
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??{??, 1993c
 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsAn overview of EuLispJULIAN PADGET� (jap@maths.bath.ac.uk)University of Bath, School of Mathematical Sciences, Bath BA2 7AY, United KingdomGREG NUYENS (nuyens@ilog.com)Ilog Inc., 2073 Landings Drive, Mountain View, CA 94025, USAHARRY BRETTHAUER (bretthauer@gmd.de)German National Research Centre for Computer Science (GMD), P.O.Box 1316, W-5205Sankt Augustin, FRGKeywords: Lisp, modules, concurrency, object-oriented programming, conditions, re-
ection.Abstract. This paper is an abstracted version of the EuLisp de�nition. As such itemphasizes those parts of the language that we consider the most important or note-worthy, while we just mention, without much detail the elements that are included forcompleteness. This is re
ected in the structure of the paper which describes the modulescheme, the object system and support for concurrent execution in the main part andconsigns the majority of the datatypes to an appendix.1. IntroductionEuLisp is a dialect of Lisp and as such owes much to the great body of workthat has been done on language design in the name of Lisp over the lastthirty years. The distinguishing features of EuLisp are (i) the integrationof the classical Lisp type system and the object system into a single classhierarchy (ii) the complementary abstraction facilities provided by the classand the module mechanism (iii) support for concurrent execution.Here is a brief summary of the main features of the language.� Classes are �rst-class objects. The class structure integrates the prim-itive classes describing fundamental datatypes, the prede�ned classesand user-de�ned classes.� Modules together with classes are the building blocks of both theEuLisp language and of applications written in EuLisp. The module�This work has been supported by too many organisations and programmes to namethem individually here, although special mention should be made of the Commissionof the European Communities and Jean Omnes of DG XIII (Information technologydirectorate). A complete list of acknowledgements appears in Section 11

2 PADGET, NUYENS, BRETTHAUERsystem exists to limit access to objects by name. That is, modulesallow for hidden de�nitions. Each module de�nes a fresh, empty,lexical environment.� Multiple control threads can be created in EuLisp and the concur-rency model has been designed to allow consistency across a widerange of architectures. Access to shared data can be controlled vialocks (semaphores). Event-based programming is supported througha generic waiting function.� Both functions and continuations are �rst-class in EuLisp, but thelatter are not as general as in Scheme because they can only be usedin the dynamic extent of their creation. That implies they can onlybe used once.� A condition mechanism which is fully integrated with both classesand threads, allows for the de�nition of generic handlers and whichsupports both propagation of conditions and continuable handling.� Dynamically scoped bindings can be created in EuLisp, but theiruse is restricted, as in Scheme. EuLisp enforces a strong distinc-tion between lexical bindings and dynamic bindings by requiring themanipulation of the latter via special forms.EuLisp does not claim any particular Lisp dialect as its closest relative,although parts of it were in
uenced by features found in Common Lisp,InterLISP, LE-LISP, LISP/VM, Scheme, and T. EuLisp both introduces newideas and takes from these Lisps. It also extends or simpli�es their ideasas necessary. But this is not the place for a detailed language comparison.That can be drawn from the rest of this text.EuLisp breaks with LISP tradition in describing all its types (in fact,classes) in terms of an object system. This is called The EuLisp ObjectSystem, or TELOS. TELOS incorporates elements of the Common Lisp ObjectSystem (CLOS) [2], ObjVLisp [7], Oaklisp [9], MicroCeyx [5], and MCS [3].1.1. Language StructureThe EuLisp de�nition comprises the following items:Level-0 comprises all the level-0 functions, macros and special forms,which is this text minus Appendix B. The object system can beextended by user-de�ned structure classes, and generic functions.Level-1 extends level-0 with the functions, macros and special forms de-�ned in Appendix B. The object system can be extended by user-

AN OVERVIEW OF EuLisp 3de�ned classes and metaclasses. The implementation of level-1 is notnecessarily written or writable as a conforming level-0 program.A level-0 function is a (generic) function de�ned in this text to be partof a conforming processor for level-0. A function de�ned in terms of level-0operations is an example of a level-0 application.Much of the functionality of EuLisp is de�ned in terms of modules.These modules might be available (and used) at any level, but certainmodules are required at a given level. Whenever a module depends on theoperations available at a given level, that dependency will be speci�ed.EuLisplevel-0 is provided by the module eulisp-level-0. This moduleimports and re-exports the modules speci�ed in Table 1.Table 1: Modules comprising eulisp-level-0Module Section(s)character A.1collection A.2compare A.3condition 9convert A.4copy A.5double-float A.6elementary-functions A.7event 10.7fixed-precision-integer A.9formatted-io A.8function 10.3lock 8.2null A.10number A.11object-0 7pair A.12stream A.13string A.14symbol A.15syntax-0 10.8table A.16thread 8.1vector A.17

4 PADGET, NUYENS, BRETTHAUERThis de�nition is organized in three parts:Sections 5{10 describes the core of level-0 of EuLisp, covering modules,simple classes, objects and generic functions, threads, conditions, con-trol forms and events. These sections contain the information aboutEuLisp that characterizes the language.Appendix A describes the additional classes required at level-0 and theoperations de�ned on instances of those classes. The appendix isorganized by class in alphabetical order. These sections contain in-formation about the prede�ned classes in EuLisp that are necessaryto make the language usable, but is not central to an appreciation ofthe language.Appendix B describes the re
ective aspects of the object system andhow to program the metaobject protocol and some additional con-trol forms.Prior to these, sections 2{4 de�ne the scope of the text and error de�nitionsand typographical and layout conventions used in this text.2. ScopeThis text speci�es the syntax and semantics of the computer programminglanguage EuLisp by de�ning the requirements for a conforming EuLispprocessor and a conforming EuLisp program (the textual representation ofdata and algorithms).This text does not specify:1. The size or complexity of a EuLisp program that will exceed thecapacity of any speci�c con�guration or processor, nor the actions tobe taken when those limits are exceeded.2. The minimal requirements of a con�guration that is capable of sup-porting an implementation of a EuLisp processor.3. The method of preparation of a EuLisp program for execution or themethod of activation of this EuLisp program once prepared.4. The method of reporting errors, warnings or exceptions to the clientof a EuLisp processor.5. The typographical representation of a EuLisp program for humanreading.

AN OVERVIEW OF EuLisp 56. The means to map module names to the �ling system or other objectstorage system attached to the processor.To clarify certain instances of the use of English in this text the followingde�nitions are provided:must a verbal form used to introduce a required property. All conformingprocessors must satisfy the property.should A verbal form used to introduce a strongly recommended property.Implementors of processors are urged (but not required) to satisfy theproperty.3. Error De�nitionsErrors in the language described in this de�nition fall into one of the fol-lowing three classes:dynamic error: An error which is detected during the execution of aEuLisp program or which is a violation of the de�ned dynamic behaviourof EuLisp. Dynamic errors have two classi�cations:1. Where a conforming processor is required to detect the erroneous sit-uation or behaviour and report it. This is signi�ed by the phrasean error is signalled. The condition class to be signalled is speci-�ed. Signalling an error consists of identifying the condition classrelated to the error and allocating an instance of it. This instanceis initialized with information dependent on the condition class. Aconforming EuLisp program can rely on the fact that this conditionwill be signalled.2. Where a conforming processor might or might not detect and reportupon the error. This is signi�ed by the phrase : : : is an error. Aprocessor should provide a mode where such errors are detected andreported where possible.environmental error: An error which is detected by the con�gurationsupporting the EuLisp processor. The processor must signal the corre-sponding dynamic error which is identi�ed and handled as described above.static error: An error which is detected during the preparation of a Eu-Lisp program for execution, such as a violation of the syntax or staticsemantics of EuLisp by the program under preparation.

6 PADGET, NUYENS, BRETTHAUERNOTE | The violation of the syntactic or static semantic requirements is notan error, but an error might be signalled by the program performing the analysisof the EuLisp program.All errors speci�ed in this de�nition are dynamic unless explicitly statedotherwise.4. ConventionsThis section de�nes the conventions employed in this text, how de�nitionswill be laid out, the typeface to be used, the meta-language used in de-scriptions and the naming conventions. Appendix (C) contains a glossaryof de�nitions used in this text.4.1. Layout and TypographyBoth layout and fonts are used to help in the description of EuLisp. Alanguage element is de�ned as an entry with its name as the heading of aclause, coupled with its classi�cation. Examples of several kinds of entryare now given. Some subsections of entries are optional and are only givenwhere it is felt necessary.a-special-form special formSyntax(a-special-form form1 : : : formn)Argumentsform1 : description of structure and rôle of form1....formn : description of structure and rôle of formn.ResultA description of the result.RemarksAny additional information de�ning the behaviour of a-special-form.ExamplesSome examples of use of the special form and the behaviour that shouldresult.

AN OVERVIEW OF EuLisp 7See also:Cross references to related entries.a-function functionArgumentsargument-a : information about the class or classes of argument-a....[argument-n] : information about the class or classes of the optional argu-ment argument-n.ResultA description of the result and, possibly, its class.RemarksAny additional information about the actions of a-function.ExamplesSome examples of calling the function with certain arguments and theresult that should be returned.See also:Cross references to related entries.a-generic generic functionGeneric Arguments(argument-a <class-a>) : means that argument-a of a-generic must bean instance of <class-a> and that argument-a is one of the argumentson which a-generic specializes. Furthermore, each method de�nedon a-generic may specialize only on a subclass of <class-a> forargument-a....argument-n : means that (i) argument-n is an instance of <object>, i.e. itis unconstrained, (ii) a-generic does not specialize on argument-n,(iii) no method on a-generic can specialize on argument-n.

8 PADGET, NUYENS, BRETTHAUERResultA description of the result and, possibly, its class.RemarksAny additional information about the actions of a-generic. This willprobably be in general terms, since the actual behaviour will be determinedby the methods.See also:Cross references to related entries.a-generic method(A method on a-generic with the following specialized arguments.)Specialized Arguments(argument-a <class-a>) : means that argument-a of the method must bean instance of <class-a>. Of course, this argument must be onewhich was de�ned in a-generic as being open to specialization and<class-a> must be a subclass of the class....argument-n : means that (i) argument-n is an instance of <object>, i.e. itis unconstrained, (ii) a-generic does not specialize on argument-n,(iii) no method on a-generic can specialize on argument-n.ResultA description of the result and, possibly, its class.RemarksAny additional information about the actions of this method attached toa-generic.See also:Cross references to related entries.

AN OVERVIEW OF EuLisp 9<a-condition> a-condition-superclassInit-optionsinitarg-a value-a : means that an instance of <a-condition> has a slotcalled initarg-a which should be initialized to value-a, where value-a is often the name of a class, indicating that value-a should be aninstance of that class and a description of the information that value-a is supposed to provide about the exceptional situation that hasarisen....initarg-n value-n : As for initarg-a.RemarksAny additional information about the circumstances in which the condi-tion will be signalled.<class-name> classInit-optionsinitarg-a value-a : means that <class-name> has an initarg whose nameis initarg-a and the description will usually say of what class (orclasses) value-a should be an instance. This initarg is required....[initarg-n value-n] : The enclosing square brackets denote that this ini-targ is optional. Otherwise the interpretation of the de�nition is asfor initarg-a.RemarksA description of the rôle of <class-name>.4.2. Meta-LanguageThe terms used in the following descriptions are de�ned in Appendix C.A standard function denotes an immutable top-lexical binding of thede�ned name. All the de�nitions in this text are bindings in some moduleexcept for the special form operators, which have no de�nition anywhere.All bindings and all the special form operators can be renamed.

10 PADGET, NUYENS, BRETTHAUERNOTE | A description making mention of \an x" where \x" is the name aclass usually means \an instance of <x>".Frequently, a class-descriptive name will be used in the argument list ofa function description to indicate a restriction on the domain to which thatargument belongs. In the case of a function, it is an error to call it with avalue outside the speci�ed domain. A generic function can be de�ned witha particular domain and/or range. In this case, any new methods mustrespect the domain and/or range of the generic function to which they areto be attached. The use of a class-descriptive name in the context of ageneric function de�nition de�nes the intention of the de�nition, and is notnecessarily a policed restriction.If it is required to indicate repetition, the notation: expression� andexpression+ will be used for zero or more and one or more occurrences,respectively. The arguments in some function descriptions are enclosed insquare brackets|graphic representation \[" and \]". This indicates thatthe argument is optional. The accompanying text will explain what defaultvalues are used.The result-class of an operation, except in one case, refers to a prim-itive or a de�ned class described in this de�nition. The exception is forpredicates. Predicates are de�ned to return either the empty list|written()|representing the boolean value false, or any value other than (), rep-resenting true. Although the class containing exactly this set of values isnot de�ned in the language, notation is abused for convenience and booleanis de�ned, for the purposes of this report, to mean that set of values. If thetrue value is a useful value, it is speci�ed precisely in the description of thefunction.5. SyntaxCase is distinguished in each of characters, strings and identi�ers, so thatvariable-name and Variable-name are di�erent, but where a characteris used in a positional number representation (e.g. \#x3Ad) the case isignored. Thus, case is also signi�cant in this de�nition and, as will beobserved later, all the special form and standard function names are lowercase. In this section, and throughout this text, the names for individualcharacter glyphs are those used in ISO/IEC DIS 646:1990.The minimal character set to support EuLisp is de�ned in Table 2. Thelanguage as de�ned in this text uses only the characters given in this table.Thus, left hand sides of the productions in this table de�ne and namegroups of characters which are used later in this de�nition: digit, upper,lower, other, special and alpha.

AN OVERVIEW OF EuLisp 11Table 2: Minimal character setdigit ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9upper ::= A j B j C j D j E j F j G j H j I j J j K j L j M jN j O j P j Q j R j S j T j U j V j W j X j Y j Zlower ::= a j b j c j d j e j f j g j h j i j j j k j l j m jn j o j p j q j r j s j t j u j v j w j x j y j zother ::= * j / j < j = j > j j + j - j .special ::= ; j ' j , j \ j " j # j (j) j ` jalert j backspace j delete j formfeed j linefeed j newlinereturn j space j tab j vertical-tabalphc ::= upper j lower5.1. Whitespace and CommentsWhitespace characters are space and newline. The newline characteris also used to represent end of record for con�gurations providing suchan input model, thus, a reference to newline in this de�nition should alsobe read as a reference to end of record. The only use of whitespace is toimprove the legibility of programs for human readers. Whitespace separatestokens and is only signi�cant in a string or when it occurs escaped withinan identi�er.A comment is introduced by the comment-begin glyph, called semicolon(;) and continues up to, but does not include, the end of the line. Hence, acomment cannot occur in the middle of a token because of the whitespacein the form of the newline. Thus a comment is equivalent to whitespace.NOTE | There is no notation in EuLisp for block comments.5.2. ObjectsThe syntax of the classes of objects that can be read by EuLisp is de�nedin the section of this de�nition corresponding to the class:<character> (A.1), <double-float> (A.6),<fixed-precision-integer> (A.9), <null> (A.10),<cons> (A.12), <string> (A.14),<symbol> (A.15), <vector> (A.17).The syntax for identi�ers corresponds to that for symbols.

