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ABSTRACT

This definition document serves as the specifications for a LISP system that is under
development at the IBM T J Watson Research Center. It is an abstract description dealing
with the specification of: Syntax, Semantics, Machine States, Data Objects, and Primitive
Operators. It attempts to capture, in some detail, an evolved and still evolving design with
particular attention to pragmatics.
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INTRODUCTION

The LISP1.5 system{8] has been and continues to be a means for the study and
development of programming science. [t provides an evaluation model which explains
many notions common to programming technology. LISP provides data objects and
primitive operators which shape the universe of discourse for LISP programmers in much
the same way that our natural language lexicons shape or limit our thoughts. LISP systems
also usually contain that ultimate admission of their own incompleteness: namely the
flexibility to be extended and modified.

Little attempt at either intuitive or denotational semantics is made in this paper; it
merely posits the computational or operational semantics of a dialect of LISP which is
thought to be representative of current practice. The intent is to move the debate on LISP
fundamentals into sharper focus and to encourage public review. Mainly it serves as the
definition for an experimental system, currently under development, designated
"LISP1.8+0.3i".

The family of languages designed toward the goal of a simple, formal definition of
the basic characteristics of programming languages, and based on function application has
been called the applicative programming languages. LISP will be used to designate that
subset which has some form of s-expression data language which also is used as the
expression language. The LISP1.x varicties are those which bear striking similarities to
LISP1.5.

The reader should refer to Reynolds{10] for a systematic review of definitional
interpreters. That paper contains much motivational and descriptive discussion about
language classification and language features. The informal discussion at the beginning of
his paper is relevant to this paper. The reader should note the similarity between
Reynold’s continuations and the state descriptors of this paper.

Of theoretic interest to the subject of LISP is Gordon's thesis{5] on "Models of
Pure LISP", in which he presents a Scott{11] style of denotational semantics for pure LISP
(chapter 1 of McCarthy[8]) as well as an operational semantics schema and a proof of
their equivalence. More recently Newey's thesis [9], "Formal Semantics of LISP with
Application to Program Correctness" is reccommended.

In these works the authors were primarily concerned with descriptions which
enable and encourage proof. The emphasis in this paper is on description of the underly-
ing processor. The attempt here is to cxpose certain pragmatically significant points.

The works of Steele and Sussman {12, 13, 14] are particularly rclevant to this
work. They cover much the same ground, namely definition of LISP. and they deal in
considerable detail with the pragmatics. A fundamental difference between their work and
this is that they have emphasized the static determination of programs, while this work
retains much of the dynamic evaluation capabilities of LISP.
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In this model of LISP considerable emphasis is placed on the effect of an operator
on the machine state. Contexts and their manipulation are also emphasized. It is thus a
computational semantics rather than a denotational semantics. The GO expression which
might otherwise have been derived is featured because of its unique characteristic of not
requiring a new state and only affecting the control and stack of the current state. The -
introduction of processor concerns has made the model for LISP more complex due to the
attempt to describe more phenomena; and because of that complexity subtle errors may
have crept into the elaborate machinery this paper attempts to describe. It appears
however, that for a modest expenditure in metalinguistic cogs and wheels, considcrable
descriptive power is achieved. Much of the phenomena of programming is resolved by this
mode of description into discrete mechanisms.

LISP1.8+0.3i is a language of expressions (e) . These expressions are a subset of
a data language for LISP called symbolic expressions (s-expression). The concrete
canonical form for external representation of LISP1.8+0.3i expressions is practicaily
devoid of syntactic niceties. Normally these niceties are present to aid in the human
recognition process. LISP expressions are abnormal in this respect and for good and
sufficient reasons. The syntax of expressions can be thought of as one which reveals the
simplicity of the underlying abstract syntax. This simplifies the recognition processes of
the READ function and other such processes that examine the language representation.
The so called ugly canonical form representation choice does not exciude alternative .
representations which would be more palatable, it is merely the didactic choice.

Much of the art that has been created in the LISP community serves to enrich the
basic LISP systems and to bring joy to their users. This paper will eschew such user
orientated delights and focus on rather more mundane system programming features. Its
main purpose will be to try to develop a reasonably abstract but workable mode! of the
computationally interesting problems of a ““LISP machine™.

The computational semantics of LISP is the relation of an expression to the data
value it denotes, the intermediate states produced, and the state of the machine that
obtains after the denotation was produced. Intuitively, the semantics may be viewed as
the process (called evaluation or interpretation) to which expressions arc subjected to
produce values which they are said to denote. Expressions (which are like the phrases of
natural languages) are very often replete with a form of pronominal reference called a
variable. Such constituent expressions can only have meaning with respect to a context -
(called the environment) which gives the meaning of such variables.

In the past, the semantics of LISP has been given by the process of sell deserip-
tion. Perhaps this stems from a desire to illustrate the power of the LISP language, but
more pragmatically it results from the method used in a "bootstrap” implementation of
LISP. Needless to say, this approach has some shortcomings from the point of view of
definition. A tacit understanding of LISP is required to read the definition of LISP and at
least a primitive LISP system is required to begin the bootstrap. This model will deviate

from this tradition.
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NOTATIONAL CONYENTIONS

The following conventions are meant to be helpful and are explicitly described for
future reference. It must be admitted that there is rather more than one would like to
instantly commit to memory. The reader might find it advisable to scan briefly and then
refer back as needed.

{ and } are used for metalinguistic grouping.

{ and ] are used to indicate optionality.

+is used to indicate one or more.

