 
modules, FOR1.FOR and FOR2.FOR. After compiling both source modules, 
you would use the following VMS Linker command to create a shareable 
image: 

$ LINK/SHARE=MYEXE FOR1,FOR2,SYS$INPUT:/OPTIONS 
UNIVERSAL=ROUTINE1,ROUTINE2 
PSECT_ATTR=SHARED_SPACE,WRT,NOSHR 
<CTRL/Z> 

The resulting shareable image may be called from VAX LISP without 
having to install it using the VMS INSTALL utility. However, this 
procedure will not work if routines that access the same writable, 
shareable PSECT exist in different shareable images. 

0 

The procedure for linking shareable images is explained in the VAX/VMS O 
Linker Reference Manual. 

2.4 DEFINING AN EXTERNAL ROUTINE 

Programs written in VAX LISP cannot call external routines the same 
way as programs written in other VMS languages. When a program calls 
an external routine, the program must specify information about the Q 
routine. Other VMS languages specify the information by compiling 
code into object modules that are linked by the VMS linker. Since VAX 
LISP does not create object modules that can be linked, it must 
specify information about an external routine another way. 

After you link an external routine into a shareable image, enter the 
VAX LISP environment and define the routine, using the VAX LISP 
DEFINE-EXTERNAL-ROUTINE macro. The definition provides the VAX LISP 
system with the information needed to create an argument list and to Q 
locate and call the external routine. A description of the 
DEFINE-EXTERNAL-ROUTINE macro is provided in Part II. 

The format for defining an external routine is: 

{DEFINE-EXTERNAL-ROUTINE (routine-name keyword-1 value-1 
.·keyword-2 value-2 

[doc-string] 
{argument-name keyword-1 value-1 

keyword-2 value-2 
... ) 

(~rgu~ent-name ... ) ... ) 

2-6 

... ) 

0 



0 

0 

0 

0 

0 

CALLING EXTERNAL ROUTINES 

The following example illustrates an external routine definition. The 
keywords used in this example are explained in the next sections. An 
illustration of calling out to this external routine is given in 
Section 2. 5 .1. 

Lisp> (DEFINE-EXTERNAL-ROUTINE (LIB$CREATE_DIR 
:FILE "LIBRTL" 
:CHECK-STATUS-RETURN T) 

(DEV-DIR-SPEC :LISP-TYPE STRING)) 
LIB$CREATE_DIR 

This external routine will create a new disk directory given its 
device and directory specification. 

2.4.1 External Routine Name and Options 

When you define an external routine, you must specify a name for it. 
In addition, you can specify options that provide the LISP system with 
information about how to call the external routine. 

2.4.2 External Routine Name 

The external routine name is a symbol that uniquely identifies that 
routine among all external routines being defined. The name also 
serves as the entry-point name unless a different entry-point name is 
specified with the :ENTRY-POINT option (see Section 2.4.3.2). 

2.4.3 External Routine Options 

You can assign specific characteristics to an 
specifying options in the routine's definition. 
of a keyword-value pair. 

external routine by 
Each option consists 

Specify external routine options in a list whose first element is the 
name of the routine the options characterize. The format in which to 
specify the name and options is: 

(name keyword-1 value-1 keyword-2 value-2 ... ) 

Option values are not evaluated. Table 2-1 alphabetically lists the 
option keywords you can use. The next sections explain each option in 
detail. For examples of how to use these options, see Section 2.10. 

2-7 



CALLING EXTERNAL ROUTINES 

Table 2-1: Keywords Specifying External Routine Options 

Keyword 

:CHECK-STATUS-RETURN 

:ENTRY-POINT 

:FILE 

:RESULT 

:TYPE-CHECK 

Purpose 

To check the return status 

To name the entry point 

To specify the VMS file name of the 
external routine's shareable im~ge 

To define the data type of the result 

To check the data types of the arguments 

NOTE 

You must specify the :FILE option unless you are 
calling a system service. 

0 

0 

2.4.3.1 Checking the Return Status·- The :CHECK-STATUS-RETURN keyword 
specifies whether the call-out facility is to examine the contents of 
register RO on return from the external routine. The default is NIL, Q 
which means that no checking is done. If you specify a T, the RO 
register is assumed to contain a status code. If the severity of the 
status is warning, error, or severe-error, a continuable error is 
signaled. The presence of this option implies that the external 
routine returns an integer; thus, you should not specify the :RESULT 
option with this option. 

2.4.3.2 Naming the Entry Point - The :ENTRY-POINT keyword specifies Q 
the entry-point name of an external routine. You must specify this 
keyword with a string that represents the name of the entry point that 
is to be called if that string is different from the name you specify 
for the external routine. (The default entry point is the print name 
of the external routine.) 

2.4.3.3 Specifying the Shareable Image - The :FILE keyword specifies 
a string that represents the specification of the external routine's 
shareable image. The specification must be in upper case and must be 
either a logical name that refers to the shareable image, or the file 
name of a shareable image in the SYS$SHARE directory. The 
specification cannot be an arbitrary file specification. You must. 
include this keyword in a routine's definition unless you are calling Q 
a system service. 

2-8 



0 

0 

CALLING EXTERNAL ROUTINES 

Note that this keyword.is named :IMAGE-NAME in Version 1 of VAX LISP. 
For the sake of compatibility, either keyword (:FILE or :IMAGE-NAME) 
is allowed. This change was made for compatibility with the ULTRIX 
operating system. 

NOTE 

If the specified entry point is already available in 
LISP, modified versions of the routine are not used. 

2.4.3.4 Specifying 
specifies the type 
default is NIL, which 
returns no value. 

the Result Data Type - The :RESULT keyword 
of value returned by the external routine. The 
means that the routine is a subroutine and 

If the routine does return a value, then the :RESULT keyword can 
specify the LISP (or both a LISP and a VAX) data type that the 
external routine is to return to the LISP system. Specify the value 
with :RESULT as a LISP data type. If the VAX type of the returned 
value does not correspond with the LISP data type, use a list of the 
format (:LISP-TYPE lisp-type :VAX-TYPE vax-type). See Table 2-4 for 
valid result types. Do not specify both the :CHECK-STATUS-RETURN Q keyword and the :RESULT keyword. 

2.4.3.5 Checking the Argument Data Types - The :TYPE-CHECK keyword 
specifies that the data types of the arguments passed to an external 
routine be checked for compatibility with the argument descriptions. 

You can specify the keyword with either Tor NIL. If you specify T, 

O the LISP system generates code that checks the type of actual LISP 
objects when you call the CALL-OUT macro. If the types of the 
routine's defined and actual arguments are incompatible, an error is 
signaled. If you specify NIL (the default value), the system does not 
generate type-checking code. 

NOTE 

Type checking adds considerable overhead to the 
call-out process. 

2.4.4 Documentation String 

OYou can include a documentation string for an external routine. The 
string is optional and is attached to the symbol as a do.cumentation 

2-9 



CALLING EXTERNAL ROUTINES 

string of type EXTERNAL-ROUTINE. 
after the name and options list. 

2.4.5 Argument Descriptions 

Place the string in the definition 

External routines usually accept one or more arguments. The argument 
descriptions determine the number, order, and characteristics of the 
arguments that you can pass to a routine. 

If the default characteristics are adequate, then an argument 
description is nothing more than the name of the argument. Otherwise, 
the argument description is a list whose first element is the name and 
whose remaining elements specify the characteristics. 

2.4.6 Argument Name 

An argument name is a symbol that names the argument. The symbol must 
be either unique within the routine's definition or NIL if no name is 
desired. Unique names make some call-out error messages easier to 
understand. 

2.4. 7 Argument Options 

You can define the characteristics of an external routine argument by 
specifying options in the argument description. Each option consists 
of a keyword-value pair. Specify options in a list whose first 
element is the name of the argument they characterize. The format is: 

0 

0 

0 

(argument-name keyword-1 value-1 keyword-2 value-2 ••• ) 

Option values are not evaluated. Table 2-2 is an alphabetical list of Q 
the argument-option keywords with the values they define: 

Table 2-2: Keywords Specifying External Routine Argument Options 

Keyword 

:ACCESS 

:LISP-TYPE 

value 
Defined 

Access 
capability 

LISP type 

2-10 

Options 

:IN (default) 
: IN-OUT 

see Table 2-4 
INTEGER (default) 

0 



CALLING EXTERNAL ROUTINES 

Table 2-2 (cont.) 

O~~~~~~~~~~ Value 

0 

Keyword 

:MECHANISM 

:VAX-TYPE 

Defined 

Passing 
mechanism 

VAX data type 

Options 

:VALUE 
:REFERENCE (default except for 

:VAX-TYPE :TEXT) 
:DESCRIPTOR (default for 

:VAX-TYPE :TEXT) 

see Table 2-5 
(default depends on LISP type) 

2.4.7.1 Access Capability - The :ACCESS keyword specifies the access 
capability for an argument. The possible values are :IN for input 
access and :IN-OUT for both input and output access. The default is 
:IN. Since external routines cannot allocate LISP objects, :OUT is 
not a possible value. 

If an argument has input access, it is assumed to be read-only, and 
the external routine may not modify it. If it is modified, the 
results are unpredictable. 

Q If an argument has both input and output access, the external routine 
can obtain the argument's value and optionally modify it. The 
argument must be specified as a form acceptable to SETF. The CALL-OUT 
macro passes the argument to the external routine and uses SETF to 
reassign the new value after the routine returns. See Section 2.6.2 
for more details. 

Q2.4.7.2 LISP Data Type - The :LISP-TYPE keyword defines the LISP data 
type of an argument. Specify this keyword with the types shown in 
Table 2-4. The LISP type defaults to INTEGER. 

If the values you specify for the LISP data type and the VAX data type 
are incompatible, an error is signaled. 

1 2.4.7.3 Passing Mechanism - The :MECHANISM keyword defines the 
mechanism by which an argument is to be passed to an external routine. 
With the :MECHANISM keyword, you can specify one of the three values 
in Table 2-3. These values correspond to the three defined mechanisms 
described in Section 2.2.3. 

0 
2-11 



Table 2-3: 

Value 
Name 

:VALUE 

:REFERENCE 

:DESCRIPTOR 

CALLING EXTERNAL ROUTINES 

Values of the :MECHANISM Keyword 

Corresponding 
VAX Mechanism 

Immediate Value 

Reference 

Descriptor 

Description 

The immediate value mechanism 
passes a copy of the argument in 
the argument list. You can use 
this mechanism only for 
arguments that have input access 
and that have data types 
requiring no more than a 
longword of storage. 

The reference mechanism passes 
the address of the argument in 
the argument list. 

The descriptor mechanism passes 
the address of an argument 
descriptor in the argument list. 
The descriptor is a data 
structure that contains the 
address of the argument, as well 
as its data type and size. 

Note that these keyword value names have been changed. In Version 1 
of VAX LISP, :VALUE was :IMMED, :REFERENCE was :REF, and :DESCRIPTOR 
was :DESCR. For the sake of c~mpatibility, both the old and the new 
names can be used. 

0 

0 

You cannot specify specific VMS descriptor classes in external routine 
definitions. The DEFINE-EXTERNAL-ROUTINE macro assigns an appropriate 
descriptor class to a routine when the LISP system evaluates it. The Q 
values the macro assigns are DSC$K_CLASS_S or DSC$K_CLASS_A. To pass 
an argument using a user-specified descriptor, define the descriptor 
and the argument to be alien structures and pass the alien-structure 
descriptor with the reference mechanism. For information on defining 
alien structures, see Chapter 3. 

2.4.7.4 VAX Data Type - The :VAX-TYPE keyword defines the VAX data 
type of the argument. Specify this keyword with the types in Table 
2-4. The default depends on the LISP type, also in Table 2-4. 

2-12 

0 



0 

0 

0 

0 

0 

CALLING EXTERNAL ROUTINES 

2.5 CALLING AN EXTERNAL ROUTINE 

This section describes how to call an external routine, what the 
CALL-OUT macro does, and how the CALL-OUT macro uses internal data 
structures. 

2.5.1 How to Call an External Routine 

You call an external routine by using the VAX LISP CALL-OUT macro 
with: 

• The defined name of the external routine. 

• Arguments to be passed to the external routine. These must 
be compatible with the arguments defined in the call to the 
DEFINE-EXTERNAL-ROUTINE macro. 

The format for calling an external routine is: 

(CALL-OUT routine-name arg1 arg2 ... ) 

The following example calls out to the external routine LIB$CREATE_DIR 
defined in Section 2.4. This call will create the new directory 
LISPW$:[MYNAME.WORK]: 

Lisp> (CALL-OUT LIB$CREATE_DIR "LISPW$:[MYNAME.WORK]") 
561 

If you specify fewer arguments to the CALL-OUT macro than those 
defined, the remaining defined arguments are not included in the 
argument list. The count in the first longword of the list reflects 
this situation. If you specify more arguments than those defined, an 
error is signaled. 

If an argument evaluates to NIL, a zero is placed in the corresponding 
argument list longword; The zero is normally used to mean that an 
optional argument is not desired. 

2.5.2 What the CALL-OUT Macro Does 

I The CALL-OUT macro produces code that performs 
operations: 

the following 

1. Checks all arguments if the :TYPE-CHECK option is specified. 

2. On the first call to an external routine, reads the routine 
into memory. 

2-13 



CALLING EXTERNAL ROUTINES 

3. Creates an argument list, using the arguments provided. 

4. Transfers control to the external routine. 

5. Returns any specified result from the external routine, or no 
values if there is no result. 

_, 

2.5.3 How the CALL-OUT Macro Uses Internal Data Structures 

When you define an external routine, an internal data structure is 
created and associated with the symbol naming that routine. This data 
structure is then used by both the CALL-OUT macro and the resulting 
LISP code. Therefore, you must ensure that an external routine is 
defined before it is called. 

In particular, when running LISP functions, 
containing the definition is loaded before 
external routine. 

2.6 DATA TYPE CONVERSIONS 

make sure 
calling out 

the file 
to that 

The internal representation of LISP objects differs from the standard 
VAX format for the corresponding data types. The call-out facility 
converts the LISP argument to a VAX data type before passing the 
argument to an external routine. Likewise, after the external routine 
returns, the call-out facility converts the resulting VAX data to a 
LISP object before the it can return the data to the LISP system. 

2.6.1 Converting LISP Objects to VAX Data Types 

The call-out facility must convert the arguments for an external 
routine from a LISP object to a VAX data type. This conversion is 
controlled by the :LISP-TYPE and :VAX-TYPE options in an argument 
definition. Table 2-4 shows the valid combinations of LISP data types 
and VAX data types. For each LISP type, the default VAX type is 
marked with an asterisk. 

Table 2-4 also shows the passing mechanisms (V = Value, R = Reference, 
and D = Descriptor) that are valid for each combination. In addition, 
the table specifies the descriptor class and data type that will be 
included in the argument descriptor when passing by descriptor. The 
descriptor formats, descriptor class, and data type codes are 
described in the Introduction to VAX/VMS System Routines. 

2-14 

0 

0 

0 

0 

0 



CALLING EXTERNAL ROUTINES 

c5able 2-4: Conversion Tabl.e from LISP Type to VAX Type 

Descriptor 
LISP Mechanisms Class/ 
Type Default VAX Type Allowed Data Type 

CHARACTER * :UNSIGNED-BYTE V,R,D Scalar/BU 

INTEGER :BIT V,R,D Scalar/LU 

INTEGER :BYTE V,R,D Scalar/B 

INTEGER :UNSIGNED-BYTE V,R,D Scalar/BU 

INTEGER :WORD V,R,D Scalar;w 

ONTEGER :UNSIGNED-WORD V,R,D Scalar/WU 

INTEGER * :LONGWORD V,R,D Scalar/L 

INTEGER :UNSIGNED-LONGWORD V,R,D Scalar/LU 

INTEGER :QUADWORD R,D Scalar/Q 

INTEGER :UNSIGNED-QUADWORD R,D Scalar/QU 

01NGLE-FLOAT * :F-FLOATING V,R,D Scalar/F 

DOUBLE-FLOAT * :G-FLOATING R,D Scalar/G 

DOUBLE-FLOAT :D-FLOATING R,D Scalar/D 

LONG-FLOAT * :H-FLOATING R,D Scalar/H 

OTRING * :TEXT R,D Scalar/T 

STRING :ASCIZ R 

SIMPLE-BIT-VECTOR * :BIT R,D Scalar/V 

SIMPLE-BIT~VECTOR :UNSIGNED-LONGWORD V,R,D Scalar/LU 

ALIEN-STRUCTURE "* :UNSPECIFIED R,D Scalar/Z 

(ARRAY CHARACTER) * :UNSIGNED-BYTE R,D Array/BU 

(SIMPLE-ARRAY BIT) * :BIT R,D Array/V 

(ARRAY * :UNSIGNED-BYTE R,D Array/BU 

0 (UNSIGNED-BYTE 8)) 

2-15 
t . 



CALLING EXTERNAL ROUTINES 

Table 2-4 (cont.) 

Descriptl=:) 
Mechanisms Class/ LISP 

Type Default VAX Type Allowed Data Type 

(ARRAY * :UNSIGNED-WORD R,D Array/WU 
(UNSIGNED-BYTE 16)) 

(ARRAY * :LONGWORD R,D Array/L 
(SIGNED-BYTE 32)) 

(ARRAY SINGLE-FLOAT) * :F-FLOATING R,D Array/F 

(ARRAY DOUBLE-FLOAT) * :G-FLOATING R,D Array/G 

(ARRAY LONG-FLOAT) * :H-FLOATING R,D Array/H 

2.6.2 Arguments with :IN-OUT Access 

Arguments with both 
external routine. 
modified value will 
from the original 
constants or shared 

input and output access can be modified by the 
If the argument is a character or a number, the 

be made into a new LISP object that is distinct 
argument. This action ensures that you can pass 

data objects and they will not be modified. 

If the argument is not a character or a number, then the argument will 
be directly modified by the external routine, and no copy is made. 
This means that all array arguments are modified in place. 

2.6.3 :ASCIZ VAX Type 

Every simple string is guaranteed to have 
following the last actual character. 
concerned about adding the zero byte when 
ASCIZ arguments. 

a zero byte at the end, 
Thus you do not have to be 

passing simple strings as 

If an ASCIZ argument has :IN-OUT access and.is modified by placing a 
zero byte somewhere in the middle of the string, VAX LISP will not 
notice this and shorten the string. You must take care of this 
situation yourself. 

2.6.4 Converting VAX Data Types to LISP Objects 

0 

0 

0 

The call-out facility must convert the VAX data . resulting from the o 
execution of an external routine to a LISP object before the facility 

2-16 



CALLING EXTERNAL ROUTINES 

can return the data to the LISP system. Table 2-5 shows the valid C-1 combinations of LISP data types and VAX data types. It also specifies 
the location of the result on return from the external routine. The 
default cases, marked with an asterisk, require that you specify only 
the LISP type with the :RESULT keyword (see Section 2.4.3). All other 
cases require that you specify both the LISP and the VAX types. Since 
you must always specify the LISP type, that type is in the first 
column of the table. 

Table 2-5: Conversion Table from VAX Type to LISP Type 

LISP Type 

CHARACTER 

O INTEGER 

INTEGER 

INTEGER 

INTEGER 

OINTEGER 

INTEGER 

INTEGER 

INTEGER 

INTEGER 

OSINGLE-FLOAT 

DOUBLE-FLOAT 

DOUBLE-FLOAT 

SIMPLE-BIT-VECTOR 

Default 

* 

* 

* 

* 

2. 7 CALLING SYSTEM SERVICES 

VAX Type 

:UNSIGNED-BYTE 

:BIT 

:BYTE 

:UNSIGNED-BYTE 

:WORD 

:UNSIGNED-WORD 

:LONGWORD 

:UNSIGNED-LONGWORD 

:QUADWORD 

:UNSIGNED-QUADWORD 

:F-FLOATING 

:G-FLOATING 

:D-FLOATING 

:UNSIGNED-LONGWORD 

Location 
of Result 

Low-order 
byte of RO 

RO, unsigned 

RO, signed 

RO, unsigned 

RO, signed 

RO, unsigned 

RO, signed 

RO, unsigned 

RO/Rl, signed 

RO/Rl, unsigned 

RO 

RO/Rl 

RO/Rl 

RO, unsigned 

The call-out facility provides a mechanism for LISP programs to call 
standard VMS and RMS system services. Sections 2.7.1 and 2.7.2 list 

Chow to define and call system services. Section 2.10 provides 
~xamples of calling system services. For a listing of VMS services 

2-17 

I 

-I 



CALLING EXTERNAL ROUTINES 

and information on those services, see the VAX/VMS System Services 
Reference Manual. For a listing of RMS services and information on Q 
those services, see the VAX Record Management Services Reference 
Manual. 

2. 7 .1 Defining System Services 

Defining VMS and RMS system services is. similar to defining other 
external routines with a few restrictions. You must be familiar with 
the explanation of defining an external routine in Section 2.4 to 
understand the following restrictions: 

• You must omit the file name argument from the 
DEFINE-EXTERNAL-ROUTINE macro specification. Omission of this 
argument causes the macro to assume that the function being Q 
defined is a system service. If you use the name of a system 
service but supply a file name (not NIL), the LISP system 
assumes that you want an entry point in an ordinary shareable 
image of that name rather than the VMS system service given as 
the external routine name. 

