Joint Project APPLY

A Conservative Garbage Collector for an

EuLisp to ASM/C Compiler

E. Ulrich Kriegel

Fraunhofer Institute for Software Engineering and Systems
Engineering

Task: Kernel

Status: Final version
Document Identifier: APPLY/ISST/VI.1/4
Created: 07/01/1993
Revised: 14/10/1993

© 1993 ISST

Synopsis

This paper is identical to that one contained in the collection of papers of
the OOPSLA’93 Workshop on Garbage Collection and Memory Management,
Washington DC, September 27, 1993. It describes the utilization of an conser-
vative garbage collection scheme in an Fulisp to ASM/C compiler.

This work was supported by the German Federal Ministry for Research and Technology
(BMFT) within the joint project APPLY. The partners in this project are the Christian
Albrechts University Kiel, the Fraunhofer Institute for Software Engineering and Systems
Engineering (ISST), the German National Research Center for Computer Science (GMD),

and VW-Gedas.

Christian Albrechts University Kiel

Institute for Computer Science and Practical
Mathematics

Research Group “Programming Languages and
Compiler Construction”

Preusserstr. 1-9, D-24105 Kiel, FRG

Fax: 0431/5661-43

Person to contact: Dr. Friedemann Simon
Phone: 0431/5604-25

E-mail: fs@informatik.uni-kiel.de

Fraunhofer Institute for Software Engineering
and Systems Engineering (ISST)

Kurstr. 33, D-10117 Berlin, FRG

Fax: 030/20372-301

Person to contact: Dr. Horst Friedrich
Phone: 030/20372-342

E-mail: horst.friedrich@isst.thg.de

German National Research Center for Computer
Science (GMD)

Institute for Applied Information Technology
Artifical Intelligence Research Division

P.O. Box 1316, D-53757 Sankt Augustin, FRG
Fax: 02241/14-2072

Person to contact: Prof. Dr. Thomas Christaller
Phone: 02241/14-2678

E-mail: thomas.christaller@gmd.de

VW-GEDAS

Pascalstr. 11, D-10587 Berlin, FRG

Fax: 030/39007999

Person to contact: Dipl.-Ing. Jurgen Beste
Phone: 030/39007-331

E-mail: beste%sun1@hwsw.gedas.de

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 1

Contents

1 Introduction 1
2 Layout of the Memory Management Scheme 1
3 Embedding into the EuLisp Runtime System 3
4 Some Performance Tests with EuLisp Applications 3

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 1

1 Introduction

In the framework of the joint research project Apply [Bretthauer et al., 1992] at ISST we
are investigating strategies for the compilation of EuLisp modules [Padget et al., 1993]
into Sparc assembler or into C code. The main goals of the project are:

e Compiled Eulisp modules should run as efficient as equivalent C programs.

o Lisp procedures should be easily callable from C and vice versa.
The following implementation decisions were taken:

1. The hardware stack is used instead of an own control stack for Lisp.

2. Lisp datatypes are represented similar to C datatypes in order to avoid incompat-
ibility with hardware datatypes and in order to enable easy data exchange with
non-Lisp programs.

To reduce the size of objects a BIBOP typing scheme is used for frequently allocated data
and a special tagging scheme with a 4 byte tag in front of data otherwise. The memory
management system for the FuLisp runtime system relies on the conservative pointer
finding technique [Boehm and Weiser, 1988].

In the following a brief description of the memory management layout is given. First
tests, performed with a preliminary version of an EuLisp to C code compiler show that
conservative techniques could be used at least for stand alone Lisp applications.

2 Layout of the Memory Management Scheme

We decided to implement a scheme similar to that described by Boehm and Weiser where
data are located on special memory locations - in the following we call them cards. In
order to support a BIBOP typing scheme the original BW-algorithm was modified:

e Objects are grouped on cards according to their size and according to the class they
are instances of.

e In order to reduce fragmentation, vector-like objects (e.g. strings) that belong to
the same class and differ only in the number of elements can be grouped on special
cards.

o In order to simplify marking algorithms either a simple geometric description of the
stored objects (e.g. 8-byte-constituents, no pointer) or a marking procedure must
be assigned to each card.

A prototypical implementation (written in C) was used in conjunction with procedures
written in C! to carry out performance tests. Compared to the original algorithm memory

1We used a version of factorial using an arithmetic for natural numbers where each number N is
represented as the Nth. successor of zero.

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 2

allocation was less efficient. This is mainly due to a more complicated dispatch algorithm.
The efficiency for marking cards was found to be comparable with Boehm and Weiser or
even better in case that marking procedures had been assigned to cards.

