
Harvard University
Applied Math 110

An Introduction To ED110
In order to make LISP a reasonably easy-to use language, there

has to be some capacity for editing the deffinitions of functions. One
method has already been presented to you; the user can pretty-print his
functions out to a file, TECO that file to make the necessary correc-
tions, and then LOAD that file to reconstruct the functions in L110.
This method is convenient in one sense: you have already learned how to
deal with the quirks of TECO to some extent, so you are not forced to
learn a whole new language to edit your functions. But it is not so
pleasent in several other ways. Ffirst, it is expensive from an effi-
ciency point of view, since there is all the overhead of the translation
of list structure to text in the Pretty-Print, followed by the transla-
tion back to list structure in the LOAD. Second, it is inconvenient for
little changes that you might want to make and unmake rapidly, such as
the insertion and deletion of calls on BREAK.

There is another way, and this is what ED110 is about. How-
ever, any curiosity or exploration on your part of our ED110 is totally
optional; this is just for those who want to play a little, or who are
dissatisfied with the TECO procedure. The principle is, why not change
the list structure of the functions directly, with such destructive mod-
ifying fnctions as RPLACA and RPLACD, and edit the functions that way?

For example, if we wanted to change the function foo from a NLAMBDA to a
LAMBDA, we could execute the following command:
->(RPLACA(GETD ’FOO) ’LAMBDA)
This technique works fine if we are trying to make a modification to the
beginning of the function, but gets harder and harder the further
"inside" the structure that the modification gets. So, we need some
help, some other functions to make use of RPLACA and RPLACD on the list
structure of function definitions easy. That is exactly what ED110 is.

To use ED110 you utter to the Harvard Shell:
@RUn <program> ED110<cr>
and you will find yourself with L110 with the edit functions pre-loaded.
Alternatively, you can (LOAD ’EDIT T) from within L110 to obtain the
same effects.

Note: This paper is only an introduction to ED110 and only
describes a few of the functions that are available. If it seems to you
that doing something with these is not convenient as it ought to be, you
are probably right, and should go on to look at the more complete "A
Users Guide toe ED110 Lisp".

Initilialization
To prepare the editor to edit a function (it only does one at a

time), you use the function EF for Edit Function. It takes one argument
that should evaluate to an atom, which is the name of the function which
you want edited. For example: ->(EF ’FOO) will get the editor ready to
edit the function binding of FOO.

Type-Out
To see where you are at any point in an editing process, you

should yse the commands (TA) for Type-All, which takes no arguments, of
(Z) for Zee where you are, which doesn’t take any argument either. A TA
will pretty print a little piece ot the function, specifically, the

-2-

smallest sublist which contains the pointer (the pretty printing goes to
POPORT, just like PP, so make sure POPORT is NIL). Yes, Virginia, sort
of like TECO, ED110 has a pointer! To help you keep track of it, the
above ffunctions type-out commands indicate its position with a little
"*".

Now remember, ED110 is editing the list structure, not the
text. One difference is the it can’t deal with the individual charac-
ters within an atom. The pointer can’t be located between the charac-
ters of "SETQ", for example, and therefore you can’t change those char-
acters one by one. Since "SETQ" is represented in the list structure as
one pointer, the atom SETQ acts like one unit to ED110. This kind of
unit is called a LEXEME. So, the ED110 pointer is located between two
lexemes, rather than between two characters.

Transportation
To move the pointer over lexeme, there is the C command, for

Climb. It takes one numeric argument, which can either be positive or
negative. It moves the pointer over that many lexemes, either forward
or backwards. For example: ->(TA)
(LAMBDA (X Y Z)(COND ((NULL * X) Y(T Z)))
->(C 1)
1
->(TA)
(LAMBDA (X Y Z)(COND ((NULL X *) Y)(T Z)))
->(C 1)
1
->(TA)
(LAMBDA (X Y Z)(COND ((NULL X) * Y)(T Z))) and so forth.

In case you want to move the pointer a fair bit, you should use
the S command, for Search. It takes one argument, which should evalu-
ate to an atom, and scans the buffer starting at the present position
and going to the right, and puts the pointer after the next occurance of
the atom, if there is one. An optional second argument, an integer,
allows you to search for the n’th occurance all at once. For example,
->(TA)
(LAMBDA (X Y Z)(* COND ((NULL X) Y)(T Z)))
->(S ’Y)
T
->(TA)
(LAMBDA (X Y Z)(COND ((NULL X) Y *)(T Z)))
->(S ’X -2)
T
->(TA) (LAMBDA (X * Y Z)(COND ((NULL X) Y)(T Z)))

Of course, the only value of being able to move the pointer
around is to be able to do something once it is there.

Insertion
To insert an atom, or nummber, or list, you use the I command,

for Insert. It takes one argument, and inserts it at the present posi-
tion of the pointer, and leaves the pointer after the insertion, like
TECO. For example, ->(TA)
(LAMBDA (X Y Z)(* COND ((NULL X) Y)(T Z)))
->(I ’ZORT)
T
->(TA) (LAMBDA (x ZORT * Z)(COND ((NULL X) Y)(T Z)))

Deletions

-3-

To delete an element of a list, you use the D command, and what
it stands for is pretty clear. It deletes the element of the list which
immediately follows the present position of the pointer, whatever that
element is (NOT just the next lexeme!). If the pointer is before a ")",
at the the end of a list, it does nothing. For example: ->(TA)
(LAMBDA (X ZORT * Y Z)(COND ((NULL X) Y)(T Z)))
->(D)
T
->(TA) (LAMBDA (X ZORT * Z)(COND ((NULL X Y)(T Z)))
->(C 2)
2
->(TA)
(LAMBDA (X ZORT) * (COND ((NULL X)(T Z)))
->(D)
(LAMBDA (X ZORT Z) *)

Let that last example be a warning to you: delete can delete
big chunks all at once, and if they are gone, they are gone for good.

Well, that ought to be enough to get you started in ED110. The
complete write-up is in A USER’S GUIDE TO ED110 will tell you about lots
of otherr nifty functions, of course. The rest of this will be some
disjointed, helpful(?) comments.

Remember that ED110 only edits the list structure of the func-
tion. Don’t expect it to correct any printed out versions that you may
have around. When you are done editing with ED110, you should save by
pretty-printing to a file, using update (UNIX L110 only) or PPF defined
in the ED110 package (see description).

Commands to ED110 and regular LISP functions can be inter-
spersed at will, by the way. So, if you are debugging a function, you
can EF it, stick in a (BREAK), and then try it. Then, you can mmake
other changes, and try it again. You only have to EF once.

Although "(" and ")" are lexemes, they can’t be inserted or
deleted as such. Indeed, what would it mean to delete one of a matching
pair of parens? The editor does have commands to deal with parens, but
look them up in the GUIDE

Lyle Ramshaw (now at Stanford) wrote ED110 when taking AM110 as
a Sophmore at Harvard. This revised introduction is from the Ramshaw
original, edited by Forrest Howard.

