
The FRANZ LISP Manual

by

John K. Foderaro

----_J oJ/L

A document in
four movements

J

.,

.,

Overture

A chorus of students, under the direction of Richard Fateman, have contributed to
building FRANZ LISP from a mere melody into a full symphony . The major contri
butors to the initial system were Mike Curry, John Breedlove and Jeff Levinsky.
Bill Rowan added the garbage collector and array package. Tom London worked on
an early compiler and helped in overall system design. Keith Sklower has contri
buted much to FRANZ LISP, adding the bignum package and rewriting most of code
to increase its efficiency and clarity. Kipp Hickman and Charles Koester added
hunks. Mitch Marcus added •,set, evalhook and eva/frame. Don Cohen and others
at Carnegie-Mellon made some improvements to evalframe and maintain the
software to use it. John Foderaro wrote the compiler, added a few functions, and
wrote this modest manual.

e> 1980 by the Regents of the University of California.
All rights reserved.

Work reported herein was supported in part by the U. S. Department of Energy, Contract DE-AT03-
76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science Foundation under
Grant No. MCS 7807291

UNIX is a trademark of Bell Laboratories.

Score

First Movement (allegro non troppo)

1. FRANZ LISZT
Introduction to FRANZ LISP, details of data types, and description ·of notation

2. Data Structure Access
Functions for the creation, destruction and manipulation of lisp data objects.

3. Arithmetic Functions
Functions to perform arithmetic operations.

4. Special Functions
Functions/or altering flow of control. Functions/or mapping other.functions over lists.

5. 1/0 Functions
Functions for reading and writing from ports. Functions for the modification of the reader's
syntax.

6. System Functions
Functions for storage management, debugging, and for the reading and setting of global Lisp
status variables. Functions/or doing UNIX specific tasks such as process control.

Second Movement (Largo)

7. The Reader
A description of the syntax codes used by the reader. An explanation of character macros.

8. Functions and Macros
A description of the various types of functions and macros. A 11 example of the use of foreign
functions.

9. Arrays
A detailed description of the parts of an array and of Mac/isp compatible arrays.

10. Exception Handling
A description of the error handling sequence and of autoloading.

Third Movement (Scherzo)

11. The Joseph Lister Trace Package
A description of a very useful debugging aid.

12. Liszt, the lisp compiler
A description of the operation of the compiler and hints for making functions compilable.

Final Movement (allegro)

Appendix A - Function Index
Appendix B - List of Special Symbols
Appendix C - Short Subjects

Garbage collector, Debugging, Top Level

CHAPTER 1

FRANZ LISP

1.1. FRANZ LisPt was created as a tool to further research in Symbolic Algebraic Manipula
tion, Artificial Intelligence, and programming languages at the University of California at
Berkeley. Its roots are in the PDP-11 Lisp system which originally came from Harvard.
As it grew it adopted features of Maclisp and Lisp Machine Lisp which enables our work
to be shared with colleagues at the Laboratory for Computer Science at M.I.T. It is writ
ten almost entirely in the programming language C. A small part is written in the assem
bler language for the current host machine, a VAX 11/780, and part is written in Lisp.
Because FRANZ LISP is written in C, it is portable and easy to comprehend.

FRANZ LISP is capable of running large lisp programs in a timesharing environment,
has facilities for arrays and user defined structures, has a user controlled reader with
character and word macro capabilities, and can interact directly with compiled Lisp, C,
Fortran, and Pascal code.

1.2. This document is a reference manual for the FRANZ LISP system. It is not a Lisp pri
mer or introduction to the language. Some parts will be of interest only to those main
taining FRANZ LISP at their computer site. This document is divided into four Move
ments. In the first one we will attempt to describe the language of FRANZ LISP precisely
and completely as it now stands (Opus 33b, October 1980). In the second Movement we
will look at the reader, function types, arrays and exception handling. In the third
Movement we will look at several large support packages written to help the FRANZ LISP
user, namely the trace package and compiler. Finally the fourth movement contains an
index into the other movements. In the rest of this chapter we shall examine the data
types of FRANZ LISP. The conventions used in the description of the FRANZ LISP func
tions will be given in section 1.4 -- it is very important that these conventions are
understood.

1.3. Data Types FRANZ LISP has eleven data types. In this section we shall look in detail
at each type and if a type is divisible we shall look inside it. There is a Lisp function type
which will return the type name of a lisp object. This is the official FRANZ LISP name for
that type and we will use this name and this name only in the manual to avoid confusing
the reader. The types are listed in terms of importance rather than alphabetically.

t11 is rumored that this name has something to do with Franz Liszt (Frants Listi 0811-1886) a Hungarian rom
poser and keyboard virtuoso. These allegations have never been proven.

FRANZ LISP 1-1

FRANZ LISP t-2

1.3.0. lispval This is the name we use to describe any lisp object. The function type
will never return 'lispval'.

1.3.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be 'unbound'. A symbol may be lambda
bound meaning that its current value is stored away somewhere and the symbol is
given a new value for the duration of a certain context. When the Lisp processor
leaves that context, the symbol's current value is thrown away and its old value is
restored.

A symbol may also have a function binding. This function binding is static; it cannot
be lambda bound. Whenever the symbol is used in the functional position of a Lisp
expression the function binding of the syml>ol is examined (see §4 for more details
on evaluation).

A symbol may also have a property list, another static data structure. The property list
consists of a list of an even number of elements, considered to be grouped as pairs.
The first element of the pair is the indicator the second the value of that indicator.

Each symbol has a print name (pname) which is how this symbol is accessed from
input and referred to ou (printed) output. This is also used wher. one tests far
equality of symbols using the function equal.

A symbol also bas a hashlink used to link symbols together in the oblist -- this field is
inaccessible to the lisp user.

Symbols are created by the reader and by the functions concat, maknam and their
derivatives. Most symbols live on FRANZ LISP'S sole ob/isl, and therefore two sym
bols with the same print name are usually the exact same object (they are eq). Sym
bols which are not on the oblist are said to be uninterned. The function maknam
creates unintemed symbols while concat creates interned ones.

Subpart name Get value Set value Type

value eval set lispval
setq

property plist setplist list or nil
list get putprop

function getd putd array, binary, list
binding def or nil

print name get_pname string
hash link

1.3.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

Printed: October 1, 1980

FRANZ LISP 1-3

Subpart name Get value Set value Type

car car rplaca lispval
cdr cdr rplacd lispval

1.3.3. binary This type acts as a function header for machine coded functions. It has
two parts, a pointer to the start of the function and a symbol whose print name
describes the argument discipline. The discipline (if lambda, macro or nlambda) deter
mines whether the arguments to this function will be evaluated by the caller before
this function is called. If the discipline is a string (either •subroutine', "function•,
"i11teger-fu11ctio11", or "real-function") then this function is a foreign subroutine or func
tion (see §8.4 for more details on this). Although the type of the entry field of a
binary type object is either string or fixnum, the object pointed to is actually a
sequence of machine instructions.
Objects of type binary are created by mfunction.

Subpart name Get value Set value Type

entry getentry string or fixnum
discipline getdisc putdisc symbol or fixnum

1.3.4. fixnum A fixnum is an integer constant in the range -231 to 231-1. Small
fixnums (-1024 to 1023) are stored in a special table so they needn't. be allocated each
time one is needed.

1.3.S. ftonum A flonum is a double precision real number in the range ±2.9xI0·37 to
± 1. 7 x 1038. There are approximately sixteen decimal digits of precision.

1.3.6. bignum A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits mentioned above the calculation is automatically done
with bignums. Should calculation with bignums give a result which can be
represented as a fixnum, then the fixnum representation will be usedt. This contrac
tion is known as integer normalization. Many Lisp functions assume that integers are
normalized. If the user chooses to rewrite the bignum package he should take this
into account.

'The current algorithms for integer arithmetic operations will return (in certain cases) a result between ±230 and
231 as a bignum although this could be represented as a fixnum.

Printed: October 1. 1980

FRANZ LISP 1-4

The functions used for the extraction and modification of parts of bignums may
change from what is shown in the table sometime in the future.

Subpart name Get value Set value Type
.

i car rplaca unboxed integer
CDR cdr rplacd bignum or

the symbol nil

1.3.7. string A string is a null terminated sequence of characters. Most functions of
symbols which operate on the symbol's print name will also work on strings. The
default reader syntax is set so that a string object is surrounded by double quotes.

1.3.8. port A port is a structure which the system 1/0 routines can reference to
transf .!r data between the Lisp system and external media. Unlike other Lisp objects
there are a very limited number of ports (20). Ports are allocated by in.file and out.file
and deallocated by close and resetio.

1.3.9. array Arrays are rather complicated types and are fuUy described in §9. An
array consists of a block of contiguous data, a function to reference that data and aux
iliary fields for use by the referencing function. Since an array's referencing function
is created by the user, an array can have any form the user chooses (e.g. n
dimensional, triangular, or hash table).
Arrays are created by the function marray.

Subpart name Get value Set value Type

access function getaccess putaccess binary;list •
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

1.3.10. value A value cell contains a pointer to a lispval. This type is used mainly by
arrays of general lisp objects. Value cells are created with the ptr function.

Printed: October 1, 1980

FRANZ LISP 1-5

1.3.11. hunk A hunk is a vector of from 1- to 128 lispvals. Once a hunk is created (by
hunk or makhunk) it cannot grow or shrink. The access time for an element of a
hunk is slower than a list cell element but faster than an array. Hunks are really only
allocated in sizes which are powers of two. but can appear to the user to be any size
in the 1 to 128 range. Users of hunks must realize that (not (atom 'lispval)) will
return true if lispval is a hunk. Most lisp systems do not have a direct test for a list
cell and instead use the above test and assume that a true result means lispval is a list
cell. In FRANZ LISP you can use dtpr to check for a list cell. Although hunks are not
list cells, you can still access the first two hunk elements with cdr and car and you can
access any hunk element with cc,t. You can set the value of the first two elements of
a hunk with rplacd and rplaca and you can set the value of any element of the hunk
with rplacx. A hunk is printed by printing its contents surrounded by (and }. How
ever a hunk cannot be read in in this way in the standard lisp system. It is easy to
write a reader macro to do this if desired.

1.4. Documentation The conventions used in the following chapters were designed to give
a great deal of information in a brief space. The first line of a function description con
tains the function name in bold face and then lists the arguments, if any. The arguments
all have names which begin with a letter and an underscore. The letter gives the allow
able type{::;~ for that argument acc{'rding to thi:: table.

Letter Allowable type (s)

g any type
s symbol (although nil may not be allowed)
t string
] list (although nil may be aJlowed)
n number (fixnum, flonum, bignum)
i integer (fixnum, bignum)
X fixnum
b bignum
f fl.onum
u function type (either binary or lambda body)
y binary
a array
V value
p port (or nil)
h hunk

In the first line of a function description those arguments preceded by a quote mark are
evaluated (usually before the function is called). The quoting convention is used so that
we can give a name to the result of evaluating the argument and we can describe the
allowable types. If an argument is not quoted it does not mean that that argument will
not be evaluated, but rather that if it is evaluated the time at which it is evaluated will be
specifically mentioned in the function description. Optional arguments are surrounded
by square brackets. An ellipsis means zero or more occurrences of an argument of the
directly preceding type.

tin a hunk, the function cdr references the first element and car the second.

Printed: October 1. 1980

I

l

CHAPTER 2

Data Structure Access

The following functions allow one to create and manipulate the various types of lisp data
structures. Refer to §1.3 for details of the data structures known to FRANZ LISP.

(*array 's_name 's_type 'x_diml ... x_dimn)

WHERE: s_type may be one oft, nil, fixnum, flonum, fixnum-block and flonum-block.
RETURNS: an array of type s_type with n dimensions of extents given by the x_dimi.

SIDE EFFECT: If s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: The •array function creates a Maclisp compatible array. Arrays are fully described
in §9. In FRANZ LISP arrays of type t, nil, fixnum and flonum are equivalent and
the elements of these arrays can be any type of lisp object. Fixnuin-block and
flonum-block arrays are restricted to fixnums and flonums respectively and are used
mainly to communicate with foreign functions (see §8.4).

Caexplode 's_arg)
RETURNS: a list of single character symbols which print would use to print out g_arg. that is

the list returned will contain quoting characters if print would have used them to
print s_arg.

NOTE: this is restricted to symbols and is mainly for use by explode.

(aexplodec 's_arg)
RETURNS: a list of symbols whose pnames are the characters in s_arg's pname.

(aexploden 's_arg)

RETURNS: a list of fixnums which represent the characters of s_arg's pname.

Data Structure Access 2-1

Data Structure Access

•> (setq x l<,uote this \I ok .'{)
AUote this \I ok ?I
•> (aexplode x)
(q u o t e ~\II It h i s ~\III~ \IN~ \11 lo k ?)
; note that ~ \I just means the single character: backslash.
; and N just means the single character: vertical bar

-> (aexplodec x)
(q u o t e II th is II NII o k ?)
-> (aexploden x)
013 117 111 11610132116 104 105 115 32 124 32 11110763)

(alphalessp 's_argl 's_arg2)

2-2

RETURNS: tiff the print name of s_argl is alphabetically less than the print name of s_arg2.

(append 'i_argl 'l_arf,2)

RETURNS: a list containing the elements of l_argl followed by l_arg2.

NOTE: To generate the result, the top level list cells of l_arg] are duplicated and the air of
the last list cell is set to point to l_arg2. Thus this is an expensive operation if
J_argl is large. See the description of nconc for a cheaper way of doing the append.

(appendl 'l_argl 'g_arg2)

RETURNS: a list like l_argl with g_arg2 as the last element.

NOTE: this is equivalent to (append 'l_argl Oist 'g_arg2)).

; A common mistake is using append to add one element to the end of a list
•> (append '(ab c d) 'e)
(ab c d. e)
; better is append I
-> (append I '(a b c d) 'e)
(ab c de)
·>

Printed: October 2. 1980

Data Structure Access 2-3

(arrays names type x diml ... x dimi) - - - -
NOTE: this is the same as •array except the arguments are not evaluated.

(arraycall s_type 'as_array 'x_indl ...)

RETURNS: the element selected by the indicies from the array a_array of type s_type.

NOTE: if as_array is a symbol then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycall but is included for compatibility with Maclisp.

(arraydims 's_name)

RETURNS: a list of the type and bounds of the array s_name.

(arrayp 'g_arg)

RETURNS: tiff g_arg is of type array.

(arrayref 'a_name 'x_ind)

RETURNS: the x_indth element of the array object a_name. x_ind of zero accesses the first
element.

NOTE: arrayrefused the data, length and delta fields of a name to determine which object
to return.

; We will create a 3 by 4 array of general lisp objects
-> (array ernie t 3 4)
array(l2]

; the array header is stored in the function definition slot of the
; symbol ernie
•> (arrayp (getd 'ernie))
t
•> (allaydims (getd 'ernie))
(t 3 4)

; store in ernie [2] (21 the list (test list)
•> (store (ernie 2 2) '(test list))
(test list)

; check to see if it is there
•> (ernie 2 2)
(test list)

; now use the low level function arrayrefto find the same element
; arrays are 0 based and row-major (the last subscript varies the fastest)
; thus element [2) (2] is the 10th element . (starting at 0).
•> (arrayref (getd 'ernie) JO)
(ptr toHtest list) ; the result is a value cell (thus the (ptr to))

Printed: October 2, 1980

Data Structure Access 2-4

(ascii x_charnum)

WHERE: x_chamum is between O and 255.

RETURNS: a symbol whose print name is the single character whose fixnum representation
is x_chamum.

(assoc 'g_argl 'l_arg2)

RETURNS: the first top level element of l_arg2 whose caris equal to g_argl.

NOTE: the test is make with the lisp function equal. Usually l_arg2 has an a-list structure
and g_argl acts as key.

(assq 'g_argl 'l_arg2)

RETURNS: the first top level element of l_arg2 whose car is equal to g_argl using the lisp
function eq.

NOTE: This is faster than assoc since eq is faster than equal but lisp objects which print
alike are not always eq. See the description of eq for more details.

; an 'assoc list' (or alist) is a common lisp data structure. It has the
; form ((keyl . value]) (key2 . value2) (key3 . value)) ... (keyn . valuen))
; assoc or assq is given a key and an assoc list and returns
; the key and value item if it exists, they differ only in how they test
; for equality of the keys.

-> (setq alist '((alpha. a) ((complex key). b) (junk. x)))
((alpha . a) ((complex key) . b) (junk . x))

; we should use assq when the key is an atom
•> (assq 'alpha alist)
(alpha. a)

; but it may not work when the key is a list
-> (assq '(complex key) alisr)
nil

; however assoc will always work
•> (assoc '(complex key) alist)
((complex key) . b)

Printed: October 2, 1980

Data Structure Access

(atom 'g_arg)

RETURNS: t iff g_arg is not a list or hunk object.
NOTE: (atom '0) returns t.

(bcdad 's_funcname)

2-S

RETURNS: a fixnum which is the address in memory where the function s f uncname
begins. If s funcname is not a machine coded function (binary) then bcdad
returns nil.

(bcdp 'g_arg)

RETURNS: t iff g_arg is a data object of type binary.

NOTE: the name of this function is a throwback to the PDP-II Lisp system.

(bigp 'g_arg)

RETURNS: tiff g_arg is a bignum.

(c .. r 'lh_arg)

WHERE: the .. represents any positive number of a's and d's.

RETURNS: the result of accessing the list structure in the way determined by the function
name. The a's and d's are read from right to left, ad directing the access down
the cdr part of the list cell and an a down the car part.

NOTE: lh_arg may also be nil, and it is guaranteed that the car and cdr of nil is nil.
Currently one may dissect hunks and bignums with c .. r as well although this is sub
ject to change.

(concat ['stn_argl ...])

RETURNS: a symbol whose print name is the result of concatenating the print names, string
characters or numerical representations of the sn_argi.

NOTE: If no arguments are given, a symbol with a null pname is returned. Concat places
the symbol created on the oblist, the function uconcat does the same thing but
does not place the new symbol on the oblist.

EXAMPLE: (concat 'abc (add 3 4) "def) = = > abc7def

(cons 'g_argl 'g_arg2)

RETURNS: a new list cell whose car is g_argl and whose cdr is g_arg2.

Printed: October 2, 1980

I ..

Data Structure Access 2-6

(copy •g_arg)

RETURNS: A structure equal to g_arg but with new list cells.

(copysymbol •s_arg 'g_pred)
RETURNS: an unintemed symbol with the same print name as s_arg. If g_pred is non nil,

then the value, function binding and property list of the new symbol are made
eq to those of s _ arg.

(cpyl 'xvt_arg)

RETURNS: a new cell of the same type as xvt_arg with the same value as xvt_arg.

(cxr •x_ind 'h_hunk)

RETURNS: element x_ind (starting at 0) of hunk h_hunk.

(def prop Is _name g~ val g_ind)

RETURNS: g_ val.
SIDE EFFECT: The property list of ls_name is updated by adding g_val as the value of indi

cator g_ind.

NOTE: this is similar to putprop except that the arguments to def prop are not evaluated.
ls_name may be a disembodied property list, see get.

(delete 'g val •1 list ['x count]) - - -
RETURNS: the result of splicing g_ val from the top_ level of l_list no more than x_count

times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all occu
rances of g val 'are removed from the top level of I list. g val is compared with
successive car's of l_list using the function equal. - -

SIDE EFFECT: l_list is modified using rplacd, no new list cells are used.

