
THE DEFINITION OF LISPl.8+0.3i

F. W. Blair
IBM Thomas J. Watson Research Center

Yorktown Heights, N. Y. 10598

n.t, iLr.- i,,-~ hiA FT .10,*,,1" ~ /J. _.f
~~ it (34). h.,,-tt,""M.""~ fI).,J(!.s INII

Sf4I' J./ (if. ".1 tI>f.riJ,..,/) Si"CA! ~'?~.
A$ '" c.Ctt;t2 f, 1(" /ill" ... ,),.c,/(,t/~ fl.$-«- .
~. ~ ,,/u~U.

pmcjones
Sticky Note
On November 3, 2010, Fred Blair gave me permission to post this document on www.softwarepreservation.org/projects/LISP/.

Paul McJones

..

ABSTRACT

This definition document serves as the specifications for a LISP system that is under
development at the IBM T J Watson Research Center. It is an abstract description dealing
with the specification of: Syntax, Semantics, Machine States. Data Objects. and Primitive
Operators. It attempts to capture, in some detail, an evolved and still evolving design with
particular attention to pragmatics.

IBM Internal Use Only

i

I

CONTENTS

PART 1

Introduction .. 1

Notation Conventions .. 3

LISP Objects ... 4

The Metalinguistic Machine :5

Expressions .. 1 1

Evaluation ... 14

Simple State Transitions 15

Constants ... 15

Variables 16

Closures .. 16

Combinations .. 16

Macro Application "•....... " 20

Argument Evaluation 21

Ordinary Application. .. 21

Lambda Abstractions 2 1

Function Binary Program Images' 22

Distinguished Basic Functions .. 22

Fixed number of argument understood operalors 22

Multiple argument understood operators 23

Dynamic Macros 25

IBM Internal Use Only

•

I

Closure application ... "................................... 25

State application .. 25

CODE-abstraction application 25

Sequence application .. 26

Sequence abstraction .. 26

Operator evaluation repeated 27

Reapply Reevaluated Operator 27

Meta applicable forms 27

COND .. 28

AUX ... 28

PROGN ... 28

RETURN ... 28

EXIT ... 29

GO " 29

Closure forming operators 29

LABEL ... 30

SETQ ... 31

QUOTE ... 31

Context application .. 3 1

Context Closure .. 3 I

MU .. 32

SETX ... 32

Closed Context preparation 33

Conditional Expression 33

IBM Internal Use Only

•

I

Statement Sequence Evaluation 34

Expression Sequence Evaluation 35

EXIT Sequence Expression 35

Assignment .. 36

Place-holder assignment 36

LABEL Operator ... 37

The Interrupt System ... 39

Traps .. 43

Global Environments,
Exit Routines and
An Efficiency Device ... 46

The LISP Destructive Stream Facility 55

Some Distiriguished Streams , 6 1

User Stream Definition Facilities , 63

Issues and Comments . 49

PART 2

~ Data Type-J, Pointers, Values, and Primitive Operators 49

The Type Schema .. 50

Pointers .. 5 1

Syntactic Representations for the Data Types 55

Output Canonical Form 57

Input Syntax Commentary 59

Simple Objects ... , 61

The Distinguished NIL Object 6 I

IBM Internal Usc Only

iii

Numbers ... 61

Generic Arithmetic Operators 62

Small Integers .. 64

Large Integers .. 65

Integers ... 66

• Floating Point Numbers 66

Character Objects 68

Truth-Values .. " 69

Composite Objects .. 69

Arrays ... 69

Pairs .. 70

Ranked Arrays ... 71

Arrays of Rank One 72

Pairs as Lists ... 74

Vectors ... 75

Reference Vectors 76

Intermediate .. integer .. vectors .. 77

Floating .. point Vectors 78

Strings .. XO

Records .. X3

Identifiers ... X4

Applicable Objects X6

Abstractions .. X6

Lambda Abstractions X6

IBM Internal Use Only

iv

State Descriptor .. 90

Funargs ... , 93

Binary Program Images . 95

Special Forms ... 97

Understood Operators : 105

N tuples .. 1 OR

Complexes ... , 109

Issues and Comments ... , 1 10

Acknowledgements ... , 1 10

Appendix A _ Lexicon of named states .. 1 10

Appendix B _ Bibliography .. 1 11

IBM Internal Use Only

v

..

113M INTERNAL Draft --- FWB, revised 09-18-79

INTRODUCfION

The LISP 1.5 system[8] has been and continues to be a means for the study and
development of programming science. It provides an evaluation model which explains
many notions common to programming technology. LISP provides data objects and
primitive operators which shape the universe of discourse for LISP programmers in. much
the same way that our natural language lexicons shape or limit our thoughts. LISP systems
also usually contain that ultimate admission of their own incompleteness: namely the
flexibility to be extended and modified .

Little attempt at either intuitive or denotational semantics is made in this paper: it
merely posits the computational or operational semantics of a dialect of LISP which is
thought to be representative of current practice. The intent is to move the debate on LISP
fundamentals into sharper focus and to encourage public review. Mainly it serves as the
definition for an experimental system, currently under development. designated
"LISP 1.8 +0.3i" .

The family of languages designed toward the goal of a simple, formal definition of
the basic characteristics of programming languages. and based on function application has
been called the applicative programming languages. LISP will be used to designate that
subset which has some form of s-expression data language which also is used as the

expression language. The LISPl.x varieties are those which bear striking similarities to
LISP 1.5.

The reader should refer to Reynolds[10] for a systematic review of definitional
interpreters. That paper contains much motivational and descriptive discussion about
language classification and language features. The informal discussion at the beginning of
his paper is relevant to this paper. The reader should note the similarity between
Reynold's continuations and the state descriptors of this paper.

Of theoretic interest to the subject of LISP is Gordon'S thesis[5J on "Models of
Pure LISP", in which he presents a Scott[111 style of denotational semantics for pure LISP
(chapter 1 of McCarthy[8]) as well as an operational semantics schema and a proof of
their equivalence. More recently Newey's thesis [9]. "Formal Semantics of LISP with
Applicalion to Program Correctness" is recommended.

In these works the authors were primarily concerned with descriptions which
enable and encourage proof. The emphasis in this paper is on description of th~ unuerly

ing processor. The attempt here is to expose certain pragmatically significant poinls.

The works of Steele and Sussman [12. 13, 14] are particularly relevant to this
work. They cover much the same ground, namely definition of LISP. and they deal in

considerable detail with the pragmatics. A fundamental diffe~ence between their work and
this is that they have emphasized the static determination of programs. while this work
retains much of the dynamic evaluation capabilities of LISP.

Page 2 IBM INTERNAL Draft --- FWB. revised 09~1 X-79

In this model of LISP considerable emphasis is placed on lhe effect of an operator

on the machine state. Contexts and their manipulation are also emphasized. It is thus a

computational semantics rather than a denotational semantics. The GO expression which

might otherwise have been derived is featured because of its unique characteristic of not

requiring a new state and only affecting the control and stack of the current state. The

introduction of processor concerns has made the model for LISP more complex due to the

attempt to describe more phenomena; and because of that complexity subtle errors may

have crept into the elaborate machinery this paper attempts to describe. It appears

however. that for a modest expenditure in metalinguistic cogs and wheels. considerable

descriptive power is achieved. Much of the phenomena of programming is resolved by this

mode of description into discrete mechanisms.

LISP1.8+0.3i is a language of expressions (e). These expressions are a subset of

a data language for LISP called symbolic expressions (s-expression). The concrete

canonical form for external representation of LISPl.8+0.3i expressions is practically

devoid of syntactic niceties. Normally these niceties are present to aid in the human

recognition process. LISP expressions are abnormal in this respect and for good and

sufficient reasons. The syntax of expressions can be thought of as one which reveals the

simplicity of the underlying abstract syntax. This simplifies the recognition processes of

the READ function and other such processes that examine the language representation.

The so called ugly canonical form representation choice does not exclude alternative

representations which would be more palatable, it is merely the didactic choice.

Much of the art that has been created in the LISP community serves to enrich the

basic LISP systems and to bring joy to their users. This paper will eschew such user

orientated delights and focus on rather more mundane system programming features. Its
main purpose will be to try to develop a reasonably abstract but workable model of the
computationally interesting problems of a "LISP machine".

The computational semantics of LISP is the relation of an expression to the data

value it denotes. the intermediate states produced. and the state of the machine that

obtains after the denotation was produced. Intuitively, the sema.ntics may be viewed as

the process (calJed evaluation or interpretation) to which expre~sions arc subjected to

produce values which they are said to denote. Expressions (which are like the phrases of
natural languages) are very often replete with a form of pronominal reference called a

variable. Such constituent expressions can only have meaning with respect to a context
(called the environment) which gives the meaning of such variables.

In the past. the semantics of LISP has been given hy the process of Sl'Jr descrip

tion. Perhaps this stems from a desire to illustrate the power of the LISP language. but

more pragmatically it results from the method used in a "bootstrap" implementation of

LISP. Needless to say, this approach has some shortcomings from the point of view of

definition. A tacit understanding of LISP is required to read the definition of LISP and at

least a primitive LISP system is required to begin the bootstrap. This model will deviate

from this tradition.

IBM INTERNAL Draft --- FWB. revised OlJ-IS-79

NOTATIONAL CONVENTIONS

The following conventions are meant to be helpful and are expliciLly described for
future reference. It must be admitted that there is rather more than one would like to
instantly commit to memory. The reader might find it advisable to scan briefly and then
refer back as needed.

{ and } are used r or metalinguistic grouping.
[and] are used to indicate optionality.
+ is used to indicate one or more.
I is used to separate alternatives.
Vertical alignment is also used for alternatives.
The ellipsis" ... " is used to denote zero or more objects. Thus x ... means zero or more
x's, but ... x means zero or more of anything but x and then x.

Subscripts will be used to indicate a required one-to-one corresponuence. whenever the
intent is not clear. They will also serve to denote individual members (not necessarily
identical) of a class.

Identifiers (names) given entirely in upper-case letters are LISP 1.8 +0.3i ordinary identifi
er data objects. they are used as variables and statement labels in the LISP language.
Lower-case identifiers are used as metalinguistic variables ranging over LISP data objects.
The normal font is also used in the semantics rules for commentary and as logical metalan
guage.

Italics will pertain to syntacticly defined objects (also abstract syntax objects). Metalin
guistic variables ranging over a syntactic class of LISP expressions or data objects are
represented by the name of the class in lower-case italic. Syntactic classes are represented
by the class name in upper-case italic.

Boldtype will pertain to the metalinguistic state. The following are constants of the
metalanguage: PRED. ES. OP, LABEL. SF, MAPP. and EYAL. APP,. APP!. SEQ{t/ll' MU
and REAP form composite meta-symbols which have S as a component. These meta
symbols are truly the cogs and wheels of the meta-language. Each performs a single
function which may be of interest to the implementer.

Bold. upper-case italic letters will also be used to designate the metalinguistic state
components. It is hoped that the use of bold italic fonts for the mctalinguistic domain will
be helpful.

'(' . ')' , '.' . '=' . ·(X,'. and blanks are all used as special symbols in forming s-expressiOlI

representations (also called s~exp or datum).

";" is used as a metalinguistic separator.

"." is used as a metalinguistic infix CONS operator which associates to the right. When
used as a prefix it is the identity operator. "." differs from • the LISP basic operator

Page 3

•

Page 4 IBM INTERN AL Draft --- FWB, revised 09-1 X-79

CONS but is similar in conccpt. "(If and 'f)" are used to form melalillguistic list models; ----- ~

they are not necessarily LISP data objects.

USPOBJECTS

There are several domains of discourse that pertain to LISP programming. There
is the blackboard. or external representation as characters, domain of LISP data objects.
A canonical concrete syntax for these objects is familiar to LISP programmers but is nol
unique. Other external representations are possible. There is the data processor's domain

of LISP data objects in a memory. There is the evaluator's domain of LISP states and data
objects in a memory. In LISP it is not uncommon to ·pretend that these domains are
isomorphic. This document maintains such a pretense on the grounds that the familiar

external notation (augmented as needed) will suffice as the abstract syntax. The reader
must decide from context which domain pertains. Usually it is the domain of LISP states
and data objects in a memory. Thus, the internal memory domain objects are denoted by
external domain representations.

An s-exp is:

[labelHc I id I funarg I sd I combination·}
where label is {label-name =- }, and

where label-name is {%Ldigit, ... digitn} where I ~n~8 and.
where id € I D the set of identifiers (names), and
where c € C the set of constants. and
where sd € SD the set of state descriptors for which no written representation
is intended.

An sd has a LISP machine state {S;E;C;D~ as a component. (See
below.)

where funarg =- ~~(FUNARG e • sd)
where combination = (comp+ [• comp])

where comp is {label-name I c I id I funarg I combination I
{[abelcomp} }

It should be noted that the data language of LISP1.X+O.3i s-exp s is somewhat
richer than is given above. For example the set C may include selector structures and
vectors. A more extensive syntax of .v-ex!, will he ~iven c!sewhl'rl'. Thl' synt~lx as given is

sufficient for the representation of LISP 1.l'~+O.Ji and for this ~ .. xplana(i(ln. It shOll".! Ol'
noted that s-exp's are allowcd to have themselves as components. ;\ l'Ol1lmOn practice in

LISP systems is to provide READ and PRINT functions which preserve EQUAL-ity for
all of the above except sd. and EQ-uality for all id except a special subclass called gel1syms.

The distinguished constant nil is written () and is included in C. The following denote
constants known to the evaluator: LAMBDA. MLAMBDA. MU. QUOTE. FUNCTION,
SETQ, LABEL. COND, SEQ, GO, EXIT, PROGN, RETURN. FR*CODE, AUX. SETX.

HiM iN I tKNAL Orait --- FWB. revised O'j-l X-llJ

These data constants are not to be confused with the identifiers. The ultimate external

representation of these constants is defined elsewhere!

THE METALINGUISTIC MACHINE

I shall copy the method of P. Landin[5] in creating a metalinguistic description of

a machine. The machine itself is described as a complex space consisting of "states" and

the state transition functions. The meaning of an expression is given by including it in an

initial state of this machine, and when a terminal state is reached after repeated transitions

the meaning of the expression may be extracted. The states of the machine are quadruples

{S;E;C;D} whose components are called Stack, Environment. Control and Dump. respec

tively. The term activation-record is commonly used for such an entity. This state

language will be used to give meaning to the expressions of LISP1.8+0.3i. Revealing the

state components seems to simplify the description of certain concepts. The state lan

guage is also suggestive of implementation strategies.

The state components are:

S == The value Stack, modeled herein as a metalinguistic list of s-exp's.

The Stack provides temporary storage for computed values and its usage gives rise

to transmission conventions for the passing of parameters.

E = The Environment modeled herein as a metalinguistic list structure.

The purpose of the Environment is to determine the value of a variable. The

Environment is said to provide a context with respect to which an expression is said

to have a value. A somewhat more elaborate view is that the Environment provides

the storage spaces that contain the values denoted by variables. E may be viewed as

an object having the following structure:

E is either nilE or (IE • IE).

where IE, the tail of environment. is an E.

and IE. the lexical environment. is (contour. liE).

where tiE. the tail of the lexical environment. is () or an /E.

and contollr, the head of the lexical environment. is (binding ...),

where bint/ing. is (~vllle. ident),

where WlIIII! is an s-exp,

and idmt is Ie I (~{,=FLUID • iden) I (~'h=LEX • iJen) I iJenL

where iden is { (l (Yo =type-Ilame 1 id) }.

P-agc 5

Page 6 IBM INTERNAL Draft --- FWB. revised 09-1 X-79

As a matter of convenience ehE == () is used to indicate an empty contour. The
empty environment lIilE is ((ehE).O).

It may be helpful to informally explain this structure description. Firstly it Should be

remembered that this is a metalinguistic model and not a data :ist structure. Note
that an E typically contains a reference to another E. This is the "inherited context"

and will be detailed latter. It has a lexical part consisting of a list of COIf tours each of
which is a list of billdings and each binding has a place for a Wllue and associated

information as to the name. type, and availability of that binding. It will be seen

that only the bindings designated FLUID are available in tEo the inherited context or

tail of environment.

E is. constructed from a bound variables template bY, the argument parameter arg

and another Environment E by a three-place constructor:

bindtbv; arg; E J where

bv is { ident I (bv, • by]) }

arg is {atom I (arg, • arg]) }

where atom is { id Ie} .

and ident is { c I (~~=FLUID • iden) I (%==LEX • iden) I iden},

where iden is { ([%:=lype-name] id) },

bindiby; arg; E l ==
if bv is a c then E.
if by is an idem then

((((conformiarg;identJ • iden!) • contour). tiE). tEl ,
where con(orm{arg;identJ ==

%==type-name{arg} if idenl contains (~Io==lype-name else argo
where % =type-name{arg} == arg if it is of the correct type other

wise it gives a domain error.

if bv == (bY r e by]) and arg is alom then

bindtby]; edbvzJ; bindtbv/; edbvr};EH.

if by == (bvi e byz) and arg is (arg I • arg]) then

bindtbv] .. arg] ; bind{bv, ; argl .. EH.

There are no other cases.

edxl == () if x is a c. edxJ = x otherwise. The otherwise case is called the non

conformal arguments case.

bin~ will be used when h" is bound to multiple arguments. Notice the rossihle

construction of a list of traiJing operands.

bin~lbv;E; at; ... an} where O~n~255 is:
if bv is a c then E and.
if n is 0 i.e .• no arguments then bindlbv;() ;EJ and.

if bv=(bvlebv:} and a, exists. then bind{bv/ .. at; bind1~hv::E: 412;". Hand.

if bv is an idthen bindlbv;(a t •• .an);£}.

IBM INTERNAL Draft --- FWB. revised 09-18-79

E is described above as a metalinguistic data structure. (n what follows that structure will
be viewed as defining a function. E as described below is actually a combination of three
metalinguistic functions on variables, namely: lookup, assignment. and type-recall. These
are combined to show their similarity and mutual dependence on the structure of E. As
described below, the current lexical environment contours are searched for both lexical
and fluid bindings of id. In the tail of the environment (Le. that which is not local) only
fluids are sought. In the case of assignment the value being assigned must conform to the
type associated with the binding.

E/idl,-x:y} =
if E = nilE then some agreed upon global binding. gJobaUid, ;x;yL
if IE the lexical environment is empty. i.e. () then fluidlid ,;x:y;tEI.
if IE = (0 • tiE) • i.e. the contour is empty. th~n (tiE. tE)/ id ,;x:y /.
if contour = (binding, • contou,/) and id-oflbinding,l #: id, then

((contour, • tiE). tEJlid,:x;y} ,
if contour = (bindingt • contou,,)

where binding, = (s-exp, • ident/), and id-or{billfiing,. = id, then
if x = LOOKUP then (conform{s-exp,;ident,l • ident,),

Comment: Conformation in the case of lookup only seems
redundant. This will provide facility for monitoring the usc
of a given binding. Problem: How does the underlying
% = type-name function know if it is being used for the
LOOKUP or the ASSIGN option? The obvious answer to
try is to explicitly pass these as parameters to confomr and
%=type-name.

if x = ASSIGN then (storelconformly;ident/I;binding ,I • ident,) I
if x = TYPE then type-oflident ,I,

There are no other cases.

fluidtid ,;x;y;EJ is similar to Elid,;x;y I except that fluid-of is used instead or id-or.
i.e .• it matches only those bindings which were explicitly mentioned as
(%=FLUID • iden) at bind time. (For more details see section describing:
Global Environments. Exit Routines, and An Efficiency Device.)

fluid-of. id-or. and type-of are obvious selector functions.

The function store requires the concept of a memory as an audition to the model.

All the state transformations given below are of the form:

and will be thought of as having taken place in a memory .w.

These memory concepts are described in Bcki(;' and Walkl31. and also
Reynolds[10 j.

Page 7

Page 8 IBM INTERNAL Draft --- FWB. revised Og-l X-7lJ

((ehE) • E) is an example of an environment in which only the fluid and global bindings are

accessible.

A gloE is a special object with two components:

glonot the binding-not-present prescription for this gloE

is a pair (gloval • gloalo) where

gloval is NIL or else a two argument function

from the id in question and the giO/Sf of the current g/oE. to

the s-exp value for that variable in this global environment.

gloalo is NIL or a three argument function

from s-exp, id. and glolst to glohlld values. Often the side

effect of updating glolst is accomplished.

and glolst the global data list structure environment is

({glodat I globnd} • {glolst I g{olrm}) •

and gfobnd the global binding is a pair (s-exp • ident).

and glodat the global own data. is any s-exp which is not a pair.

and glotrm the global environment terminator is. {NIL I sd}.

(For more details see section describing: Global Environments. Exit Routines. and

An Efficiency Device.)

nilE the distinguished empty environment acts as a terminator ror that part of the

environment created by bind. which shall be referred to as the normal environment.

The following definition of the global environment function provides capabilities

that could be used for the production of bindings on first reference. global context

switching. direct access data bases, and in general is limited only by the imagination

of the programmer.

IBM INTERNAL Draft --- FWB, revised 09-18~79

g[oE/id,:x:y/ =
if globnd, = lookuplid,;glolstl is (s-exp, • ident/), then

if x is LOOKUP then globnd,

if x = ASSIGN then (storelconformly;ident/J;globnd,J • ident/)/

if x = TYPE then type-oflident,L

if globnd/ = 0, it was not found. then

if gloval is 0, and gloalo is O. then

if x is LOOKUP. the lookup default pertains. then

rplac-glolstlbinding ,= (id J • id /H
where rplac-glolst returns binding, after replacing the glolst

of gloE with its argument.

if x is ASSIGN, the assignment default pertains. then

rplac-glolstt(y • idJH

if x is TYPE, then

type-oflrplac-glolstl UdJ • id, HI
if gloya! is = O. and gloaJo :;I: 0, then g/oalo{id, ;x:y;globilL

if gloya! is:;l: O. andgloalo = 0, then rplac-glolstHgloval{id,~x;y} • id,H

else gloalo{idJ ~x;glova/{ id /;x;y} ;g/olst}.

C = The Control stack, is homologous to a list of instructions and data. it has two possible

forms:

1. In the case of LISP1.8+0.3i interpretive execution. C is modeled herein as a

metalinguistic list of s-exp and meta-symbols.

2. In the case of machine execution. Icnami bpi} denotes some location in the binary

program image bpi which name characterizes.

The nature of C is sufficient to characterize these two modes of execution.
Throughout these descriptions Stack and Control are represented as independent

structures. The actual use of them indicates a preference for a dependence of S on

C. Perhaps it is best put this way. whenever the C of a state is the same the

number of elements on S is the same.

D = The Dump, i.e. a reference to a previous state.

~.

which is either () or a previous state {Sz .. E~ .. C2 : 01 L

Certain distinguished states will be denoted by subscripting D with an identifier.

For example. Dnon.confomttll.app denotes a state whose description is given in Appendix

A.

Because D defines the chain of states from which control descended. it is sometimes

called the control-chain. It is possible to define a control-chain environment.

If we consider a state D::: {Sz" E2 .. Cz " 02}'

where IE J is the first lexical environment component. we can view this as a list

of lexical environments where D: gives the rest of the list.

~age l)

Page 10 IBM INTERNAL Draft --- FWB. revised 09--' X-79

We can then define the operator dynamic which is analogous to the function E

except that its analogue to fluid uses the D-part of a state rather than the tE of

an E.

The metalinguistic list models are meant to be suggestive. there is no decree thal

S.E.C, or D must be a LISP data-object of type "list" residing in the heap. It is in fact the

case that the system being developed uses a retention stack model similar to that described

by Bobrow and Wegbreit[4]. A certain amount of reader good will is required here as

explicit list operators will sometimes be used. Meta-linguistic" CONSing" will be indicat

ed as "." and ordinary "CONSing" by ". ".

IBM INTERNAL Drart --- FWB. revised 09-18-79

EXPRESSIONS

A LISP expression e is one of:
c a constant where 0, bpi, sd. sf, ur, abstraction. constallt-closure. € C

where bpi is a compiled program value object which is:

an mbpi a compiled macro

or an fop; a compiled function

where sd is a state descriptor

where sf is €

{ LAMBDA I MLAMBDA I MU I QUOTE I SETQ I FUNCTION I
LABEL I COND I SEQ I QQ I §2!.! I PROGN I RETURN I
FR·CODE I AUX I SETX}

where ur is an understood primitive operator which is:

a fix-ur for primitive operators that require a definite number or argu

ments or a mult-ur which is an understood operator that takes an indefi

nite number of arguments

where abstraction. is either:
a lambda-abstraction 0/0 (LArvlBDA bv • exp-seq)

where bv the bound-variable part is { ident I (bv I • by!) }

and ident is {c I (%=FLUID • iden) I (%=LEX • iden) I iden}

where iden is { ([0/0 = type-name] id) }

and exp-seq is {atom I (e ...)}

or an mlambda-abstraction %(MLAMBDA bv • exp-seq)

or an mu-abstraction %(MU bv • value/ist)

and value/ist the values list is (s-exp ...)

or a sequence-abstraction %(SEQ tag aux s ...)

the sequence label tag is an id or ()
the auxiliary-stack-place names list aux is (iden ...)

each statement s is a:
statement label st-Iab which is an id. or

program-statement ps which is an e which is not an id

or a operator-code-abstraction %(FR·CODE e f-lisl • lap-code)

where I-list and lap-code are described in the LISP assembler documen

tation
where a constant-closure (¥o(CCLOSE e-part • s-part)

where the expres~ion rart e-ptlrt is an e

and the stale part S-P<lrt is an sd

id a variable
fUIl(l~ a closed expression (~{, (FUN A RG e-part • .'i-part)

where the expression part e-part is an e

and the state part s-part is an sd

(rator • randlist) a combination

where the operator rator is an e

and randlist the operands list is (rand ...)

and each operand rand is an e

Page II

Page 12 IBM INTERNAL Dr~ft --- FWB. revised 0<)",,1 X-79

Informally the evaluation of constants is rather simple: they eyaluate to them

selves. Certain classes of constants may be applied as operators. There arc applicative

constants and what is meant by their application is described in detail in the following

sections.

A state descriptor sd is a special type of constant. It is created by the special

operator STATE and certain meta operators that form funargs. and "captures" the state in

which the STATE operator was applied. The computational state captured is. in essence,

sufficient to allow the continuation of the computation. but does not include the current

state of all memory settings. Because of the effects of updating shared memory structures,
multiple continuations of a state may not all behave alike.

The value of a variable is defined by the current context or environment E. We
may view E as a function that maps a variable into the place or binding in which its value

resides. E is a metalinguistic construct of this description and not a LISP /370 data object.
Nevertheless there are first class data objects (namely state descriptors) that have (by

implication) an E as a component.

Bindings are stored objects on which metalinguistic access and update operators
are defined. Evaluation of a variable involves accessing the value in the appropriate

binding. and assignment. SETQ, involves its replacement.

Every evaluation takes place with respect to some environment. and some

evaluations create new ones. In particular. the application of an abstraction creates a new

environment by augmenting the current one with new bindings for some identifiers; any

former bindings of the same variables are superseded.

In LISP /370 two classes of bindings may be created. A fluid binding is accessible
to any evaluation of a variable for which it is the most recent binding in the inherited

environment. A lexical binding is not accessible to CALLed or non-lexical operator
expressions and thus offers some degree of isolation from side effects. The accessibility of

lexical variables is an important concern for the semantic rules that follow.

Whenever no normal binding takes precedence. the global environment gloE is
invoked to produce the global binding. The nature of g/oE is rather ad hoc out flexihle

(see the STATE operator for more details). It is worth noting that the normal dcf~ult gloE

is such that variables have their denoting id as value until otherwise assigneu.

A most significant aspect of LISP is the way that environments can be retained as

data objects and dynamicly invoked. In LISP "referential transparency" is optional.

Indeed. keeping track of the contexts can become a major preoccupation.

The funarg construct is an expression which contains an expression-part and a

state. The value of the funarg is the value of its expression-part evaluated with respect to

the environment of its state.

IBM INTERNAL Draft --- FWB. revised OY-l X-79

It should be noted that except for constants. funargs. and variables~ every LISP

expression is a combination. Some of these combinations are distinguished for semantic

reasons. The combination form is used to indicate application. There are three types of

application expressions:

1. Meta combinations. a transformation from an operator value which is special

form applicable and the unevaluated list of operands (rand •.•). which produces a

data value.

2. Macro composition, a transformation from an operator value which is a macro

and the original combination's data structure, (ralor rand •••). which produces a new

expression. A macro is either a mbpi, or a mlam bda-abstract ion. or a closure

(macro-funarg) of either of these.

3. Ordinary applications, a transformation from operator value and a list of the

values of the. operands. which produces a data value. Ordinary application is

presumed if neither of the other cases apply. If the operator is not recognizably

applicable or inapplicable it is reevaluated and that value is ordinary applied.

The type of application depends on the value of the operator (it could be consid

ered unfortunate that each type of application is not distinctly represented). The lack of

transparency that results from using value rather than syntax to classify these application

expressions is balanced by the flexibility of the delayed interpretation that can also be

considered a feature of this LISP. Indeed the lack of distinction makes the definition of

most operators a free choice between macro definition and ordinary function definition.

The following constants (sf) occur as raLOr value and de nOlI! special forms. i.e.

their application is special and defined by special rules.

{ LAMBDA I MLAMBDA I MU I QUOTE I SETQ I FUNCTION I LABEL

COND I SEQ I GO 1 §2QI I PROGN I RETURN I FR*CODE I AUX I SETX}

mu-abstracr;ons and funargs whose e-part are mu-abstraclions or sf~'t also apply specially.

