EARLY HISTORY OF LISP
(1956-1959)

- Herbert Stoyan

~ University of Erlangen

A

Germany

Watpal
7. YLl AT

. Pliian ol oo~
L o128
§. %ﬂ,/ﬁ/’; @) &‘msﬁbﬁ%

tadilor

Z)

Remarks before

- . Why history ?

Do we learn from history ?
Have fun !

How reliable are personal recol-
lections? |

o The problem of viewing things in the per-
spective of the more recent events

Should we prefer written sources to the
writer’s recollections?

If a programis described - does that mean
it is implemented that way?

A
D

Q

Contents

1. A languagé for Artificial Intelli-
gence

2. Steps towards functional program-
ming

‘3. The design of ALGOL

4. The design and realization of
the LISP-Programming system

5. LISP-Theory and LISP-interpreters

A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College

" M. L., Minsky, Harvard University
N. Rochester, I. B. M, Corporation
C.E. Shannon, Bell Telephone Laboratories

August 31, 1955

A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJEcL{ ON ARTIFICIAL INTELLIGENCE

We propose that a 2 month, 10 man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College in Hanove.r. New
Hampaixire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre-
cisely described that a machine can be made to simulate it. An attempt will be
made to find how to make machines use language, form abstractions and concepts,

solve kinds of problems now reserved for humans, and improve themselves. We

)

think that a significant advance can be made in one or more of these problems if
a carefully selected group of scientists work on it together for a summer.
The following are some aspects of the artificial intelligence problem:

1) Automatic Computers

If 2 machine can do a job, then an automatic calculator can
be programmed to simulate the machine. The speeds and
memory capacities of present computers may be insufficient

to simulate many of the higher functions of the human brain,

()
N~

but the major obstacle is not lack of machine capacity, but

our inability to write programs taking full advantage of what

we have.

2) How Can a Computer be Programmed to Use a Language

It may be speculated that a large part of human thought con-

sists of manipulating words according to rules of reasoning

-16-
PROPOSAL FOR RESEARCH BY JOHN MCCARTHY

During next year and during the Summer Research Project on Artificial
Intelligence, I propuse to study the relation of language to intelligence. 'It seems
clear that the direct .pplication of trial and error methods to the relation between
sensory data and motor activity will not lead to any very complicated behavior.
Rather it is necessary for the trial and error methods to be applied at a higher
level of abstraction. The human mind apparently uses language as its means of
handling complicated phenomena. The trial and error processes at a higher level
frequently take the form of formulating conjectures and testing them. 'I:he English
language has a number of properties which every formal language as-typed so far ’ A
lacks.

1. Arguments in English supplemented by informal
mathematics can be concise.

2. English is universal in the sense that it can set
up any other language within English and then
use that language where it is appropriate.

3. The user of English can refer to himself in it
and formulate statements regarding his progress

in solving the problem he is warking on.

4., In addition to rules of proof, English if complete-
ly formulated would have rules of conjecture.

The logical languages so far formulated have either been instruction lists
to make computers carry out calculations specified in advance or else formalizations
of parts of mathe?nafics. The latter have been constructed so as:

1. to be easily described in informal mathematics

2. to allow translation of statements from informal
mathematics into the language. i

3. to make it easy to argue about whether proofs of
certain classes of propositions exist.

)

1.A language for Al

FORTRAN

- algebraic notation for program-
ming -

IPL

- list processing

The geometry
theorem prover project

0 a marriage of FORTRAN
with hst processing

Basicfunctions to access the 704 word:

pJ decrement lt I address l -

Accessfunctions:
XCPRF
XCDRF
XCTRF
XCARF

Constructorfunctions:
| XCOMBA4F
XCOMBS5F

@)

The result:

FLPL
The marriage was a happy one...

But an important problem remained open:

How to unders_tand .things
like XCARF

as functions mapping
integers onto integers?

The driving example
during 1957

O

chess

Proposal of conditional function
O

IF(p,a,b)

- R . -
v Vo decem 2 B s am

= Massachusetts institute of Technology
Cambridge 39, HassaciLusetts

To: P, N, urse

From: J, McCarthy 4

Date: December 13, 1937
SUBJCCT: A PROPOSAL FOR A CCHPILER

ABSTRACT
~ This memoreardum contains the first versioa of
-/ the first two chapters of & proposal for a compiler,
Comments on the points raised co far and complaints "
about ambiguities are earnestly solicited, W"“c‘e‘"
CEAPTER 1
1. Introductiom
The purpose of an sutomatic coding system in scientific
computing is to reduce the elapsed time between the decisiom to make
a computation and getting the results, it can rcake feasible computa-
ticas which, without it, would be too ccmplicated to undertake,
This report describes a proposed new autcastic coding systea
vhich 1 hope will be a sufficient advance over those now availabls or
O soon to be availadble to justify the effcrt of writing the required

translation program. 7he -poéututiona for the system are presented
,S'/\ in sufficisnt detail for evaluation of :ts merits, but would be subject
modification in the course of writinc the traanclation program, A

number of the id presented rave bdeen suggested by the Fortraa
systen the fm propossd Scat s‘?stog for the ;sa 7¢9, and
the Flwmatic system for the mu‘é o sourmnma is mainly "
independent of the machine being used, cxcept that the provisions for vt

referring directly to machine registers and their parts, vhich we
‘&(i believe must be included in any powerful source langusge, have been vork
VJ out only for the IBM 704,
‘{(f In shat follows, underlined te ns are defined by the gentences
in which they occur,
1,1 What is an Automatic Codizg Systen
An automatic coding systan has two parts, These ar?

1. a source language im ~hich procedures for solving

Characteristica
- of the proposed

programming language

1. large set of data types
(numbers, logical types, lists, tables, .
vectors etc.)

2. describing results in terms of inputs
independent of control structure

3. conditional expressions

4. extensibility of the language
~ (abbreviations,
private typing conventions etc.)

5. functions with multiple values N

6. implementation of interpreters
or compilers

7. modification, construction,
compilation and execution
of statements at runtime

OF O

The first notation
for conditional expressions

IF(P, expl':Q, exp2: ...OTHERWISE, ex]

=

Proposal For A Programming Language

General This report gives the tachnical specifications of a programming

languaga proposed by the Ad Hoc Committes on Languagss of the Association
for Computing Machinery. The mambership of this committees is as follows:

J. W. Backus {I.3.M.)

P. H. Desilets (Remington Rand)

D. C. Evang {Bendix Aviation Corp.)

R. Goodman (Westiaghouse)

fn. Huskey (University of Caliiornia)

C. Xatz (Remington Rand)

J. McCarthy (M.1.T.)

A, Orden {Burroughs Corp.)

A. J. Perlis (Carnegis Institute of Technology)
R. Rich {Joaas Hopkina Univeraity)

S. Rosen (Burrougas Corp.)

W. Taranski (Remington Rand)

J. Wegstsin {U. S. Bureau of Standards)

Thoe objactives of the Ad Hoc Committee in designing tha language des-
cribed herein were to provide a language suitable for:

{1y publication of computing procedures in a concise and widely-
understood notation,
and
(2) accurate aad convenient prograrnming of computing procedurea
in 3 languags mechaaicaily tzanglatable into machine programs
for a variety of machines.

it is recognized that certain one~for-one substitulions of one ckaracter-
s2quence for 2nother will oiten bs required to put a proyram written in the pro-
posed language into 38 form mechaaically accepizable b the input equipment of
a given machine.