12 PADGET, NUYENS, BRETTHAUER6. ModulesThe EuLisp module scheme has several in
uences: LeLisp's module sys-tem and module compiler (complice), Haskell, ML [10], MIT-Scheme'smake-environment and T's locales.All bindings of objects in EuLisp reside in some module somewhere.Also, all programs in EuLisp are written as one or more modules. Almostevery module imports a number of other modules to make its de�nitionmeaningful. These imports have two purposes, which are separated in Eu-Lisp: �rstly the bindings needed to process the syntax in which the moduleis written, and secondly the bindings needed to resolve the free variablesin the module after syntax expansion. These bindings are made accessibleby specifying which modules are to be imported for which purpose in a di-rective at the beginning of each module. The names of modules are boundin a disjoint binding environment which is only accessible via the modulede�nition form. That is to say, modules are not �rst-class. The body ofa module de�nition comprises a list of directives followed by a sequence ofde�nitions, expressions and export forms.The module mechanism provides abstraction and security in a form com-plementary to that provided by the object system. Indeed, although objectsdo support data abstraction, they do not support all forms of informationhiding and they are usually conceptually smaller units than modules. Amodule de�nes a mapping between a set of names and either local or im-ported bindings of those names. Most such bindings are immutable. Theexception are those bindings created by deflocal which may be modi�edby both the de�ning and importing modules. There are no implicit importsinto a module|not even the special forms are available in a module thatimports nothing. A module exports nothing by default. Mutually referen-tial modules are not possible because a module must be de�ned before itcan be used. Hence, the importation dependencies form a directed acyclicgraph.NOTE | The issue of mutually referential modules will be addressed in a futureversion of the full de�nition of EuLisp.The processing of a module de�nition uses three environments, whichare initially empty. These are the top-lexical, the external and the syntaxenvironments of the module. The top-lexical environment comprises allthe locally de�ned bindings and all the imported bindings. The externalenvironment comprises all the exposed bindings|bindings from modulesbeing exposed by this module but not necessarily imported|and all theexported bindings, which are either local or imported. Thus, the externalenvironment might not be a subset of the top-lexical environment because,by virtue of an expose directive, it can contain bindings from modules

AN OVERVIEW OF EuLisp 13which have not been imported. This is the environment received by anymodule importing this module. The syntax environment comprises all thebindings available for the syntax expansion of the module. Each binding isrepresented as a pair of a local-name and a module-name. It is a static errorif any two instances of local-name in any one of these environments havedi�erent module-names. This is called a name clash. These environmentsdo not all need to exist at the same time, but it is simpler for the purposesof de�nition to describe module processing as if they do.6.1. DirectivesThe list of module directives is a sequence of keywords and forms, wherethe keywords indicate the interpretation of the forms. This representationallows for the addition of further keywords at other levels of the de�nitionand also for implementation-de�ned keywords. For the keywords given here,there is no de�ned order of appearance, nor is there any restriction on thenumber of times that a keyword can appear. Multiple occurrences of any ofthe directives de�ned here are treated as if there is a single directive whoseform is the combination of each of the occurrences. This de�nition describesthe processing of four keywords, which are now described in detail. Thesyntax of all the directives is given in Table 3 and an example of their useappears in Figure 1.6.1.1. Export DirectiveThis is denoted by the keyword export followed by a list of names oftop-lexical bindings de�ned in this module and has the e�ect of makingthose bindings accessible to any module importing this module by addingthem to the external environment of the module. A name clash can arisein the external environment from interaction with exposed modules.6.1.2. Import DirectiveThe purpose of this directive is to specify the imported bindings whichconstitute part of the top-lexical environment of a module. These are theexplicit run-time dependencies of the module. Additional run-time depen-dencies may arise as a result of syntax expansion. These are called implicitrun-time dependencies.The import directive is a sequence of module-descriptors, being modulenames or the �lters except, only and rename, which denotes the unionof all the names generated by each element of the sequence. A �lter can,in turn, be applied to a sequence of module descriptors, and so the e�ectof di�erent kinds of �lters can be combined by nesting them. An importdirective speci�es either the importation of a module in its entirety or the

14 PADGET, NUYENS, BRETTHAUER(defmodule a-module(import(module-1 ;;import everything from module-1(except (binding-a) module-2) ;;all but binding-a from module-2(only (binding-b) module-3) ;;only binding-b from module-3(rename((binding-c binding-d) ;;all of module-4, but exchange(binding-d binding-c)) ;;the names of binding-c andmodule-4)) ;;binding-dsyntax(syntax-module-1 ;;all of the module syntax-module-1(rename((syntax-a syntax-b)) ;;rename the binding of syntax-asyntax-module-2) ;;of syntax-module-2 as syntax-b(rename((syntax-c syntax-a)) ;;rename the binding of syntax-csyntax-module-3)) ;;of syntax-module-3 as syntax-aexpose((except (binding-e) module-5) ;;all but binding-e from module-5module-6) ;;export all of module-6export(local-binding-1 ;;and three bindings from this modulelocal-binding-2local-binding-3))...(export local-binding-4) ;;a fourth binding from this module...(export binding-c) ;;the imported binding binding-c...) Figure 1: Example of module directivesselective importation of speci�ed bindings from a module.In processing import directives, every name should be thought of as a pairof a module-name and a local-name. Intuitively, a namelist of such pairs isgenerated by reference to the module name and then �ltered by except,only and rename. In an import directive, when a namelist has been �ltered,the names are regarded as being de�ned in the top-lexical environment ofthe module into which they have been imported. A name clash can arisein the top-lexical environment from interaction between di�erent imported

AN OVERVIEW OF EuLisp 15modules. Elements of an import directive are interpreted as follows:except Filters the names from each module-descriptor discarding thosespeci�ed and keeping all other names. The except directive is conve-nient when almost all of the names exported by a module are required,since it is only necessary to name those few that are not wanted toexclude them.module-name All the exported names from module-name.only Filters the names from each module-descriptor keeping only thosenames speci�ed and discarding all other names. The only directive isconvenient when only a few names exported by a module are required,since it is only necessary to name those that are wanted to includethem.rename Filters the names from each module-descriptor replacing those withold-name by new-name. Any name not mentioned in the replacementlist is passed unchanged. Note that once a name has been replaced thenew-name is not compared against the replacement list again. Thus,a binding can only be renamed once by a single rename directive. Inconsequence, name exchanges are possible.6.1.3. Expose DirectiveThis is denoted by the keyword expose followed by a list of module-directives. The purpose of this directive is to allow a module to exportsubsets of the external environments of various modules without importingthem itself. Processing an expose directive employs the same model asfor imports, namely, a pair of a module-name and a local-name with thesame �ltering operations. When the namelist has been �ltered, the namesare added to the external environment of the module begin processed. Aname clash can arise in the external environment from interaction withexports or between di�erent exposed modules. As an example of the useof expose, a possible implementation of the eulisp-level-0 module isshown in Figure 2.It is also meaningful for a module to include itself in an expose directive.In this way, it is possible to refer to all the bindings in the module beingde�ned. This is convenient, in combination with except (see Section 6.1.2),as a way of exporting all but a few bindings in a module, especially ifsyntax expansion creates additional bindings whose names are not known,but should be exported.

16 PADGET, NUYENS, BRETTHAUER(defmodule eulisp-level-0(expose(character collection compare condition convert copydouble-float elementary-functions event formatted-iofixed-precision-integer function lock null number object-0pair stream string symbol syntax-0 table thread vector)))Figure 2: Example module using expose6.1.4. Syntax DirectiveThis directive is processed in the same way as an import directive, exceptthat the bindings are added to the syntax environment. This environmentis used in the second phase of module processing (syntax expansion). Theseconstitute the dependencies for the syntax expansion of the de�nitions andexpressions in the body of the module. A name clash can arise in the syntaxenvironment from interaction between di�erent syntax modules.It is important to note that special forms are considered part of thesyntax and they may also be renamed.6.2. De�nitions and ExpressionsDe�nitions in a module only contain unquali�ed names|that is, local-names, using the above terminology. A top-lexical binding is created ex-actly once and shared with all modules that import its exported namefrom the module that created the binding. A name clash can arise in thetop-lexical environment from interaction between local de�nitions and be-tween local de�nitions and imported modules. Only top-lexical bindingscreated by deflocal are mutable|both in the de�ning module and in anyimporting module. It is a static error to modify an immutable binding.Expressions, that is non-de�ning forms, are collected and evaluated in or-der of appearance at the end of the module de�nition process when thetop-lexical environment is complete|that is after the creation and initial-ization of the top-lexical bindings. The exception to this is the progn form,which is descended and the forms within it are treated as if the progn werenot present. De�nitions may only appear either at top-level within a mod-ule de�nition or inside any number of progn forms. This is speci�ed moreprecisely in the grammar for a module given in Table 3.6.3. Module ProcessingThe following steps summarize the module de�nition process:

AN OVERVIEW OF EuLisp 17directive processing This is described in detail in Section 6.1. This stepcreates and initializes the top-lexical, syntax and external environ-ments.syntax expansion The body of the module is expanded according to theoperators de�ned in the syntax environment constructed from thesyntax directive.NOTE | The semantics of syntax expansion are still under discussion andwill be described fully in a future version of the full EuLisp de�nition. Inoutline, however, it is intended that the mechanism should provide for hy-genic expansion of forms in such a way that the programmer need have noknowledge of the expansion-time or run-time dependencies of the syntaxde�ning module.static analysis The expanded body of the module is analyzed. Namesreferenced in export forms are added to the external environment.Names de�ned by de�ning forms are added to the top-lexical envi-ronment. It is a static error, if a free identi�er in an expression orde�ning form does not have a binding in the top-lexical environment.NOTE |Additional implementation-de�ned steps may be added here, suchas compilation.initialization The top-lexical bindings of the module (created above) areinitialized by evaluating the forms in the body of the module in theorder they appear.NOTE | In this sense, a module can be regarded as a generalization of thelabels form of this and other Lisp dialects.6.4. Module De�nitiondefmodule syntaxSyntax(defmodule module-name (module-directive�) module-form�)The syntax of the elements of a module is given in Table 3.Argumentsmodule-name : A symbol used to name the module.module-directive : A form specifying the exported names, exposed modules,imported modules and syntax modules used by this module.module-form� : A sequence of de�ning forms, expressions and export forms.

18 PADGET, NUYENS, BRETTHAUERTable 3: Module syntaxmodule-name ::= identi�ermodule-directive ::= export j expose j import j syntaxmodule-form ::= export-form j level-0-expression j de�ning-formj (progn module-form)export ::= export (identi�er�)expose ::= expose (module-descriptor�)import ::= import (module-descriptor�)syntax ::= syntax (module-descriptor�)export-form ::= (export identi�er�)module-descriptor ::= module-name j module-�ltermodule-�lter ::= except j only j renameexcept ::= (except (identi�er�) module-descriptor+)only ::= (only (identi�er�) module-descriptor+)rename ::= (rename (rename-pair�) module-descriptor+)rename-pair ::= (old-identi�er new-identi�er)RemarksThe defmodule form de�nes a module named by module-name and asso-ciates the name module-name with a module object in the module bindingenvironment.NOTE | Intentionally, nothing is de�ned about any relationship between mod-ules and �les.ExamplesAn example module de�nition with explanatory comments is given inFigure 1.7. ObjectsIn EuLisp, every object in the system has a speci�c class. Classes them-selves are �rst-class objects. In this respect EuLisp di�ers from statically-typed object-oriented languages such as C++ and �CEYX. The EuLispobject system is called TELOS. The facilities of the object system are splitacross the two levels of the de�nition. Level-0 supports the de�nition ofgeneric functions, methods and structures. Level-1 provides the re
ectivesystem which supports the meta-object protocol (MOP), introspection, thede�nition of new metaclasses and the specialization of classes other thanstructures. Metaclasses control the structure and behaviour of their in-stances and the representation of their metainstances. Extensions at level-1,

AN OVERVIEW OF EuLisp 19such as multiple inheritance, support for the change-class functionalityof CLOS, and persistent objects can be supported through metaclasses. Inaddition, metaclasses can provide new kinds of classes with reduced powerbut increased e�ciency; the class <structure-class> is an example. Nometaclass nor any operation which could return a metaclass as a result,e.g. class-of, are accessible at level-0. That supports the clear distinc-tion between object level and metaobject level programming required formany optimizations.Programs written using TELOS typically involve the design of a classhierarchy, where each class represents a category of entities in the problemdomain, and a protocol, which de�nes the operations on the objects in theproblem domain.A class de�nes the structure and behaviour of its instances. Structure isthe information contained in the class's instances and behaviour is the wayin which the instances are treated by the protocol de�ned for them.The components of an object are called its slots. Each slot of an objectis de�ned by its class.A protocol de�nes the operations which can be applied to instances of aset of classes. This protocol is typically de�ned in terms of a set of genericfunctions, which are functions whose application behaviour depends onthe classes of the arguments. The particular class-speci�c behaviour ispartitioned into separate units called methods. A method is not a functionitself, but is a closed expression which is a component of a generic function.Generic functions replace the send construct found in many object-oriented languages. In contrast to sending a message to a particular object,which it must know how to handle, the method executed by a generic func-tion is determined by all of its arguments. Methods which specialize onmore than one of their arguments are called multi-methods.Inheritance is provided through classes. Slots and methods de�ned fora class will also be de�ned for its subclasses but a subclass may specializethem. In practice, this means that an instance of a class will contain all theslots de�ned directly in the class as well as all of those de�ned in the class'ssuperclasses. In addition, a method specialized on a particular class willbe applicable to direct and indirect instances of this class. The inheritancerules, the applicability of methods and the generic dispatch are describedin detail later in this section.Classes are de�ned using the defstruct (7.3) and defcondition (9.1)de�ning forms.Generic functions are de�ned using the defgeneric de�ning form, whichcreates a named generic function in the top-lexical environment of the mod-ule in which it appears and generic-lambda, which creates an anonymous

20 PADGET, NUYENS, BRETTHAUER<object><character><condition>...<function><continuation><simple-function><generic-function><list><cons><null><lock><number><integer><float><double-float><stream><string><structure><symbol><table><thread><vector>Figure 3: Level-0 initial class hierarchygeneric function. These forms are described in detail later in this section.Methods can either be de�ned at the same time as the generic function,or else de�ned separately using the defmethod macro, which adds a newmethod to an existing generic function. This macro is described in detaillater in this section.7.1. System De�ned ClassesThe basic classes of EuLisp are elements of the object system class hi-erarchy, which is shown in Figure 3. Indentation indicates a subclass rela-tionship to the class under which the line has been indented, for example,<condition> is a subclass of <object>. The names given here correspondto the bindings of names to classes as they are exported from the level-0 modules. Classes directly relevant to the object system are describedin this section while others are described in corresponding sections, e.g.<condition> is described in the conditions section.