As such special forms apply specially i.e., they are applied to their ullcvaluatcd

randlist. they often require that randlis(have a definite syntax. The rcquirco synlax for

these built-in operators is illustrated below:

P~lge 13

Page 14 IBM INTERNAL Draft --- FWH. revised 09--1 H-79

An abstraction-e:tp. which is either

a lambda-exp (e, by • exp-seq)

where i!., has the value LAMBDA.

and bv the bound-variable part is { ident I (bv, • by!) }

and exp-seq is {atom I (e ...)}

or an mlambda-exp (e, by • exp-seq).

where e, has the value MLAMBDA.

or an mu-exp (e, by • randlist).

where e, has the value M U.

or an operator-code-e.\7J (e , e1 [-lisl • lap-code).

where e I has the value FR *CODE.

or an sequence-exp (e, tag aux s ...).

where e, has the value SEQ.

(e l s-exp • s-exp) where e, has the value QUOTE. is a quoted s-expression.

(e l id e) where e, has the value SETQ. is an explicit assignment.

(e l id e) where e, has the value SETX. is an auxiliary-stack-place assignment.

(e I id) where e, has the value AUX. is an auxiliary-stack-place contents fetch.

(e I bve2 • s-exp) where the value of e I is LABEL is a label-expression.

(e l {c I id I (p .[q])} ...) where the value of e, is COND is a conditional-expression.

where the predicate p is an e. and

the consequent q is an exp-seq.

(e I • exp-seq) where the value of e I is PROGN is an expression sequence

(e I tag aux s ...) where the value of e I is SEQ is a statement sequence expression

(e lSI-lab • tag) where the value of e I is GO is a go-expression.

(e, { id I ps } • tag) where the value of e I is EXIT is an exit-expression.

(e, e2 • s-exp) where the value of e, is RETURN is a return expression.

(e I e2 • s-exp) where the value of el is FUNCTION is a closure expression.

The following basic operator constants (ur) occur as rat or values. they are

» ordinary applications which are defined by special rules:

EVAI. CALL, MDEFX. APPLX. EVAL, SET, STATE.

Other basic operators, such as those defining data primitives. arc presumed but

not defined at this time.

EVALUATION

The following is a listing of the state transitions for the JS: E: C: Df machine.

The evaluation of e with respect to E is given by {(); E; eeO; Of. Throughout the rules that

follow the most important determinate of what happens next is the object at the head of

C.

•

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

Simple State Transitions

1. Halting

{xeS; E; 0; O} -.. HALT, the result of the computation is x.

Comment: The control which is a stack of expressions awaiting evaluation is empty and

there is no previous state to restore. In practice halting never occurs as control returns to

some operating system. This rule is here for theoretical completeness and is not one of the

usual transition states.

2. Value return restoring the former state

P.age 15

Comment: This rule models single-valued procedure-exit. The control of this state is

empty and the dump is not empty. therefore the last value computed (the one at the head

of the stack) is returned to the former state.

3. Re-evaluation

{xeS; E; EVALeC; D} - IS; E; xeC; D}

Comment: The meta-symbol EYAL is used to indicate reevalualion after macro expan

sion. Used in rules 8.1.1.2.1 and 8.2.

Constants

4. Self-denoting expression

IS; E: ceC; Dl-.. tceS; E: C; Dt

Comment: Constant expressions are idempotent, that is. they evaluate to themselves. All

data objects other than pairs, funargs and identifiers are idempotent under this rule.

Page 16 IBM INTERNAL Draft --- FWB. revised 09~ I X-79

Variables

5. Evaluation of a variable

IS; E: ideC: D} -+ {contentsIE{idJJeS,. E,. c,. DI.
where contentsUval ...)J = val.

Comment: Here we see the use of the environment E. it gives meaning to variables. The
mechanism for user installed global interpretations was discussed earlier.

Closures

6. Closure evaluation

{S:E;/unargeC:DJ and e is the e-parr and sd is the s-part.

- {o: ((ehEeIE /)etE,),. eeO:{S,. E: C; D}} where sd has E, as its E-part.

Comment: This expression represents an expression closed with respect to the environ
ment of sd. In the absence of updating, or state savfng. such expressions denote the same
value regardless of the context in which the closure is evaluated. Abstractly it would be
sufficient to reference E but in LISP t .8+0.3i it is achieved as described. funargs are to be
contrasted with constant-closures. they both APPL Y the same but the later is self-denoting
whereas the former may denote expressions that require further evaluation. Another
nuance of LISP1.8+0.3i is that along with the new state there was created a new lexical
environment with an empty first contour and a reference to the lexical environment of the
sd as its tail.

Combinations or Application Expressions

7. Operator evaluation

{S;E: (e, • randlist)eC;D} -{S;E:e,eOPe(e, • randlisr)eC;DI

Comment: In this common case the operator expression is first evaluated ror classifica
tion.

8. Operator value determines what happens next

8.1. Understood special form if x is {sf I O/o(FUNARG sf • sd) L

IBM INTERNAL Draft --- FWB. revised OtJ-1 X-79

X.I.I. Operator tested for lexical application and closure avoidance.

If C 1 == OPe(w • randlistz}eCz

8.1.1. r. Ordinary application with explicit lambda-exp as operator.
{LAMBDAeS I : E: OPe(y • (bv • exp-seq»e OPe(w • ralldlislz)eC:: D}
- {S I; E; (APP1eS/).randlistzeAPPje bv e exp-seqeCz; D}

Comment: The lexical bindings are not lost and the operands are evaluated.
Note the use of the composite meta-symbol (APPleS,) which serves to
indicate that lexicals are to be used, and as a place-holder for the stack as it
was before the argument evaluation was started. APP.r is also used to avoid
creating a lambda-abstraction from bv and exp-seq which would otherwise
require the allocation of space. It is a design .goal (not achieved by most LISP
interpreters) that the evaluator should not wantonly consume heap-space.
The question arises, what makes lambda-expressions used as operators deserve
special treatment? The answer is that we wish to avoid the unnecessary
closure formation that would otherwise occur.

8.1.1.2. Macro composition with explicit miamhda-exp as operator.
{MLAMBDAeS; E: OPe(y • (bv • exp-seq»eOPe(w • randlistz)eCz; D}

8.1.1.2.1. If bv is conformal with (w • randlis!:!)
- {OeO: bindlbv; (w • randlistz); ((ehEeIE)etE) I: ESeexp-seqeO:

IS; E; EYALeCz: D}}

8.1.1.2.2. Otherwise - D macro-nolf-~olff(".mal·

Comment: The lexical bindings are available during the evaluation of the
expression sequence exp-seq. Note that the original expression acts as the
operand to the macro.

8.1.1.3. Explicit mu-exp as operator.
{MUeS; E; OPe(y • (bv • randlistJ}}e OPe(w • randlis/~)eC2; D}

- IS; E: (APP1eS)erandlistjeAPPje bv e randlist :!eC2: DI

Comment: A context closure is avoided here. Notice that:
«LAMBDA bvo • exp-seqo) • randlisln) == «MU bVI) • ralldlisl,,) • exp-seqo)

8.1.1.4. Explicit FR ·CODE operator.
{FR*CODEeS; E: OPe(y • (e, z •.. neOPe(w • randlisl:)eC:!: DJ
-{S;E:ereOPe(w. randlist:)eC1:D}

Comment: operator-code-exp are of the form: (e, e! f-list • lap-code). where
the value of e 1 is FR ·CODE. and are equivalcnt to e! ror the interpretive
semantics. For compiled code it serves to define e hy a sequence of lap-smrts

where lap-stmls are LISP assembly program instructions. the definition of
which is machine dependent and will not be discussed in this section.
FR *CODE expressions provide an escape from thc domain of lJSP expres
sions for compiled code and can he used by systems programmers to provide
efficient, compiled realizations of special expressions.

Ptlge 17

Page I X IBM INTERNAL Draft --- FWB. revised 09"-1 X-79

X.I.I.S. Explicit seq-exp as operator.

ISEQeS; E; OPe(y • (lag aux s ...))e OPe(w • ralldlisl:)eC!: Df
- IS; E; (APP ,-S)erandlistze(SEQ/eS;. (tag aux s ...) e C~: D}

Comment: Statement sequences provide a paradigm for algorithmic or proce- .

dural control flow concepts. This rule simply sets up to evaluate the values

for the alL'C stack places, and then to apply the sequence. When applied the

statements of the sequence are evaluated in a left to right manner (as, are the

operands of combinations) except that the control sequence may be changed

through the use of the go-expressions. The labels, tags and auxiliaries have

restricted lexical scopes, that is, only those sequence-expressions' nested

within a single binding contour have the usual conventions of lexical scope.

To avoid confusion with the scope rules of lexical variables we shall,refer to
this as static scope. The operands are evaluated before the sequence is

applied. Not calling the stack place names by the term variable may be a bit

silly, but even though they may be used (in many cases) as analogs to varia

bles defined by E, they are not isomorphic. An important difference is that

the places are not shared by other states.

8.1.2. Repeated operator evaluation. closure avoidance cases.

If C, = (REAP.S,)eueC~ and x ! {LAMBDA I FR*CODE}.

8.1.2.1. {LAMBDA.S: E:
OPe(y. (bv • exp-seq».(REAPeSI)e(w • randlisJz)eC~; D}

- {S /; E: (APP!eSI).OeAPPJ - bv e exp-seqeCz; D}
8.1.2.2. {FR ·CODEeS; E;

OPe(y. (e l z ... »e(REAPeSl;e(w • randlisI2).C!; D}

- IS; E: e /eC,; D}

Comment: In the case of repeated evaluation of operators, closure formation

can also be avoided if a lambda-expression pertains. Note the use of the compos
ite meta-symbol (APPleS I) which serves to indicate that lexicals are not to be

used. and as a place-holder for the stack as it was before the argument evalua

tion was started. The lexical context is lost in the case of repeated evaluation.
A body that arrives as part of a computed value is not considered lexically

present. The FR ·CODE could hide such a case. so it also must be treated

specially.

8.1.3. Operator was not an explicit ahstracrinn-exp hut is an sf.

Otherwise. - {rand·list/.So' E: SF.xeC /: DJ

Comment: The usual practice in LISP systems is to avoid the operator evaluation

entirely in these cases. That is. special forms as operators must he explicit. reserved

identifiers. The compiler for these systems is free to have a fixed idea anout their
semantics. This system fixes its ideas about special form application expressions
based on the value of the operator, likewise for macro·s. We can always define or

compile with respect to an environment that gives fixed values for the operators we

wish to fix. The ultimate interpretation of special forms is delayed until application.

special forms apply to the randlist of the combination.

IBM INTERNAL Draft --- FWB, revised OY-lS-79

H.2. Operator is a macro.

{xeS: E: OPe(y • randlist,)eC,: D}

where x = {mlambda-abstraction I mbpi I fUllarg-macro}

where a funarg-macro is a funarg or constanl-closure whose e-part is

{mlambda-abstraction I mbpi}.

- { (y -randlist ,) eS; E; MAPPexeEVALeC,; D}

Comment: This rule elevates the status of macros. Macros apply to the combination

form of which they were the operator. The result of the application (macro expan

sion) is then reevaluated.

8.3. Operator is a context abstraction.

{xeS; E: OPe(y • randlist,)eC,; D}

where x == {mu-abslraction I closed-contex/}

where a closed-context is a funarg or constanl-closure whose e·part is

{mu-abstraction I closed-context}.

- {rand-list ,eS: E; SFexeC ,; D}

Comment: This rule elevates the status of contexts. Contexts apply like sf.

8.4 Otherwise. ordinary application is presumed.

Comment: The else-clause pertains in the case of ordinary application. in which case

lexical bindings will tentatively be dropped during application.

Comment: The important thing heing dcciued in rule H is whether ordinary application Of

macro application or special application is appropriate. In the cases or macro application

the unevaluated original expression becomes the operand. The special forms arc also

recognized here and applied to their unevaluated rand/is!. If macro or special application

is not indicated by the value of rator then ordinary application is presumed. Al some cost

in added complexity, 'the concept of lexicality and the wanton-heap-lise avoitlancc

principle have been introduced.

Page 19

Page 20
IBM INTERNAL Draft --- FWB, n:vised 09: I X-79

Macro Application

9. Macro application

{yeS: E: MAPPexeC: D}

9.1. If x = mbpi

9.1.1. If bv-oflx, and yare conformal

- {o: bindlbv-oflx,; y; ((ehE).E)J; ICerr",/xl: is: E: C: D}}
9.1.2. Otherwise - Dnon-con!omral-app,

9.2. If x = %(MLAMBDA bv • e:cp-seq)

9.2.1. And y is conformal with bv

- {O-O: bindtbv; y; ((ehE)_E),: ES ee:cp-seqeO: {S: E: C; DH

9.2.2. Otherwise - Dnon-cOn!umral-app.

9.3. If x is a macro-funarg with z the e-part and sd the s-part where sd has an E ,.

9.3.1. If z is mbpi

9.3.1.1. If bv-oflzJ and yare conformal

- {o: bindlbv-onzJ; y; ((elrEeIE)e,E,)1: IC~nlf.Jz}; {S: E: C: D}}

9.3.1.2. Otherwise - Dmacrn .. non-co nformal'

9.3.2. If z = %(MLAMBDA bv • e:cp-seq)

9.3.2.1 If y is conformal with bv

- {Oe(): bindtbv; y; ((elrE.IE/)etE,)}: ES-exp-seqeO:
{S: E: C: D}}

9.3.2.2. Otherwise - D macro-non .. cnn!of'mal'

9.4. Otherwise - {yeS: E: C: Df

Comment: There are just two ways that this rule comes into action: One is after rule X.2

the other is through the ~pecific usc of the hasic function MDEFX. NOll' thaI in the case

of applicable FUNARGs the lexical variahles of the t:f1VirOlllllellt of tht' r:UN;\RG are

viable but in the case of mbpi and mlambda-abstraction lexical variaoles are dropp<:d. Th<:

otherwise clause is interesting because it illustrates that if the macro oeing applied to the

expression y is not a recognizably macro-applicable form then the expression y ilsclf is

returned unchanged. The otherwise clause only occurs through explicit lise of M DEFX
(see below).

•

IBM INTERNAL Draft --- FWB, revised 09-\ X-79

Argument Evaluation (for Ordinary Application)

10. Evaluate Arguments Sequentially for Ordinary Application

IS: E: (fAPP, / APP2J3eS,)e(rand, rand ...)eC: D}

- {S; E; rand ,e({APP, / APPi JeS,)e(rand ...).C; Dt

Comment: This rule entails the evaluation of operand expressions in left to right order.

Note the use of the composite meta-symbol which serves both to indicate whether lexicals

are to be used or not, and as a place-holder for the stack as it was before the argument

evaluation was started.

Ordinary Application

11. Ordinary application

11.1 If x = APP J then

11.1.1. If bv and at ... an are conformal

- {O.(); bin~lbv; { ((ehEeIE)etE) I ((ehE).E) }3; a\; ••. anJ: ESeexp-seqeO:

IS: E: C2; DJ}

11.1.2. Otherwise - D non.con/omra/.app .

Comment: APP1 is used here as a means of using control stack space rather

than heap space .

Lambda Abstractions

11.2 If x = (H>(LAMBDA bv • e:cp-seq)

Comment: See rule I 1.1.

P~ge 2 t

•

•

Page 22 IBM INTERNAL Draft --- f\VB. revised 09& 1 X-79

Function Binary Program Images

11.3 If x = [bpi

I 1.3.1. If bv-ofJxf and a, ... an are conformal

- {o: bind2Ibv-oflxJ; ((elrE)eE); a,; ••. anJ: Icen1rylx/; {S; E: C: DJ}

11.3.2. Otherwise - D non· conforma'· app'

Comment: Illustrates the application of a machine coded subroutine.

Distinguished basic r unctions

11.4 If x ::II ur, understood primitive operator constants. UR = {FIX-UR U
MULT-UR}.

Fixed number of argument understood operators

11.4.1. If x :I fix-ur ~ UR. It is a constant operator with definite number of
arguments.

11.4.1.1. EVA 1. the evaluate in the current environment operator.

{a,.s: E:(IAPP, / APP2r?eS)eOeEVAJeC: D}

- {o: ((ehE)eE): a1eO: {S: E; C; DJ}

Comment: Lexical bindings are not accessible to computed expressions.

The only way to achieve this is to evaluate a constructed jUllarg. Con

structed funargs are possible but through the use of a special fix-ur. Such

an operator is necessary for LISP system programs. hut is not 3 feature of

the language being defined. It would violate the lexical scoping rules for

the non-fluid variahles. EVA 1 achieves an optimization not possible by
EV AL in that it does not require an attendant state saving.

11.4.1.2. If x is MDEFX. the operator for expanding macro·s.

{~.a,.s; E: (lAPP, / APP213eS)eOeMDEFXeC: D~
- { a2eO: ((ehE)eE): MAPPea,eO: {S; E: C; D," f}

Comment: This makes it possible for the LISP compiler (and indeed any

function) to get one level of macro-expansion without the usually attendant
evaluation.

•

•

IBM INTERNAL Draft --- FWB. revised O()-I X-79

I 1.4.1.3. If x is APPLX the operator for applying an operator to list
computed (arg ...)

{an·" .a,.S; E; (/APP, / APP1i J.S).O.APPLX.C; D}

where a2 = (~.1" .a2.")·

-{a,.a2.n.· .. ~.leS; E: (APP2.S)-O.CALL_C; D}

Comment: This aJlows the operand values to be computed as a list by an

arbitrary LISP computation: A feature which could not in general be
obtained otherwise.

11.4.1.4. If x is the EV AL. and a, and ~ are present.

{an· .. ·areS; E; (lAPP/ / APp21J.s)-O.~.C: D}

11.4.1.4.1. If ~ is an sd

- to: ((ehE).E,); at .0; {S; E; C; DJ} where sd has E/ as its E-part.

11.4.1.4.2. Otherwise - {~.a2.aleS; E;

(APP/eS)-O-%(LAMBDA ?ARGS? «ERR2 7) ?ARGS?».C: DJ .

Comment: This is the usuaJ LISP evaluation with respect to a given envi
ronment. Note. the lexical dropping.

11.4.1.5. Otherwise. some understood basic operator.

11.4.1.5.1. If bv-o(JxJ and at ... an are conformal then

- {xl al'· ... an; ((ehE).E)} eS; E; C; D}

11.4.1.5.2. Otherwise - D nnn.CI1n!cwmtll.app'

Multiple argument understood operators

11.4.2. If x = mult-ur, it is a constant operator with an indefinite number of
arguments .

Page 23

Page 24

•

IBM INTERNAL Draft ••• FWB. revised 09.1 X· 79

1 1.4.2. t. ~. the function to apply the operator which is computed after
the operands to however many arguments were transmitted.

{an·an_,····at.S; E:(/APP,I APPz/J.SJ.()e~.C; D}
11.4.2.1.1. If an exists and is a fbpi.

11.4.2.1. 1. t. If bv-oft/bpi} and at ... an_I are conformal.

- {O; bin~lbv-oflfbpi}; ((eltE)eE); at;··.an_,}; kenf,.Jfopi/:
IS; E; C: D}}

1 1.4.2.1.1.2. Otherwise - D nlln.cr",/o,mal.upp'

11.4.2.1.2. If an exists and is %(FUNARG y sd • z) where sd has an E /.
11.4.2.1.2.1. If y is [bpi.

11.4.2.1.2.1.1. If bv-ofUbpi} and aT '" an_t are conformal.

- {O: bin~lbv-oflfbpif; ((elrE.,E/).tE,); at; ••. an_I }; {centr./fopil:
IS; E; C: D}}

11.4.2.1.2.1.2. Otherwise - D nnn.cnn!nrmal.app'

11.4.2.1.2.2. Otherwise

- {an_I·" .a l ·(); ((enEeIE,JetE I); (APPz.O).O.a n .0;
{S;E:C;D}}

11.4.2.1.3. Otherwise where an exists.

- {an_t ••• .a t eO: ((eltE.IE/).tE/); (APP1.0).O.aneO: IS; E: C: DJ}

11.4.2.1.4. Otherwise where an is not present.

IS,' E:(/APP,I APPz/JeS)eO.~.C; DJ

- {OeS: E: C,' D}

Comment: This rule is ordinary calling in the current environment with

arguments transmitted on the stack. Lexical bindings are dropped. CALL is

used by the compiled code to attain certain efficiencies. In particular. the last

argument an can be treated somewhat more efficiently than the rest of the
arguments. Note the degenerate case: (CALL) = O.

11.4.2.2. If x is STATE the state saving operator it creates continuations

{an· .. ·ateS; E;r/APP,I APP~/3eS) .O.STATEeC; D}
-{sdeS,. E; C; D}

where sd has IS: E,' C; D}

Comment: This sd constructing operator can only capture the current S.£. C.

and D. The optional argument at if present is glonot (see section on global

environments). Likewise. ~ if present is glo/sf (see section on global environ

ments). These optional arguments allow the saved state to pertain to global

environments other than the one current. If neither is specified then the
current global context is assumed.

11.4.2.3. Otherwise. some understood basic operator.

11.4.2.3.1. If bv-oflxf and a, ... an are conformal then

- {xi at; ... an ; ((eltE).E)}eS; E; C,· D}

11.4.2.3.2. Otherwise - D,wn.con!omtol-app.

•

IBM INTERNAL Draft --- FWS, revised OY-18-79

Dynamic Macros

11.5. If x = { mbpi I mlambda-abstraction} - Dmacm.;napplicahle .

Comment: This would seemingly limit the free choice between macro definition and
function definition styles for operators but it can be over come by clever use or the
error channel (see section on Program Events). In any case we detect that it is too
late to macro apply .

Closure Application

11.6. If x = [unarg or constant-closure and y is the e-part and sd the s-part,
where sd has E I as its E-part then

11.6.1. If y is an fopi.
11.6.1.1. If bv-of{yJ and at ... an are conformal then

- {o: bindzlbv-oflyJ; ((enEeIE/).tE,); at; .•• an}; ICen1f~.JY i; IS: E,· C; DI}

11.6.1.2. Otherwise - D nnn.cnn!lI,ma/-app'

11.6.2. Otherwise - {ane ... ateO: E,; (APP,e()).OeyeO; IS; E; C; D}}

Comment: Notice the possible inconstancy of the constant-closure.

State Application

Comment: A fact that this meta .. language may not adequately convey is that S 2 and
C 2 of the sd are copies but E 2 and D] are shared references. This illustrates the
"continuation 0' of a state.

.. Code Abstraction Application

11.8. operator-code-abstraction.

{an •... at.S: E:(/APP, / APP.?13 eS).O.(!{)(FR*COOE C!, z ...).C; Df

- {an.···at.s; E; (lAPP, / APP2iJ.S) .O.e,.C; D}

Comment: This expression form is meant for the exploitation of the compiler and is
included here only to reveal its import to the interpreter. operalor-code-ahsrractions
provide an escape, for compiled code. from the domain of LISP expressions. and

into the domain of LAP code. They can be used by systems programmers to

Page 25

•

Page 26
IBM INTERNAL Draft --- FWB. revised 09-1 X-79

provide efficient. compiled realizations of basie operators or to provide access to
system function not normally provided for by LISP semantics. They are normally
used in operator position. It is hoped that such devices will be used only by the well
informed and well intended ..

Sequence application

11.9. If x = ({SEQ, / SEQ) .S)

{an····at·S; E; (/APP[/ APPi J.S).c. ({SEQ, / SEQ2} eS). (tag allX s ...) • C
2
; D}

11.9.1. If aux and a1 ••• an are conformal

- {O.an····at·S; E: {(SEQ, / SEQ2i .S). (tag aux s ...) • (s ...) • C
1
; DJ

11.9.2. Otherwise - Dnon-co,,!ormal-app •

Comment: Central rule for the conformal mapping of aux on to the parameters.

Sequence Abstractions

11.10 If x = %(SEQ • (tag aux s ... »

Comment: Notice that SEQ2 is categorically used here. this will serve as a static
scope stopper. A quoted or any constant or any computed seq-abstraction does not
have any inherited static context.

Inapplicable Db jeets

11.11. If x ~ {SFI MU-ABSTRACTION/ CLOSED-CONTEXT} - D\I.inClPPfimhle'

Comment: Here again we chose to intercept a case where it is now too late to not
evaluate the operands. In other words. having dl'cided to do ordinary ap,.,lication
we find that the operator requires special forms application and th:'ll is inconsistent.
therefore to be treated as an error.

I 1.12. Place-holder assignment (sec rule 20.)

11.13. Assignment (see rule 19.)

11.14. If x is a constant not explicitly mentioned elsewhere in rule II then

•

IBM INTERNAL Draft ••• FWB. revised 09·(X-79

- DinapPlicah/~.tlhi~cr

Comment: The error channel for DtnflPpl;("(/hIt'.(/h'~C'1 can be replaced (by a function to

produce (x at ... an) for instance.) Traps are discussed is greater detail in a follow.

ing section. This is an instance where the model exposes the computational import

of a semantics question. The error trap channels provide flexibility but require

wanton CONSing and the creation of additional activation records .

Operator evaluation repeated

11.15. Operator not directly applicable.

Otherwise, - {an •••• ate(); ((ehE).E): x.(REAPe()).xeO: {S: E: C; D}}

Comment: Application of x to the operand values is sometimes referred to as ordinary

application. When x is a macro or meta form. an error break occurs. When x is a FU.

NARG, a new state must be created. When x is a constant form unknown to Rule I I. an

error break occurs. The otherwise clause is interesting because it illustrates the repeated

evaluation of the operator form until the applicable function it denotes is revealed.

Reapply reevaluated operator

12. Reapply reevaluated operator.

{z.an···ateS: E; (REAPeS).x..C; D}

12.1. If x=z- Dinapplicabl~.ob~ct

Comment: Reevaluation results in the dropping of lexical variables. Readers may
reasonably find fault with the trivial loop detection case semantics.

Meta Applicable Fonns

13. Special-Forms application.

•

Page 2X
IBM INTERNAL Draft --- FWB. revised 09--1 X-79

{aleS: E: SF. xe C,. Df

13. J. Conditional expressions.

Comment: PRED is merely the meta-linguistic cog for the conditional. The balance
of the rules for the conditional are given later.

13.2. Auxiliary stack-place values.

{at·S,. E,.SF.~.C,. Dl where a
l

= (x ...).

13.2.1. If c= ... y (ISEQ,/SEQ2i eSt}. (tagauxs ...). C
1

where y :;: (SEQ~eS J)

and alL'C = (aux-id ...) and x = aux-id
j

and S t = '" .a j a j ... eao .sol then
- {ajeS,. E; C,. Dl

13.2.2. Otherwise - Dunbnund.AUX

Comment: The basic access operator for the contents of a stack-place. Notice that
there is no access scope beyond the innermost computed sequence (indicated by
(SEQ2·S J}). The reader may well ask: why was it necessary to introduce yet
another class of variables? The reply to that question is that S has some attractive
properties that we wish to exploit. Namely:

1. With respect to the rules of this semantics we notice that the constituents of S
are staticly determined from the point of view of C. This means that compiled
references m~ r be early bound to constant offsets.

2. In the state saving and continuation of a state the values on S are not shared as
in the case of E. Because they are copied rather than referenced they are "undone".

13.3. Enter expression sequence.

Comment: This form is an applicahle expression scquem:e operator. The halanec of
the rules for expression sequence evaluation are given later (see rule 17).

13.4. Return exp.ression.

{a .. eS; E,~ SF-RETURN.C; D} - IS; E; fe 10 } 1-0 : D}
where at = {(e. z) I arom}!.

Comment: Allowed anywhere a variable is allowed. Causes return with value rrom
the current state frame.

•

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

13.5. EXIT expression.

{aleS; E; SFeEXIT eC; DJ - IS: E: eeEXITetageC: D}
where a, = (e • tag),

Comment: The action of this rule is to cause e to be evaluated like any other
operand expression of the current static statement context. Should that evaluation
produce a value then rule 18 wiJI complete the exit. An identifier arl!ument to EXIT

~ -is treated as a variable not as a statement label.

13.6. Go expression.

{aleS; E;SFeaO eC; D}

where at = (st-lab 1 • v).

13.6.1. If C = ... y ... e ({SEQ 1/ SEQ]I eS /)e (tag aux 5 ••.) (51.")eC,.
where y #: (SEQ 2eS3)

where (s / ...)=(. . . st-Iab / s2".)'
and S must be .. . eSI

-{SI; E: ({SEQI / SEQz} eSI)e (st-Iab, s2 •••)e(s, ...)eC,: D}
13.6.2. Otherwise.

- {st-Iab ,eS: E: (APP ,eS/)eOe 0/0 (LAMBDA(? ARGS?)
(UNWIND«ERR2 10) ?ARGS?»)eC: D}

Comment: GO expressions affect only the control and stack. Which is, the
principal reason for a distinguished GO.

13.7. Closure forming expression.

{aleS,' E: SFexeC: D}

where x is {FUNCTION I LAMBDA I MLAMBDA I FR*CODE I SEQf;!
and at = (y • w) then

13.7.1. If x is FUNCTION or FR*CODE and y is/ullarg,
then ... {funarg leS; E; C; DJ
13.7.2. Otherwise, - ffimargz .S; E: C; D}.

where funargz is created and has u as e-part and sd as s-part
where u is:

{ y I
%(LAMBDA Y • w)
%(MLAMBDA y • w) I
°/o(FR *CODE y • w) I
lYo(SEQ y • w) f2 •

and sd has E as its E-part.

i.e., the lexical bindings (if present) are operative in the environment of
the closure.

Comment: The lambda-expressions and mlambda-expressiom: of LISP are prototypi
cal functions and macros; upon evaluation their meaning is bound and they oecome
functions and macros. The funarg (closure) contains the abstraction and the

Page 29

Page 30

Prof. Or. H. Stoysn
Unl'v8'toitAt ;;'rlange".Numberg
Instltur fOr Mathemstieme Maschln.n
und Dat.rwer&rbeilung (Informatlk VIID
Am Welchselgarten 9
91058 Erlangen

IBM INTERNAL Draft --- FWB. revised 09-~ X-79

I.!nvirnnml.!nt that binds the variables. Note that the environments can he shared,

indeed any value object can be shared. Assignment and updating can therefore

change the meaning of a variable. From this we conclude that meaning is not dosed

(in the mathematical sense). only bound. by these closures. We will nevertheless

refl.!r to them as closures (in a computational sense).