• The entry-point name in the DEFINE-EXTERNAL-ROUTINE macro 
specification must be one of the system service entry points. 

• 

• 

The order and the correct number of system service arguments 
in the DEFINE-EXTERNAL-ROUTINE macro specification must 
correspond to the order and number specified by the service's 
definition. 

If a system service resides in a shareable image (for example, 
SYS$MOUNT in MOUNTSHR), then the system service is defined as 
any other external routine in a shareable image. For purposes 
of this discussion, the system service is is not considered a 
system service. 

See Section 2.10 for examples of defining external routines that call 
out to system services. 

2. 7 .2 Calling out to System Services 

Calling VMS and RMS system services is similar to calling other 
external routines with a few restrictions. You must be familiar with 
the explanation of calling out to an external routine in Section 2.5 
to understand the following restrictions: 

0 

0 

• You must always call system services with a complete argument Q 
list, even if you omit the last several arguments. Put NIL in 
place of the omitted arguments -- including omitted trailing 
arguments. 

2-18 



0 

0 

0 

0 

0 

CALLING EXTERNAL ROUTINES 

• Many system services require data structures that are filled 
in or modified at a later time (for example, the IOSB for 
SYS$QIO). These data structures must be created as alien 
structures and statically allocated so that they will not be 
moved by VAX LISP (See Chapter 3). 

• You can~ot re'fer to VMS symbolic constants (such as return 
status values or field offsets) by their symbolic names. LISP 
has no knowledge of these constants. 

2.8 ERRORS DURING EXTERNAL ROUTINE EXECUTION 

Errors that occur during the activation or the execution of an 
external routine are trapped by the VAX LISP error handler. The types 
of errors that might occur during these operations include VMS errors 
that occur while you are accessing a shareable image and error 
conditions that the external routine signals (by way of the VMS 
error-signaling mechanism). You cannot correct these errors. 

NOTE 

The VAX LISP error handler regards signaled conditions 
as fatal errors (including conditions that have a 
success status). 

Status codes returned by an external routine, however, do not always 
represent uncorrectable errors. The operation that the call-out 
facility performs when a routine returns a status code is determined 
by the value that is specified with the :CHECK-STATUS-RETURN keyword 
(see Section 2.4.3) in the routine's definition. If the value is T, 
the facility examines the contents of register RO and interprets the 
routine's return value as a VMS status code or a user status code. If 
the severity of the return value is warning, error, or severe-error, 
the LISP system signals a continuable error. If the 
:CHECK-STATUS-RETURN keyword is specified with NIL, all status codes 
are ignored. If the value is an integer, an error is signaled if the 
return value is equal to that value. 

The error message "Key not found in tree" may occur during execution 
of a call to an external routine. This means that the CALL-OUT macro 

, was unable to locate the entry point specified with the 
DEFINE-EXTERNAL-ROUTINE macro. The macro specification may be 
incorrect or the entry point was not specified in the UNIVERSAL option 
to the VMS linker when the shared image was created. 

2-19 



CALLING EXTERNAL ROUTINES 

2.9 SUSPENDING A LISP SYSTEM CONTAINING EXTERNAL ROUTINE DEFINITIONS 

You can suspend an executing LISP system that contains external Q 
routine definitions or calls to external routines. When you suspend 
such a system, you must be aware of certain restrictions to ensure 
correct operation of the resumed system. These restrictions exist 
because mapped images or memory acquired from outside the LISP 
environment (with LIB$GET_VM ). are unmapped when the LI SP system exits, 
and they cannot be automatically remapped during a· resume operation 
that follows a suspend operation. Defined external routines are 
automatically remapped the next time the external routine is called. 
If you are not aware of the restrictions, other side effects might 
create undesirable results. Undesirable results can occur from the 
following: 

• Memory acquired with LIB$GET_VM 

• Data initialization 

• Open files 

• Undefined logical names 

2.9.1 Acquiring Memory with LIB$GET _ VM 

Memory acquired with the VMS LIB$GET_VM function in an external 
routine is deleted when you exit the LISP system and is not remapped 
by a resume operation. This prevents you from storing data in 
acquired memory between calls across a suspend/resume cycle. Many RTL 
routines, for example, use such memory, and you cannot resume the 
routines. 

2.9.2 Initializing Data 

When an external routine contains code that sets flags for 
initialization and takes branches based on those flags, the flags are 
reset when .the routine's image is remapped. As a result, the first 
time you call the routine after a resume operation, the routine 
executes as if it were executing for the first time. 

If you want to retain data across a suspend/resume cycle, do not write 
code that depends on a first-time flag. Use one of the following 
methods: 

• Retain data as individual LISP objects, which are passed to 
external routines. 

2-20 

0 

0 

0 

0 



0 

CALLING EXTERNAL ROUTINES 

• Store data in alien structures. 

Undesired side effects do not occur if external routines are defined 
in a series with the DEFINE-EXTERNAL-ROUTINE macro and the resulting 
system is suspended before a call to an external routine. The VAX 
LISP system retains the information the external routine definition 
provides. 

2.9.3 Using Open Files 

When you exit the LISP system, open files are closed. A resume 
operation does not reopen files that were opened by external routines. 

Q 2.9.4 Using Logical Names 

0 

0 

0 

Logical names used in the call to the DEFINE-EXTERNAL-ROUTINE macro 
must still be defined when you resume a suspended system. 

2.10 EXAMPLES OF USING THE CALL-OUT FACILITY 

The following examples show both how to define external 
how to call out to them. 

1. Lisp> (DEFINE-EXTERNAL-ROUTINE (MTH$ACOSD 
:FILE "MTHRTL" 

routines 

:RESULT (:~ISP-TYPE 
SINGLE-FLOAT 

:VAX-TYPE 

"This routine returns the arc cosine 
of an angle in degrees." 

(X :LISP-TYPE SINGLE-FLOAT 
:VAX-TYPE :F-FLOATING)) 

MTH$ACOSD 

: F-FLOATING)) 

and 

Defines an RTL routine, called MTH$ACOSD, which returns the 
arc cosine of- an angle in degrees. The routine takes one 
read-only argument, which is a F_floating number, and returns 
the result as a F_floating number. 

Lisp> (CALL-OUT MTH$ACOSD 0.5) 
60.0 

Calls the RTL routine MTH$ACOSD, and returns the routine's 
value. 

2-21 



CALLING EXTERNAL ROUTINES 

2. Lisp> (DEFINE-EXTERNAL-ROUTINE (SMG$CREATE_PASTEBOARD 
:FILE "SMGSHR" 
:RESULT INTEGER) 

(NEW_PASTEBOARD-ID :LISP-TYPE INTEGER 
:VAX-TYPE :UNSIGNED-LONGWORD 
:ACCESS :IN-OUT) 

(OUTPUT-DEVICE :LISP-TYPE STRING) 
(PB-ROWS :LISP-TYPE INTEGER :ACCESS :IN-OUT) 
(PB-COLUMNS :LISP-TYPE INTEGER :ACCESS :IN-OUT) 
(PRESERVE-SCREEN-FLAG :LISP-TYPE INTEGER. 

:VAX-TYPE :UNSIGNED-LONGWORD)) 

SMG$CREATE_PASTEBOARD 

Defines the SMG screen 
SMG$CREATE_PASTEBOARD. 

management 

Lisp> (DEFVAR *PASTEBOARD-ID* -1) 
*PASTEBOARD-ID* 

routine called 

Defines a special variable that will contain the pasteboard 
ID returned by the external routine. 

Lisp> (CALL-OUT SMG$CREATE_PASTEBOARD *PASTEBOARD-ID* 
NIL NIL NIL 1) 

1 

Calls the external routine SMG$CREATE_PASTEBOARD, 
the special variable to receive the pasteboard 
arguments are omitted, and· a preserve-screen-flag 
given. The result status is returned. 

specifying 
ID. Three 
of 1 is 

3. This example shows you how to call out to an external routine 
that is written in FORTRAN: 

FUNCTION NUMBERS(X, Y) 
IMPLICIT INTEGER*4 (A-Z) 

NUMBERS=Y * (X + Y ** X) / X 
RETURN 
END 

Defines a function written in FORTRAN, called NUMBERS, which 
manipulates two integers and returns an integer. 

$ FORTRAN NUMBERS 

Compiles the FORTRAN function NUMBERS. 

2-22 

0 

0 

0 

0 

0 



0 

0 

0 
4. 

0 

0 

CALLING EXTERNAL ROUTINES 

$ LINK/SHAREABL~=DBA2:[SMITH]EXAMPLE NUMBERS,SYS$INPUT:/OPTIONS 
UNIVERSAL=NUMBERS 
<CRTL/Z> 
$ DEFINE EXAMPLE DBA2:[SMITH]EXAMPLE 

Links the FORTRAN function NUMBERS into a &hareable image. 
The name NUMBERS is specified as an entry point that is 
globally available. A logical name is defined to refer to 
the new shareable image. 

Lisp> (DEFINE-EXTERNAL-ROUTINE 
(NUMBERS :FILE "EXAMPLE" 

:RESULT INTEGER) 
X Y) 

NUMBERS 

Defines an external routine, called NUMBERS, which 
manipulates two integers and returns an integer. The logical 
name is specified for the shareable image because the name is 
not in SYS$SHARE. The arguments do not have options because, 
by default, the arguments are assumed to be longword integers 
that are passed by reference. 

Lisp> (CALL-OUT NUMBERS 5 7) 
23536 

Calls the external routine NUMBERS, which returns 
function value. 

the 

This example illustrates a more complex use of the call-out 
facility. Assume that an external routi.ne named COMPLEX 
exists outside the LISP system. 

Lisp> (DEFINE-ALIEN-STRUCTURE COMPLEX-NUMBER 
(REAL :G-FLOATING O 8) 
(IMAGINARY :G-FLOATING 8 16)) 

COMPLEX-NUMBER 

Defines a complex number (double precision). The alien 
structure facility is used to define complex numbers because 
the data type cannot be represented directly in VAX LISP. 
Chapter 3 describes the alien structure facility. 

Lisp> (DEFINE-EXTERNAL-ROUTINE 
(COMPLEX_EXP :FILE "COMPLEX") 
(OUTPUT :LISP-TYPE ALIEN-STRUCTURE 

:ACCESS :IN-OUT) 
(INPUT :LISP-TYPE ALIEN-STRUCTURE)) 

COMPLEX_EXP 

2-23 



CALLING EXTERNAL ROUTINES 

Defines the external routine, called COMPLEX_EXP, which uses 
complex numbers. 

Lisp> (SETQ Cl (MAKE-COMPLEX-NUMBER :REAL 5.0dl 
:IMAGINARY 6.123456d-4)) 

#<Alien Structure COMPLEX-NUMBER #x5010324> 
Lisp> (SETQ C2 (MAKE-COMPLEX-NUMBER :REAL 0.0dO 

:IMAGINARY 0.0dO)) 
#<Alien Structure COMPLEX-NUMBER #x5010348> 

These expressions create two complex numbers, Cl ·and C2. 

Lisp> (CALL-OUT COMPLEX_EXP C2 Cl) 

Calls the external routine COMPLEX_EXP. 
the values in the alien structure 
returned from the function call because 
was not specified. 

The routine changes 
C2. A value is not 

the :RESULT option 

5. Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$DALLOC :RESULT INTEGER) 
(DEVNAM :LISP-TYPE STRING) 
(ACMODE :LISP-TYPE INTEGER :MECH.ZU~ISM :IMMED)) 

SYS$DALLOC 

Defines the VMS system service SYS$DALLOC. 

Lisp> (CALL-OUT SYS$DALLOC "TTH7:" NIL) 
2312 

Calls the VMS system service SYS$DALLOC. NIL is specified to 
account for the omitted argument; this ensures that the 
correct number of arguments are specified. 

0 

0 

0 

6. Suppose that the LISP variables OLD and NEW are bound to 
statically allocated alien structures (see Chapter 3), which Q 
are the file attribute blocks to be used in a rename 
operation. 

Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$RENAME :RESULT INTEGER) 
(OLD-FAB :LISP-TYPE ALIEN-STRUCTURE) 
NIL ;Error and success routines 
NIL ;will not be used 

(NEW-FAB :LISP-TYPE ALIEN-STRUCTURE)). 
SYS$RENAME 

Defines the RMS system service SYS$RENAME. 

Lisp> (CALL-OUT SYS$RENAME OLD NIL NIL NEW) 
1 

Calls the RMS system service SYS$RENAME. NIL is specified to 

2-24 

0 



0 

0 

0 

0 

0 

CALLING EXTERNAL ROUTINES 

account for the omitted arguments. This ensures that the 
correct number of.arguments are specified. NIL is specified 
for the error and status routines because ASTADR arguments 
must be omitted. The call returns 1, indicating success. 

2-25 



'. .~ . 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

CHAPTER 3 

DEFINING AND CREATING ALIEN STRUCTURES 

A structure in COMMON LISP is a collection of fields and field values. 
It is similar to a record in Pascal or a typedef in Candis a useful 
data-management tool. See COMMON LISP: The Language for a full 
explanation of structures. 

An alien structure is a VAX LISP data type used to exchange data 
between LISP programs and external routines utilizing VAX data 
structures that LISP code cannot ordinarily access. Like a COMMON 
LISP structure, the definition of an alien structure causes the 
definition of a number of functions for the creation of alien 
structures, the accessing of fields or slots, and so on. The "alien" 
in the name "alien structure" refers to the structure's double 
purpose: 

• To access data coded in a language foreign to LISP 

• To make data coded in LISP available to a different language 

Typical alien structures are represented internally 
collections of integers, floating-point numbers, 
vectors. 

as byte-aligned 
strings, and bit 

VAX LISP provides macros that let you define, create, and access alien 
structures. These macros are used primarily with the VAX LISP 
call-out facility; they are used to create argument values for 
external routines that have arguments or control blocks too 
complicated for the call-out facility to convert (see Chapter 2). 

This chapter describes: 

• How to define an alien structure 

• What the DEFINE-ALIEN-STRUCTURE macro does 

• Components of an alien structure definition 

3-1 



DEFINING AND CREATING ALIEN STRUCTURES 

• Examples of how to define alien structures 

• How to create alien structures 

The chapter also lists functions and macros you can use with the 
DEFINE-ALIEN-STRUCTURE macro. See Part II for a summary description 
of the DEFINE-ALIEN-STRUCTURE macro. 

3.1 DEFINING AN ALIEN STRUCTURE DATA TYPE 

Before you can create an alien structure, you 
structure. You define the structure with 
DEFINE-ALIEN-STRUCTURE macro. This macro is similar 
macro described in COMMON LISP: The Language. 

must define that 
the VAX LISP 

to the DEFSTRUCT 

0 

The DEFINE-ALIEN-STRUCTURE macro does not create a structure; rather Q 
this macro creates a definition of a structure. The LISP system 
treats this definition as a data type that you can then use to create 
individual structures of that type. This is different from the DEFUN 
(define function) macro that creates the function it defines. 

The DEFINE-ALIEN-STRUCTURE macro is similar to the DEFSTRUCT macro in 
that both create a new compound data type (the data type contains more 
than one named component) and access, constructor, copier, predicate, 
and print functions. The DEFSTRUCT macro is different from the Q 
DEFINE-ALIEN-STRUCTURE macro in the kind of objects their defined data 
types contain. The DEFSTRUCT macro defines a type containing LISP 
objects while the DEFINE-ALIEN-STRUCTURE macro defines a type 
containing non-LISP objects. 

The format of an alien structure definition is: 

DEFINE-ALIEN-STRUCTURE name-and-options 
[doc-string] 
{field-description}* 

The following is an example alien structure definition: 

(DEFINE-ALIEN-STRUCTURE SPACE 
"An example alien structure definition" 
(AREA-1 :SIGNED-INTEGER O 4) 
(AREA-2 :SIGNED-INTEGER 4 8)) 

The preceding definition defines an alien structure named SPACE. This 
new data type is defined as an object consisting of two fields, ·AREA-1 
and AREA-2, which are stored internally as VAX 32-bit integers. The 
numbers in the definition specify the structure's field lengths in 
bytes. See Sections 3.3 and 3.4 for a description of the components. 
of an alien structure definition. 

3-2 

0 

0 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

3.2 WHAT THE DEFINE-1:\LIEN-STRUCTURE MACRO DOES 

When the LISP system evaluates the definition of an alien 
the DEFINE-ALIEN-STRUCTURE macro automatically creates: 

structure, 

• New data type 

The name you give to the alien structure becomes a LISP data 
type. For example, the preceding definition creates the data 
type SPACE, which is a subtype of ALIEN-STRUCTURE. 

• Access functions 

• 

• 

Access functions are created that can access the data in each 
data field of the defined alien structure. There are as many 
access functions as there are data fields in the alien 
structure. The DEFINE-ALIEN-STRUCTURE macro by default names 
each access function by prefixing each data field name with 
the name of the alien structure and a hyphen (-). 

In the preceding example, the access functions SPACE-AREA-1 
and SPACE-AREA-2 are created automatically. These !-argument 
functions return the LISP integers corresponding to the VAX 
integers stored in the fields AREA-1 and AREA-2. Although 
these functions have only one argument, access functions can 
have one or two arguments, depending on the complexity of the 
field the functions access. 

These access functions are acceptable access forms in a call 
to the SETF macro (unless :READ-ONLY Twas specified as a 
field option -- see Section 3.4.4). 

Constructor function 

A constructor function, whose default name is the new 
data-type name with the prefix "MAKE-", is created. A 
constructor function is used to create alien structures after 
you define them. For example, the preceding definition 
automatically creates a constructor function named MAKE-SPACE. 
You would use this function to create structures of type 
SPACE. See Section 3.6 for information on keyword arguments 
the constructor function accepts. 

Copier function 

A copier function, whose default name is the new data-type 
name beginning with the prefix "COPY-", is created. A copier 
function is a !-argument function that can make a copy of a 
created alien structure. This copy is not a copy of a 
structure's definition, but a copy of a specific alien 
structure. 

3-3 



DEFINING AND CREATING ALIEN STRUCTURES 

For example, the preceding definition creates a copier 
function named COPY-SPACE. This function is a !-argument o 
function that returns a copy of its argument if the argument 
(the alien structure) is of type SPACE. 

It is sometimes 
structure before 
destructively. 

• Predicate function 

useful to preserve a copy of an alien 
passing it to a routine that modifies it 

A predicate, whose default name is the new data-type name 
ending with the suffii "-P", is created. A predicate is a 
!-argument function that determines whether its argument is an 
occurrence of the defined alien structure. For example, the 
preceding definition automatically creates a !-argument 
predicate named SPACE-P. This function returns T if its Q 
argument is of type SPACE. 

• Print function 

A print function is created. However, this print function 
prints only the memory address of an individual structure. 
This print function does not print the contents of an alien 
structure's data fields. For example, the following line 
would be displayed on your output device as the value of an 
individual alien structure having the default print function: Q 

#<Alien Structure SPACE #x5036E8> 

The initial pound(#) character and the two angle brackets 
(< >) are part of the standard COMMON LISP syntax used to 
print nonreadable objects. The name Alien Structure 
identifies the object as an alien structure. The word SPACE 
identifies the structure's user-defined data type. The numbero 
#x5036E8 is the memory address of that structure. 

If you want the print function to show the data in an alien 
structure, you must specify your own print function. See 
Section 3.3.2.5 on specifying a print function. 

3.3 ALIEN STRUCTURE NAME, OPTIONS, AND DOCU""ENTATION STRING 

When you define an alien structure, you must specify a name for the 
structure. In addition, you can specify options that apply-to the 
structure as a whole and a documentation string. 

3-4 

0 



DEFINING AND CREATING ALIEN STRUCTURES 

3.3.1 Alien Structure Name 

Owhen specifying the alien structure's 
as a symbol as in the preceding 
example: 

name without options, specify it 
definition of type SPACE. For 

0 

(DEFINE-ALIEN-STRUCTURE SPACE 
... ) 

If you specify options, specify the alien structure's name as the 
first element of a list whose other elements are separate lists for 
each option. For example: 

(DEFINE-ALIEN-STRUCTURE (SPACE (option-1) (option-2) .•• ) 
... ) 

NOTE 

To use the same symbol both as the name of an 
structure data type and also as the name 
structure (DEFSTRUCT) data type is an error. 

alien 
of a 

Q 3.3.2 Options 

By specifying options in the name field of an alien structure's 
definition, you can: 

• Change the default names of the access functions 

• Change the default name of the constructor function 

0 • Change the default name of the copier function 

Change the default of the predicate function • name 

• Specify your own print function 

You can also request that the access, constructor, copier, and 
predicate functions not be generated at all. 

Specify an option as· a list that contains a keyword and 
,value. You can specify more than one option at a time. 
is: 

a symbol 
The format 

(alien-struc-name (keyword-1 value-1) (keyword-2 value-2) ••• ) 

You can use the following keywords. The next sections explain each Q keyword in detail. 