(delq 'g_val 'l_list l'x_countl)

RETURNS: the result of splicing g_val from the top level of l_list no more than x_count
times.

NOTE: delq is the same as delete except that eq is used for comparison instead of equal

Printed: October 2, 1980

Data Structure Access

; note that you should use the value returned by delete or delq
; and not assume that g_ val will always show the deletions.
; For example

-> (setq test '(a b cad e))
(ab cad e)
-> (delete 'a test)
(b c d e) ; the value returned is what we would expect
-> test
(ab c de)

(dtpr 'g_arg)

; but test still has the first a in the list!

RETURNS: t iff g_arg is a list cell.
NOTE: that (dtpr • ()) is nil.

(eq 'g_argl 'g_arg2)

RETURNS: t if g_argl and g_arg2 are the exact same lisp object.

2-7

NOTE: Eq simply tests if g argl and g arg2 are located in the exact same place in memory_
Lisp objects which print the same are not necessarily eq. The only objects
guaranteed to be eq are interned symbols with the same print name. [Unless a
symbol is created in a special way (such as with uconcat or maknam) it will be
interned.)

(equal 'g_argl 'g_arg2)
RETURNS: t iff g_argl and g_arg2 have the same structure as described below.

NOTE: g_arg and g_arg2 are equal if
(I) they are eq.

(2) they are both fixnums with the same value

(3) they are both flonums with the same value

(4) they are both bignums with the same value

(5) they are both strings and are identical.

(6) they are both lists and their cars and cdrs are equal.

Printed: October 2, 1980

Data Structure Access

; eq is much faster than equal, especially in compiled code,
; however you cannot use eq to test for equality of numbers outside
; of the range -1024 to 1023. equal will always work.
·> (eq 101J 101J)
t
·> (eq 1014 1014)
nil
•> (equal 1014 1014)
t

(explode 'g_arg)

2-8

RETURNS: a list of single character symbols which print would use to print g_arg.

(e:xplodec 'g_ val)

RETURNS: the list of characters which print wou]d use to print g_ val except that special
d1aracters in symbols an .. not escap.,d (just as if patom were used to print
them).

(e:xploden 'g_ val)

RETURNS: a list of fixnums which print would use to print g_ va] except that special charac
ters in symbols are not escaped (just as if patom were used to print them).

(fillarray 's_array 'l_itms)

RETURNS: s_array

SIDE EFFECT: the array s array is filled with elements from I itms. If there are not
enough elements in l_itms to fill the entire array, then the last element of
l_itms is used to fill the remaining parts of the array.

(gensym 's_leader)

RETURNS: a new unintemed atom beginning with the first character of s_leader's pname,
or beginning with g if s_leader is not given.

NOTE: The symbol looks like xOnnnnn where x is s_leader's first character and nnnnn is
the number of times you have called gensym.

Printed: October 2, 1980

Data Structure Access 2-9

(get 'ls_name 'g_ind)

RETURNS: the value under indicator g_ind in Js_name's property list if ls_name is a sym
bol.

NOTE: If there is no indicator g ind in ls name's property list nil is returned. If ls name
is a list of an odd number of elements then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr and looking at every
other element for g_ind.

->. (putprop 'xlate 'a 'alpha)
a
• > (putprop 'xlate 'b 'beta)
b
-> (plist 'xlate)
(alpha a beta b)
·> (get xlate 'alpha)
a
-> (get '(ni/fateman rjf sklower klsfoderarojlif) 'sklower)
kls

(get_pname 's_arg)

RETURNS: the string which is the print name of s_arg.

(getaccess 'a_array)

RETURNS: the access function for the array a_ array.
NOTE: this function will most likely disappear in future releases.

(getaddress 's_entryl 's_binderl 'st_disciplinel [......])

RETURNS: the binary object which s_binderl 's function field is set to.
NOTE: This looks in the running lisp's symbol table for a symbol with the same name as

s_entryi. It then creates a binary object whose entry field points to s_entryi and
whose discipline is st disciplinei. This binary object is stored in the function field
of s binderi. If st disciplinei is nil, then "subroutine" is used by default. This is
especially useful for cfasl users.

Printed: October 2, 1980

I
l

Data Structure Access 2-10

(getaux 'a_array)

RETURNS: the auxiliary field for the array a_array.
NOTE: this function will most likely disappear in future releases.

(getchar 's_arg 'x_index)
RETURNS: the x index'th character of the print name of s arg or nil if x index is less than

1 or greater than the length of s_arg's print name. -

(getcharn 's_arg 'x_index)

RETURNS: the fixnum representation of the x_index'th character of the print name of s_arg
or nil if x_index is less than 1 or greater than the length of s_arg's print name.

(getd 's_arg)
RETURNS: the function definition of s_arg or nil if there is no function definition.

NOTE: the function definition may tum out to be an array header.

(getdelta 'a_array)

RETURNS: the delta field for a_array.
NOTE: this function will most likely disappear in future releases.

(getentry 'y _f unchd)

RETURNS: the entry field of the binary y _funchd.

NOTE: this function will most likely disappear in future releases.

(getlength 'a array)

RETURNS: the length field of the array a_array.
NOTE: this function will most likely disappear in future releases.

(hunk 'g_vall ['g_val2 ... 'g_valn])

RETURNS: a hunk of length n whose elements are initialized to the g_ vali.

NOTE: the maximum size of a hunk is 128.
EXAMPLE: (hunk 4 'sharp 'keys)==> {4 sharp keys}

Printed: October 2, 1980

Data Structure Access

(bunksize 'h arg)

RETURNS: the size of the hunk h_arg.

EXAMPLE: (hunksize (hunk 1 2 3)) = = > 3

(implode 'l_arg)

WHERE: l_arg is a list of symbols and small fixnums.

2-11

RETURNS: The symbol whose print name is the result of concatenating the print names of
the symbols in the list. Any fixnums are converted to the equivalent ascii char
acter.

(intern 's_arg)

RETURNS: s_arg

SIDE EFFECT: s_arg is put on the oblist if it is not already there.

(last 'l_arg)

RETURNS: the-last list cell in the list l_arg.

EXAMPLE: last does NOT return the last element of a list!
(last '(a b)) = = > (b)

(length 'l_arg)

RETURNS: the number of elements in the top level of list l_arg.

(list ['g_argl ... 1)

RETURNS: a list whose elements are the g_argi.

(makhunk 'xl_arg)

RETURNS: a hunk of length xl_arg initialized to all nils if xl_arg is a fixnum. If xl_arg is a
list, then we return a hunk of size (length 'xl_arg} initialized to the elements in
xl_arg.

NOTE: (makhunk '(a b c)) is equivalent to (hunk 'a 'b 'c).

EXAMPLE: (makhunk 4) = = > {nil nil nil nil}

(*makhunk 'x arg)

RETURNS: a hunk of size 2x_arg initialized to EMPTY.

NOTE: This is only to be used by such functions as hunk and makhunk which create and
initialize hunks for users.

Printed: October 2, 1980

Data Structure Access

(maknam •t_arg)
RETURNS: what implode would return except the resulting symbol is uninterned.

(makunbound 's _arg)

RETURNS: s_arg

2-12

SIDE EFFECT: the value of s_arg is made 'unbound'. If the interpreter attempts to evalu
ate s_arg before it is again given a value, an unbound variable error will
occur.

(marray 'g_data 's_access 'g_aux 'x_length 'x_delta)

RETURNS: an array type with the fields se.t ·up from the above arguments in the obvious
way (see§ 1.3.9).

(member 'g_argl 'l_arg2)
RETURNS: that part of the I arg2 beginning with the first occurrence of g argl. If g_argl is

not in the top level of l_arg2, nil is returned. -

NOTE: the test for equality is made with equal.

(memq 'g_argl 'l_arg2)
RETURNS: that part of the l_arg2 beginning with the first occurance of g_argl. If g_argl is

not in the top level of l_arg2, nil is returned.

NOTE: the test for equality is made with eq.

(nconc 'l_argl 'l_arg2 ['l_arg3 ...])
RETURNS: A list consisting of the elements of l_argl followed by the elements of l_arg2.

followed by l_arg3 and so on.

NOTE: The cdr of the last list ceII of l_argi is changed to point to l_argi+ 1.

• nconc is faster than append because it doesn't allocate new list
; cells.
-> (setq /isl '(a b c))
(ab c)
-> (setq /isl '(def))
(de 0
-> (append /isl /isl)
(abcdeO
-> /isl
(a b c) ; note that list has not been changed by append
-> (nconc /isl /isl)
(a b c d e O ; nconc returns the same value as append
-> /isl
(a b c d e O ; but in doing so alters list

Printed: October 2, 1980

Data Structure Access 2-13

(neons 'g_arg)

RETURNS: a new list cell with g_arg as car and nil as cdr.

(not 'g_arg)

RETURNS: t iff g_arg is nil.

(nreverse 'l_arg)

RETURNS: the reverse of l_arg.

NOTE: The reverse is done in place, that is the list structure is modified. No new list cells
are allocated.

(nthelem 'n_argl 'l_arg2)

RETURNS: The n_argl 'st element of the list l_arg2.

NOTE: If n_argl is non-positive or greater than the length of the list, nil is returned.

(nuJJ 'g_arg)

RETURNS: t iff g_arg is nil.

EQUIVALENT TO: not.

(plist 's_name)

RETURNS: the property list of s_name.

(ptr 'g_arg)

RETURNS: a value cell initialize to point to g_arg.

(putaccess 'a_array 's_func)

RETURNS: s_func.

SIDE EFFECT: replaces the access field of a_array with s_func.

NOTE: this function will most likely disappear in future releases.

(putaux 'a_array 'g_aux)

RETURNS: s_aux.

SIDE EFFECT: replaces the auxiliary field of a_array with g_aux.

NOTE: this function will most likely disappear in future releases.

Printed: October 2,)980

Data Structure Access

(putdelta 'a_array 'x_delta)

RETURNS: x_delta.
SIDE EFFECT: replaces the delta field of a_array with x_delta.
NOTE: this function will most likely disappear in future releases.

(putdisc 'y_func 's_discipline)

RETURNS: s_discipline
SIDE EFFECT: the discipline field of y_func is set to s_discipline.

(putlength 'a_array 'x_Iength)
RETURNS: x_length

SIDE EFFECT: replaces the length field of a_array with x_length.
NOTE: this function will most likely disappear in future releases.

(putprop 'ls_name 'g_val 'g_ind)
RETURNS: g_ val.

2-14

SIDE EFFECT: Adds to the property list of ls_name the value g_val under the indicator
g_ind.

NOTE: this is similar to de/prop except the arguments are evaluated to putprop. ls name
may be a disembodied property list, see get.

(quote g_arg)

RETURNS: g_arg.

NOTE: the reader allows you to abbreviate (quote foo) as 'foo.

(rematom 's_arg)

RETURNS: t if s_arg is indeed an atom.
SIDE EFFECT: s_arg is put on the free atoms list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if s_arg is on the oblist or is referenced any
where. Thus calling rematom on an atom in the oblist may result in disaster when
that atom cell is reused!

(remob 's symbol)

RETURNS: s_symbol
SIDE EFFECT: s_symbol is removed from the oblist.

• Printed: October 2. 1980

Data Structure Access 2-IS

(remprop 'ls_name 'g_ind)

RETURNS: the portion of ls_name's property list beginning with the property under the
indicator g_ind. If there is no g_ind indicator in ls_name's plist, nil is returned.

SIDE EFFECT: the value under indicator g_ind and g_ind itself is removed from the pro
perty list of ls_name.

NOTE: ls_name may be a disembodied property list, see get.

(replace 'g_argl 'g_arg2)
WHERE: g_argl and g_arg2 must be the same type of lispval and not symbols or hunks.
RETURNS: g_arg2.
SIDE EFFECT: The effect of replace is dependent on the type of the g_argi although one

will notice a similarity in the effects. To understand what replace does to
fixnum and flonum arguments you must first understand that such numbers
are 'boxed' in FRANZ LISP. What this means is that if the symbol x has a
value 32412, then in memory the value element of x's symbol structure
contains the address of another word of memory (caned a box) with 32412

(reverse 'I arg)

. in it. Thus there are two ways of changing the value of x, one is to change
the value element of x's symbol structure to point to a word of memory
with a different value. Another way is to change the value in the box
which x points to. The former method is used almost all of the time, the
latter is used very rarely and has the potential to cause great confusion.
The function replace anows you to do the latter, that is to actuany change 'i
the value in the box. You should watch out for these situations. If you do
(setq y x) then both x and y will point to the same box. If you now
(replace x 12345) then y will also have the value 12345. And in fact there
may be many other pointers to that box. Another problem with replacing
fixnums is that some boxes are read only. The fixnums between -1024 and
1023 are stored in a read only area and attempts to replace them will result
in ~n "Illegal memory reference" error (see the description of copyint• for a
way around this problem).. For the other valid types, the effect of replace
is easy to understand. The fields of g_ val l's structure are made eq to the
corresponding fields of g val2's structure. For example, if x and y have
lists as values then the effect of (replace x y) is the same as
(rp/aca x (car y)) and (rplacd x (cdr y)).

RETURNS: the reverse of the list l_arg.
NOTE: The reverse is performed by allocating new list cens to duplicate the top level of

J_arg. This can be expensive if l_arg is large. The function nreverse will reverse
the list without allocating new list cells.

Printed: October 2, 1911

Data Structure Access 2-16

(rplaca 'lh_argl 'g_arg2)

RETURNS: the modified lh_argl.
SIDE EFFECT: the car of lh_argl is set to g_arg2. If lh_argl is a hunk then the second

element of the hunk is set to g_arg2.

(rplacd 'lh_argl 'g_arg2)

RETURNS: the modified lh_argl.

SIDE EFFECT: the cdr of lb arg2 is set to g arg2. If lh_argl is a hunk then the first ele
ment of the hunk is set to g_arg2.

(rplacx 'x_ind 'h_hunk 'g_val)

RETURNS: h_hunk
SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to g_ val.

(*rplacx 'x_ind 'h_hunk 'g_ val)

RETURNS: h_hunk
SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to g_val.

NOTE: This is the same as rplacx except you may replace uninitialized hunk entries. This is
only to be used by functions such as hunk and makhunk which create hunks of sizes
which are not powers of two.

(sassoc 'g_argl 'l_arg2 'sl_func)
RETURNS: the result of (cond ((assoc 'g_arg 'l_argl) (apply 'slJunc nil)))

NOTE: sassoc is written as a macro.

(sassq 'g_argl 'l_arg2 'sl_func)
RETURNS: the result of (cond ((assq 'g_arg 'l_argl) (apply 'sl..func nil)))

NOTE: sassq is written as a macro.

(set 's_argl 'g_arg2)

RETURNS: g_arg2.

SIDE EFFECT: the value of s_argl is set to g_arg2.

Printed: October 2, 1980

Data Structure Access

(setplist 's_atm 'l_plist)

RETURNS: l_plist.

SIDE EFFECT: the property list of s_atm is set to I_plist.

(setq s_atml 'g_val1 [s_atm2 'g_val2])

WHERE: the arguments are pairs of atom names and expressions.

RETURNS: the last g_vali.

SIDE EFFECT: each s_atmi is set to have the value g_ vali.

(stringp 'g_arg)

RETURNS: t iff g_arg is a string.

(symbolp 'g_arg)

RETURNS: t iff g_arg is a symbol.

(type 'g_arg)

RETURNS: a symbol whose pname describes the type of g_arg.

(typep 'g_arg)

EQUIVALENT TO: type.

(uconcat l's argl ...])

2-17

RETURNS: a symbol whose pname is the result of concatenating the print names (pnames)
of the s_argi.

NOTE: If no arguments are given, a symbol with a null pname is returned. uconcat does
not place the symbol created on the oblist, the function con cat does the same thing
but does place the new symbol on the oblist.

(valuep 'g_arg)

RETURNS: t iff g_arg is a value cell

Printed: October 2, 1980

l

l

CHAPTER 3

Arithmetic Functions

3.1. This chapter describes FRANZ LISP's functions for doing arithmetic. Often the same
function is know by many names, such as add which is also plus, sum, and +. This is
due to our desire to be compatible with other Lisps. The FRANZ LISP user is advised to
avoid using functions with names such as + and • unless their arguments are fixnums.
The lisp compiler takes advantage of the fact that their arguments are fixnums.

An attempt to divide by zero will cause a· floating exception signal from the UNIX
operating system. The user can catch and process this interrupt if he wishes (see the
description of the signal function).

(abs 'n_arg)

RETURNS: the absolute value of n_arg.

(absval 'n_arg)

EQUIVALENT TO: abs.

(add ('n argl ...])

RETURNS: the sum of the arguments. If no arguments are given, 0 is returned.

NOTE: if the size of the partial sum exceeds the limit of a fixnum, the partial sum will be
converted to a bignum. If any of the arguments are flonums, the partial sum will
be converted to a flonum when that argument is processed and the result will thus
be a flonum. Currently, if in the process of doing the addition a bignum must be
converted into a flonum an error message will result.

(addl 'n-arg)

RETURNS: n_arg plus 1.

Arithmetic Functions 3-1

-

Arithmetic Functions 3-2

(acos 'fx_arg)

RETURNS: the arc cosine of fx arg in the range O to 1ri.

(asin 'f X arg)
RETURNS: the arc sine of fx_arg in the range -1r/2 to 1r/2.

(atan 'fx argl 'fx arg2) - -
RETURNS: the arc tangent of fx_argl/fx_arg2 in the range -TT to 1r.

(boole •x key •x v 1 •x v2 .. .) - - -
RETURNS: the result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with each
partial result becoming the new value of x_ vl. That is,

key
result

key
result

(boole 'key 'vl 'v2 'vJ) = (boole 'key (boole 'key 'vl 'v2) 'vJ).
In the following table, • represents bitwise and, + represents bitwise or, EB
represents bitwise xor and -. represents bitwise negation and is the highest pre
cedence operator.

(boo le 'key 'x 'y)

0 1 2 3 4 5 6
0 x•y -. X • y y X •-. y X x$y

8 9 10 11 12 13 14
... (x + y) -.(x e y) -.x -. X + y -, y X +-. y -.x+~,-

(cos •rx_angle)

RETURNS: the cosine of fx_angle (which is assumed to be in radians).

(diff ['n argl ...))
RETURNS: the result of subtracting from n_argl all subsequent arguments. If no arguments

are given, 0 is returned.
NOTE: See the description of add for details on data type conversions and restrictions.

Printed: October I. 1980

7
x+y

15
-1

Arithmetic Functions

(difference ['n_argl ...])

EQUIVALENT TO: diff.

(Divide 'i_dividend 'i_divisor)

3-3

RETURNS: a list whose car is the quotient and whose cadr is the remainder of the division
of i_dividend by i_divisor.

NOTE: this is restricted to integer division.

(Emuldiv 'x_factl 'x_fact2 'x_addn 'x_divisor)

RETURNS: a list of the quotient and remainder of this operation:
((x_factl • x_fact2) + (sign extended) x_addn) / x_divisor.

NOTE: this is useful for creating a bignum arithmetic package in Lisp.

(exp 'fx_arg)

RETURNS: e raised to the fx_arg power.

(expt 'n_base 'n_power)

RETURNS: n_base raised to the i_power power.
NOTE: if either of the arguments are flonums, the calculation will be done using log and

exp.

(fact 'x_arg)

RETURNS: x_arg factorial.

(fix 'n_arg)

RETURNS: a fixnum as close as we can get to n_arg.
NOTE: fix will round down. Currently, if n_arg is a flonum larger than the size of a

fixnum, this will fail.