Certain suobasidiary propesties wars taken {0 be necessary or strongly
22a3irable to satisfy thz twvo main goals 2bove:

o) -
{3) Tae sot Tules raquirved io 3pecify the syatax of the

language should bo kopt a3 briaf and uncomplicatad as
po3sible.

-

)

\

Z

2N AN TR v DWW S SA WA Y S

A GO TO statament may specify some statement other than the cne immae-
diataly following as the statement to be exscuted next. They have the form:

GOTOe

where @ is & designational expression. A designational expression is defined
as follows:

™ cahive
1. The name (a symbol) of an‘s::temont in the program containing
this designation.
2. An expression s{E) where s is a symbol and E is an integer

expression. For each such symbol s there must be a corres-
poading declarative statement.

SMTCH .(.l‘ ‘z, e vep en)

where each 8¢ is a designational 2xpresssion. Thse statement
designated when E has the valus k is that one (if any) desig-

nated by ey,. ({ E = 0or E > n, no statement is designated.
3. An expressioa of the form

(p;—> ey P2—>@2,....,Pg—>83)

|

where each pj is a boolean expresesion and sach e; is 2 desig- |
national expression. The statement desigrated is that one

{(if any) designated by e, where py is the first true exprassion

of p1,P2,++.,Pk- If no p; is true, no statement i3 designated.

When e designates no atatemant, the statement to be executed next is the
onea following "GO TO o' ia the program.

VARY and LOOP Statements

A VARY statement causes a segment of program immaediately following
it to be executed sevaral times, once for each of a number of values of:variablo
given in the VARY statsmant. The s2gment of program to be repeated is ter-
minated by a matching LOOR statement: namely, the first subsequent LOOP satate-
men; which is not the mats of soma other VARY statament. Thus VARY and
LOOP act like left and right parentheses respectively in their role of designating
sagments of program, A VARY siatement bas the following form:

VARY wva=r

whore vis a variabla aad r is a liat of values. A list of values may have ons

This prop_osé.l contains

Conditional Expressions

in the form of:

~arguments of GOTO

Conditional Statements

A ccnditional scatament i3 one which has the arfact °f one of several
givaen s'awxmants in iccosdanve with certain conditions which exist when it is

aacouncered. at aay of rh2 [ollowing imperative stizements be tarmed a

module;

A oeplacament statemeant
A GO TO s.aleimenc

A RTTURN oieiement

A SCCP statsement

A »mrocedure statement

A aubhsiitution stateonani

K]

.

-

C W e NN

~32n corditiunal siatzmants ase ticursively defin=d 23 2ay atatem2ni of the
isllowing foxm:

Pl"'_.’sli PZ""}'SZQ ey Pm'..’ Sm

vihare 2ach P; in 3 boolzan exprzesion and each §; is 2 medule or a conditional

16,

statarcent enclosed in parenthesas.

The effect of a conditional statement is that of the singls statement S;
following the fizst irue boolean e.&prenxon. P, i= L, 2...,m. More preciaely,
the effact of the coaditional statement 'given above, where the name of the
next statement iz NEXT, is the same as that of the following sequence of state-

ments:

GO TO(P =N, P;~N3, .. ., Pri>Np,)
GO TO MEXT

Ny S)

S . GO TO NEXT

N2) S
GO TO NEXT

Npn) Sm

NEXT)

LABCL Statarments

A LABEL statament is a dsclarative statement which asasociates a symbol

{label) with an arbitrary oequence of statements occurring in the program con-
taining the LABEL siatement. The form of a LABZL itatamaent is:

LABEL s{3,, s;)(83,84)... (s2n-1732n)

woere sach 85; | is the nams of A statament and 3itaer each 854 is the name of

o

@,

The result of the
Zurich Meeting:

Conditional expressions

discarded '

But McCarthy proposed

- even more futuristic things.

——-

)

P2l
Eison [t BsGaTE

To Ai-T2 Pixits and W Turansid
i @4
Subject: Some Proposals for the Volume 2 (V2) Language

-

[

1. General: Remarks

1.1 The material that was cut out of Volume 1 and not sub-

scquently restored does not amount to enough to justify a Volume 1 1/2.

Therefore I think we should not try to.producc an immediate report
but should aim after long range goals.

1.2 Our major effort with respect to Yolume 2 should be to
make it possible to change the language within the language. This
may mean h‘aving parts of the compiler under the control of the

——
program a;;object time.

1.3 The problem of compilation has two parts. These are
translation and optimgi;‘lon. The translation rules determine from
the given source program a number of possible translates which will
perform the desired calculation. The optima&aation rules’ selects the
hest of these according ta certain criteria. [think that for now we

should concentrate on the trm{htion problem and leave optimization
/
e
for later: This means that we are interested in general ways of

defining transformation of text that do not’involve scans of alternative

ways of doing the same thing but are of a more straightforward nature.

In order to tackle the trazul;tionéobhm in its barest form

I propose that we consider translations of texts which have a certain

PN

-““»* jr

Rt e
g
e .

——y

Cp ’&aqr_dcftg;w clm thl up:u-mn nottticn wo

) g g -
give an sxam e afs prognm writm both in the oxpuuion notation .
. |

and a not&tton like that of Volume 1. but which has vertical parenthesis.
The advantages of the Volume 1 notation from the human point of

view are clear.

3. Functional Variables, Forms and Flufints
51 Favdionel a :

In V1 any functions which appear are constants, i.e. we never
refer to a function f which is somsetimes sins and :omotimu cosine.
We propose that functional quantities be admitted to Volumse 2, that is
our symbols can represent not merely integers or floating point numbers
or Wmmﬁﬁu but also functions and the function which a symbol
represents can be changed by appropiate statements just as the number
represented by a symbol is changed by the execution of the statements
in a Voiup:o 1 program. For convenience we shall give examples in
an operational notation rather than in the uniform cxpiauion notation
of the previous section. We will describe the kinds of program we want
to admit witixout stopping to propose a way of representing functions in
the computer. Here is a sample program.

-

{ssin
g=f{+ cos
asg (3)
g= g + 3
vk (o)
What is finally printed by this program is sin (3) + cos (3). If
functional quantities are admitted we shall want the following operations

on functions: : A

P . - . - et
Pr O [L. R EE T T >
AR TTY R TR B B rt SR

2. ‘é;m-ﬁolitloa. "1’10“ doﬁnod by (fog) (x) = £{g (x)) is

approp/gnto whenever the domain of £ and the range of g coincide.