Thus the memory management system was redesigned with the concept of a configurable
toolkit in mind. It is implemented in C and the configuration can be specified in form of
Preprocessor macros.

e In order to reduce the overhead of type and object size dispatch we now use descrip-
tors that are calculated only once for every object class. For the allocation of an
instance of a specific class then the corresponding descriptor is used.

o For every class a tracing function must be specified, predefined trace functions are
provided for standard cases.

e Locations can be declared to be root addresses. With declared roots the total root
set consists of all stack locations and the declared root set. Without declaration all
possible locations for static data are included into the root set.

o Different types of cards are supported in order to reduce possible fragmentation:

STSS Single Type Single Size Cards
STSS cards allow the efficient storage of objects of same size and same type.
The object class is stored among other relevant information in the card header.
This scheme corresponds to the BEBOP typing scheme known in Lisp imple-
mentation and should be used when many instances of the same class will be
created.

MTSS Multiple Type Single Size Cards

MTSS cards contain objects of the same size that belong to different classes.
The advantage over STSS-cards is a smaller fragmentation of memory specially
in cases where only a small number of instances of each class will be created.
The object class is stored in front of the corresponding data as in normal tagging
schemes. This increases the object size by one word. However, in order to allow
uniform access to the object slots independently of the used card type any valid
pointer has to point behind the tag into the first slot of an object.

STMS Single Type Multiple Size Cards
STMS cards store variable sized vector-like objects like strings. Similar to the
scheme used on MTSS cards the length of each instance is stored in front of
that instance.

e For each application the user may specify which kind of cards he intends to use to
allow optimizations for the allocation and marking procedures.

The result of the FAC benchmark?, given in table 1, indicate that both algorithms have a
comparable performance.

2To allow a comparison with the B/W-algorithm, no user-specified roots were used.

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 3

3 Embedding into the EuLisp Runtime System

Our compiler is written in an FuLisp-like syntax using an ”EuLisp compatibility package”
defined on top of CLtL2 [Steele Jr., 1990]. The basic part of the EuLisp run time system
is written in Ta1L® which allows the handling of C-like data structures and contains a
foreign function interface. The interface functions of the memory management system are
declared as foreign functions in TAIL. Except of instances of the class <fixed-precision-
integer> all instances of EuLisp classes are represented as pointer to data. FuLisp basic
classes are described similarly to the following definition of the class <cons>:

(idefine-standard-class

(<cons> <class>);;class and metaclass

<list> ; ;superclass

((car type <object> ;;car slot holds objects with type <object>
reader car ; ;generate reader car
writer set-car) ;;generate writer set-car

(cdr type <object>

reader cdr
writer set-cdr))

constructor (cons car cdr);;generate function cons

allocation single-card ;;allocate instances on STSS cards

representation pointer-to-struct);; representation is pointer

;; to a structure with 2 slots

The last specifications describe how instances should be allocated. Init-forms for the
initialization of the memory management system and if specified constructor as well as slot
accessor functions for instances are generated automatically by the compiler. In addition,
depending on the type that slots could hold and dependent on the specified representation
a specialized tracing function for each class is generated.

When ever possible, data are allocated statically during compilation time. Statically
allocated data are represented with their class in front as on MTSS-cards

4 Some Performance Tests with EuLisp Applications

This section shows the results of two benchmarks, a cons-intensive version of reverse®

(defun reverse (1)
(if (null 1) Q)
(if (null (cdr 1))
1
(cons (car (reverse (cdr 1)))
(reverse (cons (car 1)
(reverse (cdr (reverse (cdr 1))))))))))

*TAIL, an acronym from Typed Implementation Language, was developed in the framework of the
project Apply.
*Reversing a list with 14 elements requires the allocation of 4427042 conses.

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 4

that uses only the functions cons, car and cdr but no auxiliary functions, and the traverse
benchmark [Gabriel, 1986]. The corresponding EuLisp modules were compiled into ANSI-
C-code and then compiled and linked with the memory management system using the
GNU C compiler/linker. The allocator is configured to start with 16 cards of size 4096
bytes. If after a garbage collection more than one third of the allocated heap is still in use
then the heap size will be doubled. The root set consists of all statically allocated EuLisp
data contained in a certain ”"data” section and of the activation stack. To be more realistic
we use EuLisp I/0 to force the allocation of instances of classes like <string> , <stream>
etc., which do not appear in the actual benchmark programs. These instances are allocated
on all three types of cards. Therefore, no special optimization of the allocation procedures
can be done as in the case of the previous Fac benchmark. The result of the reverse
benchmark® is given in table 2 for conses allocated on STSS, MTSS and STMS cards,
respectively. For comparison, the values of these benchmarks obtained with Franz Allegro
4.1 using the compiler options (optimize (speed 3) (safety 0)) are given too. Many Lisp
systems use special optimizations for conses. Thus the table also shows the benchmark
for ACL4.1 where conses are replaced by corresponding unnamed structures of type list.
The results prove satisfactory, the best result is obtained for the allocation on STSS cards.
Using a configuration with a larger number of initial cards the performance can be further
improved. That is shown in table 3. The numbers presented indicate that there is an
optimum at about 256 cards where user time is small and system time is at its minimum,
whereas for larger numbers system time begins to increase more strongly than user time
decreases.® The results of the traverse benchmarks are given in table 4. Here the instances
of the structure <node> are allocated on MTSS cards.