For the present model the representation of sd will not be defined. Only the

E component is needed by the FUN ARG device. These /unarg 5 and sd's require

allocation, a sufficient reason to avoid the overuse of this mechanism. The

FUNCTION device is most useful when we wish to pass a functional object around

by name, i.e. e is an ide It may be used to close any expression e with respect to E.

The FUNARG device is used to represent these closures.

Note that extraneous operands are ignored. Observe that (FUNCTION

mlambda-exp) is unproductive (will produce only "dynamic macro not allowed"

condition). but (FUNCTION lambda-exp) is productive but unnecessary.

13.8. LABEL expressions, evaluate with respect to a dummy environment.

{aleS; E; SF.LABEL.C; D} - {bv.body.O: E/; body.LABEL.O: is: E: C; DJ}

where a l is (bv body. z).

where E/ = bindlbv; dufbvJ; ((enEe/E).tEjJ

du{bvl = bv if bv is a c.

(a.e) if bv is an ident

(dulbv,J • duibv2J> if bv is (bv, • bv2)

all other cases are undefined.

Comment: Label-expressions allow the computation of ohjecls with shared refer

ences without requiring the user to use the "dangerous" update operators. It may

be used to create recursive functions, mutually recursive functions, and list struc

tures with shared references. The second part of LABEL expression evaluation. the

fixup phase, is found in rule 2 t. The problem that this operator (lnly partially solves

is to find solutions to all equations of the form: bv = e. This technique works only if

a ··guessed'· structure of the same shape as bv with the variahlcs denoting pairst. is

conformal to the value of e computed in a context where b,' is hound to that struc

ture. In other words the solution should conform to hv and to e and the each

variable of bv should be bound to its conformal component of the solution. and the

variable references in e should compute the value denoted by that variable in the

conformal mapping of bv on the solution.

t In the case of restricted type variables a better guess can be made.

•

IBM INTERNAL Draft --- FWB. revised 09-18-79

13.9. SETO.

{UI.S; E: SF.SETQ.C; D} -.{Oeid.S; E; ESe(e ...).(APP,eS) .O.SET.C; DJ
where a l is (id e).

Comment: SETQ will assign to lexical variables because of the use of APP,. This is
a consequence of the ur SET which is described in rule 19, and which this rule uses
to accomplish its purpose.

13.10. Quotation.

{al.S; E; SF.QUOTE.C; D} -. {s-exp,eS; E; C; D}

where at is (s-exp 1 • s-exP2)'

Comment: In order to denote the non-idempotent forms (pairs. funargs and identifi
ers) the quotation device is necessary in LISP. This follows from the insistence that
expressions be data. Backus[2] points out "where meaning is not idempotent, we

have chains of meanings. e.g.: (QUOTE e) - e - f ... etc. ". In LISP such repeated
evaluation is implicit only for operators during ordinary application. normally
expression evaluation is one level of reduction. Notice that operator expression
quotation has the meaningful effect of assuring ordinary application without lexical
accessl

13.11. Context application

{al.S; E; SF e %(MU bv • valuelist) • C; DJ
-{vn •... vl.S; E; (APP1eS)eOeAPPJ.bv. al.C; DJ

where valuelist == (VI'" vn)·

Comment: Application of a context abstraction is explained in terms of ordinary
application. Observe that such an applicable constant allows the imposition of a
limited set of bindings into the current context with out requiring state ~aving.
Note: The lexical variables (outside of by) are inaccessible when a l finally evaluates.
(o/c)(MU bv • value list) • e:cp-seq) is equivalent to:
(APPLX 0/0 (LAMBDA bv • exp-seq) (QUOTE va/ue/ist»).

13. 12. Meta application of a conle:cl-c/osu re

{al.s: £:SF.(Yt,(FUNARG (~{)(MU hv. ~Ia/uelis/) • ,,;£1,> .C; Df

-{vn v\eS: E/: (APP/.().O.,1PP. I .hv. al.O; IS: E: C: Df l
whcre valuelist = (v\ ... vn) and sd, has £/ as its E-pan.

Comment: This is the case of a context closure application where the surrounding
lexical context is accessible. More powerful than applying EVAL to (PROGN • a l)

and a state denoting £/. It is debatable whether (APP:.() rather than (APP,.() is
appropriate: in which case lexical access would be limited to within the scope of the

bv of the context-abstraction.

P.age 31

•

Page 32 IBM INTERNAL Draft --- FWB. revised 09-~ X-79

13.13. Context closure forming

{aleS: E: SF. MU e C: Dt

- tbveS: E: (STATE)e(MUeS). randlist e C; D}

where at = (bv • randlist)

Comment: Ultimately evaluates to o,,{)(FUNARG (}h(MU bv • ... allielistl • sd) see

rule 14. From the point of view of a simple understanding of "lexical variables".

this operator is the forbidden fruit. The subsequent application of the fiuwrg could

behave as if the computed expression occurred lexically in the same context as the

mu-expression that formed the closed-context. The safety of lexical variables is

therefore threatened by the MU operator. Were it not for this operator there would

be no possibility to update the lexicals with operations invisible to the lexical text.

The ability to treat lexical variables as place holders. subject to renaming (alpha

conversion), removal from E, and binding contour flattening. is thus complicated by

the existence of this operator. These optimizations may not be practiced if a

mu-expression occurs in the context.

13.14. SETX.

fateS; E: SFeSETXeC; D}

-.{O.id.S: E; ES.(e ...)e(APP,eS) eOeAUXSETeC; D}

where at is (id e).

Comment: SETX will assign to stack-place variables. See rule 20.

13.15. Ill-formed sf.

fateS; E: SFexeC; D} - Dill-formed'

where x is sf but none of the above applies

Comment: Rule 13 could be viewed as a subroutine of rule 8.

•

.' il

IBM INTERNAL Draft --- F\VB. revised 09-18-79

Closed context preparation

14.1 If x = 0 then.

Comment: A closed context is formed. it will apply specially to an exprcssion that
wil have access to the lexical of sd, if there are any.

14.2 If x :#= 0 then prepare the value of the next rand.

{vn •••• vlsd ,.bv.s; E; (MU.s).(rand, rand ...).C; D}
-{vn •••• v,sd,.bv.s; E; rand/.(MU.SJ.(rand ...).C,· OJ

Comment: The values for the context are computed in left to right order. in the
context that the context-expression occurred at the time the context closure was
formed.

Conditional Expression

15. If PRED is at the head of control, it indicates completion of predicate.

lueS; E; PREDe{e/ ...)ex.C; D}

15.1. Continue on to next predicate consequent. if u is O.

15.1.1. If x is «P2el ...)(p;eJ ...) ...)
- IS; E; Pl.PREDe(e1···)e «PJ eJ ...) ...)eC; OJ

15.1.2. If x is (atom. y)

- {O.S,· E: PREDe(e, ...)eyeC; OJ

15.1.3. If x is atom
- {OeS; E; C; D}

15.2. If u :#= O. evaluate the consequent

15.2.1. If lueS; E; PREDe(e, e! ...).y.C; D} where u :#= O.
~ lueS; E; ESe(e / e1 ...).C; D}

Comment: The possibility of multiple consequents is known in some LISP
system as the implied-PROGN feature. It can be considcred as syntactic
sugaring.

~ge 33

Page 34 IBM INTERNAL Draft --- FWB. revised 09.: 1 X-79

15.2.2. If {ueS; E: PREOeatome«P2 e1 •..) . ..)eC; D~ where u #- O.

-lueS: E: C: OJ

Comment: This is the case where no consequent is present. the predicate value is

then the value of the conditional.

Statement Sequence Evaluation

16. Statement sequence evaluation. if (SEQ{I/l}eS) at head of control.

Comment: This form and its precursor PROG (now seen to be non-quintessential)

has been much maligned as not part of "pure LISP". In fact it is of great teleologi

cal value because the common control structures are derivable from it and its

attendant GO and EXIT and statement label forms. (SEQ{J/ll.S) is merely the

meta-linguistic cog for statement context evaluation semantics.

16.1. If u is atom, then leave sequence with value of last program statement.

- {xeS: E; C; D}

16.2. Statement labels are skipped, if u = (sf-lab s ...), then

{yeS; E; (SEQIJ/21.S)ez.(st-lab s ...).C; O}

- fOeS: E:rSEQ{I/2IeS)ez.(s ...).C; D}

Comment: No evaluation occurs for identifiers which occur as statement labels.

Identifiers which occur as consequents of conditionals and identifiers which occur as

arguments to exits are variables not statement labels. The fact thal statcment labels

have the value NIL rather than the previous retained value is deliberate. The reason

for this is that we wish be able to optimize the compilation of SEQ. In particular.

we presently have no means of preserving the last computed value after a branch in

a conditional to a final statement label.

16.3. If u = (ps • (s ... », program statements are cvalu:.lh.:d sC4ucntially.

{xeS; E: (SEQlllileS)eze(ps- (s ...)) .C; Df

- {S; E: pse(SEQ{J/l,eS)ez.(s ...) .C; DJ

Comment: The statements are evaluated in sequence. the valuc of the previous

statement is not available during the current statements evaluation.

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

Exprt.-ssion Sequence Evaluation

17. If ES at head of control. then expression sequence evaluation.

{x.S; E; ESeueC; DJ

17.1. Termination condition. if u is atom,

{x.S; E; ESeatomeC; D} - {xeS; E; C; D}

Comment: The retained last expression value is the value of the sequence.

17.2. If u = (e I ez ...)' evaluate next expression in an expression sequence.

Comment: Each expression of the expression sequence is evaluated in sequence

without access to the previous expression value.

Exit sequence expression

18. {xeS; E; EXIT.tag/eC; D}

18.1. If C = ... y ... (SEQ{J/21.S)e(tag, aux sr ...)eu.C,: D}

and S must bes /'
and y:!: (SEQ:eS:)

then - {xeS ,; E; C,; D}

18.2. Otherwise, - D ~)CiJ~".(" •

Comment: The action of rule 13.5 has evaluated the argument with respect to the static

scope of the current sequence, in the case currently under consideration that evaluation

completed without changing the control state. and the computed value is now to be

returned as the value of the enclosing sequence with the matching tag.

Page 36 IBM INTERNAL Draft --- FW13. revised 09= I X-79

Assignment

19. Assignment (This rule could have been 11.13 but was left out so that the memory M

need not be introduced until it was required.)

19. 1. If y is an id

-{{E{y:ASSIGN;x}, I nuidb;ASSIGN:xl]}.S: E: C; DJM]

and {E{y;LOOKUP;OJ/ I nuidty;LOOKUP;OJ 2} M] = x

Comment: Only in the case that APP1 pertains are lexical bindings sought.

19.2. If y is a funarg which has z as the e-part and E, as the E-port of the s-part then

-.{x.z.O; E,; (APP,.O).O.SET.O; IS; E: C; DH

19.3. Otherwise - {SET.x.y.S: E: (APP,.S).O. %(LAMBDA ?ARGS?

«ERR2 11)? ARGS?».C: Di .

20. Place-holder assignment (see rule 11.12. and 13.14.)

{z.;dleS; E; (APPleS) .O.AUXSET.C: D}M,

20.1. If C = ... y ...• ({SEQI / SEQzI .SI). (tag aux IS ...) • C]

where y #= (SEQ2.S3)

and aux, = (aux-id ...) and id l = aux-id j

and SdMd = a i aj ao .S4 then

- {z.S; E: C: DiM2 andS/M2} = aj z.aj-l ao eS,J

20.2. Otherwise - D u"hnunQ.A UXSET

IBM INTERNAL Draft --- FW8, revised 09- I X-79

Comment: The basic update operator for the contents of a stack-place.

LABEL Operator

21. LABEL environment fixup phase.

{x.bv.body.S; E,; LABEL.C; D} M,
-{refixlbv; X; fixupjE,; by; xIMA-S; C: D} Mn

fixupIE,; by; xl M; = Er/M/n

fixup: Ex BV x S-EXP x M - S-EXP x Ex iW.

Where fixupjE /; by; xl M; =
if bv is·a c then E x Mi'
ifbvisanidenti.e. {(FLUIDid/) I (LEXid,) I id,} then

if { x t VALUESC1'~a'~d h.v hod.v I x ~ ATOM} then setqEandMlid,; xl
if x is a pair x=(x t • x2) then

rplacdEandMI rplaca{EI/id,,· LOOKUP; OJ; xII; x21
if bv is (bv, • bv2) then

if x ~ ATOM then undefined for now

if x = (x/ • x2) then fixup{fixupIE/; bv/; XI}; bv;; x:J
all other cases are undefined.

The meta operators setq. rplacd. rplaca. and E are the rather obvious functions
whose value domain is { S-EXP x E x Mj. Normally it will be sufficient to ignore
the E and M aspects of such functions and they will be simply thought of as denot
ing s-exp. Occasionally (as is the case above) the E and M are the domains of
interest and are indicated as above by the subscripting. It is generally tiresome to
continually include the environment and memory in the domain and range consider
ations of all functions and so we are prone to leave them oul. The reader is expect
ed to assume that they are intended and to tell from context whether they are
relevant.

refixtby; x; Ell =
if by is a c then c
if by is an ident i.e. {(FLUID id,) I (LEX id,) I id/~ then Edid,: LOOKUP: Of
if bY is a pair (by I • by]) and x is a pair (x, • x2) then

rplacdlrplaca'x; refixlby /; XI; E ,H; refixlbY2; x2; E,II
else undefined.

Comment: Having evaluated the boc{v of the LABEL expression with rcspel.:t to an
environment in wh'ich the elements of bv were bound to dummy pairs. we now
update those pairs under the assumption that the value x is an object of the same
shape as by. It has been suggested that if the initial guess for the dumm.y bindings
leads to an undefined case during fix up. the actual value delivered should he I.:hoscn
as a. new dummy and the evaluate phase repeated, etc. The complete LABEL for

J1age 37

Page 3M IBM INTERNAL Draft --- I-'WB. revised 09-1 X-7()

typed variables will generate dummy values of the indicated kind. A word ahout the
purpose of all this: We wish to compute self referring structures and LABI-:L
provides that ability. So does SETQ. SET, RPLACA and RPLACD. Our definition
of LABEL uses the meta linguistic equivalents of these operators. Why not just
stick to the update operators? The answer is that the update operators can alter
previously computed values thus changing their interpretation. Lahel does not have
that property. It is not as dangerous!

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

THE INTERRUPT SYSTEM

Interrupts arc external events rather that objects of the system. furthermore
their detection is usually provided for in the underlying computing engine. This
section posits a model that is tentative. and while it meets certain current practical
demands. may serve as a start point for the development of a better model.

The event that causes the interrupt communicates this to LISP by updating
some shared storage structures. LISP polls to see if any interrupt has occurred. It
does this at times when it has a "clean state".

If an interrupt is pending a DISPATCHER is called. It dispatches the
interrupt service function for the highest priority pending interrupt whose priority is
greater than the current level of priority of the interrupted process.

The global variable EXTERNAL-EVENTS-CHANNELS has a value which
is a vector whose kth element is a function of no arguments. which should be the

service function for interrupts of type k. See Table 1. for the detailed definition for
each channel. This vector is a LISP reference vector and normal vector operations
may be used on it. with caution!

The function S.ERRORLOOP is most commonly employed as the service
function. It is basically a READ, EVA 1, PRINT loop. One can exit normally to
resume the interrupted process by incanting (FIN e). One can do a UNWIND
which is an non-local goto to the nearest error catcher; as S.ERRORLOOP itself
has such a catcher one must signal it to do an UNWIND by (UNWIND n) where
n>O. The action of UNWIND should reset the current priority level to 0 and turn
the polling back on. Uncontrolled continuation (applying states) from high priority
interrupts could cause loss of sensitivity to lower priority interrupts.
S.ERRORLOOPl is just like S.ERRORLOOP except it doesn·t have it own error
catcher. It is used when the system is seriously out of space.

In the case of the SEeD machine we must extend our description to encom
pass these events. This can be done in the following manner:

A new meta-linguistic state component is introduced which is nothing more
than some special storage which we shall view as a kind of circular list:

where priority-level; is a small positive integer that determines the priority of
the interrupts of type k;.

and "; is a count of how may unscrviced interrupts of the lype k[an: pending.
and k; is an integer which identifies a type or class of interrupt.

For example, I currently accommodates 7 unique interrupt classes.

1=((1 0 • J) (3 0 • 2) (I 0 • 3) (5 0 • 4) (5 0 • 5) (3 0 • 6) (/ 0 • 7)./).

Page 40 IBM INTERNAL Draft --- FWU. revised 0<)·1 X-79

The purpose or definition of each interrupt class is given by Table I.

This would suffice if interrupts had only to announce their occurrence. It is

however the case that when certain interrupts occur they hring some data with them. This
data must be enqueued in some manner. An association of such queues to interrupt types
is provided by the following addition to the LISP machine:

R is a vector whose k th element is a reference to a LISP data object in the LISP
heap which defines the queue of pending data for pending interrupts of type k.

The data object representing such queues is a vector of non-pointer fixed-point
numbers. R has associated with each element two index numbers which serve to define
the place that new data is fed into the vector by interrupts and the place that data is next
to be eaten by service functions. These indices wrap around as they are advanced beyond
the capacity of the vector. In the case where the feed index would advance to the eat
index the interrupt is lost and the index advance does not occur. The function NEW

QUEUE is provide to allow the user to redefine any particular one of these queues.

An interrupt is said to have occurred when the count of the element of I corre
sponding to an interrupt of that type is increased to reflect that occurrence. At the time of
the- interrupt the data queue if present would be fed data. In addition to the above a one
bit flag is turned on. This requires yet another meta-linguistic state component which we
shall designate as POLL. We also add yet another component. P. to our machine which is
an integer defining the current level of priority. After interrupts occur they must be
detected and serviced. this is accomplished by the following extensions.

The application rule is extended for subrule 1 1.1.1 .• where a lambda-abstraction. is
being applied. If bv is conformal with at ... ant and POLL is in the on condition then:

- {(): bin~lb\,; {((ehEeIE)etEJI ((ehE)eE) }.l; a l ; ... anl;
(DISPATCHER) eESeexp-seqeO: {S; E; C; D}}

The action of DISPATCHER is to search 1 for an element u;

if u := (priority-levelj nj • k j) for some u e I,

and priority-leveli >P and n;>O. is the interrupt element of the hi~hest priori
ty. pending interrupt then u-(priority-Ievel,"i-I • kl). Should no interrupt of
sufficient priority pend POLL is turned off and control returns from DIS

PATCHER.
(note: - is used to denote "is updated to")

For this highest priority. pending interrupt DISPATCHER will invoke:

«EL T EXTERNAL-EVENTS-CHANNELS k i) k) with POLL turned off and P =
priority-lew! Ii'

When and if control returns P is reset to zero and the search. of I. for the highest is
repeated and when no more pend POLL is turned off. Control then returns from

the DISPATCHER.

IBM INTFRNAL Draft -•• FWB. revised 0<)- t x· 79

To repeat what has alreal1y heen mentioned above: Uncontrolled continuation

(applying stales) from high priority interrupts coull1 cause loss of sensitivity to lower

priority interrupts which were in process and interrupted. In some cases this could

be exactly what was intenl1cl1.

Summing up, it seems that some sort of process data object. a blocked process

queue, extensions to the scheduling in DISPATCHER. etc could all be brought

together under a unified processing model. The main problem seems to he that no

compelling model has appeared and as yet no compelling interest in a better model

has developed.

The application rule is extended for subrule 11.3.1. where a conformal [bpi is

being applied, and POLL is in the on condition.

-{OJ bin~{bv-onxl; ((eltE).E); at; ••• a n}; (DISPATCHER).lcenrr/x/: IS: E; C; D}}

Rule 11.6.1.1 .• where funargs with a [bpi as e-part are applied, similarly extended

(using the environment of the s-part of course); as are the macro application rules, 9.) .1.,

9.2.1., 9.3.1.1., and 9.3.2.1. .

The Go expression rule 13.6.1 is also extended so that in the case of a pending

interrupt:

These extensions allow for the timely service of the events that are pending.

The number of, priority levels of, and types of interrupts of a given SEeD
machine are rather fixed and ad hoc. The allocation of ncw J and R require capahility not

provided as LISP basic operators. System programmer help is required to replace J and R.
A basic primitive for replacing the elements of R with new allocations of queue space, is

provided and is called NEWQUEUE.

(NEWQUEUE k m) Replaces the kth element of R with a new vector which has capacity

for m dements. This operation can only take place when no interrupts arc

pending. Upon successful completion NEWQUEUE returns the new vector.

EXTERNAL-EVENTS-CHANNELS has a value which is a vector whose kth element is a

function of one argument, the integer k. which should be the service runction

for interrupts of type k. See Table 1, for the detailed definition for each

channel. As this vector is a LISP reference vector normal vector operations

may be used on it, with caution!

Pa .. 1!e 4. I

PaJ!c ~2

Chanm.-I

Number

o

2

IBM lNTI:RNAI. Draft --- FWB. revised 09-~ X-7()

Tahle I. The External Events Channels

Service Expres.~ion Definition or Explanafion

Nol really a channel. Reserved for f~turc use .. __

Currently. UN USED-CI-I ANN EL 1
wilh priority I.

EXTERNAL-INTERRUPT =
o/c>(LAMBDAO(S,ERRORLOOP 16 'EXT' (STATE))
has priority 3.

1-----· t--·· . . - .. ----.------------ .-.-.... - .. - .
I

3 IALARMCLOCK .
I--___ +--_N __ o_t_ y~!.prov!ded timer interrupt with priority 1. ------ .-.----

lOUT -OF-ST ACK=
I %(LAMBDAO(S,ERRORLOOPl 17 'STACK-FULL' »
I has very high priority 5. ______ . ___ _

4

5
IOUT-OF-HEAP =

I
%(LAMBDAO(S,ERRORLOOPI 18 'HEAP-FULL' »

I--___ ~-h-as very high priority 5. __ . _____ _
I

1--_6 __ ~1 R_E_~ __ ~_:e~~ prio_ri_t,y ___ 3_. __________________ . _______ ._._

7
Currently, UNUSED-CHANNEL 7

with priority 1.
I-----~-----'-----"---------------.--... -.----.---.. -. ---

I Currently unallocated. 8 ... n

External events may be posted by LISP programs through the use of the basic

function POST.

(POST k data ...) Causes pending of a user interrupt of class k in I. Enqueues data. an

integer if present. in R. Returns k if the enqueuing was successful and NIL

otherwise.

(EAT k) Eats one data element of R. Returns NIL if the queuc is empty or if no such

queue is present. otherwise the value is the integer data value eaten.

The ability of the user to redefine EXTERNAL-EVENTS-CHANNELS may lead

to inconsistency. It is still an open issue whether this ability is worth its addcd danger.

IBM INTERNi\1. Draft --- F\VB. rcviseu 09-1 X-7()

TRAPS

Traps arc program. or endogenous. events that happen synchronously. Like

external events they are divided into classes and each program evcnt is associated with a
program events service channel. Unlike external events they may receive operands. and
may return a value.

A principal use for program events is error handling. Errors are detected and
various program event channels are used to provide error servicing. Several classes of
errors occur in LISP:

1. LISP machine check --- The LISP state i~ not recoverable and the error is
uncorrectable. The only user actions possible correspond to debugging in the
micro-code (with respect to the fiction of there heing a LISP machine).
stopping or abnormal termination. and resetting or restart. No user service
channels are provided for errors of this class.

2. Uncorrectable error --- The LISP state is well defined. but there is no
meaningful recovery. In such cases user channels are invoked but if the
channel attempts to return a value an automatic unwind occurs.

3. Correctable error --- The LISP state is clean and it is possible to proceed if
the user service channel provides a value.

See Table 2. for the explicit details for each channel. The semantics
rule should be scrutinized for occurrences of ERR2. that is. instances of error
channels being invoked. These distinctions are not a property of the service
expression but rather how it is invoked.

(ERR2 n) - %(LAMBDA (? ARGS?)
(S.ERRORLOOP n ?ARGS? (STATE»)

S.ERRORLOOP becomes a new understood basic function. The
current implementation of which is to put you in the break state supervisor.
This supervisor runs in its own state but has the interrupted stale passed as a
parameter. The first action of the break state supervisor is to ask if it should
try to run in the interrupted state. It does this hy makin~ stran~e and wonder
ful tests. one necessary condition of which is to test some "heaven-hox". The
programmer can force the break supervisor to run in the "safe" state hy
causing the heaven-box to be set to zero through some external means. In
whatever state it runs it does so by causing the nth element of PROGRAM
EVENTS to be' applied to n, the arguments and the current stale.

The user should refrain from updating the "safe" state once he is running in it. For
PROGRAM-EVENTS variables bound in the user's state. the user may invoke the
channels in a similar manner and may update each channel with his own definitions.

---~

Pa!!e 44 IBM INTt:RNAL Draft --- FWH. revised Ol)-.1 X-79

Tahle 2. The Program Events Channels

('h. i
I Purpose, Explanation, and Initial value i Value of

?ARGS?
Value

Expected No. i
I

I

I
n.a.

I Ii No current purpose.
Initial value NIL. ---- --

i n.a.
-.-.- --- --------.1. -___ .. _

I
2

3

I 'UR DOMAIN ERROR'

Initially: S,ERRORLOOP

'NON-CONFORMAL MACRO APP ,

Expect user to supply expression for

I value of the macro application,
(UNWIND).

Initially: S.ERRORLOOP

I (a l ·· .an ur)

.-.. -I
e which user
supplies for

reevaluation.

! e which user I «rator ralld ...)
correct ,. supplies for

I x)
or to I h . reevaluation as

i were x IS ma- the value of
! cro being ap-
I the macro ap-
! plied. ! I---_.J--'______ ~ _____ . .f. plication.

I 'NON-CONFORMAL APP , I, (al···a
n

x) i
, e which user Expect user to supply expression for correct I, where x is i

supplies for value of the application, or to (UNWIND). I function being:
I reevaluation.

Initially: S.ERRORLOOP I applie~ __ r __ u __ • ___ ._. ___ • _

'DYNA~flC MACROS NOT ALLOWED' I i
Attempted to apply a macro to computed ope-I (a I ... an x) ~

. I e which user
rands. Expect user to supply expression forj where x is ma- :

, I supplies for
I correct value of the application, or to I cro being ap- ,
(UNWIND). I plied. : reevaluation.

j !
InitialJy: S.ERRO~_L._O_O_p _______ _l_! ____ .. ____ . _ :. ____ . _._

4

5

J

I
' APP OF THE INAPPLICABLE' i

I Application of a constant or expression that:
• • i (al···an x) . evaluates to Itself. Usually means undefmed: h . :

.... : were x IS con- :
6 (I.e. mappllcable) function. Expect user to sup- i b . :

I stant cmg ap- .
ply expression for correct value of the applica- i plied.

e which user
supplies for

reevaluation.
tion. or to (UNWIND). i:
Initially: S!E~RORLOOP I ___ ._ . _ ~_

I'NON-SD 2ND ARG I ! (e y ... EV AU
EVAL was not given an sd as second argument. h --- I

--- were y was I
7 Expect user to supply expression for correct

value of the evaluation. or to (UNWIND). supposed to be i
a sd.

. ~ Initially: S.ERRORLOOP

I' ARITHMETIC ROUTINE ERROR' (a l ... an x)

8 I Expect user to supply expression for correct where x is rou-
I value of the evaluation, or to (UNWIND). tine being ap-

,--_-:..I..::.;,In=i=tia:.._.::.lly: S.§.!~RQ~LOO.~_. __ ._. ___ ._. _______ . plied. i

e which user

supplies for

reevaluation.

e which lIser
supplies for

reevaluation.

IBM INTFRNAL Draft --- FWB. revised 09-1 X-79

9

10

I
'OUT OF STATFMFNT CONTEXT GO '

, GO exnrl'o,;sion m:curred oul of statemenl con- i
i I' I

: text. Expeel user to supply expression for cor-i

reet value of the evaluation, or to (UNWIND). i
Initially: S.ERRORLOOP I

'NO SUCII LABEL TO GO TO '

I
i

. - --. . - ~-

I
(GO sl-lab) in statement context has no corre-I

(GO sl-lah)

s~ding label. User is placed in break loop but I
I (GO 51-lab)

control will not return to the offending state- j

ment context. instead an UNWIND will occur. I
1--_-l-Ir1_iti~I_~y~_ ~·g~~9_~~QQ~_ -l __ ____ .. __ _

11

12

13

!

'1ST ARG TO SET NOT ID ' I
I

Attempted assignment to a non-id. Expect userl (y x SET)

I
to supply expression for correct value of the I where y is not
evaluation. or to (UNWIND). I an id.

I Initially: S.ERRORLOOP I

I
'USE~ CALLED ERROR WI RETURN Ex-I

PECTED' I
The explicit call to ERROR channel. The argu-:

ment is provided in the expression (ERROR i
mes). Expect user to supply expression for cor-I
rect value of the evaluation. or to (UNWIND). I

Initially: S_!ERRO~LOOP !

'NON-CONFORMAL LABEL-EXP I i
Non-conformal la be l-exp. Expect user to supply [

s-exp

I
expression for correct value of the evaluation. i labe I-exp

or to (UNWIND). [

1--_--+-ll~_~~_i_ally.:.§.!_fJJ3:~O~LOOP_. ____________ + _____ _
'USER CALLED ERROR WI UNWIND EX-i
PECTED'

14 ERROR with explicit unwind provided. Expect

I user to look around at his state.
I Initially: S,ERRORLOOP

s-exp

c whkh llser

supplies for
reevaluation.

(probably not

dynamically

correctable)

n.a.

e which user

supplies for
reevaluation.

e which user

supplies for

reevaluation.

I e which user
i
! supplies for
: reevaluation.

n.a.

Pal!C 46 IBM INTERNAL Draft --- FWB. n:viscu 09JI X-79

GLOBAL ENVIRONMENTS,
EXIT ROUTINES AND AN EFFICIENCY DEVICE

In the original definition of E the metalinguistic function: nuidhd ,;x:y;Et was not

fully explained. The fact is that a search avoidance mechanism is buill inlo the stale

machinery. This was called the shallow binding by Bobrow and Wegbreitl41.