3. Abstraction irom forms. Elementary mathematics is
plagued by ambiguity between functions and their valuss. Most
mathematical texts depend upon context to tell the reader which is
meant. In dealing with a computer we must avo.. :his ambiguity

:) and therefore] have chosen to propose that we use the Church lambda
notation. According to Church :z + yz is not a function but a form
in x and y. We can make from it a function by writing ; lambda (x, y)
(x2 + y2). The lambda symbol is a quantifiesand makes x and y into
dummy variables. Thus we have lambda (x, y) (x2 +y?') (3,4,) = 25
and lambda (x, y) (xz + yz) (x+1, y)s (x-l-l)z + y2. This implies
that we must also admit forms into our system and an approégate
collection of operations on them. We will not go into this right now.

4. Operations on functions such as differentation, other
differential operators, and integration. These are defined only when
the functions are represented in certain ways, i.e. one cannot differentiate
a function represented only by a subroutine. Note that the operator D
which takes functions into functions may again be regarded as a wunction
who;e domain and range are spaces of functions. We shall admit to the
system variables whose values are higher order functionoﬁ such as D but
will not guarantee in the preseat system to provide ax,;fila.dgs\;;to set of

quantities of this kind in a first version of the system. Y

~‘;‘f‘§iﬁw - NN N - 1:‘«&&%)

O

This paper contains...

1. the first reference to Lambda-Calculus
made by computer language people

2. the idea of making functions into
first-class datatypes |

3. proposed operations on functions:

a) Basic-functions of value-set

b) symbolmanipulation of expression-
representation

c) composition

4. compiler written in a rule-oriented
manner

People connected with early
LISP-development

@

John McCarthy , Ass. Prof. (Dept.EE)

Steven B.Russell , Programmer (AI Lab.)
Klim Maling , Programmer (AI Lab.)

Robert Brayton , Ph D-Student (Math.Dcpt.)
David C.Luckham , Ph D-Student (Math.Dept.)
David M.R.Park , Ph D-Student (Math.Dept.)

S

Nathaniel Rochester , visiting Prof. (Dept. EE),

O

Early Users

James R.Slagle , Ph D-Student (Math.Dept.)
Paul W.Abrahams , Ph D-Student (Math.Dept.)
Louis Hodes , Ph D-Student (Math.Dept.)

Daniel G.Edwards , undergraduate-Student

(Dept.EE)
Seymor Z.Rubenstein,undergraduate Student

~ (Dept.EE) | |
Solomon H.Goldberg , graduate Student (Dept. EE)

’ /—\\
O

Interested discussants)

* Marvin L.Minsky , Ass. Prof. (Math.Dept.)

Dean Arden , Ass. Prof. (Dept.EE)

- Claude Shannon , Professor (Dept.EE)

Hartley Rogers,Jr., Ass. Prof. (Math.Dept.)

- Roland Silver (Lincoin Labs.)

Alan Tritter (Lincol Labs.)

further rélated people:

Dan Bobrow, Pat Fischer,

T.Kurtz, W.E.Hansalik, W.Lee, V Yngve,
P.Fox, P.Bagley, W.D.Comfort,J.C.McPhersos
M.Levy, L.Sutro, W.Carter, B.Chartres

-/

AN ALGEDRAIC LANGUAGE FOR THE
MANIPULATION OF SYMBOLIC EXPRESSIONS

by John McCarthy

Abstract: This memorandum is an outline of the
specificatlon of an incomplete algebraic languaéo

for manlipulating symbolic expreasions. The incoii-
pletencss lles in the fact that while I am confildznt
that the language so far developed and described hor:
is adcquate and even more convenient than any pro-
vious language for describlng symbolic manipulations,
certaln details of the process have to be explicitly
mentloned 1n some cascs and can be left to the program

in others. Thls memorandum is only an outline and

is slktetchy on some important points.

I. Introduction

First we shall describe the uses to which the language
can be put and the general features that distinguish it
from other languages used for these purposes.

l.1. Applications of the language -

1.1.1. Manipulating sentences in formal languagcs

is necessary for programs that prove theorems and also

for the advice taker project.

1.1.2. " The formal processes of mathematlics such as

algebraic simplification, formal differentiation and

o

B2 e e

-T-
involving the conditional expression is not to be.execubcd.
2.1.4. Locational quantities. A point in the program
may be labelled and the address of such a point (to which
control may be transferred)is called a locational quantity.
The computatioﬁs wlth these quantities 1s limited.
2.1.5. Functional quantities. These will certalnly be
allowed as parameters of subroutines, but their full possi-

bilities might not be explolited in an early system.

2.2 Kinds of Statement

This 1ist is again incomplete.

2.2.1, The arithmetlc (Foftran term) or replacenent
statement is the most lmportant kind. It has the form a=b
where a and b have the following forms:

a has onc of the following forms: ,

1. The name of a variable (we shall not go into
the typographical rules for names at this point.)

2. A(1) where a is the name of a variable which
has been designated as subscriptable and 1 is an integer
expression. (Arrays of more than one dimension may not be
included in the first system,)

3. cwr(i), cpr (1), ctr (1),.car (1), cor (1)
cir (1), cLitr (1,n) or csegr (i,n,m).

In ali the above 1 represents an integer expression
deslignating a register in the machine =2~d (... expresslon
reprecents the contents of a certaln part of that register.,
For cxample, statement beginning car (i) = cauvses a quantibyv
to be computed and stored in the address part of register

leaving the rest of the register unchanged.

-

4/

-8~

The b 1n a statement a=b 13 an arbltrary czpresclon
whose vglue is compatible with the space allotted for 1t.
The recursive rules for the formation of expressions are
similar to those of Fortran or the proposed internatlonal
algebraic language.

2.202. Control is transferred by the "go" statement.
go(e) causes control to be transferred to the location given
by evaluating the locational expression e, (If e is a
conditional expression then transfer of control will be
conditional).

2.2.3. The flexibiiity of the go statement 1s increased
by the "sct" statemént set (A; q;,..., qm) causes &n array
A of sizc to be established whose contents are the quantities
Qyseces Qpe In particular the q's may be locatlional expres-
sions and then the expression A(1) where i is an integer
exovression denotes the 1th of the locational expressions
mentioned.

2.2.4, Subroutines are called to be executed simply
by uriting them and their argumentsas statements. (l.e.,
as in Fortran but without the word CALL.)

2.2.5. Declaratlve sentences. These have the form
I declare (...) where the dots represent a sequence of
assertions of one of the following forms:

1. (a; pl,...,pn)

This causes the expressions P1see<sPp to be
entercd in the property list associated with thc sym-

bol a. Each symbol in the program has such a property

L embt,
MR

-13-

d the deccrement (bits 3-17)
t the tag (bits 18-20)
a the address (bits 21-35)

Corrcsponding to these we have the functlons pic, ind,
sgn, dec, tag and add which extract the corresponding ports
of the arzument word. The result is regarded as an integer
and hcnee is put in the decrement part of the word.

In addition to the above we can get the nth bit of a
word w with the function bit (w,n) and the scgment of bits
from m to n ulth the function seg(u,m,n). (Necdlcss to say

(:) the others ave all speclal cases of seg.) TFor putting a
word together out of parts we have the functions

1. comb l.l(p> d, ﬁ, a) which forwms a word out of ths

) four parts indicoted by Lhe arguments.
+t)a,s,

2. comb 5{s, 1, 4, t a) which forms a word from a
5till wore detailed prescription).

