
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??{??, 1993c 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsPlurals: A SIMD Extension to EuLispSIMON MERRALL� (sm@maths.bath.ac.uk)JULIAN PADGET (jap@maths.bath.ac.uk)University of Bath, School of Mathematical Sciences, Bath BA2 7AY, United KingdomKeywords: Data Parallelism, Lisp, Primitive Machine Model, SIMDAbstract. There are now several versions of Lisp for massively parallel SIMD architec-tures like the Thinking Machines Connection Machine. We describe here the extensionsmade to EuLisp for data-parallel programming and their implementation on a speci�cplatform, a MasPar MP-1. Plural EuLisp, in keeping with the rest of the language,presents a collection of simple orthogonal operators which capture the essence of dataparallel processing. In support of this, we demonstrate how to implement a number ofhigher-level abstraction from other data-parallel languages.1. IntroductionPlural EuLisp is an intermediate stage in our implementation of extensionsinspired by the Paralation Model described by Gary Sabot [4]. A large setof data parallel primitives allow objects to be allocated and manipulatedon the processor array. In this respect it is not unlike *Lisp (section 4.1).However Plural EuLisp also includes a processor management mechanismmotivated by Paralation Lisp. This allows a set of processors to be allocatedleaving the remaining processors available for later allocation. When deal-ing with massively parallel systems this is preferable to tying up thousandsof processors when only a fraction are needed.In general, massively parallel computers have a very large number oftightly linked processing elements (PEs). Each PE comprises a simpleprocessor and a small amount of local memory. The PEs can usually com-municate with their immediate neighbours via direct connections (eithera four or an eight way grid) and with any PE in the array via a routermechanism, for example a hyper cube network (CM-2) or an hierarchicalcross-bar (MasPar). These computers work in an SIMD (Single InstructionMultiple Data) fashion; all the PEs execute the same instruction at thesame time, but on di�erent data. The instructions are broadcast to all PEs�This work has been partially supported through the British Council ARC Pro-gramme, a Science and Engineering Research Council (SERC) Studentship, SERC grantGR/G31048, International Computers Limited (SERC CASE award)

2 MERRALL, PADGETby a single controller unit and each PE has an activity bit which controlswhether the PE executes the current instruction. There is also often alogical OR-tree used to determine quickly if any PEs are active.Two of the most widely used examples of massively parallel architectures,the Connection Machine and the MasPar, though matching this generalcon�guration di�er from each other signi�cantly. These machines are con-nected to a conventional host computer which controls interaction with theprocessor array. On the Connection Machine the host computer sends amacroinstruction stream to the controller unit which broadcasts a nanoin-struction stream to the PEs. On the MasPar the control unit (ACU) iscapable of independent program execution and executes a program loadedup from the host computer containing both parallel and serial instructions.This means that on the CM-2 the PEs can directly address the memory ofthe host computer whereas on the MasPar they can only access the ACU.In consequence the Connection Machine forms a single computer with itshost, while the MasPar is a distributed system.The dialects of Lisp for these machines which contain no high-level ab-stractions reect the architectures they were developed for. Plural EuLispencapsulates a primitive data parallel model which aims to be independentof these two architectural models. Most aspects of data parallel languagescan be expressed in Plural EuLisp, but its simple nature makes it a good ve-hicle for describing general issues in the implementation of such languages.Similar mechanisms have been implemented for the Connection Machinesuggesting Plural EuLisp is not restricted to a particular architecture.In the next two sections we will �rst describe Plural EuLisp, followed byits implementation on the MasPar MP-1. We also describe an extendedsystem, the MasPar Lisp Server, which allows several Lisp (distributed)processes to share the MasPar. This gives better utilisation of the dataparallel resource and is not a feature of other languages. We then give abrief overview of other data parallel languages, and outline how they mightbe de�ned in Plural EuLisp.2. Plural EuLispPlural EuLisp is a data parallel extension of EuLisp. The extensions supplya new sequence data structure called a plural, which is similar to a vector,each element of which is allocated on a separate processing site. A pluralis created by the function make-plural. It takes the length of the desiredplural as its argument. For example:(setq a (make-plural 5))=> #P(() () () () ())