A provision for general exit functions not unlike that suggested by Bobrow and

Wegbreit is also provided. This device is used by the search avoidance scheme. It is

therefor convenient to introduce both in this section.

The earlier definition of E also had reference to the the case that pertains when

the bindings search is applied to nilE (which defines the end of the environment created by

bind). The comment was that some agreed upon binding would be produced. This section

also implements that notion.

To the normal {S;E;C;D} state we add a new component called the exit which we

shall denote by X. This gives {S:E:C:D:X} as the state.

Recall from the previous sections that the state was applied to M. that this

notation was used to model the notion that the state transitions take place with respect to

a memory. For the implementation of search avoidance. a special metalinguistic compo

nent is added to denote the current environment-path. Environment-path identifiers are

metalinguistic data objects whose principle property is that they identify an ~nvironment

search path. A secondary, but useful. property is that they possess some space for saving

and restoring some state components during path switching.

The metalinguistic function bind wi.lI be presumed to have been extended so that
when it binds the ident (FLUID iden) it also stores a reference to the new fluid binding

(s-exp • idellt). and the current environment-path identifier. The storage for these two

~ objects is called the shallow-cell. Each id which has ever been fluid bound has an associat

ed shallow-cell. This fact should be kept in mind as shallow-cells may very well be a

scarce resource. The following diagram details the structure of the shallow-cell in one

actual implementation.

sboff, the offset ptr. to the actual value

cell.

aed. the envi.ro~ment path identifier.

sbid. the id-delta. an offset ptr. to a com

munication cell whose contents is an ide

The function fluid is designed to avoid the environment search for a free variable

in the case that the path identifier (aed) of the shallow-cell of the id in question. is

identical to the current environment-path identifier.

IBM INTERNAL Draft --- F\VB. revis4.:u 0\)-1 X-79

Thl" sean.:h may aho he avoided in the case that a distinguished (/('(/ indil'atl...'s that

this icl has nevcr heen fluid hound, In which case the identifier in question l:Olald only have

heen locally hnunu (in whkh case we uun't care). or it was glohally hound in which l::lse

thc binuing is correctly inukatcd if the sh.w is EO to the current glnnal environment path

iuentifier.

In the case that fluid is unable to avoid search. the shallow cell is reestahlished for

the current path.

As a result of mueh consideration. several false starts. and dogged persistence. the

ideal embodyment of environment-path identifiers is believed to be: state descriptors. The

total state then consists of the ordinary state. now shown to be {S;E:C;D;XL applied to

M. applied to the environment path identifier.

Le. {S:E;C:D:X} {M} {sd} .

State descriptors (sd's) have the following components:

1. The D-ptJrf which is an ordinary state {S;E;C;D:X} also known as an activation

record. The ordinary state is distinguished because we will often copy it. but we

would seldom copy the total state.

2. The path descriptor of the using state. which is the sd that identifies the path that

is to be restored when control exits this path. For state descriptors that are not "in

control" this is a self denotation. The path descriptor of any state is in effect the

most recent sd with respect to which evaluation takes place.

3. The exit field hideaway, which is the X of the using state. The use of this field

will be explained in the details that follow.

4. The gloE-pat1, or global environment path identifier which is a gloE. See pages 8
and 9,

A few words of comment about gloE:

First of all. gloE are not regular data objects, they are however components of

sd which are data objects.

Also. glodat which are ignored by the basic system processes, are inherently

dangerous. User defined gJonot prescriptions that utilize them must maintain

consistent interpretations for them whenever glolsts are shared.

Meta-syntactically: sd; = {Dj:sdj:X:gloEI. Remember that sd's have no equivalence

preserving. external representation, unlike all other LISP data objects.

It is now possible to explain what was meant by the phrase in the definition of

E/idJ} :

if E = nilE then some agreed upon global binding. globaHid,;x;yL

nilE the distinguished empty environment acts as a terminator for that part of the environ

ment created hy bind. which shall be referred to as the normal environment. The XloE of

the current path descriptor defines an audition or extent to the t10rmaII:I1Virol1llll'tlt known

as the global environment. The definition of the environment function provides for the

P~ige 47

•

Page 4X 113M INTERNAL Draft --- FWB. revised 0'):1 X-79

production of hindings on first reference. glohal context switching. direct access data

bases, and in general is limited only by the imagination of the programmer, and his desire

to be consistent.

For what follows. it will be suHicient to just describe the tOlal state as if il were:

{S;E;C;D;X}sd. The following description is given as modifications and additions to

several of the existing rules. Most readers will find these modifications complicated and

uninteresting and are encouraged to skip to the next section.

2. Value return restoring the former state. With exit functions added.

if XI is 0 or Xo then - {xeS2; E2; Cz; D2; X]} sd I

Comment: 0 as exit indicates no exit function and stack contiguity. Xo

just indicates no exit function.

if XI is sdx = {Dx; sdy: x.y: gloEx}

- {xeS I" E I : 0: IS}: E]; Cz; Dz; Xz} ; Xy} sdy
and sdx - {D."C: sdx : Xo'· gloEx }

Note: - is used to denote II is updated to be".

Comment: This case illustrates the return of control to a context de

scribed by another path descriptor.

if X, is a pair (a it b) then

- {xeS,; E ,: 'APP ,·S / eO.a.O: {S 2; E:.· C:: D:: X:I; b lsd,
Comment: Illustrates a composition of exit functions.

if X 0 is Xrpnil then

- {xeS]; E2: C}; Dz; Xz} sd[and. spoil-nuid(fvdf.

Comment: X rpoil is used to invalidate the shallow cells of fluids bound

when this state was created. It will require either a new hinding or a

subsequent environment search to reestablish the shallow cell. For

compiled code. the shallow cell's original contents were saved on func

tion entry and restored on exit. Xt/L'l"Il! and X'Pl l ll2 are equivalent to ()

andXsI'"il from the point of view of this semantics. They serve to

indicate stack frames whose deletion is other than the normal case.

otherwise - {x.S,; E/: 'APP/·SI'eO. X/eO: {S2: £1: C:: D!: X:}; Xn}sd,
Comment: The specified exit function is applied to the value. control

will then normally return to former slate.

IBM INTERNAL Draft _.- F\VB. re:vise:d Ot)-I x-79

6. Closure: e:vaJuation

IS: 1::: JillldrgeC: D: X I lsd,

whe:re e is the e·part and sd! is the !i-part of JilllCl~.

and sd~ = ID,;w;v;glo£'\ f anu

D { has E I as its E-fKlrt.

- {o: ((ehE.,E,).tE/); eeO: IS; E; C,' 0: X ,I; sdr (sd.
l

if w = sd1 then sd] = sd 1; sdz - {Ox: sci,: Xdt!(U; gioEA

if w # sdz then sdJ = {Ox: sd,: Xd«(e" g(0E.-c} new

Comment: This expression represents an expression closed with respect to the environ

ment of sd. In the absence of updating, such expressions denote the same value regardless
of the context in which the closure is evaluated.

9. Macro application (only the significant changes)

9. 1. If x = mbpi

9.1.1. If bv-oflxl and a l ... an are conformal

-to: bindlbv-oflxl; y; ((ehE).E) }; /ce1wjx/; IS; E; C; 0: X,}: X
1
}sd,

where Xl is:

o or Xo in the case where no fluids were hound;

or in the case where fluids were houl1u. th\.'ir 01<.1 shsl. shoJf. and

aed I are pushed on the stack and an exit function internal to the

mbpi restores them prior to normal contour exit. aed, is sd, if the

old aed in the shallow-cell is the same as sd f otherwise aed f is a

spoiler acd. The spoiler ::led when restored prevents fluid from

avoiding the environment search.

9. 1.2. Otherwise - ° fwn.crmj"o,mal.app'

9.2. If x = (Yc,(MLAMBDA bv • exp-seq)

9.2.1. And y is conformal with bv

- {O.O; bind~bv; y; ((ehE.O).E)f; STMTzeexp-seq.O:

. IS; E: C; D: X,}: u}sd,

where u is x.~P(l;J or X~p(l;1Z if there were any fluids in h'l' othcrwi~c Xc/I"'(r or
O.

9.2.2. Otherwise - D",m.mnlof'mfll.tlPP'

Page 50 IUM INTERNAL Draft --- FWH. revised 09= I X-7()

9.3. If x is a mcu:rn-!rmarg with 7. the e-part and .tid: the .fi-part

where sd! = JD,; w; v; g/oE)'{t and D
t

has an E J as its E-part then

9.3.1. If z is mhpi

9.3.1.1. If bv-onzJ and yare conformal

- t ():bindlbv-oflzt; y; ((eltEeIE ,)etE,)

{S:E;C;D:X I} :sd}lsdJ

9.3.1.2. Otherwise - Dmacm.ntln-conlomral'

9.3.2. If z = '31)(MLAMBDA bv • exp-seq)

9.3.2.1 If y is conformal with bv

- {O.O: bind,bv: y: ((elJEeIE ,).IE,)I: STMTzaexp-seq.O: {S: E;

C; D: XI}: sdJ}sdJ

where

if w =- sd] then sd3 = sd];

sd] - {D.T:: sd,; Xfd~c(~ I ~ptlil]l; gloEx }

if w ~ sdz thensd3 = {D'f:sd,;Xfd«(~ I ~ptl;121;gloE'(}ncw
9.3.2.2. Otherwise - D moan-non-conformal'

Comment: Macro application with respect to an environment causes a change in the

current environment-path designator. It is possible to use a sd] itself as the current path

designator unless sd] is already in current use~ as indicated the presence of a using state.

note: The notational form {D; a; b; gloE}new indicates allocation of a new sd from the
heap.

11. Ordinary application~ (significant changes only).

11.1 If x = APP J then

I 1.1. l. If bv and a l ... an arc conformal

- {OaO: bind,Jbv; { ((eltEeIE).tE) I ((ehE).E) 1.1; at; ..• anl: E..f) :.exp-.\·('l'.O:

IS,; E: C: D: X,}: u} sd,
where u is X spoil or XSpoil] if there were any fluids in bv otherwise X Jecu or

O.

IBM INTFRNAI. Draft --- F\VB, n:\'ised 09-IX-71J

II A.IA. If x is the FV AI., and a, and a,! an.' rn:scnt.

Jun ut.S.· E: (jAPP, / AJ'P:I., •• \·j .O.EVAL.C: D: X ,lsd,

I 1.4.1.4. I. If u.! is sd!

- to: ((ehEJ.E I): al.(!,LtS: E: C; D: X If: sd.l lsd,

where if a2 = sd] where sd 2 = {Dx; w; v; glo£,,(} and

D'(has an E, as its E-part then

if w = sdl then sdJ = sd1: sd1 -{D.,(;sd,: Xde("t:; g/oExl

if w :I: sd 2 then sd J = {Dx; sd I; XJ~cle" g/o£.'(} new

11.4.2.1. CALL. the function to apply the operator which is computed after the

operands to however many arguments were transmitted.

{an.an_t •... at.S; E; (lAPP, / APPiJ.S) .O.CALL.C; D; X/lsd,

11.4.2.1.2. If an = % (FUNARG y sdz • z) where sd 2 = {D x: w; v;

g/oE.'C} and Dx has an £3 as its E-part then

11.4.2.1.2.1. If y is [bpi.

1 1.4.2.1.2.1.1. If bv-orlfbpi} and at ... an_I arc conformal.

-to: bind2lbv-orVbpil; ((ehE.IE,).tE); at; ... an_ll: /c,,""Jjbpi/:

IS: E: C: D: XI}: sd J}sd 3

where

if w = sd] then sdJ = sd2; sd] - {Dx;sd,: Xdt!(,Il'; gloEx }

if w :F- sd: then sd] = {Dx'· sd I; X,h'f.'le; g/o£'(} new

11.4.2.1.2.1.2. Otherwise - Dn(Jn-con[mmal-tIP'"

11.4.2.1.2.2. Otherwise

- {an.'." .a,eO: ((ehEelE ,).tE,): (APP zeO)eOean.();

{S.· E: C: D: XI}: O}sd l

11.4.2.1.3. Otherwise

-{an.I •... a/.O; ((ehE./EI).tEI); (APP2.0).O.uneO: IS: E: C: D: XI};

{}}sd l

Comment: This rule is ordinary calling in the current environment with ar!!umcnts

transmitted on the stack.

Pa~e 52 IBM INTERNAl. Draft --"- I-'\VB. revised O<)-J X-79

11.4.2.2. If x is STATE lhe "'talc sa\'in~ operator it l'rcalcs l.'ontil1ualiol1s

Jan al.S; E: (/APP, / APP:I",.S).().STATE.C: 0: X,hd,

- J.'id:.S; E: C: Of: X, hd/

where sa: = J JS: E: C: D; Xf",t.I; sd!~ 0; wf. ncw

and w = l~/o"o/, • g/o/s/,)ncw if (z ... • s) = S. or

w = (g/Olrot • g/o/st /)ncw if (z .. .• S) = fg/OIwl.S). or

w = If{/ollot • g/olst)ncw if (z ... • S) = (x •••• g/ofsl • g/OIlOl • S) •

where sd, = tD; u; v; (glonot [• g/olsl I)'}'

Comment: This sd constructing operator can only capture the current S,E. C. and D.

It can however have a different global environment associated with E. The new

global environment is specified by the two optional parameters of STATE.

11. 4. 7. Closure forming expression.

[an." .a t .S; E; (lAPP 1/ APP2/J.SjeOexeC; D; X, lsd,

where x is [FUNCTION I LAMBDA I MLAMBDA I FR*CODEI 2

and a1 = (y • w) then

11.4.7.1. If x is FUNCTION or FR *CODE and y is funarg, then

~ [funarg,eS; E; C: D; X,}sd[

11.4.7.2. Otherwise. - [funarg2eS: E: C; D; X, }sd ['

where [unarg2 is created and has u as e-part and sd] as s-part

where u is:

{ y I
%(LAMBDA Y • w)

qlc>(MLAMBDA Y • w)

%(FR*CODE y • w) }z •

where sd 2 ::a {{ 0; E; (); ():()} old; sd 2: Xo; gloE I} new and gloE / is the g/oE

of sd/.

i.e .• the lexical bindings (if present) are operative in the environment of

the closure.

IBM INTERNAL Draft _.- FWH. revised Ol)-l x-7<)

I 1.6. If x = /lilrarg and y is the e-l'clr(and .rtf! the .'i-parI.

where .'id! = t D, ;w:v;gloE, f and D.\: has an E, as its E-part then

1 1.6.1. If y is an /hpi.
11.6. I. I. If bv-o(Jyf and a l ... an arc conformal then

- JO: bind2Ibv-offy}; ((ehEeIE/).IE I); a,; ... anl; ICen,n.ly /: IS: E; C: D: XI};

sd3 }sd3

11.6.1.2. Otherwise - D,wn'('(1nfnrmu/.app'

11.6.2. Otherwise-{an •... a,.O: EI'· (APPleO).O.y.O; IS: E: C: D: XI};

sd3 Jsd.l
where

if w = sd] then sdJ = sdJ ; sd] - {Dx: sd I; Xdet're: gloE.'(}
if W :;I: sdz then sdJ = {Dx; sd/; X decte: gloEx}new

11.7 If x is sd] - {aleS]: E2; C 2; Dz: Xz}sdJ

where sd] ~ {Dx = {S2; £]: Cz; D]; Xz}; w; v; gloE)

where

sdJ = {DnilE; W: v; gloExlnew

Comment: A fact that this meta-language may not adequately convey is that Sl and
C1 of the sd are copies but E] and Dz are shared references.

11.4.2.? The EXFN function. Not previously defined.

-{xeS; E; C; D: Xz}sd l

if XI = sd]={D2; a; b; gloE,?} then X] = sd2-{D2;a;c~/oE2}.
if b = {O I X o} then c = x,
otherwise c = (x • b)

if X, = () then Xz ~ (x • Xo),
otherwise X2 ~ (x • X).

Comment: This addition to the exit routine capabilities could be used to establish a user
defined exit function.

13.12. Meta applicatio" of a context-closure

{at.S; E; SFeoA> (FUNARG Q1>(MU bv • valuelist) • sd2) eC: D; X ,}sd I
-{vn VieS; E/: (APP,.()).O.,4,PP3ebv. a,eO; {S; E; C; D: X I J :sd ~ }sd.?

where value/ist = (vt ... vn) and sd] has EI as its E-part.
where sd z = {Dx; w; v; g/oE;c} and

D x has an E I as its E-part then

Ptlge 53

Pa~c S4 IBM INTFRNAI. Draft --- r:WH. revised O(} .. \ X-79

if W = lid! then sd 1 = sd .. : .fil/.' - J D ,: lid I'· .'<"1"1'/". Xlol:.", f

if W i: .w./: then sdt = II),: sll/,· ''(''('1''/,'· gltlE, I new

m

IBM INTERNAL Draft --- FWB, revised 09-IH-79

TIlE LISP/370 DESTRUCTIVE S'fREAM FACILITY

In Stoy and Strachey[11 streams were used as vehicles for the transfer of information in

systems. Their streams were destructive. i.e .• a des/rue/ire stream is a stream with upuata

ble private storage. This allows successive items of a stream to occupy the same storage.

Burgel2] has described an even more general stream mouel in which destntc:I;\,'e streams are

a special case. In Burge's more general model non-destructive streams are applicable

functions. which are retained and thus reuseable. "A stream is a functional analog of a
coroutine [3, 4J and may be considered to be a particular method of representing a list in

which the creation of each list element is delayed until it is actually needed."

Landin [5] appears to have first proposed streams as an alternative to lists. He used

streams to model the concept of a "control-list", a term he used to mean the successive

values of the for-statement control variable. He noted streams similarity to coroutines and

suggested them as a model for input/output.

In LISP /370 we copy the Stay and Strachey destructive stream concept to a large extent.
Functional streams are definable, but we choose to supply with the language a data

structure model for streams and basic facilities to manipulate it. The data-structure model

was selected instead of functionals after considering current efficiency tradeoffs.

The non-empty stream data structure has two components; the first element is the current

item at the head of the sequence. and the second element defines the re,<;, of the sequence.
a (possibly empty) stream which is denoted by either a stream terminator structure or

another pair. An empty stream is denoted by a stream terminator, which is either an ssd

(for special stream descriptor) or other-atom (any other non-pair data structure). The rest

is not an accessible component; the stream it denotes is computed by one of the stream

successor functions.

It can be seen from the following description that several types of streams are provided.

We intend that certain functions which scan or create lists can be converted into functions
~ which scan (,; create .streams. The resulting functions will benefit from the more abstract

nature of streams; for example. the elements of a stream need not all exist in storage but

can be generated as needed. Because the stream facilities provided are destructive of the

stream they use, we cannot conveniently convert most list functions. which are often

expected to be retentive.

11age 55

1. J. E. Stoy and C. Strachcy. "OS6-An Experimental Operating System for a Small Compul
er." Computer J. 1 S. No. 2~ 117 and No.3. 195 (1(72)

2. W. 1-1. Burge. "Stream Processing functions" I B,"f J. R,'s. Dt'1·c/Op. 19. 12 (1(75).
3. M. E. Conway. "Design of a Separable Transition-diagram Compiler." Commun. ACM 6, 396

(1963).
4. A. Evans. "PAL-A Language Designed for Teaching Programming Lin!!uistics." Proc. 23rd

ACM Can!., 395 (1968).
5. P. J. Landin. "Correspondence Between ALGOL 60 and Church's Larnhda-notation. ,.

Commun. A Clrl 8. Part I. 89, Part 2 158 (1965).

A stream data structure. stream is

either a pair (h£'cul'i • rests) where.

IBM INTERNAL Draft --- FWB. revised 09-' X-79

!reacis is the next item of the sequence (any s-e:cp).

and rest.'i is a stream which defines the rest of the sequence.

or an atom strmterm.

A strmlerm may he a special stream descriptor ssd. (implemented by a vector). or any

other non-pair other-atom. An ssd 'implies' a function which defines another stream

(probably occupying the same pair as the original stream). Fast-streams of characters are

an efficient subset of such implicitly defined stream functions.

An ssd has the form <rln bd ase [any ...)s-type>,

where rfn is {ne:ct I write I bidireet I ... } It
where next is a one argument, input-stream successor function,

next: STREAM- OUS"'" STMTERM. STREAM.t
and write is a two argument. output-stream successor function,

write: S-EXP x STREAM. STREAM.
and bidireet is a three argument, bi-directional stream successor function,

bidirect: S-EXP x BDS x {IN lOUT} • STREAM.
and bd is the buffer description:

nil in the case of slow-streams,

or a fast-stream-buffer in the case of fast-streams.

and ase is the associated-states. which is an a-Ii'it.

and any is"any stream dependent information that the user provides.

and S-(ype the stream type should conform to rfn, i.e.

{IN lOUT I BDS I ... ll·

Thus it can be seen from the structure description that streams are differentiated as to

input-streams ins, output-streams ous and bi-directional streams bds.

STREAM = LISTS U INS U OUS U BDS
and ins e INS is (heads • < next x ... IN»,

and 005 e OUS is (heads. < write x ... OUT»,

and bds e B DS is (heads • < bidirect x ... BDS>)

A fast-stream-buffer has the form:

< buffer begi"de:c cur;lIde:c endi"de:c x ... >.
where buffer is nil for inactive streams.

and string otherwise.

where hcgillde.'C the beginning inucx is a to I I I ... sizcJslril1gf L

and curindex the current character index is a {O I 1 I ... sizelstringH,

and endindex the boundary index is a {O I 1 I ... size {st ring I }.

t Subscripts are used to indicate a correspondence.

t - is a left-associative set difference operator.

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

The hasic functions on streams are: HEADS. NEXT. WRITE. IS-EOB. DEF-STRM. and

NULLS.

The following axioms characterize system provided streams:

For S E {STREAM - oust;

(NEXT (WRITE x s» = s.
If (NOT (NULLS s» then (WRITE (HEADS s) (NEXT s» = s.
(HEADS (WRITE x stream» == x,
(NEXT ous) is a domain error.

(HEADS strmterm) is a domain error.

(NEXT strmterm) is a domain error.

(NOT (NULLS (WRITE x stream»),
(NULLS stnnterm).
If (EQ (HEADS stream) stream) then (NULLS stream).

Not only are streams similar to lists; lists may be used as streams, liststrm. which is any

non-empty stream that is not included in:

INS U OUS U BDS .

Keep in mind that the argument list is updated by most of the stream primitives. It should

be noted that we often think of lists as scanned from the left. and also prefer to augment

on the left. The basic stream functions provided reflect this bias when operating on

liststrm. This is to be contrasted with current preferences for input and output files. Input

files are also scanned from the left. but output files are usually augmented on the right.

Streams can be so defined so that they are scanned or augmented in either direction. It is

important that the user keep the conventions of stream producers and stream consumers

consistent.

The list analogy is show in the following chart.

Non-
Stream .

O
Destructive Destructive List nn Anal()~y

perator .
LL4it Analogy ---------- ------- -- ---- --- --T- ---- -------- ------ ------

(HEADS x) (CAR x) I (CAR x)

~NEXT xl '(C~~ xl ! (RPLACD ~RPLA~~ x -(~~DR xl)(CDDR xl)· -----

(~~IIE x Yl_1 (CONS x Yl_tl (RIJLACA (~_PL~CI? y (CONS (CAR y)(CDR y»)x) ___ _

(NULLS x) . I (ATOM x) ,(OR (ATOM x)(EQ (CAR x) x»

Slow-streams provide for the generality of user defined streams. Each slIccessor slream is

defined by the application of the user provided r[n. These functions need not comply with

P~tgc 57

IBM INTt= R N AI. Drart --- J"\VB, rl'\'is~:d OC)-J x- 79

the dl'strUl:tivc 'itn'am analogy. Nl'\'crthdt."\, what I.ISP /J7() provilil:s is primarily meant
to cxhihit the SC4lu.'ntial t.'valuation hl'llavior of destructive strcam ...

Fast-streams providc a more efficicnt slIcCt'ssor method throll~h the lISl' of hurtt·,.\'. In
LISP /370 this is only pro\'idt.'d for character-ohjeet streams. SySll'111 dl.'pt.'lHknt input and
output is achieved throu!!h the usc some distinguished fast-streams, or thr(lll~h User
dcfincu system dcpenuent fast-streams. NEXT and WRITE have hccn cxtl.'nded to give
fast-streams specialtreatmenl. Fast-streams for real input-output riles contain the
essential file information in their ssd.

As yet the system provides no bi-t.lirectional stream facilities: they are included in this
description as a suggestion for user development.

The full descriptions of the basic stream primitives follow:

(NULLS stream)

This tests if stream is an empty stream. Returns true if stream € STlvtTER,\1 or if
heads is the stream itself; it returns false otherwise.:!: Defines the set of empty

streams, NULLS. There may be many empty streams that are not EQUAL.

Consider the following fast-stream which is not empty but is nearly so:

%Llt=(eob • <?1lL2=<next <string 0 n n> nil IN» where a subsequent applica
tion of N EXT will produce % L2 as value and % L 1 - (}h L 1 = (ex) L 1 • (~h L2). an

empty stream.

The interpretation of the original stream is as a stream with end-of -block eob

(represented by %.EOB) as its last and only item. The stream itself serves as an
emptied stream indicator when it appears as heads. We install this convention

because many routines depend upon the EQ'ness preservation property of destruc
tive streams.

(HEADS s) where s ~ STMTERM

HEADS is the access function used to peep at the current element of the stream.
It has no side effects and can be used repeatedly without advancing the sequence.

heads { (Yc)L I = (lteads • restsH -

if heads;' % L 1 then heads.
if heads: °Al L 1 then accessing empty stream error.

t In LISP/370 (al~e is denoted by the distinguished objectllil :.lnd true hy any olhcr ohjecl.
t In this paper the labels used to convey EO'ness have scope extcnuing ovcr the entire equation or

sentence in which they are used.
For example in: g{ (~'<)L 1 =(a • b)} - (}hL I =(c • d) it is meant that I~;, L I is updated.

IBM INTFRNAl.l>rart --- F\VB. rc\'i~ed O')-IX-79

(N EXT ,) where s (STR EA AI - (JUS - STt.ITER Af.

N EXT is a fum;tion from streams to streams. For most ar~ul11ents it produces as

value the ar~lIrnent stream updateu. N EXT is most erricient for fast-streams. The

action of NEXT is defined by the following rules:

next t (~{) L I =(heads • other-atom) J -

other-atom and (rt) L 1 - (}'h L 1 = «rt) L 1 • other-atom).

next{ (YoLI =(x y • z)} - (YoLI =(y • z) .

next{%Ll=(Izeadr. <next nil x ... IN»} - nexi{0/oLl}.

next{%Ll=(headr. <bidireclnilx ... BDS>)} - bidirect{nil;(M.)LI;IN}.

next{%L 1 = (headr • %l2=<rfn %l3 x ... s-type>)}

where %L3=<buffer begindex curindex endindex>

Note: By convention, when buffer is nil then curilldex must equal

endindex and the rfn must replace it with a string which it must allocate.

if curindex ~ endindex then

if heads = eob then

if %L2 = <next ... IN> - next{%Ll}

if %L2 = <bidirect ... BDS> - bidirect{nil; <?~ l 1 ;IN}

if heads:J6 eob - Q1>ll=(eob. %l2).

(This illustrates the production of the end-of-block symbol after the last

data)

if curindex < endindex then - %Ll=(y • %L2=<rjn (Yt)LJ x ... »
where %L3=<string begindex curilldex+ 1 endindex>

and y = fetchcharfstritlg ; curindex l .

10M INTERNAL Draft --- FWB. revised 09-1 X-79

~ri.elx:Cltoml - (x • lItom) .

~·rit~lx:":d.1 =(y • l.H - <~hLl=(x y. z)

where I. = other-atom or </leott w ... IN> or (heads. rests).

WRITE to an input stream is was called PUTBACK by Stoy and Strachey.

write{x;(YoL 1 =(y • <bidirect nil z ... 8DS>)} ... bidirect{x:°,k)L 1 :OUTJ.

write{x;O/oLl=(y. o/oL2=<rfn °/oL3 z ... >)}

where °/oL3=<string begindex curindex endindex>. and rfn i:- <next ... IN>

if curindex < endindex, and x is a character,

_ °/oLl=(x • °/oL2=<rfn °/oL3 z ... »
and °/oL3-

0/oL3=<storechr{string;curindex;x} begindex curindex+ I endindex>

(Notice that WRITE to a fast-stream does augmenting on the right.)

otherwise - rfn{x;%Ll ;OUT}.

(TEREAD stream)

TEREAD repeatedly nexts the current stream until it encounters an cnd-of-block

condition and leaves the stream in an end-oC-block condition. Primarily intended

for input fast-streams.

teread{atom} - (eob • atom).

teread{O/oLl=(eob. y)} - °/oLl=(eob. y) .

For x i:- eob :

teread{ (Y<) L I =(x • other-atom)} - <3't) L I =(eob • other-atom).

tcread{ 'X) L 1 =(x • pair)} - (X, L 1 =(eob • cdr{ tcread~pairH) .

tcrcad t (~{) L 1 = (xt.r$fJltifiM#~oo"'<bllffeK1r PIS f.)I) ~- II I r

_ <V!) L 1 =(eob • <rin !ast-stream-buf!er: w ... »
~_~~ __ ~--~1'l"~ ___ .-. -:~7~~ -,A:_ .~.;."._. "o-~'_-';::-:.:.:·,_".-o •. >"--::-"'·>i-··-.-"~-:::·r=:..::_~~5:E-'~~7· :~.-:-~-.-:.--~.-¥.-' _-~-.i--~~~.~~:l~~~.i~'r .. :-.~:,;.-7~--;-,-,:j~-:-:=~7~~~~-'-

IBM INTERNAL Draft --- FWB. revised 09-18-79

(TERPRI stream)

TERPRI forces the stream-dependent successor function if one is present.

terpri {x} = terprix {eob; x} .

terprix{x;%Ll=(y. {other-atom I %LI})} - %LI .

terprix{x;(y • stream)} - terprix{x; stream} .

terprix{x; <?1>Ll=(y • <rfn z ... >)} - rfn{x;%LI:OUT}.

