
o

o

.G

Page 1

The LISP Destructive Stream Facility.

In Stoy and Strachey[2] streams were proposed as vehiCles for the transfer of
information in systems. In this system we copy their concept to a large extent.

Burge[1] has posited an even more abstract and general stream model in which
destructive streams are a special case. We can recognize the Stoy and Strachey model
as this most interesting special case. A destructive stream is a stream which has
private storage within itself which undergoes updating. This allows successive items of
a stream to occupy the same storage. In Burge's .more general model ordinary streams
are applicable functions, are not 'destructive', are retainable and capable of backup. In
his model uA stream is a functional analog of a coroutine [3, 41 and may be consid­
ered to be. a particular method of representing a list in which the creation of each list
element is delayed until it is actually needed.".

In LISP these abstract streams are defineable, but we choose to suggest a
data-structure model for streams and basic stream-data-structure manipulation facili­
ties. We choose to use a data-structure, instead of using functionals, for reasons- of
efficiency and to allow updateability. The stream data structure is simply a pair, the
first element of which is the current item at the head of the sequence, the second
element of which serves to define the rest of the sequence. Streams are described
below syntactically:

A stream is (heads • rests) where,
heads is the next item of the stream which can be any s-exp, and
rests serves to define the rest of the stream and is either:

a stream, or
a special stream description, stream-desc, <rin bd asc [any •. . 1>, where:

and rln the stream dependant function is an e,
bd the fast-buffer description is NIL in the case of slow-streams

or < string begindex curindex endindex> for fast-streams,
where

begindex the beginning index is a {O Ill ... }, and
curindex the current character index is a {O 11 I ... }, and
endindex the boundary index is a {O Ill ... }, and

and asc the associated-states which is an a-list ..
and ani is any stream dependent information that the user pro-
vides,

else other a stream terminator which is any non-vector atom.

The following serve to define the basic primitives for streams:

(EQ (CDR stream) stream)

This tests if 'stream' is the empty stream.

O/oLI=(%LI • %LI) is a representation of an empty stream.

Thus, the empty stream is one which is incapable of emitting anything but the
stream itself.

Note: In this section the labels used to convey EQ'ness have scope
extending over the entire equation in which they are used.

Page 2

For example in: g{%Ll={a • b)} = %Ll=(c • d) it ismeant'that
%LI is updated.

Consider the following fast stream which is not empty but is nearly so:
%LI=(%Ll • <rfn <string On n> 0» where a subsequent application of
NEXT will produce %LI =(%LI • %Ll). The interpretation of this stream
is' that it is a unit stream with end-of-line as its last item. The stream itself
will serve not only as stream terminator (as rests) but also as end-of-Hne
indicator when it appears as heads.

CAR, CDR, CONS, RPLACA, RPLACD, etc., can" be used as one would ex.pect.

(NEXT stream)

NEXT is a function from streams to streams. which for specific types of
streams produces as value stream the argument stream updated. NEXT is
most efficient for fast streams. The action of NEXT is defined by the
following rules:

next{ %LI={ heads. {other I %LI})} %LI=(%LI. %L1) .

next{ %LI =(x y • z)} %Ll =(y • z) .

next{%Ll=(headse <rfn 0 x ... >)} ~rn{%Ll}.

next{%Ll={heads • %L2=<rfn %L3 x ... >)}
where %L3 = <string begindex curindex endindex>

..... rfn{%LI} if curindex ~ endindex, and heads = 9bLl,

.... %LI =(%LI . %L2) if curindex ~ endindex, and heads if:. %Ll.
(This illustrates the production of end-of-line symbols)

otherwise %Ll =(y • %L2=<rfn %L3 x ... »
where L3 = <string begindex " curindex+ 1 endindex>
and y = fetchchar{string ; curindex 1 .

