
A User’s Guide to ED110
Lyle Ramshaw
March, 1974

Revision by Forrest Howard, June, 1975

-2-

INTRODUCTION
ED110 is and in-core editor for the Harvard instructional Lisp system
L110. It allows the user to modify internal pieces of list structure
conveniently, and thus provides an alternative to the tedious Pretty-
Print, TECO, and LOAD scenario in debugging, when it is essential to be
able to insert and remove BREAKs easily. ED110 is esentially a civi-
lized way of organizing the use of RPLACA and RPLACD This particular
editor was inspired by Ben Wegbreit, and several of the major design
decisions were made with his guidance. This documentation describes how
I hope ED110 to perform, but I make the usual disclaimer about possible
bugs. ED110 is written in LISP, and uses standard syntax for command
input. Thus, the full power of the interpreter is always available for
programmed editing, temporary storage, etc. The ED110 commands are LISP
functions with short print strings, primarily for convenience during
type-in. To avoid name conflicts with user’s names, the other ED110
symbols are atoms whose print strings begin with a "*". The user is
cautioned to avoid rebinding the ED110 command names, and to generally
eschew the use of symbols begining with *. To gain the benefits of easy
functional composition, and of a clear convention, all ED110 functions
are LAMBDAs and hence take their arguments EVALed. The user is, of
course, invited to define his own NLAMBDA version of any of the com-
mands, if he desires the extra convenience. For the purposes of ED110,
always think of NIL as spelled "()" rathen than "NIL", when it occurs as
an element of some list. The conditions where this distinction is
important are noted in the following discussions. The ED110 functions
are written to tolerate the presence of non-null, non-atomic CDRs in the
buffer, even though many of the AUXFNS are not that polite. Howeverr,
there are no commands provided for manipulating them. Such facilities
could easily be added. ED110 will also tolerate a buffer which contains
dotted pairs with several fathers, i.e., buffers which include list
structure sharing. It does insist, however, that the buffer be non-cir-
cular.

-3-

DEFINIONS
At any point in time, ED110 is editing a particular piece of list struc-
ture, called the BUFFER. An ENTRY of the buffer is either any element
of the buffer, or any element of any element of the bufffer, etc; i.e.,
it is the data pointed to by the CAR of some dotted pair in the buffer.
A SUBLIST of the buffer is either the entire bufffer, or a non-atomic
entry of the buffer, or a null entry of the buffer; equivalently, it is
the list structure associated with the print string between any two
matching parenteses; recall that NIL is spelled "()". A CHUNK of the
buffer is any string of zero or more elements of some sublist of the
buffer. The site of active editing in the buffer is called the POINTER,
and can be located between any two adjacent elements of any sublist, or
before the first element of any sublist, or after the last element of
any sublist, or in the middle of a null sublist, i.e. between the "("
and ")" of NIL. Equivalently, the pointer can be located between any
two adjacent lexemes in the print string of the buffer. When the buffer
is typed out, an asterix is inserted at the position of the pointer, to
make locating the pointer easier. For example,
(A B (C ((D) * E)) F)
would be the result of typing out a buffer which contained the list:
(A B (C ((D)E)) F),
when the pointer was located between the (D) and E. The CURRENT LIST
is the smallest sublist of the buffer which contains the pointer. For
instance, in the above example, the current list is ((D) E).

The Sharing Guarantee

The editing functions are implemented destructively in ED110. (Conve-
nient facilities are provided for copying when desirable.) In addition,
any insertions or deletions at the beginning of the buffer are performed
so that the root dotted pair of the initial buffer will be the root dot-
ted pair of the result. Hence, if there are multiple pointers to a par-
ticular list, which is the present ED110 buffer, the editing of that
list changes it from everyone’s point of view. In more sophisticated
language, the ED110 buffer is an R-value, not an L-value. This guaran-
tee generates several important issues of a fairly technical nature,
which are discussed below: The Atomic Buffer Issue For convenience,
ED110 allows the contents of the buffer to temporarily, but never perma-
nently, degenerate to an atom, usually NIL. In view of the sharing
guarantee, this degeneration, is, of course, "impossible"; i.e., it can-
not be actually implemented with reasonable cost. Hence, the editor
merely simulates the condition of an atomic buffer during type-out com-
mands, selection commands, etc. A delete command which would resullt in
an atomic buffer merely places the editor in this simulating state, and
is performed as if the buffer really had been atomic.