(Notice that the rfn has eob as the object written. This convention serves as a
signal that TERPRl is happening.)

(lS-EOB x)

Predicate that returns true if the argument value is the eob distinguished object and
o otherwise.

(DEF-STRM heads rests)

Creates the new stream:

(heads • rests)

where heads is the value of heads.
and rests is the value of rests.

Some Distinguished Streams

LISPIT the console input-stream.

LISPIT is a fluid variable with the following initial value:
(YoLl={eob • <LISPITfIN < nil 000> asc nil IN»

where asc=«DEVICE • CONSOLE)(MODE • I)(QUAL • V)(OWN • (~{)Ll».

After the file is activated:

%LI={heads • <LISPITTIN <string beginde:c curillde~"(endindex> asc p-lis/IN»

where p-list denotes a system dependent I/O control block. or nil

and LISPITfIN denotes a console input-stream successor function which is capable
of activating the file when the p-list field contains nil. More precisely. LISPITTIN
has such a function as the value of its binding in the initial glohal-environment.

Page 61

Page 62 IBM INTERNAL Draft --- FWB. revised 09 .. 1 X-79

The function LISPITIIN achieves system independency by special calls to system depend

ent portals for all system dependent computation. Activating this stream consists of:

1. Building an input console p-list in a system dependent manner.

2. Determining the console linelength (also system dependent) and allocating string. a

LISP/370 character vector used to provide an input area for the terminal line. The

capacity of string is sufficient to hold the determined maximum input line length, and
its contents-length reveals how many it actually holds.

3. Initializing beginde:c and curindex to 0, and endindex to iineienglh.

4. Applying LISPITT1N to the now active stream.

When LISPITIIN is applied to an active stream it causes a system dependent console
input operation to refill string, resetting the contents length of string to the actual number

of characters read. setting endindex to that number also. and setting begillde:c to zero and

curindex to one. If the number of characters read was zero the stream becomes:

%Ll=(eob. <LISPITTIN <" 0 0 0> asc p-lisl IN».

When more than zero characters were read it becomes:

%LI =(co • <LISPITIIN < 'co .. . cmdi"d~x." ° 1 endindex> asc p-lis/IN».

LIS POT the console output-stream.

LISPOT is a fluid variable with the following initial value:

%LI=(eob • <LISPOTOUT <nil 000> ascI p-list OUT»
where asc,=«DEVICE • CONSOLE)(MODE • O)(OWN • (?-{IL 1». and
p-lisl= nil,

and LISPOTOUT is similar to LISPITTIN except it needs less information to build
the p-list.

After %Ll is activated by LISPOTOUT by write{c;(?,{,L 1 ~ it hccol11cs:

%Ll=(c. <LISPOTOUT < strillgO I em/index> asc p-list OUT»
where elldindex is the system dependent preferred console output line-length and

SIring is 'c' . The capacity of string is endinde:c characters.

One peculiarity of LISPOTOUT (and hopefully any output-stream which is inactive)
occurs when the initial write is in effect a TERPRI.

write {eob; %L1 =(eob • <LISPOTOUT <nil 0 0 0> asc nil OUT»}
~ %LI =(eob • <LISPOTOUT <string 00 endilldex> asc nil OUT»

where string= " but has capacity for 'endindex' characters.

IBM INTERNAL Draft --- F\VB, revised 09-18-79

User Stream Definition Facilities

(DEFIOSTREAM asc linelen position)

DEFIOSTREAM produces as value a fast-stream which interfaces with the real
input/ output devices.

The actual stream produced is system dependent but the operation of saving a LISP /370
system and bringing it up on another operating system entails the reactivation of all such

streams; in which case they may become defined for the new system. The user would have

to contrive to have the actual files moved and converted i~ that were necessary.

The parameters of DEFIOSTREAM are as follows:

asc is an a-list. i.e. (property ...)
where property is:

{(FILE. {(jname [jtype [(mode]]) I (dsname-compollenl ...)}) I
(DEVICE • CONSOLE) } or,

(RECFM • {F I V}) or,

(MODE • {I I INPUT I 0 I OUTPUT}) or.

(QUAL •
if CONSOLE input then {S I T I U I V I Xl
if CONSOLE output then {LIFO I FIFO I NOEDIT} or.

(OWN. pair)

The value of the FILE property is a list of identifiers corresponding to the naming conven
tions of the underlying operating system.

linelen is linelength if required. else nil. For input files. the user supplied linelen i~ passed

to a system dependent portal and the portal gives back a number (possihly the same one)

which is used as the actual capacity of the buffer string which is allocated at activation
time. This parameter does not specify a truncation column. For output-streams linelen
determines both string capacity and endindex.

position is a linenumber whIch defines the starting position if required: else. nil.

What follows are some examples of operating system interface streams, their definition
and use.

Page 63

Page 64 IBM INTERNAL Draft --- FWB. rcvisco 09: I X-79

(DEFJOSTREAM asc 72 I)

where ase = «FILE XXX LISP)(RECFM • V)(MODE • I)(OWN • (~~)L I =pair».

- %LI = (eob • <.FILEIN <nil 072 72> asc nil I IN»

This defines an input-stream from the file system. The number 72 is the user's idea of the
length of the longest record. For most operating systems the actual file characteristics will
take precedence. If the file had a maximum record of 120 characters and the first record

was 1 00 characters then the following holds:

next{%Ll=(eob. <.FILEIN <nil 0 72 72> ascnill IN>)}

- %Ll=(co. <,FILEIN <%120'eo···c99' 0 1 100> asc p-list2 IN»

where the string I co ... Cqg' in this instance has 100 characters but has a capacity for 120

characters because 120 was determined to be the actual longest record of the file.

where p-list is a system dependent I/O control block designation and will not be

explained.

This illustrates normal behavior of M.rt when curindex~endindex. heads is the eob, and the

block read is not empty.

If the first block were empty:
next{ %Ll} - %Ll =(eob • 0/oL2=<.FILEIN <% 120" 000> asc p-Iist 2 IN»

and similarly for subsequent empty lines;

on end of file: next{%Ll}=(~L2 and %Ll=(%Ll • 'Yc>L2).

(DEFIOSTREAM asc 72 1)

where asc=«FILE YYY LIST)(RECFM • V)(MODE • 0»

_ (eob. <.FILEOUT <%72" 0072> asc nil I OUT» where' I has capacity for

72 characters.

This defines a file system output-stream. In the case that an old Olltput file exists. we
currently update it starting from the position specified. The longest hlock that we wish to

write is 72 characters.

writc{cO;(~{,LI = (eob • <,FILEOUT <" 0 () 72> asc lIil I OlJT>)f

_ %L 1 =(co • <,FILEOUT <' co' 0 1 72> asc p-lisl lOUT»

However.
write {eob; (Yo L I =(eob • <.FILEOUT <" 0 0 72> asc nil lOUT> >l
_ 0A>Ll=(eob. <.FILEOUT <It 0072> ascp-Iist 2 OUT»

An empty record was written.

•

IBM INTERNAl. Draft --- FWB, revised (llJ-l X-79

Summary and Comment

The destructive characteristics of NEXT and WRITE in all bUl the slow stream case.
coupled with the dependence of LISP /370's READ and PRINT functions on lhis behav
ior, more or less dictate that user defined slow-streams also conform to the convention
that the EQ-uality of the stream be preserved. If the user intends to use non-destructive
streams, he cannot expect to substitute them for destructive ones.

Associated with real I/O streams are certain operators that test or change various system
dependent status properties, e.g. IOSTATE.IOSTATEW, IS-CONSOLE. and SHUT.

In addition to the queuing disciplines so far discussed LISP /370 has functions for key
sequenced streams. These random access streams are described elsewhere under the
descriptions of RDEFIOSTREAM. RREAD, RSHUT, and RWRITE.

Ideally streams would be typed as to queuing discipline and the destructive or non
destructive property. and domain errors would be generated when streams of the wrong
type are supplied.

In LISP /370 input streams and lists with FIFO discipline are well provided for. output
streams and key sequence streams are of a limited nature. and no bi-directional stream
facilities are provided.

In our model streams are similar to lists and obey similar axioms. The user who is familiar
with list-processing should have little difficulty using streams and extending his processes
into the domain of real I/O.

P61ge 65

•

Page 66 IBM INTERNAL Draft --- rWB. revised 09.-1 X-79

PART 2

DATA lYPES, POINTERS, VALUES AND PRIMITIVE OPERATORS

It is common. when speaking of LISP data objects, to talk about a vector. or an
identifier, or perhaps a list cell, when in fact the object being discussed is actually a pointer

to that vector, identifier. etcetera. It is useful to form subclasses of this one type (or
typeless system). For instance, we have a predisposition to think about numbers. notwith
standing the fact that the object is implemented as a pointer of that particular subclass.
Our practices and prejudices for such type systems are often varied. In this LISP system a
rich set of types has been provided. This multiplicity of types can be either comfort or
confusion to the user. It should be noted that the types discussed are a rather ad hoc set of
representation types and not abstract data types. Good programming style should dictate
the avoidance of representation dependencies. Non-the-less. pragmatics dictate that the
abstract data structures be mapped onto the supported types of the underlying rep.rescnta
tion. This document generally deals with the pragmatics of the underlying system as its
principle concern.

In order to prevent confusion. the tenets of the type scheme must be understood
by the user. He must know what types are available and have some idea of the useful
properties of each. He must know the type specific or generic operators that are available.
and what constraints they have. and what useful purpose they serve. He may avail himself
of the benefits of static checking though the use of constrained variables. He may
constrain both the domains and ranges of functions he defines. thus extending the prag
matics of static type checking beyond the range of the system provided primitives. He
cannot (as yet) define his own abstract types nor can he define new representation types.

In this LISP the user may constrain the definitions that he creates but is not
required to do so. Many of the system primitives are constrained. Some are not con
strained by type but do a considerable amount of internal checking that can lead to a

• programmed invocation of an ERROR state.

It is intended that the system primitives are implemented in such a way that they
do not give the user the capability to destroy the integrity of the implementation. An
exception to this is provided in those implementations that support LAP and the compila
tion of operator-code-abstractions. (a dubious activity for the prj\'ile~ed class of user) It is
furthermore the goal that for a suitably constrained program the compiler (or some other
preprocessor) may frequently report that no call to ERROR can be evoked hy its use.
This does not preclude inadequate programs. non-terminating pro~rams. or even pro!!rams
that indeed can invoke ERROR, but it docs servc to assure the lIscr that thc particular
program is at least "well formed with regard to type". In the presence of sufficient
constraints static type checking is utilized by the compiler to produce code that is both
efficient and free from static type ERRORs.

The evaluation processes detect and report on violalions or the lype <:onstraints.
Through out this system we maintain this capability for dynamil: type checking. A goal of

/!!~\
\.~--

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

compilation is to satisfy these constraints at compile time, thus removing the necessity for

some of the dynamic checks.

The following is a hierarchical classification schema for the computational data

types of LISP1.8+0.3i. It serves as a table of contents for the sections that follow.

Each type is given with a notational shorthand called its type class designator in uppercase

italic.
t is used to indicate not yet defined or available.
+ is used to indicate the presence of a limitation of the current implementation.

THE TYPE SCHEMA

Type:
Pointer € PTR :

Simple-objects € SIMP:
nil E: NIL. (the distinguished object)
Decimal-number E: NUM:

Integer E: I :
small-integer E: SM I ;

intermediate-integer E: II .

large-integer E L.

floating-point € FP ;

rational E t ;
complex € t ;
interval E: t .

characters E: CHAR:

Truth-values E TVA Lt.

Composite-objects E COMP: (has components)
Arrays E A: (components of uniform type)

pair E PR = PTR2; (accessed by unique selectors)

Ranked-arrays ERA: (uniformly accessed)
Rank-one-arrays E RJ A: (n elements)

Vector E VEe: (n is fixed)

poilirer-l'eclOr € VP = PTR":

illlennediale-illl~er-\'ec/()r! VII = II" ;

/ioaring-poilll-l'ector € VF = FP" .
SIring € STR : (n~cClpClci~r)

character-string E SC = CIIA R" :

bit-string E S B = TVA L" .

Lists € LIST = PTR": (n variable) :I:
Higher-rank-arrays € MATRIXt :

Records E REC. (components possibly not of uniform type.)

Id E I D : (has print name component)

norid E NORID ;

Page 67

•

Page 6X

POINTERS

IBM INTERNAL Draft --- FWB. revised 09~ I X-79

gensym € GENS YM ;

unid € t ;
mobid € t .

Applicative-objects € APPL: (system constructs, diverse

accessingt)

Abstractions € :I: A BST:

lambda-abstraction € LAM;

mlambda-abstraction € MLAM :
mu-abstraction € M U ;

operator-code-abst rac! ions € 0 ReD .
state-descriptor € SD .
funargs € FUN.

bpi € :I: :
/bpi € FBPI;
mbpi € MBPI.

sf € SF:

ur € UR = :
fix-ur € FUR:
mulr-ur € MUR .

Ntuples € NT; (uniform accessing. user definable) t
Complex € PLEX. (variable set of possibly not uniform compo

nent types, user definable. uniform access.) t

LISP /370t implementation, pointer format:

AAAAAAAAAAAAAAAAAAAAAAAA

The pointers used by LISP /370t are full words (32 bits) and arc rich pointers.
The first four bits (XXXX) is mandatory type information. the second field (YYYY) is

either additional type information or part of the immediate data. the third field is either the
address or more immediate data. The reason for having these rich pointers. which do
consume more storage space than would otherwise be necessary. has to do with efficiency.
Many of the frequently occurring LISP operations require arguments of a specified type.
Since the result of an operation performed on an invalid type of argument may actually
destroy the LISP system, checking the types of arguments is vital. and this checking. may
be more efficiently performed if the Lype code is part of the poinll'r. This is not to say lhal

other implementation strategies are inefficient. We do like lo note lhal the type cannol in

general simply be associated with an address because some types do not denote objects in

storage therefore have no address!

Pointers arc the principle internal value objects of LISP I) 70t. all olh\:r data lyp\:s
are SUbtypes of these computational objects. or unions of subtypes. The lIser will prefer to

•

IBM INTERNAL Draft --- FWB, revi'ied 09-1 X-79

think of these objects as lists, trees. graphs. etc .•. but these interpretations are in the mind
of the user. The only variables in LISP /370t are those which hold pointer values.

There is a distinction to be made between pointers which contain the address of
stored data, and pointers which might be thought of as containing immediate data. In the
latter case. the type code in the pointer indicates that the value of this data object is stored
in the pointer itself. not in some other storage location. For example. small-integer
numbers are stored as part of a pointer with an appropriate type code. while floaling point
numbers are always stored in a memory location whose address is part of a pointer with
appropriate type code .

The reader may reasonably ask why we don't simply call these objects types and
avoid the confusion of thinking about pointers that don't point to anything? One answer
is that in our early experience they did and we are so co.nservative that we now view the
non-stored objects as existing in some extension to the memory that is neither accessed
nor updated. It can be argued that pointers capture the notion that we are representing
types which are infinite on a computer with finite limitations.

The significance of this distinction between immediate data and stored data
affects the concepts of sharing and updating. Some classes of stored data may be updated.
and if shared by several structures. the updated data will also be shared (that is, all of the
sharing structures are simultaneously updated). Immediate data is intrinsically non
sharable; therefore. in this sense it is not updatable.

In order to model operations on the storable values. we postulate the existence of
several domains:

The basic domains:

PTR = pointers = location handles

s-exp = storable values pointed to or denoted by pointers

l~f = memory

Abstractly. the nature of pointers and memories can he characterized hy specify
ing an initial memory and a few primitive functions for accessing. Upd.lling, allocating,
freeing. reading into, and writing out from. As will be seen hy what follows, LISP/~70t
supplies such primitives for each primitive SUbtype.

Because the pointers give an indirect access to slornhle data types, they are not a

primitive type. in the sense lhatthe pointer type is the union of tlll.'se othl'r tYllt's.

Pointer type class: PTR = t SIMP U COMP J

These subclasses will be defined in the following text.

Abstract syntax: PTR 1M} = s-exp = t simple-object U composite-objectt

Page 69

•

Page 70 IBM INTERNAL Draft --- FWB. revised 09. I X-79

Pointers (ptr! PTR) of the memory (M) are said to denote s-exp a class of values.

If plr,/M,1 = s-exp p and ptr,/M21 = s-exP2 then it does not follow that~
s-exp, = S-exP2' In other words the value interpretation we give a pointer depends
on the current state of the memory.

Primitives:

As this is the type less or general class and the one obtained by default. many system
provided functions are of this domain. In order to avoid an unbounded enumera

tion. only certain functions and classes of these general functions will be discussed.

The pointer identity predicate: % - EO : PTR x PTR - TV AL
where TV AL the domain of truth values is: {O I {PTR - () l}

Here we establish the convention for truth values: () for false. any other PTR

for true. We can see that the set TV AL is not supported as a distinct repre-
Sf :Hation type.

(0/0-EOpt'tpt'2) == 0 iff pt'l:#=ptr2
otherwise pi' 3 ! {TV AL - 0 }

Notation: The use of tJ to indicate required spaces is eschewed here
and in much of what follows. The ordinary space is thought to suffice.

Comment: Identity in the sense of being the same pointer.

The EO relation is of singular importance because it defines the separate elements

of PTR. the EO-class objects.

The allocation functions:
To allocate a PTR one must allocate some underlying primilive ~ubtype object.

These operators (to be described) will allocate a new pointer denoting a described

object of that sUbtype.

The type predicates:
0/0 • type-class : PTR - TVA L

For all elements of type-class except NIL:

(~& -type-class pt't) == pt,! iff ptrt ! class whose name is lype-cll1ss.
. otherwise O.

See the section on the distinguished object nil. which follows for the NIL case.

Where Iy~-class = { NUM I SMI I NIL I II I L I foP I CHAR I COMP I
A I RA I VEe I VP I VII I VF I STR I SC I SB I PR I
REC I 10 I NORIO I GENSYM I APPL I ABST I LAM I
MLAM I MU I ORCO I SO I FUN I FBPI I MBPI I SF I
UR I FUR I MUR I NT I PLEX }

Consult the type schema for a more complete hierarchical enumeration. These

primitive type classes are disjoint and distinct.

I

IBM INTERNAL Draft --- FWB. revised O()-l X-79

The type constraints:

<Yo e =tJ'Pe-class : PTR - PTR I 'V
(%e=type-class ptr\) = ptr\ iff ptr\ E: class whose name is type-class otherwise 'V.

Notation: 'V for run time detected domain error.

The allowable type-class names were mentioned in the type schema outline. and will

be further elaborated in the descriptions of the the subclasses of the type hierarchy.

The type constraints differ from the type predicates in that the constraints are the

guarantors of type. In the case that the value does conform it is passed through.

otherwise an exception state is applied to the offending value. The nature of the

exception handling is described in the interrupt section, returning with a proper

value is just one of the actions possible. The important role that these constraint

operators have is in defining functions whose parameters are constrained or whose

value type is to be understood.

For example:
~1c>(%,LAMBDA «~b.=SMI X)(Y . Z» (<?f,.=SMI body»

is the abstract description form for a function of precisely two arguments, the

first of which must be a small integer, the second of which must be a pair, and

the value of the function must be a small integer.

The constrained definitional process is not described in detail in this document. The

user need not bother with constraints until such a time that their use and benefits

are upderstood. At the time of this writing the full implementation of constraints is

not yet in sight.

Access functions:
No access functions are provided to access the componenls of the pointer. To the

extent that the pointer denotes an object of storage of some subtype. that storage

object may have components which can be accessed by type specific access func

tions. The type specific access functions are described later.

Update functions:
Likewise. no functions are provided to update the fields of the pointer object. As

stated with regard to access. the components of a denoted stored object may he

updated by the type specific update functions.

Other primitives:

The output or canonical representation runction:

%.PRINT: PTR x STREAM x M - PTR x M
(%ePRINT plrl stream,) IMII = ptr, x 1M.)

where ptrdMl1 = s-exp,
stream \ 1M2} is the result of

(0/0. WRITE chari stream.) for each successive char in the canonical

representation of s-exp\ as defined in the next section.

P~lgC 71

.'" ,

Page 72

Prof. Or. H. Stoy.n
Unlversltlt trlangen.Nornbltg
Inatltut for Mati",emetleehe Maech'nen. ~.
und Oatenverarbaltung (Informatlk VIUjBM IN fERNAL Draft --- I-WH. revIsed 09-.1 X-79
Am Welchselaartan 9
6~ ~~~ E~I;gH:g

0/0. WRITE is a primitive stream operator and is defined in the section

pertaining to streams.
Streams are an interpretation on pairs that serves to define. abstractly.
a sequence of elements. Streams are primarily used for input and
output.

The reasons for the primitive nature of °/0. PRINT are two fold: firstly it scrves as a
definition of the representations (s~xp) of s-exp: secondly it may be relied on by
the system for system to user communications. In other words it defines a standard

and ingrained notation. This has the drawback that for some programs it may be
difficult to prevent that notation from showing through. This drawback seems
common to computing systems with layered architecture. The benefits of layered

architecture are substantial but no attempt to further justify this concept will be
pursued here.

Syntactic representations for the data types

The traditional designation for the data objects of LISP is the term symbolic
expressions or s-exp. The notation s-exp is used to denote the class of objects. and s-erp
is used to denote the canonical representation form as a linear string of characters. For

the most part s-exp bear a strong correspondence to the computational data types for
pointer objects. The most obvious non ... correspondence is that internal data types have a
location handle which EO is capable of comparing. but there is no comparable handle on

s-exps. The transformations from data types to s-ap and vice versa do not in general
preserve the EO ... equivalence class of the object. While the EO-equivalence class is of
considerable computational interest it is not state invariant.

The EO-equivalence class of an object is equivalent to the place it is assigned
when it is allocated. In an infinite memory this place could remain constant and would
serve to simply denote each EO-class object for all time in the history of a given memory.
None the less, the place of an object (viewed as an object) has an interpretation which is
meaningful only with respect to the memory in which it was created. Practically speaking,

the memory is not infinite. and keeping track of an object's "creation numhcr" would be
prohibitively expensive. Indeed. it secmsvcry difficult to conceive of a represcnlLllion for
the EO-class objects which is memory invariant and in which commensurate ohjccts are

easily recognizable. One might also add that attendant to a memory place are other
properties that the user would appreciate being abstracted from. such as: size. alignment,

storage protection state,

LISP engenders a somewhat complex relationship between the internal computa
tional domain and the abstract data object domain. It attempts to fool us inlo believing

that we can operate in both isomorphically. It achieves necessary efficiencies by actually
providing the computational EO-class objects. The user (and also the system) then give

these objects more abstract connotations as is the case with external representations.

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

S~:rp do not reveal the EO-class or place ohjects whereas. pointers do. The
EQ-class objects are the most primitive, most computationally interesting, and most
difficult to manage objects.

On the other hand. if the concern is for the structure of the ohject itself. and nol
the structure of the memory, we can consider the data objects as rooted directed graphs.
Which was just what was done when we chose our external representation. This seems the
most complete (yet memory independent) interpretation for data as objects. If we update
a structure in memory it may no longer denote the same graph. But updating cannot in
general extend beyond the memory, so it should not affect our choice of external repre
sentation. The sharing within the structure of an object is both representable and delecta
ble. We therefore chose an external data model which shows both cyclic and acyclic
sharing within the structure. Naturally. other models can .be featured such as lists. and
trees. While the latter will be more convenient from time to time, revealing the complete
sharing within a structure is possible, shows more, is not memory dependent, and is in fact
what is provided by default.

We are motivated in proposing the external notation to move the user from the
pointer domain to an object domain. It is our goal to select an object domain with
sufficient structure to be interesting, and efficient, yet as minimal as reasonable. Naturally
there is in this selection a component of choice which does not rest entirely upon reason.

In the following description of the external syntax the hierarchical classification
schema is slightly different than that used above in the internal data type schema. Here
the expression language interpretation of the data is emphasized, rather than the relation
ship to underlying data primitives.

In the following syntax definitions. only the output or canonical form will be
defined. This leaves some freedom to be permissive for the input forms. The definition of
what is permissible input will not be given precisely at this time. Permissible input does
naturally include canonical form.

{ and} are used for metalinguistic grouping.
I and I are used for set braces.
[and] are used to indicate optionality.
I is used to separate alternatives.
Vertical alignment is also used for alternatives.
The ellipsis" ... tI is used to denole zero or more ohjects. Thus x ... menns zero or
more x's, but ... x means zero or more of anything but x and then x.

'('. ')', '.', '='. '%', ',', ':',"" '<', '>', 'I', '+', '-'. and 't)' arc all uscd a.c; special
symbols in forming s-expression representations (also called .t-exp). There arc other
isomorphic representations involving the choice of other characters. It is in the
interest of communication that a single standard he chosen. The standard symonl
goal is difficult to attain due to incompatibility of character sets, anu the indiviuual
preferences among users.

x· 1'1 is used to indicate zero or more x separated by blanks.

P'ag.e 73

..

Page 74 IBM INTERNAL Draft --- FWB, revised OY--t X-79

x+ tl is used to indicate one or more x separated by blanks.

- is used as a metalinguistic set difference operator. M-N for the complement of N

in M; all points of M not in N.

Output Canonical Form

An s-exp is:

[labelHc b I id b I funarg I combination}

where label is {label-name = }, and

where label-name is {%Ldigit, ... digit n } where 1 n8 and.

where id € ID the set of identifiers (names), and

where c € C the set of constants. and

where funarg == °/o(o/o.FUNARG t; e t; • t; sd)

where sd == (no syntactic form available or intended) t. and

where combination = (comp+ ~ [t; • b comp])

A constant is:

where comp is {label-name lei id 1 funarg 1 combination 1
{label comp} }

{decimal-number I applicative-constant I nil I ranked-array I seleclOr-stnlcturd

where decimal-number = {illleger 1 floating-point 1 ralional 1 complex I

interval }

where integer = [sign] digir+

where sign = {+ 1 -}

where digit = {O I I 121 3 14 1 5 16 1 7 1 X I 9 t
where floating-point =

integer • digit ... [E decimal-number]

where rational = %(/ t; num b denom)t

where num = integer

where dennm = int~er
where complex = (~h(i tJ r-part tJ i-pllrr)t

where r-part = illleger 1 floati,,<~-poilll

. where i-part = illteger I [Ioating-poim

where interval = <Yo(ttJ hi-endb low-elld)t

where hi-end = {integer I floating-point I complex I raliona/J

•

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

where low-end = I integer I floating-point I complex I ratiollal}

where applicati\'f!-constant = { abstraction I hpi I sf I 1Ir l
where abstraction = { lambda-abstraction I mlambda-abstracliotl I

operator-code-abstraction}

where lambda-abstraction =
%(%,LAMBDA tJ bv 0 .0 exp-seq)

where mlambda-abstraction =
%(°A"MLAMBDA b bv tJ .0 exp-seq)

where mlambda-abstraction =
% (%,MLAMBDA b bv b .0 exp-seq)

where sequence-abstract ion =
q~) (9/0,SEQ 0 lag aux b • b ps-lis/)

where operator-code-abstraction =
%(%,FR*CODEb e tJ f-list tJ • 1) lap-code)

where bpi = t
where sf = 0/0 , { LAMBDA I MLAMBDA I MU I QUOTE I SETQ

I FUNCTION I LABEL I COND I SEQ I GO I EXIT
I PROGN I RETURN I FR*CODE I AUX I SETX l

where ur = lfix-ur I mult-ur}

where nil = 0

wherefix-ur= q{). {EVAI I MDEFX I APPLX I
EV AL I SET I CLOSURE I ... l
Comment: Many more basic operators
that take definite numbers of arguments
will fall into this class.

where mult-ur = 'Xl:{STATE I CALL I .. , }
Comment: Many more basic operators that
take indefinite numbers of arguments will fall
into this class.

where ranked-array = {vector I string}
where vector = {pointer-vector I intermediale-inleger-lrector I

floating-point-vector}

where pointer- vector = < compo h >
where intermediate-integer-vector = I~{) 1 < integer h >
where [loating-point-veclor = (}~)F < j7oaling-poin(h >

where string = { character-string I bit-string}

where character-string =
{ , char"' I %chr-capacity' char" , }

where chr-capacity-n > 3 t
and chr-capac;ry = 1 +4i where i € f I 2 ... }
where char = {chr I ~1I1ychd

where chr €CH R = JA N'lCII R -- J' Itt
where ANYC H R is the set of all characters available

where bitstring =
%8 [capacityl { , hex" I :(cOlllelll-lell! ' hex' , f

where capacity = 8+32i where i E f I 2 ." }
Comment: capacity is prescnt if thert~ is an eXCl:SS of 32
bits over the content-len. where cOlltenl-lell = digit + • and

I!agc 75

•

Page 76 IBM INTERNAL Draft --- FWB. revised 09-1 X-79

contem-len is present if the number of bits contained is not
a multiple of four.
where hex =

{O 11 12131415161718191 A I B I C I DIe lEI F}
where selector-structure = {ntuple I plex}

where ntuple = % (. t; compo b [t;. t; bit-string 1) t
where plex = %(•• t; compo b [t; - t; bit-sIring» t

An id is: {no rid 1 gensym I un id 1 mobid}
where norid E Ixi {non-num id-clzr ... H

where non-num E UD-CHR - DIG/71
where id-chr = {xEIANYCHR -IDDELIMJ 1 ~Ilychr}

. where iddelim = {t; 1 (I) 1 < I >}

where gensym = °/oGgennum
where gennum = digit+

where unid = %gennum:norid t
where mobid = %. (norid t; • t; directory) t

where directory = t

The print representations will be described in more detail in the descriptions of the
subclasses.