AN OVERVIEW OF EuLisp 21In this de�nition, unless otherwise speci�ed, classes declared to be sub-classes of other classes may be indirect subclasses. Classes not declaredto be in a subclass relationship are disjoint. Furthermore, unless other-wise speci�ed, all objects declared to be of a certain class may be indirectinstances of that class.<object> classThe root of the inheritance hierarchy. <object> de�nes the basic meth-ods for initialization and external representation of objects. No initializa-tion options are speci�ed for <object>.<structure> classThe default superclass of structure classes. All classes de�ned using thedefstruct form are direct or indirect subclasses of <structure>. Thus,this class is specializable by user de�ned classes at level-0. No initoptionsare speci�ed for <structure>.<telos-condition> conditionThis is the general condition class for conditions arising from operationsin the object system.7.2. Single InheritanceTELOS level-0 provides only single inheritance, meaning that a class canhave exactly one direct superclass|but inde�nitely many direct subclasses.In fact, all classes in the level-0 class inheritance tree have exactly one directsuperclass except the root class <object> which has no direct superclass.Each class has a class precedence list (CPL), a linearized list of all its su-perclasses, which de�nes the classes from which the class inherits structureand behaviour. For single inheritance classes, this list is de�ned recursivelyas follows:1. the CPL of <object> is a list of one element containing <object>itself;2. the CPL of any other class is a list of classes beginning with the classitself followed by the elements of the CPL of its direct superclasswhich is <object> by default.The class precedence list controls system-de�ned protocols concerning:

22 PADGET, NUYENS, BRETTHAUERTable 4: defstruct syntaxclass-name ::= identi�ersuperclass-name ::= fthe name of a subclass of <structure>gslot-spec ::= slot-name j (slot-name slot-option�)slot-name ::= identi�erslot-option ::= initarg initarg-namej initform formj reader identi�erj writer identi�erj accessor identi�erclass-option ::= initargs (initarg-name�)j constructor constructor-specj predicate identi�erconstructor-spec ::= (identi�er initarg-name�)initarg-name ::= identi�er1. inheritance of slot and class options when initializing a class,2. method lookup and generic dispatch when applying a generic func-tion.7.3. De�ning Classesdefstruct de�ning formSyntax(defstruct class-name superclass-name (slot-spec�) class-option�)The syntax of defstruct is de�ned in Table 4.Argumentsclass-name : A symbol naming a binding to be initialized with the newstructure class. The binding is immutable.superclass-name : A symbol naming a binding of a class to be used as thedirect superclass of the new structure class.(slot-spec�) : A list of slot speci�cations (see below), comprising either aslot-name or a list of a slot-name followed by some slot-options.class-option� : A sequence of keys and values (see below) which, taken to-gether, apply to the class as a whole.

AN OVERVIEW OF EuLisp 23Remarksdefstruct creates a new structure class. Structure classes support singleinheritance as described above. Neither class rede�nition nor changing theclass of an instance is supported by structure classes1.The slot-options are interpreted as follows:initarg identi�er : The value of this option is an identi�er naming a sym-bol, which is the name of an argument to be supplied in the init-options of a call to make on the new class. The value of this argumentin the call to make is the initial value of the slot. This option mustonly be speci�ed once for a particular slot. The same initarg namemay be used for several slots, in which case they will share the sameinitial value if the initarg is given to make. Subclasses inherit the ini-targ. Each slot must have at most one initarg including the inheritedone. That means, a subclass can not shadow or add a new initarg, ifa superclass has already de�ned one.initform form : The value of this option is a form, which is evaluated asthe default value of the slot, to be used if no initarg is de�ned for theslot or given to a call to make. The form is evaluated in the lexicalenvironment of the call to defstruct and the dynamic environmentof the call to make. The form is evaluated each time make is calledand the default value is called for. The order of evaluation of theinitforms in all the slots is determined by initialize. This optionmust only be speci�ed once for a particular slot. Subclasses inheritthe initform. However, a more speci�c form may be speci�ed in asubclass, which will shadow the inherited one.reader identi�er : The value is the identi�er of the variable to which thereader function will be bound. The binding is immutable. The readerfunction is a means to access the slot. The reader function is a func-tion of one argument, which should be an instance of the new class.No writer function is automatically bound with this option. Thisoption can be speci�ed more than once for a slot, creating severalbindings for the same reader function. It is a static error to specifythe same reader, writer, or accessor name for two di�erent slots.writer identi�er : The value is the identi�er of the variable to which thewriter function will be bound. The binding is immutable. The writerfunction is a means to change the slot value. The creation of the writer1In combination with the guarantee that the behaviour of generic functions cannotbe modi�ed once it has been de�ned, due to no support for method removal nor methodcombination, this imbues level-0 programs with static semantics.

24 PADGET, NUYENS, BRETTHAUERis analogous to that of the reader function. The writer function is afunction of two arguments, the �rst should be an instance of the newclass and the second can be any new value for the slot. This optioncan be speci�ed more than once for a slot. It is a static error tospecify the same reader, writer, or accessor name for two di�erentslots.accessor identi�er : The value is the identi�er of the variable to whichthe reader function will be bound. In addition, the use of this slot-option causes the writer function to be associated to the reader viathe setter mechanism. This option can be speci�ed more than oncefor a slot. It is a static error to specify the same reader, writer, oraccessor name for two di�erent slots.The class options are interpreted as follows:initargs list : The value of this option is a list of identi�ers naming sym-bols, which extend the inherited names of arguments to be suppliedin the init-options of a call to make on the new class. Initargs areinherited by union. The values of all legal arguments in the call tomake are the initial values of corresponding slots if they name a slotinitarg or are ignored by the default initialize method, otherwise.This option must only be speci�ed once for a class.constructor constructor-spec : Creates a constructor function for the newclass. The constructor speci�cation gives the name to which the con-structor function will be bound, followed by a sequence of legal ini-targs for the class. The new function creates an instance of the classand �lls in the slots according to the match between the speci�edinitargs and the given arguments to the constructor function. Thisoption may be speci�ed any number of times for a class.predicate identi�er : Creates a function which tests whether an object isan instance of the new class. The predicate speci�cation gives thename to which the predicate function will be bound. This optionmay be speci�ed any number of times for a class.7.4. De�ning Generic Functions and Methodsdefgeneric de�ning formSyntax(defgeneric gf-name gen-lambda-list level-0-init-option�)

AN OVERVIEW OF EuLisp 25Argumentsgf-name : One of a symbol, or a form denoting a setter function or a con-verter function.gen-lambda-list : The parameter list of the generic function, which may bespecialized to restrict the domain of methods to be attached to thegeneric function.level-0-init-option� : Options as speci�ed below.RemarksThis de�ning form de�nes a new generic function. The resulting genericfunction will be bound to gf-name. The second argument is the formalparameter list. The method's specialized lamba list must be congruent tothat of the generic function. Two lambda lists are said to be congruent i�:1. both have the same number of formal parameters, and2. if one lambda list has a rest formal parameter then the other lambdalist has a rest formal parameter too, and vice versa.An error is signalled (condition class: <non-congruent-lambda-lists>) ifany method de�ned on this generic function does not have a lambda listcongruent to that of the generic function.An error is signalled (condition class: <incompatible-method-domain>)if the method's specialized lambda list widens the domain of the genericfunction. In other words, the lambda lists of all methods must specializeon subclasses of the classes in the lambda list of the generic function.An error is signalled (condition class: <method-domain-clash>) if anymethods de�ned on this generic function have the same domain. Theseconditions apply both to methods de�ned at the same time as the genericfunction and to any methods added subsequently by defmethod. An init-option is an identi�er followed by a corresponding value. The syntax ofdefgeneric is given in Table 5.An error is signalled (condition class: <no-applicable-method>) if anattempt is made to apply a generic function which has no applicable meth-ods for the classes of the arguments supplied.The init-option is:method method-spec : This option is followed by a method description. Amethod description is a list comprising the specialized lambda listof the method, which denotes the domain, and a sequence of forms,

26 PADGET, NUYENS, BRETTHAUERTable 5: defgeneric syntax (level-0)gf-name ::= identi�er j (setter identi�er) j(converter identi�er)gen-lambda-list ::= spec-lambda-listlevel-0-init-option ::= method method-descriptionmethod-description ::= (spec-lambda-list form�)spec-lambda-list ::= (spec-parameter+ [. identi�er])spec-parameter ::= (identi�er class-name) j identi�erTable 6: defgeneric rewrite rules(defgeneric identi�ergen-lambda-listlevel-0-init-option�) � (defconstant identi�er(generic-lambdagen-lambda-listlevel-0-init-option�))(defgeneric (setter identi�er)gen-lambda-listlevel-0-init-option�) � ((setter setter) identi�er(generic-lambdagen-lambda-listlevel-0-init-option�))(defgeneric (converter identi�er)gen-lambda-listlevel-0-init-option�) � ((setter converter) identi�er(generic-lambdagen-lambda-listlevel-0-init-option�))denoting the method body. The method body is closed in the lexicalenvironment in which the generic function de�nition appears. Thisoption may be speci�ed more than once.The rewrite rules for the defgeneric form are given in Table 6.ExamplesIn the following example of the use of defgeneric a generic functionnamed gf-0 is de�ned with three methods attached to it. The domain ofgf-0 is constrained to be <object> � <class-a>. In consequence, eachmethod added to the generic function, both here and later (by defmethod),must have a domain which is a subclass of <object> � <class-a>, whichis to say that <class-c>, <class-e> and <class-g>must all be subclassesof <class-a>.

AN OVERVIEW OF EuLisp 27(defgeneric gf-0 (arg1 (arg2 <class-a>))method (((m1-arg1 <class-b>) (m1-arg2 <class-c>)) ...)method (((m2-arg1 <class-d>) (m2-arg2 <class-e>)) ...)method (((m3-arg1 <class-f>) (m3-arg2 <class-g>)) ...))See also:defmethod, generic-lambda.defmethod macroSyntax(defmethod gf-name spec-lambda-list form�)RemarksThis macro is used for de�ning new methods on generic functions. Anew method object is de�ned with the speci�ed body and with the domaingiven by the specialized lambda list. This method is added to the genericfunction bound to gf-name, which is an identi�er, or a form denoting asetter function or a converter function. If the specialized-lambda-list is notcongruent with that of the generic function, an error is signalled (condi-tion class: <non-congruent-lambda-lists>). An error is signalled (con-dition class: <incompatible-method-domain>) if the method's specializedlambda list would widen the domain of the generic function. If there is amethod with the same domain already de�ned on this gneric function, anerror is signalled (condition class: <method-domain-clash>).generic-lambda macroSyntax(generic-lambda gen-lambda-list level-0-init-option�)Remarksgeneric-lambda creates and returns an anonymous generic function thatcan be applied immediately, much like the normal lambda. The gen-lambda-list and the init-options are interpreted exactly as for the level-0 de�nitionof defgeneric.ExamplesIn the following example an anonymous version of gf-0 (see defgenericabove) is de�ned. In all other respects the resulting object is the same asgf-0.

28 PADGET, NUYENS, BRETTHAUER(generic-lambda ((arg1 <object>) (arg2 <class-a>))method (((m1-arg1 <class-b>) (m1-arg2 <class-c>)) ...)method (((m2-arg1 <class-d>) (m2-arg2 <class-e>)) ...)method (((m3-arg1 <class-f>) (m3-arg2 <class-g>)) ...))See also:defgeneric.<no-applicable-method> telos-conditionInit-optionsgeneric function : The generic function which was applied.arguments list : The arguments of the generic function which was applied.RemarksSignalled by a generic function when there is no method which is appli-cable to the arguments.<incompatible-method-domain> telos-conditionInit-optionsgeneric function : The generic function to be extended.method method : The method to be added.RemarksSignalled by one of defgeneric, defmethod or generic-lambda if thedomain of the method would not be a subdomain of the generic function'sdomain.<non-congruent-lambda-lists> telos-conditionInit-optionsgeneric function : The generic function to be extended.method method : The method to be added.

AN OVERVIEW OF EuLisp 29RemarksSignalled by one of defgeneric, defmethod or generic-lambda if thelambda list of the method is not congruent to that of the generic function.<method-domain-clash> telos-conditionInit-optionsgeneric function : The generic function to be extended.methods list : The methods with the same domain.RemarksSignalled by one of defgeneric, defmethod or generic-lambda if therewould be methods with the same domain attached to the generic function.7.5. Specializing MethodsThe following two operators are used to specialize more general meth-ods. The more specialized method can do some additional computationbefore calling these operators and can then carry out further computationbefore returning. It is an error to use either of these operators outside amethod body. Argument bindings inside methods are immutable. There-fore an argument inside a method retains its specialized class throughoutthe processing of the method.call-next-method special formSyntax(call-next-method)ResultThe result of calling the next most speci�c applicable method.RemarksThe next most speci�c applicable method is called with the same ar-guments as the current method. An error is signalled (condition class:<no-next-method>) if there is no next most speci�c method.

30 PADGET, NUYENS, BRETTHAUERnext-method-p special formSyntax(next-method-p)ResultIf there is a next most speci�c method, next-method-p returns a non-()value, otherwise, it returns ().<no-next-method> telos-conditionInit-optionsmethod method : The method which called call-next-method.operand-list list : A list of the arguments to have been passed to the nextmethod.RemarksSignalled by call-next-method if there is no next most speci�c method.7.6. Method Lookup and Generic DispatchThe system de�ned method lookup and generic function dispatch ispurely class based. eql methods known from CLOS are excluded.The application behaviour of a generic function can be described in termsof method lookup and generic dispatch. The method lookup determines1. which methods attached to the generic function are applicable to thesupplied arguments, and2. the linear order of the applicable methods with respect to classes ofthe arguments and the argument precedence order.A class C1 is called more speci�c than class C2 with respect to C3 i� C1appears before C2 in the class precedence list (CPL) of C32.2This de�nition is required when multiple inheritance comes into play. Then, twoclasses have to be compared with respect to a third class even if they are not related toeach other via the subclass relationship. Although, multiple inheritance is not providedat level-0, the method lookup protocol is independent of the inheritance strategy de�nedon classes. It depends on the class precedence lists of the domains of methods attachedto the generic function and the argument classes involved.

AN OVERVIEW OF EuLisp 31Two additional concepts are needed to explain the processes of methodlookup and generic dispatch: (i) whether a method is applicable, (ii) howspeci�c it is in relation to the other applicable methods. The de�nitions ofeach of these terms is now given.A method with the domain D1 � : : : � Dm[� <list>] is applicable tothe arguments a1 : : : am[am+1 : : :an] if the class of each argument, Ci, is asubclass of Di, which is to say, Di is a member of Ci's class precedence list.A method M1 with the domain D11� : : :�D1m[� <list>] is more speci�cthan a method M2 with the domain D21� : : :�D2m[� <list>] with respectto the arguments a1 : : :am[am+1 : : : an] i� there exists an i 2 (1 : : :m) sothat D1i is more speci�c than D2i with respect to Ci, the class of ai, andfor all j = 1 : : : i� 1, D2j is not more speci�c than D1j with respect to Cj,the class of aj .Now, with the above de�nitions, we can describe the application be-haviour of a generic function (f a1 : : : am[am+1 : : : an]):1. Select the methods applicable to a1 : : : am[am+1 : : : an] from all meth-ods attached to f.2. Sort the applicable methods M1 : : :Mk into decreasing order of speci-�city using left to right argument precedence order to resolve other-wise equally speci�c methods.3. If call-next-method appears in one of the method bodies, make thesorted list of applicable methods available for it.4. Apply the most speci�c method on a1 : : : am[am+1 : : :an].5. Return the result of the previous step.The �rst two steps are usually called method lookup and the �rst four areusually called generic dispatch.7.7. Creating and Initializing ObjectsObjects can be created by calling� constructors (prede�ned or user de�ned) or� make, the general constructor function or� allocate, the general allocator function.