Thus, the buffer never degenerates to an atom. However, it will behave
as if atomic; only external pointers to the buffer will notice the dif-
ference, and they will see the buffer’s last non-atomic contents.
Therefore: the above Sharing Guarantee holds only between two points
where the buffer is non-atomic. In particular, it is impossible to
change a non-null buffer to NIL, or vice versa, using ED110 commands.
The Sharing Algorithms Consider first the issue of inserting a list into
the current list at the location of the pointer. Note that, if the
pointer is not at the beginning of the buffer, i.e, immediatly after the
first "(", it is possible to effect this insertion by CONC’ing the
insertion with the rest of the current list, and then RPLAC’ing a
pointer to the root of the insertion into the preceding dotted pair, in
the appropriate half. This is the algorithm used by ED110, and the
behavior in this case will be taken as the standard for other, more
questionable cases. If the pointer is located at the beginning of the

-4-

buffer, however, it is necessary, in keeping with the Sharing Guarantee,
to interchange the roles of the root dotted pair of the insertion and
the root dotted pair of the initial buffer, and perform CONC. If the
insertion and the initial buffer do not share some of the same dotted
pairs, the above method produces a standard result, and is used in
ED110. However, if there is sharing going on, funny things can happen.
For example, consider the implementation of the comands (B)(I (XA)). If
the above algorithm were applied, an unnecessary and non-standard circu-
larity would result, due to the fact that the CAR of the insertion EQ’s
the initial buffer’s root. When the roles of the roots are switched,
this sharing becomes circularity. To allow commands of the above ilk to
operate successfully, ED110 climbs the insertion and handles specially
all pointers to the root dotted pair of the initial buffer. This is
expensive, but convenient, and consistent. Thus, the above commands
will produce a standard result, a buffer with sharing, but without cir-
cularity. Of course, the situation has a certain symmetry. A non-stan-
dard result result would also insue if the initial buffer contained a
pointer to the root dotted pair of the insertion. However, ED110 makes
no special effort to handle this case, since both the standard and the
non-standard outcomes are circular, and hence, illegal in ED110. If
desirable, this type of special handling could be easily added. It was
left out only to avoid the resulting inefficiency. Note that precisely
similar issues arise in the implementation of the (XD) command; they are
handled in the analogous fashion.

The Commands of ED110
Throughout the following command descriptions, small letters standing
alone will be used to reepresent arbitrary lists EVALing to an object
on the given kind. The letters i, j, and k will stand for integers; s
represents an arbitrary list; m represents an atom. Note also that all
atom names are shown as upper case for lexographical clarity. However,
like all system defined L110 atoms, they are lower case (normal type in
mode). Examples of commands’ actions will be given in the following
format: each will take two successive lines. The first line’s left half
will be the state of the buffer before the command’s execution; its
right half will be the text of the command. The next line will contain
the resulting state of the buffer and the value returned by the command
in its left and right parts, respectively.

-5-

The Pointer Transportation Commands
(W l), Walk

This command walks the pointer past k elements of the current
list, i.e., makes the pointer follow k CDRs. If k<0, the
pointer is walked backwards. (W 0) is a no-op. An attempt to
walk the pointer off an end of the current list walks the
pointer as far as possible in the desired direction. Thus, (W
1000000000) will always bring the pointer to the end of the
current list. Walk returns as value the number of successful
steps walked. If the argument is defaulted or non-numeric, (W
1) is assumed. Examples:
(A * (A B) C D) (W 2)
(A (A B) C * D) 2