For a final conclusion we have to to perform other and more complicated benchmarks.
However, the results obtained until now indicate that our modified conservative memory
management scheme is suitable at least for small stand alone Lisp application.

® All measurements are performed on a Sun ELC with 32 Mbyte and Apply EuLisp->C compiler version
93-09.

5For a version of reverse which uses standard C malloc without any garbage collection we measured a
system time of about 20 s.

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler

Ot

Performance in dependence on card types
Test | Boehm/Weiser | STSS | MTSS | STMS
Fac 11.3 s 94s | 10.1s | 1145

Table 1: Factorial bencmark in C

REVERSE Benchmark I

time
System user system
FuLisp STSS 21.1£0.1s 1.2+ 0.1s
FuLisp MTSS 26.7 £ 0.3 s 1.9+ 03s
FuLisp STMS 334+ 025 204+ 0.1s
ACL4.1 with cons 124+ 0.0 s 0.1+ 0.1s
ACL4.1 with struct | 61.1 & 0.04 s | 0.05 £ 0.02 s

Table 2: Reverse benchmark for conses allocated on different types of cards

REVERSE Benchmark II
STSS MTSS STMS

time time time

Cards | gc user | system gc user | system gc user | system
16 927 | 21.1s | 1.2s | 1406 | 26.7s | 1.9s | 1406 | 33.4s | 2.0s
32 350 | 17.7s | 0.5s 527 1 219s| 0.7s 527 | 306s | 0.8s
64 155 | 16.4s| 0.2s 234 | 200s | 03s 234 29.5 0.4s
128 73 | 15.8s | 0.2s 110 | 19.1s| 0.2 110 | 28.9s | 0.2s
256 36 | 155s| 0.2s 54 | 188s | 0.2s 54 | 288s | 0.2s
512 17 | 154s | 03s 26 | 186s | 0.3s 26 | 284s | 03s

1024 8 1545 | 0.5s 13 | 185s8 | 0.6 13 | 285s| 0.6s

Table 3: Reverse benchmark for conses allocated on different types of cards in dependece
of the number of initial cards

TRAVERSE-INITIALIZE Benchmark
System user time system time
FulLisp 2.0+ 0.01s 0.06 £+ 0.02
ACL4.1 with cons 0.5s 0.02 s

TRAVERSE-RUN Benchmark
System user time system time
Fulisp 4.93 £ 0.01s 04+ 0.01s
ACL4.1 with cons 4.65 s 0.01 £ 0.01s

Table 4: Results of the Traverse-Run Benchmark

APPLY/ISST/V1.1/4 14/10/1993

A Conservative Garbage Collector for an EuLisp to ASM/C Compiler 6

References

[Boehm and Weiser, 1988] H.-J. Boehm and M. Weiser. Garbage Collection in an Unco-
operative Environment. Software - Practice and Frperience, 18(9):807-820, 1988.

[Bretthauer et al., 1992] H. Bretthauer, T. Christaller, H. Friedrich, W. Goerigk,
W. Heicking, U. Hoffmann, D. Hovekamp, H. Knutzen, J. Kopp, E. U. Kriegel,
I. Mohr, R. Rosenmiiller, and F. Simon. APPLY: A modern and practical Lisp.
APPLY-Arbeitspapier APPLY/GMD/XIII/6, CAU/GMD/ISST/VW-GEDAS, Sankt
Augustin, September 1992.

[Gabriel, 1986] R. P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press,
Cambridge, Massachusetts, 1986.

[Padget et al., 1993] J. Padget, G. Nuyens, and H. Bretthauer. An Overview of EuLisp.
APPLY-Arbeitspapier APPLY/GMD/II/1, Gesellschaft fiir Mathematik und Datenver-
arbeitung (GMD), Sankt Augustin, May 1993.

[Steele Jr., 1990] G. L. Steele Jr. Common Lisp - The Language, Second Edition. Digital
Press, Bedford, Massachusetts, 1990.

APPLY/ISST/V1.1/4 14/10/1993

