
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??{??, 1993c 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsBalancing the EuLisp Metaobject Protocol�HARRY BRETTHAUERy (bretthauer@gmd.de)J�URGEN KOPP (kopp@gmd.de)German National Research Center for Computer Science (GMD),P.O. Box 1316, W-5205 Sankt Augustin 1, FRGHARLEY DAVIS (davis@ilog.fr)ILOG SA., 2 avenue Galli�eni, 94253 Gentilly, FranceKEITH PLAYFORD (kjp@maths.bath.ac.uk)School of Mathematical Sciences, University of Bath, Bath BA2 7AY, UKKeywords: Object-oriented Programming, Language DesignAbstract. The challenge for the metaobject protocol designer is to balance the con-icting demands of e�ciency, simplicity, and extensibility. It is impossible to know alldesired extensions in advance; some of them will require greater functionality, while oth-ers require greater e�ciency. In addition, the protocol itself must be su�ciently simplethat it can be fully documented and understood by those who need to use it.This paper presents the framework of a metaobject protocol for EuLispwhich providesexpressiveness by a multi-leveled protocol and achieves e�ciency by static semantics forprede�ned metaobjects and modularizing their operations. The EuLisp module systemsupports global optimizations of metaobject applications. The metaobject system itselfis structured into modules, taking into account the consequences for the compiler. Itprovides introspective operations as well as extension interfaces for various functionalities,including new inheritance, allocation, and slot access semantics.While the overall goals and functionality are close to those of Kiczales et al. [10], theapproach shows di�erent emphases. As a result, time and space e�ciency as well asrobustness have been improved.�This article is a revised and extended version of [5]yThe work of this paper was supported by the joint project APPLY, Ilog SA, theUniversity of Bath, the British Council/DAAD ARC program, and the EuLisp workinggroup.The joint project APPLY is funded by the German Federal Ministry for Research andTechnology (BMFT). The partners in this project are the University of Kiel, the Fraun-hofer Institute for Software Engineering and Systems Engineering (ISST), the GermanNational Research Center for Computer Science (GMD), and VW-Gedas.

2 BRETTHAUER, KOPP, DAVIS, PLAYFORD1. IntroductionRecently, object-oriented languages with metaobject protocols have begunto gain acceptance. A metaobject protocol extends the default semantics ofan object-oriented language with an open, documented protocol, allowingthe programmer to extend the base language in directions appropriate forhis application. Instead of bending the application to �t the language,the programmer bends the language to �t the application. Ideally, manysuch extensions can peacefully coexist within the same basic framework;the language will treat the extensions homogeneously.Additionally, metaobject protocols can provide generalized reective fa-cilities which allow the construction of debugging environments, inspectors,and other tools which manage all objects via the same set of operations.The state of the art in metaobject protocol design is best described in\The Art of the Metaobject Protocol" by Gregor Kiczales, Jim des Rivieres,and Daniel G. Bobrow [10]. Indeed, it is still an art rather than a scienceto de�ne elegant and useful object-oriented programs, and the problem iscompounded for a program as general as a language. Kiczales et al. presentan elaborate and tested metaobject protocol (MOP) for the Common LispObject System (CLOS) [13]. Furthermore, they introduce the essentialproblems to the reader and show various techniques which can be used tosolve them. Open questions and unsolved problems are presented to directfuture work.One of the main problems is to �nd a better balance between expressive-ness and ease of use on the one hand, and e�ciency on the other.Since 1989, the authors of this paper and other members of the EuLispcommittee have been engaged in the design and implementation of an objectsystem with a metaobject protocol forEuLisp [12] intended to correct someof the perceived aws in CLOS, to simplify it without losing any of itspower, and to provide the means more easily to implement it e�ciently.The current status of this work is reected in the EuLisp de�nition. Theobject system, TE�O�, has been implemented with minor variations inthe public domain EuLisp implementation FEEL1, in the commerciallyavailable dialect Le-Lisp version 16 [1], in Common Lisp 1 [2], and inScheme 1. TE�O� is used as the base for a set of arti�cial intelligenceand graphic programming tools marketed by Ilog, SA. The expert systemworkbench babylon [7] marketed by VW-Gedas uses MCS 2 [3] which isclosely related to TE�O�. Most of these tools extend the kernel objectlanguage provided by TE�O� using the metaobject protocol.1All three implementations are available via anonymous ftp from host ftp.bath.ac.ukin the directory /pub/eulisp.2MCS is available by anonymous ftp from /lang/lisp/mcs on ftp.gmd.de