PLURALS: A SIMD EXTENSION TO EULISP 3The initial value of each element of the plural is () (the empty list). Wecan set and reference elements of the plural using the function plural-refand its updater:((setter plural-ref) a 1 '(1 a))=> #P(() (1 a) () () ())Plural EuLisp has a set of primitive functions which can be applied toplurals. These are data parallel versions of typical lisp primitives. Theyare usually distinguished by a -s su�x (e.g. car-s null-s), but wherethere is an appropriate generic function the data parallel version has beenadded as a method (e.g. +). When the function is applied to a plural itis as though the serial version of the function were applied to each valuein the plural and the result is a new plural containing these values (in thesame order).(null-s a)=> #P(t () t t t)The resulting plural will be allocated on the same set of processing sitesas the argument plural since its values were created on those sites. Inthis case, we say that the two plurals are conformal or belong to the sameconformal set. There is an additional function, bang, which has no serialcounterpart. This projects a singular value into a plural, for example:(setq b (bang 55 a))=> #P(55 55 55 55 55)This creates a new plural conformal to a with each element set to 55. Ifa data parallel function takes more than one argument (e.g. cons-s) thenthey must be conformal. So(cons-s b a)=> #P((55) (55 1 a) (55) (55) (55))is correct, but (cons-s b (make-plural 5)) signals an error as the newplural would not be conformal to b. Therefore, to make it easier to al-locate a conformal plural, the argument to make-plural can also be aplural, in which case the result is a plural conformal to the one suppliedas the argument. Similarly the conversion functions list-to-plural andvector-to-plural accept a plural as the optional second argument and

4 MERRALL, PADGETthe result will be conformal to this plural|padding or truncating the listor vector data as necessary.In order to write any non-trivial parallel functions we need one morefunction, if-s, a parallel version of if. The arguments are three expres-sions which deliver (conformal) plural values. The values of the �rst pluralare interpreted as booleans which are used to modify the activity of theelements of the virtual processor set before each of the remaining expres-sions are evaluated. The plurals resulting from these two expressions aremerged to form the result of the conditional expression. Before executingthe two forms the fast or mechanism is used to check there are some activeprocessors, if not the expression is simply ignored; this is important whende�ning recursive functions:(defun list-length-s (list-s)(if-s list-s (+ (bang 1 list-s) (list-length-s (cdr-s list-s)))(bang 0 list-s)))If both the if-s forms were evaluated regardless of the current activitythis intuitive de�nition of list-length would recurse inde�nitely. Thisshows how it is, in principle, straightforward to de�ne parallel functions.This is the processing side of the model. The other side is communicationand that mechanism is modelled closely on that in Paralation lisp.Given two plural arguments the function match creates a relation betweenthe conformal sets of the plurals called a mapping. This de�nes whichelements from the source set are mapped to each site in the destinationset. It can be thought of as a collection of arrows between the two setsconnecting the sites that were equal in the original plurals (those given tomatch). Given a mapping and a plural in the source conformal set thefunction move creates a plural in the destination conformal set. This canbe thought of as the values in the plural moving down the arrows in themap to sites in the destination conformal set. It is possible that there willbe no arrows pointing to a site in the destination and a default value issupplied for this case. If more than one arrow points to a site then a givenbinary function is used to combine the values.(setq from (list-to-plural '(nowhere 1st 1st 2nd nowhere)))=> #P(nowhere 1st 1st 2nd nowhere)(setq map (match (list-to-plural '(1st 2nd 3rd)) from))=> #<mapping>(move (list-to-plural '(a b c d e) from) map cons-s 'empty)=> #P((b . c) d empty)

PLURALS: A SIMD EXTENSION TO EULISP 5In the example above a collision between two objects occurs in the �rstelement and they are made into a cons pair (note that the order in whichthe arguments are presented to the combining function is unde�ned). Thelast element has no counterpart in the source and takes the default valueempty. A detailed summary of the operators de�ned in the plural moduleappears in the appendix.3. ImplementationA plural is a collection of objects allocated on a set of processing sites, oneper site. Two plurals are conformal if they are allocated on the same setof sites. A plural is speci�ed by two components, its conformal set andits values. As well as specifying the physical sites the values of a pluralare allocated on, the conformal set also identi�es the internal activity (asmodi�ed by if-s) of the plural. These two components make a naturaldivision in the parallel system:1. The Parallel Lisp Kernel (PLK): Functions Allocating and manipu-lating lisp objects in parallel.2. The Context Management System: Allocating conformal setsBoth sections are written in mpl (Maspar's data-parallel variety of C)and, along with the special functions handling communication, constituteall the code running on the MasPar.The extended EuLisp has an extra intrinsic module written in C calledplural and the exported functions invoke the appropriate functions on theMasPar. The plural functions are still very basic and so they are wrappedin a Lisp module which de�nes the class plural along with its operators.Figure 1 shows the system organisation.3.1. Parallel Lisp KernelThis set of parallel lisp primitives manipulate a Lisp object on each cur-rently active PE in a conformal set. We refer to these collections as ParallelLisp Objects (PLOs).3.1.1. Parallel Lisp ObjectsEach processing element (PE) contains a small garbage-collected heap.To conserve space we have adopted a 16-bit addressing system in which anaddress is an index into an array. We use a compacting garbage collectorand so allocation is simply a matter of moving the heap top pointer. This

