
-~.-- .

o

c

FWB, revised 5-28-78

LISP /370 SYNTAX AND SEMANTICS

LISP is almost unique among the programming languages, in. that only a rather small
kernel of knowledge is required to "understand" the meaning of its utterances. The whole
question of "understanding" can be stated as: How does an expression of. the following
form evaluate? In all natural languages and most computer languages understanding
through simple deduction is simply out of the question.

The understanding of LISP evaluation is possibl~: t,rough the mastery of about 30 rules,
and a dictionary of primitive operators. S.,cht,;~n understanding is only sufficient in a
limited but meaningful sense. Questions ab<fut~fPe intent of a program or certain global
understandings may not be revealed by this ptoc~~·s .

. ~.

In LISP we can deduce both the value deno~~ ~~c an expression and also the sequence of
computational states that its evaluation entaiit. .

~,

The three primitive expression classes are constants, variables, and combinations of
expressions.

A LISP expression e is one of:

c a constant,
id a variable name or identifier.
(rator rand ...) a combination

where the operator rator is an e and each operand rand is an e.

CONSTANTS

The evaluation of constants is trivial. Constants are idempotent, i.e. they evaluate to
themselves.

The reserved identifier NIL is considered a constant.

Binary Programs

Binary programs and state descriptors are LISP /370 data obj~cts and are considered
constants. The application of these constants has special semantics.

A bpi is a binary program image object which is:
An mbpi, a machine language macro, or an /bpi, a machine language function.

Page 1

N&iWiWlMGW __ . I'· 21MMWG!1iwwmAMJ.Jl¥4;,;g;Jn 114 th

FWB, revised 5-28-78

The semantics of applying a binary program image bpi that was compiled from a defining
expression is similar to the interpreted semantics of applying the expression. Any dissimi
larity is due to compile time evaluation of macros, and operators that have "understood"
meanings. The ultimate meaning results from the execution of the machine instructions.
The semantics of bpis that are defined at the assembly language level is beyond the scope
of this description.

State Descriptors

A state descriptor sd is a special type of constant. It is created by the understood operator
STATE and certain understood meta operators that form fimargs. It denotes or
"captures" the state in which the STATE operator was applied. The computational state
captured is, in essence, sufficient data to allow the multiple continuation of the computa
tion. The current state of all memory settings is not included. Becal1:se of side effects
(attributable to the imperative features of LISP) multiple continuations of a state may not
all behave alike.

The exact nature of this data structure is not exposed. It does necessarily contain a
component sufficient to define the environment E (see below).

A funarg is a form that combines an expression e with an environment thus giving meaning
to the free variables of e. Such a form is a closed expression (closure).

An sd may be applied causing the saved state to continue. In that case the value of the
STATE operator is some data value (and, by convention, usually not a saved state). In
other words, the operator STATE gives an sd as value when saving, and some other
message value if continuing.

VARIABLES

The value of a variable is defined by the current context or environment E. We may view
E as a function that maps an identifier into the place or binding in which the denoted value
resides. E is a metalinguistic construct of this description of LISP /370 and not a first class
data object. Non-the-Iess there are first class data objects that have (by implication) an E
as a component. The metalinguistic access and update operators on the one component,
stored objects, called bindings, are built into the language. They are represented in the
evaluation of a variable and the assignment opel'ator.

Every evaluation takes place with respect to some context, and some evaluations create
new ones. In particular, the application of abstractions creates a new context by augment
ing the current context with new bindings for some identifiers. These new bindings take
precedence over any former bindings of the same variables.

..

,Page 2

o

o

o

j"iilljIl!'UIBIIYU'IJ"'W""! rW'1! 'II!!"

o

FWB, revised 5-28-78

A feature of LISP /370 is the two classes of bindings that may be created. A fluid binding

is accessible to any variable evaluation for which it is the most recent binding of the

variable. A lexical binding is not accessible to called programs.

COMBINATIONS

Except for constants and variables, every expression is a combination. The combination

form is used to indicate operator application. Some of these combinations are distin

guished for semantic reasons.