- | is used to separate alternatives.

Vertical alignment is also used for alternatives. .

The ellipsis "..." is used to denote zero or more objects. Thus x... means zero or more
X’s, but ...x means zero or more of anything but x and then x.

Subscripts will be used to indicate a required one-to-one correspondence. whenever the
intent is not clear. They will also serve to denote individual members (not necessarily
identical) of a class.

Identifiers (names) given entirely in upper-case letters are LISP1.8+0.3i ordinary identifi-
er data objects, they are used as variabies and statement labels in the LISP language.
Lower-case identifiers are used as metalinguistic variables ranging over LISP data objects.
The normal font is also used in the semantics rules for commentary and as logical metalan-
guage. '

Italics will pertain to syntacticly defined objects (also abstract syntax objects). Metalin-
guistic variables ranging over a syntactic class of LISP expressions or data objects are
represented by the name of the class in lower-case italic. Syntactic classes are represented
by the class name in upper-case italic.

Boldtype will pertain to the metalinguistic state. The following are constants of the
metalanguage: PRED, ES, OP, LABEL, SF, MAPP, and EVAL. APP, APP, SEQ,, .. MU
and REAP form composite meta-symbols which have § as a component. These meta-
symbols are truly the cogs and wheels of the meta-language. Each performs a single
function which may be of interest to the implementer.

Bold, upper-case italic letters will also be used to designate the metalinguistic state
components. [t is hoped that the use of bold italic fonts for the metalinguistic domain will
. be helpful.

CL) L et =" "%, and blanks are all used as special symbols in forming s-expression
representations (also called s-exp or darum).

""" is used as a metalinguistic separator.

"o

o' is used as a metalinguistic infix CONS operator which associates to the right. When
used as a prefix it is the identity operator. "e'" differs from « the LISP basic operator

Rage 3
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CONS but is similar in concept. "(" and ")" are used to form metalinguistic list models;
they are not necessarily LISP data objects.

LISP OBJECTS

There are several domains of discourse that pertain to LISP programming. There
is the blackboard, or external representation as characters, domain of LISP data objects.
A canonical concrete syntax for these objects is familiar to LISP programmers but is not
unique. Other external representations are possible. There is the data processor's domain
of LISP data objects in a memory. There is the evaluator’s domain of LISP states and data
objects in a memory. In LISP it is not uncommon to -pretend that these domains are
isomorphic. This document maintains such a pretense on the grounds that the familiar
external notation (augmented as needed) will suffice as the abstract syntax. The reader
must decide from context which domain pertains. Usually it is the domain of LISP states
and data objects in a memory. Thus, the internal memory domain objects are denoted by
external domain representations.

An s-exp is:

{labellic | id | funarg | sd | combination}
where labe!l is {label-name = }, and
where label-name is { % Ldigit,...digit .} where 1 <n<8 and,
where id € ID the set of identifiers (names), and
where ¢ € C the set of constants, and
where sd € SD the set of state descriptors for which no written representation
is intended.
An sd has a LISP machine state {S;E;C;D} as a component. (See
below.)
where funarg = % (FUNARG e « sd)
where combination = ( comp* [ « comp })
where comp is {label-name | ¢ | id | funarg | combination |
{label comp} }

It should be noted that the data language of LISP1.8+0.3i s-exp s is somewhat
richer than is given above. For example the set C may include sclector structures and
vectors. A more extensive svntax of s-exp will be given clsewhere. The syntax as given is
sufficient for the representation of LISPL.8+0.31 and for this explanation. 1t should be
noted that s-exp’s are allowed to have themselves as components. A common practice in
LISP systems is to providle READ and PRINT functions which preserve EQUAL-ity for
all of the above except sd, and EQ-uality for all id except a special subclass called gensyms.

The distinguished constant nil is written () and is included in C . The following denote
constants known to the evaluator: LAMBDA, MLAMBDA. MU, QUOTE. FUNCTION,
SETQ, LABEL. COND, SEQ, GO, EXIT, PROGN, RETURN. FR*CODE, AUX. SETX.
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These data constants are not to be confused with the identifiers. The ultimate external
representation of these constants is defined elsewhere!

THE METALINGUISTIC MACHINE

I shall copy the method of P. Landin{5] in creating a metalinguistic description of
a machine. The machine itself is described as a complex space consisting of "'states” and
the state transition functions. The meaning of an expression is given by including it in an
= initial state of this machine, and when a terminal state is reached after repeated transitions
the meaning of the expression may be extracted. The states of the machine are quadruples
{S;E;C;D} whose components are called Stack, Environment, Control and Dump, respec-
tively. The term activation-record is commonly used for such an entity. This state
language will be used to give meaning to the expressions of LISP1.8+0.3i. Revealing the
state components seems to simplify the description of certain concepts. The state lan-
guage is also suggestive of implementation strategies.

The state components are:
S = The value Stack, modeled herein as a metalinguistic list of s-exp’s.

The Stack provides temporary storage for computed values and its usage gives rise
to transmission conventions for the passing of parameters.

E = The Environment modeled herein as a metalinguistic list structure.