6 MERRALL, PADGET
Eubang module (EuLisp)

mp_plural

mp_match, mp_move

make_plural

Legend

Plurals Interface

Parallel Lisp Kernel

Parallel Lisp Kernel /
 Front end interface
VaxStation - MasPar
 Connection

Plurals module (C)

Operators

Context Modifiers

Plural Space Management

Heap Space ManagementFigure 1: System Organisationmakes it easy to allocate di�erent sized objects on di�erent PEs in paralleland so we can support heterogeneous plurals without di�culty. This takesadvantage of the local indirect addressing available on the MasPar wherealthough all the processors execute the same instruction stream it need notbe applied to the same address on each PE.In general the objects in a PLO will be at di�erent locations on each PEand it would be impractical for the host computer (i.e. the lisp process) tokeep track of all these addresses. A section of the heap called the pluralspace is used to give the host a handle on parallel lisp objects. It alsoforms a part of the processor management mechanism (A more completedescription is given in [3]). To give the host a handle on the PLO weallocate a slice (i.e. the same location on each PE) of the plural space andstore the address of the objects within this slice. This means the host onlyrequires one value to identify a PLO.3.1.2. Parallel Lisp FunctionsA number of the fundamental lisp operations, such as cons, car etc.,have direct equivalents in mpl. But some functions, such as binary- andbinary/ have been combined into a single function (e.g. bin op) whichtakes an additional argument to identify the operation. This reduces theamount of code but also, as the opcode can denote a parallel operation,

PLURALS: A SIMD EXTENSION TO EULISP 7di�erent operations can be executed on di�erent PEs which will share theallocation and argument checking phases of the operation. These functionsall have the same function prototype.int function name(MP PluralHeap MPPH arg, [MP PluralHeap MPPH args],MP PluralHeap MPPH result);Obviously the number of arguments will vary and functions like bin ophave an extra argument op id.The mpl handle on a PLO is the parallel address of a 16-bit heap addressand is de�ned as follows:typedef plural natural *plural MP_PluralHeap;And natural, which has the role of an address, is de�ned as follows:typedef unsigned short int natural;We pass addresses because many of the operations are not functionaland, instead, we treat the return value as a completion code. Currentlyif any of the processors should fail then the operation fails globally (notethe function has a singular result). Below is the simpli�ed mpl code (errorchecking has been omitted) for the function cons. The explanation followsthe code.int cons(MPPH_car, MPPH_cdr, MPPH_pair)MP_PluralHeap MPPH_car, MPPH_cdr, MPPH_pair;{ plural cons_cell *plural new_cell;plural natural tmp;MP_PluralHeap MPPH_tmp = &tmp;mp_alloc(MP_CONS, (plural int) 1, MPPH_tmp);new_cell = (plural cons_cell *plural) OA_data(MPPH_tmp);new_cell->car = OA_offsets(MPPH_car);new_cell->cdr = OA_offsets(MPPH_cdr);OA_offsets(MPPH_pair) = OA_offsets(MPPH_tmp);return SUCCESS;}