(fixp 'g_arg)

RETURNS: t iff g_arg is a fixnum or bignum.

Printed: October 1, 1980

Arithmetic Functions 3-4

(float 'n _ arg)

RETURNS: a flonum as close as we can get to n_arg.

NOTE: if n_arg is a bignum larger than the maximum size of a flonum, then a floating
exception will occur.

(ftoatp 'g_arg)

RETURNS: t iff g_arg is a flonum.

(greaterp ['n_argl ...])

RETURNS: t iff the arguments are in a strictly decreasing order.
NOTE: the function difference is used to compare adjacent values. If any of the arguments

are non numbers, the error message will come from the difference function.

(haipart bx_number x_bits)
RETURNS: the x bits high bits of lbx_numbe~ if x_bits is positive, otherwise it returns the

lx_bit~ low bits of lt,x_numbeq.

(haulong bx_number)

RETURNS: the number of significant bits in bx_number.
NOTE: the result is equal to the least integer greater to or equal to the base two logarithm

of ~x_numbe~ + 1.

Oessp l'n_argl ...])

RETURNS: t iff the arguments are in a strictly increasing order.
NOTE: the function difference is used to compare adjacent values. If any of the arguments

are non numbers, the error message will come from the difference function.

(log 'fx_arg)

RETURNS: the natural logarithm of fx_arg.

Osh 'x_val 'x_amt)

RETURNS: x_val shifted left by x_amt if x_amt is positive. If x_amt is negative, then /sh
returns x_val shifted right by the magnitude if x_amt.

Printed: October I. 1980

Arithmetic Functions 3-S

(max 'n_argl ...)

RETURNS: the maximum value in the list of arguments.

(min 'n_argl ...)

RETURNS: the minimum value in the list of arguments.

(minus 'n_arg)

RETURNS:zero minus n_arg.

(minusp 'g_arg)

RETURNS: t iff g_arg is a negative number.

(mod 'i_dividend 'i_divisor)

RETURNS: the remainder when i_dividend is divided by i_divisor.

(numberp 'g_arg)

RETURNS: tiff g_arg is a number (fixnum, flonum or bignum).

(numbp 'g_arg)

EQUIVALENT TO: numberp.

(onep 'g_arg)

RETURNS: t iff g_arg is a number equal to 1.

(plus ['n_arg ...))

' EQUIVALENT TO: to add.

(plusp 'n_arg)

RETURNS: tiff n_arg is greater than zero.

(product ['n_argl ...])

RETURNS: the product of all of its arguments. It returns 1 if there are no arguments.

NOTE: See the description of the function add for details and restrictions to the automatic
data type coercion.

Printed: October 1. 1980

Arithmetic Functions 3-6

(quotient ['n_argl ...])

RETURNS: the result of dividing the first argument by succeeding ones.

NOTE: If there are no arguments, I is returned. See the description of the function add
for details and restrictions of data type coercion. A divide by zero will cause a
floating exception interrupt -- see the description of the signal function.

(random ['x_Iimit])

RETURNS: a fixnum between O and x limit I if x_limit is given. If x_limit is not given,
any fixnum, positive or negative, might be returned.

(remainder 'i_dividend 'i_divisor)

EQUIVALENT TO: mod.

(rot 'x_ val 'x_amt)

RETURNS: x_val rotated left by x_amt if x_amt is positive. If x_amt is negative, then x_val
is rotated right by the magnitude of x_amt.

(sin 'fx_angle)

RETURNS: the sine of fx_angle (which is assumed to be in radians).

(sqrt 'f x_arg)

RETURNS: the square root of fx_arg.

(subl 'n_arg)

RETURNS: n_arg minus 1.

(sum ['n argl ...])

EQUIVALENT TO: add and plus.

(times ['n_argl ...])

EQUIVALENT TO: product.

Printed: October I, 1980

Arithmetic Functions 3-7

(zerop 'g_arg)

RETURNS: tiff g_arg is a number equal to 0.

3.2. These functions are restricted to fixnum arguments in Maclisp. The lisp compiler
will assume the arguments are fixnums and open code most of these functions.

(1 + 'n_arg)

EQUIVALENT TO: add 1.

(1- 'n_arg)

EQUIVALENT TO: subl.

(+ 'n arg)

EQUIVALENT TO: add.

(• 'n arg)

EQUIVALENT TO: times.

(- 'n_arg)

EQUIVALENT TO: difference.

(/ 'n_argl 'n_arg2)

EQUIVALENT TO: quotient

(< 'n_argl 'n_arg2)

EQUIVALENT TO:)essp.

(- 'g_argl 'g_arg2)

EQUIVALENT TO: equal.

Printed: October I, 1980

Arithmetic Functions

(> 'n_argl 'n_arg2)
EQUIVALENT TO: greaterp.

3-8

Printed: October 3. 1980

CHAPTER 4

Special Functions

(and [g_argl ...])

RETURNS: the value of the last argument if all arguments evaluate to a non nil value, oth-.
erwise and returns nil. It returns t if there are no arguments.

NOTE: the arguments are evaluated left to right ·and evaluation will cease with the first nil
encountered

(apply 'u_func 'l_args)
RETURNS: the result of applying function u_func to the arguments in the list l_args.

NOTE: If u f unc is a lambda, then the (length I args) should equal the number of formal
parameters for the u_func. If u_func is a nlambda or macro. then l_args is bound
to the single formal parameter.

; add/ is a lambda of J argument
-> (apply 'add/ '(J)}
4

; we will define plus/ as a macro which will be equivalent to add/
-> (def plus/ (macro (a,g) Oist 'add/ (cadr arg))))
plus)
-> (plus/ J)
4

; now if we apply a macro we obtain the form it changes to.
-> (apply 'plus/ '(plus/ J))
(add) 3)

; if we funca/1 a macro however, the result of the macro is e110A::d
; before it is returned.
-> (/uncoil 'plus/ '(plus} J))
4

Special Functions 4-1

Special Functions 4-2

(arg l'x_numb])
RETURNS: if x numb is specified then the x numb'th argument to the enclosing lexpr If

x numb is not specified then this returns the number of arguments to the
enclosing lexpr.

NOTE: it is an error to the interpreter if x_numb is given and out of range.

(break [g_message ['g_pred]])
WHERE: if g_message is not given it is assumed to be the null string, and if g_pred is not

given it is assumed to be t.
RETURNS: the value of (*break 'g_pred 'g_message)

(*break 'g_pred 'g_message)
RETURNS: nil immediately if g_pred is nil, else the value of the next (return 'value)

expression typed in at top level.
SIDE EFFECT: If the predicate, g_pred, evaluates to non nil, the lisp system stops and

prints out 'Break • followed by g_message. It then enters a break loop
which allows one to interactively debug a program. To continue execution
from a break you can use the return function. to return to top level or
another break level, you can use retbrk or reset.

(catch g_exp [ls_tag])

WHERE: if ls_tag is not given, it is assumed to be nil.
RETURNS: the result of (*catch 'ls_tag g_exp)
NOTE: catch is defined as a macro.

(*catch 'ls_tag g_exp) .
WHERE: ls_tag is either a symbol or a list of symbols.

RETURNS: the result of evaluating g_exp or the value thrown during the evaluation of
g_exp.

SIDE EFFECT: this first sets up a 'catch frame' on the lisp runtime stack. Then it begins
to evaluate g_exp. If g_exp evaluates normally, its value is returned. If,
however a throw is done during the evaluation of g_exp we will catch the
value thrown iff one of these cases is true:

(1) the tag thrown to is ls_ tag
(2) ls_tag is a list and the tag thrown to is a member of this list
(3) ls_tag is nil.
NOTE: Errors are implemented as a special kind of throw. A catch with no tag will not

catch an error but a catch whose tag is the error type will catch that type of error.
See §IO for more information.

Printed: October 1, 1980

Special Functions

(comment (g_arg ...])
RETURNS: the symbol comment.
NOTE: This does absolutely nothing.

(cond [I_ clause 1 ...])

4-3

RETURNS: the last value evaluated in the first clause satisfied. If no clauses are satisfied
then nil is returned.

NOTE: This is the basic conditional 'statement' in lisp. The clauses are processed from left
to right. The first element of a clause is evaluated. If it evaluated to a non nil
value then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the cond. If there
is just one element in the clause then its value is returned. If the first element of a
clause evaluates to nil, then the other elements of that clause are not evaluated and
the system moves to the next clause.

(declare (g_arg ...])
RETURNS: nil
NOTE: this is a no-op to the evaluator. It has special meaning to the compiler.

(def s_name (s_type l_argl g_expl ...))
WHERE: s_type is one of lambda, nlambda, macro or lexpr.
RETURNS: s_name
SIDE EFFECT: This defines the function s name to the lisp system. If s type is nlambda

or macro then the argument list l_argl must contain exactly one non-nil
symbol.

(defun s_name [s_mtype] ls_argl g_expl ...)
WHERE: s_mtype is one of fexpr, expr~ args or macro.
RETURNS: s_name
SIDE EFFECT: This defines the function s _ name.
NOTE: this exists for MAClisp compatibility, it is just a macro which changes the defun

form to the def form. Ans mtype of fexpr is converted to nlambda and of expr to
lambda. Macro remains the -same. If Is argl is a non-nil symbol, then the type is
assumed to be lexpr and ls_argl is the-symbol which is bound to the number of
args when the function is entered.

Printed: October 1, 1980

Special Functions

; def and de.fun here are used to define identical functions
; you can decide for yourself which is easier to use.
•> (de.f append/ (lambda (/is extra) (append /is (/ist extra))))
append!

•> (de.fun append/ (/is extra) (append /is (/ist extra)))
append!

(do l_vrbs l_test g_expl .. .)

4-4

RETURNS: the last form in the cdr of l_test evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANZ LISP. 1 vrbs is a list of zero or more
var-init-repeat forms. A var-init-repeat form looks like:

(s name [g init [g repeat]])
There are three cases depending -on what is present in the form. If just s_name is
pr~!.c.t1i, this means that wten the do :s entered, s_name is fambda-bound to nil
and is never modified by the system (though the program is certainly free to
modify its value). If the form is (s name 'g init) then the only difference is that
s name is lambda-bound to the value of g init instead of nil. If g repeat is also
present then s name is lambda-bound to g init when the loop is entered and after
each pass through the do body s _ name is bound to the value of g_repeat.
I test is either nil or has the form of a cond clause. If it is nil then the do body
will be evaluated only once and the do will return nil. Otherwise, before the do
body is evaluated the car of l_test is evaluated and if the result is non nil this sig
nals an end to the looping. Then the rest of the forms in)_test are evaluated and
the value of the last one is returned as the value of the do. If the cdr of l_test is
nil, then nil is returned -· thus this is not exactly like a cond clause.
g expl and those forms which follow constitute the do body. A do body is lite a
prog body and thus may have labels and one may use the functions go and return.
The sequence of evaluations is this:

(1) the init forms are evaluated left to right and stored in temporary locations.
(2) Simultaneously all do variables are lambda bound to the value of their init forms or

nil.

(3) If l_test is non nil then the car is evaluated and if it is non nil the rest of the forms
in l_test are evaluated and the last value is returned as the value of the do.

(4) The forms in the do body are evaluated left to right.

(5) If l_test is nil the do function returns with the value nil.
(6) The repeat forms are evaluated and saved in temporary locations.

(7) The variables with repeat forms are simultaneously bound to the values of those
forms.

(8) Go to step 3.

NOTE: there is an alternate form of do which can be used when there is only one do vari
able. It is described next.

Printed: October I. 1980

Special Functions

(do s_name g_init g_repeat g_test g_expl ...)

NOTE: this is another, less general, form of do. It is evaluated by:
(I) evaluating g_init

(2) lambda binding s_name to value of g_init

(3) g_test is evaluated and if it is not nil the do function returns with nil.
(4) the do body is evaluated beginning at g_expl.

(5) the repeat form is evaluated and stored in s_name.
(6) go to step 3.

(err ['s_ value [nil]])

RETURNS: nothing (it never returns).

4-S

SIDE EFFECT: This causes an error and if this error is caught by an errset then that errset
will return s_ value instead of nil. If the second arg is given, then it must
be nil (MAClisp compatibility).

(error ['s_messagel ('s_message2]J)

RETURNS: nothing (it never returns).
SIDE EFFECT: s_messagel and s_message2 are patomed if they are given and then err is

called which causes an error.

(errset g_expr [s_flag])

RETURNS: a list of one element, which is the value resulting from evaluating g_expr. If an
error occurs during the evaluation of g_expr, then the locus of control will
return to the errset which will then return nil (unless the error was caused by a
call to err).

SIDE EFFECT: S_flag is evaluated before g_expr is evaluated. If s_flag is not given, then it
is assumed to be t. If an error occurs during the evaluation of g_expr, and
s_flag evaluated to a non nil value, then the error message associated with
the error is printed before control returns to the errset.

(eval 'g_ val)

RETURNS: the result of evaluating g_ val.

NOTE: The evaluator evaluates g val in this way:
If g_ val is a symbol, then- the evaluator returns its value. If g_ val had never been
assigned a value, then this causes an 'Unbound Variable' error. If g_val is of type
value, then its value is returned. If g_ val is a list object then g_ vat is either a func
tion call or array reference. Let g_car be the first element of g_val. We continually
evaluate g car until we end up with a symbol with a non nil function binding or a
non-symbol. Call what we end up with: g_func. g_func must be one of three
types: list, binary or array. If it is a list then the first element of the list, which we
shall call g functype, must be either lambda, nlambda, macro or lexpr. If g func is
a binary, then its discipline, which we shall call g_functype, is either lambda,
nlambda, macro or a string "subroutine", "function", "integer-function" or •real
function". If g func is an array then this form is evaluated specially, see §9 on
arrays. If g_f unc is a list or binary, then g_f unctype will determine how the argu
ments to this function, the cdr of g_ val, are processed. If g_functype is a string,

Printed: October 1. 1980

Special Functions 4-6

then this is a foreign function call (see §8.4 for more details). If g_functype is
lambda or lexpr, the arguments are eva1uated (by calling eval recursively) and
stacked. If g_functype is nlambda then the argument list is stacked. If g_functype
is macro then the entire form, g_ val is stacked. Next the formal variables are
lambda bound. The formal variables are the cadr of g_func - if g_functype is
nlambda, lexpr or macro, there should only be one formal variable. The values on
the stack are lambda bound to the formal variables except in the case of a lexpr,
where the number of actual arguments is bound to the formal variable. After the
binding is done, the function is invoked, either by jumping to the entry point in
the case of a binary or by evaluating the list of forms beginning at cddr g_f unc.
The result of this function invocation is returned as the value of the call to eval.

(eval-when l_times g_expl ... g_expn)
WHERE: 1-'times is a list containing any combination of compile, eval and load.
RETURNS: nil if the symbol eval is not member of l_times, else returns the value of

g_expn.
SIDE EFFECT: If eval is a member of l_times, then the forms g_expi are evaluated.

NOTE: this is used mainly to control when the compiler evaluates forms.

(exec s_argl .. .)

RETURNS: the result of forking and executing the command named by concatenating the
• s_argi together with spaces in between.

(exece 's_fname ['I_args ['l_envir]])

RETURNS: the error code from the system if it was unable to execute the command
s_fname with arguments l_args and with the environment set up as specified in
l_envir. If this function is successful, it will not return, instead the lisp system
will be overlaid by the new command.

(funcall 'u_func ['g_argl ...])

RETURNS: the val~e of applying function u_func to the arguments g_argi and then evaluat
ing that result if u_func is a macro.

NOTE: If u_func is a macro or nlambda then there should be only one g_arg. funca/1 is the
function which the evaluator uses to evaluate lists. If Joo is a lambda or lexpr or
array, then (fimca/1 'foo a 'b 'c) is equivalent to (too 'a 'b 'c). If Joo is a nlambda
then (funca/1 'foo '(ab c)) is equivalent to (too a b c). Finally, if Joo is a macro
then (/uncall 'foo '(too a b c)) is equivalent to (too a b c).

Printed: October 1, 1980

Special Functions

(function u_func)

RETURNS: the function binding of u_func if it is an symbol with a function binding other
wise u_func is returned.

(getdisc 't_func)

RETURNS: the discipline of the machine coded function (either lambda, nlambda or
macro).

(go g_labexp)

WHERE: g_labexp is either a symbol or an expression.
SIDE EFFECT: If g_labexp is an expression, that expression is evaluated and should result

in a symbol. The locus of control moves to just following the symbol
g_labexp in the current prog or do body.

NOTE: this is only valid in the context of a prog or do body. The interpreter and compiler
will allow non-local go's although the compiler won't allow a go to leave a function
body. The compiler will not allow g_labexp to be an expression.

(map 'u_func 'l_argl ...)

RETURNS: l_argl
NOTE: The function u func is applied to successive sublists of the l_argi. All sublists

should have the -same length.

(mapc 'u_func 'l_argl .. .)

RETURNS: l_argl.
NOTE: The function u func is applied to successive elements of the argument lists. All of

the lists should-have the same length.

(mapcan 'u_func 'l_argl ...)
RETURNS: nconc applied to the results of the functional evaluations.
NOTE: The function u func is applied to successive elements of the argument lists. All

sublists should have the same length.

(mapcar 'u_func 'l_argl .. .)
RETURNS: a list of the values returned from the functional application.
NOTE: the function u_func is applied to successive elements of the argument lists. All

sublists should have the same length.

Printed: October 1, 1980

I
I
\

Special Functions

(mapcon 'u_func 'l_argl ...)

RETURNS: nconc applied to the results of the functional evalu.ation.
NOTE: the function u_func is applied to successive sublists of the argument lists. All sub

lists should have the same length.

(maplist 'u_func 'l_argl .. .)

RETURNS: a list of the results of the functional evaluations.
NOTE: the function u_func is applied to successive sublists of the arguments lists. All

sublists should have the same length.

(mfunction entry 's_disc)

RETURNS: a lisp object of type binary composed of entry and s_disc.
NOTE: entry is a pointer to the machine code for a function, and s_disc is the discipline

(e.g. lambda).

(oblist)

RETURNS: a list of all symbols on the oblist.

(or [g argl ...])

RETURNS: the value of the first non nil argument or nil if all arguments evaluate to nil.
NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evalu

ates to a non nil value.

(prog l_vrbls g_expl .. .)

RETURNS: the value explicitly given in a return form or else nil if no return is done by the
time the last g_expi is evaluated.

NOTE: the local variables are lambda bound to nil then the g_ exp are evaluated from left
to right. This is a prog body (obviously) and this means than any symbols seen are
not evaluated, instead they are treated as labels. This also means that returns and
go's are allowed.

(prog2 g_expl g_exp2 [g_exp3 ...])

RETURNS: the value of g_exp2.

NOTE: the forms are evaluated from left to right and the value of g_exp2 is returned.

Printed: October I. 1980

Special Functions 4-9

(progn g_expl (g_exp2 ...])

RETURNS: the value of the last g_expi.

NOTE: the forms are evaluated from left to right and the value of the last one is returned.

(progv 'l_locv 'l_initv g_expl .. .)

WHERE: l_locv is a list of symbols and l_initv is a list of expressions.

RETURNS: the value of the last g_expi evaluated.

NOTE: The expressions in l_initv are evaluated from left to right and then lambda-bound
to the symbols in _Jocv. If there are too few expressions in l_initv then the miss
ing values are assumed to be nil. If there are too many expressions in l_initv then
the extra ones are ignored (although they are evaluated). Then the g_expi are
evaluated left to right. The body of a progv is like the body of a progn. it is not a
prog body.