BALANCING THE EuLisp METAOBJECT PROTOCOL 3This work builds not only on CLOS, but also on a series of Europeanwork on simple reective object-oriented architectures in Lisp, includingwork on ObjVLisp [8], the Micro Flavor System [6], Micro Common Fla-vors [9], and the Meta Class System (MCS) [3].1.1. Design ContextTE�O� is an integrated part of the EuLisp language de�nition. In de-scribing it, we cannot completely isolate the object system from the rest ofthe language. There is a strong synergy between the rest of the languageand the object system, especially in the diverse ways that software engi-neering goals are supported. For example, the division of work betweenclasses and modules is discussed in more detail below.EuLisp's primary goal is to serve as a general programming languageo�ering the traditional power of Lisp while taking the best concepts fromother languages and striving for the possibility of simple, e�cient imple-mentations. EuLisp features the following essential elements:� a module system to support separate compilation and encapsulation.� division into a core language and libraries to facilitate small applica-tion development.� parallel processes based on threads and semaphores for modern andfuture computer architectures.� a condition system for error handling.� downward continuations for exible control structures.� macros for syntactic extension.� an object system based on classes and generic functions with simpledefault behavior and a metaobject protocol.All elements of the language, except modules, bindings and the prede�nedsyntax (de�ning and special forms), are represented by �rst-class objects.It is impossible to create or change a binding by computing its identi�erat runtime. Although functions can be generated dynamically at runtime,all code patterns are known at compile-time. All of this helps generatesmall, e�cient applications, allowing EuLisp to compete favorably withmore traditional languages.

4 BRETTHAUER, KOPP, DAVIS, PLAYFORD1.2. Design goalsCertain design goals apply almost to all languages and systems. Theseinclude robustness, abstraction, extensibility, ease of use, and e�ciency.Kiczales et al. [10] claim to meet a number of these important designcriteria. Why is it hard or even impossible to meet all of them? The cri-teria are, in practice, contradictory if they must all be met simultaneously.However, we can use the fact that the priority of the goals change dur-ing the course of the software lifecycle to emphasize the most importantgoals at each lifecycle phase, thereby reducing design goal conicts. Forexample, abstraction and ease of use apply mainly to the development andmaintenance phases, while e�ciency is essentially a runtime goal.We propose the following classi�cation of the above goals:1.2.1. RobustnessThe programmer must be able to depend on the documented function-ality of de�ned modules; in other words, their semantic integrity must beenforced. Adapting them should not mean changing them, since other mod-ules used in the same system might stop working as a consequence. CLOS,and Common Lisp generally, violate this constraint through various redef-inition facilities. Instead, we should distinguish between development timeand execution time. During development, dynamic rede�nition is useful.At execution time, however, the semantics of language entities should be�xed. Since the development environment is not generally considered tobe appropriate for speci�cation, we have little to say about the extendeddevelopment capabilities o�ered by implementations. However, we wouldlike to assure the programmer that he can write programs whose semanticsis well-de�ned.1.2.2. AbstractionThere should be di�erent levels of granularity in the protocol, reect-ing the di�erent levels at which users need to think about the system'sfunctionality and extend it. Not all extensions are equal. Some extensionsrequire only small modi�cations in behavior from the default, while othersare quite large. The amount of work required to implement an extensionshould reect its scale. Although the user should not have to know imple-mentation details, our experience shows that revealing appropriate detailsat appropriate levels often makes use easier. A delicate question is thelowest level of detail which can be revealed to allow portable and e�cientimplementations.