The purpose of the Environment is to determine the value of a variable. The
Environment is said to provide a context with respect to which an expression is said
to have a value. A somewhat more elaborate view is that the Environment provides
the storage spaces that contain the values denoted by variables. E may be viewed as
an object having the following structure:

E is either nilE or (IE e tE),
where ¢E, the tail of environment, is an E,
and /E, the lexical cnvironment, is (contour e tIE),
- where #E. the tail of the iexical ecnvironment, is () or an /E,
and contour, the head of the lexical environment, is (binding ... ),
where binding, is (value o ident),

where walue is an s-exp,
and ident is {c | (Y% =FLUID e iden) | (Vo=LEX o iden) | iden}.
where iden is { (| % =type-name) id) }.
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As a matter of convenience ehE = () is used to indicate an empty contour. The
empty environment ailE is ((ehE)e()).

It may be helpful to informally explain this structure description. Firstly it shouid be
remembered that this is a metalinguistic model and not a data list structure. Note
that an E typically contains a reference to another E. This is the “inherited context”
and will be detailed latter. It has a lexical part consisting of a list of contours each of
which is a list of bindings and each binding has a place for a walue and associated
information as to the name, type, and availability of that binding. It will be seen
that only the bindings designated FLUID are available in ¢E, the inherited context or
tail of environment.

E is constructed from a bound variables template bv, the argument parameter arg
and another Environment E by a three-place constructor:

bind$bv; arg; E} where
bvis { ident | (bv, « bv,) }
argis { atom | (arg,  arg,) }
where atomis{id | c}.
and identis { ¢ | (% =FLUID « iden) | (% =LEX « iden) | iden},
where iden is { ([% =type-name] id) },

bind{bv; arg; E} = e
ifbvisac then E,
if bv is an idenr then
(((( conformiarg;ident} e ident) o contour) e tiE) e tE)
where conformiarg;ident} =
% =type-nameiarg} if ident contains Yo =type-name else arg,
where % =type-namefarg} = arg if it is of the correct type other-
wise it gives a domain error.
if bv = (bv, « bv,) and arg is atom then
bind{bv,, er{bv,}i, bindibv,, eribv } E}}.
if bv = (bv, « bv;) and arg is (arg, - arg,) then
bind{bv, ; arg, ; bindibv, ; arg, ,; Ei}.
There are no other cases.

erfx} = () if xis a ¢, erfx} = x otherwise. The otherwisc casc is called the non-
conformal arguments case.

bind, will be used when bv is bound to muitiple arguments. Notice the possible
construction of a list of trailing operands.

bind,{6v,E; a,;...a,} where 0<n<255is:
if bvis a ¢ then £ and,
if nis O i.e., no arguments then bind{bv;();E} and,
if bv=(bv, «bv,) and a, exists, then bind{bv,  a,; bind,}hv..E: a,;...}} and.
if bv is an id then bind{bv;(a,...a,),E}.
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E is described above as a metalinguistic data structure. In what follows that structure will
be viewed as defining a function. E as described below is actually a combination of three
metalinguistic functions on variables, namely: lookup, assignment, and type-recall. These
are combined to show their similarity and mutual dependence on the structure of E. As
described below, the current lexical environment contours are searched for both lexical
and fluid bindings of id. In the tail of the environment (i.e. that which is not local) only
fluids are sought. In the case of assignment the value being assigned must conform to the
type associated with the binding.

E{td,;x:y} =
. if E = nilE then some agreed upon global binding, global}id, ;x:y4.
if IE the lexical environment is empty, i.e. () then fluid}id ;x:y;tE4.
if IE = (() @ tiE) , i.e. the contour is empty, then (tE e tE)fid ;x:y{,
if contour = (binding, e contour;) and id-of{binding } # id, then
((contour, e tIE) ¢ tE){id ;x;y} ,
if contour = (binding, e contour,)
' where binding, = (s-exp, o ident,), and id-of {binding,} = id, then
if x = LOOKUP then (conformis-exp;ident } « ident ),
Comment: Conformation in the case of lookup only seems
redundant. This will provide facility for monitoring the use
of a given binding. Problem: How does the underlying
% =type-name function know if it is being used for the
LOOKUP or the ASSIGN option? The obvious answer to
try is to explicitly pass these as parameters to conform and
% =type-name.
if x = ASSIGN then (storeiconform{y;ident }:binding } « ident ),
if x = TYPE then type-ofiident }{,
There are no other cases.

fluidfid ;;x;y;E} is similar to Efid ;x;y/ except that fluid-of is uscd instead of id-of,
i.e., it matches only those bindings which were explicitly mentioned as
(% =FLUID -« iden) at bind time. (For more details see scction describing:
Global Environments, Exit Routines, and An Efficiency Device.)

fluid-of, id-of, and type-of are obvious seiector functions.

The function store requires the concept of a memory as an addition to the model.

. All the state transformations given below are of the form:

{S;E; C; DY = {S, E;; Cp Dy}

and will be thought of as having taken place in a memory M.

o These memory concepts are described in Bekic' and Walk{3], and also
Reynolds{10].
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((ehE) o E) is an example of an environment in which only the fluid and global bindings are
accessible.

globaliid ;x;y} = gloEfid ;x;yf

A gloE is a special object with two components:
glonot the binding-not-present prescription for this gloE
is a pair (gloval « gloalo) where
gloval is NIL or else a two argument function
from the id in question and the glofst of the current gloE, to
the s-exp value for that variable in this global environment.
gloalo is NIL or a three argument function
from s-exp, id, and glolst to globnd values. Often the side
effect of updating gloist is accomplished.
and gloist the global data list structure environment is
({glodat | globnd} « §{gloist | glotrm}) ,
and globnd the global binding is a pair (s-exp « ident),
and glodar the global own data, is any s-exp which is not a pair,
and glotrm the global environment terminator is, {NIL | sd}.