(putd 's_name 'u_func)

RETURNS: 0this sets the function binding of symbol s_narne to u_func.

(return ['g_ val])

RETURNS:g_val (or nil if g_val is not present) from the enclosing prog or do body.

NOTE: this form is only valid in the context of a prog or do body.

(setarg 'x_argnum 'g_ val)

WHERE: x argnum is greater than zero and less than or equal to the number of argu-
ments to the lexpr.

RETURNS: g_ val

SIDE EFFECT: the lexpr's x_argnum 'th argument is set to g-val.

NOTE: this can only be used within the body of a lexpr.

(throw 'g_val [s_tag])

WHERE: if s_tag is not given, it is assumed to be nil.

RETURNS: the value of (*throw 's_tag 'g_va/).

(*throw 's tag 'g val) - -
RETURNS: g_val from the first enclosing catch with the tag s_tag or with no tag at all.

NOTE: this is used in conjunction with *catch to cause a clean jump to an enclosing con
text.

Printed: October 1. 1980

CHAPTER S

Input/Output

The following functions are used to read and write to and from external devices and programs
(through pipes). All 1/0 goes through the lisp data type called the port. A port may be open
for either reading or writing but not both simultaneously. There are only a limited number of
ports (20) and they will not be reclaimed unless you close them. All ports are reclaimed by a
resetio call but this drastic step won't be necessary if the program closes what it uses. If you
don't supply a port argument to a function which requires one or if you supply a bad port argu
ment (such as nil) then FRANZ LISP will use the default port according to this scheme. If you
are reading then the default port is the value of the symbol piport and if you are writing it is the
value of the symbol poport. Furthermore if the value of piport or poport is not a valid port then
the standard input or standard output will be used, respectively. The standard input and stan
dard output are usually the keyboard and terminal display unless your job is running in the
background and its input or output is connected to a pipe. All output which goes to the stan
dard output will also go to the port ptport if it is a valid port. Output destined for the standard
output will not reach it if the symbol ~ w is non nil (although it will still go to ptport if ptport is a
valid port).

(cfasl 'st_file 'st_entry 's_funcname ['st_disc ['st_Jibrary]})

RETURNS: t
SIDE EFFECT: This is use to load in a foreign function (see §8.4). The object file st file is

loaded into the lis"p system. St_entry should be an entry point in the file
just loaded. The function binding of the symbol s funcname will be set to
point to st_entry, so that when the lisp function s_funcname is called,
st entry will be run. st disc is the discipline to be given to s funcname.
st-disc defaults to "subroutine" if it is not given or if it is given as nil. If
s(library is non nil, then after st_file is loaded, the libraries given in
st_library will be searched to resolve external references. The form of
st_library should be something like •-1S -Im". The c library (" -le ") is
always searched so when loading in a C file you probably won't need to
specify a library. For Fortran files, you should specify "-1F77" and if you
are doing any 1/0 that should be "-IF77 -lln7". For Pascal files "-lpc" is
required.

NOTE: This function may be used to load the output of the assembler, C compiler, Fortran
compiler, and Pascal compiler but NOT the lisp compiler (use fas/ for that). If a
file has more than one entry point, then use getaddress to locate and setup other
foreign functions.

Input/Output S-1

Input/Output

(close 'p J><>rl)
RETURNS:

S-2

SIDE EFFECT: the specified port is drained and closed, releasing the port.
NOTE: The standard defaults are not used in this case since you probably never want to

close the standard output or standard input.

(cprintf 'st_format 'xf st_ val ['p _port])

RETURNS: xfst - val
SIDE EFFECT: The UNIX formatted output function printf is called with arguments

st format and xfst val. If xfst val is a symbol then its print name is passed
to-printf. The format string may contain characters which are just printed
literally and it may contain special formatting commands preceded by a per
cent sign. The complete set of formatting characters is described in the
UNIX manual. Some useful ones are %d for printing a fixnum in decimal,
o/of or o/oe for printing a flonum, and %s for printing a character string (or
print name of a symbol).

EXAMPLE: (cprint/"Pi equals %f 3.14159) prints 'Pi equals 3.14159'

(drain ['p _port])

RETURNS: nil
• SIDE EFFECT: If this is an output port then the characters in the output buff er are all sent

to the device. If this is an input port then all pending characters are
flushed. The default port for this function is the default output port.

(fasl 'st_name ['st_mapf {'g_warn]])
WHERE: st_mapf and g_warn default to nil.

RETURNS: t if the function succeeded, nil otherwise.
SIDE EFFECT: this function is designed to load in an object file generated by the lisp com

piler Liszt. File names for object files usually end in '.o', so 1asl will
append '.o' to st_name (if it is not already present). If st_mapf is non nil,
then it is the name of the map file to create. Fas/ writes in the map file the
names and addresses of the functions it loads and defines. Normally the
map file is created (i.e. truncated if it exists), but if (sstatus appendmap t) is
done then the map file will be appended. If g_ warn is non nil and if a
function is loaded from the file which is already defined, then a warning
message will be printed.

Printed: October 1, 1980

t.
I

Input/Output

(ffasl 'st_file 'st_entry 'st_funcname ['st_discipline])

RETURNS: the binary object created.

5-3

SIDE EFFECT: the fortran object file st_file is loaded into the lisp system. St_entry should
be an entry point in the file just loaded. A binary object will be created and
its entry field will be set to point to st entry. The discipline field of the
binary will be set to st discipline or "subroutine" by default. After st file is
loaded, the standard fortran libraries will be searched to resolve external
references.

NOTE: in F77 on Unix, the entry point for the fortran function foo is named '_foo_•.

(flatc 'g_form ['x_max])

RETURNS: the number of characters required to print g form using patom. If x max is
given, and the flatc determines that it will return a value greater than -x max,
then it gives up and returns the current value it has computed. This is useful if
you just want to see if an expression is larger than a certain size.

(flatsize 'g_form ['x_max])

RETURNS: the number of characters required to print g_form using print. The meaning of
x_max is the same as for flatc.

NOTE: Currently this just exp/ode's g_form and checks its length.

(fseek 'p_port 'x_offset 'x_flag)

RETURNS: the position in the file after the function is performed.
SIDE EFFECT: this function position the read/write pointer before a certain byte in the file.

(infile 's_filename)

If x_flag is O then the pointer is set to x_offset bytes from the beginning of
the file. If x_flag is 1 then the pointer is set to x_offset bytes from the
current location in the file. If x_flag is 2 then the pointer is set to x_offset
bytes from the end of the file (the bytes between the end of the file and the
new position will be filled with zeroes).

RETURNS: a port ready to read s_filenarne.
SIDE EFFECT: this tries to open s filename and if it cannot or if there are no ports avail

able it gives an error message.
NOTE: to allow your program to continue on a file not found error you can use something

like:
(cond ((null (setq myport (car (errset {infile name) niO)))

(patom "couldn't open the file')))
which will set myport to the port to read from if the file exists or will print a mes
sage if it couldn't open it and also set myport to nil.

Printed: October 1, 1980

Input/Output

(load 's_filename ['st_map ['g_wam]])

RETURNS:t

5-4

NOTE: The function of load has changed since previous releases of FRANZ LISP and the
following description should be read carefully.

SIDE EFFECT: load now serves the function of both fas/ and the old load. Load will search
a user defined search path for a lisp source or object file with the filename
s filename (with the extension .I or .o added as appropriate). The search
path which load uses is the value of (status load-search-path). The default is
(I.I /usr/lib/lisp) which means look in the current directory first and then
/usr/lib/lisp. The file which load looks for depends on the last two charac
ters of s_filename. If s_filename ends with ".1" then load will only loot for
a file name s filename and will assume that this is a FRANZ LISP source file.
If s filename ends with ".o" then load will only look for a file named
s filename and will assume that this is a FRANZ LISP object file to be jJs/ed
in. Otherwise, load will first look for s filename.o. then s filename.I and
finally s_filename itself. If it finds s_filename.o it will assume that this is an
object file, otherwise it will assume that it is a source file. An object file is
loaded using fas/ and a source file is loaded by reading and evaluating each
form in the file. The optional arguments st_map and g_warn are passed to
fas/ should fas/ be called.

NOTE: load requires a port to open the file s_filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable ['s flag])

WHERE: if s_flag is not present it is assumed to be nil.

RETURNS: a readtable equal to the original readtable if s_flag is non nil, or else equal to the
current readtable. See chapter XX for a description of readtables and their uses.

(nwritn ['p _port))

RETURNS: the number of characters in the buff er of the given port but not yet written out
to the file or device. The buffer is flushed automatically after the buffer (of 512
characters) is filled or when terpr is called.

foutfile 's_filename)

RETURNS: a port or nil

SIDE EFFECT: this opens a port to write s_filename. The file opened is truncated by the
outfile if it existed beforehand. If there are no free ports, outfile returns
nil.

Printed: October 1. 1980

Input/Output
-f'

(patom 'g_exp ['p_port])

RETURNS: g_exp

5-5

SIDE EFFECT: g_exp is printed to the given port or the default port. If g_exp is a symbol
then the print name is printed without any escape characters around special
characters in the print name. If g_ exp is a list then pa tom has the same
effect as print.

(pntlen 'xfs_arg)

WHERE: xfs_arg is a fixnum, flonum or symbol.
RETURNS: the number of characters needed to print xfs_arg.

(portp 'g_arg)

RETURNS: tiff g_arg is a port.

(pp [l_option] s_namel .. .)

RETURNS:t

SIDE EFFECT: If s namei has a function binding, it is pretty printed, otherwise if s namei
has-a value then that is pretty printed. Normally the output of the-pretty
printer goes to the standard output port poport. The options allow. you to
redirect it. The option (F filename) causes output to go to the file filename.
The option (P portname) causes output to go to the port portname which
should have been opened previously.

(princ 'g_arg ['p_port])

EQUIVALENT TO: patom.

(print 'g_arg ['p_port])

RETURNS: nil
SIDE EFFECT: prints g_arg on the port p_port or the default port.

(probef 'st_file)
RETURNS: tiff the file st_file exists.

NOTE: Just because it exists doesn't mean you can read it.

Printed: October 1, 1980

Input/Output S-6

(ratom ['p_port ['g_eof]])

RETURNS: the next atom read from the given or default port. On end of file. g_eof
(default nil) is returned.

(read ['p_port ['g_eof1])

RETURNS: the next lisp expression read from the given or default port. On end of file.
g_eof (default nil) is returned.

(readc ['p_port ['g_eof]])

RETURNS: the next character read from the given or default port. On end of file. g_eof
(default nil) is returned.

(readl!st 'l_arg)

RETURNS: the lisp expression read from the list of characters in l_arg.

(resetio)

RETURNS: nU
SIDE EFFECT: all ports except the standard input, output and error are closed.

(setsyntax 's_symbol 'sx_code ['ls_func])
RETURNS: t

SIDE EFFECT: this sets the code for s_symbol to sx_code in the current readtable. If
sx_code is macro or splicing then ls_func is the associated function. See sec
tion §7 on the reader for more details.

(terpr ['p_port])

RETURNS: nil
SIDE EFFECT: a terminate line character sequence is sent to the given port or the default

port. This will also flush the buff er.

(terpri ['p _port])

EQUIVALENT TO: terpr.

Printed: October I. 1980

Input/Output 5-7

(tyi ['p _port})

RETURNS: the fixnum representation of the next character read. On end of file, -1 is
returned.

(tyipeek ['p _port])

RETURNS: the fixnum representation of the next character to be read.

NOTE: This does not actually read the character, it just peeks at it.

(tyo 'x_char ['p_port])

RETURNS: x_char.

SIDE EFFECT: the fixnum representation of a character, x code, is printed as a character
on the given output port or the default output port.

(zapline)

RETURNS: nil
SIDE EFFECT: all characters up to and including the line termination character are read

and discarded from the last port used for input.

NOTE: this is used as the macro function for the semicolon character when it acts as a
comment character.

Printed: October I, 1980

CHAPTER 6

System Functions

This chapter describes the functions which one uses to interact with FRANZ LISP running in the
UNIX environment.

(allocate 's_type 'x_pages)

WHERE: s_type is one of the FRANZ LISP data types described in §1.3.

RETURNS: x_pages.

SIDE EFFECT: FRANZ LISP attempts to allocate x_pages of type s_type. It allocates pages
one at a time so that if an error occurs this means that all free storage has
been allocated. The storage that is allocated is not given to the caller,
instead it is added to the free storage list of s_type. The functions segment
and small-segment allocate blocks of storage and return it to the caller.

(argv 'x_argnumb)

RETURNS: a symbol whose pname is the x_argnumbth argument (starting at 0) on the
command line which invoked the current lisp.

NOTE: if x_argnumb is less that zero, a fixnum whose value is the number of arguments
on the command line is returned. (argv 0) returns the name of the lisp you are
running.

(baktrace)

RETURNS: nil

SIDE EFFECT: the lisp runtime stack is examined and the name of (most) of the functions
currently in execution are printed, most active first.

NOTE: this will occasionally miss the names of compiled lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace won't be
able to interpret the stack unless (sstatus trans/ink nil) was done. See the function
showstack for another way of printing the lisp runtime stack.

(boundp 's_name)

RETURNS: nil ifs name is unbound, that is it has never be given a value. If x_name has
the value g_ val, then (nil . g_ val) is returned.

System Functions 6-1

System Functions 6-Z

(chdir 's_path)

RETURNS: t iff the system call succeeds.
SIDE EFFECT: the current directory set to s_path. Among other things, this will affect the

default location where the input/output functions look for and create files.

NOTE: chdir follows the standard UNIX conventions, if s_path does not begin with a slash,
the default path is changed to the current path with s_path appended.

(dumplisp s_name)

RETURNS: nil
SIDE EFFECT: the current lisp is dumped to the disk with the file name s name. When

s name is executed, you will be in a lisp in the same state as when the
dumplisp was done.

NOTE: dumplisp will fail if one tries to write over the current running file. UNIX does not
allow you to modify the file you are running.

(eval-wben l_time g_expl ...)

SIDE EFFECT: l_time may contain any combination of the symbols load, eval, and compile.
The effects of load a,-,d compile will is discussed in the section on the com
piler. If eval is present however, this simply means that the expressions
g expl and so on are evaluated from left to right. If eval is not present,
the forms are not evaluated.

(exit ['x_code])

RETURNS: nothing (it never returns).

SIDE EFFECT: the lisp system dies with exit code x_code or O if x_code is not specified.

(fake 'x_addr)

RETURNS: the lisp object at address x_addr.

NOTE: This is intended to be used by people debugging the lisp system.

(gc)

RETURNS: nil

SIDE EFFECT: this causes a garbage collection.

NOTE: garbage collection occurs automatically whenever internal free lists are exhausted.

Printed: October 1. 1980

System Functions 6-3

(gcafter s_type)

WHERE: s_type is one of the FRANZ LISP data types listed in §1.3.

NOTE: this function is called by the garbage collector after a garbage collection which was
caused by running out of data type s_type. This function should determine if more
space need be allocated and if so should allocate it. There is a default gcafter func
tion but users who want control over space allocation can define their own -- but
note that it must be an nlambda.

(getenv 's_name)

RETURNS: a symbol whose pname is the value of s name in the current UNIX environ
ment. If s_name doesn't exist in the current environment. a symbol with a null
pname is returned.

(hashtabstat)

RETURNS: a list of fixnums representing the number of symbols in each bucket of the
oblist.

NOTE: the oblist is stored a hash table of buckets. Ideally there would be the same
number of symbols in each bucket.

(include s_filename)

RETURNS: nil

SIDE EFFECT: The given filename is loaded into the lisp.
NOTE: this is similar to load except the argument is not evaluated. Include means some

thing special to the compiler.

(includef 's_filename) .

RETURNS: nil
SIDE EFFECT: this is the same as include except the argument is evaluated.

(maknum 'g arg)

RETURNS: the address of its argument converted into a fixnum.

(opval 's_arg ['g_newval])

RETURNS: the value associated with s_arg before the ca11.

SIDE EFFECT: If g_newval is specified, the· value associated with s_arg is changed to
g_newval.

NOTE: opval keeps track of storage a11ocation. If s_arg is one of the data types then opval
will return a list of three fixnums representing the number of items of that type in
use, the number of pages allocated and the number of items of that type per page.
You should never try to change the value opva/ associates with a data type using
opval.
If s_arg is pagelimit then opval will return (and set if g_newval is given) the max
imum amount of lisp data pages it will allocate. This limit should remain small
unless you know your program requires lots of space as this limit will catch

Printed: October I. 1980

System Functions 6-4

programs in infinite loops which gobble up memory.

(process s_pgrm [s_frompipe s_topipe])

RETURNS: if the optional arguments are not present a fixnum which is the exit code when
s_prgm dies. If the optional arguments are present, it returns a fixnum which is
the process id of the child.

SIDE EFFECT: If s_frompipe and s_topipe are given, they are bound to ports which are
pipes which direct characters from FRANZ LISP to the new process and to
FRANZ LISP from the new process respectively. this forks a process named
s_prgm and waits for it to die iff there are no pipe arguments given.

(ptime)

RETURNS: a list of two elements, the first is the amount of processor time used by the lisp
system so far, the second is the amount of time used by the garbage collector so
far.

NOTE: the first number includes the second number. The amount of time used by garbage
collection is not recorded until the first call to ptime. This is done to prevent over
head when the user is not interested garbage collection times.

(reset)

SIDE EFFECT: the lisp runtime stack is cleared and the system restarts at the top level by
executing a (funca/1 top-level nil).

(retbrk ['x_Jevel])

WHERE: x_Jevel is a small integer of either sign.

SIDE EFFECT: The default error handler keeps a notion of the current level of the error
caught. If x_level is negative, control is thrown to this default error
handler whose level is that many less than the present, or to top-level if
there aren't enough. If x_level is non-negative, control is passed to the
handler at that level. If _x_level is not present, the value -1 is taken by
default.

(segment 's_type 'x_size)

WHERE: s_type is one of the data types given in §1.3

RETURNS: a segment of contiguous Jispvals of type s_type.

NOTE: In reality, segment returns a new data cell of type s_type and allocates space for
x_size - 1 more s_type's beyond the one returned. Segment always allocates new
space and does so in 512 byte chunks. If you ask for 2 fixnums, segment will actu
ally allocate 128 of them thus wasting 126 fixnums. The function small-segment is a
smarter space allocator and should be used whenever possible.

Printed: October 1, 1980

System Functions

(shell)

RETURNS: the exit code of the shell when it dies.

SIDE EFFECT: this forks a new shell and returns when the shell dies.

(sbowstack)

RETURNS: nil

6-S

• SIDE EFFECT: all forms currently in evaluation are printed, beginning with the most
recent. For compiled code the most that showstack will show is the func
tion name and it may not show all of them.

(signal 'x_signum 's_name)

RETURNS: nil if no previous call to signal has been made, or the previously installed
s_name.

SIDE EFFECT: this declares that the function named s_name will handle the signal number
x signum. If s name is nil, the signal is ignored. Presently only four
UNIX signals are caught. they and their numbers are: lnterrupt(2). Floating
exception(8). Alarm(14), and Hang-up(l).

(sizeof 'g_arg)
RETURNS: the number of bytes required to store one object of type g_arg, encoded as a

fixnum.