BALANCING THE EuLisp METAOBJECT PROTOCOL 51.2.3. ExtensibilityThe scope of object models and implementations currently supported byvarious languages and tools is quite large, ranging from classless, prototype-based systems like Self to the complex, intricate models supported by manyexpert system tools. If our goal is to provide a single medium in which allof these models can harmoniously co-exist, special care must be taken inthe development of exible, general protocols.This goal also interacts with robustness. We consider extension ratherthan modi�cation to be the appropriate model for implementing new sys-tem behavior, since it allows both the de�nition of new functionality andconstant semantics for existing functionality.1.2.4. Ease of useUsing and extending the language must be natural and straightforward.Ease of use should not, however, be confused with the laziness of program-mers who write quick hacks with unpredictable consequences. The factthat defgeneric is optional in CLOS is an example for such a doubtfulsupport, in our view.1.2.5. E�ciencyMOP-based systems are intended for large and serious software projects;the extensive freedom of a MOP cannot (and should not) be perceivedby small applications. Using a metaobject protocol appropriately shouldincrease the overall e�ciency of complex systems. E�ciency has the highestpriority at execution time and programs should follow the principle \don'tuse, don't lose". Time and space are both important: As the power of ourhardware increases, so too does the ambition of software developers. Wedo not agree with the dictum that \e�ciency will not be a problem withnext year's computers".However, since e�ciency concerns are especially vulnerable to conictwith other goals, they must be emphasized in the appropriate place. Herewe make the sweeping generalization that compile-time and load-time ef-�ciency are less important than run-time e�ciency. In order to achievehigh e�ciency and extensibility, we try to put the high-cost operationsat load-time. Future research will be directed in putting more e�ort intocompile-time extensions.All the above goals can be structured to reect the two sides of a com-puter system. A computer language is an intermediary between a humanand a machine; both have di�erent needs which the language must try tobalance. It must provide both:

6 BRETTHAUER, KOPP, DAVIS, PLAYFORD� Support for good software engineering practice; this reects the aspecthuman) language.� Support for e�cient programs; this reects the other aspect, language) machine.In the following, we show how the TE�O� MOP tries to achieve both ofthese goals. Note that the balance we describe is somewhat di�erent thanthat noted by Kiczales et al. [10], where the tension is between exibilityand e�ciency. Here, we broaden exibility to include general softwareengineering goals, since the metaobject protocol is a part of a programminglanguage.1.3. Design ApproachBy applying the following rules we hope to achieve the above goals:� Simpler is better (instead of \worse is better" vs. \right is better").� Orthogonal language constructs are better.� Development and execution requirements should be distinguished.� A module's compile-time and run-time dependencies should be dis-tinguished.� E�ciency costs should be paid at load-time rather than run-time.� Language support is needed for a clear separation between extensionde�nition and extension use.� Restrictions due to e�ciency concerns should be made explicit in thelanguage, rather than in the documentation.These rules inuence software engineering as well as e�ciency. The �rsttwo rules warrant further explanation; they inuence each other and theirviolation often arises from a single cause. To determine which constructsshould be provided by a language, we must identify the problem solvingmethods and paradigms used by humans. Di�erent methods should besupported by orthogonal constructs which can then be kept simpler.A good computer language should have a simple e�ciency model. Thatis, constructs in the language should map simply onto implementations.The TE�O� slot access protocol is an example of a simple e�ciency model,whereas the CLOS protocol (and Common Lisp in general) explicitly rely

BALANCING THE EuLisp METAOBJECT PROTOCOL 7on clever implementations for achieving e�ciency. Clearly, e�orts in thisdirection must be continual, and we do not claim that TE�O� is the lastword in this evolution. Rather, it points a direction in which further workcan be done.TE�O� could be viewed as a simpli�ed version of CLOS and the CLOSMOP. However, we claim that the result is more powerful and more ap-propriate for most users based on our experience with MCS, FEEL andLe-Lisp version 16. The proof, of course, must still be provided by theexperience of a wider range of users. The various public domain and com-mercial versions of TE�O� are starting to provide that feedback now.2. Modular DecompositionMany language designers believe classes and modules serve similar or iden-tical purposes [11]. However, this belief is not universally shared [14]. Theclass/object construct provides data abstraction with specialization andgeneralization of structure and behavior of object classes; in contrast, themodule construct deals with scope and extent of variable bindings and im-port/export relationships between modules supporting information hidingand encapsulation. Classes serve primarily to model the problem domain,while modules aid problem decomposition. Another way to look at thedistinction is to think of classes as implementation devices and modules asinterface devices.Common Lisp does not provide support for strict import, export, andvisibility aspects. Its package system considers symbols as subjects of ex-change. Symbols, however, are used for many binding spaces: global func-tions, variables, classes, types, and so on. Thus, exporting a symbol for onepurpose opens the door automatically for all the others.Languages like C++ or Ei�el overload classes by import/export andvisibility features. That makes their class concept as well as their scoperules complex, especially when inheritance comes into play.In EuLisp, we use the distinction between classes and modules to providea module system orthogonal to the object system, thus supporting bettersoftware engineering practice as well as better e�ciency.The example in Figure 1 hints at how the distinction between compile-time and runtime dependencies can be expressed by the programmer. Up tonow, the EuLisp committee has only speci�ed the semantics of importingmacros as compile-time imports. However, compile-time imports can alsobe applied to other meta-level features like metaobject classes and theiroperations. Using this information, the compiler could more easily decidewhich optimizations to apply.