3. choice {c, a_., al,) This forms a word whose nth

o

bit is the nth bit af a, if the nth bit of ¢ is o and is

the ntha bit ?f ay if the nth bit of c is 1.

(i\ 3.2.2. Next we have the reference functions which

o eitract a part of the word in the reglster whose nuier 1s
the argzument, These functions are cur, ;pr, esr, clr, cdp,
ctr, and car. For cxample, car (3) is the 15 bilt quantity
found in the address part of register 3. In additloan we
have cbr'(n,m) which extracts the mth blt of register n and

csgr (n,ml,m2) vhich extracts the segment of bits from ml to

The driving example
during
summer /fall of 1958:

O

_diﬁerehtiation

Importance of recursive functions
and functionals
maplist(list,

variable,
expression)

Highlights of the proposed language:

1. starting from FORTRAN

2. adding new statements:
a)a "set”-statement (A; ql,...,qm)
b)”declarative”-statements (a; p1,...,pn)

3. list processing

a) Basic-functions: cwr,cpr,cdr,ctr,car
b) extracting functions: pre,dec,tag,adr
c) modification functions: stpr,ctdr,sttr,star

d) modification by using basic-functions
O on the left side of assignment stmt.

d) constructorfunctions: comb4, comb5
consw, consel, consls ‘

e) other functions: pointer movement,
erasure etc.

4. no Lambda-notation

5. data types: integers (= addressses !),
registers, truth values, locations,
functions

=ll-

m2 of the word in rcgister number n.

Needlesa to say, these functions are all combinatlons
of the extraction functlons and cur. For cxample, car (n) =
add (cur (n)). |

3.2.3. The storage functions. In thils system storage
in a register can be accomplished in two woys. The simplest
is by uriting statements o one of the forms

cur (=
cpr (=
car (

cir (

%3

-

Q
O
o
Lo T o SR e T o0 YRR o
o’ N’ S’ Nt N N N N

-
-

The second 1s by using one of the functlions stwr, stpe,
stor, stir, otdr, ottr, and star, Each of these has Guo
argunieints, the number of the register into which the datum
1s to be stored and the datum itself., The rest of the word
referrzd to 1s unchanged and the vaiue‘pf the function is the
old conteats of the field feferred to, It is this facllity
for getting the old contents to serve as an argument of'é
further process that gives this second method of storage
some advantages. There are two additlonal storage functions
atbr and stegr of 3 and 4§ argument respectively which store

a slngle bit and a segment.

——

o o
function copy (J) |
/copy = (J=0—=>0, 1}, —>conaw (comb 4{cpr (3), copy
(car(3)), ctr (J7), (cir (J) = O —> car (7), cir(J) = 1
—> consy, {ewr (car (J))), cir (J) = 2 —> copy (car (J))))))

N\ return

@ eciual (L,,L2) = (L, = L, =7 1, cir (11) 4 cir (L)
—> 0, cir (L1) = 0 N\ car (L1) # car (;,2) —>0, cir (L1)
w1l A cur (car(Ll)) 4 cur (car(La))-—?O, car(ll) =2 A =
\equal (cariLl), car (L2)) =20, 1—>equal (cdp;{Ll?, cdr(L2))

-

O @)

- function diff (J)

diff = {ctr(J) = 1 =20, car(J) = "x" —>1, car (J)
= "plus” —> consel("plus"”, maplist(cdr(J),K,diff(K))), car
(3) = "cimes") consel("plus ", maplist (cdr(J),K, co:riel
(“tlmes”, maplist(cdr(d),L,(L = K —> diff(L), L = K —>
copy (L)))))})

reftwun

After difficulties of D.C.Luckham

to implement maplist:

Introduction of

Lambda-notation

maplist(list,A(var,body))

Artificial Intelligence Project---RLZ and MIT Computatisn Center

Symbol Manipulating Language --Memd 2

A REVIS=D VERSION CF "MAPLIST"
by John McCarthy

The version of maplist 1in memd 1 was written “manlist(L,J,f(J):
where J 1s a dummy variable which ranges over the address
parts of the words in the 1ist L and £x r(J) wa2s an
expressioh in J. This version had two serious defects.

First, the 1ocation of the word in which J was stored was
frequently needed. The xme second £x turned up when I tried
to write the SAP progrsm for maplist. The designation of J
as the name 5f the indexing varlable cannot convenlently

<:)be dore in the calling sequence of maplist. Instead we dd
it in specittying the function f using the Church) nstatise
for tuncéianal abetraétian if nocessary. In ;dditiﬁn ts
Athe above mentioned defects the 2 51d version wae‘émbiguoug
16 that it did not séy how words of the three types Qh:uld
Ye trested. o o .

The new maplist 1s written "maplist(L,f)". Its value
18 the location of a list formed froi free storage whose
elz2ments correspond in 2 1-1 w3y with the zlements $f L. The
element of the new lizt which corresponis to the element of
the 51d 1ist in locatiosn J has address part f(J) and

always has indlcator 2. The new maplist thuz ulways

nvadinree 2dzxaxySXIPAXXER 3 118t Of lists. Thils lack =f

diff(L,V) = (car(L)= const—» copy(CO),car(L) = var'-.(car

- (edr(L)) = V- copy(Cl),1— copy(CO)),car(L) = pl s —
coneel(plua,maplist(cdr(L),h(J,dlf’f(car(J)d,V)))),car(L).-_- times—a
coneel(plue,maplist(cdr(L),)(J,consel(tlmes,maplist(cdr(L),

AK, (J¥F K=—scopy(car(K)),1—s difr(car(K),v)))))))))

.

O

Artificial Intelligence Project---RLE and MIT Cowmputation Center
Symbol Manipulating Language---Memo 3---Revisions of the Language
John McCarthy '

This memo supersedes the earlier memoranda of the same
title in almost all matters of detail, but some of the general’
remarks in the first memo are not repeated here and should be
read for an explanation of the motivation for the development o

the language.

1. Representation of Syubolic Expressions by List Structures

The kinds of expression the language is designed to manipu-
late include functional expressions as in elementary calculus,
calculator programs either in machine language or in an algebraic
language such as this one or Fortran, and the expressions for
propositions as they occur in the propositional calculus, the
functional calculi, and other formal languages of mathematical
logic. It should be emphasized that we are presently concerned

".with a language of imperative statements for describing processes

for manipulating such expressions and not with a declarative
language for making assertions about the expressions. The ,
problen of expressing assertions sbout expressions will be. stu-
died later in connection with the advice taker.

The expreasions to be manipulated are represented in the
machine in a special way which facilitates the description of
their manipulation. The translation between the internal repre-

_ sentation and more or less conventional ways of representing

the expressions outside the machine 1s handled by the read and

print programs., The preliminary version of these programs which
18 presently being debugged (Oct. 21, 1958) translates between

the internal notation and a restricted specialized oxternal notztion.
The direction in which the allowed external notation will be
generalized in later versions will be described in connection

with the descriptions of the read and print programs; at present

it seems that very little compromise will be required with the

conventional notations beyond that required by the need to write
expressions linearly with a limited set of characters.
1.1 External form of éxpressions

We shall first describe the regstricted externsl

0
-—u—-

O

)
&

[CLJF 2N
oo ol g

2.
vt

-
-

«
)
.