(small-segment 's_type 'x_cells)

WHERE: s_type is one of fixnum, flonum and value.
RETURNS: a segment of x_cells data objects of type s_type.
SIDE EFFECT: This may call segment to allocate new space or it may be able to fill the

request on a page already allocated. The value returned by small-segment is
usually stored in the data subpart of an array object. •

(sstatus g_ type g_ val)

RETURNS: g_ val
SIDE EFFECT: If g_type is not one of the special sstatus codes described in the next few

pages this simply sets g_val as the value of status type g_type in the system
status property list.

Printed: October I. 1980

System Functions

(sstatus appendmap g_ val)

RETURNS: g_ val

6-6

SIDE EFFECT: If g val is non nil then when fas/is told to create a load map, it will append
to the file name given in the fas/ command, rather than creating a new map
file.

(sstatus automatic-reset g val)

RETURNS: g_ val
SIDE EFFECT: If g val is non nil then when an error occurs which no one wants to handle,

a reset will be done instead of entering a primitive internal break loop.

(sstatus chain atom g_ val)

RETURNS: g_ val

SIDE EFFECT: If g val is non nil and a car or air of a symbol is done, then nil will be
returned instead of an error being signaled. This only affects the inter
preter, not the compiler.

(sstatus dumpcore g_ val)

RETURNS: g_ val

SIDE EFFECT: If g val is nil, FRANZ LISP tells UNIX that a segmentation violation or bus
error should cause a core dump. If g val is non nil then FRANZ LISP will
catch those errors and print a message advising the user to reset.

NOTE: The default value for this flag is nil, and only those knowledgeable of the innards
of the lisp system should ever set this flag non nil.

(sstatus dumpmode x_ val)

RETURNS: x_ val

SIDE EFFECT: All subsequent dumplisp's will be done in mode x_val. x_val may be either
413 or 410 (decimal).

NOTE: the advantage of mode 413 is that the dumped Lisp can be demand paged in when
first started, which will make it start faster and disrupt other users less.

(sstatus feature g val)

RETURNS: g_ val

SIDE EFFECT: g_ val is added to the (status features) list,

Printed: October I. 1980

_... ... -------·---------

System Functions

(sstatus ignoreeof g val)

RETURNS: g_ val

6-7

SIDE EFFECT: If g_ val is non nil then if a end of file (CNTL D on UNIX) is typed to the
top level interpreter it will be ignored rather then cause the lisp system to
exit. If the the standard input is a file or pipe then this has no effect, a
EOF will always cause lisp to exit.

(sstatus nof eature g_ val)

RETURNS: g_ val
SIDE EFFECT: g_ val is removed from the status f ea tu res list if it was present.

(sstatus translink g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is nil then all transfer tables are cleared and further calls through
the transfer table will not cause the fast links to be set up. If g val is the
symbol on then all possible transfer table entries will be linked and the flag
will be set to cause fast links to be set up dynamically. Otherwise all that is
done is to set the flag to cause fast links to be set up dynamically.

NOTE: For a discussion of transfer tables, see the Section on the compiler.

(sstatus uctolc g_ val)
RETURNS: g_ val

SIDE EFFECT: If g_ val is not nil then all unescaped capital letters in symbols read by the
reader will be converted to lower case.

NOTE: This allows FRANZ LISP to be compatible with single case lisp systems (e.g.
MAClisp).

(status g_code)

RETURNS: the value associated with the status code g_code if g_code is not one of the spe
cial cases given below

(status ctime)
RETURNS: a symbol whose print name is the current time and date.

EXAMPLE: (status ctime) ==> ~un Jun 29 16:51:26 1980!

Printed: October 1. 1980

System Functions 6-8

(status feature g_ val)
RETURNS: t iff g_ val is in the status features list.

(status features)
RETURNS: the value of the features code, which is a list of features which are present in

this system. You add to this list with (sstatusfeatu~e 'g_val) and test if feature
g_feat is present with (status feature 'gJeat).

(status isatty)
RETURNS: t iff the standard input is a terminal.

(status localtime)
RETURNS: a list of fixnums representing the current time as described in the UNIX manual

under LOCALTIME(3).
EXAMPLE: (status localtime) = = > (20 51 16 29 5 80 0 1 nil)

{status syntax s cha!')
RETURNS: a fixnum which is the syntax code associated with the character s_char in the

current readtable.
NOTE: You cannot set the syntax code with with (sstatus syntax ch), you must use setsy11-

tax.

(status undeffunc)
RETURNS: a list of all functions which transfer table entries point to but which are not

defined at this point.
NOTE: Some of the undefined functions listed could be arrays which have yet to be

created.

(status version)

RETURNS: a string which is the current lisp version name.
EXAMPLE: (status version) = = > •Franz Lisp, Opus 33b"

(syscall 'x_index l'xst_argl ...])
RETURNS: the result of issuing the UNIX system call number x_index with arguments

xst_argi.

NOTE: The UNIX system calls are described in section 2 of the UNIX manual. If xst_argi
is a fixnum, then its value is passed as an argument, if it is a symbol then its
pname is passed and finally if it is a string then the string itself is passed as an argu
ment. Some useful syscalls are:
(syscal/ 20) returns process id.
(sysca/113) returns the number of seconds since Jan 1, 1970.
(syscall JO]oo) will unlink (delete) the file foo.

Printed: October 1. 1980

System Functions 6-9

(top-level)

RETURNS: nothing (it never returns)

NOTE: This function is the top-level read-eval-print loop. It never returns any value. Its
main utility is that if you redefine it, and do a (reset) then the redefined (top-level)
is then invoked.

Printed: October 1, 1980

CHAPTER 7

The Reader

The FRANZ LISP reader is controlled by a readtable. A readtable is an array of fimums,
one fixnum for each of the 128 ascii characters. The fixnums tell the reader what the properties
of the each character are. The initial readtable is described below. The user may create new
readtables using the makereadtable function. The current readtable is the value of the lisp sym
bol readtable which, like any lisp symbol, may be lambda bound to allow the user to change the
reader syntax very quickly. The values which may appear in the readtable are:

type value (decimal) meaning default
vnum 0 digit 0-9
vsign 1 plus or minus +-
vchar 2 alphabetic character A-Z a-z AH ! S %

&*,/:;<=>
? @ A • (I} -

vsca 66 single char atom none
vlpara 195 left paren . (
vrpara 196 right paren)

vperd 197 period .
vlbrkt 198 left bracket (
vrbrkt 199 right bracket J
veof 200 end of file rubout
vsq 201 single quote .
vdq 138 double quote, all char- I

acters between match-
ing double quotes are
escaped (i.e. treated as
vchar)

vsd 137 string delimiter, all "
characters between
matching delimiters are
concated into an object
of type string

verr 203 ilJegal character null -A--J -N--z
'\-A

vsep 204 separator -1--M esc space
vspl 205 splicing macro character none
vmac 206 macro character none
vesc 143 escape character \

The names in the type column are not known to Franz, we are just using them to tag the
various classes. You must use the value in the second column. The default column shows the
syntax values of characters in the raw lisp, i.e., the lisp which contains only machine language
functions. The lisp which you get when you give the lisp command to the shell is an aug
mented version of the raw lisp, with additional lisp coded functions and changes in the readt
able. The syntax changes in the lisp may differ from installation to instalJation but wilJ probably
include making one character be a comment character. In the lisp at Berkeley, semicolon is the -

The Reader 7-1

The Reader 7-2

comment character. This was done by declaring it to be a splicing macro character which
invokes the function zapline when seen.

To read the syntax of a character. you may use (status syntax s_char).
To change the syntax bits of a character. use the setsyntax function. There are two forms.

one when you just want to change the syntax bits, and the other when you want to define a
character macro. The first form is:

(setsyntax ·s_c ·x_value)

Here s_c may be the character itself or it may be the fixnum representation of that character.
x_value is one of the values given above in the second column. You should be careful when
you change the syntax of a character as the change lasts until you explicitly change it back or
until you begin with a new lisp. Also, some syntax changes are silly and will probably cause
system errors (e.g. changing the syntax of an alphabetic character to be a vnum) . The only
syntax values you will probably ever use are: vdq and vesc. You should not change the syntax
to vspl or vmac using the above form, instead it will be done automatically when you use the
form below.

To declare a character macro use:

(setsyntax • s_c • s_type • sJcn)

Where s_c is again ehher the cha.-acter itself or its fixnum equivalent, type is splicing or n•cro,
and s_fen is either the name of a function expecting no arguments or is a lambda expression.
The result of the setsyntax function is twofold: the readtable value for that character is changed
to vspl or vmac, and the function is put on the property list of the character under the indicator
"macro". The difference between a splicing macro and a macro is this: the value returned by a
splicing macro is nconced to what has been read so far (i.e. (nconc sofar justretumed)). while
the value returned by a macro is added to what has been read, (i.e (nconc sofar (list justread)}.
Thus if a splicing macro returns nil, then it isn't seen since (nconc any nil) ==> any. In par
ticular, splicing macros are useful for conditional loading of lisp expressions.

FRANZ LISP treats left and right square brackets in a special way when building lists. A
left bracket is just like a left parenthesis, and a right bracket matches a left bracket or all open
left parentheses, whichever comes first.

When building atoms, a character with the syntax code vesc will cause the next character
to be read in and treated as a vchar. To escape an entire string of characters, you surround
them with matching characters having the vdq syntax code. To escape the vdq character within
the string of characters you use any character of class vesc. The standard UNIX escape charac
ter, backslash ('\'), is in this class by default.

Printed: October I. 1980

CHAPTER 8

Functions and Macros

8.1. valid function objects

There are many different objects which can occupy the function field of a symbol
object. The following table shows all of the. possibilities, how to recognize them and
where to look for documentation.

informal name object type documentation
interpreted list with car 8.2

lambda function eq to lambda
interpreted list with car 8.2

nlambda function eq to nlambda
interpreted list with car 8;2

lexpr function eq to lexpr
interpreted list with car 8.3

macro eq to macro
compiled binary with discipline 8.2

lambda or lexpr eq to lambda
function
compiled binary with discipline 8.2

nlam bda function eq to nlambda
compiled binary with discipline 8.3

macro eq to macro
foreign binary with discipline 8.4

subroutine of "subroutine"t
foreign binary with discipline 8.4
function of "function"t
foreign binary with discipline 8.4

integer function of "integer-function"t
foreign binary with discipline 8.4

real function of "real-function"t
array array object 9

8.2. functions The basic lisp function is the lambda function. When a lambda function is
called, the actual arguments are evaluated from left to right and are lambda-bound to the

tonly the first character of the string is significant (i.e •s• is ok for "subroutine")

Functions and Macros 8-1

Functions and Macros 8-2

formal parameters of the lambda function.

An nlambda function is usually used for functions which are invoked by the user at
top level. Some built-in functions which evaluate their arguments in special ways are
also nlambdas (e.g cond, do, or). When an nlambda function is called, the list of
unevaluated arguments is lambda bound to the single formal parameter of the nlambda
function.

Some programmers will use an nlambda function when they are not sure how many
arguments will be passed. Then the first thing the nlambda function does is map eval
over the list of unevaluated arguments it has been passed. This is usually the wrong
thing to do as it won't work compiled if any of the arguments are local variables. The
solution is to use a lexpr. When a lexpr function is called, the arguments are evaluated
and the number of arguments is lambda-bound to the single formal parameter of the
lexpr function. The lexpr then accesses the arguments using the arg function.

When a function is compiled special declaration may be needed to preserve its
behavior. An argument is not lambda-bound to the name of the corresponding formal
parameter unless that formal parameter has been declared special (see §12.3.2.2).
Lambda and lexpr functions both compile into a binary object with a discipline of
lambda. However, a compiled lexpr still acts like an interpreted lexpr.

8.3. macros An important features of Lisp is its ability to manipulate programs as data.
As a result of this, most Lisp implementations have very powerful macro facilities. The
Lisp language's macro facility can be used to incorporate popular features of the other
languages into Lisp. For example, there are macro packages which allow one to create
records (ala Pascal) and refer to elements of those records by the key names. t Another
popular use for macros is to create more readable control structures which expand into
cond, or and and. One such example is the If macro in the jkfmacs.l package. It allows
you to write

(/J (equal numb 0) then (print 'zero) (terpr)
elseif (equal numb 1) then (print 'one) (terpr)
else (print II give uJV)

which expands to

(cond
((equal numb 0) (print 'zero) (terpr))
((equal numb 1) (print 'one) (terpr))
(t (print tT give uJV))

8.3.1. macro forms A macro is a function which accepts a Lisp expression as input and
returns another Lisp expression. The action the macro takes is called macro expan
sion. Here is a simple example:

-> (def first (macro (x) (cons 'car (cdr x))))

tA record definition macro package especially suited for FRANZ L1sP is in the planning stages at Berkeley. At this
time the Maclisp struct package can be used.

Printed: October 1. 1980

Functions and Macros

first
-> (first '(a b c))
a
-> (apply 'first '(first '(a b c)))
(car '(a b c))

8-3

The first input line defines a macro called first. Notice that the macro has one formal
parameter, x. On the second input line, we ask the interpreter to evaluate
(first '(a b c)). Eva! sees that first has a function definition of type macro so it evalu
ates firsfs definition passing to first as an argument. the form eval itself was trying to
evaluate, (first '(ab c)). The first macro chops off the car of the argument with cdr.
cons• a car at the beginning of the list and returns (car '(a b c)). Now eval evaluates
that, and the value is a which is returned as the value of (first '(a b c)). Thus when
ever eval tries to evaluate a list whose car has a macro definition it ends up doing (at
least) two operations, one is a call to the macro to let it macro expand the form. and
the other is the evaluation of the result of the macro. The result of the macro may
be yet another call to a macro. so eval may have to do even more evaluations until it
can finally determine the value of an expression. One way to see how a macro will
expand is tQ use apply as shown on the third input line above.

8.3.2. defmacro The macro de/macro makes it easier to define macros because it allows
you to name the arguments to the macro call. For example. suppose we find our
selves often writing code like (setq stack (cons newelt stack). We could define a macro
named push to do this for us. One way to define it is:

-> (def push (macro (x) (/ist 'setq (caddr x) (/ist 'cons (cadr x) (caddr x)))))
push

then (push newelt stack) will expand to the form mentioned above. The same macro
written using def macro would be:

-> (de/macro push (value stack) (/ist 'setq stack (/ist 'cons value stack))
push

Def macro allows you to name the arguments of the macro can, and makes the macro
definition look more like a function definition.

8.3.3. the backquote character macro The default syntax for FRANZ LISP has only
three characters with associated character macros. One is semicolon for comments.
The other two are backquote and comma which are used by the backquote character
macro. The backquote macro is used to create lists where many of the elements are
fixed (quoted). This makes it very useful for creating macro definitions. In the sim
plest case, a backquote acts just like a single quote:

->'(ab c de)
(ab c de)

If a comma precedes an element of a backquoted list then that element is evaluated
and its value is put in the list.

Printed: October 1, 1980

Functions and Macros

-> (setq d •(x y z))
(x y z)
-> •(a b c .d e)
(ab c (x y z) e)

8-4

If a comma followed by an at sign precedes an element in a backquoted list, then that
element is evaluated and spliced into the list with append.

-> '(a b c ,@de)
(ab c x y z e)

Once a list begins with a backquote, the commas may appear anywhere in the list as
this example shows:

-> '(a b (c d. (cdr d)) (e f (g h ,@(cddr d) ,@d)))
(a b (c d (y z)) (e f (g h z x y z)))

It is also possible and sometimes even useful to use the back quote macro within
itself. As a final demonstration of the backquote macro, we shall define the first and
push macros using all the power at our disp(?Sal, def macro and the backquote macro.

-> (de/macro.first (/ist) '(car ,list))
first
-> (de/macro push (value stack) '(setq .stack (cons ,value ,stack)))
stack

8.4. foreign subroutines and functions FRANZ LISP has the ability to dynamically load
object files produced by other compilers and then call functions defined in those files.
These functions are called foreign functions. There are four types of foreign functions
and they are characterized by the type of result they return:
subroutine

This does not return anything. The lisp system always returns t after calling a sub
routine.

function
This returns whatever the function returns. This must be a valid lisp object or it
may cause the lisp system to fail.

integer-function
This returns an integer which the lisp system makes into a fixnum and returns.

real-function
This returns a double precision real number which the lisp system makes into a
flonum and returns.

A foreign function is accessed through a binary object just like a compiled lisp function.
The difference is that the discipline field for a binary object of a foreign function is a
string whose first character is s for a subroutine, f for a function, i for an integer
function and r for a real-function. Two functions are provided for the setting up of
foreign functions. Cfasl loads an object file into the lisp system and sets up one foreign
function binary object. If there is more than one function in an object file, getaddress can
be used to set up further foreign function objects.

Foreign functions are called just like other functions, e.g (funname argl arg1).
When one is called, the arguments are evaluated and then examined. List, hunk and

Printed: October 1, 1980

l
i

,.

Functions and Macros 8-5

symbol arguments are passed unchanged to the foreign function. Fixnum and flonum
arguments are copied into a temporary location and a pointer to the value is passed (this
is because Fortran uses call by reference and it is dangerous to modify the contents of a
fixnum or flonum which something else might point to). If an array object is an argu
ment the data field of the array object is passed to the foreign function (this is the easi
est way to send large amounts of data to and receive large amounts of data from a
foreign function). If a binary object is an argument, the entry field of that object is
passed to the foreign function (the entry field is the address of a function, so this
amounts to passing a function as an argument).

The method a foreign function uses to access the arguments provided by lisp is
dependent on the language of the foreign function. The following scripts demonstrate
how how lisp can interact with three languages: C, Pascal and Fortran. C and Pascal
have pointer types and the first script shows how to use pointers to extract information
from lisp objects. There are two functions defined for each language. The first (cfoo is
C, pfoo in Pascal) is given four arguments, a fixnum, a flonum-block array, a hunk of at
least two fixnums and a list of at least two fixnums. To demonstrate that the values were
passed, each ?foo function prints its arguments (or parts of them). The ?foo function
then modifies the second element of the flonum-block array and returns a 3 to lisp. The
second function (cmemq in C, pmemq in Pascal) acts just like the lisp memq function
(except it won't work for fixnums whereas the lisp memq will work for small fixnums).
In the script, typed input is in bold, computer output is in roman and comments are in
italic.

These are the C coded functions
% cat ch8auxc.c
/* demonstration of c coded foreign integer-function • 1

/* the following wilJ be used to extract fixnums out of a list of fixnums * /
struct listoffixnumscell
{ struct listoffixnumscell *cdr;

int *fixnum;

struct listcell
(struct listcell *cdr;

int car;
};

cfoo(a,b,c,d)
int •a;
double b[];
int •c[];
struct listoffixnumscell *d;
(

}

printf("a: 0/od, b[O]: %f, b[l]: %f0, •a, b[O], b[l]);
printf(" c (first): 0/od c (second): 0/odO,

•c[O],*c[l]);
printf(" (%d 0/od ...) ", *(d->fixnum), *(d->cdr->fixnum));
b[l] = 3.1415926;
retum(3);

struct listcell •
cmemq (element,list)

Printed: October 1, 1980

Functions and Macros

int element;
struct 1istce11 •list;
l

for(; list && element!= list->car; list = list->cdr);
return (list);

These are the Pascal coded functions
% cat ch8auxp.p
type pinteger = Ainteger;

realarray = array[O . .l OJ of real;
pintarray = array[0 .. 10] of pinteger;
1istoffixnumsce11 = record

end;
plistcell = Alistcell;
Iistcell = record

cdr : Alistoffixnumscell;
fixnum : pinteger;

cdr : plistcell;
car : integer;

end;

function pfoo (var a : integer ;
var b : realarray;
var c : pintarray;
var d : listoffixnumscell) : integer;

begin
writeln(' a:',a, 'b[OJ:', b[O], 'b[l]:', b[l]);
writeln(' c (first):', clOr; c (second):', c11r);
writeln(' (', d.fixnumA, d.cdrA.fixnumA, ' .. .) ');
b[l] := 3.1415926;
pfoo := 3

end;

(the function pmemq looks for the lisp pointer given as the first argument
• in the list pointed to by the second argument.