32 PADGET, NUYENS, BRETTHAUERmake functionArgumentsclass : The class of the object to create.key1 obj1 ... keyn objn : Initialization arguments.ResultAn instance of class.RemarksThe general constructor make creates a new object calling allocate andinitializes it by calling initialize. make returns whatever allocate re-turns as its result.allocate functionArgumentsclass : A structure class.initlist : A list of initialization arguments.ResultA new uninitialized direct instance of the �rst argument.RemarksThe class must be a structure class, the initlist is ignored. The behaviourof allocate is extended at level-1 for classes not accessible at level-0. Thelevel-0 behaviour is not a�ected by the level-1 extension.initialize generic functionGeneric Arguments(object <object>) : The object to initialize.initlist : The list of initialization arguments.ResultThe initialized object.

AN OVERVIEW OF EuLisp 33RemarksInitializes an object and returns the initialized object as the result. It iscalled by make on a new uninitialized object created by calling allocate.Users may extend initialize by de�ning methods specializing on newlyde�ned classes, which are structure classes at level-0.initialize methodSpecialized Arguments(object <object>) : The object to initialize.initlist : The list of initialization arguments.ResultThe initialized object.RemarksThis is the default method attached to initialize. This method per-forms the following steps:1. Checks if the supplied initargs are legal and signals an error otherwise.Legal initargs are those speci�ed in the class de�nition directly orinherited from a superclass. An initarg may be speci�ed as a slotoption or as a class option.2. Initializes the slots of the object according to the initarg, if supplied,or according to the most speci�c initform, if speci�ed. Otherwise,the slot remains \unbound".Legal initargs which do not initialize a slot are ignored by the defaultinitialize method. More speci�c methods may handle these initargsand call the default method by calling call-next-method.7.8. Accessing SlotsObject components (slots) can be accessed using reader and writer func-tions (accessors) only. For system de�ned object classes there are prede�nedreaders and writers. Some of the writers are accessible using the setterfunction. If there is no writer for a slot, its value cannot be changed. Whenusers de�ne new classes, they can specify which readers and writers shouldbe accessible in a module and by which binding. Accessor bindings are notexported automatically when a class (binding) is exported. They can onlybe exported explicitly.

34 PADGET, NUYENS, BRETTHAUER8. ConcurrencyThe basic elements of parallel processing in EuLisp are processes and mu-tual exclusion, which are provided by the classes <thread> and <lock>respectively.A thread is allocated and initialized, by calling make. The initarg of athread speci�es the initial function, which is where execution starts the�rst time the thread is dispatched by the scheduler. In this discussion fourstates of a thread are identi�ed: new, running, aborted and �nished. Theseare for conceptual purposes only and a EuLisp program cannot distinguishbetween new and running or between aborted and �nished. (Althoughaccessing the result of a thread would permit such a distinction retrospec-tively, since an aborted thread will cause a condition to be signalled on theaccessing thread and a �nished thread will not.) In practice, the runningstate is likely to have several internal states, but these distinctions and theinformation about a thread's current state can serve no useful purpose toa running program, since the information may be incorrect as soon as it isknown. The transitions between these states are summarized in Figure 4.The initial state of a thread is new. The union of the two �nal states isknown as determined. Although a program can �nd out whether a threadis determined or not by means of wait with a timeout of t (denoting apoll), the information is only useful if the thread has been determined.A thread is made available for dispatch by starting it, using the functionthread-start, which changes its state from new to running. After runninga thread becomes either �nished or aborted. When a thread is �nished,the result of the initial function may be accessed using thread-value. If athread is aborted, which can only occur as a result of a signal handled by thedefault handler (installed when the thread is created), then thread-valuewill signal the condition that aborted the thread on the thread accessing thevalue. Note that thread-value suspends the calling thread if the threadwhose result is sought is not determined.While a thread is running, its progress can be suspended by accessinga lock, by a stream operation or by calling thread-value on an undeter-mined thread. In each of these cases, thread-reschedule is called to allowanother thread to execute. This function may also be called voluntarily.Progress can resume when the lock becomes unlocked, the input/outputoperation completes or the undetermined thread becomes determined.The actions of a thread can be in
uenced externally by signal. Thisfunction registers a condition to be signalled no later than when the spec-i�ed thread is rescheduled for execution|when thread-reschedule re-turns. The condition must be an instance of thread-condition. Condi-tions are delivered to the thread in order of receipt. This ordering require-

AN OVERVIEW OF EuLisp 35
NEW

RUNNING

FINISHEDABORTED

make

thread-start

initial

 function returns

default

 signal handlerFigure 4: State diagram for threadsment is only important in the case of a thread sending more than one signalto the same thread, but in other circumstances the delivery order cannotbe veri�ed. A signal on a determined thread has no discernable e�ecton either the signalled or signalling thread unless the condition is not aninstance of <thread-condition>, in which case an error is signalled on thesignalling thread. See also Section 9.A lock is an abstract data type protecting a binary value which denoteswhether the lock is locked or unlocked. The operations on a lock are lockand unlock. Executing a lock operation will eventually give the callingthread exclusive control of a lock. The unlock operation unlocks the lockso that either a thread subsequently calling lock or one of the threadswhich has already called lock on the lock can gain exclusive access.NOTE | It is intended that implementations of locks based on spin-locks,semaphores or channels should all be capable of satisfying the above description.However, to be a conforming implementation, the use of a spin-lock must observethe fairness requirement, which demands that between attempts to acquire thelock, control must be ceded to the scheduler.The programming model is that of concurrently executing threads, re-gardless of whether the con�guration is a multi-processor or not, with someconstraints and some weak fairness guarantees.1. A processor is free to use run-to-completion, timeslicing and/or con-current execution.

36 PADGET, NUYENS, BRETTHAUER2. A conforming program must assume the possibility of concurrent ex-ecution of threads and will have the same semantics in all cases|seediscussion of fairness which follows.3. The default condition handler for a new thread, when invoked, willchange the state of the thread to aborted, save the signalled conditionand reschedule the thread.4. A continuation must only be called from within its dynamic extent.This does not include threads created within the dynamic extent. Anerror is signalled (condition class: <wrong-thread-continuation>),if a continuation is called on a thread other than the one on which itwas created.5. The lexical environment (inner and top) associated with the initialfunction may be shared, as is the top-dynamic environment, but eachthread has a distinct inner-dynamic environment. In consequence,any modi�cations of bindings in the lexical environment or in thetop-dynamic environment should be mediated by locks to avoid non-deterministic behaviour.6. The creation and starting of a thread represent changes to the state ofthe processor and as such are not a�ected by the processor's handlingof errors signalled subsequently on the creating/starting thread (c.f.streams). That is to say, a non-local exit to a point dynamicallyoutside the creation of the subsidiary thread has no default e�ect onthe subsidiary thread.7. The behaviour of i/o on the same stream by multiple threads is un-de�ned unless it is mediated by explicit locks.The parallel semantics are preserved on a sequential run-to-completionimplementation by requiring communication between threads to use onlythread primitives and shared data protected by locks|both the threadprimitives and locks will cause rescheduling, so other threads can be as-sumed to have a chance of execution.There is no guarantee about which thread is selected next. However, afairness guarantee is needed to provide the illusion that every other threadis running. A strong guarantee would ensure that every other thread getsscheduled before a thread which reschedules itself is scheduled again. Sucha scheme is usually called \round-robin". This could be stronger than theguarantee provided by a parallel implementation or the scheduler of thehost operating system and cannot be mandated in this de�nition.

AN OVERVIEW OF EuLisp 37A weak but su�cient guarantee is that if any thread reschedules in�nitelyoften then every other thread will be scheduled in�nitely often. Hence ifa thread is waiting for shared data to be changed by another thread andis using a lock, the other thread is guaranteed to have the opportunity tochange the data. If it is not using a lock, the fairness guarantee ensuresthat in the same scenario the following loop will exit eventually:(while (= data 0) (thread-reschedule))8.1. ThreadsThe de�ned name of this module is thread. This section de�nes theoperations on threads.<thread> classThe class of all instances of <thread>.Init-optionsinit-function fn : an instance of <function> which will be called whenthe resulting thread is started by thread-start.threadp functionArgumentsobject : An object to examine.ResultThe supplied argument if it is an instance of <thread>, otherwise ().thread-reschedule functionThis function takes no arguments.ResultThe result is ().RemarksThis function is called for side-e�ect only and may cause the thread whichcalls it to be suspended, while other threads are run. In addition, if the

38 PADGET, NUYENS, BRETTHAUERthread's condition queue is not empty, the �rst condition is removed fromthe queue and signalled on the thread. The resume continuation of thesignal will be one which will eventually call the continuation of the call tothread-reschedule.See also:thread-value, signal and Section 9 for details of conditions and sig-nalling.current-thread functionThis function takes no arguments.ResultThe thread on which current-thread was executed.thread-start functionArgumentsthread : the thread to be started, which must be new. If thread is not new,an error is signalled (condition class: <thread-already-started>).obj1 : : :objn : values to be passed as the arguments to the initial functionof thread.ResultThe thread which was supplied as the �rst argument.RemarksThe state of thread is changed to running. The values obj1 to objn willbe passed as arguments to the initial function of thread.thread-value functionArgumentsthread : the thread whose �nished value is to be accessed.ResultThe result of the initial function applied to the arguments passed fromthread-start. However, if a condition is signalled on thread which is

AN OVERVIEW OF EuLisp 39handled by the default handler the condition will now be signalled on thethread calling thread-value|that is the condition will be propagated tothe accessing thread.RemarksIf thread is not determined, each thread calling thread-value is sus-pended until thread is determined, when each will either get the thread'svalue or signal the condition.See also:thread-reschedule, signal.wait methodSpecialized Arguments(thread <thread>) : The thread on which to wait.(timeout <object>) : The timeout period which is speci�ed by one of (),t, and non-negative integer).ResultResult is either thread or (). If timeout is (), the result is thread if it isdetermined. If timeout is t, thread suspends until thread is determined andthe result is guaranteed to be thread. If timeout is a non-negative integer,the call blocks until either thread is determined, in which case the result isthread, or until the timeout period is reached, in which case the result is(), whichever is the sooner. The units for the non-negative integer timeoutare the number of clock ticks to wait. The implementation-de�ned constantticks-per-second is used to make timeout periods processor independent.See also:wait and ticks-per-second (Section 9).<thread-condition> conditionInit-optionscurrent-thread thread : The thread which is signalling the condition.RemarksThis is the general condition class for all conditions arising from threadoperations.

40 PADGET, NUYENS, BRETTHAUER<wrong-thread-continuation> thread-conditionInit-optionscontinuation continuation : A continuation.thread thread : The thread on which continuation was created.RemarksSignalled if the given continuation is called on a thread other than theone on which it was created.<thread-already-started> thread-conditionInit-optionsthread thread : A thread.RemarksSignalled by thread-start if the given thread has been started already.8.2. LocksThe de�ned name of this module is lock.<lock> classThe class of all instances of <lock>. This class has no init-options. Theresult of calling make on <lock> is a new, open lock.lockp functionArgumentsobject : An object to examine.ResultThe supplied argument if it is an instance of lock, otherwise ().lock functionArgumentslock : the lock to be acquired.

AN OVERVIEW OF EuLisp 41ResultThe lock supplied as argument.RemarksExecuting a lock operation will eventually give the calling thread exclu-sive control of lock. A consequence of calling lock is that a condition fromanother thread may be signalled on this thread. Such a condition will besignalled before lock has been acquired, so a thread which does not handlethe condition will not lead to starvation; the condition will be signalledcontinuably so that the process of acquiring the lock may continue afterthe condition has been handled.See also:unlock and Section 9 for details of conditions and signalling.unlock functionArgumentslock : the lock to be released.ResultThe lock supplied as argument.RemarksThe unlock operation unlocks lock so that either a thread subsequentlycalling lock or one of the threads which has already called lock on thelock can gain exclusive access.See also:lock.9. ConditionsThe de�ned name of this module is condition.The condition system was in
uenced by the Common Lisp error system[13] and the Standard ML exception mechanism. It is a simpli�cationof the former and an extension of the latter. Following standard practice,this text de�nes the actions of functions in terms of their normal behaviour.Where an exceptional behaviour might arise, this has been de�ned in termsof a condition. However, not all exceptional situations are errors. Following

42 PADGET, NUYENS, BRETTHAUERPitman, we use condition to be a kind of occasion in a program when anexceptional situation has been signalled. An error is a kind of condition|error and condition are also used as terms for the objects that representexceptional situations. A condition can be signalled continuably by passinga continuation for the resumption to signal. If a continuation is not suppliedthen the condition cannot be continued.These two categories are characterized as follows:1. A condition might be signalled when some limit has been transgressedand some corrective action is needed before processing can resume.For example, memory zone exhaustion on attempting to heap-allocatean item can be corrected by calling the memory management schemeto recover dead space. However, if no space was recovered a new kindof condition has arisen. Another example arises in the use of IEEE
oating point arithmetic, where a condition might be signalled toindicate divergence of an operation. A condition should be signalledcontinuably when there is a strategy for recovery from the condition.2. Alternatively, a condition might be signalled when some catastrophicsituation is recognized, such as the memory manager being unableto allocate more memory or unable to recover su�cient memoryfrom that already allocated. A condition should be signalled non-continuably when there is no reasonable way to resume processing.A condition class is de�ned using defcondition (see Section 9.1). Thede�nition of a condition causes the creation of a new class of condition. Acondition is signalled using the function signal, which has two requiredarguments and one optional argument: an instance of a condition, a re-sume continuation or the empty list|the latter signifying a non-continuablesignal|and a thread. A condition can be handled using the special formwith-handler, which takes a function|the handler function|and a se-quence of forms to be protected. The initial condition class hierarchy isshown in Figure 5.9.1. Condition Classes<condition> classInit-optionsmessage string : A string, containing information which should pertain tothe situation which caused the condition to be signalled.

AN OVERVIEW OF EuLisp 43<condition><execution-condition><invalid-operator><cannot-update-setter><no-setter><environment-condition><arithmetic-condition><division-by-zero><conversion-condition><no-converter><stream-condition><syntax-error><thread-condition><thread-already-started><wrong-thread-continuation><wrong-condition-class><telos-condition><no-next-method><non-congruent-lambda-lists><incompatible-method-domain><no-applicable-method><method-domain-clash>Figure 5: Level-0 initial condition class hierarchyRemarksThe class which is the superclass of all condition classes.<execution-condition> conditionThis is the general condition class for conditions arising from the execu-tion of programs by the processor.<environment-condition> conditionThis is the general condition class for conditions arising from the envi-ronment of the processor.conditionp functionArgumentsobject : An object to examine.

44 PADGET, NUYENS, BRETTHAUERResultReturns obj if obj is an instance of <condition>, otherwise ().initialize methodSpecialized Arguments(condition <condition>) : a condition.initlist : A list of initialization options as follows:message string : A string, containing information which should per-tain to the situation which caused the condition to be signalled.ResultA new, initialized condition.RemarksFirst calls call-next-method to carry out initialization speci�ed by su-perclasses then does the <condition> speci�c initialization. The followinginit-option is recognized by this method:message string : A string which should contain information about the con-dition that has arisen.defcondition de�ning formSyntax(defcondition condition-class-name superclass-name init-option�)Argumentscondition-class-name : A symbol naming a binding to be initialized withthe new condition class.superclass-name : A symbol naming a binding of a class to be used as thesuperclass of the new condition class.init-option� : A sequence of symbols and expressions to be passed to thengeneric functions allocate and initialize.