(For more details see section describing: Global Environments, Exit Routines, and
An Efficiency Device.)

nilE the distinguished empty environment acts as a terminator for that part of the
environment created by bind, which shall be referred to as the normal environment.

The following definition of the global environment function provides capabilities
that could be used for the production of bindings on first reference. global context
switching, direct access data bases, and in general is limited only by the imagination
of the programmer.
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gloEfid, x;yf =
if globnd, = lookup{id ;gloist} is (s-exp, « ident,), then
if x is LOOKUP then globnd,
if x = ASSIGN then ( storefconformiy;ident };globnd,} e ident,),
if x = TYPE then type-of {ident },
if globnd, = (), it was not found, then
if gloval is (), and gloalo is (), then
if x is LOOKUP, the lookup default pertains, then
rplac-gloist{binding = (id, « id )}
where rplac-glolst returns binding, after replacing the glolst
of gloE with its argument,
if x is ASSIGN, the assignment default pertains, then
rplac-glolsti(y » id,)}
if x is TYPE, then
type-of {rplac-glolst{ (id, « id,)}}
if gloval is = (), and gloaio # (), then gloalo{id ;x.y.glolst},
if gloval is # (), and gloalo = (), then rplac-gloisti(gloval{id ;x:y} » id,)}
else gloalo{id,;x;gloval{id ;;x:y};gloist}.

C = The Control stack, is homologous to a list of instructions and data, it has two possible
forms:

1. In the case of LISP1.8+0.3i interpretive execution, C is modeled herein as a
metalinguistic list of s-exp and meta-symbols.
2. In the case of machine execution, Ic,,,,.fbpif denotes some location in the binary
program image bpi which name characterizes.

The nature of C is sufficient to characterize these two modes of execution.
Throughout these descriptions Stack and Control are represented as independent
structures. The actual use of them indicates a preference for a dependence of § on
C. Perhaps it is best put this way, whenever the C of a state is the same the
number of elements on S is the same.

D = The Dump, i.e. a reference to a previous state,
which is cither () or a previous state {S,; £, C, : D,}.

Certain distinguished states will be denoted by subscripting D with an identificr.
For example, D denotes a state whose description is given in Appendix
A.

non-conformai-app

Because D defines the chain of states from which control descended. it is sometimes
called the control-chain. It is possible to define a controi-chain environment.
If we consider astate D = {S,, E, C,; D},
where /E, is the first lexical environment componcnt. we can view this as a list
- of lexical environments where D, gives the rest of the list.
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We can then define the operator dynamic which is analogous to the function E

except that its analogue to fluid uses the D-part of a state rather than the rE of
an E.

The metalinguistic list models are meant to be suggestive, there is no decree that
S.E.C, or D must be a LISP data-object of type "list" residing in the heap. It is in fact the
case that the system being developed uses a retention stack model similar to that described
by Bobrow and Wegbreit{4]. A certain amount of reader good will is required here as
explicit list operators will sometimes be used. Meta-linguistic "CONSing" will be indicat-

"non

ed as "e"" and ordinary "CONSing" by

1"
L]
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EXPRESSIONS

A LISP expression e is one of:
¢ a-constant where (), bpi, sd. sf, ur, abstraction, constant-closure, € C
where bpi is a compiled program value object which is:
an mbpi a compiled macro
or an fbpi a compiled function
where sd is a state descriptor
where sf is €
{ LAMBDA | MLAMBDA | MU | QUOTE | SETQ | FUNCTION |
LABEL | COND | SEQ | GO | EXIT | PROGN | RETURN |
FR*CODE | AUX | SETX}
where ur is an understood primitive operator which is:
a fix-ur for primitive operators that require a definite number of argu-
ments or a mult-ur which is an understood operator that takes an indefi-
nite number of arguments
where abstraction, is either:
a lambda-abstraction % (LAMBDA bv « exp-seq)
where bv the bound-variable part is { ident | (bv, « bv,) }
and identis { ¢ | (% =FLUID » iden) | (% =LEX « iden) | iden}
where iden is { ([% =type-name] id) }
and exp-seq is {atom | (e...)} _
or an mlambda-abstraction Y%o(MLAMBDA by « exp-seq)
or an mu-abstraction % (MU bv « valuelist)
and valuelist the values list is (s-exp...)
or a sequence-abstraction % (SEQ tag auxs...)
the sequence label tag is an id or ()
the auxiliary-stack-place names list aux is (iden ...)
each statement s is a:
. statement label st-lab which is an id, or
program-statement ps which is an e which is not an id
or a operator-code-abstraction % (ER*CODE e f-list « lap-code)
where f-list and lap-code are described in the LISP assembler documen-
tation
where a constant-closure % (CCLOSE e-part « s-part)
where the expression part e-part is an e
‘ and the state part s-part is an sd
id a variable

- funarg a closed expression % (FUNARG e-part « s-part)
where the expression part e-part is an e
and the state part s-part is an sd
(rator « randlist) a combination
where the operator rator is an e ,
and randlist the operands list is (rand...)
and each operand rand is an e
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Informally the evaluation of constants is rather simple: they evaluate to them-
selves. Certain classes of constants may be applied as operators. There are applicative
constants and what is meant by their application is described in detail in the [ollowing
sections.

A state descriptor sd is a special type of constant. It is created by the special
operator STATE and certain meta operators that form funargs, and “‘captures’ the state in
which the STATE operator was applied. The computational state captured is, in essence,
sufficient to allow the continuation of the computation, but does not include the current
state of all memory settings. Because of the effects of updating shared memory structures,
multiple continuations of a state may not all behave alike.