}

Note that we declare " a : integer " instead of " var a : integer " since
we are interested in the pointer value instead of what it points to (which
could be any lisp object)

function pmemq(a : integer; list : plistcell) : plistcell;
begin
while (list < > nil) and (list A .car < > a) do list : = lisr .cdr;
pmemq : = list;

end;

The files are compiled
% cc -c ch8auxc.c
I.Ou 1.2s 0:15 14% 30+39k 33+20io 147pf +Ow
% pc -c ch8auxp.p
3.0u 1.7s 0:37 12% 27+32k 53+32io 143pf +Ow

8-6

Printed: October 1, 1980

Functions and Macros 8-7

% lisp
Franz Lisp, Opus 33b
First the files are loaded and we set up one foreign function binary. We have two functions in
each file so we must choose one to tell cfas/ about. The choice is arbitrary.
-> (cfasl 'ch8auxc.o '_cfoo 'cfoo •integer-function")
/usr/lib/lisp/nld -N -A /usr/local/lisp -T 63000 ch8auxc.o -e _cfoo -o /tmp/Li7055.0 -le
#63000-"integer-function"
-> (cfasl 'ch8auxp.o '_pfoo 'pfoo "integer-function• •-Jpc")
/usr/lib/lisp/nld -N -A /tmp/Li7055.0 -T 63200 ch8auxp.o -e _pfoo -o /tmp/Li7055.l -lpc -le
#63200-"integer-function"
Here we set up the other foreign function binary objects
-> (getaddress '_cmemq 'cmemq "function" '_pmemq 'pmemq "function")
#6306c-"function"
We want to create and initialize an array to pass to the cfoo function. In this case we create
an unnamed array and store it in the value cell of testarr. When we create an array to pass to
the Pascal program we will used a named array just to demonstrate the different way that
named and unnamed arrays are created and accessed.
-> (setq testarr (array nil flonum-block 2))
array[2]
-> (store (funcall testarr 0) 1.234)
1.234
-> (store (funcall testarr l) 5.678)
5.678
-> (cfoo 385 testarr (hunk 10 11 13 14) '(15 16 17))
a: 385, b[0]: 1.234000, b[l]: 5.678000
c (first): 10 c (second): 11
(1516 ...)
3

Note that cfoo has returned 3 as it should. It also had the side effect of changing the second
value of the array to 3.1415926 which check next.
-> (funcall testarr 1)
3.1415926

In preparation for calling pfoo we create an array.
-> (array test flonum-block 2)
array[2]
-> (store (test 0) 1.234)
1.234
-> (store (test I) 5.678)
5.678
-> (pfoo 385 (getd 'test) (hunk 10 1113 14) '(IS 16 17))
a: 385 b[0]: 1.23400000000000E+00 b[l]: 5.67800000000000E+00
c (first): 10 c (second): 11
(15 16 .. .)

3
-> (test 1)
3.1415926

Now to test out the memq 's
-> <cmemq 'a '(b cad e f))
(ad e j)
-> (pmemq 'e '(ad f g ax))
nil

Printed: October I, 1980

j

I
I

i

I

Functions and Macros 8-8

The Fortran example will be much shorter since in Fortran you can't follow
pointers as you can in other languages. The Fortran function ff oo is given three argu
ments: a fixnum, a fixnum-block array and a flonum. These arguments are printed out
to verify that they made it and then the first value of the array is modified. The function
returns a double precision value which is converted to a flonum by lisp and printed.
Note that the entry point corresponding to the Fortran function ffoo is _ffoo_ as opposed
to the C and Pascal convention of preceding the name with an underscore.

% cat ch8auxf.f
double precision function ffoo(a,b,c)
integer a,b(I0)
double precision c
print 2,a,b(l),b(2),c

2 format(' a=',i4,', b(l)=',i5,', b(2)=',i5,' c=',f6.4)
b(l) = 22
ff oo = 1.23456
return
end

% f17 -c ch8auxf .f
ch8auxf.f:

ffoo:
0.9u 1.8s 0:12 22% 20+22k 54+48io 158pf +Ow
%lisp
Franz Lisp, Opus 33b
-> (cfasl 'ch8auxf.o ' ffoo 'ffoo "real-function" "-IF77 -1177")
/usr/lib/lisp/nld -N -A-/usr/local/lisp -T 63000 ch8auxf.o -e ffoo
-o /tmp/Lil 1066.0 -JF77 -J177 -le - -
#6307c-hreal-function"

-> (array test fixnum-b)ock 2)
array[2]
-> (store (test 0) 10)
10
-> (store (test 1) 11)
11
-> (ffoo 385 (getd 'test) 5.678)
a= 385, b(l)= 10, b(2)= 11 c=S.6780
l.234559893608093
-> (test 0)
22

Printed: October I, 1980

CHAPTER 9

Arrays

Arrays in FRANZ LISP provide a programmable data structure access mechanism. One
possible use for FRANZ LISP arrays is to implement Maclisp style arrays which are simple vec
tors of fixnums, flonums or general lispvalues. This is described in more detail in §9.3 but first
we will describe how array references are handled by the lisp system.

The structure of an array object is given in § 1.3. 9 and reproduced here for your conveni
ence.

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

9.1. general arrays Suppose the evaluator is told to evaluate (foo a b) and the function
cell of the symbol foo contains an array object (which we will call foo arr obj). First the
evaluator will evaluate and stack the values of a and b. Next it will stack the array object
foo_arr_obj. Finally it will call the access function of foo_arr_obj. The access function
should be a lexprt or a symbol whose function cell contains a lexpr. The access function
is responsible for locating and returning a value from the array. The array access func
tion is free to interpret the arguments as it wishes. The Maclisp compatible array access
function which is provided in the standard FRANZ LISP system interprets the arguments
as subscripts in the same way as languages like Fortran and Pascal.

The array access function will also be called up to store elements in the array. For
example, (store (foo a b) c) will automatically expand to (foo c a b) and when the evalua
tor is called to evaluate this, it will evaluate the arguments c, band a. Then it will stack
the array object (which is stored in the function cell of foo) and call the array access
function with (now) four arguments. The array access function must be able to tell this
is a store operation which it can by checking the number of arguments it has been given
(a lexpr can do this very easily).

t A lexpr is a function which accepts any number of arguments which are evaluated before the function is called.

Arrays 9-1

Arrays 9-2

9.2. subparts of an array object When an array is created a raw array object is allocated
with marray and the user is responsible for filling in the parts. Certain lisp functions
interpret the values of the subparts of the array object in special ways as described in the
following text. Placing illegal values in these subparts may cause the lisp system to fail.

9.2.1. access function The function of the access function has been described above.
The contents of the access function should be a lex pr, either a binary (compiled f unc
tion) or a list (interpreted function). It may also be a symbol whose function cell
contains a function definition. This subpart is used by eval, Junca/1, and apply when
evaluating array references.

9.2.2. auxiliary This can be used for any purpose. If it is a list and the first element of
that list is the symbol unmarked_array then the data subpart will not be marked by
the garbage collector (this is used in the Maclisp compatible array package and has
the potential for causing strange errors if used incorrectly).

9.2.3. data This is either nil or points to a block of data space allocated by segment or
small-segment.

9.2.4. length . This is a fixnum whose value is the number of elements in the data
block. This is used by the garbage collector and by arrayref to determine if your
index is in bounds.

9.2.S. delta This is a fixnum whose value is the number of bytes in each element of
the data block. This will be four for an array of fixnums or value cells, and eight for
an array of flonums. This is used by the garbage collector and arrayrefas well.

9.3. T,:te Maclisp compatible array package

A Maclisp style array is similar to what are know as arrays in other languages: a
block of homogeneous data elements which is indexed by one or more integers called
subscripts. The data elements can be all fixnums, flonums or general lisp objects. An
array is created by a call to the function array or •array . The only difference is that
•array evaluates its arguments. This call: (array Joo t 3 5) sets up an array called foo of
dimensions 3 by 5. The subscripts are zero based. The first element is (loo O 0), the
next is (loo O 1) and so on up to (loo 2 4). The t indicates a general lisp object array
which means each element of foo can be any type. Each element can be any type since

Printed: October 1, 1980

t

Arrays 9-3

all that is stored in the array is a pointer to a lisp object, not the object itself. Array does
this by allocating an array object with marray and then allocating a segment of 1S con
secutive value cells with small-segment and storing a pointer to that segment in the data
subpart of the array object. The length and delta subpart of the array object are filled in
(with 1S and 4 respectively) and the access function subpart is set to point to the
appropriate array access function. In this case there is a special access function for two
dimensional value cell arrays called arrac-twoD, and this access function is used. The
auxiliary subpart is set to (t 3 5) which describes the type of array and the bounds of the
subscripts. Finally this array object is placed in the function cell of the symbol foo. Now
when (loo 1 3) is evaluated, the array access function is invoked with three arguments: 1,
3 and the array object. From the auxiliary field of the array object it gets a description of
the particular array. It then determines which element (loo 1 3) refers to and uses
arrayref to extract that element. Since this is an array of value cells, what arrayref
returns is a value cell whose value what we want, so we evaluate the value cell and
return it as the value of (loo 1 3).

In Maclisp the call (array Joo .fixnum 25) returns an array whose data object is a
block of 25 memory words. When fixnums are stored in this array, the actual numbers
are be stored instead of pointers to the numbers as are done in general lisp object arrays.
This is efficient under Maclisp but inefficient in FRANZ LISP since every time a value was
referenced from an array it had to be copied and a pointer to the copy returned to
prevent aliasing'. Thus t. fixnum and flonum arrays are all implemented in the same
manner. This should not affect the compatibility of Maclisp and FRANZ LISP. If there is
an application where a block of fixnums or flonums is required, then the exact same
effect of fixnum and flonum arrays in Maclisp can be achieved by using fixnum-block
and flonum-block arrays. Such arrays are required if you want to pass a large number of
arguments to a Fortran or C coded function and then get answers back.

The Maclisp compatible array package is just one example of how a general array
scheme can be implemented. Another type of array you could implement would be
hashed arrays. The subscript could be anything, not just a number. The access function
would hash the subscript and use the result to select an array element. With the general
ity of arrays also comes extra cQst; if you just want a simple vector of (less than 128)
general lisp objects you would be wise to look into using hunks.

t Aliasing is when two variables are share the same storage location. For example _if the copying mentioned
weren't done then after (setq x (fool)} was done, the value of x and ffoo 2) would share the same location. Then
should the value of (foo 2) change, x's value would change as well. This is considered dangerous and as a result
pointers are never returned into the data space of arrays.

Printed: October I, !980

CHAPTER 10

Exception Handling

10.1. Errset and Error Handler Functions

FRANZ LISP allows the user to handle in a number of ways the errors which arise
during computation. One way is through the use of the errset function. If an error
occurs during the evaluation of the errset's first argument, then the locus of control will
return to the errset which will return nil (except in special cases, such as err). The other
method of error handling is through an error handler function. When an error occurs,
the interrupt handler is called and is given as an argument a description of the error
which just occured. The error handler may take one of the following actions:

(I) it could take some drastic action like a reset or a throw.
(2) it could, assuming that the error is continuable, cause a value to be returned from

the error handler to the function which noticed the error. The error handler indi
cates that it wants to return a value from the error by returning a list whose car is
the value it wants to return.

(3) it could decide not to handle the error and return a non-list to indicate this fact.

10.2. The Anatomy of an error
Each error is described by a list of these items:

(l) error type - This is a symbol which indicates the general classification of the error.
This classification may determine which function handles this error.

(2) unique id - This is a fixnum unique to this error.
(3) continuable - If this is non-nil then this error is continuable. There are some who

feel that every error should be continuable and the reason that some (in fact most)
errors in FRANZ LISP are not continuable is due to the laziness of the programmers.

(4) message string - This is a symbol whose print name is a message describing the
error.

(5) data - There may be from zero to three lisp values which help describe this particu
lar error. For example, the unbound variable error contains one datum value, the
symbol whose value is unbound. The list describing that error might look like:

(ER%misc O t !Unbound Variable~ foobar)

Exception Handling 10-1

Exception Handling 10-2

10.3. Error handling algorithm

This is the sequence of operations which is done when an error occurs:

(1) If the symbol ER%all has a non nil value then this value is the name of an error
handler function. That function is called with a description of the error. If that
function returns (and of course it may choose not to) and the value is a list and
this error is continuable, then we return the car of the list to the function which
called the error. Presumably the function will use this value to retry the operation.
On the other hand, if the error handler returns a non list, then it has chosen not to
handle this error, so we go on to step (2). Something special happens before we
call the ER%all error handler which does not happen in any of the other cases we
wiU describe below. To help insure that we don't get infinitely recursive errors if
ER%all is set to a bad value, the value of ER%all is set to nil before the handler is
called. Thus it is the responsibility of the ER%all handler to 'reenable' itself by
storing its name in ER%all.

(2) Next the specific error handler for the type of error which just occured is called (if
one exists) to see if it wants to handle the error. The names of the handlers for
the specific types of errors are stored as the values of the symbols whose names are
the types. For example the handler for miscellaneous errors is stored as the value
of ER%misc. Of course, if ER%misc has a value of nil, then there is not error
handler for this type of error. Appendix B contains list of all error types. The pro
cess of classifying the errors is not complete and thus most errors are lumped into
the ER%mis~ categcry. Just as in step (1), th~ error handl-:-r function may choose
not to handle the error by returning a non-list, and then we go to step (3).

(3) Next a check is made to see if there is an errset surrounding this error. If so the
second argument to the errset call is examined. If the second argument was not
given or is non nil then the error message associated with this error is printed
Finally the stack is popped to the context of the errset and then the errset returns
nil. If there was no errset we go to step (4).

(4) If the symbol ER%tpl has a value then it is the name of and error handler which is
called in a manner similar to the that discussed above. If it chooses not to handle
the error, we go to step (5).

(5) At this point it has been determined that the user doesn't want to handle this error.
Thus the error message is printed out and a reset is done to send the flow of control
to the top-level.

To summarize the error handling system: When an error occurs, you have two
chances to handle it before the search for an errset is done. Then, if there is no errset,
you have one more chance to handle the error before control jumps to the top level.
Every error handler works in the same way: It is given a description of the error (as
described in the previous section). It may or may not return. If it returns, then it
returns either a list or a non-list. If it returns a list and the error is continuable, then the
car of the list is returned to the function which noticed the error. Otherwise the error
handler has decided not to handle the error and we go on to something else.

10.4. Default aids
There are two standard error handlers which will probably handle the needs of

most users. One of these is the lisp coded function break-err-handler which is the default
value of ER%tpl. Thus when all other handlers have ignored an error, break-err-handler
will take over. It will print out the error message and go into a read-eval-print loop. For
a further discussion of break-err-handle;, see section xx. The other standard error

Printed: October l, 1980

Exception Handling 10-3

handler is debug-err-handler. This handler is designed to be connected to ER%all. It is
useful if your program uses errset and you want to look at the error it is thrown up to the
errset.

10.S. Autoloading

When eval, apply or funca/1 are told to call an undefined function. an ER%undef
error is signaled. The default handler for this error is u11def-fu11c-handler. This function
checks the property list of the undefined function for the indicator autoload. If present.
the value of that indicator should be the name of the file which contains the definition of
the undefined function. Undef-func-handler will load the file and check if it has defined
the function which caused the error. If it has, the error handler will return and the com
putation will continue as if the error did not occur. This provides a way for the user to
tell the lisp system about the location of commonly used functions. The trace package
sets up an autoload property to point to /usr/lib/lisp/trace.

10.6. Interrupt processing

The UNIX operating system provides one user interrupt character which defaults
to Ac.t. The user may select a lisp function to run when an interrupt occurs. Since this
interrupt could occur at any time, and in particular could occur at a time when the inter
nal stack pointers were in an inconsistent state, the processing of the interrupt may be
delayed until a safe time. When the first AC is typed, the lisp system sets a flag that an
interrupt has been requested. This flag is checked at safe places wilhin the interpreter
and in the q/inker function. If the lisp system doesn •t respond to the first AC. another AC
should be typed. This will cause all of the transfer tables to be cleared forcing all calls
from compiled code to go through the q/inker function where the interrupt flag will be
checked. If the lisp system still doesn't respond, a third AC will cause an immediate
interrupt. This interrupt will not necessarily be in a safe place so the user should reset
the lisp system as soon as possible.

t Actually there are two but the lisp system does not allow you to catch the QUIT interrupt.

Printed: October 1, 1980

CHAPTER 11

The Joseph Lister Trace Package

The Joseph Listert Trace package is an important tool for the interactive debugging of a
Lisp program. It allows you to examine selected calls to a function or functions, and optionally
to stop execution of the Lisp program to examine the values of variables.

The trace package is a set of Lisp programs located in the Lisp program library (usually in
the file /usr/lib/lisp/trace.l). There are two user callable functions in the trace package: trace
and untrace. The trace package will be loaded automatically when you first use the trace func
tion. Both tracea.nd untrace are nlambdas (their arguments are not evaluated). The form of a
call to trace is

(trace argl arg2 .. .)
where the argi have one of the following forms:

foo - when foo is entered and exited, the trace information will be printed.

(foo break) - when foo is entered and exited the trace information will be printed. Also,
just after the trace information for foo is printed upon entry, you will be put in a
special break loop. The prompt is •T>' and you may type any Lisp expression, and
see its value printed. The ith argument to the function just calJed can be accessed
as (arg ;) . To leave the trace loop, just type AD or (tracereturn) and execution will
continue. Note that AD will work only on UNIX systems.

(foo if expression) - when foo is entered and the expression evaluates to non-nil, then the
trace information will be printed for both exit and entry. If expression evaluates to
nil, then no trace information will be printed.

(foo ifnot expression) - when foo is entered and the expression evaluates to nil, then the
trace information will be printed for both entry and exit. If both if and if not are
specified, then the if expression must evaluate to non nil AND the ifnot expression
must evaluate to nil for the trace information to be printed out.

(foo evalin expression) - when foo is entered and after the entry trace information is
printed, expression will be evaluated. Exit trace information will be printed when
foo exits.

(foo evalout expression) - when foo is entered, entry trace information will be printed.
When foo exits, and before the exit trace information is printed, expression will be
evaluated.

t Lister, Joseph 1st Baron Lister of Lyme Regis, I 827-1912; English surgeon: introduced antiseptic surgery.

The Joseph Lister Trace Package 11-1

The Joseph Lister Trace Package 11-2

(foo evalinout expression) - this has the same effect as (trace (foo evalin expression
evalout expression)).

(foo lprint) - this tells trace to use the level printer when printing the arguments to and the
result of a can to foo. The level printer prints only the top levels of list structure.
Any structure below three levels is printed as a &. This allows you to trace func
tions with massive arguments or results.

The following trace options permit one to have greater control over each action which
takes place when a function is traced. These options are only meant to be used by people who
need special hooks into the trace package. Most people should skip reading this section.