There are three types of application expressions:

1. Meta combinations, a transformation from an operator value which is an mr and

the list of unevaluated operands (rand •..), which produces a data value.

2. Macro composition, a transformation from an operator value which is a macro

and the original combination's data structure, (rator rand •..), which produces a new

expression. A macro is either a mbpi, or a mlambda-exp, or a closure of either of

these.

3. Ordinary applications, a transformation from operator value and a list of the

values of the operands, which produces a data value. An ordinary application

results in the loss of access to the lexical variables of the current context. Ordinary

application is presumed if neither of the other cases apply. If the operator is not

recognizably applicable or inapplicable it is reevaluated and that value is ordinary

applied.

The type of application depends on the value of the operator (it could be considered

unfortunate that each type of application is not distinctly represented). The lack of

transparency that results from using value rather than syntax to classify these application

expressions is balanced by the flexibility of the delayed interpretation that can also be

considered a feature of this LISP. Indeed the lack of distinction makes the definition of

most operators a free choice between macro definition and ordinary function definition.

Macro composition example:

(PLUS 1 2 3) -+ (PLUS* 1 (PLUS* 23)) = 6

Meta combination example:

(QUOTE (Faa BAR)) = (Faa BAR)

Page 3

FWB, revised 5-28-78

META COMBINATIONS

The following identifiers constitute the class of basic understood meta operators mrs, i.e.
their application as meta combinations is understood:

COND LAMBDA
EXIT MLAMBDA
FR*CODE QUOTE
FUNARG RETURN
FUNCTION SEQ
GO SETQ
LABEL

The required syntax and semantics for these built in meta operators is as follows:

FUNARG

(FUNARG e sd) is a funarg or expression closure.

Semantics: The value of the funarg is the value of e evaluated with respect to the environ
ment of sd.

Closure application also takes place with respect to the environment of the closure sd.

The Abstractions
LAMBDA, MLAMBDA and FR *CODE

An abstraetion-exp may be

a lambda-exp (LAMBDA bv body) t

where bv, the bound-variable part is

{e I (FLUID id) I (LEX id) I id I (bvJ • bv2) }

and body is an e.

t The notation (LAMBDA ...) is used for the case:
(e l ...) where the value of ej is LAMBDA; similarly for the other basic operators.

Page 4

o

o

o

o

()

.'
FWB, revised 5-28-78

Semantics:
Evaluates to (FUNARG (LAMBDA bv body) sd)

where sd captures the current context, including lexical bindings.

This closure is ordinary-applicable to a list of values. A lambda-exp also is ordinary
applicable as are fbpi. The use of the word funarg to describe these closures stems from
their early usage as functional arguments.

The meaning of the application of a closed lambda-exp to argument values is obtained by
evaluating body in the context of sd augmented with the bindings formed by the conforma
tion of bv onto the list of values.

Conformation consists of pairing components of the value list with the corresponding
variable declaration in bv.

For variables named in the bound-variable part, the variable-declaration form (FLUID id)
is required if other than lexical access is to be permitted.

In the case of the application of a lambda-expression that is not closed the current state
provides the initial context. This is equivalent to reevaluating the lambda-expression and
applying the resulting funarg.

MLAMBDA

An abstraction-exp may be

an mlambda-exp (MLAMBDA bv body)

Semantics:
Evaluates to (FUNARG (MLAMBDA bv body) sd)

where sd captures the current context.

This object or closure is macro-applicable to an argument. A mlambda-exp is also macro
applicable as are mbpi. For the case of macro composition this argument is the
combination form whose operator value is the macro.

The meaning the macro-application of a closed mlambda-exp is obtained by evaluating
body in the environment context of sd augmented with the bindings formed by the confor
mation of bv onto the argument.

In the case of the macro-application of a mlambda-expression that is not closed the current
state provides the initial context.

The macro composition of such a combination entails the subsequent evaluation of the
resulting form.