The value of a variable is defined by the current context or environment E. We
may view E as a function that maps a variable into the place or binding in which its value
resides. E is a metalinguistic construct of this description and not a LISP/370 data object.
Nevertheless there are first class data objects (namely state descriptors) that have (by
implication) an E as a component.

Bindings are stored objects on which metalinguistic access and update operators
are defined. Evaluation of a variable involves accessing the value in the appropriate
binding, and assignment, SETQ, involves its replacement.

Every evaluation takes place with respect to some environment. and some
evaluations create new ones. In particular, the application of an abstraction creates a new
environment by augmenting the current one with new bindings for some identifiers; any
former bindings of the same variables are superseded.

In LISP/370 two classes of bindings may be created. A fluid binding is accessible
to any evaluation of a variable for which it is the most recent binding in the inherited
environment. A lexical binding is not accessibie to CALLed or non-lexical operator
expressions and thus offers some degree of isolation from side effects. The accessibility of
lexical variables is an important concern for the semantic rules that follow.

Whenever no normal binding takes precedence, the global environment gloE is
invoked to produce the global binding. The nature of gle£ is rather ad hoc but [lexible
(see the STATE operator for more details). It is worth noting that the normal default gloE
is such that variables have their denoting id as value until otherwise assigned.

A most significant aspect of LISP is the way that environments can be retained as
data objects and dynamicly invoked. In LISP *‘referential transparency™ is optional.
Indeed, keeping track of the contexts can become a major preoccupation.

The funarg construct is an expression which contains an expression-part and a
state. The value of the funarg is the value of its expression-part evaluated with respect to
the environment of its state.

e
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It should be noted that except for constants. funargs, and variables: cvery LISP
expression is a combination. Some of these combinations are distinguished lor semantic
reasons. The combination form is used to indicate application. There are three types of
application expressions: ‘

1. Meta combinations, a transformation from an operator value which is special
form applicable and the unevaluated list of operands (rand...), which produces a
data value.

2. Macro composition, a transformation from an operator value which is a macro
and the original combination’s data structure, (rator rand...), which produces a new
expression. A macro is either a mbpi, or a mlambda-abstraction, or a closure
(macro-funarg) of either of these.

3. Ordinary applications, a transformation from operator value and a list of the
values of the operands, which produces a data value. Ordinary application is
presumed if neither of the other cases apply. If the operator is not recognizably
applicable or inapplicable it is reevaluated and that value is ordinary appiied.

The type of application depends on the value of the operator (it could be consid-
ered unfortunate that each type of application is not distinctly represented). The lack of
transparency that results from using value rather than syntax to classify these application
expressions is balanced by the flexibility of the delayed interpretation that can also be
considered a feature of this LISP. Indeed the lack of distinction makes the definition of
most operators a free choice between macro definition and ordinary function definition.

The foilowing constants (sf) occur as rator value and denote special forms. i.e.
their application is special and defined by special rules.

{ LAMBDA | MLAMBDA | MU | QUOTE | SETQ | FUNCTION | LABEL |
COND | SEQ | GO | EXIT | PROGN | RETURN | FR*CODE | AUX | SETX}

mu-abstractions and funargs whose e-part are mu-abstractions or sf’s aiso apply specially.

As such special forms apply specially ie., they are applicd to their unevaluated
randlist, they often require that randlist have a definite syntax. The required syntax Tor

these built-in operators is illustrated below:

Page 13
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An abstraction-exp, which is cither Fafiy
a lambda-exp (e, bv « exp-seq) B
where e, has the value LAMBDA.
and bv the bound-variabie part is { ident | (bv, « bv,) }
and exp-seq is {atom | (e...)}
or an mlambda-exp (e, bv « exp-seq).
where ¢, has the value MLAMBDA.
or an mu-exp (e, bv  randlist).
where ¢, has the value MU.
or an operator-code-exp (e, e, f-list « lap-code).
where e, has the value FR*CODE.
or an sequence-exp (e, tag aux s...).
where ¢, has the value SEQ.
(e, s-exp « s-exp) where ¢, has the value QUOTE, is a quoted s-expression.
(e, id e) where e, has the value SETQ, is an explicit assignment.
(e, id e) where e, has the value SETX., is an auxiliary-stack-place assignment.
(e, id) where e, has the value AUX, is an auxiliary-stack-place contents fetch.
(e, bv e, « s-exp) where the value of ¢, is LABEL is a label-expression.
(e, fc | id | (p «+[q])}...) where the value of ¢, is COND is a conditional-expression.
where the predicate p is an e, and
the consequent g is an exp-seq.
(e, « exp-seq) where the value of ¢, is PROGN is an expression sequcnce
(e, tag aux s...) where the value of ¢, is SEQ is a statement sequence expression
(e, st-lab « tag) where the value of ¢, is GO is a go-expression.
(e, {id | ps} e« tag) where the value of ¢, is EXIT is an exit-expression.
(e, e, » s-exp) where the value of ¢, is RETURN is a return expression.
(e, e; » s-exp) where the value of ¢, is FUNCTION is a closure expression.

The following basic operator constants (ur) occur as rator values, they are
., ordinary applications which are defined by special rules:
EVAL, CALL, MDEFX, APPLX, EVAL, SET, STATE.

Other basic operators, such as those defining data primitives, arc presumed but
not defined at this time.