The input or s-ap recognition function:
%.READ: STREAM x M - PTR x M

(%-READ stream 1) 1M.} = plr l x 1M2}

where plr.tM21 = s-exPI

stream 1 I M21 is the result of
(0/0 - NEXT stream\) until sufficient char in the stream are recognized to
form a s-tap representation. the corresponding value s-exPt is allocated.
°/0. NEXT is a primitive input output operator and is defined in the
section pertaining to that topic.

%. READ is included as a basic primitive for recognizing s-exp and allocaling
pointers.

Input Syntax Commentary

There are many isomorphic forms for LISP input. for many applications unique
parsers are required. The primitive understood operator for the LISP reader (),{) - READ
may provide additional conveniences. such as macro characters. While such extensions
should not be curtailed. if allowed to supplant the standard external form. they will lead to
the Tower of Babel phenomena. This applies to syntax sugaring eXh:nsions not to

developments that correct some logical deficiency.

%. READ should be liberal about the use of blanks. Canonical form should enjoy
a certain primitive status. % - READ should at the very least accept it.

With regard to the string delimiter character ", .. we have heen accused of "adding
to the Babeling" by not adopting u"". ALGOL and certain versions of LISP have

,

IBM INTERN AL Draft --- FWB. revised 09-1 X-79

preferred """. In defense of this convention it should be nOlcd1ha1 .. , .. docs enjoy a

certain current popularity for this purpose. PL/ I, FORTRAN. ASSEMBLER. APL.

SNOBOL and IBM COBOL all use this convention. The underlying rational seems 10 be
that in a minimal character set the'" ,. is a more useful character to have if a choice must

be made.

A similar line of argument holds with regard to our choice of (~i) as an extender of

the character set. We have chosen this ugly minimal character set approach over the

introduction of an ideal character set. This is unlike ALGOL 68 which "eschews" the

problem.

These two operators are essential to the initial supervisor which is in essence:
(%,SEQ 0 0 TAG (°/0. PRINT (O/o.EVA! (O/o-READ USERINSTREAM» USER
OUTSTREAM) (GO TAG)

The access equivalence relation: °/o.EQUAL: PTR x PTR - TVAL

(0/0. EQUAL pt,! pt'2) = 0 iff
access} {ptrt } = access! {ptr2 } and,

access 1 {ptr2 } = access, {ptrt }

for each access, possible for both pt't and pt'2'
Informally, access functions traverse the underlying structure denoted
by the pointer and retrieve a value. but do not update the memory. It
should be noted that certain structures are presumed composite even if

no access functions are provide to the user.

Caution: Two expressions that are 0/0 • EQUAL may not be computationally

equivalent. For example:
(%.EQ (QUOTE °/oLl=(A» (QUOTE <?f.LI» is true in any context. and

(O/o.EQ (QUOTE (A» (QUOTE (A») is false in any context.

But the two operand expressions are 0/0. EQUAL and evaluated in the same con
text! Indeed the two expressions are themselves °/0. EQUAL but denote different

values. This illustrates the difficulty that the EO-class objects create.

If two pointer values are °/c).EQUAL then they both denole the same (possihly

infinite) tree.

The update equivalence relation: l~h. EQUUP : PTR x PTR - TVAL
(0/0. EOUUP ptr

J
ptr2) = () iff

«X) - EQUAL 1'1'1 plr2) ~ () after any

update I {pt'l}. and lIpdare l iplr21.
where update. is any allowed update operation on either plr1 or 1'1'2'

If two pointer values are 0/0 • EQUUP they denote the same expres.fiiol1. That is. if
they were each evaluated in the same context they would produce (~'~I. EQU U P
values. Furthermore. if the independent <?{). PRINT representation or two pointers

is the same then they are °4,. EQUUP and vice versa. Update equivalence is

preserved by %. READ unless the structure contains a gensym.

I'age 77

Page 78 IBM INTERNAL Draft --- FWB. revised 0<)...1 X-79

If two pointers are (~h. EQUUP they both denote the same rooled. directed. graph.

We proceed with the elaboration of the descriptions of the types of the hierarchy
of types:

SIMPLE OBJECTS

Simple-objects do not depend upon their components. That is. either they have no

accessible components, or the properties of the class in question does not depend on the
components.

There is some question as to whether or not identifiers should belong to this class.

Because the truth values are included in this class it is not a distinct representation type
class.

Abstract syntax: SIMPIMj = Inil U decimal-number U character U truth-value I

THE DISTINGUISHED NIL OBJECT

The nil object 0 is given the interpretation that it denotes the truth-value false. ()

is also commonly used as a li~t terminator and thought of as an empty list. The convention

through out this system is to consider any non pair object as a suitable list terminator. ()

as a terminator does enjoy a certain exalted status in that (A • () prints as (A). Clearly.

we consider () as denoting false and like any non-pair it is not a list. I n the interest of the

final elimination of reserved identifiers (for LISP370); the identifier NIL is not {~,~,. EQ to

O. The variable NIL will be normally given the global value (). It may be necessary to

convert all occurrences of NIL in old or foreign source files of s-exp's to O. Notice: There

really is no empty list provided by the underlying implementation!

Pointer type class: NIL = O. A primitive type.

The type predicate: 0/0. NIL

°A,.NIL: PTR - PTR
«(YcuNILplr1) = 0 iff ptrl~O otherwise ptr2 where plr2 ~ () and denotes true.

There are no access. update or allocate functions for nil. In certain other LISP systems the

access functions CAR and CDR are well defined if applied to nil but always yield the value

nil. But in these very same systems the pair updating operators are not well defined when

applied to nil. This inconsistent approach would seem to complicate the scheme for

constrained types. The point of view of this system is that nil is a unique non-pair used to

denote falsity whose representation makes its use as list termimllor result in a simple list.

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

NUMBERS

Pointer type class: NU M

Abstract syntax: NUM{M} = Unteger U noating-point U rationalt U complext U
intervaltJ

LISP /370 currently operates on three basic types of numbers. and several other types' of
numbers are anticipated. A basic numeric data item may be an integer or a floating-point.
Integers are stored in one of two possible formats. and each is denoted by a pointer of a
distinct type. depending upon their value. In the range _227 to 227 - I (-134.217. 72X to
134.217.727). the small-integer type is used (see Small Integer Format). This type pointer
(designated SMl) encodes the numeric value as immediate data. and so achieves greater
efficiency in computation and storage than the large-integer format which is used for all
other integer values. All integers are stored exactly by LISP. The only limitation on size is
the available space in the heap.

Primitives:

:rype predicate: 0/0. NUM

The type constraint: 0/0. = NUM

(O/o.==NUM ptr!) = ptr, iff plr, £ NUM, otherwise V.

Generic Arithmetic Operators:

operator operation type of operands_ type of result

addition
i1ll~er. if all operands

0/0:+ (%:+ m ...) =
j1oating-poin! or are of type integer.

Un ...
integer j1oClting-poil1l other-

wise .-. _.

subtraction
integer. if all operands

o,.-{,.- (<'?{,.- mn) = j1oating-point or are of type integer.

integer .fl 0(/ Ii ,~~ -poi 111 ot her-
m-It

wise ----- --_.-. - ---

multiplication
il1l~er. jf all operands

j1(}alil~f{ -poi III or arc of type illl(~~('r.
9'<,:· (C~k· m ...) =

i /lIeger jlOt.llillg-poilll other-nm ...
wise _ ... ----- .- -_. -

Page XO IBM INTERNAL Drart --- FWB. revised 09-1 X-79

(Yo-/
quotient
(OA)_/ m n) =
m+n

---------- - .-------- -- -----------

%-DIV
decimal division
«Yo-DIV m n) =
m+n

floating-point or
integer

floating-point or
integer

~-----------r-------------------r------------------

0/0 _** m"
floating-point or
integer

illl~er. if all operands
arc of type integer.

f7oating-point other
wise

fl oa ti ng -poi III

[loating-point integer. if
all operands are of
type integer.

[loating-point other-
wise t-----------t------.-·--.------t------.·---------- .----

remainder mod n
%-MOD (%.MOD m n) =
~ ___________ +-_m __ =-~_~ (m + n)

less than predicate

~-< ~ ---------------
greater than predicate
(°/0_> m n) =

integer

floating-point or
integer
---_._--- - --- - -- -

floating-point or
integer

integer

TVAL

m if true. otherwise o.

TVAL

m if true, otherwise O.
m > n 1-------------+--:-------------+-------------------- -- ---- ---
not less than predicate

0/0_>=

m~n

not greater than predi
cate
(%_<= m n) = 0/0_<=

1-------------~-$--~-----. --

0/0 _=
equality predicate
(%.= m n) =
m=n

floating-point or
integer

floating-point or
integer

s-exp

I---------t------------------+--------- ---

O/o_CHS

%-ABS

change sign
(%.CHS m)

/l oa ti ng -poi 171 or
i17leger

----------~.-------- ------- .. --------

absolute value
«~Ih .ABS m) =
Iml

floating-point or
integer

1----------- -- ------- .-------------

%_=0
floating-point or zero predicate

(%_=0 m) integer L-. ________ ---'-~~........;;.-:.....:..... ____ __L_ _ ___"'_ _______ -- - - - .. -

TVAL

m if true. otherwise O.

TV4L

m if true. otherwise O.

TVAL

illT~er. if operand is of
type illl~('r.
.I70tlling-l'oilll other
wise

illl~er. if operand is of
type ill1~er.
.I1oalil1g-poilll other
wise

o if operand is O. oth
e~wise ()

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

negative number predi-
floating-point or cate

«Vo-<O m)
integer

Small Integers:

Small Integer Pointer Format:

operand if operand is
Icss than O. otherwise
()

0011 Is---I ------------------------

S is a sign bit (I for negative value, in two's complement form);

- represents a data bit which is part of the actual numeric value.

Note that a small integer is actually a (non-stored) pointer value. It is not a
reference to another data object.

Pointer type class: SM I

Abstract syntax: SM I {MJ = smi = - 134.217. 728 ~ integer ~ 134.217.727. A distin
guished primitive class.

Primitives:

Type predicate: % -SMI

The type constraint: % - =SMI

(%-=SMIplr t) = ptr1 iff ptr1 € SMI, otherwise 'i/.

Small integers are allowed inputs to and outputs of the ordinary !!cnl'ric <lrilhmctic

functions. In this role the smi are a subrangc of the intc~crs.

Functions over the commutative ring s (an isomorph of smi):

%:S+ • %_S- ,0/0:S*, %.S/ • 9~)-SMOD. o/().S·* . (~{)eSCHS. (!{,.SABS.

%-S<O. %.S> , %.S< , %.S<= , %.S>= , %-S=O, and 'X>S.= .

These operators do arithmetic modulo 228 but the two's complement notation

results in numbers greater than (227 _1) being considered negative.

Pa!!c X I

Page H2 IBM INTERNAL Draft --- FWB. revised 09 ... 1 X-79

We denote this domain s = 1_227, _227+ 1, ...• 0, I, ...• 227_ IJ.

For e s E: t °1<>:S+ • Q{).S-. (}():S· . °A).S/ . (}h.SMOD. °A)·S** Land
e E: i %:+.0/0.-. %:*. %./. (},<).MOD. 0/0.** J;

SI e s S2 = _227 if SI 8s2 = _227 • and
(%.MOD isl es2 } 227) otherwise.

For e s E: I %.SCHS . O/o.SABS 1, and
e E: i % .CHS • % .ABS I;

e s St = _227 if eSt = _227 • and
(%.MOD {eSt} 227) otherwise.

Large Integers:

Large Integer Format:

LCBVTP I Vec:t~~_L~_ngth !n. By!es - .

0 Low-order Digit (radix 231)
-- --.- ----- ---

---- -- - --"--- -. ----

0 High-order digit (radix 2-11)

The format pictured above defines the magnitude of a large integer. There are two pointer
type codes which designate large integers; one indicates a positive large integer, the other
indicates a negative large integer. Because these type codes are not in the class of vectors,
it is not possible to select an element (digit) of a large integer with vector functions such as
%.ELT.

Pointer type class: L a distinguished primitive class.

Abstract syntax: LIMJ = lint = {integer < - 134.2) 7. 72H J U Hntcuer > 134.217.727 J.

Primitives:

Type predicate: %. L

Type predicate: %. L

The type constraint: %. == L

IBM INTERNAL Draft --- FWB. revised 09-1 H-79

(°/0. =L ptr l) = ptrl iff ptr l E L. otherwise 'iJ.

Large integers are allowed inputs to and outputs of the ordinary generic arithmetic

functions. There is not provided any type specific basic constant functions with either
domain or range constrained to the type L.

Integers

Pointer type class: I

Abstract syntax: 11M} = integer = ismi U Iintl

Type predicate: % e [

The type constraint: °/0. = I

(%e=1 ptrl) = ptr1 iff ptrt E I. otherwise 'iJ.

Primitives:

°/oeODDP: I - TVAL
(%.ODDP i) = 0 if «(iMOD2)=O) otherwise i.

The following generic operators have integer values when given integer arguments:

%:+ • 0/0._ • %: •• 0/0./ . °/o.MOD. o/o.CHS. C?-b.·· . <Yo.ASS

Floating Point Numbers

The user can (at some peril) view the floating point numbers as real numbers
whose decimal representation was truncated some number of places to the right of the

decimal point. Until the computer provides efficient decimal n()atin~ point hardware that

has no perils. we will he content to usc the availahle hexadecimal f1()atin~ h~lrdwarc. This
decision will affect (in a hopefully minor way) our ideals for conversion to canonical

output form and our understanding of the rules of arithmetic. Floating-point numoers are

stored using System/370 double precision floating point format. yiekling 53 to 56 oits of

precision for the mantissa and a range of up to (about) 1074 . Floating-poinl numbers are
stored in a separate section of the heap used only for these data. This area is allocated at

the high address end of the space reserved for the heap. and extends toward lowl'r
addresses as new floating-point numbers are generated.

Pointer type class: FP a distinguished primitive class.

P.a~c H3

--=-. -'-_.--.":0;:-.;".:_
~.--~-~-~---",,-":'

~".~~-"...:::' ,

Page 84 IBM INTERNAL Draft --- FWB. revised 09= I X-79

Abstract syntax: FP/ M/ = float shorthand for truncated-real

-Type predicate: %. FP

The type constraint: 0/0 • = FP

When provided with floating arguments the following generic operators have
floating values:

0/0:+ ,0/0.- ,0/0:* , %.QUOT , 0/0./ , %.CHS, Pio.·· ,o/c).ABS

Primitive operators whose domain and range is restricted to the floats:

%:FP+ . %.FP- ,0/0:Fp· • %.FP/ , %.Fp·· . o,,-().FPCHS. o,h.FPABS

%.FP<O, %.FP> ,0/0.FP< ,000.FP<= • %.FP>= . and °/c).FP=O

The print representation for a floating-point number always includes a decimal
point to distinguish floating-points from integer values. This decimal point must be
preceded by at least one decimal digit. to avoid possible confusion with the period used in
printing pairs. A minus sign may precede the first digit to indicate a negative value.

Both integer and floating-point numbers may be followed by a decimal exponent
formed by the letter E. a plus or minus sign (plus is optional). and the exponent magnitude
expressed in decimal digits.

There are two parameters, FUZZ and NDIGITS. which control the way in which
floating-point numbers are translated into their print representations for output. FUZZ
refers to a value used to define the intended precision of floating-point number operations.
Two numbers, X and Y. are equal in the LISP system if

I X - Y I < = FUZZ • maximum (I X I. I Y , , 1.0)

Insofar as printing a floating-point number, X. is conccrnell. a c.:haracter repre
sentation is generated for the value in the range

X-FUZZ·' X I to X+FUZZ· I X I

which results in the shortest character string. This print representation may include an
exponent, in which case there will be exactly one decimal digit before the decimal point. or
in cases where the number of digits (exclusive of decimal point and a possible minus sign)
needed to represent the numeric value is less than NDIGITS. no exponent will be printed
and the decimal point will be placed wherever is required.

IBM INTERNAL Draft --- FWB. revised 09-18-79

The user may specify values for FUZZ and NDIGITS by using the function (}~) .SETFUZZ.

%.SETFUZZ: PR x PR - PR x M

(O/o.SETFUZZ prt)/Mll = pr21M 2i
where prdMll = (floal, • smi l) and. pr2!M2} = (f/OQ/o • smi

o
) .

FUZZ! M t i = floalo•

FUZZ! M2i = float I'

NDIGITSI MIl = smio•

NDIGITSIM21 = smil'

CHARACfER OBJECTS

The characters are an understood subrange of the identifiers. They are not a
primitive type.

Pointer type class: CHAR

Abstract syntax: CHARIM} = lcharacterJ
CHAR c: ID

Primitives:

Type predicate: 0/0. CHAR

The type constraint: ok. =CHAR

(0/0. =CHAR ptr.) = ptr1 iff ptrt ~ CHAR. otherwise 'V.

Character object to EBCDIC character code: % .CHIDEBCD

%.CHIDEBCD: CHAR - SMI

(%.CHIDEBCD char.) = smi,

where 0 ~ smi1 ~ 255 and the correspondence is defined in IBM form number

GX20-1850-2 System/370 Reference Summary (the yellow card).

EBCDIC to character object: 0/0. EBCDCHID

°/o.EBCDCHID: SMI - CHAR

(°/0. EBCDCHID slni,) = chart

where 0 ~ smi, ~ 255 and the correspondence is defined in IBM form number

GX20-1850-2 System/370 Reference Summary (the yellow card).

Page 86 IBM INTERNAL Drafl--- FWD. revised 09"-lX-79

TRUTH-VALUES

Truth-values are an interpretation on the set of all data objects. They are not a
distinct primitive class. If the object is 0 then we interpret it as false. otherwise it denotes
true.

Pointer type class: TVAL = PTR

Abstract syntax: TVAL{Mj = itrue U false}

Primitives:

Truth value: %. TV AL

% • TV AL : PTR - { 1 I 0 }
(0/0 • TV AL pI'l) = 0 iff pl'l = 0, otherwise 1.

Comment: The truth values are an interpretation on the total PTR domain. The justifica
tion for this is that in the language syntax and semantics the predicate expressions of the
conditional are first class Le. any expression can be written in that place. This results in an
elegance and versatility that can be appreciated from the point of view of theory and
pragmatics.

COMPOSITE OBJECTS

The composite objects are viewed as having components even if no access
function is provided. In the case of objects where no access function is provided the
access-equivalence operator %. = may consider otherwise inaccessible components as
comparable.

Pointer type code: COMP = t ARRAY U RECORD U COMPLEXJ

Abstract syntax: COMPIMj = larray U record U complex J

ARRAYS

Arrays are objects that have components of all the samc lypc.

Pointer type class: A = IPR U RAJ

Abstract syntax: AIMj = t pair U ranked-array}

Primitives:

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

Type predicate: °lc). A

The type constraint: 0/0. =A

PAIRS

LISP /370 implementation format of the storage object:

, I
XXXX YYYYi AAAAAAAAAAAAAAAAAAAAAAAA

t------+------l
l
------------- .- --- - _.. .-

xxxx yyyyi AAAAAAAAAAAAAAAAAAAAAAAA

A pair is a stored data object having two component pointer ohjects which are
referred to as the CAR component and the CDR component (for historical and compati
bility reasons). The storage allocation for a pair is two contiguous full-words. Both of
these words contain pointers. The CAR component occupies the first word; the CDR
component occupies the second word. Since a pointer is used to represent any LISP data
object. a pair is an association of two completely arbitrary LISP data objects.

Pointer type class: P R. A distinguished primitive class.

Abstract syntax: PRIM} = pair = s-exp x s-exp

Primitives:

Type predicate: 0/0 • PR

The type constraint: 0/0 • =PR

(0/0. =PR ptrl) = ptrt iff pt,. = ! PRo otherwise 'V.

Access functions: %.CAR and °A).CDR. Two basic functions are provided for selecting
part of a pair. %.CAR and %·CDR applied to a pair return as their value the corre
sponding component of the pair.

%.CAR : PR - PTR
(%.CAR P'.) = pt'2

where P'I = (pt'2 • pI'.)
This is another example of a domain restricted primitive. It is defined
only over the pair domain. The definition of these primitives when the
domain is not conformal is 'iJ. As the notation is meant to imply this it
is not explicitly stated.

0/0 .CDR : PR - PTR

p.age X7

Page 88 IBM INTERNAL Draft --- FWB. revised 09-\ X-79

(eyo .CDR P'I) = pI')

where P'I = (plrz • pI')

Allocation function:

%.CONS : PTR xPTRxM - PR xM

(0/0 .CONS pl'J pt'2) {M I} = p') {M2} = (PI' I • pl'2)

where P'J ;. PTR of M" andpr3 £ PTR of M 2• or simply. a new pointer
is allocated.

(0/0 .CAR P'3) {M2/ = ptrl

('?k> • CDR pr3) {M2} = ptr2

Update functions: 0/0. RPLACA and Ok>. RPLACD.

O/o.RPLACA : PR xPTR xM - PRxM

«Yo-RPLACA pr. ptr2) {M.I = prJ IMzl
P'I {M} = (x - y)

(%-CARp,.) IMzl = ptrz
p'3/M21 = p'J{M.I

for all p'J £ PTR of M" such that p'J indep P'J .
Where the independence relation indep expresses the notion of

having no shared component.

x indep x is false

if x indep x' • then x' indep x

if x indep x t then. x indep x' i'

for all components x' i of x t •

Simply stated. M. and M2 differ only in the meaning of the composite objects

that share P'J as a component and not necessarily in those.

%.RPLACD: PR xPTR xM - PRxM

(%-RPLACD pr, pt'2) IM,I = prJ IM21

prt {M.J = (x - y)

(%-CORpr.) IM21 = prr2

pr3 IM21 = pr)/Md
for all p'J £ PTR of M,. such that P', indep 1", .

The primitive print representation of a pair is a left parenthesis followed by the print

representation of the first element of the pair. a blank. a periou. a hlank.. the print repre

sentation of the second clement of the pair, and finally a ri~ht parenthesis.

(comp 1:> - 1:> comp)

In most cases, however. a more complex print representation is used. These ahrogations

of the above rule occur for economy of representation and hec41use of the desire to

emphasize the list interpretation of these pair structures.

113M INTERNAL Draft --- FWB, revised 09-18-79

RANKED ARRAYS

Poinler type class: RA = IRl A U MATRIXI

Abstract syntax:' RA1MJ = lrank-one-array U matrix}

Primitives:

Rank function: %. RANK

°/o.RANK: PTR - SMI
(% • RANK ptr l) =

o iff ptrt ;. RA, and

1 iff ptrt E: RIA, and
n iff plrt E: MATRIX,

where n is the number of dimensions.

ARRAYS OF RANK ONE

LISP /370 rank-one-arrays are composite stored objects that have { 0, ... , n-l}
as an index set. also they have components of uniform type. Like pointers, this class is not
a primitive storage type but rather a union of subtypes.

Pointer type class: RiA = ILISTU STR U VEe} = PTR

Abstract syntax:

R1A1MJ =: rank-one-array = {list U string U vectorf = comp"
where comp the components are s-exp

and compo implies an empty rank one array has an empty index set.

Because we allow the conventional interpretation that any non-pair has an
interpretation as an empty list; rank-one-arrays = s-exp.

Notation: an for a x a x ... (n factors).

Rank-one-arrays arc classified as vcctors~ strings, and lists. Vectors arc dwracll'rized their
cardinality, the number of elements they contain. The cardinality may he computed by the

operator °/0· NC. Strings on the other hand are characterized by current cardinality and
capacity for extension. 'The capacity for extension of a string may be computed hy

0/0. CAP. Lists are, as previously explained, an interpretation on s-exp. They are

dynamically extendible to the limit of available space. These objects will be desl'ribed in
detail below.

!;"_...",.".,:-;-_.".:=. __ • _--"-0',

-- -.-.......=...-- - .• --~~---

Page X9

Page 90 IBM INTERNAL Draft --- FWB. reviseu 09: I X-79

Except for bit strings. rank one arrays may have any length for which sufficient space
exists in the heap. Bit vectors (in L1SP/370) may have a maximum of 224_1 (10.777.215)
elements (bits).

Primitives:

Type predicate: Not provided because this is not a distinct type.

Type constraint: Not provided because this is not a distinct type.

Cardinality function:

O/o.NC: RIA - SMI
«(}h.NC rial) = smi

l

smidMI = n ,where rladMI = ptrn.

Access function:

%.ELT: RIA x SMI - PTR
(O/o.ELT rla t smit) = iffO~i<n-l thenptr j otherwise fJ.

where rla 1{MI = ptrn = ptrOt ... , ptrn_1' andsmitfMI = i.

Notation: fJ for run time detected domain error.

All rank one arrays use zero-origin indexing for identification of their components. The
function 0/0. EL T is a general rank one array accessing function. applicable to any type of
rank one array. Provided. of course, the index is within bounds. Thus

(0/0 .ELT r Ja 0)

is always the first element of rank one array. Other accessing functions. tailored to a

particular type of rank one array. are provided because they are more efficient in execu
tion. These are each described in the section about that rank one array.

Update function:

°/o.SETELT: RIA x SMI x PTR x M - PTR x M

(O/o.SETELT rIal smil ptrl){Mrl = iff O<i<n then plr, XM2 olherwise fJ.
where rlatfMI = ptr", and smitfMI = i.

(%aELT rla t sm;I){M21 = ptr,. and
«(~{).ELT r./a 1 smi2)/Jl.111 = «~{,·ELT rIa, smi2)/fttf l l

for all s117i2 = 0, ... , n-l where smi2:Fsmil. and

plr2 {Ml = plrlM,1
for all plr2 £ PTR of M I , such that plrl indep prr

2
.

LISP /370 structures may also be classified as: Pointer component vectors and no-pointer
component vectors. Pointer component vectors, as the name implies, may contain

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

references to any LISP data objects (including themselves. so circular structures arc
possible). Pointer component vectors are point-er-vectors and lists.

No-pointer vectors contain only binary information -- that is. dala which cannot contain
references to other data objects. Thus. no-pointer vectors are non-desccndablc from the
point of view of the garbage collector and structure-dependent functions such as
°/o-EQUAL and °/o.PRINT. No-pointer vectors are: bit-strings, character-strings.
intermediate-integer-vectors, and Ooating-point-vectors.

Pairs As Lists

The abstract data structure list is usually defined as:
(list-element ...) where () the empty-list is a list.
This system does not have a distinct LIST type class, therefore the domains and ranges of
functions. and the domains of variables cannot be constrained by primitive constraint
functions to this type class. On the other hand there are a great number of functions
pertaining to lists.

Lists are composite objects created by applying a conventional interpretation to
s-exp. Thus each pair is a list and any non-pair is an empty list. The CAR component of
the pair is interpreted as a list-element of that list. and the CDR component of the pair is
interpreted as the remainder of that list. The distinguished nil object () is commonly used
to denote the empty list. Thus. if the CDR of a pair is not a pair. there are no remaining
elements in that list. Note: The CDR could be some other object. not a pair and not nil.
These empty lists are also lists! Because LIST is isomorphic to PTR. no type-class predi
cate is provided nor is the type-constraint.

There are few strict list domain or range functions; the list functions provided by
the system are total functions. In this mode of interpretation all non-pair objects (JPTR -
PRD may be used to terminate a list.

It may surprise the reader that LISP does not have lists as a distinguished type.
Lists are abstract data structures that originally were thought of as the principle data
structure for the language. When pragmatic concerns about insertion were considered the
pointer-pair schemes bec3me an 3ttractive solution. In most LISP systems today what we

have is a Jist /lotatioll for pairs~

For the purposes of functions which have a list interpretation on pairs. the CDR
component of the last pair of the list is not considered to be part of the list. Because of
this somewhat liberal interpretation of what is a list. a recursive function over pair
structures that only uses the "0" test as a termination test is only well defined for "0"
terminated lists. The system utility functions all use the ·'not pair" termination test for
partial functions on lists.

The print representation of a list is a modification of the representation of its
component pairs as described above. This modification is intended to improve readability

Rage 91

Page 92 IBM INTERNAL Draft --- FWU. revised Ol",," I X-79

by eliminating some of the parenthc::ses while still divulging the sharing of data; however.
the inclusion of some (or all) of the deleted parentheses is always acceptahlc in input data.
This list notation form can be most simply understood as an elision rule applied to the pure
dotted pair notation:

whenever" • (.. occurs it may be replace by a blank and the balancing .')" deleted.

This seems more complicated when described in words than when illustrated by
example.

Thus, the list

(A • (B • (C • 0»)

would appear as

(A B C)

when printed.

Since a pair is a perfectly reasonable element of a list. it is possible to create lists
which include themselves. or parts of themselves. as elements. LISP /370 uses a general
scheme for input/output which indicates the sharing of data. This s·haring scheme. as well
as other aspects of the LISP /370 input/output system. makes use of a hreak character

which is defined in the standard system as percent (°/0). An input expression written:

%LI =(A • °/oLl)

generates a pair whose CAR component is a pointer to the identifier A and whose CDR
component is a pointer to the pair itself. The list interpretation of this pair would be a
circular list. effectively an infinite list of A's. A function meant to traverse lists might be
non-terminating for this object.

This sharing notation need not generate a circular list. For example. the expres-

sion:

(O/oLl=(A) °/oLl)

generates a list containing two elements. The first element is the list containing a single
element -- the identifier A -- and the second element is another identical pointer. This is
to be distinguished from the expression:

«A) (A»

which also generates a list of two elements. each of which is a list containing the singJe
identifier A. In this case. however. the two clements are different pointers. although they
point to equaJ (but separately stored) lists.

I BM INTERNAL Draft --- F\VB. revised 09-1 R-79

For purposes of accessing the elements of the list. both expressions are equivalent
(but note that the list having the shared data requires less storage). These 1 \\'0 lists are not
equivalent with respect to updating. That is, the product of updating one may not be the
same as the product achieved by the same updating operation applied to the other.