G

v Do
-— et oy s N

- - .
e Id v
ve Al.;..’sﬂ'.'l

T

[N r- 0 cq v
-.sl h.‘- ‘.b‘)

)

-
ey
S

figplc
- ¢ o

1

)

-
]

A

o™ s
se boat et

-
‘od

C

) Ld
Lt Fu bl
.:lb d.:.

L

in

- ay
Il
LR

?
.o

o
.

2

.
¢
)

Q
r

3]

c 2 ylill

a S

P
v

11

&
iz

petie

all

“‘ L T Thtd

Lt

do o i

i N ¢

s Sew.
(V2

~

S

M
L[]
-

10

L)
18

w

1

v
-

.

1 0138

Ca

e~ de,
X D28 ve ©

i.

I9E9!

Al-Memo 3

1. first usage (10/21/58) of name

LISP

2. simplification of the design
in the light of some experience:

a) work only with address and
decrement

O - e new atom-symbol structure

. consel and consls
clash to CON1S

b) storage and pointer functions dropped

o dead of RPLACA/RPLACD
-forerunner

O

)

yan

\rtirieial Intelligence Project--PLZ end 19T Ccnmutation Ce
3 ¢ 3 - muld nter
Syuiol lianipulating Language--Momo 4--Ravisicns of the Language

John McCarthy

1. Protected tewporary storagse. '

Yhen a routine is defined recursively as are moplist and diff
(that 1g vhen the routine 1tself occurs in the prograa éefining the
routine pertain special prodleas with tewporary storage arise. Spoci-
fically, the execution of the routine as a subroutine of itsalf sakes
use of the same tewporary storage registers. There are a mmﬁer of vays
to avoid a conflict over temporary storage, and after much argument the
following solution has btsen edopted. Those temporary storage reglstei's
v:hich should bde preserved vhsn the routine uses a sudroutine which may

_use the gpbﬁéutine itself, forn:single block of consecutive registers

private to the routime vhich %7 called the block of protected temporary
storage of this routine. ' The register in vhich IR4 is stored is also
included in this block. Except for the register in wvhich IR4 is stored
the routine is required to be transparent to the registers of the dlocks
that is the contents of this dlock wust be the same vhenm the routine
exits as thay wore vhen it vas entered. In order for the routine to
be s*'e to use the registers of the dblock it must save them .befou it
uses thew and festtorc thew aftervards. The situation is them similar
to tho' SHARE convention on IR1 and IR2. They are saved by a routine
vhich puts them.on vhat is called the public push down st or PPOL,
and before the main routine exits they are restored from this list.
The SAVE and UNSAVE routines are used as follows; a program using thes
aight do

SXD BS1,4

TSI SAVE, b

RS141,0,5 v

coe (progran that uses BS2 to RS5)

O Q)

5.10 Sukstitutional functions.”

The valive of a substlitutional functicn applizd ©o
‘a 1list of argunents 1s the resuld of substitutions these
arcunents for the cbjlects on an ordered list of argunents
in a certaln expression contalanlng these arguvments. A
substitutional function 1s represented in the machine by
a %1st structure as shown below,

(q[suorun FS— = | — |

\lfét 0T arijumenis k»aj expr:xgsion
There 1s a routine apply(L,f) whose valve 1+ the
vezult of applying a funetlon to a list of argumeni:z
Tihls routine expects the function £ 1tself to be des
crived by an expression. The kinds of expressions for
functions which apply will interpret has not- been
determined and for the present we shall only consider
the case where car(f)=subfun. Thus our initial version

of apply 1is:

Al-Memo 4

1. description of function
calling conventions (SAVE, UN SAVE)

5
2. some new functions
select, list, search, subst, pair
3. first variant of apply
O?

for ”substitutional” functions

T

O

. \

f) ~20-

2po1y (L, T)=(cai*(£)=subfun—sublis(pair(car(cdir(s)),
L),car(cdr(ccr(f)))},1—error)

This definiltion presents the problem Tthat the 1list
created by the valr has not further use alfter apply has
heen evaluated and 1s not attached to any nawmed variable,

-

herefore unless the compller 1s wmade to inser
0

Ci'
{=e
[
&)
Ci
H
e
0
!

T
tions to erase such auxlliary lists
cermanently from the free storage list.

gtdar manlist.,

A i Bt Py & 30 ., MBS

punber of 21:°:n . 6 1s deslrad Lo scan aver thzae 1ist
I parallel and rnta a neww Lish vhose gleu2nits corradd-
nond Lo uthe ol oy ol shie listoea list buc wiors value is L
slven Dvneoinn L ol 1 liat cowveoapondlng zlomants ol he
Listed Licuo. clooe Cimare Tehows e situuvloa wiiln whe
caleovlaticon Lo vovt way Laroush. 2lue of e oraianry
manllist used in itexding L

o S e T A e m - et

O
\ g

O

Al-Memo 5

(Nat Rochester)

1. first simplification program

2. proposals to simplify notation:

a) for compositions of CAI and cdr
write: C...T

b) format rules

¢ indentation of conditional
expressions

o writing compositions decomposed

3. proposal to name recursive Lambda-
expressions
(name (var), body)

4. revival of REPLACE

Artificizl Intelligsnce ﬂrojecu~~-uLn and MIT Computation Center

Symbol vanLoulatlon Lang guage---iemo 5
by N. Rochester 7 SRS

Table of Contents

page
1l Table of Coutents
2 Introduction
3 Introducticn {cont.)
y Eow to keep the results of a proof
5 subst
6 subfp
T insert
8 canceladdend
.9 czncelfactor
10 rultal
11 =
12 . Pormat rules
13 raplace
OriEE nests of car and cdr
15 car, prad, const, vecurslve defilnition of un~%ional
' abetr:ctiouu
16 factorpalrs
17 paradoxes
18 deletzfunction
19 Geletern .
20 simpfactor f
21 simptimes t
22 sirruainus t alil of %these are
23 celetecancellingterm perts of simd
2% =impaddend g
25 simplus J
26 simp
27 guide to differentiate
28 . differentiate

7
~ /
Yo

O _ql- O 1958 Lov 17

’.!

»'s and cdrls it is necessary to

car{car(J)) = czar(J) ’
car(cd=(J)) = cadr(J)
car(cdr(car{cdr(car{cdr(J))))))=cadadadr(J) etc.