(A B C * D) (W -5)
(* A B C D) -3

(J k), Jump This command jumps the pointer down k levels of list struc-
ture, i.e., makes the pointer follow k CARs. In the printout,
this corresponds too moving the pointer past k left parenthe-
ses. Note that the pointer must be positioned immediatly
before a left paren in order to make a (J 1) command success-
ful. If k<0, the pointer is pulled out of levels of list
structure. If, at any point in this process, the pointer is
not immediatly after a left paren, it is walked backwards in
the current list until it is. (J 0) is a no-op. Attempts to
jump to far into or out of the buffer will jump the pointer as
far as possible. Thus, a (J -10000000) will bring the pointer
back to the beginning of the buffer. Jump returns as value the
number of successful levels jumped. If the argument is
defaulted or non-numeric, (J 1) is assumed. Examples:
(A ((A B (* (((C D) E)))))) (J 2)
(A ((A B (((* (C D) E)))))) 2

(A * ((A B ((C D) E)))) (J 3)
(A ((* A B ((C D) E))) 2

(((((B) C) ((B (* (E F))))))) (J -4)
((* (A ((B) C)((D ((E F))))))) -4

(C k), Climb This is a convenience command which, by calling walk and
jump, moves the pointer over k lexemes of the print string of
the buffer. If k>0, the climbing is to the right; if k<0, to
the left. (C 0) is a no-op. An attempt to climb of the far
end of the buffer will move the pointer as far as possible in
the desired direction. Climb returns as value the number of
lexemes successfully climbed. If k is defaulted or non-
numeric, (C 1) is assumed. Remember that, for the purposes of
ED110, NIL is always spelled "()". Hence, a NIL in the buffer
counts as two lexemes to be climbed over, not one. Examples:
((A Nil (((C D) E * F)))) (C -3)
((A NIL (((C * D) E F)))) -3
((* A NIL ((C D) E))) (C 2)
((A (*) ((C D) E))) 2

((A (*) ((C D) E))) (C -5)
(* (A NIL ((C D) E))) -3

-6-

The Insertion Commands
(I s) Insert This command takes one argument, an arbitrary piece of list

structure, and inserts it as an element into the current list,
at the position of the pointer; the pointer is left after the
inserted element. Insert uses one new dotted pair to hold the
extra element of the current list. The value returned is
always T. Example:
(A B (C) * D E) (I ’(F H))
(A B (C) (F H) * D E) T

(IC s) Insert Copied (LAMBDA(s)(I (COPY s]
(IB s) Insert leaving Pointer Before This command performs the same

function as Insert, but leaves the pointer before the new ele-
ment of the current list. It returns T.
Examples:
(* A B C) (IB ’s)
(* S A B C) T

(IBC s) Insert leaving pointer before, Copied. (LAMBDA (s)(IB (COPY s]

(IL s) Insert List This command takes one argument, an arbitrary list,
s, and inserts the elements of s into the current list at the
position of the pointer. It leaves the pointer after the newly
inserted elements. The current list’s length will increase by
exactly the (LENGTH s). No new Dotted Pairs are used; the
value returned is T. Note the difference between (I s) and (IL
s) as follows: Examples:
(A B (C) * D E) (IL ’(F H))
(A B (C) F H * E) T

(ILC s) Insert List Copied
(ILB s) Insert List leaving pointer Before
(ILBC s) Insert List leaving pointer Before, Copied.

-7-

Selection, Deletion, and Typing Commands.
The ED110 commands which deal with chunks of the buffer take
three integer arguments, (? i j k); the chunk of the list
structure refered to is that from where the pointer would be
after execution of a (J k)(W i), to where it would be after
the execution of a (J k)(W j). If these arguments are ommitted
or non-numeric, they are defaulted to i=1, j=0, and k=0. For
examples of the use of this argument structure, which might
seem obscure, but is, in fact, very convenient, see the fol-
lowing paragraph.