(WRITE s-exp stream)

write{x;%Ll={y • %Ll)} %LI={x • NIL) .

write{x;%Ll={y • z)} %Ll={x y • z)
where z is other or a stream that is not EQ to %Ll.

write{x;%Ll={y • <rfll 0 z ... >)} rfn{x;%Ll}.

write{x;O/oLl={y. °/oL2=<rfn °/oL3 z ... >)}
where % L3 = <string begindex curindex endilldex>

... %Ll={x • oIoL2=<rfn %L3 z ... »
where <Yo L3= <storechr{ string";· curindex; xl begindex curilldex+ 1
endindex>

o

o

o

c

o

Page 3

if curindex < endindex, and 'x is a character,

otherwise - rfn{x;O/oLl} .

(TEREAD stream)

teread{%Ll=(O/oLl • y}} - °/oLl=(O/oLl • y) .

For x :1= °/oLl :

teread{O/oLl=(x • {other I %Ll})} - %Ll=(%Ll • %Ll) .

teread{0IoLl=(x. stream)} %Ll=(O/oLl • cdr{teread{stream}}) .

teread{%Ll=(x. %L2=<rfn 0 x ... >)} - °/oLl=(O/oLl • °A>L2) .

teread{0IoLl=(x • faststream)} - °/oLl=(%Ll • faststream')
where faststream' is faststream with curindex updated to the value
of endindex.

(TERPRI stream)

terpri{x} = terprix{x;x}.

terprix{x;0IoLl=(y. {other I °/oLl})} x .

terprix{x;(y • stream}} terprix{x; stream} .

terprix<x; %Ll=(y • <rfn z ... >)} - rfn{x;O/oLl} .

Some Distinguished Streams

LISPIT the console input stream.

LISPIT is a fluid variable with the following initial value:

0/oLl=(O/oLl • < lispitin < nil 0 0 0> asc NIL»

Where asc=«DEVICE. CONSOLE)(MODE • I)(QUAL • V»~

After the file is activated:

%Ll=(item • < lispitin < string beg cur end>asc p-list»

Where p-list denotes a system dependant I/O control block.

Where lispitin is an input console stream dependant function which is
capable of activating the file when the p-list field contains NIL. The
functi()n lispitin achieves system independancy by special calls to

Page 4

system dependant portals for all system dependant computation.Acti­
vating this stream consists of:

I. Building an input console p-list in a system dependant
manner.

2. Determining the console linelength (also system dependant)
and allocating string. Where string is a lisp character vector
used to provide an input area for the terminal line. The capac­
ity of which is sufficient to hold the determined maximun input
linelength, and the contents-length of which reviels .how many
it actually holds.

3. Initiallizing beg to 0, cur and end to linelength.

4. Applying lispitin to the now active stream.

When lispitin is applied to an active stream it causes a system
dependant console input operation to refill string, reseting string-length
to the actual number of characters read, setting· end to that number
also, and setting beg to zero and cur to one. If the number of charac­
ters read was zero the stream becomes:

%Lb:::(%LI • <lispitin <" 000> asc p-list»
otherwise:
%Ll = (co. <lispitin <tco ... cend-1' 0 1 end> asc p-list».

LISPOT the console output stream.

LISPOT is a fluid variable with the following intial value:
%Ll=(%Ll • <lispotout <NIL 000> asc p-list»
where asc=«DEVICE • CONSOLE)(MODE • 0», and p-list=NIL.

lispotout is similar to Iispitin except it needs less information to build the
p-list. After %Ll is activated by Iispotout by write{c;%Ll} it becomes:
%Ll=(c. <lispotout < string 0 1 end> ascp-Iist»

where end is the system dependant preferred console output line­
length and string is 'ct. The capacity of string is end characters.

lispotout works in much the same manner as lispitin. One peculiarity of
lispotout (and hopefully any output stream which is inactive) occurs when the
initial write is in effect a TERPRI.

write{%Ll;%Ll=(%Ll • <lispotout <NIL 0 0 0> asc NIL>)}
.. %Ll=(%Ll • <lispotout <string 0 0 end> asc NIL»

where string= " but has capacity for 'end~ characters.

User Stream Definition Facilities

(DEFIOSTREAM asc linelen position)

o

o

o

o

...- ._.!!I!.~ ... _ .'. 1". ~

Page 5

DEFIOSTREAM produces as value a fast-stream which interfaces with
the real input/output devices.