AN OVERVIEW OF EuLisp 45RemarksThis de�ning form de�nes a new condition class. The �rst argument isthe name to which the new condition class will be bound. The second isthe name of the superclass of the new condition class and an init-optionis an identi�er followed by its (default) initial value. If superclass-name is(), the superclass is taken to be <condition>. Otherwise superclass-namemust be <condition> or the name of one of its subclasses.9.2. Condition HandlingConditions are handled with a function called a handler. Handlers areestablished dynamically and have dynamic scope and extent. Thus, whena condition is signalled, the processor will call the dynamically closest han-dler. This can accept, resume or decline the condition (see with-handlerfor a full discussion and de�nition of this terminology). If it declines, thenthe next dynamically closest handler is called, and so on, until a handleraccepts or resumes the condition. It is the �rst handler accepting the condi-tion that is used and this may not necessarily be the most speci�c. Handlersare established by the special form with-handler.signal functionArgumentscondition : The condition to be signalled.function : The function to be called if the condition is handled and resumed,that is to say, the condition is continuable, or () otherwise.[thread] : If this argument is not supplied, the condition is signalled on thethread which called signal, otherwise, thread indicates the thread onwhich condition is to be signalled.Resultsignal should never return. It is an error to call signal's continuation.RemarksCalled to indicate that a speci�ed condition has arisen during the execu-tion of a program.If the third argument is not supplied, signal calls the dynamically clos-est handler with condition and continuation. If the second argument is asubclass of function, it is the resume continuation to be used in the case

46 PADGET, NUYENS, BRETTHAUERof a handler deciding to resume from a continuable condition. If the secondargument is (), it indicates that the condition was signalled as a non-continuable condition|in this way the handler is informed of the signaler'sintention.If the third argument is supplied, signal registers the speci�ed conditionto be signalled on thread. The condition must be an instance of the condi-tion class <thread-condition>, otherwise an error is signalled (conditionclass: <wrong-condition-class>) on the thread calling signal. A signalon a determined thread has no e�ect on either the signalled or signallingthread except in the case of the above error.See also:thread-reschedule, thread-value, with-handler.<wrong-condition-class> thread-conditionInit-optionscondition condition : A condition.Signalled by signal if the given condition is not an instance of the con-dition class <thread-condition>.with-handler special formSyntax(with-handler handler-function protected-form)Argumentshandler-function : A function or a generic function which will be called if acondition is signalled during the dynamic extent of protected-forms.A handler function takes two arguments|a condition, and a resumefunction/continuation. The condition is the condition object thatwas passed to signal as its �rst argument. The resume continuationis the continuation (or ()) that was given to signal as its secondargument.protected-form� : The sequence of forms whose execution is protected bythe handler-function speci�ed above.ResultThe value of the last form in the sequence of protected-forms.

AN OVERVIEW OF EuLisp 47RemarksA with-handler form is evaluated in four steps:1. The new handler-function is constructed and identi�es the dynami-cally closest handler.2. The dynamically closest handler is shadowed by the establishment ofthe new handler-function.3. The sequence of protected-forms is evaluated in order and the value ofthe last one is returned as the result of the with-handler expression.4. the handler-function is disestablished, and the previous handler is nolonger shadowed.The above is the normal behaviour of with-handler. The exceptionalbehaviour of with-handler happens when there is a call to signal dur-ing the evaluation of protected-form. signal calls the dynamically closesthandler-function passing on the �rst two arguments given to signal. Thehandler-function is executed in the dynamic extent of the call to signal.However, any signals occurring during the execution of handler-functionare dealt with by the dynamically closest handler outside the extent of theform which established handler-function. A handler-function takes one ofthree actions:1. Return. This causes the next-closest enclosing handler-function to becalled, passing on the condition and the resume continuation. This istermed declining the condition. The situation when there is no nextclosest enclosing handler is discussed later.2. Call the resume continuation. This action might be taken if the con-dition is recognized by the handler function and might be precededby some corrective action. This is termed resuming the condition.3. Not return and not call the resume continuation. This action mightbe taken if the condition is recognized by the handler function andmight be preceded by some corrective action before some kind oftransfer of control. This is termed accepting the condition.It is an error if the condition is declined and there is no next closest en-closing handler. In this circumstance the identi�ed error is delivered to thecon�guration to be dealt with in an implementation-de�ned way. Errorsarising in the dynamic extent of the handler function are signalled in thedynamic extent of the original signal but are handled in the enclosingdynamic extent of the handler.

48 PADGET, NUYENS, BRETTHAUER(let/cc accept(with-handler(generic-lambda ((condition <condition>) (resume <function>))method(((c <condition>) resume)(cond((seriousp c);;serious error, exit from with-handler (accept)(accept))((fixablep c);;�xable error (resume)(resume (fix c)))(t;;otherwise, by omission, let another handler deal;;with it (decline)()))));;the protected expression(something-which-might-signal-an-error)))Figure 6: Illustration of handler actionsExamplesAn illustration of the use of all three cases is given in Figure 6.See also:signal.error functioncerror functionArgumentserror-message : a string containing relevant information.condition-class : the class of condition to be signalled.init-option� : a sequence of options to be passed to initialize-instancewhen making the instance of condition.ResultThe result of both of these functions is ().

AN OVERVIEW OF EuLisp 49RemarksThe cerror and error functions signal continuable and non-continuableerrors, respectively. Each calls signal with an instance of a conditionof condition-class initialized from init-options, the error-message and aresume continuation. In the case of cerror the resume continuation isthe continuation of the cerror expression. In the case of error, it is (),signifying that the condition was not signalled continuably.10. Expressions, De�nitions and Control FormsThis section gives the syntax of well-formed expressions and describes thesemantics of the special-forms, functions and macros of the level-0 language.In the case of level-0 macros, the description includes a set of expansionrules. However, these descriptions are not prescriptive of any processor anda conforming program cannot rely on adherence to these expansions.10.1. Atomic Expressionsconstant syntaxThere are two kinds of constants, literal constants and de�ned constants.Only the �rst kind are considered here. A literal constant is a number, astring, a character, or the empty list. The result of processing such a literalconstant is the constant itself|that is, it denotes itself.Examples() the empty list123 a �xed precision integer#\a a character"abc" a stringdefconstant de�ning formSyntax(defconstant identi�er form)Argumentsidenti�er : A symbol naming an immutable top-lexical binding to be ini-tialized with the value of form.form : The form whose value will be stored in the binding of identi�er.

50 PADGET, NUYENS, BRETTHAUERRemarksThe value of form is stored in the top-lexical binding of identi�er. It isa static error to attempt to modify the binding of a de�ned constant.nil <null>RemarksThe symbol nil is de�ned to be immutably bound to the empty list,which is represented as (). The empty list is used to denote the abstractboolean value false.t <symbol>RemarksThe symbol t is de�ned to be immutably bound to the symbol t. Thismay be used to denote the abstract boolean value true, but so may anyother value than ().symbol syntaxThe current lexical binding of symbol is returned. A symbol can alsoname a de�ned constant|that is, an immutable top-lexical binding.deflocal de�ning formSyntax(deflocal identi�er form)Argumentsidenti�er : A symbol naming a binding containing the value of form.form : The form whose value will be stored in the binding of identi�er.RemarksThe value of form is stored in the top-lexical binding of identi�er. Thebinding created by a deflocal form is mutable.See also:setq.

AN OVERVIEW OF EuLisp 5110.2. Literal Expressionsquote special formSyntax(quote datum)Argumentsdatum : the datum to be quoted.ResultThe result is datum.RemarksThe result of processing the expression (quote datum) is datum. The da-tum can be any object having an external representation. The special formquote can be abbreviated using apostrophe|graphic representation '|sothat (quote a) can be written 'a. These two notations are used to in-corporate literal constants in programs. It is an error to modify a literalexpression.10.3. Functions: creation, de�nition and applicationlambda special formSyntax(lambda lambda-list body)Argumentslambda-list : The parameter list of the function conforming to the syntaxspeci�ed in Table 7.body : A sequence of forms.ResultA function with the speci�ed lambda-list and body.RemarksThe function construction operator is lambda. Access to the lexical en-vironment of de�nition is guaranteed. The syntax of lambda-list is de�nedby the grammar in Table 7.

52 PADGET, NUYENS, BRETTHAUERTable 7: Lambda list syntaxlambda-list ::= identi�er j simple-list j rest-listsimple-list ::= (identi�er�)rest-list ::= (identi�er+ . identi�er)If lambda-list is an identi�er, it is bound to a newly allocated list of theactual parameters. This binding has lexical scope and inde�nite extent. Iflambda-list is a simple-list, the arguments are bound to the correspondingidenti�ers. Otherwise, lambda-list must be a rest-list. In this case, eachidenti�er preceding the dot is bound to the corresponding argument andthe identi�er succeeding the dot is bound to a newly allocated list whoseelements are the remaining arguments. These bindings have lexical scopeand inde�nite extent. It is a static error if the same identi�er appears morethan once in a lambda-list. It is an error to modify rest-list.defmacro syntaxSyntax(defmacro macro-name lambda-list body)Argumentsmacro-name : A symbol naming an immutable top-lexical binding to beinitialized with a function having the speci�ed lambda-list and body.lambda-list : The parameter list of the function conforming to the syntaxspeci�ed under lambda.body : A sequence of forms.RemarksThe defmacro form de�nes a function named by macro-name and storesthe de�nition as the top-lexical binding of macro-name. The interpretationof the lambda-list is as de�ned for lambda (see Table 7).NOTE |A macro is automatically exported from the the module which de�nesit. A macro cannot be used in the module which de�nes it.See also:lambda.

AN OVERVIEW OF EuLisp 53Table 8: defun rewrite rules(defun identi�er lambda-listbody) � (defconstant identi�er(lambda lambda-list body))(defun (setter identi�er)lambda-list body) � ((setter setter) identi�er(lambda lambda-list body))defun syntaxSyntax(defun function-name lambda-list body)or(defun (setter function-name) lambda-list body)Argumentsfunction-name : A symbol naming an immutable top-lexical binding to beinitialized with a function having the speci�ed lambda-list and body.(setter function-name) : An expression denoting the setter function tocorrespond to function-name.lambda-list : The parameter list of the function conforming to the syntaxspeci�ed under lambda.body : A sequence of forms.RemarksThe defun form de�nes a function named by function-name and storesthe de�nition (i) as the top-lexical binding of function-name or (ii) as thesetter function of function-name. The interpretation of the lambda-list isas de�ned for lambda.The rewrite rules for defun are given in Table 8.function call syntaxSyntax(operator operand�)

54 PADGET, NUYENS, BRETTHAUERArgumentsoperator : This may be a symbol|being either the name of a special form,or a lexical variable|or a function call, which must result in an in-stance of <function>.An error is signalled (condition class: <invalid-operator>) if theoperator is not a function.operand� : Each operand must be either an atomic expression, a literal ex-pression or a function call.ResultThe result is the value of the application of operator to the evaluation ofoperand�.RemarksThe operand expressions are evaluated in order from left to right. Theoperator expression may be evaluated at any time before, during or afterthe evaluation of the operands.NOTE | The above rule for the evaluation of function calls was �nally agreedupon for this version since it is in line with one strand of common practice, but itmay be revised in a future version.See also:constant, symbol, quote.<invalid-operator> execution-conditionInit-optionsinvalid-operator object : The object which was being used as an opera-tor.operand-list list : The operands prepared for the operator.RemarksSignalled by function call if the operator is not an instance of <function>.apply functionSyntax(apply function obj1 ... objn)

AN OVERVIEW OF EuLisp 55Argumentsfunction : An expression which must evaluate to an instance of <function>.obj1 ... objn�1 : A sequence of expressions, which will be evaluated accord-ing to the rules given in function call.objn : An expression which must evaluate to a proper list. It is an error ifobjn is not a proper list.ResultThe result is the result of calling function with the actual parameter listcreated by appending objn to a list of the arguments obj1 through objn�1.An error is signalled (condition class: <invalid-operator>) if the �rstargument is not an instance of <function>.See also:function call, <invalid-operator>.10.4. AssignmentsAn assignment operation modi�es the contents of a binding named by aidenti�er|that is, a variable.setq special formSyntax(setq identi�er form)Argumentsidenti�er : The identi�er whose lexical binding is to be updated.form : An expression whose value is to be stored in the binding of identi�er.ResultThe result is the value of form.RemarksThe form is evaluated and the result is stored in the closest lexical bindingnamed by identi�er. It is a static error to modify an immutable binding.

56 PADGET, NUYENS, BRETTHAUERsetter functionArgumentsreader : An expression which must evaluate to an instance of <function>.ResultThe writer corresponding to reader.RemarksA generalized place update facility is provided by setter. Given reader,setter returns the corresponding update function. If no such functionis known to setter, an error is signalled (condition class: <no-setter>).Thus (setter car) returns the function to update the car of a pair. Newupdate functions can be added by using setter's update function, whichis accessed by the expression (setter setter). Thus ((setter setter)a-reader a-writer) installs the function which is the value of a-writeras the writer of the reader function which is the value of a-reader. Allwriter functions in this de�nition and user-de�ned writers have the sameimmutable status as other standard functions, such that attempting to rede-�ne such a function, for example ((setter setter) car a-new-value),signals an error (condition class: <cannot-update-setter>)See also:defgeneric, defmethod, defstruct, defun.<no-setter> execution-conditionInit-optionsobject object : The object given to setter.RemarksSignalled by setter if there is no updater for the given function.<cannot-update-setter> execution-conditionInit-optionsaccessor object1 : The given accessor object.updater object2 : The given updater object.

AN OVERVIEW OF EuLisp 57RemarksSignalled by (setter setter) if the updater of the given accessor isimmutable.See also:setter.10.5. Conditional Expressionsif special formSyntax(if antecedent consequent alternative)Argumentsantecedent : A form.consequent : A form.alternative : A form.ResultEither the value of consequence or alternative depending on the value ofantecedent.RemarksThe antecedent is evaluated. If the result is true the consequence isevaluated, otherwise the alternative is evaluated. Both consequence andalternative must be speci�ed. The result of if is the result of the evaluationof whichever of consequence or alternative is chosen.cond macroSyntax(cond (antecedent form�)�)RemarksThe cond macro provides a convenient syntax for collections of if-then-elseif...else expressions. The rewrite rules for cond are given in Table 9.

58 PADGET, NUYENS, BRETTHAUERTable 9: cond rewrite rules(cond) � ()(cond (antecedent) : : :) � (or antecedent (cond : : :))(cond(antecedent1)(antecedent2 form�): : :) � (or antecedent1(cond(antecedent2 form�): : :))(cond(antecedent1 form�)(antecedent2 form�): : :) � (if antecedent1(progn form�)(cond(antecedent2 form�): : :))and macroSyntax(and form�)RemarksThe expansion of an and form leads to the evaluation of the sequence offorms from left to right. The �rst form in the sequence that evaluates to ()stops evaluation and none of the forms to its right will be evaluated|thatis to say, it is non-strict. The result of (and) is (). If none of the formsevaluate to (), the value of the last form is returned. The rewrite rules forand are given in Table 10.or macroSyntax(or form�)RemarksThe expansion of an or form leads to the evaluation of the sequenceof forms from left to right. The value of the �rst form that evaluates totrue is the result of the or form and none of the forms to its right will beevaluated|that is to say, it is non-strict. If none of the forms evaluate totrue, the value of the last form is returned. The rewrite rules for or aregiven in Table 10. Note that x does not occur free in any of form2 : : : formn.