(X i j k) X-select This command takes the three chunk-selecting argu-
ments, and returns as value the selected chunk. The top level
dotted pairs in the returned value are all new, since the
selected chunk is not necessarily a complete sublist of the
buffer. The X-select command neither modifies the buffer nor
moves the pointer. Examples:
(A B C (D E) * F G) (X)
(A B C (D E) * F G) (F)

(A B C (D E) * F G) (X 2)
(A B C (D E) * F G) (F G)

(A B C (D E) * F G) (X -2)
(A B C (D E) * F G) (C (D E))

(A B C (D E) * F G) (X -1 5)
(A B C (D E) * F G) ((D E) F G)

(A B C (D E) * F G) (X -17 -2)
(A B C (D E) * F G) (A B)

(A (* (B C D) E (F)) G) (X 0 2 1)
(A (* (B C D) E (F)) G) (B C)

(A (* (B C D) E (F)) G) (X 0 -3 -1)
(A (* (B C D) E (F)) G) (A)

-8-

(XC i j k) X-select, Copied (LAMBDA(i j k)(COPY(X i j k]
(XA) X-select All This command takes no arguments, and returns as

value the present contents of the buffer.
(XAC) X-select All, Copied
(T i j k) Type

This command takes the three chunk-selecting arguments, and
types out the selected chunk of the buffer using PPL, a
pretty-printing routine described below. The output goes to
POPORT. If the selected chunk contains the present position of
the pointer, it prints the present value of the atom *EPTR at
that place in the type-out. *EDTR is initially set to "*".
Type never modifies the buffer, or moves the pointer; it
returns the value T. Example:
(A (B * C) D) (T -1 1 -1)
(A (B * C) D) "(A (B*C))";T

(A B C D E * F G) (T 1)
(A B C D E * F G) "(* F)";T

(A B C D E * F G) (T -2 -3)
(A B C D E * F G) "(C)"; T

(TA) Type All This command takes no arguments, and types the contents of
the buffer, with the pointer indicated as in Type. The buffer
contents and pointer position are unchanged; the value returned
is T

(D i j k) Delete This command takes the three chunk-selecting arguments,
and deletes the selected chunk of the buffer, leaving the
pointer where the chunk used to be. (See the note on the
Atomic Buffer Issue, page 4). Examples:
(A B (* C D E) F (G)) H) (D 2)
(A B (* (G)) H) T

(A B (* (C D E) F (G)) H) (D 0 1 -1)
(A B * H) T

(A B (* (C D E) F (G)) H) (D -2 2 1)
(A B ((* E) F (G)) H) T

(DA) Delete All This command deletes the entire buffer in the nse
described on page 4, and returns T.

(XD i j k) X-select and Delete This command takes the three chunk-
selecting arguments, and deletes the selected chunk from the
buffer, leaving the pointer where the chunk used to be. It
returns the deleted chunk as a value. No new dtprs are used.
Examples:
(A (B) C * D) (XD -2 2)
(A *) ((B) C D)

(A * (B) C D) (XD 0 1 1)
(A (*) C D) (B)

(XDC i j k) X-select and Delete Copied (LAMBDA(i j k)(COPY(XD i j k]
(XDA) X-select and Delete All
(XDAC) X-select and Delete All Copied

-9-

Pattern-Matching and Search Commands

The pattern-matching commands are predicates which examine the
list structure of the buffer immediatelyy to the right of the
pointer, and test if it matches the supplied pattern, s. The
"matching" is in the sense of a special version of EQUAL, dis-
cussed below. These commands do not move the pointer, or alter
the buffer.

(V s) equiValent to entry This command examines the element of the cur-
rent list immediately after the pointer, and tests if it
matches s. If so, T is returned; else, NIL. If the pointer is
immediately before a ")", it returns NIL. Examples:
(A B * (C D) E F) (V ’(C D))
(A B * (C D) E F) T

(A B * (C) D) (V ’C)
(A B * (C) D) NIL

(VF s) equiValent to chunk, First This command examines the next (LENGTH
s) elements of the current list, and tests if they match the
elements of s. It also insists that the pointer be located at
the beginning of the current list, i.e., that the matched chunk
be an initial segment of the current list. Note that (VF NIL)
is a predicate which returns T iff the pointer is immediately
after a left paren. Examples:
(* A B C D) (VF ’(A B))
(* A B C D) T