3-5 



DEFINING AND CREATING ALIEN STRUCTURES 

• :CONC-NAME -- to name access functions 

• :CONSTRUCTOR -- to name the constructor function 

• :COPIER -- to name the copier function 

• :PREDICATE to name the predicate function 

• :PRINT-FUNCTION -- to specify your own print function 

3.3.2.1 Naming Access Functions - By default, the 
DEFINE-ALIEN-STRUCTURE macro produces names for an alien structure's 
access functions by prefixing each field name with the name of the 
alien structure and a hyphen(-). For example, the default names of 
the access functions created by the preceding definition are Q 
SPACE-AREA-1 and SPACE-AREA-2. 

If you want 
functions, 
string (the 
definition. 

to change the default names of an alien structure's access 
specify the :CONC-NAME (concatenated name) keyword with a 
prefix you want the names to have) in your alien structure 

For example: 

Lisp> (DEFINE-ALIEN-STRUCTURE (SPACE (:CONC-NAME "GALAXY-")) 
(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

SPACE 

When the LISP system evaluates the preceding definition, 
DEFINE-ALIEN-STRUCTURE macro produces access functions 
GALAXY-AREA-1 and GALAXY-AREA-2. If you specify NIL with 
:CONC-NAME keyword, the function names are the same as the 
names, AREA-1 and AREA-2. 

the 
named 

the 
field 

0 

The access functions can be used with SETF to change the value of a Q 
field. 

3.3.2.2 Naming the constructor Function - By default, the 
DEFINE-ALIEN-STRUCTURE macro produces a name for an alien structure's 
constructor function by prefixing the string "MAKE-" to the alien 
structure's name. For example, the default na~e of the constructor 
function created by the preceding definition is MAKE-SPACE. 

If you want to change the default name of a constructor function, 
specify the :CONSTRUCTOR keyword with a string (the name you want) in 
your alien structure definition. For example: 

3-6 

C· 



DEFINING AND CREATING ALIEN STRUCTURES 

Lisp> ( DEFINE-ALIEN-.STRUCTURE ( SPACE ( : CONSTRUCTOR CREATE-SPACE) ) 
(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

SPACE 

The LISP system does not hyphenate your new name with the name of the 
structure, though it is appropriate for you to do that in the new name 
you create. For example, when the LISP system evaluates the preceding 
definition, the macro names the constructor function CREATE-SPACE. 

If you specify NIL with the :CONSTRUCTOR keyword, the 
DEFINE-ALIEN-STRUCTURE macro does not define a constructor function 
and you cannot create alien structures of that type. 

0 
NOTE 

Alien structure contructor functions do not take an 
argument list, although DEFSTRUCT constructor 
functions do take an argument list. 

3.3.2.3 Naming the Copier Function - By default, the 
DEFINE-ALIEN-STRUCTURE macro produces a name for an alien structure's 
copier function by prefixing the string "COPY-" to the alien 

C)tructure's name. For example, the default copier function of the 
preceding definition is COPY-SPACE. · 

If you want to change the name of the copier function, specify the 
:COPIER keyword with a string (the name you want) in your definition 
of an alien structure. For example: 

0 
Lisp> (DEFINE-ALIEN-STRUCTURE (SPACE (:COPIER REPRODUCE-SPACE)) 

(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

SPACE 

When the LISP system evaluates the preceding definition, the 
DEFINE-ALIEN-STRUCTURE macro produces a copier function named 
REPRODUCE-SPACE. If you specify NIL with the :COPIER keyword, the 
DEFINE-ALIEN-STRUCTURE macro does not define a copier function. 

I 

3.3.2.4 Naming the Predicate Function - By default, the 
DEFINE-ALIEN-STRUCTURE macro produces the name of the predicate 
function by attaching the string "-P" to the end of the alien 
structure's name. For example, the default name of the predicate 
function created by the preceding definition is SPACE-P. 

0 
3-7 



DEFINING AND CREATING ALIEN STRUCTURES 

If you want to change the name of the predicate function, specify the 
:PREDICATE keyword with a string (the name you want) in your 
definition of an alien structure. For example: 

Lisp> (DEFINE-ALIEN-STRUCTURE (SPACE (:PREDICATE CHECK-SPACE)) 
(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

SPACE 

When the LISP system evaluates the preceding definition, the 
DEFINE-ALIEN-STRUCTURE macro produces the predicate function 
CHECK-SPACE. If you specify NIL with the :PREDICATE keyword, the 
DEFINE-ALIEN-STRUCTURE macro does not define a predicate function. 

NOTE 

Be aware that if you create a field with the name P, 
then there will be a name conflict between the default 
predicate function and the default access function of 
the P field. For example, with an alien struture of 
type SPACE, both the predicate function and the access 
function of the P field would have the same name, 
SPACE-P. 

3.3.2.5 Specifying a Print Function - You can use the :PRINT-FUNCTION 
keyword option to specify the function that is to print an alien 
structure. You might want to do this since the default print function 
prints only the memory address of a structure; it does not print the 
contents of the structure's data fields. To alter the print 
representation of an alien structure, specify a print function in that 
alien structure's definition. The following example is of an alien 
structure definition specifying a print function: 

(DEFINE-ALIEN-STRUCTURE (SPACE (:PRINT-FUNCTION SPACE-PRINT)) 
(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

If you specify a print function in an alien structure definition, you 
also must have previously defined that print function. This print 
function can be defined to have an arbitrary action. However, the 
print function definition must have three arguments: 

• A NAME indicating the alien structure to be printed 

• A STREAM indicating the stream to print to 

• An INTEGER indicating the current print depth 

3-8 

0 

0 

0 

0 



0 

DEFINING AND CREATING ALIEN STRUCTURES 

These three arguments are requirements of a structure's user-defined 
print function as sper.ified by COMMON LISP. However, the last 
argument, indicating the current print depth, is more useful with a 
structure than an alien structure. Consequently, that argument is 
often ignored with alien structures as in the following example of an 
alien structure print-function definition: 

(DEFUN SPACE-PRINT (ALIEN STREAM DEPTH) 
(DECLARE (IGNORE DEPTH)) 
(FORMAT STREAM "#<Space: area-1 = -d, area-2 = -d>-%" 

(SPACE-AREA-1 ALIEN) 
(SPACE-AREA-2 ALIEN))) 

In the preceding example, the three arguments are ALIEN, STREAM, and 
DEPTH. The ALIEN argument refers to the individual alien structure to 
be printed. The STREAM argument is the stream to which to print. 

O The DEPTH argument is ignored here by using the DECLARE special form. 

0 

0 

0 

The DEPTH argument can be compared with the value of *PRINT-LEVEL*, 
allowing you to control how deep the printer will print. This 
argument is useful with structures since you may wish to restrict the 
printer from printing all the information in a complex structure. 
However, this argument is ignored in this example because the fields 
of the alien structure are immediate objects, and so it is unnecessary 
to abbreviate the data fields printed. 

If you want to use the DEPTH argument, see the 
variable description in COMMON LISP: · The Language. 

the *PRINT-LEVEL* 

The following example is the output as printed by the previous, 
user-defined print function: 

Lisp> (SETF EXAMPLE-3 (MAKE-SPACE :AREA-1 6 :ARtA-2 5)) 
#<Space: area-1 = 6, area-2 = 5> 
Lisp> EXAMPLE-3 
#<Space: area-1 6, area-2 5> 

In the preceding example, the MAKE-SPACE function creates an 
individual structure of the previously definep type SPACE. In 
addition, the preceding, user-defined print function displays the 
contents of the new alien structure's data fields. 

For more information on creating print functions for structures and on 
formatting them, see COMMON LISP: The Language. 

3.3.3 Documentation String 

You can include a documentation string for an alien structure. The 
string is optional and is attached to the symbol as a documentation 
string of type STRUCTURE. Place the string in the definition after 
the name and options list as in the example in Section 3.1. 

3-9 



DEFINING AND CREATING ALIEN STRUCTURES 

3.4 ALIEN STRUCTURE FIELD DESCRIPTIONS 

Alien structures are composed of data fields, each of 
description in the alien structure definition. 
description contains: 

which has a O 
A data-field 

• Field name 

• Field type 

• Start and end positions 

• Options 

When you define an alien structure, specify a field description as a 
list of the preceding elements whose first element is the field's 
name. Use this format: 

(data-field-name type start-position end-position options) 

For example: 

(FIELD-1 :TEXT O 9 :OCCURS 10 :OFFSET 15) 

The following sections describe the elements in a field description. 

3.4.1 Field Name 

An alien structure's field name is 
FIELD-1 is a field name in the 
constructor functions refer to field 
values of their respective fields. 

3.4.2 Field Type 

Alien structure field types specify a 
data in a field and a LISP data type. 
structure data in both directions: 

a symbol naming 
previous example. 
names to access 

that field. 
Access and 

and set the 

relationship between the VAX 
The LISP system converts alien 

• When storing the data in a field, the system converts LISP 
objects into VAX data. 

• When accessing the data in a field, the system converts VAX 
data into LISP objects. 

In the previous example, :TEXT is a field type. 

3-10 

0 

0 

0 

0 

~~- -------------· 



0 

0 

3.,.2.1 Given Field Types - 1atle 3-1 lists the field types defined 
by VAX LISP. See Chapter 2 for more informatiou o~ these types. 

Table 3-1: Alien Structure Field Types 

Type Internal Storage Representation 

:ASCIW 

:VARYING-STRING 

:ASCIZ 

VAX character str·ing; the first 
word of the data vector contains 
of the number of characters 
string. You must allocate two 
addition to the maximum length 
string to hold this count. 

A synonym for :ASCIW. 

16-bit 
a count 
in the 

bytes in 
of the 

VAX character string terminated with the 
NULL character (O's in the last 
byte(s) ). You must allocate enough 
space for the. terminating 0. On 
accessing this slot, the returned LISP 
string terminates at the first NULL 
character. 

0 !'I':EXT VAX nonvarying character string; 
allocate· one byte for every character in 
the string. 

:STRING A synonym for :TEXT. 

: SIGNED-II\TEGER Signed two's complement integer 

:UNSIGNED-INTEGER 

0: BI'.:-VECTOF. 

Unsigned integer 

Unsigned integer 

0 

:f-FLOA'IING f floating data 

:G-FLOATING G_floating data 

:D-FLOATING D_floating data 

NOTE 

When you access a VAX :D-FLOATING type, the accessor 
converts it into a LISP DOUBLE-FLOAT, which is 
equilvalent to a VAX :G-FLOATING type. 

:H-FLOATING H_floating data 

3-11 



DEFINING AND CREATING ALIEN STRUCTURES 

Table 3-1 (cont.) 

Type Internal Storage Representation 

:POINTER (See below) 

:SELECTION (See below) 

The :POINTER and the :SELECTION types haye the following explanations: 

:POINTER 

If you want your alien structure to contain the address of the data in 
another alien structure, specify the :POINTER field type in one of the 

0 

data fields. This field type indicates that the field contains a VAX 
pointer pointing to the start of the data area of another alien Q 
structure. 

NOTE 

The alien structure pointed to must not be dynamically 
allocated. Otherwise, after a garbage collection, the 
pointer will no longer point to the specified data 
fi,eld. For a description of how to statically 
allocate alien structures, see Section 3.6.2. 

The format for using a :POINTER field type is: 

(:POINTER [name] [:DISPLACED value]) 

The optional name argument is the type of alien structure pointed to. 

0 

If you specify this argument, the field's update function checks that Q 
the new value of this field (the name you give it when you create an 
instance of the structure) points to a structure of the specified 
type. 

The optional :DISPLACED keyword causes the stored VAX pointer to point 
to the start of the alien structure data area plus the number of bytes 
specified for the value. You can omit the parentheses if you do not 
specify the field name and the :DISPLACED keyword. The following 
example is of a data field with the type :POINTER. 

(AREA-1 (:POINTER SPACE) 0 4) 

3-12 

o! 



DEFINING AND CREATING ALIEN STRUCTURES 

:SELECTION 

C~e :SELECTION field type lets you enumerate all the possible data 
values of a field. The format for using a :SELECTION field type is: 

{:SELECTION so sl s2 ... ) 

If you specify the :SELECTION type, the DEFINE-ALIEN-STRUCTURE macro 
associates each element in the list {sn) with an unsigned integer 
corresponding to the element's position in the list. For example, 
take the following alien structure definition with one field of type 
:SELECTION. 

Lisp> (DEFINE-ALIEN-STRUCTURE MAP 
{STATE (:SELECTION "MASSACHUSETTS" "NEW 

YORK" "CALIFORNIA" 

0 
"NEW HAMPSHIRE") 0 4)) 

MAP 

This defines a MAP structure whose MAP-STATE 
following values ("MASSACHUSETTS" "NEW 
HAMPSHIRE"). The field is internally stored 
indicating the position of the value 
("MASSACHUSETTS" "NEW YORK" "CALIFORNIA" "NEW 

field can have one of the 
YORK" "CALIFORNIA" "NEW 

as an unsigned-integer 
in the selection list 
HAMPSHIRE"). 

CTfe DEFINE-ALIEN-STRUCTURE macro uses the EQUALP function to compare 
)1e LISP object you give when creating an alien structure with the 

1 tern in the selection list of the definition. Next, ·an instance of a 
MAP structure is created, with its MAP-STATE field initialized to 
"MASSACHUSETTS": 

Lisp> (SETF GEO (MAKE-MAP :STATE "MASSACHUSETTS")) 
#<Alien Structure MAP #x47D95C> 

CThe~, the.ALIEN-FIELD function is used 
,1s1gned integer: 

to access 

Lisp> (ALIEN-FIELD GEO :UNSIGNED-INTEGER O 4) 
0 

the field as an 

Notice the _actual value stored in the field is O since "MASSACHUSETTS" 
is the O'th element of the list. Next, the MAP-STATE accessor 
function accesses the field as an unsigned integer and uses that 
integer as an index into the selection list, returning the 

1 corresponding element: 

Lisp> (MAP-STATE GEO) 
"MASSACHUSETTS" 

Finally, the SETF form places "CALIFORNIA" in the field and the 
OLIEN-FIELD function verifies that "CALIFORNIA" is in position 2. 

3-13 



DEFINING AND CREATING ALIEN STRUCTURES 

Lisp> (SETF (MAP-STATE GEO) "CALIFORNIA") 
"CALIFORNIA" 
Lisp> (ALIEN-FIELD GEO :UNSIGNED-INTEGER O 4) 
2 

3.4.2.2 User-Defined Field Types - In addition to the given 
types, you can define your own field types with 
DEFINE-ALIEN-FIELD-TYPE macro. See Part II for a description of 
macro. 

3.4.3 Field· Positions 

field 
the 

this 

0 

You position a field in an alien structure's data area by specifying 
start and end values in the field specification. These arguments are Q 
rational numbers that determine the start and end positions of the 
field. For example, in the following field description, the O and the 
4 are the start and end positions of the field: 

(AREA-1 :SIGNED INTEGER O 4) 

3.4.3.1 Start and End Positions - The start position is inclusive andQ 
the end position is exclusive. That is, the first field in an alien 
structure's data area starts in position 0, and the last position in a 
field is the position preceding the field's end-position value. For 
example, if a field's start position is O and its end position is 4, 
the field occupies positions Oto 3. 

Each field is measured in units of 8-bit bytes. The position value, 
therefore, can be a ratio; that is, you can specify fields within 
arbitrary bit boundaries. For example, a field with a start value ofQ 
1/2 starts on the fifth bit of the data area. However, because the 
units are 8-bit bytes, a start or end value with a denominator that 
does not divide 8 (for example, 1/3) causes an error when you call the 
DEFINE-ALIEN-STRUCTURE macro. 

Some exceptions: all values that are _·strings or are of type 
:F-FLOATING, :G-FLOATING, :D-FLOATING, or :H-FLOATING must begin and 
end on byte boundaries; that is, their start and end positions must be 
fixnums, not ratios. 

The LISP system does not evaluate the start and end positions when it 
expands the DEFINE-ALIEN-STRUCTURE macro. 

3-14 

0 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

3.4.3.2 Gaps Between ~ield Positions - A gap is memory space that you 
can allocate as part of an alien structure. For example, if you use 
the :OFFSET keyword (see Section 3.4.4.4), you might produce gaps in 
an alien structure. See the second example in Section 3.5 for an 
illustration of gaps. 

Even though gaps can exist between fields or at the beginning of a 
field -- if the first field does not start at 0, only the ALIEN-FIELD 
function (see Section 3.7) can access gaps. The LISP system does not 
generate forms that access or set fields that include gaps; that is, 
LISP-level code does not process gaps. 

3.4.3.3 overlapping Fields - Alien structure fields can overlap, 
letting you access data from more than one field at a time or from one 
field in a number of ways. If.you change the data in a field that 
overlaps other fields, the other overlapping fields are also changed. 

Overlapping fields are useful when you want data to be interpreted in 
more than one way. The following definition defines an alien 
structure that contains fields that overlap. The individual BIT 
fields overlap the NUMBER field, though they do not overlap one 
another: 

Lisp> (DEFINE-ALIEN-STRUCTURE MASK 

MASK 

(NUMBER :UNSIGNED-INTEGER O 4) 
(BIT-0 :UNSIGNED-INTEGER O 1/8) 
(BIT-1 :UNSIGNED-INTEGER 1/8 2/8) 
(BIT-2 :UNSIGNED-INTEGER 2/8 3/8) 
(BIT-3 :UNSIGNED-INTEGER 3/8 4/8) 
(BIT-4 :UNSIGNED-INTEGER 4/8 5/8)) 

If you specify different values for overlapping fields when you 
initialize them (see Section 3.4.4.1 on initializing fields), the 
field values that result are undefined. For example, consider an 
alien structure of the previously defined MASK type where the number 
field overlaps the bit fields. If you create an instance of MASK with 
the MAKE-MASK function, and you initialize the number and bit fields 
to conflicting values (for example, (MAKE-MASK :NUMBER O :BIT-2 1)), 
the result is undefined. 

The next example shows the creation of the alien structure NEWMASK of 
I the previously defined type MASK: 

Lisp> (SETF NEWMASK (MAKE-MASK)) 
#<Alien Structure MASK #x50C600> 

3-15 



DEFINING AND CREATING ALIEN STRUCTURES 

The following are two ways to set bits 2 and 4 in NEWMASK and to clear· 
all other bits: 

Lisp> (SETF (MASK-NUMBER NEWMASK) (+ 4 16)) 
20 

Lisp> (SETF (MASK-NUMBER NEWMASK) 0 
(MASK-BIT-2 NEWMASK) 1 
(MASK-BIT-4 NEWMASK) 1) 

1 

3.4.4 Field Options 

0 

By specifying options in the data-field descriptions of an alien 
structure's definition, you can define the following characteristics Q 
of that structure's data fields. 

• Whether a field has an initial value 

• Whether a field is read-only 

• Whether a field repeats and how often 

• The distance between similar fields 

Specify a data-field option as a keyword and a value. Include that 
option in a list whose first element is the name of the field the 
option characterizes. You can specify more than one option at a time. 
The format is: 

(field-name keyword-1 value-1 keyword-2 value-2 ... ) 

0 

you can use the following keywords. The next sections explain each Q 
keyword in detail. 

• :DEFAULT -- Gives an initial value to a field 

• :READ-ONLY -- Tells if a field can be set 

• :OCCURS Tells the number of time~ a field repeats 

• :OFFSET Tells the ·distance b~tween similar fields 

3.4.4.1 · Initial Value - To specify an initial value for a field, 
specify that value with· the : DEFAULT keyword in the alien structure's 
definition. Then, when you create an instance of a structure with 
initialized fields, you do not have to specify values for those 
fields. Instead, the LISP system automatically puts your initial 

3-16 

0 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

3.4.3.2 Gaps Between ~ield Positions - A gap is memory space that you 
can allocate as part of an alien structure. For example, if you use 
the :OFFSET keyword (see Section 3.4.4.4), you might produce gaps in 
an alien structure. See the second example in Section 3.5 for an 
illustration of gaps. 

Even though gaps can exist between fields or at the beginning of a 
field -- if the first field does not start at 0, only the ALIEN-FIELD 
function (see Section 3.7) can access gaps. The LISP system does not 
generate forms that access or set fields that include gaps; that is, 
LISP-level code does not process gaps. 

3.4.3.3 overlapping Fields - Alien structure fields can overlap, 
letting you access data from more than one field at a time or from one 
field in a number of ways. If you change the data in a field that 
overlaps other fields, the other overlapping fields are also changed. 

Overlapping fields are useful when you want data to be interpreted in 
more than one way. The following definition defines an alien 
structure that contains fields that overlap. The individual BIT 
fields overlap the NUMBER field, though they do not overlap one 
another: 

Lisp> (DEFINE-ALIEN-STRUCTURE MASK 

MASK 

(NUMBER :UNSIGNED-INTEGER O 4) 
(BIT-0 :UNSIGNED-INTEGE~ 0 1/8) 
(BIT-1 :UNSIGNED-INTEGER 1/8 2/8) 
(BIT-2 :UNSIGNED-INTEGER 2/8 3/8) 
(BIT-3 :UNSIGNED-INTEGER 3/8 4/8) 
(BIT-4 :UNSIGNED-INTEGER 4/8 5/8)) 

If you specify different values for overlapping fields when you 
initialize them (see Section 3.4.4.1 on initializing fields), the 
field values that result are undefined. For example, consider an 
alien structure of the previously defined MASK type where the number 
field overlaps the bit fields. If you create an instance of MASK with 
the MAKE-MASK function, and you initialize the number and bit fields 
to conflicting values (for example, (MAKE-MASK :NUMBER O :BIT-2 1)), 
the result is undefined. 