8 MERRALL, PADGETFirst we request a new cons cell on each active PE, we create a temporaryhandle for these as the arguments may not be independent. The macroOA data extracts the physical address of the PLO and we cast this to aplural pointer to the type of object we are dealing with, in this case thestructure cons cell. The contents of this pair are set to the addresses,that is the o�sets into the 16-bit heap, of the two arguments. The macroOA offsets extracts this value from the PLO handle. To �nish we copythe contents of the temporary handle (MPPH tmp) into the result handle(MPPH pair) and return SUCCESS.In this section we have described how collections of objects are allocatedand manipulated by the functions in the Parallel Lisp Kernel (PLK). Nextwe look at the other component of plurals, the conformal sets.3.2. Context ManagementA context is a mechanism for identifying the set of processors correspond-ing to a conformal set and also its internal activity. Viewing the processorarray as a sequence we can identify a contiguous subset by its start andlength. We allocate a structure on the ACU containing these two values. Italso contains a plural space o�set, this gives the internal context and willbe explained shortly. The context is de�ned as follows:typedef struct _MP_Context {natural start;natural length;natural offset;} MP_Context;To execute a PLK function within a certain context we �rst deactivate allthose PEs not in the context. So if MPC is a context structure, executing aPLK function within the conditional below will ensure only those processorsin the context will perform the operation.(MPC.start < iproc1 < (MPC.start + MPC.length))The internal context, that is the activity of each site in the context, isgiven by the top of a stack allocated on each processor in the context. Eachstack is a list of nil and non-nil values and these stacks taken togetherthey form a PLO. Now when executing a PLK function within a givencontext we need an additional step to get the correct active set. Having1iproc is an mpl global plural containing each PEs number.

PLURALS: A SIMD EXTENSION TO EULISP 9activated only those processors in the context we then take the car of thecontext stacks and modify the active set further depending on this value.The context stacks are manipulated by the functions mp if, mp else andmp fi . Once the stacks have been modi�ed they remain in that state anda�ect all operations in that conformal set until they are modi�ed again.The EuLisp macro if-s �rst calls mp if with the result of the booleanexpression and then evaluates the consequent form. Any parallel functionsin this form will be executed with respect to the modi�ed context. Mp elseis called to set the context for evaluating the alternative form. Finallymp fi is called to restore the context stacks to their previous state.3.3. PluralsA plural comprises an o�set into the plural space and the address of thecontext structure on the ACU. The EuLisp module eubang de�nes the classmp-object with plural as a subclass. This is because mappings have thesame representation but we wish to distinguish them from plurals. Thiswe achieve by declaring a common superclass mp-object with plurals andmappings inheriting from it. The TELOS de�nitions for these classes are:(defclass mp-object ()((contextinitarg contextreader context)(offsetinitarg offsetreader offset))predicate mp-object-p)(defclass plural (mp-object)()constructor (allocate-plural context offset)predicate pluralp)In general the primitive functions in the plural module take as their ar-guments a context address and a set of plural space o�sets. The functionsin eubang extract these values from the plural objects, check they are con-formal by comparing the context addresses and then call the appropriateprimitive function. This will then make a call to the MasPar. The resultwill be a new plural space o�set and this, along with the context addressof the arguments, is used to create a new plural object.

10 MERRALL, PADGET3.4. CommunicationsOne aspect of communication is printing the contents of a plural. Thisis done by writing the output of each PE into a local scratch space. Thesestrings are then printed using parallel printf wrapped with #P(: : :).Another aspect is that of moving objects between processors. This in-cludes transfers between the host and the array, as well as transfers betweenprocessing elements. We now examine this problem in more detail.3.4.1. Transferring Lisp ObjectsTo copy an object between processors we encode it into a byte string,transfer the string and decode it to build a copy on the destination proces-sor. For simplicity we recursively encode structures implicitly de�ning thereferences in them. For example if the decoder creates a cons cell it takesthe next two objects it creates as its car and cdr. Such an algorithm meansthat we cannot deal with reentrant structures. We are further limited byhow big a string we can construct on a processing element. We encode alisp object as follows:Type: 1 Byte.Size: 1 Byte, optional, only used for vectors.Data: This may be actual data, 4 bytes containing a value for aninteger say, or for a cons cell the data is decoded to createfurther lisp objects which constitute the data.There are mpl and C versions of encode and decode and the same proto-col is used for both types of transfer. But during an host to array transferit may be necessary to work in batches because the host has more scratchspace than the array. The encode/decode routines are used for transferringobjects by the functions bang, plural-ref and its updater. They are, ofcourse, also used to implement mappings since we need to compare dataheld on di�erent PEs.3.4.2. MappingsA mapping is represented by a plural conformal to the destination plural.Each element contains a list of processor ids. These are PEs that objectsshould be taken from to make the new plural. A mapping is another kindof mp-object as noted in section 3.3.