(A B * C D) (VF ’(C D))
(A B * C D) NIL

(VL s) equiValent to chunk, Last This command examines the next (LENGTH
s) elements of the current list, and tests if they match the
elements of s. It also insists that the last element of the
current list be the one to atch the last element of s, i.e.,
that the matched chunk be the terminal segment of the current
list. Note that (VL NIL) is a predicate which tests if
the pointer is immediatelyy before a right paren. Example:
(A B * C D) (VL ’(C))
(A B * C D) NIL

(A B * C D) (VL ’(C D))
(A B * C D) T

(VM s) equiValent to chunk, Middle This command looks at the next
(LENGTH s) elements of the current list, and tests if they
match the elements of s. It makes no extra demands, and thus
will match a chunk in any location in a sublist. Note that (VM
NIL) always returns T. The matching routine used by these com-
mands does a prefix-walk-order climb over the nodes of the pat-
tern and the buffer, as does EQUAL. However, in order to
facilitate more sophisticated pattern-replacement, the routine
checks any atomic element of the pattern, to see if it is a
member of the top-level list *DUMMIES. If so, it APPLY*s that
atom to the corresponding structure in the buffer, and returns
the result of this function call. Hence, arbitrary new dummies
can be added. For example, after
(SETQ *DUMMIES (CONS ’ZORT *DUMMIES)) and
(DEF ZORT (LAMBDA(L)(ATOM L]
are executed, (V ’ZORT) will return T iff the entry following

-10-

the pointer is atomic. Similarly, a (S ’ORT) will leave the
pointer after the next atom in the print string of the buffer
(see S below). It is often desirable to allow different calls
on such dummies as functions to interact. For example consider
the case of
(SETQ *DUMMIES (CONS ’SAME *DUMMIES))
(DEF SAME

(LAMBDA(L)
(COND(SAME (EQ L (CAR SAME))

(T (SETQ SAME (CONS L NIL)) T))))
(VM ’(SAME SAME)),
which will test if the next two elements of the current list
are identical. Note however, that some method of flushing the
effects of old calls on these functions is necessary between
succesive calls on the V routine. This is provided by the
function,*FLUSH, of no arguments, which is initially defined as
a no-op. It is called immediately before any check for a
match, and should be changed to a routine to accomplish this
reinitialization. In the above example, the proper code is
(Def *FLUSH (LAMBDA()(SETQ SAME NIL. The search commands also
obey the *FLUSH convention; they scan the buffer in left-to-
right or right-to-left print order, checking for matches to a
supplied pattern, and positioning the pointer accordingly.

(S s k) Search for entry If k>0 this command begins searching for a
match to s in the sense of (V s) at the present position of the
pointer. It climbs to the right, and positions the pointer
after the k’th match for s, if such exists. If so, it returns
T. If not, it returns NIL, and leaves the pointer at the
beginning of the buffer. If k<0, this command begins by doing
a (C -1). It then begins looking for matches of s in the sense
of (V s), and positions the pointer after the -k’th match, if
such exists, returning T. Else, it returns NIL, and leaves the
pointer at the beginning of the buffer. If k=0, the command is
a no-op. Note that this command only searches for entries of
the buffer which match; in particular, it does not check the
whole buffer against the supplied pattern. Examples:
(A * B D D) (S ’C)
(A B C * D) T

(A * B C D) (S ’A)
(* A B C D) NIL

(A (B C D) E *) (S ’B -1)
(A (B * C D) E) T

(* A B) (S ’(A B))
(* A B) NIL

(SB s k) Search for entry, leaving pointer Before This command finds the
same match as the above, but leaves the pointer immediately
before it, in each case.

(SF s k) Search for chunk First This command behaves like S, but looks
for matches in the sense of (VF s). The pointer is left after
the last element of the final matching chunk.

(SFB s k) Search for chunk First, leaving pointer Before
(SL s k) Search for chunk Last This command behaves like the above S,

except that the matching is done in the sense of (VL s). The
pointer is left after the last element of the final matching
chunk.

-11-

(SLB s k) Search for chunk Last, leaving pointer Before
(SM s k) Search for chunk middle This command behaves like S, except

that the matching is done in the sense of (VM s). The pointer
is left after the last element of the final matching chunk.