COMPUTATION CENTER

\
|
i
\

. g o3 o [ahie Rk T-s ot it ol Brihuon Citabaiaat st il . P C et g g ‘
f H DR ‘ N |
e . A ;
. A |
" |
i . . vy v v :
- N \
0 N - Ty A N i
. . S ‘
e i
K . |
), ‘
W
. N
| |
- |
|
B |
“ o, ‘
B i
|
.
i L
: |
Y,
i 5
—
1 !
1
:u....d.... RV seamiaman pbeae . .._..u.-,‘
! : ' t ; [
1 4 .
b S o
. " ; i, . s e e - - - —- b et e crame———

3 !

o)

L |
Research and Educational Activities 1. I b

:
{
:

i‘,

SEMI-ANNUAL REPORT L—j NUMBER 4 DECEMBER, 1958

st e

COOPERATING COLLEGES OF NEW ENGLAND

The semi-annual report
of the

MIT-computer center
December 1958

A routine for applying a function to an
argument, where the function is described
by a symbolic expression has been
programmed but ot yet debugged.

This routine will be the basis of an
interpreter.

PRTS
PR
-

T B i W TR e

o ymens B
el

pnk -

N

.

L ek ewmime f e A v

will be used for programming the advice taker system but which is also
of more general use,

During the past 3 months, the project has developed a pro-
gramming language (called LISP) for manipulating symbolic expressions,
and has coded and debugged the major subroutines, The use of electronic
computers for symbolic work, such as formal differentiation and integra-
tion, checking proofs and finding proofs in formal logical systems, and
translating from a source programming language to machine language has
pot been developed as far as the programming of numerical calculation is

concerned, partly because of the non-existence of standard ways of de-
scribing such computations,

Our programming language has been developed as a more or less
pachine-independent way of describing symbolic processing, The language
to date has been described in internal memoranda of the Artificial Intel+-
ligence Project and in a forthcoming Research Laboratory of Electronics
technical report, 1Its main features are:

1, Expressions are represented in the machine by list struc-
tures similar to those used by Newell, Simon, and Shaw in their Informa-
tion Processing Languages,

2, Externally, expressions are represented by sequences written
with parentheses and commas, (TIMES, X, (PLUS,X,1),6(SIN,Y)) is a typical
sequence, corresponding to the elementary form X(X+1)sin(Y).

3. Programs are written in an algebraic form resembling FORTRAN,

4, By the use of conditional expressions and recursive defini-
tions, it 1is possible to describe complicated processes very briefly and
in a way that is natural to use,

5. Functional abstraction as described by Church is used to
convert forms into functions,

At present, routines written in LISP are hand-translated into
SAP, but we expect to begin on a compiler soon, A routine for applying
a function to an argument, where the function is described by a symbolic
expression, has been programmed but not yet debugged, This routine will
be the basis of an interpreter,

A routine for differentiating elementary functions analyti-
cally has been written and will be available for demonstrations as soon
as suitable input-output facilities have been added,

The problem of the gap:

between November 1958 and March 1959
no saved record.

However:

After the Teddington-conference

McCarthy started with writing
| the

universal LISP-function.
And when at all then in this time the
famous event may have happened...

o Steve Russell started handtranslating

some version of the apply function.

o McCarthy drafted his paper
?Recursive Functions...”.

3.1 Representation of S-functions as S-expressions.

The representatid.) is determined by tﬁQFfollowing rules:

1. Constant S-expressions can occur as parts of the
F-expresgions representing S~-functions. An S~expressioné;is
represenﬁed'by the S-expression. (QUOTE,E;)

2. variables and function némes which were represented
by strings of lower c¢ase letters are represented by the cor-
respending strings of the corresponding upper case letters.
Thus we have FIRST, REST and COMBINE. and we shall use X,Y
etc. for variables.

3. A form is represented by an S-expression whose first *
term is the name of the main function and whose remaining terms
are the arguments of the function. Thus combine[first{x];
rest[x]] 1s represented by (COMBINE,(FIRST,X),(REST,X))

4. ‘he null S-expression/|1l9 named NIL. ,
5. e tTuth values 1 5@ O are denoted by T and F.

. The conditidnal expression
is represented by
(CO.ND~(plrel):(szea}v'-":(pk,ek)) |
6. A[[x;...;s];£] is represented by (LAMBDA,(X,...,8); £)
T, label['a ,6} 1s represented by (LABEL.,£)
8. x=y 1s represented by (EQ,X,Y)

S

O Q

3.1 Representation of S-functions as S-expressions.

Trhe representation is determined by the following rules:

1. Constant S-expressions can occur as parts of the
F-ekpréssions representing S~-functions. An S-expressioné;is
represenﬁed'by the S-expression. (QUOTE,E;) '

2. Variables and function némes which were repregented
by strings of lower case letters are represented by the cor-
respending strings of the corresponding upper case letters.
Thus we have FIRST, REST and COMBINE, and we shall use X,Y
etc. for variables.

3. A form is represented by an S-expression whose first

term 15 the name of the main function and whose.remaining terms
are the arguments of. the function. Thus combine[first[xj;

rest{x]] is represented by (COMBINE,(FIRST,X),(REST,X))

b, ‘he null S-e resSion 19 named NIL.

5. 1e trubh.vafp JQ O are denoted by T and F.
The c¢onditidnal expr9551on

WI‘itE[pl"'"’}el, pe"‘eez’ secoy pk k} o .

is represented by
(COND. (py,e1),(Pase5),--=5(py50))
6. xflx,...,s] 5] is represented by (LAMBYA,(X,...,8); 5)
7. labelfa ,6] 1s represented by {LABEL, a,ﬁ)

!

a0 et 1y avearvTOQAMNTAd ey DA Y V) e

¢

' Al-Memo 8

First draft of ” Recursive Functions...”

1. consequent usage of
FIRST, REST and COMBINE
instead of CAR, CDR and CONS.

2. first proposal of QUOTE.

3. M-Language still called ” F-language”.

4. S-Language uses commata.

5. Truth-values in F-language: 1 and 0.

6. first design of translation rules.
between F- and S-expressions.

7. first LISP-interpreter variant.

O o

apply [f,args] = eval[combine[f;args]]
eval[e] = [first[e] = NULL +[null[eval[first[rest[e]]]]* T;

1+ F];

first[e] = ATOM * [atom[eval [first[rest[e]]]]> T;
1+F ;

first[e] = EQ = [eval[first[rest[e]]] = eval[first[rest[rest[e]]]]*> T;
1+ F];

first[e] = QUOTE~+* first[rest[e]];

first[e] = FIRST* first[eval[first[rest[e]]]];

first[e] = REST- rest[eval[first[rest[e]]]]:

first[e] = COMBINE *combine[eval[first[rest[e]]];

eval[first([rest[rest[e]]]]];
first[e] = COND +evcon[rest[e]];
first[first[e]] = LAMBDA +evlam[first[rest[first e]]];
first[rest[rest[first[e]]]]:
rest[e]]:
first[Eirst[e]] = LABEL *eval[combine[subst[first[e];
first[rest[first[e]]];
first[rest[rest[first[e]]]]
rest[e]]]]

evconlc] = [evall[first[first[c]]] = 1-+eval[first[rest[firstfe]]]];
1 +evcon[rest[c]]]
evlaml[vars;exp;args] = [null[vars] -+ evallexp];

1+ evlam[rest[vars];
subst[first[args];first[vars];exp];
rest[args]]]

L I 8 P . T
Progfammepis Manual ;

MIT Artiflcial Intelligehéeafroject

Q

SN

(\/‘,

2,
3,

5.
6.