The next example shows the creation of the alien structure NEWMASK of 
I the previously defined type MASK: 

Lisp> (SETF NEWMASK (MAKE-MASK)) 
#<Alien Structure MASK #x50C600> 

3-15 



DEFINING AND CREATING ALIEN STRUCTURES 

The following are two ways to set bits 2 and 4 in NEWMASK and to clear 
all other bits: 

Lisp> (SETF (MASK-NUMBER NEWMASK) (+ 4 16)) 
20 

Lisp> (SETF (MASK-NUMBER NEWMASK) 0 
(MASK-BIT-2 NEWMASK) 1 
(MASK-BIT-4 NEWMASK) 1) 

1 

3.4.4 Field Options 

0 

By specifying options in the data-field descriptions of an alien 
structure's definition, you can define the following characteristics Q 
of that structure's data fields. 

• Whether a field has an initial value 

• Whether a field is read-only 

• Whether a field repeats and how often 

• The distance between similar fields 

Specify a data-field option as a keyword and a value. Include that 
option in a list whose first element is the name of the field the 
option characterizes. You can specify more than one option at a time. 
The format is: 

(field-name keyword-1 value-1 keyword-2 value-2 ... ) 

0 

you can use the following keywords. The next sections explain each 
keyword in detail. Q 

• :DEFAULT -- Gives an initial value to a field 

• :READ-ONLY -- Tells if a field can be set 

• :OCCURS Tells the number of time's a field repeats 

• :OFFSET Tells the distance between similar fields 

3.4.4.1 · Initial Value - To specify an initial value for a field, 
specify that value with the :DEFAULT keyword in the alien structure's· 
definition. Then, when you create an instance of a structure with 
initialized fields, you do not have to specify values for those 
fields. Instead, the LISP system automatically puts your initial 

3-16 

0 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

values in the fields you create. For example, in the following data 
field specification of an alien structure definition, the value of the 
NUM-CHILDREN field is initialized to 2. 

(NUM-CHILDREN :UNSIGNED-INTEGER 68 72 :DEFAULT 2) 

You can override the default field value for an alien structure's 
field on creating the structure. To do so, place new values in the 
initialized fields when you create a specific instance of a defined 
structure. For example, in the following creation of an alien 
structure of type FAMILY-REC, the :NUM-CHILDREN field is initialized 
to 3. 

(SETF EXAMPLE-4 (MAKE-FAMILY-REC :NUM-CHILDREN 3 )) 

The default field value can also be changed after creation of an alien 
structure by using the SETF macro with the accessor function of that 
field. 

NOTE 

By default, the initial contents of a field are 
unpredictable. 

3.4.4.2 Read-Only Value - The :READ-ONLY keyword lets you specify 
whether a field can be accessed or set. The value you specify with 
this keyword can be either Tor NIL. NIL is the default. 

If you specify T, the DEFINE-ALIEN-STRUCTURE macro. generates access 
functions that are not acceptable access forms in a call to the SETF 
macro. That is, if you specify the keyword-value pair :READ-ONLY Tin 
a data-field description, you cannot use the SETF macro on the 
accessor function for that field after you create an individual 
structure having such a field; you can only access the field. 

On the other hand, if you specify NIL (the default), the 
DEFINE-ALIEN-STRUCTURE macro generates access functions that are 
acceptable place indicators in a call to the SETF macro. That is, if 
you specify the keyword-value pair :READ-ONLY NIL in a data field (or 
omit the keyword altogether), you can write data in that field with 
the SETF form. 

For example, in the following definition, the default 
AREA-2 field is 4. This value can be accessed but not 
you create an individual structure from this definition. 
value of the AREA-1 field, which defaults to 2, can be 
you create an individual structure from this definiton. 

3-17 

value of the 
changed after 

However, the 
changed after 



DEFINING AND CREATING ALIEN STRUCTURES 

(DEFINE-ALIEN-STRUCTURE (SPACE (:PRINT-FUNCTION #'SPACE-PRINT)) 
(AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 2)0 
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 4 

:READ-ONLY T)) 

3.4.4.3 Repeated Field - A field can be repeated within an alien 
structure. By specifying a positive integer with the :OCCURS keyword, 
you determine the number of times the field is repeated. For example, 
the following line indicates that the NAME field-occurs 20 times with 
its first occurrence between bytes 20 and 30. 

(NAME :TEXT 20 30 :OCCURS 20) 

If you do not specify the :OCCURS keyword, the access function takes 
the field name as its argument, and the field occurs once. If you 
specify this keyword, the access function takes the field name and an Q 
index for arguments. The index is an integer that indicates the 
occurrence of the field. The first occurrence of the field has an 
index of 0. Consider the following definition: 

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE 
(AREA-1 :UNSIGNED-INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8 :OCCURS 4)) 

SPACE· 

When the LISP system evaluates the previous definition, 
functions AREA-1 and AREA-2 have the following formats: 

(SPACE-AREA-1 field) 
(SPACE-AREA-2 field index) 

the access Q 

3. 4. 4. 4 Similar-Field Distances - You can specify how far apart Q 
similar fields are by using the :OFFSET keyword. This option makes 
sense only if used with the :OCCURS keyword. 

A field offset is the distance in 8-bit bytes from the start of one 
occurrence of a field to the start of the next occurrence of that 
field. Specifying an offset lets you access data files that consist 
of repeated substructures. You define an offset value by specifying a 
rational number with the : OFFSET keyword'. For ex.ample, the following 
line indicates that 25 8-bit bytes come between each ~ccurrence of the 
CHILD-NAME field: 

(CHILD-NAME :TEXT 72 92 :OCCURS 20 :OFFSE'l' 25) 

If you spe·cify a value that is greater than the field length ( as in. 
the previous example), the DEFINE-ALIEN-STRUCTURE macro produces gaps o 
in the alien structure. You can fill them by defining one or more 

3-18 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

other fields with the :OCCURS and the :OFFSET keywords; that is, you 
can interleave different fields. 

The LISP system does not evaluate the value you specify with the 
:OFFSET keyword when it expands the DEFINE-ALIEN-STRUCTURE macro. The 
offset defaults to the length of the field. 

3.5 EXAMPLES OF ALIEN STRUCTURE DEFINITIONS 

This section provides two examples of how to define an alien 
' structure. 

1. Lisp> (DEFINE-ALIEN-STRUCTURE MY-ALIEN (FIELD-1 :TEXT O 9)) 
MY-ALIEN 

This form defines an alien structure named MY-ALIEN, which 
contains one field named FIELD-1. The structure is a string 
that begins on the first byte and is 10 characters long. 

2. The following example shows a Pascal record 
definition: 

structure 

TYPE 

FAMILY_REC = RECORD 
{A record structure definition.} 

SURNAME PACKED ARRAY[l •. 20] OF CHAR; 
FATHER RECORD 

NAME PACKED ARRAY[l •• 20] OF CHAR; 
AGE INTEGER; 

END; {of father record} 
MOTHER RECORD 

NAME PACKED ARRAY[l •. 20) OF CHAR; 
AGE INTEGER; 

END; {of mother record} 
NUM_CHILDREN INTEGER; 
CHILDREN ARRAY [0 •• 20] of RECORD 

NAME PACKED ARRAY[l •• 20) OF CHAR; 
AGE . INTEGER; . 
SEX (FEMALE, MALE); 

END; {of children record} 
END; { o.f family record} 

3-19 



DEFINING AND CREATING ALIEN STRUCTURES 

An equivalent LISP record structure definition: 

Lisp> (DEFINE-ALIEN-STRUCTURE FAMILY-REC O 
"A record structure definition." 

(SURNAME :TEXT O 20) 
(FATHER-NAME :TEXT 20 40) 
(FATHER-AGE :UNSIGNED-INTEGER 40 44) 
(MOTHER-NAME :TEXT 44 64) 
(MOTHER-AGE :UNSIGNED-INTEGER 64 68) 
(NUM-CHILDREN :UNSIGNED-INTEGER 68 72 :DEFAULT 2) 
(CHILD-NAME :TEXT 72 92 :OCCURS 20. :OFFSET 25) 
(CHILD-AGE :UNSIGNED-INTEGER 92 96 :OCCURS 20 

:OFFSET 25) 
(CHILD-SEX (:SELECTION "FEMALE" "MALE") 96 97 

:OCCURS 20 
:OFFSET 25)) 

FAMILY-REC 

This form defines an alien structure named FAMILY-REC that 
has 66 fields indicating the members of a family, their ages, 
and the sex of the children. The definition contains the 
:DEFAULT, :SELECTION, :OCCURS, and :OFFSET keywords. 

0 

The fields that repeat are the CHILD-NAME, the CHILD-AGE, and 
the CHILD-SEX fields since 20 children's names are possible 
in this family record. The default number of children, Q 
however, is two. 

The name fields are strings that can be up to 20 characters 
in length. The age fields are integers that are one longword 
in length. The sex fields can be either of the two indicated 
values that are internally represented by an unsigned 
integer, one byte in length. A gap comes between each 
occurrence of the CHILD-NAME field since the field contains 
20 bytes but repeats itself every 25 bytes. This gap is Q 
filled by the CHILD-AGE and CHILD-SEX fields. 

Figure 3-1 illustrates how storage is internally allocated for the 
preceding FAMILY-REC alien structure. Only the first part of the 
alien structure is shown since the rest of the structure would be 
repeated in a similar way. The numbers indicate bytes; for example, 
the surname field occupies bytes O through 19. The names identify the 
fields. 

3-20 

0 



DEFINING AND CREATING ALIEN STRUCTURES 

---------- 4 BYTES -----------i 

0 

19 

39 

43 

0 
63 

67 

71 

0 91 

95 

91 I 

116 
117 j • 

0 I 121 1120 

• 

Q Figure 3-1: Internal Storage of FAMILY-REC 

3-21 

0 

'> 

20 

> 

40 -
44 

'> 

64 i.--

68 -
72 

> 

92 i-

96 i-
I, 

' 
'> 

\ 

'---

ML0·243-86 

SURNAME 

FATHER-NAME 

FATHER-AGE 

MOTHER-NAME 

MOTHER-AGE 

NUM-CHILDREN. 

CHI LD-NAME-1 

CH I LO-AG E-1 

CHILD-SEX-1 

CHI LD-NAME-2 

CH I LD-AGE-2 

CH I LD-SEX-2 



DEFINING AND CREATING ALIEN STRUCTURES 

3.6 CREATING AN ALIEN STRUCTURE 

Once you have defined an alien structure data type, you can create 
individual alien structures of that data type. To do so, specify a 
call to the constructor function of the data type you want (see 
Section 3.2). For example, in the following expression, the SETF 
macro gives the symbol EXAMPLE-1 a value of the alien structure of 
type SPACE, created when the LISP system evaluates the form 
(MAKE-SPACE). 

(SETF EXAMPLE-1 (MAKE-SPACE)) 

Constructor functions accept two types of optional keywords: 

• Keywords for initializing data fields 

• Keywords affecting allocation of alien structures 

3.6.1 Initializing and Changing Data Fields 

0 

0-

The constructor function for an alien structure accepts keyword 
arguments to initialize data fields. Each keyword is the name of a 
data field prefixed by a colon. For example, when the LISP system 
evaluates the following definition, the MAKE-SPACE constructor Q 
function accepts two data-initialization keywords named :AREA-1 and 
:AREA-2. 

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE 
(AREA-1 :UNSIGNED--INTEGER O 4) 
(AREA-2 :UNSIGNED-INTEGER 4 8)) 

SPACE 

When you create an individual alien structure, you can assign values Q 
to the structure's fields with the initialization keywords. For 
example: 

Lisp> (SETF EXAMPLE-1 (MAKE-SPACE :AREA-1 5 :AREA-2 10)) 
#<Alien Structure SPACE #x403B80> 

You can also initialize the fields by specifying the :DEFAULT keyword 
(see Section 3.4.4.1) with a value when you define the structure. For 
example, the following AREA fields have ~efault initial values of 6 
and 12: 

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE 

SPACE 

{AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 6) 
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 12)) 

3-22 

0 



0 

0 

0 

0 

0 

DEFINING AND CREATING ALIEN STRUCTURES 

A data initialization y9u make with the constructor function overrides 
a default in the same field in the alien structure definition. 

If you want to change a field value after you have created it, you can 
change it with the SETF macro if the field definition allows the 
change. (see Section 3.4.4.2). For example, the field AREA-1 is set 
t~ 28 in the following SETF form: 

Lisp> (SETF (SPACE-AREA-1 EXAMPLE-1) 28) 
28 

3.6.2 Allocating Memory 

In addition to the keywords defined by the data fields, all 
constructor functions also accept two keywords that affect data 
allocation, :ALIEN-DATA-LENGTH and :ALLOCATION. 

Table 3-2: Values Used with Memory-Space Keywords 

Keyword Value 

:ALIEN-DATA-LENGTH integer 

3-23 

The number of bytes of memory to 
be allocated for the alien 
structure's data vector. 

'This keyword allows efficient 
use of storage when you are 
using alien structures as data 
buffers for variable size 
records. The default is large 
enough to store the defined 
alien structure. A length 
larger than the default allows a 
larger than normal alien 
structure to be allocated; the 
"extra" data can be accessed 
with the ALIEN-FIELD function. 
If an alien structure is 
constructed with a smaller size 
than the default, it is an error 
to access or set the omitted 
fields. 

See the description of the 
ALIEN-STRUCTURE-LENGTH function 
in Part II for an example of 
default byte allocations. 



DEFINING AND CREATING ALIEN STRUCTURES 

Table 3-2 (cont.) 

Keyword 

:ALLOCATION value 

Value 

The type of allocation to be 
used for the alien structure. 
Valid values are :DYNAMIC and 
:STATIC. :DYNAMIC is the 
default. 

If :STATIC is specified, the 
alien structure is allocated in 
static space and its virtual 
address is not changed during a 
garbage collection (see the VAX 
LISP/VMS User's Guide). 

3. 7 ADDITIONAL ALIEN STRUCTURE MACRO AND FUNCTIONS 

In addition to the DEFINE-ALIEN-STRUCTURE macro, VAX LISP provides the 
following alien structure macro and functions: 

e DEFINE-ALIEN-FIELD-TYPE macro -- Defines alien structure field 
types. 

• ALIEN-STRUCTURE-LENGTH function -- Returns the length of an 
alien structure. 

• ALIEN-FIELD function-~ Can be used to access arbitrary fields 
in an alien structure. 

Descriptions of the macro and functions are in Part II. 

3-24 

0 

0 

0 

0 

0 



0 

CHAPTER 4 

INTERRUPT FUNCTIONS 

VAX LISP provides a mechanism whereby events that occur asynchronously 

0 -- for example, the completion of I/0, the expiration of a timer, or 
movement of a workstation pointing device -- can be made to interrupt 
the normal flow of LISP program execution. This mechanism allows you 
to specify a function to be executed when a particular asynchronous 

0 

event occurs. Such functions are called interrupt functions. 

This chapter provides a guide to using interrupt functions. The 
chapter is organized as follows: 

• Section 4.1 provides an overview of the use of interrupt 
functions. 

• Section 4.2 defines an asynchronous event and shows how the 
VMS operating system, through the AST mechanism, lets you 
request notification of asynchronous events. 

• Section 4.3 shows how you establish an interrupt function in 
LISP and specify that it be executed as the result of a Q particular asynchronous event. 

Chapter 5 contains information on three topics that relate to 
interrupt functions: 

0 

• Establishing priority levels at which interrupt functions 
operate 

e Protecting sections of code against interruption 

• Synchronizing the execution of interrupt functions using the 
WAIT function 

4-1 



INTERRUPT FUNCTIONS 

4.1 OVERVIEW OF INTERRUPT FUNCTIONS 

Interrupt functions allow your LISP program to respond to events that Q 
occur independently of normal program execution. If you decide that 
you need to use an interrupt function, follow these steps: 

• Decide what asynchronous event is to trigger the function, 
what the function is to do, and what information the function 
requires. Section 4.2 provides information about various 
sources of asynchronous events. 

• Define the function as you would any LISP function . 

• Use the INSTATE-INTERRUPT~FUNCTION function to make your 
function known to LISP as an interrupt function. 
INSTATE-INTERRUPT-FUNCTION returns an identification number, 
the iif-id, that you must retain for future use. Section 4.3 Q 
shows how to use INSTATE-INTERRUPT-FUNCTION. 

• Use the call-out facility to define and call a system routine 
that causes an AST; or call one of the VAX LISP-supplied 
functions that establishes a response to an asynchronous event 
such as pointer movement. Whe.n using CALL-OUT, supply the 
iif-id of your interrupt function as the astprm argument to 
the system routine. When calling one of the VAX LISP 
functions, give the iif-id as the action argument. Section 
4.3 provides examples of using both system routines and VAX Q 
LISP functions. 

• When the specified asynchronous event occurs, your interrupt 
function executes. "If the asynchronous ·event can occur more 
than once, your interrupt function executes each time the 
asynchronous event occurs. 

• If you need to synchronize your program with the execution of 
an interrupt function, use the WAIT function. Chapter 5 Q 
describes this function. 

• When your interrupt function is no longer needed -- that is, 
after the asynchronous event has occurred for the last time -
use the UNINSTATE-INTERRUPT-FUNCTION function to remove the 
interrupt function from LISP'S table of interrupt functions. 

4.2 ASYNCHRONOUS EVENTS IN VMS 

An asynchronous event occurs at an unpredictable point during the 
execution of a program. (By contrast, a synchronous event happens at 
the same point in the program every time.) Some examples of. 
asynchronous events follow: 

4-2 

0 



0 

0 

0 

0 

INTERRUPT FUNCTIONS 

• A program qu~ues 
execution. At some 
input is completed. 
event. 

a request for input, then continues 
later point, unpredictable in advance, the 
The input completion is an asynchronous 

• A program sets a timer to go off in five seconds, then 
continues execution. When the interval is up, an asynchronous 
event occurs. This event is asynchronous because to predict 
what code will be executing is impossible. 

• The user of an application moves a workstation pointer and 
clicks one of the pointer buttons. The movement of the 
pointer and the button click are asynchronous events. 

The rest of this 
provides access 
knowledge of this 
more information, 

4.2.1 ASTs 

section describes how the VMS operating system 
to asynchronous events. As a LISP programmer, 
mechanism will provide a useful background. For 
see the VAX/VMS system Services Reference Manual. 

The VMS operating system provides an AST (Asynchronous System Trap) 
mechanism that lets you request notification of an asynchronous event. 
The AST mechanism lets you specify a routine that is to be executed 
when a specified asynchronous event occurs; such routines are called 
"AST service routines." 

A variety of system routines can cause an asynchronous event. These 
routines are primarily those related to time and to I/0, and, if you 
are using a workstation, to pointer events. When you use these 
routines, you can specify an AST service routine. When the activity 
started by the system routine completes, the system causes an AST, and 
the AST service routine you specified executes, interrupting the 
normal flow of program execution. When the AST service routine 
completes, program execution resumes where it was interrupted. 

Some system routines, by their nature, can cause only one AST for each 
call. For example, a routine that sets a timer can cause only one 
AST; the timer can expire only once. Other system routines can cause 
an unlimited number of ASTs from a single call. For example, a system 
routine that establishes an AST service routine for pointer button 
activation causes ·an AST each time a pointer button is pressed or 

I released. The pointer button ASTs will continue until they are halted 
by another call to the system routine. 

0 
4-3 



INTERRUPT FUNCTIONS 

4.2.2 Routines that Cause ASTs 

Ultimately, all ASTs are caused by system routines. You can make 
direct use of these system routines. Also, a number of VAX LISP 
functions call system routines that cause ASTs. 

4.2.2.1 System Routines - A number of VMS system services and other 
system routines can cause ASTs. The documentation for these routines 
notes when a routine completes asynchronously. You can also tell when 
a routine can cause an AST by the presence of the following two 
arguments in the routine's argument list: 

• astadr -- the address of the AST service routine. You supply 
this address when you call the routine that causes the AST. 

0 

• astprm (or some equivalent) -- the AST parameter. This is an Q 
arbitrary value that you supply. VMS passes the AST parameter 
to the AST service routine. When multiple asynchronous events 
share a single AST service routine, the AST service routine 
can use the AST parameter to determine which asynchronous 
event caused it to be called. 

To make use of system routines that declare ASTs, you must 
call-out facility, just as with any other external routine. 
4.3 describes how to call these system routines. 

use the 
Section 

4.2.2.2 VAX LISP Routines - A·number of VAX LISP functions establish 
actions to be taken when specified asynchronous events occur. 
Currently, most of these functions are part of VAX LISP's support of 

0 

the VAXstation. Functions are provided that set up a response to 
pointer movement, pointer button activation, and viewport 
manipulation. These functions ultimately call system routines. Using Q 
these functions saves you the trouble of defining the system routine 
and using CALL-OUT. In other respects, the use of these functions is 
similar to the use of system routines. 