The actual stream produced is system dependant but the opera­
tion of saving. a lisp system. and bringing it up on another operating
system entails the reactivation of all such streams; in which case they
may become defined for the new system. The user would have to
contrive to have the actual files moved and converted if that were
necessary.

The parameters of DEFIOSTREAMare as follows:

'asc' is an a-list, i.e. (property ...)
where property is:

{(FILE. {('fname' ['ftype' ['fmode']]) I 'dsname'}} I
(DEVICE. CONSOLE) } or,

(RECFM • {F I V}) or,

(MODE. {I I INPUT I 0 I OUTPUT}) or,

(QUAL •
if CONSOLE input then {S I T I U I V I Xl
if CONSOLE output then {LIFO I FIFO I NOEDIT}

The value of the FILE property may be either character string, as
indicated, or identifier, in which case the identifier pname is used.

'linelen' is linelength if required, else NIL. For input files, the user
supplied linelen is passed to a system dependant portal and the portal
gives back a number (possibly the same one) which is used as the actual
size of the buffer string which is allocated at activation time. This
parameter does not specify a truncation column. For output streams
linelen determines both string size and end index.

'position' is a linenumber which defines the starting position if required
else NIL.

What follows are some examples of operating system interface
streams, their definition and use.

defiostream {asc;72; I}
where asc = «FILE XXX LISP)(RECFM • V)(MODE • I».

_ %Ll=(%Ll • <filein <NIL 0 7272> asc NIL 1»

Comment: Defines an input stream from the file system. The number 72 is
the users idea of the length of the longest record. For most operating sys­
tems the actual file charactistics will take precedence.

next{%LI=(0IoLl • <filein <NIL 0 72 72> asc NIL I>)}
_ %Ll=(co • <filein <%120'co ... c99' 0 1 100> asc p-list 2»

T"

Page 6

where the string 'co ... C99' in this instance has 100 characters but has
a capacity for 120 characters because 120 was determined to be the
actual longest record of the file.

where p-list is a system dependant I/O control block designation
and will not be explained.

This illustrates normal behavior of next when curindex~endindex
and heads is the stream itself, and the line read in is not empty.

Were the first line empty:
next{%LU"'%Ll=(%Ll • <fHein <" 0 0 0> asc p-list 2»
and similarly for subsequent empty lines.

On end of file: %Ll=(%Ll • %Ll) .

defiostream{asc;72; I}
where asc=«FILE YYY LIST)(RECFM • V)(MODE • 0»

Comment: Defines an file system output stream. In the case that an old
output file exists, its existence is to be ignored as much as possible. The
longest record that we wish to write is 72 characters.

Initially the above definition gives rise to:

%LI =(%Ll • <fileout <Ii 0 0 72> asc NIL 1» where " has
capacity for 72 characters.

write{co;O/oLl=(%Ll • <fileout<" 0 0 72>asc NIL I>)}
- %Ll=(co • <fileout <'co' 0 1 72> asc p .. Iist 1»

However,
write{%Ll ;%Ll=(%Ll • <fileout<" 00 72>asc NIL I>)}
- <JoLl =(%Ll • <fileout <" 0 0 72> asc p-list 2»

Re.ferences

1. W. H. Burge. "Stream Processing Functions" IBM J. Res~ Develop. 19, 12
(1975).

2. J. E. Stoy and C. Strachey. "OS6-An Experimental Operating System for a Small
Computer. to Computer J. 15, No.2. 117 and No.3. 195 (1972)

3. M. E. Conway. "Design of a Separable Transition-diagram Compiler:~ Commun.
A CM 6. 396 (1963).

4. A. Evans. "PAL-A Language Designed of Teaching Programming Linguistics."
Proc. 23rd ACM Con/., 395 (1968).

o

'c,··, ','"

	Anon-Lisp_Destructive-Stream0001_a
	Anon-Lisp_Destructive-Stream0001_b
	Anon-Lisp_Destructive-Stream0002_a
	Anon-Lisp_Destructive-Stream0002_b
	Anon-Lisp_Destructive-Stream0003_a
	Anon-Lisp_Destructive-Stream0003_b