PLURALS: A SIMD EXTENSION TO EULISP 11(defclass mapping (mp-object)()constructor (allocate-mapping context offset)predicate mappingp)To move a plural down a mapping we �rst encode it. Then we descendthe lists of processor ids and each PE copies the object description from theindicated PE using the Maspar's global router. We build the object andmove onto the next id consing up the new objects as we do so. The followingpseudo-code expresses the algorithm for moving data down a mapping:moved plural = nilwhile (9x 2 map : !null?(x))encode(data)fetch(scratch, car(map))new objects = decode(scratch)moved plural = cons(new objects, moved plural)map = cdr(map)elihwreturn moved pluralThe result is a plural of lists of moved objects. From these a single valueis computed using the combining function speci�ed, or if the list is empty,the default value is used. Below is the pseudo-code for building a mapping,i.e. a plural of lists of PE ids.map = nilfor each (x 2 source)if (x = y 2 destination)map = cons(iproc(x), map)�rofreturn map3.5. The MasPar Lisp ServerUsing Plural EuLisp we can partition the processor array into a collectionof independent sets of processors. This is because each conformal set hasits own internal context which persists between function calls. As a result,instruction streams for di�erent conformal sets can be interleaved with nodanger of them interfering with each other. To do this in practice, we havereplaced the front-end's EuLisp process with a server. EuLisp processes on

12 MERRALL, PADGETany of the machines on the local area network can connect via sockets tothe MasPar and allocate data parallel objects via the Plurals interface.The MasPar has a job-swapper which allows several programs to sharethe processor array by dividing the PE memory between the programs.This is not an ideal method for running multiple data parallel lisp pro-cesses on the MasPar. Firstly the reduced memory makes the heap sizeprohibitively small, secondly it requires running several lisp processes onthe host machine, a task to which it is not well suited. In contrast thelisp server allocates memory as it is required and where possible the lispprocesses will be allocated disjoint processor sets. In this way several pro-grams that need only part of the processor array can be run at the sametime without a�ecting each other.4. Related WorkIn this section we will briey describe some of the other data parallel sym-bolic languages and outline how they can be de�ned in terms of PluralEuLisp.4.1. Other Languages*Lisp [1] A language devised for the CM-2, it gives �ne control over theprocessor array via a very large number of functions which operateon pvars. Each pvar has as many elements as the virtual processorcon�guration which is being used (i.e. it is �xed). The parallel oper-ators are distinguished from their serial counterparts by a !! su�xor a * pre�x. Naturally enough, this language reects the nature ofthe CM-2 where the host computer directly controls the array andthe singular and parallel memory are mutually addressable.TUPLE [7] This is a more recent language developed on the MasParrather than the CM-2. A notable aspect of TUPLE is how its organ-isation mirrors that of the MasPar itself. The programmer de�nesdata parallel variables(defpevar), and functions (defpefun) and ex-ecution is then invoked using the ppe form which invokes the evalu-ator running on the ACU. The data parallel component of TUPLEis e�ectively a disjoint subsystem. This reects the MasPar systemarchitecture where the Array Control Unit is a full control processorcapable of independent program execution.Paralation Lisp [4] A paralation is a collection of processing sites, a �eldbelonging to a paralation has a value for each site in that paralation.A paralation is created using the function make-paralation. Having

PLURALS: A SIMD EXTENSION TO EULISP 13allocated some new set of processing sites it then returns a �eld inthe new paralation which numbers the sites from 0 to n � 1, this isthe index �eld.(setq a (make-paralation 5))=> #F(0 1 2 3 4)Parallel code is written using the elwise form, this takes a list ofsymbols bound to �elds in the same paralation and a lisp expression.Within the body of the elwise the lisp expression is executed inparallel on the paralation and the symbols are bound to the localvalues of the �elds on each site rather than the entire �eld. In e�ectelwise is a special kind of let form.(elwise (a) (cons a ()))=> #F((0) (1) (2) (3) (4))As mentioned earlier mappings in Plural EuLisp are almost identicalto those in Paralation Lisp and are created in the same way usingmatch. The only actual di�erence is that in paralations a singularrather than parallel combining function is speci�ed. See section 4.2.3.Finally, Paralation Lisp has a function vref which reduces a �eld toa single value using a given binary combining function.(vref a +)=> 10Connection Machine Lisp [5] The data parallel objects of CM-Lisp arexappings: these are unordered sets of ordered pairs. The �rst elementof each pair is the index the second is the value, e.g:ftiny!rabbit small!glow major!boatgAdditional program notation is introduced to indicate various paralleloperations. The symbol � indicates parallel code, and the symbol �cancels the a�ect of �. Operations are applied to the xapping valuesand the index of the result will be the intersection of the argumentindexes.�(cons �'f0!tiny 1!small 2!majorg�'f1!hoot 2!tree 3!boatg)=> f1!(small . hoot) 2!(major . tree)g