(SMB s k) Search for chunk Middle, leaving pointer Before.

-12-

Initialization Commands

These commands initialise the editor by setting the contents
of the buffer. After initialization, the pointer is always put
at the beginning of the buffer, i.e., before its first dotted
pair. Note that, due to the Sharing Guarantee, ED110 does not
involve an "edit mode", and thus, no termination of an editing
job is necessary unless the user desires to free the ED110
buffer for garbage collection, or to use the editor in some
other buffer. The later commands in this group deal only with
the issue of generating backup copies of functions being
edited, in case of editing disasters. They allow the user to
choose whether to edit the active or reserve copy of the func-
tion definition. The first demands more care in some special
cases, but allows the user easier testing of the edited ver-
sion.

(E s) Edit This command initializes ED110 to the list structure s. If s
is not a dotted pair, Edit breaks; the value returned is T.

(EC s) Edit Copied (LAMBDA(s)(E (COPY s]
(E N) Edit Nothing This command takes no arguments, and initializes the

editor for creation of a new piece of list structuure. The
buffer will appear to be (*) after the execution of this com-
mand. (EN) is equivalent to (E (CONS))(DA).

(ENC) Edit Nothing Copied This command is equivalent to EN, and is
included for symmetry.

(EF m) Edit Function This command takes one atomic argument, i.e., one
argument which much eval to an atom, and initializes ED110 to
the present function definition definition of that atom, if it
exists. Otherwise, it prepares for the creation of a new func-
tion binding, by performing the equivalent of (E (CONS)(PUTD m
(XA))(DA). The value returned is m; if the function binding is
binary#code, EF breaks.

(EFC) Edit Function Copied This command takes one atomic argument, and
returns it. It initializes the editor to a copy of the present
function binding of m. If there is no such binding, it is
equivalent to (EN). If the function binding is binary#code,
EFC breaks.

(GR m) Generate Reserve This command takes one atomic argument, and
returns it. It PUTs the present function binding of m on the
property list of m under the indicator ’RESERVE. If no such
binding exists, GR breaks.

(GRC m) Generate Reserve Copied Places a copy of the function binding
under the indicator ’RESERVE on m’s property list.

(RR m) Repace Reserve This command takes one atomic argument, and
returns it. If no reserve copy of m exists on m’s property
list, RR breaks. Otherwise, it changes m’s function binding to
be that reserve copy.

(RRC m) Replace Reserve Copied This command takes one atomic argument,
and returns it. If no reserve copy of m exists on m’s property
list, RRC breaks. Otherwise, it changes m’s function defini-
tion to be a copy of that reserve copy.

(ER m) Edit Reserve This command takes one atomic argument, and returns
it. If no reserve copy of m exists, ER breaks. Otherwise, it
initializes the editor to that reserve copy.

(ERC m) Edit Reserve Copied

Thus, the command sequence (EF (GRC m)) generates a copy of the
present definition of m, and initializes the editor to the
active definition. An editing disaster could then be remedied
by a (RRC m). If the user desired to edit the non-active

-13-

version of the function, he should instead use the sequence (ER
(GRC m)): the disaster recovery is then to repeat the above.
However, at the conclusion of the edit, the user must (RR m) to
install the edited reserve copy as the active version of the
function.

-14-

State-Handling Commands
The state of ED110 is merely the present buffer and the present
position of the pointer within the buffer. Although the values
of several top-level atoms, such as *EDTR and *DUMMIES, affect
the actions of the editor, they are not includedd in the state
descriptors handled by the following commands.

(Y) copY This command alters the state of the editor so that it is at
precisely the same point in editing a copy of the original
buffer. Y returns T.

(YS s)copY State This command takes one argument,and editor state
descriptor, and constructs a descriptor for the state that the
editor would be in after a (rS s)(Y). This new state descrip-
tor is the returned value. The state of the editor is not
affected.

(GS) Generate State This command takes no arguments, and returns as
value an editor state descriptor for the present state of the
editor.