Pag~ 5

FWB, revised 5-28-78

An abstraction-exp may be an operator-code-exp

(FR*CODE e2 [-list lap-code)

Semantics: As if e2 were written instead. The semantics of this expression when compiled

QUOTE

(QUOTE s-exp) is a quoted s-expression.

Semantics: Evaluates to s-exp, the object quoted. Symbolic-expression, also s-expression

and s-exp, are all terms used to denote the class of LISP data objects.

" ... quotations playa role analogous to Godel numbers in other formal theories." (Morris)t

SETQ

(SETQ id e2), is an explicit assignment.

Semantics: Updates the current binding of id, BUd}, with the value of e2•

Page 6

o

t James H. Morris, "Lambda-calculus Models of Programming Languages," PhD thesis, MAC-
TR-57, Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts, (1968) 0
p.35.

'"w I ~. .. " 6-' ! . 6

o

c

FWB, revised 5-28-78

COND

(COND (p [q]) ...) is a conditional expression,

each predicate p is an e, and

each consequent q is an e.

Semantics: The predicates p of the predicate consequent clauses are evaluated sequentially
until a non-NIL value is obtained. Then the consequent expression of that clause, if
present, is evaluated as if it were written instead of the conditional-expression (side effects
may have occurred); otherwise, the value is the value of the non-NIL predicate. If no
clause has a non-NIL predicate, the value is NIL.

SEQ

(SEQ s ...) is a statement-sequence-expression where

each statement s is a:

statement-label tag which is an id, or

program-statement p-s, an e which is not an id.

Semantics: Each p-s is evaluated in sequence in the statement context of the statement
labels. A statement context gives meaning to statement-labels. A statement-sequence
that occurs as a program-statement (i.e. within another statement-sequence) will append
its own context to that of the surrounding context. A statement-sequence that occurs in
"expression context" creates only its own "statement context". The value of the
statement-sequence is the value of the last p-s. Exit-expressions and go-statements can
alter the normal sequence of evaluation.

GO

(GO tag) is a go-statement.

Semantics: If the go-statement occurs as a program-statement and the tag occurs in the
context of the current statement-sequence-expression, then the sequential execution of
program-statements proceeds with the statement following the tag, rather than the
statement following the go-statement.

In the case where a go-statement occurs not as a program-statement but as an expression,
then an "out of statement context GO error" results.

Page 7

FWB, revised 5-28-78

In the case that the tag does not occur in the current statement context, the go-statement
is evaluated as though it were written instead of the current statement-sequence
expression (excepting that side effects may have occured). That is, one can go to the
surrounding statement contexts so long as the current statement-sequence-expression was
itself a program-statement p-s, etc.

EXIT

(EXIT { id I ps }) is an exit-expression.

Semantics: The main purpose of EXIT is to leave the current statement-label context. If

the exit-expression occurs as other than a program-statement the value of the expression is
the value of the operand. In the case that the exit-expression does occur in statement
context:

Case 1: If the operand is a identifier it is treated as a variable and not a statement-label.
The value of that variable becomes the value of the statement-sequence-expression.

Case 2: If the operand is not an identifier it is treated as though it were the last p-s of the
current statement-sequence-expression. Note: (EXIT (GO A)) might not actually leave
the current statement-label context if A were defined within the current statement
context.

RETURN

(RETURN e2) is a return-expression.

Semantics: e2 is evaluated and its value becomes the value of the current ordinary
application, or (EV AL e sd) expression, or macro application, whichever has the more
immediate scope. RETURN returns its value back to the point at which the binding
context of the environment E could possibly have been different.

EXIT takes control out of the current tag context (usually) and RETURN takes control
out of the current binding context (cont0l!r).

FUNCTION

(FUNCTION e2) is a closure-expression.

Semantics: Evaluates to (FUNARG e2 sd) where sd captures the current state.

Page 8

o

c

o

FWB, revised 5-28-78

LABEL

(LABEL bv body) is a label-expression.