VECTORS

Pointer type class: VEC = IVP U VII U VFI

Abstract syntax:
VECIM/ = vector = I pointer-vector U intermediate-integer-vector U noating-point-vectorJ

Type predicate: % - VEC

Type constraint: q1l- = VEC

«Yo-=VEC pt,!) = pI'! iff pI'! € FP otherwise 'V.

Reference vectors:

Reference Vector Format:

LCRVTP I _ Vecto~!--~~g!~}!! !3yte~ .. - ..

Pointer for compon~~O ____ _-- -----

Pointer for component 1 .-- o. _____

- ----- -- -- ...

Pointer for Last component

Pointer type class: VP. A distinguished primitive class.

Abstract syntax: VP1Mj = pointer-vector = pointer"

Type predicate: % - vI>

Type constraint: 0/0 • = VP
(%_=VP pl'l) = PI'I iff pt'l € VP otherwise 'Y.

Access function:

•

Page 94 IBM INTERNAL Draft -•• FWB. revised 09·1 X-79

%.VPELT: VP x SMI - PTR

(0/0 • VPELT vP, smi I) = iff O~ i<n-l then plrj otherwise fJ,

where vpdM/ = ptr" = ptro' ...• ptrn_1' and smi"M! = i.

Update function:

%.VPSET: VP x SMI x PTR x M - PTR x M

(0/0. VPSET "'PI sm;\ ptr,){M\! = iff O~i<n-l then pfr, x M2 otherwise fJ,
where "'PdM/ = ptrn = plro' ...• pt'n_1' and smi.lM/ = i.

(0/0. VPELT "'PI smi l)I,\12/ = Pi', • and
(%.VPELT "'P, smi2){Mi = (%.VPELT vP, smi~)/f-,II/

for all smi2 = 0• n-l where smi2:#:smil' and
ptr2 {M2! = ptr2{M,l

for all pr'2 € PTR of MI' such that plr, indep plr2 .

The pointer vector allocator:

%.VPGET: SMI x M - VP x M

smidM/ = k
(0/0 • VPGET smi I) {Mil = vP dM]l = <00", Ok_I>
M]- MI = vp,lMi
VP, t PTR of MI

Allocates an pointer vector with smi I elements all O.

The print format of a pointer vector uses angle brackets to delimit the extent of the vector
and blanks to separate components of the vector:

<compo comp, .•• comPn> and < > denotes the empty pointer vector,

where comPi is the print representation of the LISP data object referenced by the j'th

component of the reference vector.

Intermediate-integer-vectors:

Intermcdiate-integcr-vectors Format:

~--..,.;L __ C __ R_V_T_P_· _..L-! ______ ... _V_e_c_to_r ___ L'~!!gth in Bytes.

___ ,. __ . _____ .. In,tcrmediatc-integer, for compom:nl 0

1 ______ In_t_e __ rm_e_d!ate-integer for c~.mponenl I,

Intermediate-integer for Last cOmpOtll:llt

•

IBM INTERNAL Draft --- F\\,'B, revised 09-1 X-79

Pointer type class: VII

Abstract syntax: VI JIM I = intermediate-integer-vector = intermediate-integer"

Type predicate: <Yo eVil

Type constraint: %. = VII

(0/0 e = VII ptr 1) = ptrl iff ptr I E: VI I otherwise fJ .

Access function:

0/0. VIIELT: VP x SMI - II

(%eVIIELT viiI smi l) = iff OSi<n-1 then iii otherwise fJ,

where viidMJ = iin = iio' ... , iin_ l • and smillMJ = i.

Update function:

%.VIISET: VII x SMI x II x M - II x M

(0/0. VIISET vp, smi l ii,){M,J = iff O~i<n-l then iiI x M2 otherwise 'V,

where viidMJ = iin = ;;0' ... , Un_ t , and smidMI = i.
(0/0 • VIIELT vii t smil)/Mi = iiI ' and

(%-VIIELT vii t smi2>IM2i= (%.VIIELT vii t smi2>IM I I

for all smi2 = 0, ... , n-1 where smi2,,"smil' and

plr2 /M2J = pt'21MI J
for all ptr2 e PTR of Mp such that plr, intkp plrz .

The intermediate-integer-vector allocator:

%-VIIGET: Slv!I x M - VII x M

smidMI = k

(%-VlIGET smi,) {M,J = vii,lMi = °101<00"· Ok_I>

M2 - M J = viilM2}

vii, ;. PTR of M,

Allocates an intermediate-integer vector with smi I elemenLs all zero.

The print format of an intermediate integer vector uses angle brackets Lo delimit thc extent

of the vector and blanks to separate components of the vecLor:

O/oI<iio iii .•. Un> and %1< > denotes the empty intermediate integcr vector.

where iii is the print representation of the LISP intermediate integer referenced by the rth

component of the vector.

•

Page 96 IBM INTERNAL Draft --- FWB. revised 09 .. 1 X-79

Floating-point Vectors:

Floating-point Vector Format:

__ L_C __ R_V_T_P_--"-I _______ Vector)~e!lgth ~n Bytes

1--______ Fl~~~~f!g-p~in!J~!_~_omponent 0

, _______ F-----=lo~a.....:....:.ti!!g-point for c~~p~n_e.r~_t J. _

1---------------------------------- -
Floating-point for Last component

Pointer type class: VF. A distinguished primitive class.

Abstract syntax: VF{MI = f1oating-point-vector = noating-point"

Type predicate: o"i>. VF

Type constraint: 0/0. = VF

(0/0. = VF pt,) = pt,! iff pI'! E VF otherwise 'V.

Access function:

%.VFELT: VF x SMI - FP
(0/0. VFELT vII smi) = iff Osi<n-l then [Pi otherwise V.

where vft!MI = vf" = CPo •.•. , Cpn_1' and smit!MI = i.

Update function:

%.VFSET: VF x SMI x FP x M - FP x M
(%.VFSETvl)smit[p)/M!1 = iffOSi<n-l thenfp 1 x M 2 otherwiseV,

where vldMI = fp" = Ipo' ...• IPn-l. and smil/MI = i.
«X,.VFELT vI, smi,)/M2 / == .. i l • and

(OA,.VFELT vI! smi2)/M21 = «X).VFELT If, smi2)/Md
for all smi2 = 0• n- I where smi-z¢smi l • and

ptr2 1Mi = plr/Mtl

for all pl'2 E PTR of MI' such that pl't indep pl'2 .

The floating-point vector allocator:

%.VFGET: SMI x M - VF x M

..

IBM INTERNAL Draft --- F\\'B. revised 09-1 X-79

smi,lM/=k
(OA).VFGET smi l) IMI } = vldMz} = (X)F<O.o'" 0',,_1>

M z "'" MI = vl/IM21
vI, ;. PTR of M,

Allocates a floating-point vector with smi I elements all zero.

The print format of an floating-point vector uses angle brackets to delimit the extent of
the vector and blanks to separate components of the vector:

O/oF <fpo (PI .•. fP n> and O/oF < > denotes the empty floating-point vector.

where (Pi is the print representation of the LISP floating point number denoted by the j'th
component of the vector.

STRINGS

Strings (character and bit vectors) share a special storage characteristic in the
LISP /370 system. For reasons of economy (of both storage and processing time) they are
stored in contiguous blocks of storage. Nevertheless. because it is considered desirahle to
allow them to vary in length. a compromise has been achieved which involves maintaining
two separate pieces of length information for each string. One length reflects the amount
of storage allocated for the string, in terms of the number of elements which may be put
into the string without having to allocate more storage for a larger string. The other length
refers to the current number of elements which are actually present. the cardinality. which
is less than or equal to the capacity of the string.

Pointer type class: STR

Abstract syntax: STRIM} = Icharacter-string U bit-string}

Primitives:

The capacity function: 0/0· CAP

°/t).CAP : STR - SMI
(%.CAP str l) = smi l = k. where

strllMJ =
Case 1: Q6k'charo ... charn_ t '

Case 2: 'charo-' .char"_I'
Case 3: %Bk[:m]' hexo" .hexn _ I '

Case 4: %B'hexo' .. hexn_ t ', and k=4n.

The change cardinality (NC) function: (}h.CHGNC

O/o.CHGNC: STR x SMI x M - {STR x M I 'V }

Ptlge <)7

•

Page 98 IBM INTERNAL Draft --- FWB. revised O().\ X-7lJ

«Yo.CHGNC SI" smi,){M,1
= iJ iff «X).CAP Sl',)~ {smi,+('X).NC slr,)IM,/i ~O.

otherwise SITdM2/'
where (O/o.NC SIT,){M2} = {smi,+«}h.NC slr,)IM,/}

Character Vector Format:

Current length of string
~--ch-a-T-,--""'I--c-h'~,~l . --.~~--.---

Pointer type class: se. A distinguished primitive class.

Abstract syntax: SCIM} = Icharacter"J

Primitives:

Type predicate: % ·SC

The type constraint: 0/0· =SC

(%.=SC pIT,) = pIT, iff PI't = € SC, otherwise iJ.

The character string allocator:

%.SCGET: SMI x M - SC x M
(°/0 .SCGET smi,) 1M,} = sc ,1M2} = <}'<>k"
k = «(O/o.MOD (smi,+6) 4) x 4) - 3)

M]- M/ = scdMi
sc, t PTR of M,

Allocates a character string with capacity for at least smi I characters.

There are two input/output representations for character vectors. The more g,cm:ral

format is:

°/ok'c ... c' .

where 'k' is the maximum number of characters which could be put into the vector for the
character string being read or printed. The actual contents of the character string 'c ... c'

reflects only the current length of the string. and might be null. Any character may be

IBM INTERNAL Draft --- FWH. revised 09-1 X-79

included as part of a character string; however. the string delimiter ch~lractcr ~lnU thc

letterizer character must be treated specially. In order to avoid confusion anout whether a

string delimiter character actually delimits a string or is intended as a data character in a

string. every occurrence of the string delimiter character as a data characlcr in a string

must be prefixed by a letterizer character. This letterizer character is not part of the

character string in storage; it is created during output by the print routine. and discarded

during input by the read routine. Likewise, every occurrence of the letterizer character as

a data character in a character string must be prefixed by the letterizer character.

For example, the string

'I"

contains one character (a string delimiter), and the string

'II I "

contains two characters (a letterizer and a string delimiter).

When it is not necessary to represent a character string whose total capacity is larger than

the shortest vector necessary to contain the characters specified. the simpler form:

'c ... c'

may be used. This designates a character vector which may have zero. one. two or three

unused elements. Referring to format diagram. it may be seen that if N is the number of

real characters in a string (Ietterizing characters are not counted). the number of unused

elements for this simplified notation is the residue. (N-l) MOD 4.

Example: to specify an eight-element character vector containing the letters

'FUNCTION', write:

'FUNCTION'

This vector will have space for nine characters (see Format diagram.) and a current length

of eight. To specify a vector with a capacity of 100 characters. but with a current length

of zero. write:

0/0100"

,.-..---.. ----,""", . . -- . -

P;lgC 99

.,.

Page 100 IBM INTERNAL Draft --- FWB. revised 09-J X-79

Bit Vector Format:

__ !-_CBVTJ ____ J. _________ '-ye~~<?r J:,~!lgt~ in BYltes

Current length of string b'
. b' Its 0 - 7
In Its

bit-s -8 -.--15----.i-b·-it~~LI---.~------ _ ~ ______ ~ __ _

Pointer type class: SB. A distinguished primitive class.

Abstract syntax: S B I MJ = hruth-valuenl

Primitives:

Type predicate: %. SB

The type constraint: %. =SB
(0/0 - =SB ptrt) = ptrJ iff ptrt = E S B, otherwise V.

The bit string allocator:

O/o.SBGET: SMI x M - SB x M
(%-SBGET smi,) IMd = sbdM2/ = ~~)Bk{:ml"
k = «(%-MOD (smi,+ (31+(3x8») 32) x 32) - 24)

M 2 "'" M, = sb,IMz}

sh, ;. PTR of Mr
Allocates a bit string with capacity for at least smir bits.

The input/output format of bit vectors is similar to the format for character vectors:
however~ 4 bit elements are represented by one hex character and the current length field

is a count of the number of bits in the vector. not a count of the number of bytes (see

Format diagram.). Only the characters 0 ... 9 and A ... F may be specified as part of a hit

string.

There are different input/output representations for bit vectors. depending upon the
current length of the vector being considered. For bit vectors whose length is a multiple of

four bits, the format is:

%Bk'h ... h'

IBM INTERNAL Draft --- FWB. revised 09-1 X-79

where 'k' is the maximum number of bits which the specified vector coulu contain. The

actual contents of the bit string' h ... h' reflects only the current length of the string. and

might be null.

As with character vectors. the maximum length field is optional and may be omitted when

representing a vector of length consistent with the explicitly specified data. A bit vector

specified without an explicit maximum length 'k' and with up to 28 unused elements has

the format:

O/oB'h ... h'

For bit vectors whose current length is not a multiple of four bits. the format is:

%Bk:c'h ... h'

where 'k' is as previously defined and c is the current number of bits in the string. A bit

vector specified without a maximum ok', but with a current length 'c' and with up to 31

unused elements has the format:

0/0 B:c' h ... h'

RECORDS

Records are objects whose components are not necessarily of all the same type.

Pointer type class: REC = {ID U APPL U NT U PLEXJ

Abstract syntax: REC{M} = {identifier U applicative-object Un-tuple U complex J

Primitives:

Type predicate: % e REC

The type constraint: %. = REC

(O/oe=RECptr.)=ptr. iffptr\ = € REC,otherwise~.

Pa~c 101

Page 102 IBM INTERNAL Draft --- FWB. revised 0'),1 X-79

IDENTIFIERS

Identifiers are objects that have a pname component. Identifiers are used as the
names of variables in e the expression interpretation of s-exp. In the pa5t. the world of
LISP data objects was divided into pairs and atoms. The numbers were a distinguished
(reserved) subrange. as was NIL, what are now SF and UR. etc. Over the years the class
ATOM has come to mean, "not a pairH. a somewhat miss-named distinction. As a result
of the elaboration of the type schema. it is no longer necessary or desirable to have the
evaluator consider any subrange of the identifiers as reserved.

An important characteristic of an identifier is whether it is (?{) -INTERNed or not.
and if it is then in what obarrays.

The normal-identifiers are those which are (?1l - lNTERNed in the distinguished
system obarray OBARRAY. and only therein. For such identifiers. called NORI D.
% • READ preserves %. EQ-ness.

Gensyms on the other hand are never interned and qil. READ preserves only local
% • EQ-ness when they are recognized. In other words new ones are allocated.

The unintemed-identifiers and the multiply-interned-identifiers are not yet availa
ble and will not be precisely defined.

Pointer type class: ID::: {NORID U GENSYM U UNIDt U MOBIDtJ

Abstract syntax: I D{ MJ ::: J normal-identifier U ge~erated-symbol U
unintemed-identifiertU multiply-interned-identifiertt

Primitives:

Type predicate: (Yo .ID

The type constraint: %. :::10

(0/0 • =10 ptrt) = ptr tiff ptrt = c:: I D. otherwise" .

The PNAM-property function:

O/o.PNAM: ID x M - {STR I SMI I SMI x STR I STR x LIST! x M
Case t: NORID - STR

(C~{) • PN 1\ M Iloriel l) = .\"Ir, •

where slr,/MI = 'charo"" • and

where noridl/M} = c:haro'" • and

Case 2: GENSYM - SMI
(%.PNAM gensym 1) = smit •

where gensym/MI = %Gsmi,
Case 3: UNID - SMI x STR t

I

IBM INTERNAL Draft --- FVv·B, revised U9-1 X-79

«Yo.PNAM ullid,) = prJ '

where prJ = (smi J • slrJ),

where slr,IMI = 'charo ... ' ,and

where unid.lM/ = 0/osmi1:charo" ..

Case 4: MOBID - STR x LIST t
(%.PNAM mobid,) = prJ '

where prJ = (sIr, • list 1),

where str.lMI = 'charo.'.' ,and

where uniddMJ .. = %. (charo'" • list,).

The NORID allocator:

%.INTERN : SCxM - NORIDxM
(0/0. INTERN str,)/M1i = noriddM21

Page 103

Where if an element of the global object array whose PNAME compo

nent is 0/0 • EQUAL to the argument string sc. then the resultant value is

0/0 • EO to that object. If on the other hand no element of the global

object array with the same print name is found then a new norid is

allocated. and the global object array is updated to include it.

The canonical print representation of a norid is simply the characters of its pnam except

that certain of those characters must be letterized. For instance: any initial character that

is a digit. or any id-delimiter character.

The G ENSYM allocator:

%.GENSYM: M - GENSYM x M

(%.GENSYM) IM,I = gensymdM 21
M2 - M, = gensymdMi
gensym / t PTR of M /

The canonical print format for a given gensyms I is:

%Ggennum where gennum is the print form of (%.PNAM gensym/).

APPLICATIVE-O BJ ECTS

In describing the semantics of applicative objects. the relevant sections of the

meta-linguistic formal description section are referenced hy the subsection numbers of that

section. The reader can refer to that section for the detailed description of their the

semantics.

Pointer type class: APPL = IABST U SD U FUN U BPI U SF U URI

Abstract syntax: APPLIMI = I ab!lttraction U state-descriptor U runa~ U binary-program

image U special-function U undcrstood-ratorf

-- .. -.... ~-.--~ .. --- --- .-

Page 104 IBM INTERNAL Draft --- FWB. revised 09.IX-79

Primitives:

Type predicate: (x) e APPL

The type constraint: % e =APPL

(%e=APPLptr l) = ptrl iff ptr l = E: APPL. otherwise 'Y.

ABSTRACTIONS

This class of constant objects that are applicative is the consequence of eschewing
reserved combination forms. We found the need for an anonymous self describing
computational object that would play the role that was formerly played by things like
lambda-expressions. The binary program objects fill this role but are practically unuttera
ble. We needed an object which had expressions as components.

Pointer type class: ABST = tLAM U MLAM U ORCDf

Abstract syntax: ABST/MI = t lambda-abstr.action U mlambda-abstraction U mu
abstraction U operator-code-abstractionf

Primitives:

Type predicate: 0/0. ABST

The type constraint: % e =ABST

(%e=ABST prr l) = plr l iff prrl = E: ABST, otherwise 'Y.

LAMBDA ABSTRACfIONS

Lambda-abstractions are ordinary applicative ("anonymous") function description
constants. The description consists of two component parts:

1. The bv part describes the nature of the list of argument values and the \'ari~lhles
which conform to the components of this list.

2. The exp-seq part. taken in the context of the function and its parameter varia
bles. denotes the value of the function.

Pointer type class: UM a distinguished type class.

Abstract syntax: UM/M} = lambda-abstraction = bv x exp-seq

Primitives:

.1

IBM INTERNAL Draft --- F,",'B, revised 09-1 X-79

Type predicate: °A,. LAM

The type constraint: %. =LAM

(%.=LAMptr t) =ptr\ iffptr\ = E LAM,otherwiseV'.

Access functions: %. BV and 0/0. ESEQ.

%.BV: LAM - PTR

(0/0 - BV lam ,) = plr,

where lam l = %(%,LAMBDA plr, - plr2)

%-ESEQ: LAM - PTR

(0/0 - ESEQ lam I) = ptr2

where lam, = %(%,LAMBDA pl'l - pI'2)

Allocation function:

%-LAMGET: PTRxPTRxM - LAMxM

Print form:

(0/0 -LAMGET pI') ptr2) {M,I = lam, IM21 = (?1,«XHLAMBDA pI', - ptr2)

where lamJ t PTR of M I, and lamJ E PTR of M 2• or simply. a new
pointer is allocated.

(%_BV lam 3) IM21 = pI'!

(%-ESEQ lam 3) IMi = pl'2

%(%.LAMBDA bv - up-seq)

where bv the print representation of the bound-variable part is

{e I (FLUID ida) I (LEX iden) I iden I (bvI • bv
2

) }

where ida is ([O/o-=Iype-class] id)

and up-seq is {atom I (e ...)}

Semantics: See rules 8.1.1.1. and 11.2.

The Question has come up as to why an explicit lambda-ahstraction in operator is not
lexical. As in:

(OA>(%.lAMBDA (X) (eyo .CONS X Y» Y)

The answer is that it denotes itself and not a closure. A lamhd~l-exprcssi()n however

denotes a closure that captures the current environment and that includes lexicals. The

fact that the semantics describes several closure forming avoidance features is largely a
matter of pragmatics.

A similar argument holds for a quoted lambda expression which denotes a lamhda expres
sion not a closure.

Pa~e 105

..

Page 106 IBM INTERNAL Drart --- fWB. revised 09-\ X-79

MLAMBDA ABSTRACTIONS

Mlambda-abstractions are macro-composition (macro) description constants.
Macro composition is a transformation from an operator value which is a macro and the
original combination's data structure, (rator rand. ••), which produces a new expression.
The description consists of two parts:

1. The bv part describes the nature of the argument and the variables which con
form to the components of this list.
2. The exp-seq part, taken in the context of the macro and its parameter variables.
denotes the value of the function.

Pointer type class: M LAM a distinguished type class.

Abstract syntax: MLAM 1M} = mlambda-abstraction = bv x exp-seq

Primitives:
Prof. Cr. H, Stoyan
Unlv."I •• t Erlangtn.NOrnborg Type predicate: %. MLAM

The type constraint: %. =MLAM

Inetltut fOr Mathomltl,""" Mllchlnon
und O.tonverarbeltung (Informatlk VIII)
Am Welohsefgarten 9

(O/oe=MLAM plr l) = pt'l iff pt'l = € MLAM, otherwise 'V.

Access functions: %. MBV and % - MESEQ.

O/oeMBV: MUM - PTR
(°It) • M B V miamI) = pt"

where mlamJ = %(%,MLAMBDA PI'J • pI'})

O/o-MESEQ: MLAM - PTR
«!1).MESEQ mlam,) = ptr2
where mlamJ = %(%,MLAMBDA Pi', • plr:)

Allocation function:

°/t)eMLAMGET: PTRxPTRxM - MLAMxM

810~ !r1.~niH

«~{l.MLAMGET plrl pt'2) 1M" = ",Iam3 IM21 = (~{,«(~~"MLAMBDA ptrl e

pt'2)
where mlam3 ;. PTR of MI' and mlam) € PTR of M 2• or simply. a new
pointer is allocated.

('Yo .MBV mla",) IM21 = prr,
(%-MESEQ mlam3) 1M 2} = ptr2

Print form:
%(%,MLAMBDAbv.~~~)

where bv the print representation of the bound-variable part is

f--

IBM INTERNAL Draft --- FWB. revised 09-IX-7Q

{c I (FLUID iden) I (LEX iden) I iden I (bJ', • bJ'!) f
and e.rp-seq is {atom I (e ...)}

Semantics: See rules 8.1.1.2 and 9.2.

MU ABSTRACTIONS

Mu-abstractions are context description constants. They are special form applica
ble to the unevaluated list of operand expressions and result in an ordinary application.
The description consists of two parts:

1. The bv part describes the nature of the argument parameter list and the variables
which conform to the components of this list.
2. The value-list part, the parameter values.

Pointer type class: MU a distinguished type ciass.

Abstract syntax: MUIM} = mu-abstraction = bv x s-exp

Primitives:

Type predicate: % - MU

The type constraint: % - =MU

(O/o_=MU pI',) = pI', iff pI', = ~ MU, otherwise \l.

Access functions: ok - MBV and % - MUV AL.

°/o_MBV: MU - PTR

(<7h - M B V mu I) = pI' I

where mu I = %(%,MU pI', - pI'})

%-MUVAL: MU - PTR
(O/o-MUVAL mUI) = PI';

where mu, = %(%.MU pI', - pI'})

Allocation function:

%-MUGET: PTR xPTR xM - MUxM

(%-MUGET pI', ptr.~) IM,I = mUJ IM21 = n~)«(l~).MU pI', _ PI':.)

where m,,) ;. PTR of MI' and mU3 ~ PTR of M:.' or simply. a new
pointer is allocated.

(%-MBV mu3) 1M2} = pI',

(0/0 -MUVAL mu3) 1M2} = pl'2

Pag!.! 107

•

Page IO~ IBM INTERNAL Draft --- FWB. revised O(~-I X-79

Print form:
(}h ('}i"M U bv • value-list)

where bv the print representation of the bound-variable part is
{c 1 (FLUID iden) I (LEX iden) I iden I (bv i • bv:) }

and Wllue-list is an s-e.rp

Semantics: See rules 8.3 and 13.11.

SEQUENCE ABSTRACTIONS

Sequence-abstractions are ordinary applicable much like lambda-abstraction. They
differ in that E is not changed and no new activation record is created. The description
consists of three parts:

1. The tag part names this sequence so that exit-expressions can be sequence
specific.
2. The aux part, analogous to bv but creates references to stack places rather than
bindings of E.
3. The list of program statements ps-list.

Pointer type class: SEQ a distinguished type class.

Abstract syntax: SEQIM} == sequence-abstraction - tag x aux x ps-list

Primitives:

Type predicate: OJ() .SEQ

The type constraint: qi>. =SEQ

(%_=SEQ plrt) == plrl iff ptrt == € SEQ. otherwise 'Y.

Access functions: %-TAG, %.AUX and °A,.PSLST.

%-TAG: SEQ - PTR
(%-TAG seq-abstraction,) = tag,

where seq-abstractioll, == 'x, «X),sEQ tag, aux s ...)

'}i)-AUX: SEQ - PTR
('~·h. AUX seq-abstraction,) == aux,

where seq-abstraction, == % (%,SEQ tag aux, s ...)

(Xl - PSLIST: SEQ - PTR
«~). PSLIST seq-ahstraction ,) == p.r-list,

where seq-abstraction I == ~o «Yo,SEQ tag aLLt • PS-IiSf ,)

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

Allocation function:

O/o.SEQGET: {IDUO}xPTRxPTRxM - SEQxM

Print form:

(%.SEQGET tag, aux, PS-IiSl,) 1M,} = seq-abstraction) 1M
2

} = qh«Yo,SEQ
tagt aux, • ps-Iist,)

where seq-abstraction] t PTR of MI' and seq-abstraction) E: PTR of M
2

,

or simply, a new pointer is allocated.
(%.TAG seq-abstraction) IM21 = tag,
(0/0 .AUX seq-abstraction) IMi = aux,
(0/0 • PSLIST seq-abstraction) 1M2} = ps-list,

% (%,SEQ tag aux • ps-list)

Semantics: See rules 8.1.1.5, 11.9, 11.10 and 16.

OPERATOR CODE ABSTRACTIONS

Operator-code-abstractions are a bit odd; from the point of view of the interpreted
semantics it is just an operator expression with a great deal of redundant information
attached. compilation is determined by this information and the other operator expression
is ignored. The description consists of three parts:

1. The rator part is an expression that the interpreter considers to be equivalent to
the abstraction itself.

2. The f-list part, alerts the compiler to the free variables required.
3. The list lap-code of assembly code statements for the LAP assembler.

Pointer type class: FRCODE a distinguished type class.

Abstract syntax: FRCODEIM/ = operator-code-abstraction = rator x f-list x lap-code

Primitives:

Type predicate: %. FRCODE

The type constraint: <Yo. = FRCODE

Access functions: %. RA TOR, %. FLIST and 0/0. LAPCODE.

°A).RATOR: FRCODE - PTR

('Y<). RATOR operator-code-ahstractioll,) = rlllor,

where operalOr-code-abstraction j = %«YmFR*CODE rcJlOr, I-list • lap-code)

Pug<: 109

•

Page 110 IBM INTERNAL Draft --- FWB. revised 09·1 X-79

%.FLIST: FRCODE - PTR

«}'t>. FLIST operator-code-abstraction ,) = f-Iist,

where operalor-code-abstraclion, = %(%,FR·CODE ralor [-IiSI, • lap-code)

%.LAPCODE: FRCODE - PTR

(0/0 • LAPCODE operator-code-abstraction ,) = PS-liSI,

where operator-code-abstraction, = 0/0 (%,FRCODE rator [-list. PS-liSI,)

Allocation function:

%.FRCODEGET: PTRxPTRxPTRxM - FRCODExM

(o,,{).FRCODEGET rator, i-list, PS-!iSI,) IM,I = operator-code-abslraction,

1M2! = %(%,FR*CODE rator, i-list, • ps-!i.sl,)

Print form:

where operator-code-abslractionJ t PTR of MI' and
operalor-code-abstraction3 € PTR of M 2• or simply. a new pointer is
allocated.

(0/0 • RATOR operator-code-abstraction 3) 1M2! = rat or ,

(%.FLIST operator-code-abstraction 3) 1M2! = f-lisl t
(Q1>.LAPCODE operator-code-abstraclionJ) IM21 = lap-code,

%(%,FRCODE I"IIlor I-list • /ap-code)

Semantics: See rules 8.1.1.4, and 11.8.

STATE DESCRIPTOR

State descriptors serve three purposes. Firstly. they define an environment and
are used as a component of funargs (closures) for that purpose.

Secondly, they are actually saved states which may be applied to errect an leaving
of the current state and the continuation of the saved state. Execution will subsequently
proceed in the environment of the saved state. at the point immediately following the
ST ATE operation which created the saved state.

Thirdly. they are used for the implementation of binding search avoidance trick.
A special metalinguistic component is added to denote the current environment-path.
Environment-path identifiers are metalinguistic data objects whose principle property is
that they identify an environment search path. A secondary. hut useful. property is thal
they possess some space for saving and restoring some state components during path
switching. As a result of much consideration. se.veral false starts. and dogg.ed persistence.
the ideal embodyment of environment-path identifiers is believed to he: state descriptors .
These environment path descriptions are used in conjunction with the shallow himling cells
to avoid searching E in many cases. The total slate then consists of the ordinary state.
now shown to be {S;E;C;D;X}. applied to M, applied to the environment palh identifier.

IBM INTERNAL Draft --- FWB. revised 09-1&-79 Page III

i.e. {S;E;C;D;X} {Mf {sd} .

It may prove to be a pragmatic necessity to create another object just for purposes
one and three. In these cases only E need be retained. The nature of our current impJe
mentation is such that E is not independent of D so no benefit would be realized. We are
waiting for our experience with this model to provide some guidance.