AN OVERVIEW OF EuLisp 59Table 10: and and or rewrite rules(and) � t(and form) � form(and form1 form2 : : :) � (if form1 (and form2 : : :) ())(or) � ()(or form) � form(or form1 form2 : : :) � (let ((x form1))(if x x (or form2 : : :)))10.6. Variable Binding and Sequenceslet/cc special formSyntax(let/cc identi�er body)Argumentsidenti�er : To be bound to the continuation of the let/cc form.body : A sequence of forms.ResultThe result of evaluating the last form in body or the value of the argumentgiven to the continuation bound to identi�er.RemarksThe identi�er is bound to a new location, which is initialized with thecontinuation of the let/cc form. This binding is immutable and has lexicalscope and inde�nite extent. Each form in body is evaluated in order in theenvironment extended by the above binding. It is an error to call thecontinuation outside the dynamic extent of the let/cc form that createdit. The continuation is a function of one argument. Calling the continuationcauses the restoration of the lexical environment and dynamic environmentthat existed before entering the let/cc form.ExamplesAn example of the use of let/cc is given in Figure 7. The functionpath-open takes a list of paths, the name of a �le and list of options to

60 PADGET, NUYENS, BRETTHAUER(defun path-open (pathlist name . options)(let/cc succeed(map(lambda (path)(let/cc fail(with-handler(lambda (condition resume) (fail ()))(succeed (apply open (format nil "~a/~a" path name)options)))))pathlist)(error(format nil "path-open: cannot open stream for (~a) ~a"pathlist name)<cannot-open-path>)))Figure 7: Example using let/ccpass to open. It tries to open the �le by appending the name to each pathin turn. Each time open fails, it signals a condition that the �le was notfound which is trapped by the handler function. That calls the continuationbound to fail to cause it to try the next path in the list. When open does�nd a �le, the continuation bound to succeed is called with the stream asits argument, which is subsequently returned to the caller of path-open.If the path list is exhausted, map terminates and an error (condition class:<cannot-open-path>) is signalled.See also:block, return-from.block macroSyntax(block identi�er form�)RemarksThe block expression is used to establish a statically scoped binding ofan escape function. The block variable is bound to the continuation of theblock. The continuation can be invoked anywhere within the block by usingreturn-from. The forms are evaluated in sequence and the value of thelast one is returned as the value of the block form. See also let/cc. Therewrite rules for block are given in Table 11.

AN OVERVIEW OF EuLisp 61Table 11: block and return-from rewrite rules(block identi�er) � ()(block identi�er form�) � (let/cc identi�er form�)(return-from identi�er) � (identi�er ())(return-from identi�er form) � (identi�er form)The rewrite for block, does not prevent the block being exited fromanywhere in its dynamic extent, since the function bound to identi�er is a�rst-class item and can be passed as an argument like other values.See also:return-from.return-from macroSyntax(return-from identi�er [form])RemarksIn return-from, the identi�er names the continuation of the (lexical)block from which to return. return-from is the invocation of the continu-ation of the block named by identi�er. The form is evaluated and the valueis returned as the value of the block named by identi�er. The rewrite rulesfor return-from are given in Table 11.See also:block.labels special formSyntax(labels ((identi�er lambda-list body)�) labels-body)Argumentsidenti�er : A symbol naming a new inner-lexical binding to be initializedwith the function having the lambda-list and body speci�ed.

62 PADGET, NUYENS, BRETTHAUERlambda-list : The parameter list of the function conforming to the syntaxspeci�ed below.body : A sequence of forms.labels-body : A sequence of forms.ResultThe labels operator provides for local mutually recursive function cre-ation. Each identi�er is bound to a new inner-lexical binding initializedwith the function constructed from lambda-list and body. The scope of theidenti�ers is the entire labels form. The lambda-list is either a single vari-able or a list of variables|see lambda. Each form in labels-body is evaluatedin order in the lexical environment extended with the bindings of the iden-ti�ers. The result of evaluating the last form in labels-body is returned asthe result of the labels form.let macroSyntax(let [identi�er] (binding�) body)RemarksThe optional identi�er denotes that the let form can be called fromwithin its body. This is an abbreviation for labels form in which identi�eris bound to a function whose parameters are the identi�ers of the bindingsof the let, whose body is that of the let and whose initial call passes thevalues of the initializing form of the bindings. A binding is speci�ed byeither an identi�er or a two element list of an identi�er and an initializingform. All the initializing forms are evaluated in order from left to right inthe current environment and the variables named by the identi�ers in thebindings are bound to new locations holding the results. Each form in bodyis evaluated in order in the environment extended by the above bindings.The result of evaluating the last form in body is returned as the result ofthe let form. The rewrite rules for let are given in Table 12.let* macroSyntax(let* (binding�) body)

AN OVERVIEW OF EuLisp 63Table 12: let rewrite rules(let () form�) � (progn form�)(let ((id1 form1)(id2 form2)id3: : :)form�) � ((lambda (id1 id2 id3 : : :)form�)form1 form2 () : : :)(let id0((id1 form1)id2: : :)form�) � (labels((id0 (id1 id2 : : :)form�))(id0 form1 () : : :))Table 13: let* rewrite rules(let* () form�) � (progn form�)(let* ((var1 form1)(var2 form2)var3: : :)form�) � (let ((var1 form1))(let* ((var2 form2)var3: : :)form�))RemarksA binding is speci�ed by a two element list of a variable and an initializingform. The �rst initializing form is evaluated in the current environment andthe corresponding variable is bound to a new location containing that result.Subsequent bindings are processed in turn, evaluating the initializing formin the environment extended by the previous binding. Each form in bodyis evaluated in order in the environment extended by the above bindings.The result of evaluating the last form is returned as the result of the let*form. The rewrite rules for let* are given in Table 13.progn special formSyntax(progn form�)

64 PADGET, NUYENS, BRETTHAUERArgumentsform� : A sequence of forms and in certain circumstances, de�ning forms.ResultThe sequence of forms is evaluated from left to right, returning the valueof the last one as the result of the progn form. If the sequence of forms isempty, progn returns ().RemarksIf the progn form occurs enclosed only by progn forms and a defmoduleform, then the forms within the progn can be de�ning forms, since theyappear in the top-lexical environment. It is a static error for de�ning formsto appear in inner-lexical environments.unwind-protect special formSyntax(unwind-protect protected-form after-form�)Argumentsprotected-form : A form.after-form� : A sequence of forms.ResultThe value of protected-form.RemarksThe normal action of unwind-protect is to process protected-form andthen each of after-forms in order, returning the value of protected-form asthe result of unwind-protect. A non-local exit from the dynamic extentof protected-form, which can be caused by processing a non-local exit form,will cause each of after-forms to be processed before control goes to thecontinuation speci�ed in the non-local exit form. The after-forms are notprotected in any way by the current unwind-protect. Should any kindof non-local exit occur during the processing of the after-forms, the after-forms being processed are not reentered. Instead, control is transferredto wherever speci�ed by the new non-local exit but the after-forms of anyintervening unwind-protects between the dynamic extent of the target ofcontrol transfer and the current unwind-protect are evaluated in increas-ing order of dynamic extent.

AN OVERVIEW OF EuLisp 65(progn(let/cc k1(labels((loop(let/cc k2 (unwind-protect (k1 10) (k2 99));;continuation bound to k2(loop))))(loop)));;continuation bound to k1...)Figure 8: Interaction of unwind-protect with non-local exitsExamplesThe code fragment in Figure 8 illustrates both the use of unwind-protectand of a di�erence between the semantics of EuLisp and some other Lisps.Stepping through the evaluation of this form: k1 is bound to the continu-ation of its let/cc form; a recursive function named loop is constructed,loop is called from the body of the labels form; k2 is bound to the con-tinuation of its let/cc form; unwind-protect calls k1; the after forms ofunwind-protect are evaluated in order; k2 is called; loop is called; etc..This program loops inde�nitely.10.7. EventsThe de�ned name of this module is event.wait generic functionGeneric Argumentsobj : An object.(timeout <object>) : One of (), t or a non-negative integer.ResultReturns () if timeout was reached, otherwise a non-() value.Remarkswait provides a generic interface to operations which may block. Execu-tion of the current thread will continue beyond the wait form only whenone of the following happened:

66 PADGET, NUYENS, BRETTHAUER1. A condition associated with obj returns true;2. timeout time units elapse;3. A condition is raised by another thread on this thread.wait returns () if timeout occurs, else it returns a non-nil value.A timeout argument of () or zero denotes a polling operation. Atimeout argument of t denotes inde�nite blocking (cases 1 or 3 above).A timeout argument of a non-negative integer denotes the minimum num-ber of time units before timeout. The number of time units in a second isgiven by the implementation-de�ned constant ticks-per-second.ExamplesThis code fragment copies characters from stream s to the current outputstream until no data is received on the stream for a period of at least 1second.(labels((loop ()(when (wait s (round ticks-per-second))(print (read-char s))(loop))))(loop))See also:threads (section 8.1), streams (section A.13).ticks-per-second <double-float>The number of time units in a second expressed as a double precision
oating point number. This value is implementation-de�ned.10.8. Quasiquotation Expressionsquasiquote macroSyntax(quasiquote skeleton) or `skeletonRemarksQuasiquotation is also known as backquoting. A quasiquoted expressionis a convenient way of building a structure. The skeleton describes the shape

AN OVERVIEW OF EuLisp 67and, generally, many of the entries in the structure but some holes remainto be �lled. The quasiquote macro can be abbreviated by using the glyphcalled grave accent (`), so that (quasiquote expression) can be written`expression.unquote syntaxSyntax(unquote form) or ,formRemarksSee unquote-splicing.unquote-splicing syntaxSyntax(unquote-splicing form) or ,@formRemarksThe holes in a quasiquoted expression are identi�ed by unquote ex-pressions of which there are two kinds|forms whose value is to be in-serted at that location in the structure and forms whose value is to bespliced into the structure at that location. The former is indicated by anunquote expression and the latter by an unquote-splicing expression. Inunquote-splice the form must result in a proper list. The insertion of theresult of an unquote-splice expression is as if the opening and closing paren-theses of the list are removed and all the elements of the list are appendedin place of the unquote-splice expression.The syntax forms unquote and unquote-splicing can be abbreviatedrespectively by using the glyph called comma (,) preceding an expressionand by using the diphthong comma followed by the glyph called commercialat (,@) preceding a form. Thus, (unquote a) may be written ,a and(unquote-splicing a) can be written ,@a.Examples`(a ,(list 1 2) b) ! (a (1 2) b)`(a ,@(list 1 2) b) ! (a 1 2 b)

68 PADGET, NUYENS, BRETTHAUER11. History and AcknowledgementsThe EuLisp group �rst met in September 1985 at IRCAM in Paris to dis-cuss the idea of a new dialect of Lisp, which should be less constrained bythe past than Common Lisp and less minimalist than Scheme. Subsequentmeetings formulated the view of EuLisp that was presented at the 1986ACM Conference on Lisp and Functional Programming held at MIT, Cam-bridge, Massachusetts [12] and at the European Conference on Arti�cialIntelligence (ECAI-86) held in Brighton, Sussex [18]. Since then, progresshas not been steady, but happening as various people had su�cient timeand energy to develop part of the language. Consequently, although the vi-sion of the language has in the most part been shared over this period, onlycertain parts were turned into physical descriptions and implementations.For a nine month period starting in January 1989, through the support ofINRIA, it became possible to start writing the EuLisp de�nition. Sincethen, a�airs have returned to their previous state, but with the evolutionof the implementations of EuLisp and the background of the foundationslaid by the INRIA-supported work, there is convergence to a consistent andpractical de�nition.The acknowledgments for this de�nition fall into three categories: intel-lectual, personal, and �nancial.The ancestors of EuLisp (in alphabetical order) are Common Lisp[17],InterLISP[19], LE-LISP [4], LISP/VM [1], Scheme [6], and T [14] [16]. Thus,the authors of this report are pleased to acknowledge both the authors ofthe manuals and de�nitions of the above languages and the many who havedissected and extended those languages in individual papers. The variouspapers on Standard ML [11] and the draft report on Haskell [8] have alsoprovided much useful input.The writing of this report has, at various stages, been supported by BullS.A., Gesellschaft f�ur Mathematik und Datenverarbeitung (GMD, SanktAugustin), Ecole Polytechnique (LIX), ILOG S.A., Institut National deRecherche en Informatique et en Automatique (INRIA), University of Bath,and Universit�e Paris VI (LITP). The authors gratefully acknowledge thissupport. Many people from European Community countries have attendedand contributed to EuLisp meetings since they started, and the authorswould like to thank all those who have helped in the development of thelanguage.In the beginning, the work of the EuLisp group was supported by theinstitutions or companies where the participants worked, but in 1987 DGXIII (Information technology directorate) of the Commission of the Eu-ropean Communities agreed to support the continuation of the workinggroup by funding meetings and providing places to meet. It can honestly be

AN OVERVIEW OF EuLisp 69said that without this support EuLisp would not have reached its presentstate. In addition, the EuLisp group is grateful for the support of: BritishCouncil in France (Alliance programme), British Council in Spain (Ac-ciones Integradas programme), British Council in Germany (Academic Re-search Collaboration programme), British Standards Institute, DeutscherAkademischer Austauschdienst (DAAD), Departament de Llenguatges iSistemes Inform�atics (LSI, Universitat Polit�ecnica de Catalunya), Fraun-hofer Gesellschaft Institut f�ur Software und Systemtechnik, Gesellschaft f�urMathematik und Datenverarbeitung (GMD), ILOG S.A., Insiders GmbH,Institut National de Recherche en Informatique et en Automatique (IN-RIA), Institut de Recherche et de Coordination Acoustique Musique (IR-CAM), Rank Xerox France, Science and Engineering Research Council(UK), Siemens AG, University of Bath, University of Technology, Delft,University of Edinburgh, Universit�at Erlangen and Universit�e Paris VI(LITP).The following people (in alphabetical order) have contributed in vari-ous ways to the evolution of the language: Giuseppe Attardi, Javier B�ejar,Russell Bradford, Harry Bretthauer, Peter Broadbery, Christopher Bur-dorf, J�erôme Chailloux, Thomas Christaller, Je� Dalton, Klaus D�a�ler,Harley Davis, David DeRoure, John Fitch, Richard Gabriel, Brigitte Glas,Nicolas Graube, Dieter Kolb, J�urgen Kopp, Antonio Moreno, Eugen Neidl,Pierre Parquier, Keith Playford, Willem van der Poel, Christian Queinnec,Enric Sesa, Herbert Stoyan, and Richard Tobin.The editors of the EuLisp de�nition wish particularly to acknowledge thework of Harley Davis on the �rst versions of the description of the objectsystem. The second version was largely the work of Harry Bretthauer, withthe assistance of J�urgen Kopp, Harley Davis and Keith Playford.References1. Alberga, C.N., Bosman-Clark, C., Mikelsons, M., Van Deusen, M., andPadget, J.A. Experience with an Uncommon Lisp. In Proceedings of1986 ACM Symposium on Lisp and Functional Programming, ACMPress, New York (1986) 39{53. Also available as IBM Research ReportRC-11888.2. Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E, Kiczales,G., and Moon, D.A. Common Lisp Object System Speci�cation. SIG-PLAN Notices, 23, 9 (September 1988).3. Bretthauer, H. and Kopp, J. The Meta-Class-System MCS. A PortableObject System for Common Lisp. {Documentation{. Arbeitspapiereder GMD 554, Gesellschaft f�ur Mathematik und Datenverarbeitung