4.2.2.3 Keyboard Functions - You can use the BIND-KEYBOARD-FUNCTION 
function to bind a control character on· the keyb.oard to the execution 
of a LISP function. (See the VAX LISP/VMS User's Guide for a 
description of BIND-KEYBOARD-FUNCTION.) VAX LISP invokes all keyboard 
functions through a single interrupt function. The function that you 
specify with BIND-KEYBOARD-FUNCTION can interrupt the execution of 
LISP code. However, you do not have to instate or uninstate keyboard 
functions. 

4-4 

0 



INTERRUPT FUNCTIONS 

4.3 ESTABLISHING LISP INTERRUPT FUNCTIONS 

OThis section details the steps you must take 
function. The section is divided as follows: 

to use an interrupt 

0 

0 

• Any function that LISP is to execute asynchronously must be 
made known to LISP as an interrupt fun~tion. The 
INSTATE-INTERRUPT-FUNCTION function informs LISP that a 
particular function may be invoked asynchronously at a future 
time. Section 4.3.1 shows how to use 
INSTATE-INTERRUPT-FUNCTION. 

• Once a function has been made known as an interrupt function, 
you must associate the interrupt function with one or more 
asynchronous events. Section 4.3.2 describes two ways of 
doing so. 

• When an interrupt function is no longer needed, you should 
remove it from LISP's table of interrupt functions to conserve 
system resources. See Section 4.3.3. 

• If you suspend a LISP system, 
instated become uninstated in 
automatically reinstated when 
Section 4.3.4. 

4.3.1 Defining an Interrupt Function 

the interrupt functions you have 
the suspended system and are not 
the system is resumed. See 

To define an interrupt function, you first define the function in the 
normal LISP manner. The function may take .arguments, since 
INSTATE-INTERRUPT-FUNCTION can specify arguments to pass to an 
interrupt function. 

QNext, you use the INSTATE-INTERRUPT-FUNCTION function to make your 
function known to LISP as an interrupt function. The 
INSTATE-INTERRUPT-FUNCTION function takes a function as an argument 
and returns an identifying number, the iif-id. LISP adds your 
function to an internal list that identifies interrupt functions. The 
iif-id allows LISP to retrieve a particular interrupt function at a 
future time. 

For example: 

(LET ((!IF-ID (INSTATE-INTERRUPT-FUNCTION #'KEY-HANDLER))) 

. ) 

This example makes the function KEY-HANDLER known as an interrupt 

O function. The value returned by INSTATE-INTERRUPT-FUNCTION is bound 
to the symbol !IF-ID, to be used later in the body of. the LET. 

4-5 



-~--- -------

INTERRUPT FUNCTIONS 

:~~~~~~n !i:h2ans:~;!c~~:n~~= !!;~~~ is used to associate an interrupt Q 
You can use INSTATE-INTERRUPT-FUNCTION on a single function as many 
times as you like, thereby creating more than one interrupt function 
having the same function definition. This technique is useful when 
you need an interrupt function to perform essentially the sa~e 
operation in response to slightly differing asynchronous events. 

4.3.1.1 Passing Arguments to Interrupt Functions - Ordinarily, an 
interrupt function receives no arguments when it is invoked. You can, 
however, specify that one or more arguments be passed to an interrupt 
function. This technique is useful in the following cases: 

• You use INSTATE-INTERRUPT-FUNCTION more than once on a single O 
function, thereby making several interrupt functions with the 

• 

same function definition. You can cause each interrupt 
function to be passed a different argument, allowing the 
function to cake appropriate action depending on what 
asynchronous event caused it to be invoked. 

Your interrupt function needs to manipulate a data structure • 
The only safe way for an interrupt function to manipulate a 
data structure is to pass the data structure to the interrupt Q 
function as an argument. You should not store the data 
structure in a special variable, because the binding of 
special variables cannot be certain at the time the interrupt 
function executes. 

The INSTATE-INTERRUPT-FUNCTION function takes a keyword argument, 
:ARGUMENTS, whose value is a list of the arguments to be passed to the 
interrupt function. For example: 

(LET ((IIF-ID (INSTATE-INTERRUPT-FUNCTION #'KEY-HANDLER 
:ARGUMENTS (LIST INTERRUPTING-KEY)))) 

. ) 

This example makes the function KEY-HANDLER known as an interrupt 
function and requests that the data structure INTERRUPTING-KEY be 
passed to KEY-HANDLER when it is invoked. KEY-HANDLER can manipulate 
the contents of INTERRUPTING-KEY. Following execution of KEY-HANDLER, 
other LISP functions can use the modified contents of 
INTERRUPTING-KEY. 

0 

4.3.1.2 Specifying the Interrupt Level - Each interrupt function has Q 
an interrupt level. An interrupt function can only interrupt code 
that is executing at a lower interrupt level than its own. Chapter 5 
contains more information about interrupt levels. 

4-6 



0 

0 

0 

0 

0 

INTERRUPT FUNCTIONS 

use the :LEVEL keyword.with INSTATE-INTERRUPT-FUNCTION to specify the 
interrupt level. The value for this keyword is an integer in the 
range O through 7. The default is 2. 

4.3.1.3 Automatic Removal of Interrupt Functions - The 
INSTATE-INTERRUPT-FUNCTION function takes a keyword argument, 
:ONCE-ONLY-P, that allows you to request that the interrupt function 
be uninstated after a single execution. If you include :ONCE-ONLY-P 
with a non-NIL argument, the interrupt function can only execute once; 
then it is automatically removed from LISP'S table of interrupt 
functions. Use this keyword only if you know that the interrupt 
function will only be needed once. For interrupt functions that may 
execute more than once, remove them explicitly with the 
UNINSTATE-INTERRUPT-FUNCTION function after the last use. (Section 
4.3.3 describes UNINSTATE-INTERRUPT-FUNCTION.) 

4.3.2 Associating an Interrupt Function with an Asynchronous Event 

To request invocation of an interrupt function, you must associate it 
with one or more asynchronous events. This section shows how to call 
out to system routines that cause ASTs and how to pass interrupt 
functions as arguments to VAX LISP functions that establish the 
response to an asynchronous event. 

4.3.2.1 Calling Out to System Routines - System routines that can 
cause asynchronous events are characterized by tpe presence of two 
arguments, the astadr (address of the AST service routine) and the 
astprm (AST parameter). To call out to such a routine, you first 
define the routine, using DEFINE-EXTERNAL-ROUTINE. 

• Always use :MECHANISM :VALUE to pass the astadr argument. 

• Use either :MECHANISM :VALUE or :MECHANISM :REFERENCE to pass 
the astprm argument. Consult the documentation of the system 
routine to determine how the routine expects the astprm 
argument to be passed. 

For example: 

(DEFINE-EXTERNAL-ROUTINE (SYS$SETIMR :CHECK-STATUS-RETURN T) 
(EFN :MECHANISM :VALUE) 
(DAYTIM :VAX-TYPE :QUADWORD) 
(ASTADR :MECHANISM :VALUE) 
(ASTPRM :MECHANISM :VALUE)) ; Called the REQIDT in VMS docs. 

4-7 



INTERRUPT FUNCTIONS 

This example defines the external routine SYS$SETIMR, a system service 
that sets a timer and causes an asynchronous event to occur when the 
timer expires. 

When you use CALL-OUT to call the system routine, you must pass 
appropriate values for both the astadr and the astprm: 

• For the astadr, always pass the parameter COMMON-AST-ADDRESS. 
This is the address of a VAX LISP-supplied routine that 
initially handles all asynchronous events. You can pass no 
other object as the astadr. 

• For the astprm, pass the iif-id of the interrupt function that 
is to service the asynchronous event. 

For example: 

(DEFUN SET-TIMER (DELTA-TIME) 
(LET ((!IF-ID (INSTATE-INTERRUPT-FUNCTION 

#'TIMER-INTERRUPT-HANDLER 
:ONCE-ONLY-PT))) 

T) 

(CALL-OUT SYS$SETIMR NIL DELTA-TIME 
COMMON-AST-ADDRESS IIF-ID)) 

0 

0 

This example defines the function SET-TIMER, which in turn calls out 
to SYS$SETIMR. Each invocation of SET-TIMER causes the function Q 
TIMER-INTERRUPT-HANDLER to be instated as an interrupt function. The 
:ONCE-ONLY-P keyword causes TIMER-INTERRUPT-HANDLER to be removed 
(uninstated) after its first invocation. 

4.3.2.2 Using VAX LISP Functions - Several VAX LISP functions 
establish an action that is to take place when a specified 
asynchronous event occurs. (Most of these functions support the use Q 
of the pointer on a VAXstation.) One of the actions you can request 
with these functions is the execution of an interrupt function. After 
you have defined and instated an interrupt function as described in 
Section 4.3.1, you can supply its iif-id as the action argument. 

For example, the SET-POINTER-ACTION function establishes the response 
to pointer movement in a workstation viewport. It takes four required 
arguments: a virtual display, a window,' and acti.ons to perform when 
the pointer moves within the window and when it exits the window. The 
actions can be either NIL (do nothing), or an interrupt function to 
execute whenever the pointer moves within or out of the window. The 
following example shows the use of an interrupt function with 
SET-POINTER-ACTION: 

4-8 

0 



0 

0 

0 

0 

0 

INTERRUPT FUNCTIONS 

(LET ((IIF-ID (INSTATE-INTERRUPT-FUNCTION #'DRAW-RUBBER-BAND))) 
(SET-POINTER-ACTiON *ART-DISPLAY* *ART-WINDOW* IIF-ID NIL) 

(SET-POINTER-ACTION *ART-DISPLAY* *ART-WINDOW* NIL NIL) 
(UNINSTATE-INTERRUPT-FUNCTION IIF-ID)) 

In this example, a previously defined function, DRAW-RUBBER-BAND, is 
instated as an interrupt function. Its iit-id is then supplied as the 
first action argument to SET-POINTER-ACTION. From that point onwards, 
any pointer movement in the window *ART-WINDOW* causes the interrupt 
function DRAW-RUBBER-BAND to execute. The second call to 
SET-POINTER-ACTION requests that pointer movement not cause an 
asynchronous event, and the UNINSTATE-INTERRUPT-FUNCTION function 
removes the unneeded interrupt function from LISP'S table of interrupt 
functions. 

Some LISP functions that specify a response to asynchronous events 
cause arguments to be passed to the interrupt function that you 
specify. For example, the SET-BUTTON-ACTION function specifies the 
response when a workstation pointer button is pressed or released. If 
you specify an interrupt function with SET-BUTTON-ACTION, the 
interrupt function is automatically passed two arguments when it is 
invoked: the button involved, and the direction of the transition 
(down or up). You can still use the :ARGUMENTS keyword with 
INSTATE-INTERRUPT-FUNCTION to specify arguments to be passed to the 
interrupt function. Arguments that you request are passed following 
any arguments passed automatically. 

For example, assume that you want to pass a virtual display to your 
button-handling interrupt function, in addition to the two arguments 
that it receives automatically. You might define the interrupt 
function as follows: 

(DEFUN BUTTON-HANDLER (BUTTON TRANSITION DISPLAY) 

. ) 

But when you use INSTATE-INTERRUPT-FUNCTION, you only specify that one 
argument be passed: 

(LET ((IIF-ID (INSTATE-INTERRUPT-FUNCTION 
#'BUTTON-HANDLER 

.:ARGUMENTS (LIST DISPLAY)))) 

. ) 

When BUTTON-HANDLER executes as the result of a button being pressed 
or released, it will receive three arguments: the button and 
transition supplied by VAX LISP, and the display that you supply. 

4-9 



INTERRUPT FUNCTIONS 

4.3.3 Removing an Interrupt Function from LISP 

When you use INSTATE-INTERRUPT-FUNCTION, VAX LISP adds the interrupt 
function to an internal table listing all such functions. Thus, to 
avoid unnecessary overhead, you should be sure to tininstate interrupt 
functions after their last use by using UNINSTATE-INTERRUPT-FUNCTION. 
UNINSTATE-INTERRUPT-FUNCTION takes a single argument, the iif-id of 
the interrupt function being uninstated. 

You should uninstate an interrupt function only after you are sure 
that the asynchronous event causing it can no longer occur. Some 
asynchronous events occur only once for every use of the routine or 
function that causes them. Other asynchronous events, such as those 
caused by SET-BUTTON-ACTION, can occur repeatedly. In either case, it 
is your responsibility to be sure. that the asynchronous event can no 
longer occur before uninstating the interrupt function the 
asynchronous event invokes. If an asynchronous event occurs and its 
associated interrupt function has been uninstated, LISP ignores the 
asynchronous event. 

You can use the :ONCE-ONLY-P keyword with INSTATE-INTERRUPT-FUNCTION 
to cause an interrupt function to be uninstated automatically after 
one invocation. See Section 4.3.1.3. 

4.3.4 Suspending Systems Containing Interrupt Functions 

When you suspend a LISP system, the interrupt functions you have 
instated are uninstated in the suspended system. When you resume that 
system, these interrupt functions are not automatically reinstated. 
Therefore, if your system can be suspended, you must maintain 
knowledge of its interrupt functions, so that you can reinstate them 

0 

0 

0 

when the system is resumed. When you have reinstated an interrupt 
function, you must reassociate it with the asynchronous event that Q 
invokes it. 

If you bind a control character 
BIND-KEYBOARD-FUNCTION function, you 
function in a resumed system. VAX LISP 
bindings when the system is resumed. 

4-10 

to a function 
do not need to 

automatically 

with 
rebind 

restores 

the 
the 
the 

0 



0 

CHAPTER 5 

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

This chapter discusses VAX LISP facilities that let you control the 
priorities of interrupt functions and keyboard functions. You can use 

O these facilities to control a system in which multiple interrupt 
functions and keyboard functions might interfere with each other or 
with code that must execute as a unit. 

This chapter discusses the following subjects: 

• Section 5.1 describes the system of interrupt levels. You can 
specify an interrupt level with the BIND-KEYBOARD-FUNCTION and 
INSTATE-INTERRUPT-FUNCTION functions. 

0 • Section 5.2 describes critical 
prevent a section of code 
execution. 

sections, 
from being 

which you use to 
interrupted during 

• Section 5.3 describes the WAIT function, which you can use to 
suspend execution of your program until a keyboard function or 
interrupt function executes. 

USING INTERRUPT LEVELS 

You can use the :LEVEL keyword to assign an interrupt level either to 
an interrupt function or to a function you specify with 
BIND-KEYBOARD-FUNCTION. The interrupt level, which is an integer 
between O and 7, controls when a function can execute. A function 
executes only if its interrupt level is greater than LISP'S current 
inter'rupt level. F·or example, if you define two keyboard functions 
~ith BIND-KEYBOARD-FUNCTION, one at level 2 and one at level 3, the 
second function can interrupt the first but not the other way around. 

When it is not executing a keyboard function or an interrupt function, 
VAX LISP can be interrupted by functions at any of the interrupt 
levels. Certain low-level LISP functions run at very high interrupt Clevels because they cannot be safely interrupted. Normally, however, 
a function at any interrupt level will interrupt LISP execution. 

5-1 



INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

VAX LISP keyboard input operates at interrupt level 6, meaning that 
any function with an interrupt level less than 6 can perform inputo 
from the keyboard. Functions that operate at level 6 or 7 cannot 
obtain keyboard input. 

When you use BIND-KEYBOARD-FUNCTION or INSTATE-INTERRUPT-FUNCTION, you 
should carefully consider which interrupt level to use. You must 
ensure that the function is 'able to interrupt other functions that it 
needs to interrupt and that the function can in turn be interrupted as 
necessary. Furthermore, if the function performs input from the 
keyboard, its level must be less than 6. Some guidelines are: 

• 

• 

In general, do not use interrupt levels 6 or 7 . 
interrupt levels may interefere with VAX 
operation. 

Use of these 
LISP'S normal 

If you bind a control character (such as CTRL/E) to the ED 
function, use either level 1 (the default for 
BIND-KEYBOARD-FUNCTION) or 0. The Editor must be 
interruptable by keyboard input and by interrupt functions the 
Editor uses to handle pointer input. 

0 

• If you bind control characters to the DEBUG and BREAK 
functions, use an interrupt level high enough to interrupt 
functions you wish to debug, but less than 6. For example, if 
your application includes an interrupt function that executes Q 
at level 3, you should specify level 4 or 5 with 
BIND-KEYBOARD-FUNCTION to be able to invoke the debugger or 
break loop using the control character while that interrupt 
function is executing. 

• In this framework, choose interrupt levels for your interrupt 
and keyboard functions that allow them to interrupt and to be 
interrupted as appropriate. 

Functions that execute at interrupt level 7 can interrupt any LisPQ 
code not in a critical section, including low-level LISP code not 
normally interruptible. Functions that execute at level 7 may leave 
your program in an inconsistent state. Therefore, functions that 
execute at level 7 must terminate by executing a THROW to some tag, 
such as CANCEL-CHARACTER-TAG. Typically, you should not use interrupt 
level 7 except to effect an emergency exit back to LISP'S top level. 
(CTRL/C is bound to a function that executes at level 7; therefore, 
you can always use CTRL/C to get back to top level .• ) 

5.2 CRITICAL SECTIONS 

A critical section consists of forms contained in the body of a. 
CRITICAL-SECTION macro. The execution of forms in a critical section Q 
cannot be interrupted by any interrupt function or keyboard function, 

5-2 



0 

0 

0 

0 

0 

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

at any level. Use a critical section in situations where the 
execution of code must 'not be interrupted. For example, a function 
that manipulates a data structure may temporarily leave the data 
structure in an inconsistent state during its execution. An 
interrupting function that tries to use the data structure can find it 
invalid. The manipulating function can use a critical section to make 
sure that it cannot be interrupted while the data structure is 
invalid. 

Interrupts that occur during the execution of a critical section are 
queued. When the critical section ends, the interrupts are serviced. 

Since a critical section cannot be interrupted, it cannot perform 
keyboard input. A critical section also cannot be stopped with 
CTRL/C. For this reason, you must be careful not to allow any 
infinite loops in a critical section. Should an infinite loop occur, 
you have no recourse but to terminate the LISP image. 

You should test your code thoroughly before you make it into a 
critical section. Critical sections should be short and error free. 
If an error does occur in a critical section, VAX LISP invokes the 
debugger and temporarily removes the restrictions on interrupts so 
that you can type to the debugger. If you continue from the debugger, 
LISP restores the restrictions on interrupts before continuing. 
However, LISP is open to interruptions while you are debugging the 
code. 

5.3 SYNCHRONIZING PROGRAM EXECUTION 

Sometimes a program must stop execution until an eve~t occurs or some 
piece of information becomes available. VAX LISP provides the WAIT 
function to allow such synchronization. 

The WAIT function takes two required arguments. The first is a reason 
for the wait, typically a string. The second is a testing function 
that LISP calls to determine if the wait condition has been satisfied. 
The WAIT function accepts any number of arguments following the second 
argument. These arguments are used as arguments to the testing 
function. 

When the WAIT function is called, it causes normal program execution 
to halt. VAX LISP then repeatedly calls the testing function. When 

I the testing function returns a non-NIL value, the WAIT function 
returns, and execution continues. 

The testing function you specify in a call to the WAIT function can be 
any function. However, remember the following points: 

• The testing function should be short and error free. VAX LISP 
calls the testing function once before establishi~g the WAIT 

5-3 



INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

state. An error that occurs on this initial call can be 
debugged normally. However, if an error occurs in the testing() 
function after the WAIT state has been established, the LISP 
system will be left in an inconsistent state and will have to 
be terminated. 

• The testing function should not have side effects, since it is 
called at unknown intervals. 

• The dynamic state of LISP is not guaranteed during execution 
of the testing function. Therefore, the testing function 
cannot reely on the values of special variables. You should 
pass it arguments instead. 

One way to use WAIT is with an interrupt function or keyboard function 
that modifies a data structure accessed by the testing function. The 
data structure can be a cons cell, a structure, or an array. For the () 
testing function, use an accessor function appropriate for that data 
structure. When the interrupt or keyboard function modifies the data 
structure, the testing function returns non-NIL, and execution 
continues. 

For example, the following forms set up a variable called FLAG, 
is then used in a WAIT function: 

(SETF FLAG (LIST NIL)) 
(BIND-KEYBOARD-FUNCTION 

#\"F 
#'(LAMBDA() (SETF (CAR FLAG) T))) 

(WAIT "Wait for CTRL/F" #'CAR FLAG) 

which 

In this example, the value of FLAG is a list whose only element is 
NIL. BIND-KEYBOARD-FUNCTION binds CTRL/F to a function that changes 
the element of FLAG to T. The WAIT function specifies CAR as its 
testing function, with FLAG given as the argument. As long as the 
testing function returns NIL, the WAIT function blocks further 
execution. When the user types CTRL/F, the first element of FLAG is 
set to T, the testing function returns T, the WAIT function returns, 
and normal execution continues. 