EVALUATION

The following is a listing of the state transitions for the {S, E; C; D} machine.
The evaluation of e with respect to E is given by {(); E; ee(); ()}. Throughout the rules that
follow the most important determinate of what happens next is the object at the head of
C.
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Simple State Transitions

1. Halting
{xeS; E; (); )} — HALT, the result of the computation is x.

Comment: The control which is a stack of expressions awaiting evaluation is empty and
there is no previous state to restore. In practice halting never occurs as control returns (o
some operating system. This rule is here for theoretical completeness and is not one of the
usual transition states.
2. Value return restoring the former state
{x08; E; (); {8 E;; Cyy D3} = {x08, Ey; Cpi Dy}

Comment: This rule models single-valued procedure-exit. The control of this state is
empty and the dump is not empty. therefore the last value computed ( the one at the head
of the stack) is returned to the former state.
3. Re-evaluation

{xeS; E; EVALeC; D} ={S; E; xe C; D}
Comment: The meta-symbol EVAL is used to indicate reevaluation after macro cxpan-
sion. Used in rules 8.1.1.2.1 and 8.2.

Constants

4. Scif-denoting expression
{S; E; ceC; D} — {ceS; E: C; Dt

. Comment: Constant expressions are idempotent, that is, they evaluate to themselves. All
data objects other than pairs, funargs and identifiers are idempotent under this rule.
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Yariables .

5. Evaluation of a variable

{S; E; ideC; D} — {contents{Efid}{}eS; E; C; D}.
where contents{(val ... } = val.

Comment: Here we see the use of the environment E, it gives meaning to variables. The
mechanism for user installed global interpretations was discussed earlier.

Closures

6. Closure evaluation

{S;E;funarge C;D} and e is the e-part and sd is the s-parr.
= {(); ((ehEeiE )otE,); ee();{S; E; C; D}} where sd has E ; as its E-part.

Comment: This expression represents an expression closed with respect to the environ-
ment of sd. In the absence of updating, or state sav#ng. such expressions denote the same
value regardless of the context in which the closure is evaluated. Abstractly it would be
sufficient to reference E but in LISP1.8+0.3i it is achieved as described. funargs are to be
contrasted with constant-closures, they both APPLY the same but the later is self-denoting
whereas the former may denote expressions that require further evaluation. Another
nuance of LISP1.8+0.3i is that along with the new state there was created a new lexical
environment with an empty first contour and a reference to the lexical environment of the
sd as its tail.

Combinations or Application Expressions

7. Operator evaluation
{S; E; (e, « randlist)eC; D} —={S; E; e,0OPe(¢, « randlist)eC; D}
Comment: In this common case the opcrator expression is first evaluated for classifica-

tion.

8. Operator value determines what happens next

{xeS; E; OPe(y « randlist,)eC,; D} R

8.1. Understood special form if x is {sf | % (FUNARG sf « sd )}.
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8.1.1. Operator tested for lexical application and closure avoidance.
If C, = OPe(w « randlist;)eC,

8.1.1.t. Ordinary appiication with explicit lambda-exp as operator.
{LAMBDAGS,; E; OPe(y « (bv « exp-seq))e OPe(w « randlist,)eC,; D}
~{S8,; E; (APP oS )erandlist ;e APP;e bv e exp-seqe C,; D}

Comment: The lexical bindings are not lost and the operands are evaluated.
Note the use of the composite meta-symbol (4PP eS,) which serves to
indicate that lexicals are to be used, and as a place-holder for the stack as it
was before the argument evaluation was started. APP, is also used to avoid
creating a lambda-abstraction from bv and exp-seq which wouid otherwise
require the allocation of space. It is a design goal (not achieved by most LISP
interpreters) that the evaluator should not wantonly consume heap-space.
The question arises, what makes lambda-expressions used as operators descrve
special treatment? The answer is that we wish to avoid the unnecessary
closure formation that would otherwise occur.

8.1.1.2. Macro composition with explicit mlambda-exp as operator.
{MLAMBDAGS; E; OPo(y + (bv « exp-seq))eOPe(w « randlist,)sC,; D}
8.1.1.2.1. If bvis conformal with (w « randlist,)
- {()e(); bind{bv; (W « randlist,); ((ehEelE)etE) }; ESeexp-seqe();
{S; E; EVALeC,; D}}
8.1.1.2.2. Otherwise =D, .. ron.conformai

Comment: The lexical bindings are available during the evaluation of the
expression sequence exp-seq. Note that the original expression acts as the
operand to the macro.

8.1.1.3. Explicit mu-exp as operator.
{MUeS; E; OPe(y « (bv » randlist;))e OPe(w « randlisi;)eC,; D}
~{S; E; (APP eS)erandlist ¢ APP;e bv e randlist 0 C,; D}

Comment: A context closure is avoided here. Notice that:
((LAMBDA bv, « exp-seq,) « randlisty) = ((MU bv, « randlist,) « exp-seq,)

8.1.1.4. Explicit FR*CODE operator.
{FR*CODEeS; E; OPe(y ¢ (e, :...))eOPe(W o randlist,)eC,; D}
~{S; E; ¢,00Ps(w « randlist;)eC ,; D}

Comment: operator-code-exp are of the form: (e, e, f-list « lap-code), where
the value of ¢, is FR*CODE. and are equivalent to e, for the interpretive
semantics. For compiled code it serves to define e by a sequence of /ap-simis
where /ap-&tmts are LISP assembly program instructions. the definition of
which is machine dependent and will not be discussed in this section.
FR*CODE expressions provide an escape from the domain of LISP cxpres-
sions for compiled code and can be uscd by systems programmers Lo provide
efficient, compiled realizations of special expressions.
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8.1.1.5. Explicit seg-exp as operator.
ISEQeS; E; OPe(y « (1ag auxs...) Je OPe(w « randlist,)eC ,; D}
=185 E; (APP 0S)erandlist,o(SEQ eS)e (tag auxs...) e C,; D}