7.
8.

10.

. MODIFICATIONS

cons{a,d)
consw(w)

copy(L)
equal(Ll,L2)
eralis(L)
erase(L)
waplist(L,f)
Open Subroutines
gearch{L,p,f,u)

apply

3/3/59
3/3/59
3/3/59
3/3/59
3/3/59
3/3/59

- 3/3/59

3/3/59
3/3/59
3/3/59

The first apply-eval

1. substituting call-by-name interpreter.

2. evaluates terms only.
No variables etc.

3. eval not necessary.

4. Errors:.

a) truth-values represented by
T and F.

b) substitution function substitutes
everywhere. |

c) clause for Lambda-expressions
forgotten.

5. McCarthy corrected a)
and first case of b).

The first known interpreter

Q

. deep-binding call-by-value interpreter.

. evaluates terms and variables.

1
2
3. eval contributes heavily.
4

. clauses of eval:
a) variables

b) CONST - constants (S-Exprs).

c) VARC - variables evaluated.

d) VARE - variables to be evaluated.
e) LABEL - evaluate function body.
f) SUB - substituting the A-list.

~ g) INTV - for truth-values.

h) normal term.
i) COND - forgotten.

5. CAR, CDR, CONS separate.
Other: SUBR or EXPR on P-List.

. 3/3
Lisp program for single statement interpreter /
APPLY(P,L,A)=select(car(F);
'1oaPpa(F:Lq‘)3
lambda,eval (caddr(F),append(pair(cadr(F),L),A));
label,apply(caddr(F),L,eppend(pair(cadr(F),caddr
(F)):A))S
apply(eval(P,A),L,A))
EVAL(E,A)=sclect(car(E);
-l,aearch(A,R(J,qaar(J)sﬂJR(J,cadar(J)).error);
- fatv ,scarch(cadr(E),N(J,car(J)=int), (J,cdadr(J)),
& error);
sub,sublis(A,eval(cadr(E),A));
const,cadr(E);
label,eval(ceddr(E),append{pair(cedr(z),caddr(E)),
_ A));
varc,seerch(A,\(J,cadar(J)=cadr(E)), (J,cadar(J)),
error); -
care,gearch(A,A(J,caar(J)=cadr(E)),\(J,eval(cadar(J),
cdr(J)),error);
apply(car(E).maplist(cdr(z).I(J:eval(car(«!).A))),A)) .
APP?(F.L,A)-select(?;car,caar(L).cdr,cdar(L),cons,cona(car(L),cadr(L)):
list,L;null,car(L)™0;aton,caer(L)=-1;
O search(P,A(J,car(J)=sudbrvexpr),
' AJ, (car(J)=subr—app3(F,L,
1—apply(cadr(J),L,A))),
search(A,A\(J,caar(J)=P),A(J,apply(cadar(J),L,A)),

error))

evcon(B,A) = (E=O0—error,eval(caar(E),A)—reval(cader(E),),l—>evcon
(cdr(E),A))

¥arch 3, 1959 Modification number 10

Author: S. Russell

The 2. theoretical apply-eVal

. deep-binding call-by-name interpreter.

_evaluates terms and variables.

eval contributes heavily.

Ag):wt—t

. clauses of eval:
a) variables

b) basic-functions
c¢) LAMBDA-expression

d) LABEL-expression

e) evaluation of arguments for functions
on A-list |

5. APPLY quotes its arguments.

O

Theory behind« practice.

o

XIIl. ARTIFICIAL INTELLIGENCE*

Prof. J. McCarthy D. G. Bobrow D. C. Luckham
Prof. M. L. Minsky R. K. Brayton K. Maling

Prof. N. Rochester! -~ L.. Hodes D. M. R. Park _
Prof. C. E. Shannon L. Kleinrock S. R. Russell
P. W, Abrahams J. R. Slagle

A. THE LISP PROGRAMMING SYSTEM

The purpose of this programming system, called LISP (for LISt Processor), is to
facilitate programming manipulations of symbolic expressions.

The present status of the system may be summarized as follows:

(a) The source language has been developed and is described in several memoranda
from the Artificial Intelligence group.

(b) Twenty useful subroutines have been programmed in LISP, hand-translated into
SAP (symbolic machine language for the IBM 704 computer) and checked out on the
IBM 704. These include routines for reading and printing list structures. '

(c) A routine for differentiating elementary functions has been written. A simple
version has been checked out, and a more complicated version that can differentiate any
function when given a formula for its gradient is almost checked out. .

(d) A universal function apply has been written in L.ISP, hand-translated, and checked
out, Given a symbolic expre_s-;;;: for a LISP function and a list of arguments apply
computes the result of applying the function to the arguments. It can serve as:;-i;xter-

" preter for the system and is being used to check out programs in the LISP language

before translating them to machine language.

(e) Work on a compiler has been started. A draft version has been written in LISP,
and .s being discussed before It is traaslated to machine language or checked ouf with
apply.

(f) The LISP programming system will be shown in this report to be based mathe-

matically on a way of generating the general recursive functions of symbolic expressions.
The mathematical LISP system is described in more detail in Section XIII-D.

B. ENGINEERING CALCULATIONS IN LISP

The application of the List Processing Language to the calculation of properties of
linear passive networks is being studied by N. Rochester, S. Goldberg, C. S. Rubenstein, p
D. J. Edwards, and P. Markstein. A series of programs in List Processing Language 1",

is being written. These will enable the IBM 704 computer to accept a description of a E .

*This work is supported jointly by Research Laboratory of Electronics and the -
Computation Center, M.1.T.

TVisiting Professor of Electrical Engineering, M.L.T.

122

-
7

) |
appl.y[t;args]sevaqcm:mp,ayyqlu b Jhestat) Lon
where

appq [m]=[{null{m] —NIL;T—~cons[list[QUOTE;car [m]] ;appacdr[m]]}]]

- and
eval[e;al=[

atom|[e]-'-eval[assoc[e;a] ;al;

atom[car[e]]~[

car[e]=QUOTE~cadr[e];
" car[e]sATOM-atom[eval[cadr[e];a]];

car[e FEQ-[eval[cadr[e];a)=eval[caddr[e];a]];
car[e]=COND-evcon[cdr[e];a]:
car[e]=CAR—car[eval[cadr[e];a]];

_car[e }:=CDR~cdr[eval[cadr[e];a]];
car[e]=CONS~cons[eval[cadr{e];a];eval[caddr[e];a]];

¢+ T-eval[cons[assoc[car[e];a];evlis[cdr[e];a]]);a]);

caar[e]-LABEL—eval[cons[caddar[e];cdr[e]]:cons][list[cadar[e];car[e];a]];
caar[e FJLAMBDA~eval[caddar[e];append[pair[cadar[e];cdr[e]];a]]]

and
evcon[c;al=[eval[caar[c];a]~eval[cadar[c]);a]; T~evcon[cdr[c];a]]
and - _)
evlis[m;a])=[null[m] ~NIL;T-~cons[list[QUOTE;eval[car[m];a]];
evlis[cdr[m];a]]

(XIII. ARTIFICIAL INTELLIGENCE)

of the words with character information means that the association lists do not them-
selves represent S-expressions, and that only some of the functions for dealing with
S-expressions make sense within an association list.

c. Free-Storage List

At any given time only a part of the memory reserved for list structures will actu-
ally be in use for storing S-expressions. The remaining registers (in our system the
number, initially, is approximately 15, 000) are arranged in a single list called the
free-storage list. A certain register, FREE, in the program contains the location of
the first register in this list. When a word is required to form some additional list
structure, the first word on the free-storage list is taken and the number in register
FREE is changed to become the location of the second word on the free-storage list.