8 BRETTHAUER, KOPP, DAVIS, PLAYFORD(defmodule non-reflective-object-system;; interface(import (primitive-language-elementsreflective-object-kernel)syntax (comfortable-syntax)export (defstructdefgeneric defmethodgeneric-lambdacall-next-method next-method-pmake initialize allocate));; implementation...)(defmodule non-reflective-application;; interface(import (non-reflective-object-system ...)syntax (comfortable-syntaxnon-reflective-object-system-syntax)export (start-application));; implementation(defun start-application () ...) ...)Figure 1: Two example module de�nitionsA module can be compiled separately, generating a library, or an entireapplication can be completely compiled, including all of its imported mod-ules, generating a stand-alone application. While many global optimiza-tions are di�cult and unsafe in Common Lisp EuLisp provides directsupport for making them straightforward and based on clear semantics.2.1. Structuring TELOS Using ModulesThe di�erent parts of theMOP are separated into modules to gain clarityand e�ciency for applications.We want to have a simple module of object-oriented constructs whichcan be analyzed statically allowing signi�cant optimizations by the com-piler when used in applications. In particular, all classes, generic functionsand methods should be known at compile-time. We must keep the massof a complex application non-reective in order to achieve the same per-formance as in non-reective languages. Furthermore, programs are moreunderstandable if reective and non-reective parts are clearly separated.

BALANCING THE EuLisp METAOBJECT PROTOCOL 9In the above example we show, through the export list of the modulenon-reflective-module, which language constructs we consider as non-reective. These are the de�ning and anonymous creation forms for classes,generic functions, and methods, as well as the instance creation and initial-ization functions make, initialize, and allocate.The other modules can be divided in those allowing introspection andthose allowing specialization of special kinds of metaobjects like classes,slot descriptions, generic functions, and methods. The introspection mod-ules export the corresponding classes and slot readers. The specializationmodules additionally export the operations speci�ed by the initializationprotocols. Furthermore, we provide a module exporting portable low levelallocation primitives.3. The Metaobject ProtocolThe following sections summarize the salient points of the TE�O� meta-object protocol as it reects the design philosophy described above. Weassume the reader to be familiar with the CLOS MOP to contrast therelevant aspects of the two protocols.The slot access model is described in detail to illustrate the general prin-ciple of moving as much work as possible to load-time. The higher ordercapabilities of Lisp are exploited by protocols which compute functions tobe used at runtime { a kind of con�gurable dynamic compilation process.By closing over all precomputable information, we can avoid a great dealof runtime work.The protocols controlling instantiation and inheritance are describedonly briey, highlighting mainly their simpler default behavior when com-pared with their analogs in CLOS. Note that some di�erences between theTE�O� and CLOS protocols go unreported here since they are beyond theimmediate scope of this paper.3.1. Slot AccessThe slot access model adopted within TE�O� departs from CLOS. Be-fore explaining the new protocol we will �rst justify it by identifying thefeatures of the CLOS approach which put it at odds with our stated designphilosophy.3.1.1. The CLOS ApproachFrom our design standpoint, the CLOS slot access protocol is not areasonable solution. Although it provides for straightforward extension ofthe default slot access behavior, the following properties present problems:

10 BRETTHAUER, KOPP, DAVIS, PLAYFORDInherent ine�ciency Slot access time is crucial to the performance ofobject-oriented applications. Recognizing this, a simple e�ciencymodel (as de�ned above) is desirable.The primary route to the value of a slot of a CLOS object is throughthe slot-value chain. This is a dynamic protocol, a MOP proto-col that must be honored at runtime { even, in principle, in a non-reective application { with all of the attendant runtime overhead3.To achieve acceptable performance, CLOS relies on implementationsto circumvent this route whenever possible while still honoring newmethods added to the protocol functions. Typically, accessor func-tions are optimized in some way, often via some new protocol for theircomputation, leading to further problems.Competing protocols Problems of consistency can often arise betweencomputed accessors and the dynamic protocols due to the instabilityof the complex optimizations being employed. The existence of thesetwo methods of slot access also raises uncertainty as to which is usedby other areas of the MOP such as initialization.So, although the CLOS slot access protocol provides a exible means ofextension, the cost in terms of the complexity of e�cient, consistent imple-mentations is too great. The design goals for TE�O� suggest that it shouldbe replaced by a protocol which, while retaining exibility and simplicity,maps more naturally to reasonable implementations.3.1.2. The TELOS ApproachRather than have a dynamic slot access protocol, TE�O� provides astandard protocol for computing readers and writers. Every slot descriptioncontains one reader and one writer capable of extracting and updating thecorresponding slot within instances. Slot options in defclass which de�neaccessors merely bind the slot's single reader or writer to the appropriatename. Therefore, two readers for the same slot bound to di�erent nameswill always be eq.Orthogonality of design is maintained by describing all slot accessesas taking place through calls to these accessor functions. No analog ofslot-value is provided4.3Every slot access requires at least one standard function call, two generic functioncalls and a list or table lookup for the appropriate slot de�nition object (ignoring thecost of accessing the set of slot de�nitions from the class object).4Although it can be written simply in terms of accessors.

BALANCING THE EuLisp METAOBJECT PROTOCOL 113.1.3. The Slot Access ProtocolAccessors are computed and updated as part of the initialization of aclass. A new slot, inherited from no superclass, has a fresh reader and writercomputed for it. These functions are then stored in its slot description. Theprotocol generic functionsCOMPUTE-SLOT-READER class slotd slotdsCOMPUTE-SLOT-WRITER class slotd slotdsare used to compute these functions. Accessor functions computed in thisway are not guaranteed to work for direct instances of a particular class un-less they have been ensured for that class. Typically, compute-slot-readerwill return a generic function without any methods de�ned on it.Inherited slots, either specialized in some way or left unchanged, takethe reader and writer from the corresponding slot description objects ofthe superclasses. To combine two or more inherited slot descriptions, theymust have a common root and thus share the same accessor functions.Note, then, that there is a one-to-one correspondence between logical slotsand their accessor pairs.Before inheritance is complete, the accessors of the slot descriptions ofthe class must all be ensured. The protocol generic functionsENSURE-SLOT-READER class slotd slotds readerENSURE-SLOT-WRITER class slotd slotds writerare called to guarantee that the accessors will work on direct instances of thenew class. Typically, ensure-slot-reader will add a method to readercapable of reading the appropriate slot of direct instances of class. In caseswhere the slot has not \moved" relative to its position within instances ofthe superclasses of class, there may be no need to update the reader.The computed accessor protocol also gives a portable way of de�ning loweroverhead slot accessors by making readers and writers standard functionswhere appropriate:(defmethod compute-slot-reader((c <structure-class>) (sd <slot-description>) slotds)(compute-primitive-reader-using-class c sd))(defmethod ensure-slot-reader((c <structure-class>) (sd <slot-description>) slotds reader)reader)

12 BRETTHAUER, KOPP, DAVIS, PLAYFORDSlots of structure classes, which always use single inheritance, never changeposition in subclasses and the accessors should not check the types of theirarguments. The above methods implement this functionality for readers.A primitive reader is returned as the slot accessor { ensure-slot-readerneed not do anything since the slot position can never change.The standard ensuring methods use a subprotocol for computing prim-itive accessors { standard functions capable of accessing a particular slotin direct instances of a given class. These protocol functions are the directanalog of the slot-value-using-class tier in CLOS and are the genericfunctions most commonly used to change the behavior of slot access.COMPUTE-PRIMITIVE-READER-USING-SLOT-DESCRIPTION slotd class slotdsCOMPUTE-PRIMITIVE-WRITER-USING-SLOT-DESCRIPTION slotd class slotdsCOMPUTE-PRIMITIVE-READER-USING-CLASS class slotd slotdsCOMPUTE-PRIMITIVE-WRITER-USING-CLASS class slotd slotdsFor example, compute-primitive-reader-using-class returns a func-tion of one argument that when applied to a direct instance of class,returns the value of the slot described by slotd. Its behavior on instancesof other classes, even subclasses of the speci�ed class, is unde�ned.3.1.4. Comparing UseFrom the point of view of the applications programmer, there is littlepractical di�erence between the CLOS and TE�O� slot access protocols.The functional equivalence between the two can be illustrated by a simpleexample. Let's say we want to implement a new slot description whichveri�es that a slot value, when set, matches a certain predicate. In bothCLOS and TE�O�, we can store the predicate in the slot descriptionobject. The di�erence lies in how to specify the behavior of writing to sucha slot.Here is the CLOS method:(defmethod (setf slot-value-using-class)(new-value (class standard-class)object (slot predicate-slot-definition))(assert (funcall (slot-definition-predicate slot) object))(call-next-method))