Comment: Statement sequences provide a paradigm for algorithmic of prdce- :
dural control flow concepts. This rule simply sets up to evaluate the values
for the aux stack places, and then to apply the sequence. When applied the
statements of the sequence are evaluated in a left to right manner (as are the -
operands of combinations) except that the control sequence may be ¢hanged '
through the use of the go-expressions. The labels, tags and auxiliaries have
restricted lexical scopes, that is, only those sequence-expressions nested

within a single

To avoid confusion with the scope rules of lexical variables we shall refer to
this as static scope. The operands are evaluated before the sequence is
applied. Not calling the stack place names by the term variable may be a bit
silly, but even though they may be used (in many cases) as analogs to varia-
bles defined by E, they are not isomorphic. An important difference is that
the places are not shared by other states. f

8.1.2. Repeated operator evaluation, closure avoidance cases.
If C, = (REAPeS JeueC, and x ¢ {LAMBDA | FR*CODE}.
8.1.2.1. {LAMBDAGeS; E;
OPe(y « (bv « exp-seq))o(REAPeS Jo(w « randlist,)eC,; D}
=+ {S,; E; (APP 05 ,)e()eAPP e bv ¢ exp-seqe C,; D} S
8.1.2.2. {FR*CODEpeS; E; ‘
OPe(y « (e, 2...))o(REAPeS )o(w « randlist,)eC,; D}
- {S; E;e,0C,; D}

Comment: In the case of repeated evaluation of operators, closure formation
can also be avoided if a lambda-expression pertains. Note the use of the compos-
ite meta-symbol (APP,sS,) which serves to indicate that lexicals are not to be
used, and as a place-holder for the stack as it was before the argument evalua-

tion was started.

A body that arrives as part of a computed value is not considered lexically
present. The FR*CODE could hide such a case, so it also must be treated

specially.

8.1.3. Operator was not an explicit ahstracrion-exp but is an sf.
Otherwisc, - {rand-list,e8; E; SFexe(C ; D}

Comment: The usual practice in LISP systems is to avoid the operator evaluation
entirely in these cases. That is, special forms as operators must be explicit, reserved
identifiers. The compiler for these systems is free to have a fixed idea about their
semantics. This system fixes its ideas about special form application expressions
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binding contour have the usual conventions of lexical scope.

The lexical context is lost in the case of repeated eval"ualion.

based on the value of the operator, likewise for macro’s. We can always define or

compile with respect

wish to fix. The ultimate interpretation of special forms is delayed until application,

to an environment that gives fixed values for the operators we

special forms apply to the randlist ol the combination.
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8.2. Operator is a macro.

{xeS; E; OPe(y « randlist,)eC,; D}
where x ={mlambda-abstraction | mbpi| funarg-macro}
where a funarg-macro is a funarg or constant-closure whose e-part is
{mlambda-abstraction | mbpi}.

—={ (y erandlist;) oS; E; MAPPexeEVALeC,; D}

Comment: This rule elevates the status of macros. Macros apply to the combination
form of which they were the operator. The resuit of the application (macro ¢xpan-
sion) is then reevaluated.

8.3. Operator is a context abstraction.

{xeS; E; OPe(y » randlist,)eC,; D}
where X ={mu-abstraction | closed-context}
where a closed-context is a funarg or constant-closure whose e-part is
{mu-abstraction | closed-context}.

- {rand-list #S; E; SFexeC ; D}

Comment: This rule elevates the status of contexts. Contexts apply like sf.
8.4 Otherwise. ordinary application is presumed.
else—={S; E; (APP,eS)erand-list exeC ; D}

Comment: The else-clause pertains in the case of ordinary application, in which case
lexical bindings will tentatively be dropped during application.

Comment: The important thing being decided in rule 8 is whether ordinary application or
macro application or special application is appropriate. In the cases ol macro application
the unevaluated original expression becomes the operand. The special forms are also
recognized here and applied to their unevaluated randlist. If macro or special application
is not indicated by the value of raror then 6rdinary application is presumed. Al some cost
in added complexity, the concept of lexicality and the wanton-hcap-use avoidance

principle have been introduced.

Pdge 19
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Macro Application

9. Macro application
{yeS; E; MAPPexe C; D}
9.1. If x = mbpi

9.1.1. If bv-of{x} and y are conformal

= {0); bind{bv-oftx}; y; ((ehE)o E)}; I, fx}; iS; E; C; D}}
9.1.2. Otherwise - D

non-conformal-app’

9.2. If x = %(MLAMBDA bv » exp-seq)

9.2.1. Andy is conformal with bv
~{0e0); bind{bv; y; ((€hE)e E)}; ES eexp-seqe(); {S; E; C: D}}

9.2.2. Otherwise - D

non-conformal-app’ : A
9.3. If x is a macro-funarg with z the e-part and sd the s-part where sd has an E -

9.3.1. If zis mbpi
9.3.1.1. If bv-offz} and y are conformal
= {(); bindibv-ofiz}; y; ((ehEelE JotE j; Ic,,, f2}; §S: E; C; D}}
9.3.1.2. Otherwise - D cro-non-contormal
9.3.2. If z= %(MLAMBDA bv » exp-seq)
9.3.2.1 If y is conformal with bv
={()o(); bind{bv; y; ((ehEeiE )otE, )}; ESeexp-seqe();
{S; E; C; D}}
9.3.2.2. Otherwise = D

macro-non-conformal?