14 MERRALL, PADGETCommunication is abstracted by � which in general performs a re-duction in the same way as vref, but it can also operate in a waysimilar to mappings. However, � is too complicated to describe infull here; the interested reader is directed to the reference above.NESL [2] NESL is a strongly typed, applicative data parallel languagewith a lisp-like syntax. Parallelism is supplied through a set of dataparallel constructs based on vectors, including the over form whichapplies any function over the elements of a vector in parallel, and abroad set of parallel functions that manipulate vectors.4.2. Implementation using PluralsWe now briey indicate how these languages could be implemented usingPlural EuLisp.4.2.1. Parallel Data StructuresMost of the parallel data structures in these languages are easy to repre-sent using plurals. The parallel variables in TUPLE and *Lisp are equiv-alent to plurals which have as many sites as there are physical processors.Adding an extra slot for the length and ignoring the excess elements givesus the vectors of NESL.Fields and paralations correspond closely to plurals and conformal sets.Adding an additional slot to the plural class which contains the paralationindex �eld gives us a �eld class.Xappings are best implemented by using the rendezvous mechanisms de-scribed by Hillis and Wholey [6]. Every object which is used in the rangeof a xapping has a unique rendezvous location. This would be a site in asu�ciently large plural, the range object is stored in this slot and is re-ferred to by its rendezvous location. Xappings are represented by a pair ofconformal plurals, the range and the value. The value contains objects butthe range contains the position of the rendezvous location. The reasons forthis will become clear shortly.4.2.2. ExecutionWith the exception of *Lisp all the languages here have a special formused to indicate parallel code. The code within the form is an ordinarylisp expression which is executed in parallel. So to implement any of theselanguages in Plural EuLisp requires a kind of compiler which rewrites thespecial forms into Plural EuLisp expressions. This is, in general, a fairlysimple process: functions must be replaced with their parallel counterpartsand singular values must be wrapped with code which will replicate themat run time.

PLURALS: A SIMD EXTENSION TO EULISP 15In TUPLE, *Lisp and NESL the functions are executed in the singleglobal context. In Paralation Lisp we must check that the plurals are con-formal i.e. belong to the same paralation. In CM-Lisp we must identifythe intersection of the xappings and evaluate the expression for those loca-tions only. The rendezvous mechanism makes this straightforward, albeitexpensive. The values of the xappings involved in the expression are sentto the rendezvous locations given in the range. The expression is evaluatedin the rendezvous plural but only on the sites which received all the values.The results are then collected into a new xapping.4.2.3. CommunicationTo convert plural mappings into paralation mappings we must be ableto derive the parallel version of the combining function from the singularargument to move. This is basically the same conversion process used byelwise. Most of the various communication functions in TUPLE, *Lispand Nesl can be implemented using mappings. Those functions using �xedand regular communication patterns, e.g. the reduction operators, coulduse a library of pre-computed mappings eliminating the cost of match.Other functions would have to create mappings which provided the desiredcommunication pattern as they were needed.The � operator of CM-Lisp also makes use of the rendezvous mechanism.The communication patterns de�ned by � are implicit in the act of sendingobjects to their rendezvous location and so much of the mechanics of �are present in the rendezvous mechanism. It only remains to combineany collisions and collect the results into a new xapping to complete theoperation.4.2.4. Nested ParallelismIn CM-Lisp and Paralation Lisp the parallel forms, i.e. � and elwise,can be nested. Early versions of these languages did not execute nestedexpressions fully in parallel, instead they sequentialised on the outer formsand only the inner-most parallel form was executed in parallel. NESL how-ever executes nested forms fully in parallel at all levels by attening out thenested forms at compile time, the same techniques have been used in laterversions of paralation lisp. The high-level expressions are compiled into amore primitive language (e.g. SV-Lisp or Vcode) in much the same waywe rewrite the expressions into Plural EuLisp. These primitive languagesmotivate extensions to Plural EuLisp which would allow us to fully supportnested parallelism, in particular the segmented scan operations which al-low a collection of vectors to be represented by and manipulated as a singlevector.