Refer to the section on Global Environments for a description of sd and its
components.

Pointer type class: S D a distinguished primitive class.

Abstract syntax: SD{M/ = state-descriptor = {D;sd;X:g/oE}.

Type predicate: % .SD

The type constraint: %. =SD

(0/0. =SD plrt) = ptrt iff ptTt = € SD, otherwise 'iI.

The state allocation (or saving) operator: % : ST ATE

See rule 11.4.2.2.

Two state descriptors are q1J. EQUAL or %. EQUUP iff they are q'h. EQ. The reason is
that we currently lack the motivation to descend the structure. The same is true for

0/0. READ and 0/0. PRINT. If the meta-linguistic states. which occur as components of
state descriptors. were themselves data objects then it would be imperative that they be
first class. For reasons of stack deletion strategy this alternative was vetoed. Perhaps. the
future holds promise of efficient, meta-linguistic states implemented as first class data
objects.

Semantics:

State-descriptors evaluate as constants but the application of one is understood and of the
class of ordinary applications (rands evaluated).

See rule 1 1. 7 .

FUNARGS

A funarg is an expression closure -- that is. the combination of an expression with
a specific environment. contained in a sd component.

It has the following representation:
%(%.FUNARG e • sd)

Page 112 IBM INTERNAL Draft --- FWB. revised O<}-I X-79

Note: (?{HFUN ARG is not an applicative constant. It is merely part of the special
bracket symbol UOA,«}'<uFUNARO". This contrasts with (~{) .. LAMBDA and

~{) .. MLAMBDA which are applicative and are also used to form special bracket

symbols.

Funarg's have been called function closures because of the interpretation placed

upon these objects when they appear in particular contexts, such as an operator. It is more
correct to think of them as expression closures.

Funargs (closures) are closed in the following computational sense: the bindings
of the free variables are fixed (closed) but because those bindings are updatcable the
meaning is not closed until evaluation. In other words. the closure contains the informa
tion about where resides the values upon which the mean;ng depends.

Pointer type class: FUN a distinguished primitive class.

Abstract syntax: FUN{Mj = funarg = expression x E

Semantics: See rules 6. 8.2. 9.3.11.6. 13.12.13.13. and 14.

Primitives:

Closure forming primitives: {(?1"FUNCTION I (Yo,LA~1BDA I (~{, .. MU I <~h,MLAMBDA
I %,FR*CODE}

See SF application rule 13.7 and rule 14.

Type predicate: 0/0 • FUN

The type constraint: 0/(>. = FUN

«Yo. =FUN ptr l) = ptr l iff ptr l = E FUN. otherwise \l.

Funargs suffer from the fact that they contain a state descriptor as a component. There
fore. they are not first class values objects. %. READ. 9h. PRINT. and (~1). EQUAL are

not well behaved with respect to them. Once again complete consistency Ims been missed

due to lack of motivation.

BINARY PROGRAM IIVIAGES

Bpi object are applicative objects that are executed directly by the hardware
interpreter as opposed to abstractions which are LISP interpretahle. These ohjects are
usually the result of compiling abstractions. In such a case it is the compilers responsibility
that they be well formed. The actual case is that because of LAP and the

0/0 (%,FR*CODE construct a bpi which is ill behaved may be formed.

IBM INTERNAL Draft --- FWB, revised 09-1 X-79

Once again we have the intrusion of system programmer activity into the
"sanctily" of un otherwise inviolable system.

Pointer type class: BPl=IFBPl U MBPl}

Abstract syntax: B PllMj = I function-binary-program U meta-program J

Primitives:

Type predicate: %. BPI

The type constraint: %. = BPI

(%.=BPI p(r l) = ptrl iff ptrl = € BPI, otherwise 1/.

It is not yet possible to print binary program images in a form which would permit them to

be subsequently read by LISP and used like the original object. There are several reasons
for this. the major difficulty being the lack of interest due to the availability of a package
of special purpose programs for this purpose alone.

Therefore. since it frequently occurs that an object being printed contains references to

binary programs (e.g. in a backtrace). a convention is used which incorporates the

identification message of a binary program (normaJly. the identifier associated with the
BPI when it was compiled) in the form:

%F'BPlmessage' or %M'BPlmessage'

where F is used for functions with evaluated arguments. and M is used for meta
applicative binary-programs.

If an attempt is made to read such a form. the read program will emit an error message and
use the. NOV AL object instead of a binary program.

FUNCTION BINARY PROGRAM 1l\'IAGES

Pointer type class: FBPI = a distinguished primitive type.

Abstract syntax: FBPl/MI = (unction-binary-prngram

Primitives:

Type predicate: q1>. FBPI

The type constraint: (Yo. = FBPI

P:l!-!t.: 113

Page 114 IBM INTERNAL Draft --- r:WB. revised 09-.1 X-79

«~-1J.=FBPI ptr,) = plr l iff ptr, = € FBPI, otherwise 'iI.
Semantics: See rules 11.3, 11.4.2.1.1. and I 1.6.

META PROGRAMS

Pointer type class: M BPI = a distinguished primitive type.

Abstract syntax: MBPI{Mj = meta-program

Primitives:

Type predicate: %. MBPI

The type constraint: C?~. =MBPI

(%e=MBPlptr,) = ptr, iff ptr, = € MBPI, otherwise 'iI.

Semantics: See rules 8.2, 9.1, 9.3.1, and 11.5.

IBM INTERNAL Draft --- FWB, rcvised 09-1 X-79

SPECIAL FORMS

The special-forms are a distinguished class of constants that apply specially. In

most other LISP systems certain combination forms are rcserved for the purpose of these

special constructs.

Pointer type class: SF a distinguished primitive class.

Abstract syntax: SF{M/ = { %,LAMBDA I <Yo,MLAMBDA I (?~HQUOTE I (}h,sETQ
I %,FUNCTION I ~1).,LABEL I (~1>.,COND I %,sEQ I o/c)~O I C?{HEXIT I
%,PROGN I (~{),RETURN I %,FR ·CODE }

Primitives:

Type predicate: % .SF

The type constraint: 0/0. =SF

(%e=SF ptrt) = ptrt iff ptrt = E: SF, otherwise 1].

The following constants (sn occur as rator value and denotc special forms. i.c.

their application is special and defined by special rules involving transformations of the

metalinguistic machine.

{ %,LAMBDA I <?1HMLAMBDA I %,QUOTE I °1<"SETQ I (?{).FUNCTION I
%,LABEL I %,COND I C?1>,sEQ I q1>~O I %,EXIT I ~{)9PROGN I (~{HRETURN
%,FR ·CODE }

As such special forms apply specially i.e .. they are applil:d to lh~ir uncvaluatcd
rand/ist, they often require that randlist have a definite syntax. The required syntax for

these built-in operators was defined earlier.

Special Forms Application

See rules 8.1.3. 8.3, 11.11. and 13.

UNDERSTOOD OPERATORS

Pointer type class: UR.= IFIX-UR u ,,-tULT-URI

Abstract syntax: UR{Mj = lfix-ur U mult-url

Primitives:

Type predicate: ~~. UR

Pal!C 115

Page 116 IGM INTERNAL Draft --- FWU. revised O()-I X-79

The type constraint: <y<). = UR

The understood operator class of applicative objects all are ordinary applicative (they

receive their arguments evaluated). The two subclasses distinguish those which have a

fixed number of operands fix-ur from those that have multiple operands mult-ur.

FIX-UR

Pointer type class: FIX-UR

Abstract syntax: F1X-URIM/ = fix-ur

Primitives:

Type predicate: %. FIX-UR

The type constraint: 0/0. = FIX-UR

(0/0 -==FIX-UR pIT,) = pIT, iff ptT, == ~ FIX-UR, otherwise 'iJ.

The print representation for this class is q1>. followed by a reserved name. The semantics

of applying these constants is built in and the definitions have heen previously given.

Several are sufficiently special to merit comment. namely:

%.APPLX. %-EVAL. %.EVAI. and (Yo-SET.

(%.APPLX/lllist) (RULE 11.4.1.3)

APPLX performs the ordinary application of its first operand value to the lisl of values

that is the value of the second operand. Lexical variables are not acccssihie during this
application.

(%-MDEFXfn form) (RULE 11.4.1.2.)

MDEFX is like APPLX except it performs a macro-application. It Jocs not recvaluate the

resulting expression as is the case for evaluating combinations that arc macro compos
itions.

IBM INTERNAL Draft --- FWB, revised U9-1 R-79

(RULE 11.4.1.1.)

EV A I evaluates its one operand value with respect to the current environment. Lexical
variables are not accessible during this evaluation.

«Ytl. EVAL e sd) (RULE 11.4.1.4.)

EV AL evaluates its first operand value with respect to the context of the state which is the
value of its second operand. This operator is very significant because it. along with state
descriptors and fluid variables, gives LISP its ability to dynamically construct an expres
sion and then evaluate it with respect to an independent context. Were these not present
the environment and control would march along in locks~ep and retention strategy would
not be required.

(RULE 19.)

SET is like SETQ except it evaluates its first operand. which must have an identifier as
value. Lexical variables are not accessible for this assignment.

MULT-UR

Pointer type class: MULT-UR

Abstract syntax: MULT-UR{Mj = mult-ur

Primitives:

Type predicate: %. MUL T -UR

The type constraint: eyo. =MULT-UR

(%.=MULT-URpI't) = pI', iff pt" = € MULT-UR, otherwise 'i/.

The print representation for this class is ~{,:- followed by a reserved name. The semantics
of applying these constants is built in and the definitions have heen previously given.
Several are sufficiently special to merit comment. namely:

e~~) :CALL. an~ °lt} :ST ATE.

(O/o:CALL a f ••• In> (RULE 11.4.2.1.)

CALL applies the value of its last operand to the list of values formed hy evaluating its
earlier operands. Lexical variables are inaccessible during this appli<.:~ltj()n.

Page I IX IBM INTERNAL Drart --- FWB. revised 0<), I X-79

(ex): ST A TE [glm'al [gioisl J I) (RULE 11.4.2.2.)

STATE saves the current state. or a modified form of it in the case that optional argu

ments were supplied.

The modified form of the current state may differ only in the global environment gloE

component of the environment E. This component is exercised only when the normal

components of E (the bindings created by the application of abstractions) have been

exhausted during the search for the most recent binding of a variable. The g/oE gives the

default or global binding.

The value is a state descriptor sd which denotes the state i'n which the STATE operator

was applied.

The sd may be used as an argument to EV AL to provide the environment of that state as

the binding context for the evaluation.

An sd may be applied causing the saved state to continue. In that case. the value of the

STATE operator is some data value (and not the saved state). In other words. the ,

operator STATE gives an sd as value when saving. and some other message value if

continuing.

The optional arguments gJovaJ and gJolst describe the modifications to the g/oE .

. - .. -.---~ ... -,.-,--.... -~-:;:"~..,..
--~ - "-'''' - . -: -'- -:_- - .~"".,- ;~'-

IBM INTERNAL Draft --- F\VB. revised 09-18-79

NTUPLES

Ntuples are provided in the hope that a type extension method will usc them.

Because of this they ought not to be used except through this facility which has yet to be
defined. The system is prepared to storage manage. print and read them. They are

mentioned only as an inducement.

Ntuple Format:

I
LCMVTP I Vector Leng~h_!~ !3XY~s I ----- -------

Small integer length in b~tes o_Lp~inter sc:c~!<?n.
---- ---

Pointer for Element 0 ...

Pointer for Element 1
._- ------------

---.-------- --_.----.-. -

Pointer for Last Element ___ A .---- ------- - _.- .-

Unstructured binary data which is accessible only via a user-
written function.

Pointer type class: NT

~ Abstract syntax: NTl MJ == ntupie

Primitives:

Type predicate: 0/0 • NT

The type constraint: %. = NT

(O/o.=NT ptr,) = ptr, iff ptr 1 = E NT. otherwise V.

Ntuple structures present a difficult problem for printing. because there is no standard
organization of the binary data section. Therefore. the print representation of an ntuplc

is:

9{) (. comp' • bitstring)

Pa-ge 119

Page 120 IBM INTERNAL Draft --- FWB. revised 0<), I X-79

In effect~ the binary data part of a selector structure is printed .as if it were a bit vector.

COMPLEXES

Complexes are provided in the hope that a type extension method will use them.

Because of this they ought not to be used except through this facility which has yet to be
defined. The system is prepared to storage manage, print and read them. They are

mentioned only as an inducement.

Complexes Format: .

LCMVTP I Vector Leng~_ in ~y!_es _____ . ________ .-

Small inte_ger length in byt~~~~po_int~~~~!~O~ __________

Pointer for Element 0 -.. ---.---- --. - .. ------.-----.-- ---

Pointer for Element 1
. --_ .. - --.----- -

---. _.---_._-- --- --- - ----_ ... " _

Pointer for Last Element ------.-- - --- -_. -

Unstructured binary data which is accessible only via a user-
written function.

Pointer type class: P LEX

Abstract syntax: PLEXIMj =

Primitives:

Type predicate: <Yo. PLEX

The type constraint: (?1J. =PLEX

(q~ • = PLEX pITl) = pITt iff PITt = € P LEX. otherwise 'iJ .

Complexes present a problem for printing. because there is no standard organization of
the binary data section of a complex. Therefore, the print representation of a complex is:

IBM INTERNAL Draft --- F\VB, revised 09-1 X-79 Pa·gc 121

0/0 (• • comp' • bitstring)

In effect, the binary data part of a complex is printed as if it were a bit vector.

Page 122 IBM INTERNAL Draft --- FWI3. revised 09-1 X-79

ISSUES and COMMENTS

The introduction of the nrlambda-ahstraction class of operators. and their altendant
macro composition forms leads to a more complex formal definition than is usual for LISP.

It seems important, however, to raise these long term denizens of LISP systems to first

class status. This choice also leads to the strategy of evaluating the operator once and
classifying the type of application on the basis of that value.

The treatment of special forms and understood basic operators will he seen as
considerably different than the usual practice. While this treatment requires a few special
classes of constants~ it gives back the full set of identifiers for use as variables.

The environment was admittedly embellished to provide a model for lexical
bindings. This gives rise to distinguished contours and coincidentally distinguished states.

The environment model was also extended to encompass the notion of variables of
constrained type. So long as we persist in the belief that we should be able to move freely

from compiled to interpretive evaluation or that the basic model for meaning is the
interpreter, then we feel obligated to have interpreter models for concepts even if they
arise from compilation technology. Note also the CALL construct.

The notion of dynamic evaluation context was continued in this LISP. the notion of
capturing a context and retaining it for later use was preserved. The fluid-variables

comprise the dynamicly inherited environment. We have required that they be distin

guished whereas the lexical-variables are obtained by default.

The treatment of global environments is thought to be a reasonable extension and
improvement over" atom-head-bindings".

The MU operator has been provided with the ability to expose lexicals (somewhut
, grudgingly) as a powerful system programming tool. The ability to describe contexts

abstractly is due largely to Fraser[15]. This concept could have been realized by a method
that was conservative with regard to lexical access. The writers of the compiler and the
debugging facilities insisted on the right to implement these facilities entirely in LISP. A

conclusion of this was to provide a window into lexicals.

The SEQ operator represents considerable evolulion in this tksi~n. deriving from
the PROG form. Statement sequences do not create binding contours. they ean however
create named stack places. Perhaps we have intruded our desire to illuslrale a \.:omputa
lional consideration. The addition of the lag componenl was seen as the solution to a

problem thal arose when sequences were automatically being wrappeu around expressions
by macro·s. Wrapping gave rise to misinterpretations for exit expressions that were

imbedded within wrapped expressions.

Expression sequences we though to be sufficiently different rrom statement
sequences to merit special treatment. We note that they are parsimoniolls in the usc of S.

IBM INTERNAL Draft --- FWB, revised 09-1 X-79 Page 123

We also considered the so called implied PROGN for abstractions and conditionals as a
generally good idea.

The model described above treats GO as strictly local to a statement context.
This was done with considerable malice of forethought because it makes for a simpler
semantics. The unique behavior of this operator with respect to the state (i.e. it only
affects the stack and control) has led to its inclusion as a primitive. The semantics for go
expressions are somewhat complicated by the possibil~ty that they can occur anywhere.
This small complexity does not. however, preclude a simple, efficient, compiled realization.
namely change of location counter.

The powerful operator STATE and the sd data objects were introduced in order to
model complex control structures. There is reason to question whether certain control
construct are not deserving enough to merit direct, computationally efficient. primitive
status.

Streams and the interrupt schema must be considered as not completed. As the
current models are used they probably will develop and be revised.

The treatment of self-referring structures, particularly with regard to the output
canonical representation and its relationship to equality is though to be a bit more thor
ough that in most LISP systems.

LISPt.8+0.3i provides a rich but rather ad hoc and fixed set of data objects. A
very general data type extension was anticipated (using ntuples and complexes) but has
never been completed.

For all the issues, lacks. and controversy. this effort at detailed definition has
proved to be of some benefit, as a specification document, to the designers and it is hope
that it will be even helpful to implementors.

LISP1.8+0.3i is a result of our developing LISP /370 and it represents how we
~ would propose to do it if we were to build another LISP system. Actually it might be

better to say that there are several proposals in our local community and this is one.

In conclusion, to repeat, the purpose of this document is to encourage interest and
comment. The author welcomes any and all such responces and commends those with the
persistence to have read any large part of this wearying document.

Acknowledgements

The author has benefited greatJy from the eonversatiolls and cOlllrihulions of
Arthur C. Norman. Martin Mikclsons. Allen L. Brown. Vincent J. Kruskal. James W.

Thatcher, Richard W. Ryniker. and Cyril N. Alberga who was my co-worker anu sharpest
foil.

Page 124 IBM INTERN;\L Draft --- FWB. revised 09: I X-79

APPENDIX A

Lexicon of named stlltes.

D nnn-co"/(Jrmal.app =

{xeane.o.a,eS,:E;

JAPP/eSI)eOe %(LAMBDA ?ARGS? «ERR2 4)?ARGS?»eC;D} •

D mocm-ntln-crln/nrma/ ==

{me(m rand ...)eS;(APPjeS) eOe%(LAMBDA ?ARGS? «ERR2 3)

? ARGS?))eC;D}

D mocm-;napplicah/~ ==

{xeane ... aleS,; E;
(APP,eS/)eO. %(LAMBDA ?ARGS? «ERR2 5)?ARGS?»eC: DJ

Dinappl;cah/~nhj~1 ==

{x.an a,eS,; E:
(APP,eS ,)eO. %(LAMBDA ?ARGS? «ERR2 6)?ARGS?»eC; D~

D "nhound-aux =

{aleS: E;
(APP,eS)eOe %(LAMBDA ?ARGS? «ERR2 15)?ARGS?})eC; D}

DiII-fo~d =

{x.ateS: E:
(APP/eS)eOe %(LAMBDA ?ARGS? «ERR2 16)'?ARGS'?»).C; Dt

D~xil.er"" =

{xealeS: E;
(APP,eS)eO. %(LAMBDA ?ARGS? «ERR2 17)?ARGS?».O: Dt

D unhound.A UXSF.T =

IBM INTERNAL Draft --- FWB, revised 09-1 X-79 Pag.c 125

{zeid,eS; E;

(APP,eS)eOe <31>(LAMBDA ?ARGS? «ERR2 I X)?ARGS?»eC; D}

• -.--- -. ----- ----- *-~' •• _, -, ... ~--•• -

-:.:- ,_~,::-<~:.\"'.:2-::-:"~~ ~.=:~;.:.:. _ _.

,

•

Page 126
IUM INTERNAL Draft --- FWU. revised 09.-1 X-79

References

[I J Backus. J. Reduction languages alld variable-free programming. IBM Research
report RJIOIO. Yorktown Heights, N.Y., April 7, 1972

[2J Backus, J. Programming languages semantics and closed applicative languages.
IBM Research Report RJ 1245

(3 J Bekic', H.. Walk. K. Formalization of storage properties. Springer-Verlag.
Symposium Oil semantics of algorithmic languages. Lecture noles in mathematics No. 188
pp. 28-61 (1971).

[4] Bobrow. D. G., Wegbreit. B. A ~Wodel and Stack implementation of Multiple
Environments. CACM Vol. 16, No. 10 pp 591-612 1975.

[5] Gordon, M. J. C. Models of pure LISP. Ph.D. Thesis. University of Edinburgh.
(1973)

(6) Landin, P. J. The mechanical evaluation of expressions. Computer J. 6 pp 308-320
1964

[7] Ledgard. H. F. A formal system for defining the syntax and semalllics of computer
languag MAC-TR-60 (Thesis), Project MAC, MIT April 1969.

[8] McCarthy, John, et al., LISP 1.5 Programmers Manual. The M.I.T. Press.
Cambridge, Mass .• 1962.

(91 Newey, M. C. Formal semantics of LISP with applications (0 program correctness.
Stanford Artificial Intelligence Laboratory, Memo AIM-257. January 1975 .

[10] Reynolds, J. C. Definitional interpreters for higher-order programming languages.
Proc. 25th National ACM Conference. Boston, (1972).

[11] Scott. D. iWathematical concepts in programming language semantics. AFIPS VOL
40, AFIPS Press.

[12] Steele. Guy Lewis Jr. LAMBDA: The Ultimate Declarative. AI Memo 379. MIT
AI Lab (Cambridge, November 1975).

[13] Steele. Guy Lewis Jr .. Sussman. Gerald Jay. LAltfBDA: The Ultimate Imperatil'e.
AI Memo 353. MIT AI Lab (Cambridge. March 1976) .

[141 Steele. Guy Lewis Jr., Sussman. Gerald Jay. The Re\'ised Report on SCHEME A
Dialecl of Lisp. AI Memo 353. MIT AI Lab (Cambridge. January 197X).

[I5J Fraser, A. G. On the Meaning of Names in Programming Systems. CACM Vol. 14.
No.6 pp 409-416 1971.

'

IBM INTERNAL Draft --- FWB. revised 09-1 X-79 Pa!Ac 127

INDEX

destructi,oe-stream .. 55
stream•... 55
Sfrl111erm .. 55
s-exp .. h9
Abstraction .. 68. t 04

application
ordinary. .. 50

Applicative-object. .. 68. 103
APPLX .. , 14.22. It 6
arithmetic operator '. .. 79
array. .. 86
Array. .. 67
A UX .. 4. 10. 13, 13
bind ... 46

bit string
allocator. .. 100

bit-string .. 67. 99
bpi. .. 68, 112

C
defined ... 9

CALL .. 14, 22. 23. 51, 1 17

capacity function
CAP ' 97

CAR .. 87
CDR .. 87

change cardinality
CHGNC .. 97

character .. 67. 85

character string
allocator. .. 98

character-string ... " 67. 9X
CHIDEBCD .. 85
closed-context .. , 19
combination ... 4.10.12.16.18.19
Complex 68, 120
complex , 67
Composite-object. .. 67. X6
COND. .. 4. In. 13. 13. 27, 32
CONS , .. X8
constant. .. 4. 10. 15. 27, 44

ur 14.22
metalanguage. .. 3
special-form. .. 4. 13

constant-closure. .. 10. 25

o

Page 128 IBM INTERNAL Draft --- FWfl. revised 09-1 X-7<)

defined. .. 9
data-type

class .. " 67
Decimal-nunlber .. 67
DEF-STRM '. .. 56. 61
DEFIOSTREAM .. " 62. 63
EAT .. " "0 42
EBCDCHID 0 ••• 0 0 •• 0 •••••••• 0 •• 85
EBCDIC .. 0 : •••••••••••• 0 ••••••••••• ' •• 0 ••••••••••••••••••••••••••••• 0 85
ELT 00 ••••••••••••••• 0 •••••••••••••••••••••••••••••• 0 ••••••• 0 ••••••• 0 90
environment

gJobal 0 •• 0 • 0 0 0 0 0 ••• 0 0 ••••••• 0 •• 0 •• 46. 47
path identifier 0 ••• 0 •••• 0 • 0 • 0 ••••••• 0 •• 0 •• 46

EQ 0 •• 70
EQUAL.o .. 77
EQUUP 0 ••••••• 0 •••••••••• 0 ••••••••• 77
EVAL .000 ••••••••••••••••••••••••••••• 0 •••••• o 14.23.50.117
EVAl '" 14.22.116
EXFN

the exit routine ... 0 •• 0 ••• " 53
EXIT 0 ••••••••••••••••••••••••••••• 4,10.13,13,28.34
expression .. 2. 10
EXTERNAL-EVENTS-CHANNELS " 41
fbpi 0 • • • • • • • • • • • •• 68. I I 3
fix-ur 0 •••••• 0 •••••• 0 ••• 0 •• 0 ••• 0 0 •• 0 ••••••• 0 • • • • • • • • • • • • • • • • • •• 68
floating-point 0 ••••••••• 0 ••• 0 •••••• 0 • 0 •••••• 0 ••••••• 0 • • • • • • • •• 67
Floating-point Vectors: .. 95
floating-point 0 •••••••••••••• 0 •• 83
floating-point-vector .. 67
fluid ... , 46
FR·CODEo 4, 10.10.13.13.17. IX. 25. 29. 52
funarg 4,4.10.16. 16.20.22.23.25,27.29. 35. ~ I. 4X. 51. 52. 68. 111
FUNCTION ... 00 •• 00. 0.00. 0 •• 0 ••••••••••••••••••••••••• 4. 10,13.29.30.52
FUZZ 0 •• 0 0 •••••••• 0 ••••• 0 0 •••• 0 •••••••••••••••••••••••••• 84
GENSYM ... 0.0 •••• 0.0 •• 0 0 ••••••••••••••••••• 0 •••••••••••• 0 ••••••••• 103
gensym. 0 0 • 0 ••••••••••••••••••••• 0 •• 67, 102
gJoe 0 ••••••••••• 0 ••••• 0 0 •••••••• 0 •• 0 ••••••••••••••••••• " 47
GO 0 0.0 ••••••••••••••••••• '0' 4.4.10.13.13.29.34.44.123
HEADS ... 0 ••••••••• 0 •••• 0 •••••••• 0 ••••••••• 0 •• 56. 58
Higher-rank-array 0 •• 67
I 0 0 0 0 • 0 •• 39
Id 0 •• 0.' 67
identifier .. 101
Integer. .. 67
intermediate-integer .. 67
Intermediate-integer-vector. .. 94

intermediate-integer-vector. .. 67
INTERN .. 103

)

•

IBM INTERNAL Draft --- FW8, revisetl 09-IS-79 Pag!.: 129

interrupt

channel 41. 44
EAT '" " ... " ... " 42
external. .. 39
EXTERNAL-EVENTS-CHANNELS 41
NEWQUEUE .. 4 I
poll. .. 4()
POST ... 42
priority-level. .. 40
program ... 42
PROGRAM-EVENTS 44

interval. .. 67
IS-EOB '.' 56. 61
LABEL .. 4,10,13.13.30.36
LAMBDA 4,10,10,13,13.17, IS,2I. 29,40, 50,52
lambda-abstraction .. 68. 104
large-integer .. " 67, 82
LISPITTIN 61
LIS POT ... " " . " 62
list. .. 91
List ... ' .. 67
macro .. " 49
macro-funarg .. " 49
mbpi. .. 49. 6~. 114
MDEFX. .. 14. 20. 22. 116
MLAMBDA 4,10,10.13.13.17,20.29.49.52
mlambda-abstraction. .. 6R, 105
mobid .. " 6R, 103
MU ... 4.10.10.13.13.17.122
mu-abstraction. .. 68, 107
mult-ur ... " 68, 1 17
NDIGITS ... S4

, NEWQUEUE... 41
NEXT. .. 56. 58. 58. 58, 65, 76
nil. .. 67,78
norid .. 67, 102
Ntuple .. 68, 118
NULLS. .. 56. 58
number ... 78
operator-code-abstraction .. 68, 109
P .. 40
pair ... 67.87
PNAM " ... 102
pointer. .. 66, 67. 68
pointer-vector .. 67
POST .. 42
PRINT ... 71
PROGN " '" 4, 10. 13. 13.28.33.34.123

Page 130 IBM INTERNAL Draft --- FWB. revised O~-l X-79

PROGRAM-EVENTS .. 44
QUOTE '" .. 4. 10. 13.31
R ... 39
RANK ~ .. " 89
Rank-one-array. .. 67. 89

cardinality. .. X9
Ranked-array ... " 67, XX
rational. .. " 67
READ ... 76
Record ... " 67. 101
RETURN .. 4. 10. 13, 13,28
RPLACA " " X8
RPLACD .. 88
S

defined. .. 5
s-exp 69, 70. 72. 74

defined. .. 4, 69,74
S,ERRORLOOP .. 43
sd . " 4, I O. I 6, 24. 25. 47. I I 0
SEQ 4,10.10.13,13,17,26,29.34,34,122
sequence-abstraction. .. 108
SET .. 14. 3 O. 35, 1 I 7
SETELT ... 90
SETFUZZ ... " 84
SETQ .. '" 4,10.13.13.30
SETX ... 4, 10. 13, 13,32
sf .. 68, 114

application. .. I J 5
sim pie-object. .. 67. 78
small-integer .. 67, 8 I

STATE .. 14,24,43,51, 111.117,123
state descriptor ... " I 10
state-descriptor .. 68
stream. .. 76
String ... 67,97

capacity .. X 9
Truth-value ... " 67
truth-value .. " X5
TVAL ... 85
type-class. .. 70
unid .. 68, 102
ur. .. 68, 115
value

return. .. 48
variable ... " 2. 10. 15. 30, 34, J 22
Vector. .. 67, 93
VFELT .. 96
VFGET .. 96

IBM INTERNAL Draft --- FWB. revised OlJ-1 X-79
Pa~l! 131

VFSET ... 96
VIIELT " ... 95
VlfGET .. " 95
VIISET : ... " 95
VPELT ' ... 94

VPGET .. 94
VPSET ... 94
WRITE .. " 56. 5R. 59. 65, 7 J
X

defined .. " 46

•