To use the WAIT function to synchronize your program with an interrupt 
function, pass a data structure to both the ·interrupt function and the 
testing function named in the WAIT function. For example, consider 
the following interrupt function that handles the expiration of a 
timer: 

(DEFUN TIMER-INTERRUPT-HANDLER (FLAG) 
(SETF (CAR FLAG) T)) 

5-4 

() 

() 

() 



0 

0 

0 

0 

0 

INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

This function could be.used as follows: 

(LET* ((FLAG (LIST NIL)) -
(!IF-ID (INSTATE-INTERRUPT-FUNCTION 

#'TIMER-INTERRUPT-HANDLER 
:ONCE-ONLY-PT 
:ARGUMENTS (LIST FLAG)))) 

(CALL-OUT SYS$SETIMR NIL DELTA-TIME 
COMMON-AST-ADDRESS !IF-ID) 

(WAIT "Timer wait" #'CAR FLAG) 

. ) 

In this example, the program calls out to SYS$SETIMR, specifying that 
TIMER-INTERRUPT-HANDLER is to execute when the timer expires. 
TIMER-INTERRUPT-HANDLER is passed FLAG as an argument, a list whose 
only element is NIL. TIMER-INTERRUPT-HANDLER sets this element to T 
when the timer expires. 

Meanwhile, after calling SYS$SETIMR, the program continues with code 
that can execute before the timer has expired. At some point, 
however, it calls WAIT to wait for the timer. Since both 
TIMER-INTERRUPT-HANDLER and the testing function CAR have been passed 
the same list, the WAIT will not return until TIMER-INTERRUPT-HANDLER 
sets the first element of the list to T. 

Sometimes it is useful to pass a structure to an 
In these cases, you can include a slot in 
synchronization. Consider the following example: 

(DEFSTRUCT MENU 

(CHOICE-MADE NIL)) 

(DEFUN CLICK-IN-MENU (BUTTON TRANSITION MENU) 

(SETF (MENU-CHOICE-MADE MENU) T)) 

(DEFUN POST-MENU (MENU) 

(LET ((!IF-ID (INSTATE-INTERRUPT-FUNCTION 
#'CLICK-IN-MENU 
:ARGUMENTS (LIST MENU)))) 

interrupt function. 
the structure for 

(WAIT "Menu choice" #'MENU-CHOICE-MADE MENU) 

. ) 

5-5 



INTERRUPT LEVELS, CRITICAL SECTIONS, AND SYNCHRONIZATION 

This example shows parts of a menu system. The menu is implemented as 
a structure, one of whose slots is called CHOICE-MADE. The initialo 
value of CHOICE-MADE is NIL. The interrupt function CLICK-IN-MENU, 
which executes when a pointer button is pressed over a menu choice, is 
passed the menu structure as an argument. CLICK-IN-MENU sets the 
value of CHOICE-MADE to T. · The function POST-MENU takes a menu 
structure as its argument, displays the menu, then waits for a choice 
to be made. POST-MENU uses the WAIT function and supplies 
MENU-CHOICE-MADE as the testing function. When CLICK-IN-MENU sets 
this slot to T, the WAIT function returns, and execution continues. 

5-6 

0 

0 

0 

0 



0 

PART II 

0 
. 

OBJECT DESCRIPTIONS 

0 

0 

0 



0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

ALIEN-FIELD Function 

Accesses the value of a field of a 
structure. The function ignores 
fields. 

specified type from an alien 
the alien structure's predefined 

You can modify alien structures if you use the ALIEN-FIELD function 
with the SETF macro. This function is most useful for debugging a 
program that uses alien structures. The function can also be used to 
write your own accessing functions, for example, to access unnamed 
gaps in an alien structure. 

For more information about alien structures, see Chapter 3. 

Format 

ALIEN-FIELD alien-structure field-type start end 

Arguments 

alien-structure 

The alien structure from which a field value is to be accessed. 

field-type 

start 

end 

The type 
argument 
structure 
or a list 

of the field from which a value is to be accessed. This 
can be either a keyword that names a built-in alien 
field type, a symbol (for a user-defined field type), 
whose first element names the field type. 

A rational number that specifies the start position 
bytes) of a field in the alien structure's data area. 
is inclusive and zero-based. Default: none. 

A rational number that specifies the end position 
bytes) of a field in the alien structure's data area. 
is exclusive. Default: none. 

(in 8-bit 
This value 

(in 8-bit 
This value 

Return Value 

The value of a field of the specified alien structure. 

1 



OBJECT DESCRIPTIONS 

ALIEN-FIELD Function (cont.) 

Example 

Lisp> (DEFINE-ALIEN-STRUCTURE SPACE 
(AREA-1 :UNSIGNED-INTEGER O 4 :DEFAULT 22) 
(AREA-2 :UNSIGNED-INTEGER 4 8 :DEFAULT 2764)) 

SPACE 
Lisp> (SETF SPACE-RECORD (MAKE-SPACE)) 
#<Alien Structure SPACE #x45FA60> 
Lisp> (SPACE-AREA-1 SPACE-RECORD) 
22 
Lisp> (SPACE-AREA-2 SPACE-RECORD) 
2764 
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER 
22 
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER 
2764 
Lisp> (ALIEN-FIELD SPACE-RECORD :UNSIGNED-INTEGER 
11871289606166 

This example illustrates: 

0 4) 

4 8) 

0 8) 

0 

0 

• If you specify the ALIEN-FIELD function with the same field 
types and positions that are in the definition of an alien~ 
structure, the data you access is the same as if you hat ) 
accessed it with that structure's default accessor functions."-----/ 

• If you specify the ALIEN-FIELD function with different field 
types and positions from those in a defined alien structure, 
the data you access could be different depending on the field 
type and field positions you specify. 

0 

0 
2 



OBJECT DESCRIPTIONS 

ALIEN-STRUCTURE-LENGTH Function 

O Returns the length of an alien structure in bytes. 

0 

0 

0 

0 

Format 

ALIEN-STRUCTURE-LENGTH alien-structure 

Argument 

alien-structure 

The alien structure whose length is to be returned. 

Return Value 

The length of the alien structure in bytes 

Example 

The following examples illustrate the 
ALIEN-STRUCTURE-LENGTH macro. The diagram 
illustrates why it returns a specific value. 

1. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE1 

use of the 
after each example 

(NAME :STRING O 20 :OCCURS 3 :OFFSET 20)) 
EXAMPLEl 
Lisp> (ALIEN-STRUCTURE-LENGTH' (MAKE-EXAMPLEl)) 
60 

0 
+ 

I 
+--
I 

namel 

offset 
I 
I 
+---

20 
+ 

--+ 
I 

name2 

offset = 20 

3 

40 
+ 

name3 

60 
+ 



---- - ----

OBJECT DESCRIPTIONS 

ALIEN-STRUCTURE-LENGTH Function (cont.) 

2. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE2 
(NAME :STRING O 20 :OCCURS 3 :OFFSET 10)) 

EXAMPLE2 
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE2)) 
40 

0 
+ 

20 
+ 

+------------+ 
name! 

+------------+ +------------+ 
name2 

+------------+ 

40 
+ 

I I +------------+ 
+-----+ 
I I I 

I 

name3 
+------------+ 

+--- offset= 10 

In EXAMPLE2, the offset overlaps so that the last part of the 
information stored in NAME! becomes the first part of the 
information stored in NAME2 and so on. 

3. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE3 
(NAME :STRING O 20 :OCCURS 2 :OFFSET 40)) 

EXAMPLE3 
Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE3)) 
60 

0 20 40 60 
+ + + + 
---------------------------------------+ 
I name! I gap I name2 I 
---------------------------------------+ 

I 
+--------offset---------+ 
I I I 

I 
+--- offset= 40 

In EXAMPLE3 and EXAMPLE4, the gaps are counted as part of the 
length of the structure. 

4 

0 

0 

0 

0 

0 



OBJECT DESCRIPTIONS 

ALIEN-STRUCTURE-LENGT.H Function (cont.) 

0 4. Lisp> (DEFINE-ALIEN-STRUCTURE EXAMPLE4 (NAME :STRING 20 40)) 
EXAMPLE4 

0 

0 

0 

0 

Lisp> (ALIEN-STRUCTURE-LENGTH (MAKE-EXAMPLE4)) 
40 

0 
+ 

20 
+ 

40 
+ 

--------------------------+ 
gap namel I 

--------------------------+ 

5 



OBJECT DESCRIPTIONS 

CALL-OUT Macro 

Calls a defined external routine. If you specify an external routineO 
that has not been defined with the DEFINE-EXTERNAL-ROUTINE.macro, the 
LISP system signals an error. 

For information about how to use the VAX LISP call-out facility, see 
Chapter 2. 

Format 

CALL-OUT external-routine &REST arguments 

Arguments 

external-routine 

The name of a defined external routine. 0 
arguments 

Arguments to be passed to the external routine. The arguments 
correspond by position to the arguments defined for the routine. 
The LISP system evaluates the· argument expressions before the 
external routine is called. You can omit an optional argument by 
specifying an expression whose value is NIL. The correspondingo 
position in the argument list will contain a Oto coincide with 
the VAX Procedure Calling Standard. If you specify fewer 
arguments than were specified in the definition, the argument 
list will contain only the number of arguments actually supplied. 
LISP signals an error· if you supply more arguments than were 
specified in the definition. 

Return Value 

If the :RESULT option of the DEFINE-EXTERNAL-ROUTINE 
specified, the external routine's result is returned. 
no value is returned. 

6 

macro wasQ 
Otherwise, 

0 



. OBJECT DESCRIPTIONS 

CALL-OUT Macro (cont.) 

OExample 

0 

0 

0 

0 

Lisp> (DEFINE-EXTERNAL-ROUTINE (SMG$CREATE-PASTEBOARD 
:FILE "SMGSHR" 
:RESULT INTEGER) 

(NEW-PASTEBOARD-ID :LISP-TYPE INTEGER 
:VAX-TYPE :UNSIGNED-LONGWORD 
:ACCESS :IN-OUT) 

(OUTPUT-DEVICE :LISP-TYPE STRING) 
(PB-ROWS :LISP-TYPE INTEGER :ACCESS :IN-OUT) 
(PB-COLUMNS :LISP-TYPE INTEGER :ACCESS :IN-OUT) 
(PRESERVE-SCREEN-FLAG :LISP-TYPE INTEGER 

:VAX-TYPE :UNSIGNED-LONGWORD)) 
SMG$CREATE-PASTEBOARD 

Defines the SMG screen 
SMG$CREATE-PASTEBOARD. 

Lisp> (DEFVAR *PASTEBOARD-ID* -1) 
*PASTEBOARD-ID* 

management routine called 

Defines a special variable which will contain the pasteboard ID 
returned by the external routine. 

Lisp> (CALL-OUT SMG$CREATE-PASTEBOARD *PASTEBOARD-ID* 
NIL NIL NIL 1) 

1 

Calls the external routine SMG$CREATE-PASTEBOARD, specifying the 
special variable to receive the pasteboard ID .. Three arguments 
are omitted, and a preserve-screen-flag of 1 is given. The 
result status is returned. 

7 



OBJECT DESCRIPTIONS 

COMMON-AST-ADDRESS Parameter 

Specifies the address of a VAX LISP/VMS-supplied routine 
initially handles all 
ASTs. This parameter must be given a~ the astadr argument to all 
external routines that can cause an AST. No other object can be 
passed as the astadr argument. Use the :VALUE mechanism to pass this 
parameter. 

Format 

COMMON-AST-ADDRESS 

Example 

See the description of INSTATE-INTERRUPT-FUNCTION for an 
of the use of COMMON-AST-ADDRESS. 

example 

0 

0 

0 

0 
8 



0 

OBJECT DESCRIPTIONS 

CRITICAL-SECTION Macro 

Executes the forms in its body as a "critical section." During the 
execution of a critical section, all interrupt functions are blocked 
and queued for later execution. CTRL/C is also blocked, so a critical 
section must neither loop nor cause errors. It is an error to perform 
I/0 or to call WAIT in a critical section. 

If an error shoud occur during a critical section, VAX LISP invokes 
the debugger, and temporarily removes the restrictions on interrupts 
so you can type to the debugger. If you continue from the debugger, 
LISP restores the restrictions on interrupts before continuing. 
However, LISP is open to interruptions while you are debugging the 
code. 

Format 

O CRITICAL-SECTION {form}* 

Argument 

0 

0 

0 

form 

Form(s) to be executed as a critical section. 

Return Value 

The value(s) of the last form executed. 

Example 

Lisp> (DEFUN RESTORE-TO-FREE-LIST (CONS-CELL) 
(CRITICAL-SECTION 

(SETF (CDR CONS-CELL) *HEAD-OF-FREE-LIST* 
*HEAD-OF-FREE-LIST* CONS-CELL))) 

RESTORE-TO-FREE-LIST 

This example defines a function that restores a cons cell to the 
head of a list of free cells. During the call to SETF, the list 
is in an inconsistent state because the special variable 
*HEAD-OF-FREE-LIST* does not point to the head of the list. An 
interrupting function that used *HEAD-OF-FREE-LIST* to remove an 
element from the list would break the list. Therefore, 
RESTORE-TO-FREE~LIST uses the CRITICAL-SECTION macro to ensure 
that the SETF call completes without interruption. 

9 



OBJECT ·DESCRIPTIONS 

DEFINE-ALIEN-FIELD-TYPE Macro 

Defines alien-structure field types. 

For information about alien structures, see Chapter 3. 

Format 

DEFINE-ALIEN-FIELD-TYPE name lisp-type primitive-type 
access-function se~f-function 

Arguments 

name 

The name of the alien-field type being defined. 

0 

lisp-type O 
A LISP data type indicating the type of LISP object to which the 
field is to be mapped. 

primitive-type 

Either one of the predefined alien-field types or a type that was 
previously defined with the DEFINE-ALIEN-FIELD-TYPE macro. A O LISP object of type primitive-type is extracted from the alien 
structure's data when the field is accessed. The object is then 
passed to the specified access function. Predefined alien-field 
types are listed in Tabl• 3-1. 

access-function 

A function of one··argument (whose type is primitive-type) 
returns an object of type lisp-type. 

sett-function 

that 

A function of one argument (whose type is lisp-type) that returns 
an object whose type is the type of the default SETF form, as 
defined by the primitive-type argument. When the object is 
returned, it is packed into the alien structure's field data. 

Return Value 

The name of the alien-field type. 

NOTE 

Functions that access and set field· values can 
take more than one argument; additional arguments 

10 

0 

0 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

DEFINE-ALIEN-FIELD-TYPE .Macro (cont.) 

Examples 

are optional. When the type argument in the 
DEFINE-ALIEN-STRUCTURE macro's field description 
is a list, the first element of the list is the 
field type, and the rema1n1ng elements are 
expressions the LISP system evaluates when it 
evaluates the access function. The resulting 
values are passed as additional arguments to the 
functions that access or set the field. 

1. Lisp> (DEFINE-ALIEN-FIELD-TYPE INTEGER-STRING-8 
'INTEGER 
:STRING 
#'(LAMBDA 
(X) 
(PARSE-INTEGER X :JUNK-ALLOWED T)) 
#'(LAMBDA 
(X) 
( FORMAT NIL n- S II X) ) ) 

INTEGER-STRING-8 
Lisp> (DEFINE-ALIEN-STRUCTURE TWO-ASCII-INTEGERS 

(INT-1 INTEGER-STRING-8 0 8) 
(INT-2 INTEGER-STRING-8 8 16)) 

TWO-ASCII-INTEGERS 

• The call to the DEFINE-ALIEN-FIELD-TYPE macro 
field type named INTEGER-STRING-8. The 
INTEGER-STRING-8 causes an alien stru~ture 
strings to integers. 

defines a 
field type 
to convert 

e The call to the DEFINE-ALIEN-STRUCTURE macro defines an 
alien structure named TWO-ASCII-INTEGERS that has two 
fields, each of type INTEGER-STRING-8. 

11 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-FIELD-TYPE Macro (cont.) 

2. Lisp> (DEFINE-ALIEN-FIELD-TYPE SELECTION 
T 
:UNSIGNED-INTEGER 
#'(LAMBDA 
(N) 

( NTH N ' ( MA RI NY) ) ) 
#'(LAMBDA 
(X) 

(POSITION X '(MA RI NY)))) 
SELECTION 

0 

This is an example - of how the :SELECTION type could be 
implemented. The example defines an alien-field type named 
SELECTION. This type defines a relationship between unsigned 
integers in an alien field and LISP data objects. In Q 
accessing the value of a field of this type, the 
access-function uses the integer stored in the alien field as 
an index into a list. In setting the value in this type of 
field, the position of a LISP object in that list is used to 
define the integer value stored in the alien structure. 

0 

0 

0 
12 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro 

QDefines alien structures. An alien structure is a collection of bytes 
containing VAX data types. 

The syntax of the DEFINE-ALIEN-STRUCTURE 
DEFSTRUCT macro described in COMMON LISP: 

macro is similar 
The Language. 

to the 

For an explanation of how to define an alien structure, see Chapter 3. 

Format 

DEFINE-ALIEN-STRUCTURE name-and-options 
[doc-string] 
{field-description}* 

Arguments 

O name-and-options 

0 

0 

0 

The name-and-options argument is the name and the options of a 
new LISP data type. The name argument must be a symbol. The 
options define the characteristics of the alien structure. If 
you do not specify options, you can specify the name-and-options 
argument as a symbol: 

name 

If you specify options, specify the name-and-options argument as 
a list whose first element is the name: 

(name {(keyword value)}*) 

Using the following format, specify options as a list of 
keyword-value pairs. 

(keyword value) 

Table 1 lists the keyword-value pairs that you can specify. 

Table 1: DEFINE-ALIEN-STRUCTURE Options 

Keyword-Value Pair 

:CONC-NAME name 

13 

Description 

Names the access functions. The 
value can be a symbol or NIL. 
If you specify a symbol, the 
symbol becomes a prefix in the 
access function names. If you 
wish to include a hyphen(-) in 
the access function names, 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Table 1 (cont. ) 

Keyword-Value Pair 

:CONSTRUCTOR name 

:COPIER name 

:PREDICATE name 

14 

Description 

specify it as part of the 
prefix. If you specify NIL, the 
access function names are the 
same as the field names. By 
default, the prefix is the alien 
structure name followed by a 
hyphen. 

Names the constructor function. 
The value can be a symbol or 
NIL. If you specify a symbol, 
the symbol becomes the name of 
the constructor function. If 
you specify NIL, the macro does 
not define a constructor 
function. If you do not specify 
this keyword, the constructor 
function's name is the prefix 
MAKE- attached to the alien 
structure name. 

Names the copier function. The 
value can be a symbol or NIL. 
If you specify a symbol, the 
symbol becomes the name of the 
copier function. If you specify 
NIL, the macro does not create a 
copier function. If you 'do not 
specify this keyword, the copier 
function's name is the prefix 
COPY- attached to the alien 
structure name. 

Names the predicate function. 
The value can be a symbol or 
NIL. .If you specify a symbol, 
the symbol becomes the name of 
the' predicat,e function. If you 
specify NIL, the macro does not 
define a predicate function. If 
you do not specify this keyword, 
the macro names the predicate 
function by attaching the 
structure name to the characters 
-P. 

0 

0 

0 

0 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE. Macro (cont.) 

Table 1 (cont.) 

Keyword-Value Pair 

:PRINT-FUNCTION function-name 

doc-string 

Description 

Specifies the print function for 
the alien structure. The value 
must be a function. If you do 
not specify this keyword, the 
LISP system displays the alien 
structure in the following 
format: 

#<Alien Structure name number> 

In the preceding format, name is 
the name of the alien structure 
and number is a unique 
identification number, which 
distinguishes alien structures 
that have the same name. 

The documentation string to be attached to the symbol that names 
the alien structure. The documentation string is of type 
STRUCTURE. See COMMON LISP: The Language for information on the 
DOCUMENTATION function. 

field-description 

A field description for the alien structure. 
description in the following format: 

(name type start end options) 

Specify a field 

The name argument must be a symbol. It is used to name functions 
that access and set the value of the alien structure field. 

15 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

The type argument determines the method by which the VAX data () 
type stored in a field is converted to a LISP object and vice 
versa. Valid types are: 

:STRING 
:SIGNED-INTEGER 
:BIT-VECTOR 
:G-FLOATING 
:H-FLOATING 
:SELECTION 

:VARYING-STRING 
:UNSIGNED-INTEGER 
:F-FLOATING 
:D-FLOATING 
:POINTER 
Types defined with the VAX LISP 

DEFINE-ALIEN-FIELD-TYPE macro 

See Chapter 3 for more information on field types. 

As in COMMON LISP, the start and end arguments are zero-based Q 
with start being inclusive and end being exclusive. 

The start argument must be a rational number or, in some cases, a 
fixnum (see Section 3.4.3.1) that specifies the 8-bit byte start 
position of the field in the alien structure's data area. 
Default: none. See Chapter 3 for more information on field 
start positions. 

The end argument must be a rational number or, in some cases, a 
fixnum (see Section 3.4.3.1) that specifies the 8-bit byte end Q 
position of the field in the alien structure's data area. The 
last position a field occupies is the position that precedes the 
field's end position value. Default: none. See-Chapter 3 for 
more information on field end positions. 