70 PADGET, NUYENS, BRETTHAUER(GMD), Sankt Augustin (July 1991).4. Chailloux, J., Devin, M., and Hullot, J-M. LELISP: A Portable andE�cient Lisp System. In Proceedings of 1984 ACM Symposium on Lispand Functional Programming, ACM Press, New York (1984) 113{122.5. Chailloux, J., Devin, M., Dupont, F., Hullot, J-M., Serpette, B., andVuillemin, J. Le-Lisp de l'INRIA, Version 15.2, Manuel de r�ef�erence.INRIA, Rocquencourt (1987).6. Clinger, W. and Rees, J.A. (editors). The Revised3 Report on Scheme.SIGPLAN Notices, 21, 12 (December 1986).7. Cointe, P. Metaclasses are First Class: the ObjVlisp model. In Proceed-ings of OOPSLA '87, ACM Press (December 1987) 156{167. publishedas SIGPLAN Notices, Vol 22, No 12.8. Hudak, P. and Wadler, P. (editors). Report on the Functional Pro-gramming Language Haskell. SIGPLAN Notices, 27, 7 (May 1992).9. Lang, K.J. and Pearlmutter, B.A. Oaklisp: An Object-Oriented Dialectof Scheme. Lisp and Symbolic Computation, 1, 1 (June 1988) 39{51.10. MacQueen, D. Modules for Standard ML. In Proceedings of 1984ACM Symposium on Lisp and Functional Programming, ACM Press,New York (1984) 198{207.11. Milner, R. and et al. Standard ML. Technical Report, Laboratory forthe Foundations of Computer Science, University of Edinburgh (1986).12. Padget, J.A. et al. Desiderata for the Standardisation of Lisp. InProceedings of 1986 ACM Symposium on Lisp and Functional Pro-gramming, ACM Press, New York (1986) 54{66.13. Pitman, K.M. An Error System for Common Lisp. (1988). ISO-IECJTC1 SC22 WG16 document N24.14. Rees, J.A. The T Manual. Technical Report, Yale University (1986).15. Shalit, A. Dylan, an object-oriented dynamic language. Apple Com-puter Inc. (1992).16. Slade, S. The T Programming Language, a Dialect of Lisp. Prentice-Hall (1987).17. Steele Jr, G.L. Common Lisp the Language. Digital Press (1984).Second edition, Digital Press, 1990.

AN OVERVIEW OF EuLisp 7118. Stoyan, H. et al. Towards a Lisp Standard. In Proceedings of 1986European Conference on Arti�cial Intelligence (1986) 46{52.19. Teitelman, W. The Interlisp Reference Manual. Xerox Palo Alto Re-search Center (1978).A. Level-0 Module LibraryThis part of the de�nition contains entries for each of the remaining modulescomprising level-0 of EuLisp. Most of them export a class and operationson that class. The rest export functions implementing useful operations,such as copying, comparison and conversion. This section has purposelybeen highly compressed, since there is little that is very di�erent from otherLisps, although each of these is documented in detail in the full version ofthe de�nition.A.1. CharactersCharacter comparison is supported via methods on < and other suchgeneric functions. However, it is only meaningful to compare a lower casecharacter with another lower case, upper with upper and digit with digit.All other combinations are unde�ned. There is primitive support for theinput of two-byte characters by specifying the character's index positionin the current character set, for example: #\x0 and #\xabcd, which de-note, respectively, the characters at position 0 and at position 43981 in thecurrent character set.A.2. CollectionsExports a set of generic functions, the methods for which are de�ned invarious other modules, to provide a set of operators for all the prede�nedaggregates (<list>, <string>, <table>, <vector>). The speci�cation ofcollections is still being �nalized, but has been in
uenced by the operationsoutlined in Dylan [15].A.3. ComparisonExports the functions eq, eql, binary=, binary< and equal. Bothbinary= and binary< are generic but the domain of the former is restrictedto subclasses of <number>. The function equal is also generic.A.4. ConversionThe function convert takes an object and a class as its argument and

72 PADGET, NUYENS, BRETTHAUERreturns a direct or indirect instance of class which is the result of convertingthe object to the class. This works by associating a (generic) converterfunction with each target class. The methods attached to this genericfunction for each source class are responsible for the conversion of the objectto an instance of the target class. The syntax of defgeneric and defmethodare both extended to help with the de�nition of converter functions andmethods.A.5. CopyingExports two generic functions called deep-copy and shallow-copy towhich the class-speci�c modules add methods.A.6. Double
oatsDe�nes methods on the standard arithmetic operators, functions forrounding and maximum and minimum positive and negative values.A.7. Elementary functionsExports the same set of trigonometric functions as provided by ISO-C.A.8. Formatted input-outputExports a function named format which takes the same parameters asCommon Lisp's format, but accepts only a subset of its formatting direc-tives.A.9. Fixed precision integersDe�nes methods on the standard arithmetic operators.A.10. The empty listExports the class <null> and the function null. Note: this class is asubclass of <list> and disjoint from <cons>.A.11. NumbersExports the abstract class <number> and the generic functions for thestandard arithmetic operators.A.12. PairsExports the class <cons> its constructor cons and accessors car and cdr,

AN OVERVIEW OF EuLisp 73and the copying functions copy-list and copy-tree. Note: this class is asubclass of <list> and disjoint from <null>.A.13. StreamsCurrently, the only de�ned stream class is <file-stream>. Input isvia the function read and output via prin and write, which call genericcounterparts to do the actual output operations.A.14. StringsExports the class <string> which is largely indistinguishable from anyother Lisp.A.15. SymbolsAlmost the same syntax as for Common Lisp, except that case is signif-icant.A.16. TablesExports the class <table> which provides a key to value mapping similarto that in most other Lisps.A.17. VectorsThe class <vector> corresponds to Common Lisp's simple vector type,that is, there are no displaced arrays, nor adjustable arrays.B. Level-1 ExtensionsThe part gives a brief overview of level-1 of EuLisp concentrating on thefacilities of the metaobject protocol. These items are described in moredetail in the full version of the de�nition.B.1. Syntax ExtensionsB.1.1. ClassesThe defclass form extends the defstruct form of level-0 (see Sec-tion 7.3) to de�ne any kind of class. It has the following syntax:(defclass class-name (superclass-name�) (slot-spec�) class-option�)It di�ers from defstruct in allowing multiple superclasses and additional

74 PADGET, NUYENS, BRETTHAUERTable 14: defclass syntax (level-1)class-name ::= identi�ersuperclass-name ::= fthe name of a subclass of <object>gslot-spec ::= slot-name j (slot-name slot-option�)slot-name ::= identi�erslot-option ::= initarg identi�erj initform formj reader identi�erj writer identi�erj accessor identi�erj identi�er expressionclass-option ::= initargs (identi�er�)j constructor constructor-specj predicate identi�erj class class-namej identi�er expressionslot and class options as shown in Table 14.The value of the class class-option speci�es the class of the new class,whose default is <class>. The value of a non-standard slot or class option(identi�er expression) is evaluated in the lexical and dynamic environmentof defclass and passed to make of the slot description or class, respectively.This option is used for new slot descriptions or metaclasses which need extrainformation beside the standard options.B.1.2. Generic FunctionsThe syntax of generic-lambda is an extension of the level-0 syntax al-lowing additional init-options (see Table 15):(generic-lambda gen-lambda-list level-1-init-option�)The additional options include the speci�cation of the class of the newgeneric function, which defaults to <generic-function>, the class of allmethods, which defaults to <method>, and non-standard options. The lat-ter are evaluated in the lexical and dynamic environment of defgenericand passed to make of the generic function as additional initialization ar-guments.The defgeneric de�ning form extends the one of level-0 in the sameway as generic-lambda is extended. Thus, the defgeneric form can berewritten as shown in Table 6, except that level-0-init-options are replacedby level-1-init-options as per Table 15.

AN OVERVIEW OF EuLisp 75Table 15: generic-lambda syntax (level-1)level-1-init-option ::= level-0-init-optionj class gf-class-namej method-class method-class-namej method level-1-method-descriptionj identi�er expressiongf-class-name ::= fthe name a subclass of<generic-function>gmethod-class-name ::= fthe name of a subclass of<method>glevel-1-method-description ::= (method-init-option� spec-lambda-listform�)method-init-option ::= class method-class-namej identi�er expressionB.1.3. MethodsThe method-lambda form de�nes and returns an unattached method. Itis the counterpart to generic-lambda and its syntax is:(method-lambda method-init-option� spec-lambda-list form�)The additional method-init-options includes class, for specifying theclass of the method to be de�ned, and non-standard options, which areevaluated in the lexical and dynamic environment of method-lambda andpassed to initialize of that method.The defmethod form of level-1 extends that of level-0 to accept method-init-options. The syntax is:(defmethod gf-name method-init-option� spec-lambda-list form�)B.2. The Metaobject ProtocolB.2.1. System De�ned ClassesThe basic classes of level-1 ofEuLisp are shown in Figure 9, which extendthe class hierarchy found in Section 7.1. The class of each class is shownafter it enclosed in square brackets. It may be a direct or indirect instanceof that class.Standard classes are not rede�nable and support single inheritance only.General multiple inheritance or mixin inheritance can be provided by ex-tensions. Nor is it possible to use a class as a superclass which is not de�ned

76 PADGET, NUYENS, BRETTHAUER<object> [<abstract-class>]<class> [<class>]<abstract-class> [<class>]<function-class> [<class>]<slot-description> [<abstract-class>]<local-slot-description> [<class>]<function> [<abstract-class>]<generic-function> [<function-class>]<method> [<class>]Figure 9: Class Hierarchyat the time of class de�nition. Again, such forward reference facilities canbe provided by extensions.Standard classes support local slots only. Shared slots can be providedby extensions. The class <slot-description> is the abstract class of allslot descriptions.B.2.2. IntrospectionThe minimal information associated with an object is its class. Thecorresponding introspection function class-of is de�ned for all objects.The minimal information associated with a class metaobject is: The classprecedence list, ordered most speci�c �rst, beginning with the class itself,the list of (e�ective) slot descriptions, the list of (e�ective) initargs, andthe instance size.Access to this information is provided by functions which take a class astheir only argument:class-precendence-listclass-slot-descriptionsclass-initargsclass-instance-sizeThe minimal information associated with a slot description metaobjectis: the name, which is required to perform inheritance computations, theinitfunction, called by default to compute the initial slot value when creat-ing a new instance, the reader, which is a function to read the correspondingslot value of an instance, the writer, which is a function to write the corre-sponding slot of an instance, and the initarg, which is a symbol to accessthe value which can be supplied to a make call in order to initialize thecorresponding slot in a newly-created object.The information associated with slot descriptions can be accessed via

AN OVERVIEW OF EuLisp 77operations which take a slot description as their only argument. Thesefunctions are:slot-description-nameslot-description-initfunctionslot-description-slot-readerslot-description-slot-writerslot-description-initargThe minimum information associated with a generic function metaobjectis: the domain, restricting the domain of each added method to a subdo-main, the method class, restricting each added method to be an instanceof that class, the list of all attached methods, the method look-up functionused to collect and sort the applicable methods for a given domain, and thediscriminating function used to perform the generic dispatch.The associated introspection operations which take a generic function astheir only argument are:generic-function-domaingeneric-function-method-classgeneric-function-methodsgeneric-function-method-lookup-functiongeneric-function-discriminating-functionThe minimal information associated with a method metaobject is thedomain, which is a list of classes. The associated introspection operationwhich take a method as its only argument is method-domain.B.2.3. Class Initialization and InheritanceThe init-options for classes are:direct-superclassesdirect-slot-descriptionsdirect-initargsThe init-options for slot descriptions are:nameinitfunctionreaderwriterinitargThe default initialization of a class takes place in four steps. First com-patibility of the direct superclasses is checked. Then the logical inheritancecomputations are done. This includes the class precedence list, the initargs,the e�ective slot descriptions, and the instance size. The third step com-putes the new slot accessors and ensures all (new and inherited) accessorswork correctly on instances of the new class. Finally, the results are made

78 PADGET, NUYENS, BRETTHAUERcompatible-superclasses-p cl direct-superclasses ! booleancompatible-superclass-p cl superclass ! booleancompute-class-precedence-list cl direct-superclasses ! (cl�)compute-inherited-initargs cl direct-superclasses ! ((initarg�)�)compute-initargs cl direct-initargs inh-initargs ! (initarg�)compute-inherited-slot-descriptions cl direct-superclasses ! ((sd�)�)compute-slot-descriptions cl slot-specs inh-sds ! (sd�)eithercompute-defined-slot-description cl slot-spec ! sdcompute-defined-slot-description-class cl slot-spec ! sd-classorcompute-specialized-slot-description cl inh-sds slot-spec ! sdcompute-specialized-slot-description-classcl inh-sds slot-spec ! sd-classcompute-instance-size cl e�-sds ! integercompute-and-ensure-slot-accessors cl e�-sds inh-sds ! (sd�)compute-slot-reader cl sd e�-sds ! functioncompute-slot-writer cl sd e�-sds ! functionensure-slot-reader cl sd e�-sds reader ! functioncompute-primitive-reader-using-slot-descriptionsd cl e�-sds ! functioncompute-primitive-reader-using-class cl sd e�-sds ! functionensure-slot-writer cl sd e�-sds writer ! functioncompute-primitive-writer-using-slot-descriptionsd cl e�-sds ! functioncompute-primitive-writer-using-class cl sd e�-sds ! functionFigure 10: Initialization Call Structureaccessible by the class introspection operations. The basic call structure ofthe �rst three steps is laid out in Figure 10. It uses the following abbrevia-tions: cl { class, sd { slot-description, inh { inherited, e� { e�ective. Notethat it is implementation-de�ned whether any of these steps are performedcompletely at initialization time or lazily when needed.The generic function compatible-superclasses-p checks the compati-bility between class and its direct-superclasses by calling compatible-su-perclass-p for class and each of its superclasses. compute-class-pre-cedence-list returns a list of classes which represents the linearized in-heritance hierarchy of class cl and the given list of direct-superclasses,beginning with cl and ending with <object>. compute-initargs com-putes and returns all legal initargs for a class. Therefore, it takes theresult of compute-inherited-initargs which returns a list of the le-gal initarg lists of the (direct) superclasses. The computation of the ef-

AN OVERVIEW OF EuLisp 79fective slot descriptions is done by compute-slot-descriptions whichtakes the class cl, the direct slot speci�cations slot-specs, and the inher-ited slot descriptions inh-sds as its arguments. The latter are computed bycompute-inherited-slot-descriptions which takes the class cl and itsdirect-superclasses and returns a list containing lists of inherited slot de-scriptions. compute-slot-descriptions distinguishes between the com-putation of specialized and newly-de�ned slot descriptions and calls eithercompute-specialized-slot-descriptionorcompute-defined-slot-descriptionThe former takes for each slot name as arguments the class cl, the list ofinherited slot descriptions inh-sds and the canonicalized slot speci�cationslot-spec and the latter takes cl and slot-spec. Both generic functions returna new e�ective slot description. They callcompute-specialized-slot-description-classorcompute-defined-slot-description-class,respectively, to get the class for the new e�ective slot description corre-sponding to its arguments which defaults to <local-slot-description>.The instance size computation is described in Section B.2.6. The third stepis described as a subprotocol in the next section.All of the default methods pro�t from the single inheritance assumption,but the call structure and the supplied arguments take into account thatthere will exist classes with di�erent inheritance strategies.B.2.4. Slot Accessor ComputationRather than have a dynamic slot access protocol, TELOS provides a stan-dard protocol for computing readers and writers. Every slot descriptioncontains one reader and one writer capable of extracting and updating thecorresponding slot within instances. Accessor de�ning slot options withina defclassmerely bind the slot's single reader or writer to the appropriatename, therefore two readers for the same slot bound to di�erent names willalways be eq.All slot accesses take place through calls to these accessor functions. Nocounterpart of slot-value found in CLOS is provided, although it can bewritten in terms of accessors.Accessors are computed and updated as part of the initialization of aclass calling compute-and-ensure-slot-accessors (see Figure 10).