16 MERRALL, PADGET5. SummaryWe have examined various issues in the implementation of data parallellanguages here by looking at the relatively simple mechanisms in PluralEuLisp. Despite their simplicity the abstractions are central to most dataparallel languages and we have outlined how they can be de�ned in termsof plurals. Execution of data parallel programs is currently restricted bythe speed of the host computer where it is being interpreted: on the Mas-Par this is a VaxStation which is prohibitively slow. This partly motivatedthe Lisp Server which allows data parallel lisp programs to be run fromfaster machines. This has demonstrated an added advantage of the proces-sor/memory management mechanisms in Plural EuLisp which make it easyfor several programs or for several components of a distributed program toshare the MasPar.References1. *Lisp Reference Manual. Thinking Machines Corporation (1988).2. Blelloch, G. E. NESL: A Nested Data-Parallel Language. CarnegieMellon University, School of Computer Science, Pittsburgh, PA 15213(Jan 1992). CMU-CS-92-103.3. Merrall, S. C. and Padget, J. A. Collections and Garbage Col-lection. Proc. of International Workshop on Memory Management,IRISA/INRIA - Rennes, Campus de Beaulieu, 35042 Rennes Cedex,France (Sept 1992). LNCS 637.4. Sabot, G. W. The Paralation Model: Architecture Independent SIMDProgramming. MIT Press, Cambridge, MA (1988).5. Steele, G. L., Jr., and Hillis, W. D. Connection Machine Lisp: Fine-Grained Parallel Symbolic Processing. ACM Conference on Lisp andFunctional Programming (1986) 279{297.6. Steele, G. L., Jr., and Wholey, S. Connection Machine Lisp: A Dialect ofCommon Lisp for Data Parallel Programming. International Conferenceon SuperComputing (1987). TMC Tech. Report PL87-6.7. Yuasa, T. TUPLE - An Extension of KCL for Massively ParallelSIMD Architecture. Toyohashi University of Technology, Toyoyashi 441,Japan, draft of 2nd version (1992). available from author.

PLURALS: A SIMD EXTENSION TO EULISP 17A. The Plural Modulemake-plural plural functionArgumentsspec : Either an integer, n, or a plural, p.ResultReturns a freshly allocated object of class plural. If the argument is aninteger then the new plural will have n elements. If the argument is aplural, then the result will be conformal to p. Two plurals are conformal ifthey are allocated on the same set of processors.plural-length plural functionArgumentsplural : An instance of plural.ResultReturns the number of elements in plural.plural-ref plural functionArgumentsplural : A plural.index : An integer.ResultReturns the item stored at position index of plural. It is an error if indexis not in the index range of plural.(setter plural-ref) plural functionArgumentsplural : A plural.index : An integer.object : An object.

18 MERRALL, PADGETResultReturns the (modi�ed) plural.RemarksModi�es plural so that object is stored at position index of plural. It isan error if index is not in the index range of plural.bang plural functionArgumentsobject : An object.plural : A plural.ResultAllocates a fresh plural conformal to plural and initializes each positionwith copies of the value object.if-s plural special formSyntax(if-scondition consequent alternative)RemarksThis is the parallel conditional form. It is an error unless each of thethree forms operated on plurals belonging to the same conformal set. Thecondition is evaluated to deliver a plural of boolean values, which are thenused to identify the active sets for the consequent and alternative forms.The results from the consequent and alternative forms are then merged tocreate the result plural.match plural functionArgumentsplural1 : A plural of integers.plural2 : A plural of integers.ResultReturns a mapping from plural1 to plural2.

PLURALS: A SIMD EXTENSION TO EULISP 19RemarksMappings are constructed by match. The arguments to match are twoplurals of integers, not necessarily conformal, and constructs a mappingwhich represents the set of arrows between elements of plural1 and plural2identi�ed by integer equality.move plural functionArgumentsplural : A plural|the source.mapping : A mapping.function : A function|to combine collisions.object : An object|for positions in the target with no arrows.ResultMoves the data in plural down mapping using function to combine col-lisions and obj as a default value resulting in a new plural. The elementsof the new plural are initialized from the data in plural such that positioni receives the result of combining using function all the values from thepositions in plural that point to i according to mapping. If there are nosuch values for a given position it receives a copy of the value obj.