The options define the characteristics for the field. 
each option with a keyword-value pair: 

Specify 

keyword value 

Table 2 lists the keyword-value pairs that you can specify. 

Table 2: DEFINE-ALIEN-STRUCTURE Field Options 

Keyword-Value Pair 

:DEFAULT form 

16 

Description 

Specifies the default initial 
value that is to occupy the 
field. If the field's initial 
value was not specified in a 
call to the alien structure's 
constructor function, the form 
is evaluated when the 
constructor function is called. 

0 

0 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE . Macro (cont.) 

0 Table 2 ( cont. ) 

Keyword-Value Pair 

:READ-ONLY value 

0 

:OCCURS integer 

0 

:OFFSET rational-number 

0 

!,l.eturn Value 

The name of the alien structure. 

0 
17 

Description 

The value that results from the 
evaluation is the field's 
default initial value. This 
value defaults to NIL. 

Specifies whether the field can 
be accessed or set. The value 
can be Tor NIL. If you specify 
T, the macro generates access 
functions that are not 
acceptable place indicators in a 
call to the SETF macro. If you 
specify NIL, the macro generates 
access functions that are 
acceptable place indicators in a 
call to the SETF macro. The 
default is NIL. 

Specifies the number of times 
the field is to be represented 
within the alien structure. The 
value must be an integer. The 
default value is 1 (which means 
no repeats). 

Specifies the distance in 8-bit 
bytes from the start of one 
occurrence of the field to the 
start of the next occurrence of 
the field. The value must be a 
rational number. If you specify 
a value that is greater than the 
field's length, the alien 
structure contains gaps. You 
can access the gaps with other 
field definitions. 



OBJECT DESCRIPTIONS 

DEFINE-ALIEN-STRUCTURE Macro (cont.) 

Example 

Lisp> (DEFINE-ALIEN-STRUCTURE ET 
(SPACE-SHIP :STRING O 10) 
(PHONE-NqMBER :UNSIGNED-INTEGER 10 17) 
(HOME :STRING 17 32)) 

'.ET 

Defines an alien structure named ET, which contains three fields 
named SPACE-SHIP, PHONE-NUMBER, and HOME. The fields SPACE-SHIP 
and HOME are defined to be strings of length 10 and 15 
respectively. The field PHONE-NUMBER is defined to be an 
unsigned integer seven bytes long. 

0 

More examples of how to define alien structures are provided in Q 
Chapter 3. 

0 

0 

0 
18 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro 

Ooefines an external rou.tine that a LISP program is to call. You can 
call routines defined with this macro with the VAX LISP CALL-OUT 
macro. For information about ho~ to use the VAX LISP call-out 
facility, see Chapter 2. 

0 

0 

Format 

DEFINE-EXTERNAL-ROUTINE name-and-options 
[doc-string] 
{argument-description}* 

Arguments 

name-and-options 

The name argument is the name of the external routine being 
defined. The name argument must be a symbol. The options define 
the characteristics of the name argument. If you do not specify 
options, you can specify the name-and-options argument as a 
symbol: 

name 

If you specify options, specify the name-and-options argument as 
a list whose first element is the name: 

(name {keyword value}*) 

Specify the options with keyword-value pairs: 

keyword value 

0 
The option values are not evaluated. 

Table 3 lists the keyword-value pairs that you can specify. 

0 

Table 3: DEFINE-EXTERNAL-ROUTINE Options 

Keyword-Value Pair 

:CHECK-STATUS-RETURN value 

19 

Description 

Specifies whether the call-out 
facility is to check the 
severity of the value that an 
external routine returns in 
register RO. The value you 
specify can be T, an integer, or 
NIL. If you specify T, the 
call-out facility checks the 
severity of the retµrn value. 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

Table 3 (cont. ) 

Keyword-Value Pair 

:ENTRY-POINT string 

:FILE pathname 

:RESULT type 

20 

Description 

If the severity is warning, 
error, or severe, the LISP 
system signals a continuable 
error. If you specify an 
integer, an error is signaled if 
that value is returned by the 
routine. If you specify NIL, 
the call-out facility does not 
check the severity of the return 
value. NIL is the default 

0 

value. If you specify this Q 
option, do not specify the 
:RESULT option. 

Names the external routine's 
entry point. The value must be 
a string. The macro converts 
the name to uppercase 
characters. The default value 
is the print name of the 
external routine name. Q 
Specifies the shareable image 
that was created for the 
external routine. This must be 
in upper case and must be a 
logical name, or the name of an 
executable image in the 
SYS$SHARE directory. The file 
specification is merged with the Q 
file SYS$SHARE:.EXE. You must 
specify this option unless you 
are calling a system service. 

Specifies the type of LISP 
objec~ the external routine is 
to return. The value can be a 
LISP type, a type-spec-list, or 
NIL. A type-spec-list has the 
following format: 

:RESULT (:LISP-TYPE LISP-type 
:VAX-TYPE VAX-type) 

See Table 
LISP/VAX 

2-4 for a list of 
types. NIL specifies 0 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

O Table 3 (cont.) 

Keyword-Value Pair 

:TYPE-CHECK value 

0 

Description 

that the routine returns no 
value. The default value is 
NIL. If you specify this 
option, do not specify the 
:CHECK-STATUS-RETURN option. 

Specifies whether the call-out 
facility is to check the types 
of the arguments passed to the 
external routine for 
compatibility with the LISP 
types specified in the argument 
specification. The value can be 
Tor NIL. If you specify T, the 
facility checks the types for 
compatibility; if you specify 
NIL, the facility does not check 
the argument types. The default 
value is NIL. · 

Q doc-string 

The documentation string for the symbol that names the external 
routine. The documentation string is of type EXTERNAL-ROUTINE. 
See COMMON LISP: The Language for information on the 
DOCUMENTATION function. 

oargument-description 

· An argument description that is to be passed to the external 
routine. Include as many descriptions as the arguments you want 
to call out to. Specify the descriptions in the following 
format: 

0 

(name options) 

The name argument must be a unique symbol in 
NIL. The name identifies the argument and is 
messages. If you do not specify options, you 
argument-description argument as a symbol: 

name 

21 

the definition or 
used in some error 

can specify the 



OBJECT DESCRIPTIONS 

DEFINE-EXTERNAL-ROUTINE Macro (cont.) 

If you specify options, specify the argument as a list whose 
first element is the name: 

(name {keyword value}*) 

The options arguments define the characteristics of an argument. 
Specify the options with keyword-value pairs: 

keyword value 

The option values are not evaluated. 

Table 4 lists the keyword-value pairs you can specify. 

Table 4: DEFINE-EXTERNAL-ROUTINE Argument Options 

Keyword-Value Pair 

:ACCESS value 

:LISP-TYPE type 

:MECHANISM value 

Description 

Specifies the type of access the 
external routine needs for the 
argument. The value can be 
either :IN or :IN-OUT. The 
default value is :IN. If you 
specify :IN, the argument can be 
read, but not modified by the 
external routine. If you 
specify :IN-OUT, the argument 
can be both read and 
destructively modified by the 
external routine. 

Specifies the LISP type of the 
argument value the call-out 
facility is to pass to the 
external routine. See Table 2-4 
and Table 2-5 for the values you 
can specify. 

Specifies the argument-passing 
mechanism the external routine 
is to expect for the argument. 
The values you can specify are 
:VALUE, :REFERENCE, and 
:DESCRIPTOR. The default value 
is :DESCRIPTOR for VAX-TYPE 
:TEXT and :REFERENCE for other. 

0 

0 

0 

0 

LISP data types. Q 

22 



OBJECT . DESCRIPTIONS 

ODEFINE-EXTERNAL-ROUTINE Macro (cont.) 

Table 4 (cont.) 

Keyword-Value Pair 

:VAX-TYPE type 

Description 

Specifies the VAX data type of 
the argument value the external 
routine is to return. · See Table 
2-4 and Table 2-5 for the values 
you can specify. 

Return Value 

The symbol that names the external routine. 

Osxaaple 

0 

0 

0 

Lisp> (DEFINE-EXTERNAL-ROUTINE (MTH$ACOSD 
:FILE "MTHRTL" 
:RESULT (:LISP-TYPE 

SINGLE-FLOAT 
:VAX-TYPE 

:F-FLOATING)) 
"This routine returns the arc cosine 
of an angle in degrees.". 

(X :LISP-TY'E SING~E-FLOAT 
:VAX-TYPE :F-FLOATING)) 

MTH$ACOSD 

Defines an RTL routine, called MTH$ACOSD, which -returns 
cosine of an angle in degrees. The routine takes one 
argument, whic~ is a F_floating number, and returns the 

· a F_:float1ng n.umber. , 

the arc 
read-only 
result as 

More examples of how to define external routines are provided in 
Chapter .2. These examples also show you how to call out to 
defined external routines. 

23 



OBJECT DESCRIPTIONS 
. ( 

FORCE-INTERRUPT-FUNCTION Function .. 
,,.. 

Forces an AST and thus the invocation 
function specified by its argument. 
primarily useful for debugging. 

of the related interrupt 
FORCE-INTERRUPT-FUNCTiON is 

Format 

FORCE-INTERRUPT-FUNCTION iii-id 

Argument 

iif-id 

An interrupt function identifier previously 
INSTATE-INTERRUPT-FUNCTION. 

Return Value 

Undefined. 

Bi:ample 

Lisp> ·(OEFUN TIMER-INTERRUPT-HANDLER() 
(PRINC "The timer has expired")) 

TIMER-INTERRUPT-HANDLER 
Lisp> (SETF TIMER-IIF (INSTATE~INTERRUPT·FUNCTION 

8454198 
'TIMER-INTERRUPT-HANDLER)) . . . 

Lisp> (FORCE-INTERRUPT-FUNCTION TIMER-IIF) 
The timer has expired 
T 

retu.rnea by 

• The function TIMER-INTERRUPT-HANDLER is instated as an 
interrupt function whose iif-id · is retained as. the va1·ue of 
TIMER-I IF 

, • Passing TIMER-IIF in a call to FORCE-INTERRUPT-FUNCTl~N c·aoses 
. TIMER-INTERRUP!l'-HANDLER to execute;.. .. . ; 

24 

Ci 

0 

0 

0 

0 



Q~JE.C{:.DJ:SCRIPTIONS. 

GET-INTERRUPT-FUNCTION Function ~ .. ·· · : ; 

O Ret1,1rns information a.bout. the ,iinterrupt 
arg~111ent. · •· ·:· .. ·· ~· .. ·-~·-

function specified by its 

0 

0 

0 

.o 

Format 
t.' •.. ·, ..,, 

.. : :-., . . 
GET-INTERRUPT-FUNCTION iii-id 

Argument 

·"'.,( 

.. 1- • ~ • 

. An interr1,1pt function identifier ·previously· returned by 
INSTATE-INTERRUPT-FU~CTION. 

Return Value 

Four values: 

1. The function definition of the interrupt function 

2. The argument list 

3. The value of :LEVEL (an integer in the range O through 7) 

4. The value of :ONCE-ONLY-P (Tor NIL) 

If the interrupt function represented by iit-id has been 
uninstated, GET-INTERRUPT-FUNCTION returns four values of NIL. 

Example 

Lisp> (DEFUN TIME-ELAPSED (N) 
(FORMAT T 

"-@(_R_) second"' :P - :*- [have- ;has-: ;have- J -
elapsed since setting the timer" 

N)) 
Lisp> (SETF T-E-IIF (INSTATE-INTERRUPT-FUNCTION 

#'TIME-ELAPSED 
:ARGUMENTS (LIST 5))) 

8388671 
Lisp> (GET-INTERRUPT-FUNCTION T-E-IIF) 
(LAMBDA (N) (BLOCK TIME-ELAPSED (FORMAT T .. -@(_R_) second-:P 
- : *"' [have- ;has-: ;have- J -

( 5) ; 
2 ; 
NIL 

elapsed since setting the timer" N))) ; 

• The function TIME-ELAPSED, which prints out the number of 
seconds since a timer was set, is defined. It takes a single 
argument. 

25 



OBJECT . DESCRIPTIONS 

GET-INTERRUPT-FUNCTION Function (cont.) · ; .. : . ~ 

• TIME-ELAPSED is instated· as 
:ARGUMENTS keyword specifies 
argument, the number S. 
INSTATE-INTERRUPT-FUNCTION is 
T-E-IIF • 

an interrupt function. The' 
that TIME-ELAPSED is passed one 

The iif-id returned by 
retained as the value ot· 

• The call to GET-INTERRUPT-FUNCTION returns four values. The. 
first value is the function definition of TIME-ELAPSED. The 
second value is a list of the arguments specified witb 
INSTATE-INTERRUPT-FUNCTION. The third value is the interrupt 
level (2, the default for INSTATE-INTERRUPT-FUNCTION). The 
fourth value is NIL, indicating that :ONCE-ONLY-P was not 
specified with INSTATE-INTERRUPT-FUNCTION. 

26 

0 

0 

0 

0 



OBJECT DESCRIPTIONS 

INSTATE-INTERRUPT-FUNCTION Function 

OTakes as its first argument a function that will 
asynchronously and returns an identification 
instance of the function. 
The iif-id is intended to be passed to a routine 
AST. The AST, when it occurs, invokes the 
identified by the iif-id. 

later 
(iif-id) 

be invoked 
for this 

that can cause an 
int~rrupt function 

The :ARGUMENTS keyword allows you to supply a list of zero- or more 
arguments. The arguments will be passed to the interrupt function 
when it executes. This allows a single function to take different 
actions depending on the particular AST that invokes it. 

The :LEVEL keyword lets you specify the interrupt level for the 
interrupt function as an integer in the range 0-7. See Chapter 5 for 
more information about interrupt levels. 

Q The :ONCE-ONLY-P keyword allows you to specify that this instance of 
the function will only be invoked once, and then discarded. 
Specifying :ONCE-ONLY-PT is equivalent to using 
UNINSTATE-INTERRUPT-FUNCTION on the function after its first 
invocation. However, :ONCE-ONLY-P does not disable further 
occurrences of the AST after its first occurrence. If :ONCE-ONLY-PT 
is specified and the corresponding AST occurs more than once, the 
second and subsequent ASTs are ignored. (See 

QuNINSTATE-INTERRUPT-FUNCTION for more _details.) 

For more information about interrupt functions, see Chapter 4. 

Format 

INSTATE-INTERRUPT-FUNCTION function 
&KEY :ARGUMENTS :LEVEL :ONCE-ONLY-P 

QArguments 

function 

0 

A function to be invoked asynchronously at a later time. 

:ARGUMENTS 

A list of zero or more arguments to be passed to the interrupt 
function when it is invoked. 

:LEVEL 

An integer in the range 0-7, specifying the interrupt level for 
the interrupt function. The default interrupt level is 2. 

27 



OBJECT DESCRIPTIONS 

INSTATE-INTERRUPT-FUNCTION Function (cont.) 

:ONCE-ONLY-P 

Tor NIL (the default), specifying whether or not this instance 
of the function is to- be uninstated when it has been invoked 
once. 

Return Value 

An integer that identifies this instance of the interrupt 
function. This integer becomes the iif-id argument to functions 
that require an iif-id and the astprrn argument to external 
routines that can cause an AST. 

Examples 

1. Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$SETIMR 
:CHECK-STATUS-RETURN T) 

(EFN :MECHANISM :VALUE) 
(DAYTIM :VAX-TYPE :QUADWORD) 
(ASTADR :MECHANISM :VALUE) 
(ASTPRM :MECHANISM :VALUE)) 

SYS$SETIMR 
Lisp> (DEFINE-EXTERNAL-ROUTINE (SYS$BINTIM 

:CHECK-STATUS-RETURN T) 
(TIMBUF :VAX-TYPE :TEXT :LISP-TYPE STRING) 
(TIMADR :VAX-TYPE :QUADWORD :ACCESS :IN-OUT)) 

SYS$BINTIM 
Lisp> (DEFUN SET-TIMER (DELTA-TIME) 

(LET ((!IF-ID (INSTATE-INTERRUPT-FUNCTION 
#'TIMER-INTERRUPT-HANDLER 
:ONCE-ONLY-PT))) 

T) 
SET-TIMER 

(CALL-OUT SYS$SETIMR NIL DELTA-TIME 
COMMON-AST-ADDRESS IIF-ID)) 

Lisp> (DEFUN TIMER-INTERRUPT-HANDLER() 
(PRINT "The timer has expired")) 

TIMER-INTERRUPT-HANDLER 
Lisp> (SETQ DELTA 0) ; DELTA must be bound before CALL-OUT 
a· 
Lisp> (CALL-OUT-SYS$BINTIM "0 ::5" DELTA) 
1 
Lisp> (SET-TIMER DELTA) 
T 
Lisp> (five seconds pass) "The timer has expired" 

0 

0 

0 

• The external routine SYS$SETIMR is defined. SYS$SETIMR is 
a system service that sets a timer and causes an AST when 
the timer expires. The ASTADR and ASTPRM arguments are Q 
both passed with :MECHANISM :VALUE. 

28 



OBJECT DESCRIPTIONS 

INSTATE-INTERRUPT-FUNCTION Function (cont.) 

O e The externa~ routine SYS$BINTIM is defined. SYS$BINTIM is 
a system service that converts a time specified as a 
string to a binary format acceptable to SYS$SETIMR . 

0 

0 

0 

0 

• The function SET-TIMER is defined. SET-TIMER'S argument 
is the binary-formatted time before a timer should expire. 
SET-TIMER calls INSTATE-INTERRUPT-FUNCTION to instate 
TIMER-INTERRUPT-HANDLER as an interrupt function. The T 
value for :ONCE-ONLY-P requests that the interrupt 
function be uninstated after it executes once. SET-TIMER 
then calls out to SYS$SETIMR, passing the binary time as 
the second argument. The third argument is (and must be) 
the COMMON-AST-ADDRESS parameter; the fourth argument is 
the iii-id returned by INSTATE-INTERRUPT-FUNCTION. 

• The function TIMER-INTERRUPT-HANDLER is defined. 
simply prints a message on the terminal. 

It 

• After the binary format for 5 seconds is stored in DELTA, 
the call to SET-TIMER sets a timer to expire in 5 seconds. 
SET-TIMER returns. Five seconds .later, the timer expires 
and the interrupt function TIMER-INTERRUPT-HANDLER 
executes, printing the message. 

2. The following example shows the use of arguments with 
interrupt functions. The external routines SYS$SETIMR and 
SYS$BINTIM have the same definitions as shown in Example 1. 

Lisp> (DEFUN SET-TIMER (SECONDS) 
(LET ((DELTA 0) 

T) 
SET-TIMER 

(IIF (INSTATE-INTERRUPT-FUNCTiON 
#'TIME-ELAPSED 
:ONCE-ONLY-PT 
:ARGUMENTS (LIST SECONDS)))) 

(CALL-OUT SYS$BINTIM (TIME-STRING SECONDS) DELTA) 
(CALL-OUT SYS$SETIMR NIL DELTA 

COMMON-AST-ADDRESS IIF)) 

Lfsp> (DEFUN TIME-STRING (N) 
(FORMAT NIL "0 : ... D:"'D" (TRUNCATE N 60) (MOD N 60))) 

TIME-STRING. 
Lisp> (DEFUN TIME-ELAPSED (N) 

(FORMAT T 

TIME-ELAPSED 

""'@CR"') second"' :P ... :* ... [have"' ;has ... : ;have"'] -
elapsed since setting the timer" 

N)) 

29 



OBJECT DESCRIPTIONS 

INSTATE-INTERRUPT-FUNCTION Function (cont.) 

Lisp> (SET-TIMER 5) 
T 
Lisp> (five seconds elapse} Five seconds have elapsed since 
setting the timer 

\ 

• The new definition of SET-TIMER accepts an integer 
argument that is the number of seconds to wait (not a 
binary-formatted time). SET-TIMER instates a function 
called TIME-ELAPSED as an interrupt function, requesting 

0 

that one argument (the number of seconds) be passed to 
TIME-ELAPSED. SET-TIMER then calls out to SYS$BINTIM to 
convert the seconds to binary format. (An auxiliary 
function, TIME-STRING, converts the integer argument to a 
string acceptable to SYS$BINTIM. TIME-STRING cannot 
format an argument larger than 3599 seconds properly.) Q 
Finally, SET-TIMER calls out to SYS$SETIMR, passing the 
binary-formatted time (the second argument) and the iif-id 
for TIME-ELAPSED (the fourth argument). 

• The function TIME-ELAPSED is defined. It accepts an 
integer argument and uses FORMAT to print the number of 
seconds represented by that argument. 

• SET-TIMER is called with the argument 5. SET-TIMER 
returns. After 5 seconds elapse, TIME-ELAPSED executes Q 
and prints the formatted message on the terminal, 
including the number of seconds. 

3. The following example shows the use of an interrupt function· 
with a VAX LISP-supplied function. This example works only 
on a VAXstation. 