Semantics: The main purpose of this operator is to provide a way of denoting structures
with cyclical references in them. This is important if you wish to define some functions
that are closed with respect to some environment, and mutually recursive with respect to
each other.t

The following example was used by Steele and Sussmant to illustrate the LABELS
operator in SCHEME. Here their example is rendered in the syntax and semantics of
LISP /370. A global procedure COUNT counts the atoms of a tree structure sans terminal
NILs. COUNT uses two local, closed, mutually recursive functions, namely COUNTCAR
and COUNTCDR.

(SETQ COUNT
(CDR

(LABEL (COUNTCAR. COUNTCDR)
(CONS

(LAMBDA (L)
(COND
«ATOM L) 1)

((PLUS (COUNTCAR (CAR L)) (COUNTCDR (CDR L))))))
(LAMBDA (L)

(COND
((ATOM L) (COND ((NULL L) 0) (1)))

((PLUS (COUNTCAR (CAR L)) (COUNTCDR (CDR L))))))))))

Having evaluated the body of the LABEL expression with respect to an environment in
which the elements of bv were bound to dummy pairs, those pairs are updated under- the
assumption that the value of body is an object of the same shape as by. In the example we
rely on the list nature of the funargs produced by the lambda-expressions.

For those interested in mathematical logic, we can make the allusion that label-expressions are a
programmer's approximation to Y, the general fixed point finding function. The programmer
should not be overwhelmed by these allusions to mathematical logic. Y merely assures the
mathematician of the existence of a solution to 6xpressions defined by recursive equations.

t Guy Lewis Steele Jr. and Gerald Jay Sussman, "The Revised Report on SCHEME A Dialect of
LISP", AI MEMO 452, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, (1978) p. 4.

FWB, revised 5-28-78

BASIC FUNCTIONS

The following identifiers are recognized as basic understood function values fr, i.e. their

application is understood:

APPLX FLOATP NUMBERP

ATOM FRP PAIRP
BITSTRINGP GENSYMP PLEXP
CALL IDENTP RPLACA
CAR LINTP RPLACD

CDR LISTP SET

CONS MDEFX SMINTP
EQ MRP STATE

EVAI NTUPLEP STATEP

EVAL NULL STRINGP
FIXP VECP

Of the above, the following are ordinary applicable but defined by very special

rules:

APPLX, CALL, EVAl, EVAL, MDEFX, SET, and STATE.

(APPLX fn list)

APPLX performs the ordinary application of its first operand value to the list of values
that is the value of the second operand. Lexical variables are accessible during this

application.

(CALL a, ... fn)

CALL applies the value of its last operand to the list of values formed by evaluating its

earlier operands. Lexical variables are inaccessible during this application.

(MDEFXfnform)

MDEFX is like APPLX except it performs a macro-application. It does not reevaluate the
resulting expression as is the case for evaluating combinations that are macro compos

itions.

Page 1;0

o

o

o

'Jp"-.rpl"ll11k,4hlill!!"ib".iI4j6;,;u,\· ..

A,. '

"

c

FWB, revised 5-28-78

(EVAI e)

EVA 1 evaluates its one operand value with respect to the current environment. Lexical

variables are accessible during this evaluation. This weakens (to some extent) the degree

of protection that lexical variables might otherwise enjoy. Future plans for plugging such

lexical leaks are being considered.

(EVALesd)

EV AL evaluates its first operand value with respect to the context of the state which is the

value of its second operand.

SET is like SETQ except it evaluates its first operand, which must have an identifier as

value. Lexical variables are accessible for this assignment.

(STATE [gloval [glolst]])

ST ATE saves the current state, or a modified form of it in the case that optional argu

ments were supplied.

The modified form of the current state may differ only in the .global environment gloE

component of the environment E. This component is exercised only when the normal

components of E (the bindings created by the application of abstractions) have been

exhausted during the search for the most recent binding of a variable. The gloE gives the

default or global binding.

The value is a state descriptor sd which denotes the state in which the STATE operator
was applied.

The sd may be used as an argument to EV AL to provide the environment of that state as

the binding context for the evaluation.