(GSC)Generate State Copied (LAMBDA()(YS (GS]
(RS s) Replace State This command takes one argument, an editor state

descriptor, and restores the editor to be in that state. RS
returns T. If the argument is not in proper form, RS breaks.

(RSC s) Replace State Copied This comand takes one argument, and editor
state descriptor, and performs a (RS s)(Y). The argument
descriptor is unaffected, and the editor assumes the condition
of editing a copy of s’s buffer, with the pointer in the corre-
sponding place.

-15-

Parenthesis-Handling Commands
(P i j k) Parenthesize

This command takes the three chunk-selecting arguments, and
inserts parens around the specified chunk. One new dotted pair
is used. The pointer is left after the newly inserted right
paren. P returns T.

(PB i j k) Parenthesize, leaving pointer Before.
(PA) Parenthesize All This command takes no arguments, and inserts

parentheses around the entire buffer. The pointer is left
after the new right paren; T is returned.

(PAB) Parenthesize All, leaving pointer Before
(K) Kill Parenthesize If the pointer is positioned immediately before a

left paren, (K) deletes that paren and its matching right, and
leaves the pointer where the right paren was. If so, the
value returned is T. Otherwise, (k) does nothing and returns
NIL.

(KB) Kill parentheses, leaving pointer before.
(M x y) Move This command is a nice adjusting command for the many occa-

sions where things that are typed in end up in the wrong place.
It works as follows: Package up the lexemes between where the
pointer is now, and where it would be after a (C y). Consider
this new item as a super-pointer, and walk it past x elements
of the remaining structure. Then, leave the real pointer on
the same side of the super-pointer as it was at the beginning.
If either argument is omitted or non-numeric, it is defaulted
to 1. If either argument is 0, the command is a no-op. The
value returned is always T. Note that the super pointer can
contain parentheses as well as atoms. Examples:
(A (B C *) D E) (M)
(A (B C D *) E) T

(A B ((* C D))) (M 1 -1)
(A B (C (* D))) T

(A B (C (* D))) (M -5 -3)
((C (* A B D))) T

-16-

Pretty-Printing Commands
(PPL s) Pretty Print List

This takes one argument, and calls on PP’s subroutines to print
it to POPORT nicely formated. The argument is taken EVALED.
The value of PPL is NIl.

(PPV x) Pretty Print Value This is a NLAMBDA, which does the same thing
that PP does, except for top-level bindings. If x is atomic,
it is evaluated to produce a list of atoms; otherwise, x is
used directly as the list of atoms. The values of these atoms
are pretty-printed to POPORT in the format:
(SETQ <atom> (QUOTE <value>))

(PPF in out funlist vallist) Pretty-Print File This command is a LAMBDA
analogous to ECL’s UNPARSF. The file in is opened for input,
and the file out is opened for output. Then, forms are succes-
sively parsed from in, and pretty-printed to out. If in is
NIL, no input file is used. If out is NIL, output is to the
teletype. The third argument is an update list for functional
bindings. While in is being read, any statement of the form
(DEF <atom> <>) for any atom in the list funlist, will result
in the present function binding to that atom being pretty
printed to out, rather that the binding given in the input
file. If any elements of funlist are not DEFed in in, they are
pretty-printed to out at the end of the file. The fourth argu-
ment, vallist, is an equivalent update list for top-level bind-
ings of atoms, with the same conventions vis-a-vis SETQs in the
input file.

-17-

Convenience Commands
(Z) Z-see This command is short for (T 0 1 -1), and thus types the cur-

rent list (surrounded with one extra pair of parens).
(A p q) Alter This command, similar to a TECO FS, does a (S p); if this

fails, it returns NIL. If the search succeds, (D -1)(I q) is
performed, and T is returned.

(AA p q) Alter All Like a TECO <FSpq;>$$. The command loops to per-
form the above alteration throughout the buffer. The pointer
is left at the beginning of the buffer, and T is returned.

(L p l) Loop This command is for use in programmed editing with ED110.
The first argument is interpreted as and editing program, the
second as a list of function names. L iterates through l, ini-
tializing the editor to edit these functions, and then EVALing
p.

-18-