BALANCING THE EuLisp METAOBJECT PROTOCOL 13Here is the equivalent TE�O� method:(defmethod compute-primitive-writer-using-slot-description((slot <predicate-slot-description>) (class <class>) slotds)(let ((prev-writer (call-next-method))(predicate (slot-description-predicate slot)))(lambda (object new-value)(assert (predicate object))(prev-writer object new-value))))We can note that the TE�O� method is slightly more complicated, butmore e�cient since it accesses the predicate just once compared to on ev-ery write as in the CLOS case. In this small example, the e�ect of thisis minimal, but it can be quite signi�cant in others. Also note that thefunction returned by the TE�O� method is called directly by the writergeneric function.All primary methods for slot-value-using-class could be translatedmechanically into compute-primitive-reader-using-class methods.In cases where it might be desirable to use a dynamic protocol, it isa simple matter to specialize compute-slot-reader to return a standardclosure which honors that new protocol. Similarly, it should be possible toimplement the computed protocol as an extension to CLOS but this wouldbe somewhat more involved.3.1.5. Implementation and E�ciencyDespite an increase in the number of functions over its dynamic counter-part, implementation of the computed TE�O� protocol is no more di�cult{ a naive implementation need take no more than a few lines of obviouscode to implement each function in the protocol.The clearest di�erence in terms of runtime e�ciency is that the computedaccessor protocol reduces slot access in standard classes to a single genericfunction call in even the simplest implementation. This has been donewithout loss of generality or signi�cant reduction in the ease with whichthe behavior of the object system may be extended. The uniform use ofaccessors also ensures that this potential improvement is propagated intoother areas such as initialization.In addition, one expected e�ect of reducing the relative signi�cance of slotaccess as a performance bottle-neck is to allow implementors to concentratetheir optimization e�orts on a smaller set of \hot spots".3.2. Method Lookup and Generic DispatchTE�O� uses the generic function mechanism introduced by CLOS to

14 BRETTHAUER, KOPP, DAVIS, PLAYFORDimplement polymorphic behavior. However, the default generic functionmechanism of TE�O� is simpli�ed compared to CLOS; rather than intro-ducing dubious and costly extensions in the kernel, we choose to relegatecertain functionality to extension modules, and provide enough extensibil-ity to allow portable versions of them to be written.For example, the default generic function dispatch in TE�O� is purelyclass based; eql methods are not supported. However, eql methods likethose found in CLOS can be portably implemented in an extension moduleby de�ning a new generic function class and new methods on the methodlookup generic function.3.3. Allocation and InitializationIn the current speci�cation of TE�O�, the instance creation protocolis very similar to that of CLOS. However, we intend to apply the load-time priority principle to instance creation as well. Classes will then haveassociated allocator and initializer methods computed for them at classcreation time. Extensions to allocation or initialization will thus be doneby extending the allocator or initializer-generating methods rather thansome general allocating or initializing generic function, as is done in CLOSand the current version of TE�O�.3.4. Class De�nition and InheritanceTE�O� supports a standard inheritance protocol as exible as that pro-posed by Kiczales et al. [10] and of a slightly �ner granularity, splitting thework into a number of explicit phases.The move towards a more load-time weighted protocol translates intomore work being done at class instantiation time. This work includes com-puting and ensuring accessors, allocators and initializers as described above.The generation of these functions constitutes a phase in itself.The default inheritance methods implement single inheritance. The pro-tocol, however, is designed so that general multiple inheritance or mixin in-heritance [4] can be easily and portably implemented in extension modules5.Neither class rede�nition nor changing the class of an instance is sup-ported by standard classes. It is this, in combination with the guaranteethat the behavior of standard generic functions cannot be modi�ed forstandard classes6, which imbues programs expressed in terms of the default5It is likely that all three kinds of inheritance will be supported by standard EuLisplibrary modules.6Due to the absence of support for method removal and non-standard methodcombination.