Lisp> (DEFUN PRINT-BUTTON (BUTTON TRANSITION) 
(WHEN TRANSITION 

(CASE BUTTON 
(#.UIS:POINTER-BUTTON-1 

PRINT-BUTTON 

(PRINC "Left button pressed")) 
(#.UIS:POINTER-BUTTON-2 

(PRINC "Middle button pressed")) 
(#.UIS: POINTER-BUTTON-3.· 

(PRINC "Right button pressed"))))) 

Lisp> (SETF BUTTON-IIF 
(INSTATE-INTERRUPT-FUNCTION #'PRINT-BUTTON)) 

8454171 
Lisp> (UIS:SET-BUTTON-ACTION DISPLAY WINDOW BUTTON-IIF) 
T 
Lisp> (Left button is pressed) Left button pressed 

30 

0 

0 



0 

0 

0 

0 

0 

OBJECT DESCRIPTIONS 

INSTATE-INTERRUPT-FUNCTION Function (cont.) 

• The function PRINT-BUTTON is defined. Depending on its 
arguments, it prints one of three lines on the terminal, 
or it does nothing. 

• PRINT-BUTTONS is instated as an interrupt function. The 
iif-id returned by INSTATE-INTERRUPT-FUNCTION is retained 
as the value of BUTTON-IIF . 

• The function SET-BUTTON-ACTION is called with BUTTON-IIF 
as the third argument. SET-BUTTON-ACTION specifies what 
should happen when a workstation pointer button is pressed 
or released while the pointer cursor is in a specified 
window. If an iif-id is passed as the third argument, the 
associated interrupt function is invoked when a button is 
pressed or released. SET-BUTTON-ACTION causes an 
interrupt function to be passed two arguments: the button 
involved, and Tor NIL to indicate whether the button was 
pressed or released. 

e After SET-BUTTON-ACTION returns, a button is pressed. 
PRINT-BUTTON receives the two arguments passed to it, and 
prints the message on the screen. 

31 



OBJECT DESCRIPTIONS 

UNINSTATE-INTERRUPT-FUNCTION Function· 

Informs LISP that the interrupt function identified by iif-id will no 
longer be used. The iif-id can no longer be given as the astprm 
argument to a routine that can cause an AST. However, 
UNINSTATE-INTERRUPT-FUNCTION does not prevent a routine from causing 
an AST with that iif-id. For example, an external routine that was 
called with that iif-id before the use of UNINSTATE-INTERRUPT-FUNCTION 
might later cause an AST. VAX LISP ignores ASTs for. which the 
corresponding interrupt function has been uninstated .. 

Format 

UNINSTATE-INTERRUPT-FUNCTION iif-id 

Argument 

iif-id 

An interrupt function identifier 
INSTATE-INTERRUPT-FUNCTION. 

Re.turn Value 

Undefined 

previously returned by 

0 

0 

Examples Q 
1. Lisp> (UNINSTATE-INTERRUPT-FUNCTION TIMER-IIF) 

T 

2. 

Makes the interrupt function represented 
unavailable for future use. 

by 

(LET ((BUTTON-IIF (INSTATE-INTERRUPT-FUNCTION 
#'BUTTON-HANDLER))) 

(UIS:SET-BUTTON-ACTION DISPLAY WINDOW BUTTON-IIF) 

(UIS:SET-BUTTON-ACTION DISPLAY WINDOW NIL) 
(UNINSTATE-INT~RRUPT-FUNCTION BUTTON-IIF)) 

TIMER-I IF 

0 

In this code fragment, the interrupt function BUTTON-HANDLER 
is instated and BUTTON-IIF is bound to its iif-id. The first 
call to SET-BUTTON-ACTION establishes BUTTON-HANDLER as the 
function to execute when a workstation pointer button is 
pressed or released. Later, the second call to 
SET-BUTTON-ACTION requests that no action be taken when 
buttons are pressed or released. Finally, Q 
UNINSTATE-INTERRUPT-FUNCTION removes the interrupt function 
represented by BUTTON-IIF from the system. 

32 



OBJECT DESCRIPTIONS 

WAIT Function 

Ocauses the program that calls it to stop executing until a specified 
function returns non-NIL. The first argument to WAIT is a reason for 
waiting, typically a string. The second argument is a function; 
arguments to the function can be provided as additional arguments to 
WAIT. 

A program that calls the WAIT function stops executing. The function 
specified in WAIT's second argument is called periodically with the 
arguments provided in the WAIT call. If the function returns NIL, the 
program continues to wait. When the function returns non-NIL, WAIT 
returns an undefined value, and program execution continues. 

The testing function you specify with WAIT does not execute in the 
context of the program that issued the WAIT. Therefore, the testing 

O function cannot depend on the binding of special variables. You 
should pass the testing function some data structure, such as a cons 
cell, structure, or array. Pass the same data structure to an 
interrupt function that modifies the data structure. Chapter 5 
contains examples of this technique. 

For efficiency and reliability, ensure that the testing function 
executes quickly and does not cause errors. If the testing function 
encounters an error while LISP is in a WAIT state, LISP is left in an 

O inconsistent state and will have to be terminated. For this reason, 
WAIT calls its testing function once before entering the WAIT state. 
Errors that occur on this initial call can be debugged normally. 

Format 

WAIT reason function &REST arguments 

Arguments 

Qr ea son 

The reason for the wait, typically a string. 

function 

A function that will be called periodically to determine if the 
program should continue to wait. 

,arguments 

Arguments to be supplied to the function given in the second 
argument. 

Return Value 

0 Undefined. 

33 



OBJECT DESCRIPTIONS 

WAIT Function (cont.) 

0 Examples 

1. Lisp> (SETF *FLAG* (LIST NIL)) 
(NIL) 

2. 

~isp> (BIND-KEYBOARD-FUNCTION 
#\AF 
#'(LAMBDA() (SETF (CAR *FLAG*) T))) 

Lisp> (WAIT "Wait for CTRL/F" #'CAR *FLAG*) 
(After a pause, user types CTRL/F) 
T 
Lisp> 

• The special variable *FLAG* is set to a list whose only 
element is NIL. 

• CTRL/F is bound to a function that sets the first element O 
of *FLAG* to T. 

• The call to the WAIT function specifies CAR as the testing 
function and *FLAG* as the argument to the testing 
function. WAIT does not return immediately. 

• When the user types CTRL/F, the keyboard function sets the 
first element of *FLAG* to T, the testing function returns O 
T, and the call to WAIT returns. 

The following example uses the definitions 
routines SYS$SETIMR and SYS$BINTIM 
TIME-STRING from Examples 1 and 2 under 
FUNCTION. 

Lisp> (DEFUN SET-TIMER-AND-WAIT (SECONDS) 
( LET* ( ( DELTA O) 

(FLAG (LIST NIL)) 

of the external 
and the function 
INSTATE-INTERRUPT-

(IIF (INSTATE-INTERRUPT-FUNCTION 
#'SET-FLAG 
:ONCE-ONLY-PT 
:ARGUMENTS (LIST FLAG)))) 

(CALL-OUT SYS$BINTIM (TIME-STRING SECONDS) DELTA) 
(CALL-OUT SYS$SETIMR NIL DELTA 

COMMON-AST-ADDRESS IIF) 
(WAIT "Timer wait" #'CAR FLAG)). 

(PRINC "The timer has expired") 
T) 

SET-TIMER-AND-WAIT 
Lisp> (DEFUN SET-FLAG (FLAG) 

(SETF (CAR FLAG) T)) 
SET-FLAG 

34 

0 

0 



OBJECT DESCRIPTIONS 

WAIT Function (cont.) 

0 

0 

0 

0 

0 

Lisp> 
(Five 
T 
Lisp> 

(SET-TIMER-AND-WAIT 5) 
seconds elapse) The timer has expired 

• The function SET-TIMER-AND-WAIT is defined. It binds the 
symbol FLAG to a list whose only element is NIL, then 
causes that list to be passed to the interrupt function 
SET-FLAG as its only argument. SET-TIMER-AND-WAIT then 
calls out to the external routine SYS$SETIMR, specifying 
that the interrupt function SET-FLAG be executed when the 
timer expires. Finally, SET-TIMER-AND-WAIT calls the WAIT 
function, specifying CAR as the testing function and the 
list to which FLAG is bound as the argument to CAR. 

• The function SET-FLAG is defined. It sets the first 
element of the list passed to it to T. 

• SET-TIMER-AND-WAIT is called. It executes as far as the 
WAIT .function call. WAIT does not return until the timer 
expires and causes the first element of FLAG to be set to 
T. 

35 



0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

Page numbers in the Index in the form c-n (for example, 2-13) refer to 
a page in Part I. Page numbers in the form n (for example, 25) refer 
to a page in Part II. 

-A-

Access function, 3-3 
defining field types, 10 
generating, 17 
naming, 14 

:ACCESS keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-11, 22 
Access method, 2-11 
Alien structure 

access function, 3-3 
defining field types, 10 
generating, 17 
naming, 14 

constructor function, 3-3, 3-17 
naming, 14 
specifying an initial value, 

17 
copier function, 3-4, 3-7 

naming, 14 
creating, 3-22 
defining, 3-2, 13 

examples, 3-19 
field 

See Field 
field description 

See Field 
internal storage 

(figure), 3-22 
length, 3-24, 3 
modify, 1 
name, 3-4, 13 
options, 13 
predicate function, 3-4, 3-7 

naming, 14 
print function, 3-4, 3-8 

Alien structure facility, 3-1 to 
3-24 

See also Call out facility 
:ALIEN-DATA-LENGTH keyword 

constructor function, 3-23 

ALIEN-FIELD function, 3-24 
description, 1 

ALIEN-STRUCTURE-LENGTH function, 
3-24 

description, 3 
:ALLOCATION keyword 

constructor function, 3-24 
Argument 

access method, 2-11 
list, 2-4 
passing mechanisms, 2-4, 22 

argument description, 21 
Arguments 

passing to interrupt functions, 
4-6 

:ARGUMENTS keyword 
INSTATE-INTERRUPT-FUNCTION, 4-6 

:ASCIW keyword 
alien structure field type, 

3-11 
:ASCIZ-STRING keyword 

alien structure field type, 
3-11 

AST 
routines that declare, 4-4 

AST address argument 
specifying, 4-8 

AST mechanism, 4-3 
AST parameter argument, 4-4 

passing mechanism for, 4-7 
specifying, 4-8 

Asynchronous events 
and uninstated interrupt 

functions, 4-10 
associating with interrupt 

functions, 4-7 
description, 4-2 
responding to in LISP, 4-1 
routines that cause, 4-4 
waiting for, 5-3 

Index-1 



INDEX 

-B-

BIND-KEYBOARD-FUNCTION 
specifying interrupt level, 5-1 

BIND-KEYBOARD-FUNCTION function 
and interrupt functions, 4-4 

:BIT keyword 
VAX data type, 2-12 

:BIT-VECTOR keyword 
alien structure field type, 

3-11, 16 
BREAK function 

interrupt level for, 5-2 
:BYTE keyword 

VAX data type, 2-12 

-c-

Call-out facility, 2-1 to 2-25 
See also Alien structure 

facility 
examples, 2-21 

CALL-OUT macro, 19 
and asynchronous routines, 4-8 
description, 6 

CALLG VAX instruction, 2-4 
:CHECK-STATUS-RETURN keyword 

DEFINE-EXTERNAL-ROUTINE macro, 
2-8, 2-19, 20 

COMMON-AST-ADDRESS parameter, 8 
using with CALL-OUT, 4-8 

:CONC-NAME keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-6, 14 
Constructor function, 3-3 

keywords, 3-22 
keywords (table), 3-23 
naming, 14 
specifying an initial value, 

3-17, 17 
:CONSTRUCTOR keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-6 I 14 

Copier function, 3-4, 3-7 
naming, 14 

:COPIER keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-7, 14 
Cricital sections 

infinite loops in, 5-3 
Critical sections, 5-2 

debugging, 5-3 

Critical sections (Cont.) 
errors in, 5-3 

CRITICAL-SECTION macro, 9 
using, 5-2 

-D-

:D-FLOATING keyword 
alien structure field type, 

3-11, 16 
VAX data type, 2-12 

Data 
initialization, 2-20 
structure 

internal, 2-14 
VAX, 3-1 

Data types 
alien structure field, 3-10 

See also Field 
alien structures, 3-3 
checking, 2-9, 21 
conversions, 2-14, 3-10, 16 

(table), 2-17 
LISP, 10, 21 

:LISP-TYPE keyword, 2-11 
:RESULT keyword, 2-9 

VAX, 2-12,· 23 
:RESULT keyword, 2-9 
:VAX-TYPE keyword, 2-12 

DEBUG function 
interrupt level for, 5-2 

:DEFAULT keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-17, 17 
DEFINE-ALIEN-FIELD-TYPE macro, 

3-24 
description, 10 

DEFINE-ALIEN-STRUCTURE macro 
defining an alien structure, 

3-2 
description, 13 to 18 
options (table), 13 

DEFINE-EXTERNAL-ROUTINE macro, 6 
and asynchronous routines, 4-7 
argument options (table), 22 
defining external routines, 2-6 
defining system services, 2-18 
description, 19 to 23 
routine options (table), 19 

Descriptor (:OESCR) 
argument-passing mechanism, 22 

Index-2 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

Descriptor (:DESCRIPTlON) 
argument-passing mechanism, 2-4 

Descriptor (:DESCRIPTOR) 
argument-passing mechanism, 

2-11 
Documentation string, 15, 21 
Dynamic memory, 3-24 

-E-

ED function 
interrupt level for, 5-2 

Editor 
interrupt level for, 5-2 

End position 
ALIEN-FIELD function, 1 
field, 3-14, 16 

:ENTRY-POINT keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-8, 20 
Error handler 

calling external routines, 2-19 
Errors 

in critical sections, 5-3 
Events 

asynchronous, see Asynchronous 
events 

External routine 
access method, 22 
alien structures, 3-1 
argument type checking, 2-9 
calling, 2-1, 2-13, 6 

examples, 2-21 
(figure), 2-2 

checking data types, 21 
checking status return, 20 
data initialization, 2-20 
data type conversion, 2-14 

(table), 2-17 
data types, 2-18 
defining, 2-6, 19 

examples, 2-21 
entry point, 2-8, 2-18, 20 
error handler, 2-19 
formal argument 

See formal argument 
description 

image name, 2-9, 2-18, 20 
name, 2-7, 2-18, 19 
options, 2-7, 19 
result data type, 2-9, 21 
status code, 2-19 

External routine (Cont.) 
status return, 2-8 
suspending a LISP system, 2-20 

-F-

:F-FLOATING keyword 
alien structure field type, 

3-11, 16 
VAX data type, 2-12 

Field 
accessing, 3-18, 1 
defining, 3-24 
description, 3-10 
end position, 3-14, 1, 16 
gaps, 3-15, 17 
index, 3-18 
initial value, 3-16, 17 
name, 3-10, 1, 15 
offset, 3-19 
options, 3-16 

(table), 16 
overlapping, 3-15 
repeated, 3-18 
repeating, 17 
setting, 3-18 
start position, 3-14, 1, 16 
type, 3-10, 3-11, 1, 16 

defining, 3-14, 10 
given 

(table), 3-11 
predefined,. 10 

File 
open, 2-21 

:FILE keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

20 
FORCE-INTERRUPT-FUNCTION function, 

24 
Formal argument description, 2-10 
FORTRAN, 2-5 
Functions 

interrupt, see Interrupt 
functions 

-G-

:G-FLOATING keyword 
alien structure field type, 

3-11, 16 
VAX data type, 2-12 

Gaps, 3-15, 17 

Index-3 



INDEX 

GET-INTERRUPT-FUNCTION function, 
25 

-H-

:H-FLOATING keyword 
alien structure field type, 

3-11, 16 
VAX data type, 2-12 

-I-

Image name, 2-18 
:IMAGE-NAME keyword 

DEFINE- macro, 2-9 
Immediate value (:IMMED) 

argument-passing mechanism, 22 
Immediate value (:VALUE) 

argument-passing mechanism, 2-4, 
2-11 

Initialization keyword, 3-22 
Input access (:IN), 2-11, 22 
Input-output access (:IN-OUT), 

2-11, 22 
INSTALL utility, 2-6 
INSTATE-INTERRUPT-FUNCTION 

using, 4-5 
INSTATE-INTERRUPT-FUNCTION 

function, 27 
Interrupt functions, 4-1 

and keyboard functions, 4-4 
and suspended systems, 4-10 
associating with asynchronous 

events, 4-7 
establishing, 4-5 
instating, 4-5 
interrupt level, 4-7 
interrupt levels, 5-1 
overview, 4-2 
passing arguments to, 4-6 

automatically, 4-9 
protecting against interruption 

by, 5-2 
specifying with CALL-OUT, 4-8 
synchronizing execution, 5-3 
uninstating, 4-10 

after single execution, 4-7 
automatically, 4-7 
by SUSPEND, 4-10 

waiting for completion of, 5-3 
Interrupt levels, 5-1 

guidelines, 5-2 

Interrupt levels (Cont.) 
specifying 

interrupt functions, 4-7 

-K-

Keyboard functions 
and suspended systems, 4-10 
interrupt levels, 5-1 
protecting against interruption 

by, 5-2 
relationship to interrupt 

functions, 4-4 
waiting for, 5-3 

Keyboard input 
interrupt level of, 5-2 

-L-

:LEVEL keyword 
INSTATE-INTERRUPT-FUNCTION, 4-7 

LISP 
data type 

See Data types 
program 

calling external routines, 
2-6 

defining alien structure data 
types, 3-1 

:LISP-TYPE keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-11, 22 
Logical names 

errors using, 2-21 
:LONGWORD keyword 

VAX data type, 2-12 

-M-

:MECHANISM keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2 ... 11, 22 
Memory 

dynamic, 3-24 
static, 3-24 

-o-

:OCCURS keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-18, 17 

Index-4 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

:OFFSET keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-19, 17 
:ONCE-ONLY-P keyword 

INSTATE-INTERRUPT-FUNCTION, 4-7 

-P-

:POINTER keyword 
alien structure field type, 

3-12, 16 
Predicate function, 3-4 

naming, 14 
:PREDICATE keyword 

DEFINE-ALIEN-STRUCTURE macro, 
3-8, 14 

Print function, 3-4, 15 
alien structure, 3-8 

:PRINT-FUNCTION keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-8 t 15 
Program section (PSECT), 2-5 

-R-

:READ-ONLY keyword 
DEFINE-ALIEN-STRUCTURE macro, 

3-18, 17 
Reference (:REF) 

argument-passing mechanism, 22 
Reference (:REFERENCE) 

argument-passing mechanism, 2-4, 
2-11 

:RESULT keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-9 t 21 
RET VAX instruction, 2-4 
RMS system services 

See System services 
Routine argument, 6 
Run-time library (RTL) routine, 

2-1, 2-21 

-s-

:SELECTION keyword 
alien structure field type, 16 

SETF macro 
access functions, 3-18 
creating alien structures, 3-3, 

3-15 
with ALIEN-FIELD function, 1 

Share attribute (SHR), 2-5 
Shareable image 

linking, 2-5 
:SIGNED-INTEGER keyword 

alien structure field type, 
3-11, 16 

Start position 
ALIEN-FIELD function, 1 
field, 3-14, 16 

Static memory, 3-24 
Status code, 2-19 
Status return, 2-8, 20 
Storage allocation 

alien structures, 3-24 
:STRING keyword 

alien structure field type, 
3-11, 16 

Suspended systems 
and interrupt functions, 4-10 
and keyboard functions, 4-10 
including calls to external 

routines, 2-20 
System services 

asynchronous completion of, 4-4 
calling, 2-1, 2-18 

examples, 2-24 
defining, 2-18 

examples, 2-24 

-T-

: TEXT keyword . 
alien structure field type, 

3-11 
VAX data type, 2-12 

:TYPE-CHECK keyword 
DEFINE-EXTERNAL-ROUTINE macro, 

2-9 t 21 

-u-

UNINSTATE-INTERRUPT-FUNCTION 
function, 32 

using, 4-10 
:UNSIGNED-BYTE keyword 

VAX data type, 2-12 
:UNSIGNED-INTEGER keyword 

alien structure field type, 
3-11, 16 

:UNSIGNED-LONGWORD keyword 
VAX data type, 2-12 . 

Index-5 



:UNSIGNED-WORD keyword 
VAX data type, 2-12 

-v-

:VARYING-STRING keyword 
alien structure field type, 

3-11 
VAX data type 

See Data types 
VAX Procedure Calling Standard, 

2-1, 2-3 
:VAX-TYPE keyword 

DEFINE-EXTERNAL-ROUTINE macro, 
2-12 

INDEX 

VMS 
linker, 2-5 
system services 

See System services 

-w-

WAIT function, 33 
arguments, 5-3 
testing function 

debugging, 5-4 
guidelines, 5-3 

using, 5-3 
:WORD keyword 

VAX data type, 2-12 
Writable section, 2-5 
Write attribute (WRT), 2-5 

lndex-6 

c 

0 

0 

0 

0 


	Contents
	Preface
	Part I: Guide to system access programming
	1. Overview of system access facilities
	2. Calling external routines
	3. Defining and creating alien structures
	4. Interrupt functions
	5. Interrupt levels, critical sections, and synchronization

	Part II: Object descriptions
	Index