80 PADGET, NUYENS, BRETTHAUERA new slot, that is one which is not inherited, has a reader computed forit by compute-slot-reader and a writer by compute-slot-writer. Theresults which are1. simple functions for structure classes, and2. generic function without any methods for standard classesare then stored in its slot description.Inherited slots, either specialized in some way or left unchanged, takethe reader and writer from the corresponding slot description objects ofthe superclasses.Accessor functions computed or inherited in this way are updated towork for direct instances of a particular class calling ensure-slot-readerand ensure-slot-writer for that class:1. For structure classes, the ensure operations need do nothing since theslot position can never change in subclasses.2. For standard classes, they add a method to accessor capable of access-ing the appropriate slot of direct instances of class cl. In cases wherethe slot has not \moved" relative to its position within instances ofthe superclasses of cl, there may be no need to update the accessorfunction.The standard ensuring methods use a subprotocol for computing primi-tive accessors used in the new method bodies { standard functions capableof accessing a particular slot in direct instances of a given class.These subprotocol functions are the direct counterpart of slot-val-ue-using-class in CLOS and are the generic functions most commonlyused to change the behaviour of slot access.By default, compute-primitive-reader-using-slot-description re-turns the result of calling compute-primitive-reader-using-class. Forstandard classes and local slot descriptions this is a function of one argu-ment that when applied to a direct instance of class cl, returns the valueof the slot described by slot description sd. Its behaviour on instances ofother classes, even subclasses of the speci�ed class, is unde�ned in general.For structure classes, its behaviour on direct and indirect instances of cl isthe same.Similarly for writers, the result is a function of two arguments: a directinstance of class cl and a new value for the slot in question.

AN OVERVIEW OF EuLisp 81B.2.5. Method Lookup and Generic DispatchThe default generic dispatch scheme is class-based; that is, methodsare class speci�c. The argument precedence order is by default left-to-right. This functionality speci�ed at level-0 in detail is provided by thefollowing protocol. A newly-created generic function is prepared for call-ing by the corresponding initialize method. Generic functions can becreated calling make or generic-lambda, while methods are created onlyby method-lambda. The only init-option which can be used within theinitialize method called by method-lambda is domain. It speci�es thelist of the argument classes. The init-options for generic functions are:domainmethod-classmethodsThe basic call structure inside the initialize method is:add-method gf method -> gfcompute-method-lookup-function gf domain -> functioncompute-discriminating-function gf domain lookup-fn methods -> functionThe (generic) function add-method attaches the speci�ed methods to thegeneric function and its slots are initialized from the information passed ininitlist and from the results of calling compute-method-lookup-functionand its partner, compute-discriminating-function on the generic func-tion. Note that these two functions might not be called during the call toinitialize, and that they might be called several times for the genericfunction.The generic function add-method adds a method to the generic functiongf and returns gf as its result. The method will be taken into account whengf is called with appropriate arguments the next time. New methods maybe de�ned on add-method for new generic function and method classes. Thedefault method checks that the domain classes of the method are subclassesof those of the generic function, that the method is an instance of the genericfunction's method class, and that a method with the same domain is notalready attached to the generic function. An error is signalled if any ofthese conditions does not hold.NOTE | In contrast to CLOS, add-method does not remove a method withthe same domain as the method being added.If no error occurs, the method is added to the generic function gf. De-pending on the kind of optimizations employed for generic dispatch, addinga method may cause the recomputation of the method lookup function andthe discriminating function.The former computes and returns a function which will be called at

82 PADGET, NUYENS, BRETTHAUERleast once for each domain to select and sort the applicable methods bythe default dispatch mechanism. New methods may be de�ned for thisfunction to implement di�erent method lookup strategies. Although onlyone method lookup function generating method is provided by the system,each generic function has its own speci�c lookup function which may varyfrom generic function to generic function.The latter computes and returns a function which is called whenever thegeneric function is called. The returned function controls the generic dis-patch. Users may de�ne methods on this function for new generic functionclasses to implement alternative dispatch strategies. The default methodimplements the standard dispatch strategy: the generic function's methodsare sorted using the function returned by compute-method-lookup-func-tion, and the �rst is called as if by call-method, passing the others as thelist of next methods. Note that call-method need not be called directlyfor standard generic functions. However, user-de�ned extensions mightneed call-method or apply-method to implement other generic dispatchstrategies. The interfaces of these functions are:(call-method method next-methods arg�)(apply-method method next-methods arg� args)The �rst calls method with the sequence of arguments arg�. The argu-ment next-methods is a list of methods which are used as the applicablemethod list for args; it is an error if this list is di�erent from the methodswhich would be produced by the method lookup function of the genericfunction of method. If method is not attached to a generic function, itsbehaviour is unspeci�ed. The next-methods are used to determine the nextmethod to call when call-next-method is called within method.apply-method is identical to call-method except that its last argumentis a list whose elements are the other arguments to pass tomethod. The dif-ference is identical to that between normal function application and apply.B.2.6. Low Level Allocation PrimitivesThe high level allocation construct is the generic function allocatewhich takes a class and an initlist as arguments. At level-0, it was spec-i�ed just as a function. At level-1 it is generic, and, thus, extensible bythe user. In order to implement new allocation methods portably low levelprimitives are necessary. Examples requiring this are persistent objects, orthe change-class functionality, or rede�nable classes with automaticallyupdatable instances, etc. The primitives are de�ned in such a way thatobjects cannot be destroyed unintentionally. The protocol should be bothsecure and e�cient.The operations are:

AN OVERVIEW OF EuLisp 83(primitive-allocate class) ! primitive-allocated-object(primitive-class-of primitive-allocated-object) ! class(primitive-ref primitive-allocated-object index) ! value((setter primitive-class-of) primitive-allocated-object new-class)((setter primitive-ref) primitive-allocated-object index new-value)In order to make this interface work, the class initialization protocol is ex-tended by a function class-instance-size which returns the value com-puted by the generic function compute-instance-size and stored oncefor each class. That means class-instance-size always returns thesame value for a particular class. The default compute-instance-sizemethod returns the number of local slot descriptions in a class. The func-tion primitive-allocate uses the result of class-instance-size appliedon its argument to create an object of that size. Thus, there is no wayto create instances of a class with the wrong size. The index passed toprimitive-refmust be a non-negative �xed precision integer smaller thanthe corresponding instance size. (setter primitive-class-of) checksthat the results of class-instance-size on the old and the new classesare equal. Otherwise, an error is signalled. An error is signalled if either ofprimitive-class-of, primitive-ref or their setters are applied on ob-jects not created by primitive-allocate, or if primitive-allocate iscalled on a direct instance of a system-de�ned metaclass.Thus, due to the above restrictions type inference is safely applicable toprimitive allocated objects.NOTE|The change-classmodule can be implemented reducing the semanticdi�culties of CLOS.C. GlossaryThis set of de�nitions, which are be used throughout this de�nition, is self-consistent but might not agree with notions accepted in other languagede�nitions. The terms are de�ned in alphabetical rather than dependencyorder and where a de�nition uses a term de�ned elsewhere in this section itis written in italics. Some of the terms de�ned here are redundant. Namesin courier font refer to entities de�ned in the language.boolean: A boolean value is either false, which is represented by theempty list|written () and is also the value of nil|or true, which is rep-resented by any other value than ().class: A class is an object which describes the structure and behaviour ofa set of objects which are its instances. A class object contains inheritanceinformation and a set of slot descriptions which de�ne the structure of its

84 PADGET, NUYENS, BRETTHAUERinstances. A class object is an instance of ametaclass. All classes in EuLispare subclasses of <object>, and all instances of <class> are classes.de�ning form: Any form or any macro expression expanding into a formwhose operator is one of:defclass, defcondition, defconstant, defgeneric, deflocal,defmacro, defstruct, defun, or defvar.direct instance: A direct instance of a class class1 is any object whosemost speci�c class is class1.direct subclass: A class1 is a direct subclass of class2 if class1 is a subclassof class2, class1 is not identical to class2, and there is no other class3 whichis a superclass of class1 and a subclass of class2.direct superclass: A direct superclass of a class class1 is any class forwhich class1 is a direct subclass.dynamic environment: The inner and top dynamic environment, takentogether, are referred to as the dynamic environment.function: A function is one of continuation, simple function or genericfunction.generic function: Generic functions are functions for which the methodexecuted depends on the class of its arguments. A generic function isde�ned in terms ofmethods which describe the action of the generic functionfor a speci�c set of argument classes called the method's domain.indirect instance: An indirect instance of a class class1 is any objectwhose class is an indirect subclass of class1.indirect subclass: A class1 is an indirect subclass of class2 if class1 is asubclass of class2, class1 is not identical to class2, and there is at least oneother class3 which is a superclass of class1 and a subclass of class2.inheritance graph: A directed labelled acyclic graph whose nodes areclasses and whose edges are de�ned by the direct subclass relations betweenthe nodes. This graph has a distinguished root, the class <object>, whichis a superclass of every class.

AN OVERVIEW OF EuLisp 85inherited slot description: A slot description is inherited for a class1 ifthe slot description is de�ned for another class2 which is a direct or indirectsuperclass of class1.initarg: A symbol used as a keyword in an initlist to mark the value ofsome slot or additional information. Used in conjunction with make andthe other object initialization functions to initialize the object. An initargmay be declared for a slot in a class de�nition form using the initarg slotoption or the initargs class option.initform: A form which is evaluated to produce a default initial slot value.Initforms are closed in their lexical environments and the resulting closureis called an initfunction. An initform may be declared for a slot in a classde�nition form using the initform slot option.initfunction: A function of no arguments whose result is used as the de-fault value of a slot. Initfunctions capture the lexical environment of aninitform declaration in a class de�nition form.initlist: A list of alternating keywords and values which describes somenot-yet instantiated object. Generally the keywords correspond to the ini-targs of some class.inner dynamic: Inner dynamic bindings are created by dynamic-let,referenced by dynamic and modi�ed by dynamic-setq. Inner dynamicbindings extend, and can shadow, the dynamically enclosing dynamic en-vironment.inner lexical: Inner lexical bindings are created by lambda and let/cc,referenced by variables and modi�ed by setq. Inner lexical bindings extend,and can shadow, the lexically enclosing lexical environment. Note thatlet/cc creates an immutable binding.instance: Every object is the instance of some class. An instance thusdescribes an object in relation to its class. An instance takes on the structureand behaviour described by its class. An instance can be either direct orindirect.instantiation graph: A directed graph the nodes of which are objectsand the edges of which are de�ned by the instance relations between theobjects. This graph has only one cycle, an edge from <class> to itself. Theinstantation graph is a tree and <class> is the root.

86 PADGET, NUYENS, BRETTHAUERlexical environment: The inner and top lexical environment of a mod-ule are together referred to as the lexical environment except when it isnecessary to distinguish between them.metaclass: A metaclass is a class object whose instances are themselvesclasses. All metaclasses in EuLisp are instances of <class>, which is aninstance of itself. All metaclasses are also subclasses of <class>. <class>is a metaclass.method: A method describes the action of a generic function for a partic-ular list of argument classes called the method's domain. A method is thussaid to add to the behaviour of each of the classes in its domain. Methodsare not functions but objects which contain, among other information, afunction representing the method's behaviour.method speci�city: A domain domain1 is more speci�c than anotherdomain2 if the �rst class in domain1 is a subclass of the �rst class indomain2, or, if they are the same, the rest of domain1 is more speci�cthan the rest of domain2.multi-method: A method which specializes on more than one argument.new instance: A newly allocated instance, which is distinct, but can beisomorphic to other instances.re
ective: A system which can examine and modify its own state is saidto be re
ective. EuLisp is re
ective to the extent that it has explicit classobjects and metaclasses, and user-extensible operations upon them.self-instantiated class: A class which is an instance of itself. In EuLisp,<class> is the only example of a self-instantiated class.setter function: The function associated with the function that accessesa place in an entity, which changes the value stored in that place.simple function: A function comprises at least: an expression, a set ofidenti�ers, which occur in the expression, called the parameters and theclosure of the expression with respect to the lexical environment in whichit occurs, less the parameter identi�ers. Note: this is not a de�nition of theclass <simple-function>.

AN OVERVIEW OF EuLisp 87slot: A named component of an object which can be accessed using theslot's accessor. Each slot of an object is described by a slot descriptionassociated with the class of the object. When we refer to the structure ofan object, this usually means its set of slots.slot description: A slot description describes a slot in the instances ofa class. This description includes the slot's name, its logical position ininstances, and a way to determine its default value. A class's slot descrip-tions may be accessed through the function class-slot-descriptions. Aslot description can be either direct or inherited.slot option: A keyword and its associated value applying to one of theslots appearing in a class de�nition form, for example: the accessor key-word and its value, which de�nes a function used to read or write the valueof a particular slot.slot speci�cation: A list of alternating keywords and values (startingwith a keyword) which represents a not-yet-created slot description duringclass initialization.special form: A special form is a semantic primitive of the language. Inconsequence, any processor (for example, a compiler or a code-walker) needbe able to process only the special forms of the language and compositionsof them.specialize: A verbal form used to describe the creation of a more speci�cversion of some entity. Normally applied to classes, slot-descriptions andmethods.specialize on: A verbal form used to describe relationship of methodsand the classes speci�ed in their domains.subclass: The behaviour and structure de�ned by a class class1 are in-herited by a set of classes which are termed subclasses of class1. A subclasscan be either direct or indirect or itself.superclass: A class1 is a superclass of class2 i� class2 is a subclass ofclass1. A superclass can be either direct or indirect or itself.top dynamic: Top dynamic bindings are created by defvar, referencedby dynamic and modi�ed by dynamic-setq. There is only one top dynamicenvironment.

88 PADGET, NUYENS, BRETTHAUERtop lexical: Top lexical bindings are created in the top lexical environmentof a module bydefclass, defcondition, defconstant, defgeneric, defmacro,defstruct, defun.All these bindings are immutable. deflocal creates a mutable top-lexicalbinding. All such bindings are referenced by variables and those made bydeflocal are modi�ed by setq. Each module de�nes its own distinct toplexical environment.