An sd may be applied causing the saved state to continue. In that case, the value of the

STATE operator is some data value (and not the saved state). In other words, the

operator STATE gives an sd as value when saving, and some other message value if
continuing.

Page 11

FWB, revised 5-28-78

The optional arguments gloval and glolst describe the modifications to the gloE.

A gloE is a special object with two components:
glonot, the not present prescription for this gloE,
is a pair (gloval • gloalo) where .

gloval is NIL or else a two argument function
from an id and the glolst of the current gloE, to the s-exp
value for that variable in this global environment.

gloalo is NIL or a three argument function
from s-exp, id, and glolst to globnd values. Often the side
effect of updating glolst is accomplished.

glolst, the global data list structure environment, is
({glodat I globnd} • {glolst I glotrm}) ,

where globnd, the global binding, is a pair (id • s-exp) ,
where glodat, the global own data, is any s-exp which is not a
pair,
where glotrm, the global environment terminator, is {NIL I sd}.

Page 12

o

o

, '!'

()

c

o

FWB, revised 5-28-78

PRIMITIVE OPERATORS FOR DATA PROCESSING

ATOM
CAR
CDR
CONS
EQ

RPLACA
RPLACD

THE SINE QUA NON

p'age 13

These familiar operators are defined elsewhere. As the compiler and interpreter have
special understandings about what it means to apply these, they are not completely
redefinable. Other important primitives are defined by binary programs and are subject to

redefinition by the user.

LISP /370 supports the following aggregate data types:

Reference vectors
Selector Structures
Character strings
Bit strings
Word vectors
Vectors of floating point numbers
Pairs (lists)

The fundamental operators for accessing, updating, allocating and type testing predicates

are all provided. These operators are defined elsewhere.

READ and PRINT

(PRINT e [stream])

Causes the characters of the external or canonical representation of the value of its first

argument to be written to a stream.

The value of print is the value of its first argument.

(READ [stream])

Causes the characters of one entire s-expression to be read from a stream.

-

FWB, revised 5-28-78 <Page .'14

The value of READ is an internal data structure which is access equivalent to the one
represented by the characters.

ACCESS EQUIVALENCE

(EQUAL x y)

For composite arguments, EQUAL implements access-equivalent equality testing. This
means that two structures are EQUAL if every part of one structure which can be reached
by a composition of accessing functions is EQUAL to the corresponding part of the the
other structure reached through the same composition of accessing functions. Intuitively,
two structures are EQUAL if they denote the same (possibly infinite) tree.

UPDATE EQUIVALENCE

(UEQUALxy)

This is a generalized update-equality testing function applicable to any LISP object in the
same sense as EQUAL. It differs from EQUAL in that for two structures to be UEQUAL,
not only must corresponding parts of the structures be EQUAL through the access
functions, but there must be the same number of unique parts and, if any of these parts
were to be updated in one structure, the result would be EQUAL to the result of perform
ing the same update on the other structure.

Intuitively, two structures are UEQUAL if and only if they denote equivalent rooted
directed graphs, i.e. if they denote EQUAL structures which also have the same acyclical
and cyclical sharing structure.

o

Q

	Blair-Lisp370_Syntax_Semantics_19780001_a
	Blair-Lisp370_Syntax_Semantics_19780001_b
	Blair-Lisp370_Syntax_Semantics_19780002_a
	Blair-Lisp370_Syntax_Semantics_19780002_b
	Blair-Lisp370_Syntax_Semantics_19780003_a
	Blair-Lisp370_Syntax_Semantics_19780003_b
	Blair-Lisp370_Syntax_Semantics_19780004_a
	Blair-Lisp370_Syntax_Semantics_19780004_b
	Blair-Lisp370_Syntax_Semantics_19780005_a
	Blair-Lisp370_Syntax_Semantics_19780005_b
	Blair-Lisp370_Syntax_Semantics_19780006_a
	Blair-Lisp370_Syntax_Semantics_19780006_b
	Blair-Lisp370_Syntax_Semantics_19780007_a
	Blair-Lisp370_Syntax_Semantics_19780007_b