(foo traceenter tefunc) - this tells trace that the function to be called when foo is entered is
tefunc. tefunc should be a lambda of. two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second argu- .
ment wiU be bound to the list of arguments to which foo should be applied. The
function tefunc should print some sort of "entering foo" message. It should not
apply foo to the arguments, however. That is done later on.

(foo traceexit txfunc) - this teils trace that the function to be called when foo is exiteJ is
txfunc. txfunc should be a lambda of two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second argu
ment will be bound to the result of the call to foo. The function txfunc should
print some sort of "exiting foo" message.

(foo evfcn evfunc) - this tells trace that the form evfunc should be evaluated to get the
value of foo applied to its arguments. This option is a bit different from the other
special options since evf unc will usually be an expression, not just the name of a
function, and that expression will be specific to the evaluation of function foo. The
argument list to be applied will be available as T-arglist.

(foo printargs prfunc) - this tells trace to used prfunc to print the arguments to be applied
to the function foo. prfunc should be a lambda of one argument. You might want
to use this option if you wanted a print function which could handle circular lists.
This option wiU work only if you do not specify your own traceenter function.
Specifying the option I print is just a simple way of changing the printargs function
to the level printer.

(foo printres prfunc) - this tells trace to use prf unc to print the result of evaluating foo.
prfunc should be a lambda of one argument. This option will work only if you do
not specify your own traceexit function. Specifying the option I print changes prin
tres to the level printer.

You may specify more than one option for each function traced. For example:

(trace (loo if (eq 3 (arg 1)) break /print) (bar eva/in (print xyzzy)))

Printed: October 2, 1980

------ ---- - ••• - ·-

The Joseph Lister Trace Package 11-3

This tells trace to trace two more functions, foo and bar. Should foo be called with the first
argument eq to 3, then the entering foo message will be printed with the level printer. Next it
will enter a trace break loop, allowing you to evaluate any lisp expressions. When you exit the
trace break loop, foo will be applied to its. arguments and the resulting value will be printed,
again using the level printer. Bar is also traced, and each time bar is entered, an entering bar
message will be printed and then the value of xyzzy will be printed. Next bar will be applied to
its arguments and the result will be printed. If you tell trace to trace a function which is already .
traced, it will first untrace it. Thus if you want to specify more than one trace option for a f unc
tion, you must do it all at once. The following is not equivalent to the preceding call to trace
for foo:

(trace (foo if (eq 3 (arg }))) (/oo break) (loo /prim))

In this example, only the last option, lprint, will be in effect.

The function trace returns a list of functions is was able to trace. The function u111race
untraces those functions its is argument list. If the argument list is empty then all functions
being traced are untraced. Un trace returns a list of functions untraced.

Generally the trace package has its own internal names for the the lisp functions it uses,
so that you can feel free to trace system functions like cond and not worry about adverse
interaction with the actions of the trace package. You can trace any type of function: lambda,
nlambda, lexpr or macro whether compiled or interpreted and you can even trace array refer-.
ences (however you should not attempt to store in an array which has been traced).

When Lr&ciug compiled code ket:p ;n mind tha, many function calls are translated direcGy
to machine language or other equivalent function calls. A full list of open coded functions is
listed at the beginning of the liszt compiler source. Trace will do a (sstatus trans/ink nil) to
insure that the new traced definitions it defines are called instead of the old untraced ones.
You may notice that compiled code will run slower after this is done.

Printed: October 2, 1980

CHAPTER 12

Liszt - the lisp compiler
•

12.1. General strategy of the compiler

The purpose of the lisp compiler, Liszt, is to create an object module which when
brought into the lisp system using fas/ will have the same effect as bringing in the
corresponding lisp coded source module with load with one important exception, func
tions will be defined as sequences of machine language instructions, instead of lisp S
expressions. Liszt is not a function compiler, it is a file compiler. Such a file can con
tain more than function definitions; it can contain other lisp S-expressions which are
evaluated at load time. These other S-expressions will also be stored in the object
module produced by Liszt and will be evaluated at f asl time.

As is almost universally true of Lisp compilers, the main pass of Liszt is written in
Lisp. A subsequent pass is the assembler, for which we use the standard UNIX assem
bler.

12.2. Running the compiler
The compiler is normally run in this manner:

% liszt foo
will compile the file foo.1 or foo (the preferred way to indicate a lisp source file is to end
the file name with •.t'). The result of the compilation will be placed in the file foo.o if
no fatal errors were detected. All messages which Liszt generates go to the standard out
put. Normally each function name is printed before it is compiled (the -q option
suppresses this).

12.3. Special forms
Liszt makes one pass over the source file. It processes each form in this way:

12.3.1. macroexpansion If the form is a macro invocation (i.e it is a list whose car is a
symbol whose function binding is a macro), then that macro invoca!ion is expanded.
This is repeated until the top level form is not a macro invocation. When Liszt
begins, there are already some macros defined, in fact some functions (such as
def un) are actually macros. The user may define his own macros as well. For a
macro to be used it must be defined in the Lisp system in which Liszt runs.

Liszt - the lisp compiler 12-1

Liszt - the lisp compiler 12-2

12.3.2. classification After all macro expansion is done, the form is classified accord
ing to its car (if the form is not a list, then it is classified as an other).

12.3.2.1. eval-when The form of eval-when is (eval-
when (time} time2 .. .) form} form2 .. .) where the timei are one of eval, compile, or
load. The compiler examines the formi in sequence and the action taken depends
on what is in the time list. If compile is in the list then the compiler will invoke
eval on each formi as it examines it. If load is in the list then the compile will
recursively call itself to compile each formi as it examines it-. Note that if compile
and load are in the time list, then the compiler will both evaluate and compile
each form. This is useful if you need a function to be defined in the compiler at
both compile time (perhaps to aid macro expansion) and at run time (after the file
is Jas/e.d in).

12.3.2.2. declare Declare is used to provide information about functions and vari
ables to the compiler. It is (almost) equivalent to (eval-when (compile) .. .J. You
may declare functions to be one of three types: lambda (*expr), nlambda (*fexpr).
Jexpr (*lexpr). The names in parenthesis are the Maclisp names and are accepted
by the compiler as well (and not just when the compiler is in Maclisp mode).
Functions are assumed to be lambdas until they are declared otherwise or are
defined differently. The compiler treats calls to lambdas and lexprs equivalently,
so you needn't worry about declaring lexprs either. It is important to declare
nlambdas or define them before calling them. Another attribute you can declare
for a function is localf which makes the function 'local'. A local function's name
is known only to the functions defined within the file itself. The advantage of a
local function is that is can be entered and exited very quickly and it can have the
same name as a function in another file and there will be no name conflict.

Variables may be declared special or unspecial. When a special variable is
lambda bound (either in a lambda, prog or do expression), its old value is stored
away on a stack for the duration of the lambda, prog or do expression. This takes
time and is often not necessary. Therefore the default classification for variables
is unspecial. Space for unspecial variables is dynamically allocated on a stack. An
unspecial variable can only be accessed from within the function where it is
created by its presence in a lambda, prog or do expression variable list. It is possi
ble to declare that all variables are special as will be shown below.

You may declare any number of things in each declare statement. A sample
declaration is
(declare

(lambda funcl func2)
(Yexpr fund)
(*lexpr func4)
(/oca/f func5)
(special varl var2 var])
(unspecial var4))

You may also declare all variables to be special with (declare (specials t)).
You may declare that macro definitions should be compiled as well as evaluated at
compile time by (declare (macros t)). In fact, as was mentioned above, declare is
much like (eval-when (compile) .. .). Thus if the compiler sees (declare (loo bar))

Printed: October 3, 1980

Liszt - the lisp compiler 12-3

and foo is defined, then it will evaluate (loo bar). If foo is not defined then an
undefined declare attribute warning will be issued.

12.3.2.3. (progn 'compile form I form2 ... formn)

When the compiler sees this it simply compiles forml through formn as if
they too were seen at top level. One use for this is to allow a macro at top-level
to expand into more than one function definition for the compiler to compile.

12.3.2.4. include/includef

Include and include/ cause another file to be read and compiled by the com
piler. The result is the same as if the included file were textually inserted into the
original file. The only difference between include and include/ is that include
doesn't evaluate its argument and includef does. Nested includes are allowed.

12.3.2.5. def

A def form is used to define a function. The macros defun and de/macro
expand to a def form. If the function being defined is a lambda, nlambda or lexpr
then the compiler converts the lisp definition to a sequence of machine language
instructions. If the function being defined is a macro, then the compiler will
evaluate the definition, thus defining the macro withing the running Lisp com
piler. Furthermore, if the variable macros is set to a non nil value, then the
macro definition will also be translated to machine language and thus will be
defined when the object file is fasled in. The variable macros is set to t by
(declare (macros t)).

When a function or macro definition is compiled, macro expansion is done
whenever possible. If the compiler can determine that a form would be evaluated
if this function were interpreted then it will macro expand it. It will not macro
expand arguments to a nlambda unless the characteristics of the nlambda is known
(as is the case with cond). The map functions (map, mope, mapcar, and so on)
are expanded to a do statement. This allows the first argument to the map func
tion to be a lambda expression which references local variables of the function
being defined.

12.3.2.6. other forms
All other forms are simply stored in the object file and are evaluated when

the file is fasled in.

Printed: October 3. 1980

Liszt - the lisp compiler 12-4

12.4. Using the compiler
The previous section describes exactly what the compiler does with its input. Gen

erally you won't have to worry about all that detail as files which work interpreted will
work compiled. Following is a list of steps you should follow to insure that a file will
compile correctly.
(1) Make sure all macro definitions precede their use in functions or other macro

definitions. If you want the macros to be around when you fas/ in the object file
you should include this statement at the beginning of the file: (declare (macros t))

(2) Make sure all nlambdas are defined or declared before they are used. If the com
piler comes across a call to a function which has not been defined in the current
file, which does not currently have a function binding, and whose type has not
been declared then it will assume that the function needs its arguments evaluated
(i.e. it is a lambda or lexpr) and will generate code accordingly. This means that
you do not have to declare nlambda functions like status since they have an
nlambda function binding.

[3] Locate all variables which are used for communicating values between functions.
These variables must be declared special at the beginning of a file. In most cases
there won't be many special declarations but if you fail to declare a variable special
that should be, the compiled code could fail in mysterious ways. Let's look at a
common problem, assume that a file contains just these three lines:

(def aaa (lambda (glob Joe) (bbb loc)))
(def bbb (lambda (myloc) (add glob myloc)))
(def ccc (lambda (glob foe) (bbb loc)))

We can see that if we load in these two definitions then (aaa 3 4) is the same as
(add 3 4) and will give us 7. Suppose we compile the file containing these
definitions. When Liszt compiles aaa, it will assume that both glob and loc are
local variables and will allocate space on the temporary stack for their values when
aaa is called. Thus the values of the local variables glob and loc will not affect the
values of the symbols glob and Joe in the Lisp system. Now Liszt moves on to
function bbb. Myloc is assumed to be local. When it sees the add statement, it
find a reference to a variable called glob. This variable is not a local variable to this
function and therefore glob must refer to the value of the symbol glob. Liszt will
automatically declare glob to be special and it will print a warning to that effect.
Thus subsequent uses of glob will always refer to the symbol glob. Next Liszt
compiles ccc and treats glob as a special and loc as a local. When the object file is
fasf ed in, and (ccc 3 4) is evaluated, the symbol glob will be lambda bound to 3
bbb will be called and will return 7. However (aaa 3 4) will fail since when bbb is
called, glob will be unbound. What should be done here is to put
(declare (special glob) at the beginning of the file.

[4] Make sure that all calls to arg are within the lex pr whose arguments they reference.
If Joo is a compiled lexpr and it calls barthen bar cannot use arg to get at foo's
arguments. If both Joo and bar are interpreted this will work however. The macro
listify can be used to put all of some of a lexprs arguments in a list which then can
be passed to other functions.

Printed: October 3, 1980

Liszt - the lisp compiler 12-S

12.S. Compiler options

The compiler recognizes a number of options which are described below. The
options are typed anywhere on the command line preceded by a minus sign. The entire
command line is scanned and all options recorded before any action is taken. Thus
% liszt -mx foo
% liszt -m -x foo
% liszt foo -mx
are all equivalent. The meaning of the options are:

C The assembler language output of the compiler is commented. This is useful when
debugging the compiler and is not normally done since it slows down compilation.

i Co_mpile this program in interlisp compatibility mode. This is not implemented yet.
m Compile this program in Maclisp mode. The reader syntax will be changed to the

Maclisp syntax and a file of macro definitions will be loaded in (usually named
/usr/lib/lisp/machacks). This switch brings us sufficiently close to Maclisp to allow
us to compile Macsyma, a large Maclisp program. However Maclisp is a moving
target and we can't guarantee that this switch will allow you to compile any given
program.

o Select a different object file name. This is the only switch with an argument, which
must follow the switch. For example
% liszt foo -o xxx.o
will compile foo and into xxx.o instead of the default foo.o.

q Run in quiet mode. The names of functions being compiled and various "Note'"s
are not printed.

S Create an assembler language file only.
% Jiszt -S foo
will create the file assembler language file foo.s and will not attempt to assemble it.
If this option is not specified, the assembler language file will be put in the tem
porary disk area under a automatically generated name based on the lisp compiler's
process id. Then if there are no compilation errors, the assembler will be invoked
to assemble the file.

T Print the assembler language output on the standard output file. This is useful
when debugging the compiler.

u Run in UCI-Lisp mode. The character syntax is changed to that of UCI-Lisp and a
UCI-Lisp compatibility package of macros is read in.

w Suppress warning messages.

x Create an cross reference file.
% liszt -x foo
not only compiles foo into foo.o but also generates the file foo.x . The file foo.x is
lisp readable and lists for each function all functions which that function could call.
The program lxref reads one or more of these ".x" files and produces a human
readable cross reference listing.

12.6. transfer tables A transfer table is setup by fas/ when the object file is loaded in~
There is one entry in the transfer table for each function which is called in that object
file. The entry for a call to the function Joo has two parts whose contents are:
(1] function address - This will initially point to the internal function qlinker. It may

some time in the future point to the function Joo if certain conditions are satisfied
(more on this below).

Printed: October 3, 1980

Liszt - the lisp compiler 12-6

(2) function name - This is a pointer to the symbol Joo. This will be used by qlinker.

When a call is made to the function Joo the call will actually be made to the address in
the transfer table entry and will end up in the q/inker function. Qlinker will determine
that Joo was the function being called by locating the function name entry in the transfer
tablet. If the function being called is not compiled then qlinker just calls funca/1 to per
form the function call. If Joo is compiled and if (status trans/ink) is non nil, then qlinker
will modify the function address part of the transfer table to point directly to the f unc
tion Joo. Finally q/inker will call Joo directly . The next time a call is made to foo the call
will go directly to Joo and not through qlinker. This will result in a substantial speedup in
compiled code to compiled code transfers. A disadvantage is that no debugging informa
tion is left on the stack, so showstack and baktrace are useless. Another disadvantage is
that if you redefine a compiled function either through loading in a new version or
interactively defining it, then the old version may still be called from compiled code if
the fast linking described above has already been done. The solution to these problems
is to use (sstatus trans/ink value). If value is

nil All transfer tables will be cleared, i.e. all function addresses will be set to point to
qlinker. This means that the next time a function is called qlinker will be ca11ed and
will look at the current definition. Also, no fast links will be set up since
(status trans/ink) will be nil. The end result is that showsrack and baktrace will work
and the function definition at the time of cail wm always be used.

on This causes the lisp system to go through all transfer tables and set up fast Jinks
wherever possible. This is normally used after you have fasted in all of your files.
Furthermore since (status trans/ink) is not nil, qlinker will make new fast links if the
situation arises (which isn't likely unless you fas/ in another file).

t This or any other value not previously mentioned will just make (status trans/ink)
be non nil, and as a result fast links will be made by qlinker if the called function
is compiled.

12. 7. Fixnum functions

The compiler will generate inline arithmetic code for fixnum only functions. Such
functions include +, - , •, /, 1 + and 1 - . The code generated will be much faster than
using add, difference, etc. However it will only work if the arguments to and results of
the functions are fixnums. No type checking is done.

t Qlinker does this by tracing back the call stack until it finds the calls machine instruction which called it. The ad
dress field of the calls contains the address of the transfer table entry.

Printed: October 3, 1980

APPENDIX A

Index to FRANZ LISP Functions

(*array 's_name 's_type 'x_diml ... x_dimn) ... 2-1
(*break 'g_pred 'g_message) .. 4-2
(*catch 'ls tag g exp) ... 4-2
(*makhunk 'x_arg) ··2-11
(*rplacx 'x_ind 'h_hunk 'g_val) ... 2-16
(*throw 's tag 'g val) ... 4-9
(/ 'n_argl 'n_arg2) ... 3-7
(1 + 'n_arg) .. 3-7
(1- 'n _arg) ... 3-7
(< 'n arg 1 'n arg2) ... ~ .. 3-7
(> 'n=argl 'n=arg2) .. 3-8
(Divide 'i dividend 'i divisor) .. 3-3
(Emuldiv 'x factl 'x fact2 'x addn 'x divisor) .. .3-3
(• 'n arg) ... ~ ~ ~ ~ .. 3-7
(-=. 'g-::_argl 'g_arg2) ... 3-7

~ ~ :~ ==~:~ : ::::: ::::: ::::: :::: ::: :: :::::::::::::::: ::: :: : : : : : : : : :: : :: : : : :: :: :: :::::::::: ::::::::::::::::::::::::::::::::: :: : ::::::::::::::::::::t ~
(abs 'n _ arg) .. 3-1

~::;;~~~:ar~f ::=::::!:1
(add ['n_argl .. .}) ... 3-1
(addl 'n-arg) ... 3-1
(aexplode 's arg) ... : .. 2-1
(aexplodec 's arg) ... 2-l
(aexploden 's- arg) .. 2-1
(aIJocate 's _ type 'x _pages) .. 6-1
(alphalessp 's_argl 's_arg2) ... 2-2
(and [g_ argl .. .]) ... 4-1
(append 'l_argl 'l_arg2) .. 2-2
(appendl 'l argl 'g arg2) ... 2-2
(apply 'u_func 'l_args) ... 4-l
(arg ['x numb]) : ... 4-2
(argv •x-=:_argnumb) .. 6-1
(array s name s type x dim 1 ... x dim;) ... 2-3
(arraycall s_type'as_array 'x_indl-...) ··2-3
(arraydims 's name) .. 2-3
(arrayp 'g arg) .. 2-3
(arrayref ;;. name 'x ind) .. 2-3
(ascii x charnum) : .. :: .. 2-4
(a sin 'f x_arg) ··:···3-2
(assoc 'g_argl 'l_arg2) .. 2-4
(assq 'g_argl 'l_arg2) ... 2-4
(atan 'fx_argl 'fx_arg2) .. 3-2
(atom 'g_arg) .. 2-5
(baktrace) ... 6- l
(bed ad 's f uncname) ... 2-5
(bcdp 'g_arg) ... 2-5