BALANCING THE EuLisp METAOBJECT PROTOCOL 15metaobjects with static semantics.Class, method, and generic function rede�nition as well as class changemay all be portably implemented as library extensions as has been done inMCS. They are also desirable features of an interactive development envi-ronment. We envisage that such development environments may transpar-ently, by simple module substitution, allow code to be developed in termsof a set of metaobjects supporting these facilities in place of the standardmetaobjects. If necessary, to gain speed or space e�ciency, the programmay be recompiled in terms of the standard metaobject set without change.4. An Example { Mixin InheritanceThis section sketches an extension of the TE�O� MOP which implementsmixin inheritance. Since only the slot access protocol has been describedin detail in this paper, we focus on that aspect here.4.1. Informal Speci�cationThe goal of mixin inheritance is to provide a more expressive and exi-ble programming style than single inheritance while avoiding certain prob-lems associated with general multiple inheritance. Mixin inheritance dis-tinguishes between essential and subsidiary properties of objects when clas-sifying them in a problem domain. We associate base classes with essentialproperties and mixin classes with subsidiary properties. From the mod-eling point of view, essential properties are substantive | such as bu�ersand windows. Subsidiary properties are descriptive | such as printable,bordered, and titled.Mixin inheritance clari�es class hierarchies and improves application ef-�ciency by obeying the following restrictions:� A base class can directly specialize many mixin classes but only onebase class. A super-base-class is considered more general than thesuper-mixin-classes.� A mixin class can specialize many mixin classes but no base classes.� There are no join nodes in the inheritance hierarchy, except the rootclass <object>.� Base classes may have direct instances, while mixin classes may notbe instantiated.

16 BRETTHAUER, KOPP, DAVIS, PLAYFORD4.2. Implementation OutlineFirst, we have to de�ne the two new metaclasses <base-class> and<mixin-class>. These metaclasses are the classes of the new kinds ofclasses we described above.(defclass <base-class> (...) ())(defclass <mixin-class> (...) ())The exact superclasses are not speci�ed here, but they must be meta-classes, and thus subclasses of <class>.In this paper we concentrate on the slot reader generating protocol. How-ever, the other generic functions in the inheritance protocol, which need tobe de�ned for the new metaclasses, should be mentioned, too. These genericfunctions include:compatible-superclasses-p,compatible-superclass-p,compute-class-precedence-list,compute-inherited-slot-descriptions,compute-slot-descriptions, andcompute-specialized-slot-description.The methods checking the compatibility of superclass and superclassescontrol the �rst and second restriction in the list given earlier. The methodon compute-class-precedence-list linearizes the class hierarchy for baseand mixin classes depth �rst left to right. It signals an error if a join nodedi�erent from the root class <object> occurs. The method computinginherited slot descriptions returns a list containing the e�ective slot de-scription lists of all direct superclasses. The new methods for computingslot and specialized slot descriptions have to deal with the case of multipleinherited slot descriptions with the same name. Often, we can reuse thesystem de�ned method via call-next-method and extend it as needed.Now, we consider the slot accessor computation. Slots of base classesnever change position in subclasses. Slots of mixin classes, however, canchange position in subclasses. Thus, a generic function can be returnedas the reader for slots de�ned by mixin classes, while a simple function isreturned as the reader for slots de�ned by base classes.(defmethod compute-slot-reader((c <base-class>) (sd <slot-description>))(compute-primitive-reader-using-class c sd))