No provision need be made for the user to program the return of registers to the free-
storage list, |

This return takes place automatically, approximately as follows (it is necessary to
give a simplified description of this process in this report): There is a fixed set of
base registers in the program which contains the locations of list structures that are
accessible to the program. Of course, because list structures branch, an arbitfary
number of registers may be involved. Each register that is accessible to the program
is accessible because it can be reached from one or more of the base registers by a
chain of car and cdr operations. When the contents of a base register are changed, it
may happen that the register to which the base register formerly pointed cannot be
reached by a car-cdr chain from any base register. Such a register may be considered
abandoned by the program because itr contents can no longer be found by any possible
program; hence its contents are no longer of interest, and so we would like to have it
back on the free-storage list. This comes about in the following way.

Nothing happens until the program runs out of free storage. When a free register
is wanted, and there is none left on the free-storage list, a reclamation cycle starts.
First, the program finds all registers accessible from the base registers and makes
their signs negative. This is accomplished by starting from each of the base registers
and changing the sign of every register that can be reached from it by a car-cdr chain.
If the program encounters a register in this process which already has a negative sign,
it assumes that this register has already been reached.

After all of the accessible registers have had their signs changed, the program goes
through the area of memory reserved for the storage of list structures and puts all the -
registers whose signs were not changed in the previous step back on the free-storage f
list, and makes the signs of the accessible registers positive again.

This process, because it is entirely automatic, is more convenient for the pro-
grammer than a system in which he has to keep track of and erase unwanted lists. Its

142

N=NETWORK
(LAMBDA» (N)» (CONSs {CONST sNODE) » INODAL» (COR#N) » (INTV»0))))

(LABEL sNODAL » (LAMBDAs (JsK) » (COND s { (NULL #J) 0K) s

(CINTVs1)s (SEARCHsK s (CONST » (LAMBDA» (X) s (EQUAL » {CAR #X) 9

(CAR» {CDR» (CARSJIII)))

(CONST» (LAMBDAs (X)» (NDLISsJeK)))0

(CONST» (LAMBDA s (X) s (NDLISs (CORs»J) s (CONSs (CARs (CDRs (CARDJIII o
K111) -

(LABELoNDLIS» (LAMBDAs (JoK) s (SEARCHIKs (CONST o (LAMBDA (X))
(EQUAL » (CAR#X) s {CARy (COR9 (CDRPICAROJIIII) D)

(CONSTs (LAMBDAs (X) s (NODAL 9 (CDRsJ) 9K}))

(CONSTs (LAMBDA» (X) 9 (NODAL 9 (COR$J) 9 (CONSs» (CAR» {CDR» (CDR

(CAR»JIIDII9KIIDDDD)

aN

	Stoyan-Early_History-Slides_19840001_a
	Stoyan-Early_History-Slides_19840002_a
	Stoyan-Early_History-Slides_19840003_a
	Stoyan-Early_History-Slides_19840004_a
	Stoyan-Early_History-Slides_19840005_a
	Stoyan-Early_History-Slides_19840006_a
	Stoyan-Early_History-Slides_19840007_a
	Stoyan-Early_History-Slides_19840008_a
	Stoyan-Early_History-Slides_19840009_a
	Stoyan-Early_History-Slides_19840010_a
	Stoyan-Early_History-Slides_19840011_a
	Stoyan-Early_History-Slides_19840012_a
	Stoyan-Early_History-Slides_19840013_a
	Stoyan-Early_History-Slides_19840014_a
	Stoyan-Early_History-Slides_19840015_a
	Stoyan-Early_History-Slides_19840016_a
	Stoyan-Early_History-Slides_19840017_a
	Stoyan-Early_History-Slides_19840018_a
	Stoyan-Early_History-Slides_19840019_a
	Stoyan-Early_History-Slides_19840020_a
	Stoyan-Early_History-Slides_19840021_a
	Stoyan-Early_History-Slides_19840022_a
	Stoyan-Early_History-Slides_19840023_a
	Stoyan-Early_History-Slides_19840024_a
	Stoyan-Early_History-Slides_19840025_a
	Stoyan-Early_History-Slides_19840026_a
	Stoyan-Early_History-Slides_19840027_a
	Stoyan-Early_History-Slides_19840028_a
	Stoyan-Early_History-Slides_19840029_a
	Stoyan-Early_History-Slides_19840030_a
	Stoyan-Early_History-Slides_19840031_a
	Stoyan-Early_History-Slides_19840032_a
	Stoyan-Early_History-Slides_19840033_a
	Stoyan-Early_History-Slides_19840034_a
	Stoyan-Early_History-Slides_19840035_a
	Stoyan-Early_History-Slides_19840036_a
	Stoyan-Early_History-Slides_19840037_a
	Stoyan-Early_History-Slides_19840038_a
	Stoyan-Early_History-Slides_19840039_a
	Stoyan-Early_History-Slides_19840040_a
	Stoyan-Early_History-Slides_19840041_a
	Stoyan-Early_History-Slides_19840042_a
	Stoyan-Early_History-Slides_19840043_a
	Stoyan-Early_History-Slides_19840044_a
	Stoyan-Early_History-Slides_19840045_a
	Stoyan-Early_History-Slides_19840046_a
	Stoyan-Early_History-Slides_19840047_a
	Stoyan-Early_History-Slides_19840048_a
	Stoyan-Early_History-Slides_19840049_a
	Stoyan-Early_History-Slides_19840050_a
	Stoyan-Early_History-Slides_19840051_a
	Stoyan-Early_History-Slides_19840052_a
	Stoyan-Early_History-Slides_19840053_a
	Stoyan-Early_History-Slides_19840054_a
	Stoyan-Early_History-Slides_19840055_a
	Stoyan-Early_History-Slides_19840056_a
	Stoyan-Early_History-Slides_19840057_a
	Stoyan-Early_History-Slides_19840058_a
	Stoyan-Early_History-Slides_19840059_a
	Stoyan-Early_History-Slides_19840060_a
	Stoyan-Early_History-Slides_19840061_a
	Stoyan-Early_History-Slides_19840062_a
	Stoyan-Early_History-Slides_19840063_a
	Stoyan-Early_History-Slides_19840064_a
	Stoyan-Early_History-Slides_19840065_a
	Stoyan-Early_History-Slides_19840066_a