A-1

----------- ------~

A-2

(bigp 'g_arg) ... 2-5
(boole 'x key 'x vl 'x v2 .. .) ... 3-2
(boundp 's_name) : .. _ ... 6-1
(break [g_message ['g_pred]]) .. 4-2
(c .. r 'lh_arg) ... 2-S
(catch g_exp [1s_tag]) ... 4-2
(cfasl 'st file 'st entry 's funcname ['st disc ['st library]]) ... 5-1
(chdir 'syath) .: : -:. -:. ... 6·2
(close 'p_port) ... 5-2
(comment (g_arg .. .]) .. 4-3
(concat ['stn argl ...]) ... 2-5
(cond [I clause] .. .]) .. : .. 4-3
(cons •g-=_argl 'g_arg2) ... 2-S
(copy 'g_arg) ... 2-6
(copysy~bol 's_arg 'g_pred) ... 2-6
(cos 'fx_angle) .. 3-2
(cprintf 'st_format 'xfst_val ['p_port]) ... 5-2
(cpyl 'xvt _ arg) .. 2-6
(cxr 'x ind 'h hunk) .. 2-6
(declare [g arg .. .)) ... 4-3
(def s name (s type I argl g exp 1 .. .)) ... ; ... 4-3
(defp.:Op ls_name g_val g_ind) .. 2-6·
(defun s name [s mtype] Is a,gl ~ expl ...) .. .4-3
(delete 'g val '1 llst ['x count]) ····=··2-6
(delq 'g val 'I list ['x count]) .. 2-6
(diff ['n - argl -:..]) -:. .. 3-2
(differen-ce ['n argl .. .J) .. 3-3
(do l_vrbs !_test g_expl .. .) ... 4-4
(do s_name g_init g_repeat g_test g_expl .. .) ... 4-5
(drain ['p_port]) ... 5-2
(dtpr 'g_ arg) ... 2-7
(dumplisp s_name) ... 6-2
(eq 'g_arg 1 'g_ arg2) .. 2-7
(equal 'g_argl 'g_arg2) ... 2-7
(err ['s value [nil]]) .. 4-5
(error f s_messagel ['s_message2]]) ... 4-S
(errset g expr [s flag]) ... 4-5
(eval 'g val) - .. 4-S
(eval-when J time g expl .. .) ... 6-2
(eval-when •=times g_expl ... g_expn) ... 4-6
(exec s argl .. .) ... 4-6
(exece 's fname ['I args ['I envir]]) ... 4-6
(exit ['x -code]) -:. ::. ... 6-2
(exp ·rx_=-arg) ···3-3
(explode 'g_arg) .. 2-8
(exp]odec 'g_ val) ... 2-8
(exploden 'g_ val) .. 2-8
(expt 'n_base 'n_power) ... 3-3
(fact 'x_arg) .. 3-3
(fake 'x addr) ... 6-2
(fasl 'st:name ['st_mapf ['g_warn]J)5-2
(ffas] 'st_file 'st_entry 'st_funcname ['st_discipline]) ... 5-3
(fillarray 's_array 'l_itms) .. 2-8
(fix 'n_arg) .. 3-3
(fixp 'g_arg) .. 3-3

Printed: October 2. 1980

A-3

(flatc 'g form ['x max}) ... 5-3
(flatsize-'g_f orm ['x_maxJ) .. 5-3
(float 'n arg) ... • .3-4
(floatp 'g_arg) ... 3-4
(fseek 'p_port 'x_offset 'x_flag) .. 5-3
(funcall 'u_func ['g_argl ...]) ... 4-6
(function u f unc) ... 4-7
(gc) - .. 6-2
(gcafter s_type) ... 6-3 -
(gensym 's_leader) .. 2-8
(get 'Is name 'g ind) .. 2-9
(get_pname 's_arg) ···2-9
(getaccess 'a_array) ... 2-9
(getaddress 's_entryl 's_binderl 'st_disciplinel [. n ... 2-9
(getaux 'a_array) ... 2-10
(getchar 's_arg 'x_index) .. 2-10
(getcharn 's arg 'x index) .. 2-10
(getd 's_arg) - .. 2-10
(getdelta 'a_array) ... 2-10
(getdisc 't_func) .. 4-7
(getentry 'y _funchd) ... 2- l 0
(getenv 's_name) .. 6-3
(getlength 'a array) .. 2-l 0
(go g_labexp) .. : 4-7
(greaterp ['n_argl ...]) .. 3-4
(haipart bx number x bits) ... 3-4
(hashtabstat) ~ ... 6-3
(haulong bx_number) ... 3-4
(hunk 'g val l ['g val2 ... 'g val n]) .. 2- l 0
(hunk size 'h arg)-............... :: .. 2-11
(implode 'l_arg) .. 2-11
(include s filename) ... 6-3
(includef 's filename) ... 6-3
(infile 's filename) ... 5-3
(intern 's arg) ... 2-1 l
(last 'l_arg) ... 2-1 l
(length 'I _arg) ... 2-1 l
Oessp ['n_argl ...]) ... 3-4
(list ['g argl ...]) ... 2-1 l
Ooad 's=filename ['st_map ['g_warn])) ... 5-4
(log 'f x arg) .. 3-4
Osh 'x val 'x amt) ... 3-4
(makereadtable ['s_flag]) ···5-4
(makhunk 'xl_arg) ... 2-1 l
(maknam 'l_arg) ... 2-12
(maknum 'g arg) .. 6-3
(makunbound 's_arg) ... : ... 2-12
(map 'u_func 'l_argl .. .> ... 4-7
(mapc 'u_func 'l_argl .. .) ... 4-7
(mapcan 'u_func 'l_argl ...) ... 4-7
(mapcar 'u_func 'l_argl ...) .. 4-7
(mapcon 'u_func 'l_argl ...) ... 4-8
(maplist 'u_func 'l_argl ...) ... 4-8
(marray 'g_data 's_access 'g_aux 'x_length 'x_delta) .. ; 2-12
(max 'n_argl ...) .. 3-5

Printed: October 2, 1980

-

A-4

(member 'g argl 'I arg2) .. 2-12
(memq 'g argl 'I arg2) ... 2-12
(mfunctio"ii entry-'s disc) ... 4-8
(min 'n argl ...) ... ~ ... 3-5

t:::: ::~ g a:~~)·::.:: ::::::::::::t ~
(mod 'i dividend 'i divisor) ... ; 3-5
(nconc 'l_argl 'l_arg2 l'l_arg3 .. .]) ... 2-12
(neons 'g_ arg) ... 2-13
(not 'g arg) ... 2-13
(nreverse 'I arg) ... 2-13
(nthelem 'n- argl 'I arg2) ... 2-13

i::;:;,r;:igj::::~:: ::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::~r
(nwritn ['p_port]) ... 5-4
(oblist) .. 4-8
(onep 'g_arg) ... 3-5
(opval 's_arg ['g_newval]) .. 6-3
(or [g argl ...]) .. 4-8
(outfiie 's filename) .. 5-4
(patom 'g=exr ('p_port])•. ···•·" ······•••··•···•·······•••·••·· ····································5-5
(plist 's _ name) ... 2-13
(plus ['n_arg ...]) .. 3-5
(plusp 'n _arg) ... 3-5
(pntJen 'xfs_arg) ... 5-5
(portp 'g_arg) .. 5-5
(pp [l_option] s_namel ...)' ... 5-5
(princ 'g_arg ['p _port]) ... 5-5
(print 'g_arg ['p_port]) ... 5-5
(probef 'st_file) ... 5-5
(process s_pgrm [s_frompipe s_topipe]) ... 6-4
(product ['n_argl ...]) ; _ ... 3-5
(prog l_vrbls g_expl ...) .. 4-8
(prog2 g_expl g_exp2 [g_exp3 ...]) ... 4-8
(progn g_expl [g_exp2 .. .]) .. 4-9
(progv 'I locv 'I initv g expl .. .) .. 4-9
(ptime). - - - ... 6-4
(ptr 'g_ arg) ... 2-l 3
(putaccess 'a_array 's_func) ... 2-13
(putaux 'a_array 'g_aux) .. 2-13
(putd 's_name 'u_func) .. 4-9
(putdelta 'a array 'x delta) ... 2-14
(putdisc 'y_func 's_discipline) .. 2-14
(put)ength 'a_array 'x_length) .. -................ 2-14
(putprop 'Is_ name 'g_ val 'g_ind) .. 2- l 4
(quote g_ arg) ···············'.·····--.. ··2-14
(quotient ['n arg] .. .]) .. 3-6
(random ['x limit]) .. 3-6
(ratom ['p _port ['g_eof1]) ... 5-6
(read ['p _port ['g_eof]]) ... 5-6
(readc ['p _port ['g_eof]]) .. 5-6
(read list 'I arg) ... 5-6
(remainder'i dividend 'i divisor) .. 3-6
(rematonl 's_arg) --:-. .. 2-14

Printed: October 2, 1980

A-5

(remob 's_symbol) .. 2-14
(remprop 'ls_name 'g_ind) ... 2-15
(replace 'g_argl 'g_arg2) .. 2-J 5
(reset) ... 6-4
(resetio) .. 5-6
(retbrk ['x level]) ... 6-4
(return ['g-val]) .. 4-9
(reverse 'l arg) .. 2-15
(rot 'x val-'x amt) .. 3-6
(rplaca'lh_arg1 'g_arg2) ... 2-16
(rplacd 'lh argl 'g arg2) ... 2-16
(rplacx 'x]nd 'h_hunk 'g_val) ... 2-16
(sassoc 'g argl 'I arg2 'sl func) ... 2-16
(sassq 'g argl 'I arg2 'sl func) .. 2-16
(segment-'s type- 'x size) ... 6-4
(set 's argl 'g arg2) ... 2-l 6
(setarg 'x argnum 'g val) ···4-9
(setplist 's_atm 'l_plist) .. 2-17
(setq s atml 'g vall [s atm2 'g val2]) .. 2-17
(setsyntax 's_symbol 'sx_code ['ls_func]) ... 5-6
(shell) ... : 6-5
(showstack) .. 6-5
(signal 'x sign um 's name) ... 6-5

~::::rx,::~~/.::::::::~::t~
(small-segment 's type 'x cells) .. 6-5
(sqrt 'fx_arg) ~ ~ ... 3-6
(sstatusappendmap g val) .. 6-6
(sstatusautomatic-reset g val) ···6·6
(sstatuschainatom g val) ~ ... 6-6
(sstatusdun1pcore g val) ... 6-6
(sstatusdumpmode; val) .. 6-6
(sstatusfeature g val) ... 6-6
(sstatusignoreeof-g val) ... 6-7
(sstatusnofeature g-val) ... 6-7
(sstatustranslink g - val) ... 6-7
(sstatusuctolc g_ val) ... 6-7
(sstatus g type g val) ... 6-5
(statuscti~e) --:. ... 6-7
(statusfeature g val) .. 6-8 .
(statusfeatures) ~ ... 6-8
(statusisatty) .. 6-8
(statuslocaltime) .. 6-8
(statussyntax s char) ... 6-8
(statusundeffunc) ... 6-8
(statusversion) 6-8
(status g code) .. · 6-7
(stringp 'g arg) ... 2-l 7

~::~ ;.~ _af:_~1 • ~ •. ~ j" j ·::: ::: ::: : : :: : :: : ::: : ::: : : :: : : : : : :: : :: : : : :: :::::::: :: t:
(symbolp- 'g_arg) ... 2-17
(svscaJJ 'x index ['xst argl ...]) ... 6-8
(t;rpr ['p_port]) ~ ... 5-6
(terpri ['p _port]) ... 5-6
(throw 'g_val [s_tag]) ... 4-9

Printed: October 2. 1980

A-6

(times ('n_argl ...)) ... 3-6
(top-level) ... 6-9
(tyi ['p _port]) ... 5-7
(tyipeek ('p port]) .. 5-7
(tyo 'x_char-('p_port]) .. 5-7
(type 'g arg) ... 2- l 7
(typep 'g arg) ... 2-l 7
(uconcat ['s_argl ...]) .. 2-17

~;=~~~:e ;~~ ~~.~!.:::: ::: : : :: : : : ::::: ::::::::: ::::: :: :::::: :: : :: :: :: :: : : ::: : : : : : : :: : : : ::: :: : : : : : : : ::: :: : : :::::::::: ::: : : :: :::: :: : : : : : :: :: :::::::::t ~ 7

(zerop 'g_arg) .. 3-7

Printed: October 2, 1980

APPENDIX B

Special Symbols

The values of these symbols have a predefined meaning. Some values are counters while
others are simply flags whose value the user can change to affect the operation of lisp system.
In all cases, only the value cell of the symbol is important, the function cell is not. The value
of some of the symbols (like ER%misc) are functions - what this means is that the value cell of
those symbols either contains a lambda expression, a binary object, or symbol with. a function
binding.

The values of the special symbols are:

$gccount$ - The number of garbage collections which have occurred.

Sgcprint - If bound to a non nil value, then after each garbage collection and subsequent
storage allocation a summary of storage allocation will be printed.

ER%all - The function which is the error handler for all errors {see §10)

ER%brk - The function which is the handler for the error signal generated by the evaluation
of the break function (see §10).

ER11/oerr - The function which is the handler for the error signal generated by the evaluation
of the err function (see §IO).

• ER%misc - The function which is the handler of the error signal generated by one of the
unclassified errors (see §10). Most errors are unclassified at this point.

ER%tpl - The function which is the handler to be called when an error has occurred which
has not been handled (see §10).

ER%undef - The function which is the handler for the error signal generated when a call to an
undefined function is made.

"w - When bound to a non nil value this will prevent output to the standard output port
(poport) from reaching the standard output (usually a terminal). Note that Aw is a two
character symbol and should not be confused with AW which is how we would denote
control-w. The value of Aw is checked when the standard output buffer is flushed
which occurs after a terpr, drain or when the buff er overflows. This is most useful in
conjunction with ptport described below. System error handlers rebind Aw to nil when
they are invoked to assure that error messages are not lost. (This was introduced for
Maclisp compatibility).

defmacro-for-compiling - The has an effect during compilation. If non-nil it causes macros
defined by def macro to be compiled and included in the object file.

environment - The UNIX environment in assoc list form.

errlist - When a reset is done, the value of errlist is saved away and control is thrown to the
top level. Eva/ is then mapped over the saved away value of this list.

B-1

B-2

errport - This port is initially bound to the standard error file.

ibase - This is the input radix used by the lisp reader. It may be either eight or ten. Numbers
followed by a decimal point are assumed to be decimal regardless of what ibase is.

line) - The line length used by the pretty printer, pp. This should be used by print but it is
not at this time.

nil - This symbol represents the null list and thus can be written (). Its value is always nil.
Any attempt to change the value will result in an error.

piport - Initially bound to the standard input (usually the keyboard). A read with no argu
ments reads from piport.

poport - Initially bound to the standard output (usually the terminal console). A print with no
second argument writes to poport. See also: ~w and ptport.

ptport - Initially bound to nil. If bound to a port, then all output sent to the standard output
will also be sent to this port as long as this port is not also the standard output (as this
would cause a loop). Note that ptport will not get a copy of whatever is sent to poport
if poport is not bound to the standard output.

rcadtable - ';he value of this is the current readtable. It is an array bu• yo:.1 should NOT try to
change the value of the elements of the array using the array functions. This is
because the readtable is an array of bytes and the smallest unit the array functions work
with is a full word (4 bytes). You can use setsyntax to change the values and (status
syntax .. .J to read the values.

t - This symbol always has the value t. It is possible to change the value of this symbol for
short periods of time but you are strongly advised against it.

top-level - In a lisp system without /usr/lib/lisp/toplevel.l loaded, after a reset is done, the lisp
system will funca/1 the value of top-level if it is non nil. This provides a way for the
user to introduce his own top level interpreter. When /usr/lib/lisp/toplevel.l is loaded,
it sets top-level to franz-top-level and changes the reset function so that once franz
top-level starts, it cannot be replaced by changing top-level. Franz-top-level does pro
vide a way of changing the top level however, and that is through user-top-level.

user-top-level - If this is bound then after a reset, the value of this variable will be fancal/ed.

Printed: October 3, 1980

APPENDIX c·

Short Subjects.

The Garbage Collector
The garbage collector is invoked automatically whenever a collectable data type runs out.

All data types are collectable except strings and atoms are not. After a garbage collection
finishes, the collector will call the function gcafrer which should be a lambda of one argument.
The argument passed to gcafter is the name of the data type which ran out and caused the gar
bage collection. It is gcafter's responsibility to allocate more pages of free space. The default
gcafter makes its decision based on the percentage of space still in use after the garbage collec
tion. If there is a large percentage of space still in use, gcafter allocates a larger amount of free
space than if only a small percentage of space is still in use. The default gcafter will also print a
summary of the space in use if the variable $gcprint is non nil. The summary always includes
the state of the list and -fixnum space and will include another type if it caused the garbage col
lection. The type which caused the garbage collection is preceded by an asterisk.

Debugging
There are two built-in functions to help you debug your programs: baktrace and showstack.

When an error occurs (or when you type the interrupt character), you will be left at a break
level with the state of the computation frozen in the stack. At this point, calling the function
showstack will cause the contents of the lisp evaluation stack to be printed in reverse chronolog
ical order (most recent first). When the programs you are running are interpreted or traced,
the output of showstack can be very verbose. The function baktrace prints a summary of what
showstack prints. That is, if showstack would print a list, baktrace would only print the first ele
ment of the list. If you are running compiled code with the (status trans/ink) non nil, then fast
links are being made. In this case, there is not enough information on the stack for showstack
and baktrace. Thus, if you are debugging compiled code you should probably do
(sstatus trans/ink ni/).

If the contents of the stack don't tell you enough about your problem, the next thing you
may want to try is to run your program with certain functions traced. You can direct the trace
package to stop program execution when it enters a function, allowing you to examine the con
tents of variables or call other functions. The trace package is documented in §1 I.

It is also possible to single step the evaluator and to look at stack frames within lisp. The
programs which take advantage of these things are in /usr/lib/lisp and are called step and fixit.
They are maintained by the people at Carnegie-Mellon (currently Lars Ericson is in charge of
the code there). There are documentation files for these programs in /usr/lib/lisp as well. We
run compiled lisp almost exclusively at Berkeley. Sites which run a mostly interpreted code
should examine these files.

C-1

C-2

The Interpreter's Top Level
The top level interpreter for Franz, named franz-top-level is defined in

/usr/lib/lisp/toplevel.l It is given control when the lisp system starts up because the variable
top-level is bound to the symbol franz-top-level. The first action franz-top-level takes is to print
out the name of the current version of the lisp system. Then it loads the file .lisprc from the
HOME directory of the person invoking the lisp system if that file exists. The .lisprc file allows
you to set up your own defaults, read in files, set up autoloading or anything else you might
want to do to personalize the lisp system. Next, the top level goes into a prompt-read-eval
print loop. Each time around the loop, before printing the prompt it checks if the variable
user-top-level is bound. If so, then the value of user-top-level will be funcalled. This provides
a convenient way for a user to introduce his own top level (Liszt, the lisp compiler, is an exam
ple of a program which uses this). If the user types a ~D (which is the end of file character),
and the standard input is not from a keyboard, the lisp system will exit. If the standard input
is a keyboard and if the value of (status ignoreeof) is nil, the lisp system will also exit. Other
wise the end of file will be ignored. When a reset is done the current value of errlist is saved
away and control is thrown back up to the top level where eval is mapped over the saved value
of err/isl.

	Overture
	Score
	1. FRANZ LISP
	2. Data Structure Access
	3. Arithmetic Functions
	4. Special Functions
	5. Input/Output
	6. System Functions
	7. The Reader
	8. Functions and Macros
	9. Arrays
	10. Exception Handling
	11. The Joseph Lister Trace Package
	12. Liszt - the lisp compiler
	Appendices
	A. Index to FRANZ LISP Functions
	B. Special Symbols
	C. Short Subjects