BALANCING THE EuLisp METAOBJECT PROTOCOL 17(defmethod compute-slot-reader((c <mixin-class>) (sd <slot-description>))(generic-lambda ((o c))))The ensure-slot-reader method does not need to do anything formixin classes since they have no direct instances, and may rely on theassumption that the right thing will be done when a slot de�ned for amixin class is inherited by a base class: A method applicable for the directinstances of the base class will be added to the generic reader.(defmethod ensure-slot-reader((c <mixin-class>) (sd <slot-description>) reader)reader)(defmethod ensure-slot-reader((c <base-class>) (sd <slot-description>) reader)(if (generic-function-p reader) ; mixin slot reader?(let ((r (compute-primitive-reader-using-class c sd ...)))(add-method reader (method-lambda ((o c)) (r o))))reader))The slot writers are treated in an analogous way.5. ConclusionWe have discussed the design goals and approach of the TE�O�metaobjectprotocol. They provide a better balance between support for good softwareengineering practice and support for e�cient programs than the CLOSMOP.We gave an overall description ofTE�O� including a metaobject protocolwhich provides the openness needed for extensions and achieves e�ciencyby more static semantics for prede�ned metaobjects, modularizing theiroperations. Simplicity and orthogonality support both good software en-gineering practice as well as e�cient programs. The metaobject system isstructured into modules taking into account the consequences for the com-piler. It provides introspection operations as well as extension interfacesfor new inheritance strategies, new instance allocation methods, new slotdescriptions, new slot access primitives, new discrimination methods, classrede�nition, and so on.With some minor variations, the major parts of the described protocolhave been implemented in Scheme, Common Lisp, Le-Lisp version 16

18 BRETTHAUER, KOPP, DAVIS, PLAYFORDand FEEL. While the general goals and functionality are almost the sameas described by Kiczales et al. [10], the approach shows di�erent emphases.As a result, e�ciency as well as robustness have both been improved.6. AcknowledgmentsFirst, we want to thank Greg Nuyens and Julian Padget, the main editorsof EuLisp, as well as all members of the EuLisp working group for thevery fruitful discussions during meetings and on the net.We thank Wolfgang Goerigk and Ingo Mohr for their suggestions fromthe APPLY compiler builders' point of view.We thank the CLOS designers for providing an excellent and usefulframework in which to study these issues, and for altruistically not doingeverything right the �rst time.We thank Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow fortheir excellent book \The Art of the Metaobject Protocol", and for makingparts of the sources available to a wide community by ftp.References1. Le-Lisp version 16 Reference Manual. ILOG, SA, Gentilly (1992).2. Bradford, R. Telos in Common Lisp. Submitted for publication (1993).3. Bretthauer, H. and Kopp, J. The Meta-Class-System MCS. A PortableObject System for Common Lisp. Documentation. Arbeitspapiere derGMD 554, GMD, Sankt Augustin (July 1991).4. Bretthauer, H., Christaller, Th., and Kopp, J. Multiple vs. Single In-heritance in Object-oriented Programming Languages. Microprocess-ing and Microprogramming, 28 (1989) 197{200.5. Bretthauer, Harry, Davis, Harley, Kopp, J�urgen, and Playford, Keith.Balancing the eulisp metaobject protocol. In Yonezawa, Akinori andSmith, Brian C., editors, IMSA'92 Workshop on Reection and Meta-Level Architecture, Tokio (1992) 113{118.6. Christaller, Th. Eine Einf�uhrung in LISP. In Christaller, Th., Hein, H.-W., and Richter, M. M., editors, K�unstliche Intelligenz. TheoretischeGrundlagen und Anwendungsfelder, Springer-Verlag, Berlin (1988) 1{35.7. Christaller, Th., di Primio, F., Schnepf, U., and Vo�, A., editors. TheAI-Workbench BABYLON. Academic Press, London (1992).

BALANCING THE EuLisp METAOBJECT PROTOCOL 198. Cointe, P. The ObjVlisp Kernel: a Reective Lisp Architecture to de-�ne a Uniform Object-Oriented System. In Maes, Pattie and Nardi,Daniele, editors, Meta-Level Architectures and Reection, North Hol-land (1988) 155{176.9. di Primio, F. Micro Common Flavors. Arbeitspapiere der GMD 295,GMD, Sankt Augustin (February 1988).10. Kiczales, G., des Rivieres, J., and Bobrow, D. The Art of the Metaob-ject Protocol. MIT Press, Cambridge, Massachusetts (1991).11. Meyer, B. Ei�el: The Language. Prentice Hall Object-Oriented Series,Prentice Hall, New York (1992).12. Padget, J. and Nuyens, G., editors. The EuLisp De�nition, Version1.0. In preparation.13. Steele Jr., Guy L. Common Lisp - The Language, Second Edition.Digital Press, Bedford, Massachusetts (1990).14. Szyperski, C. A. Import is Not Inheritance { Why We Need Both:Modules and Classes. In Madsen, O. Lehrmann, editor, Proc. of theECOOP '92, Springer-Verlag (July 1992) 19{32.