9.4. Otherwise - {yeS; E; C; D}

Comment: There are just two ways that this rule comes into action: One is after rule 8.2
the other is through the specific use of the basic function MDEFX. Note that in the case
of applicable FUNARGS the lexical variables of the environment of the FUNARG are
viable but in the case of mbpi and mlambda-abstraction lexical variables arc dropped. The
otherwise clause is interesting because it illustrates that if the macro being applicd to the
expression y is not a recognizably macro-applicable form then the expression y itself is
returned unchanged. The otherwise clause only occurs through cxplicit use of MDEFX
(sce beiow).
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Argument Evaluation (for Ordinary Application)

10. Evaluatc Arguments Sequentially for Ordinary Application

{S; E: ({APP, | APP,{ ;08 )e(rand, rand...)eC; D}
~{8; E; rand ,o({APP, [ APP,{ ;65 )e(rand...)e C; D}

Comment: This rule entails the evaluation of operand expressions in left to right order.
Note the use of the composite meta-symbol which serves both to indicate whether lexicals

are to be used or not, and as a place-holder for the stack as it was before the argument
evaluation was started.

Ordinary Application

11. Ordinary application

{a e...a,08; E; (JAPP, | APP,] eS)ecexeC; D}

11.1 If x = APP; then
{a,e...a,08; E; ({APP, | APP,} ,0S)eceAPP e bv e exp-seqeC,; D}
IL.1.1. If bvand a, ... a, are conformal
- {()e(); bind,{bv; { ((ehEolE)otE)|((ehE)eE) },; a,;...a }; ESeexp-seqe();
{S: E; C,; D}}
11.1.2. Otherwise = D,,, nrormat.app -
Comment: A4PP; is used here as a means of using control stack space rather

than heap space.

Lambda Abstractions

11.2 If x = % (LAMBDA bv « exp-seq)

~{a e...2,08; E;({APP, | APP,} ,65)eceAPP e bv e exp-seqe C; D}

Comment: See rule 11.1.
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Function Binary Program Images

113 If x = fbpi

I1.3.1. If bv-ofix} and a, ... a_are conformal
- {(); bind,{bv-of{x}; ((ehE)eE}; a,;...a }; Ic,

entry

ix§; {S; E; C; D}}

11.3.2. Otherwise - D

non-conformal-app?

Comment: Illustrates the application of a machine coded subroutine.

Distinguished basic functions

I1.4 If x = ur, understood primitive operator constants. UR = {FIX-UR U
MULT-UR}.

Fixed number of argument understood operators

11.4.1. If x = fix-ur ¢ UR. It is a constant operator with definite number of
arguments.

L1.4.1.1. EVAL, the evaluate in the current cnvironment operator.
{2,085: E; ({APP, | APP,} 0S)e()eEVAleC; D}
~{(); ((ehE)eE); a,e(); {S; E; C; D}}

Comment: Lexical bindings are not accessible to computed expressions.
The only way to achieve this is to evaluate a constructed Sfunarg. Con-
structed funargs are possible but through the use of a special fix-ur. Such
an operator is necessary for LISP system programs. but is not a feature of
the language being defined. It would violate the lexical scoping rules for
the non-fluid variables. EVA! achieves an optimization not possible by
EVAL in that it does not require an attendant state saving.

11.4.1.2. 1f x is MDEFX. the operator for expanding macro's.
{a,0a,68; E; (fAPP, | APP,} eS)e()e MDEFXe C; D}
~{a,e(); ((ehE)eE); MAPPea o(); {S; E; C; D; }}

Comment: This makes it possible for the LISP compiler (and indeed any
function) to get one level of macro-expansion without the usually attendant
evaluation.
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11.4.1.3. If x is APPLX the operator for applying an operator to list

computed (arg...)

{a e...a,eS; E; ({APP, /APP‘J}.S)O().APPLX.C,' D}
where a, = (a,,...a, ).

—~{aea, 0...2, ¢S; E; (APPeS)e()e CALLeC; D}

Comment: This allows the operand values to be computed as a list by an
arbitrary LISP computation: A feature which could not in general be
obtained otherwise.

11.4.1.4. If x is the EVAL, and a, and a, are present.
{a,e...2,085; E; ({APP, | APP,} ,65)e()eEVALeC; D}
11.4.1.4.1. If a, is an sd
= 1{(); ((ehE)eE ); a,e(); {S; E; C; D}} where sd has E, as its E-part.
11.4.1.4.2. Otherwise - {EVALea,ea,eS; E;
(APP eS)e()e % (LAMBDA ?ARGS? ((ERR2 7) 7ARGS?))eC; D} .

Comment: This is the usual LISP evaluation with respect to a given envi-
ronment. Note, the lexical dropping.

11.4.1.5. Otherwise, some understood basic operator.
11.4.1.5.1. If bv-of{x} and a, ... a, are conformal then
~{x{ a,;...a,; ((ehE)eE)} oS; E; C; D}
11.4.1.5.2. Otherwise - D o conformat-app

Muitiple argument understood operators

11.4.2. If X = mult-ur, it is a constant operator with an indefinite number of

arguments.
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11.4.2.1. CALL. the function to apply the operator which is computed after
the operands to however many arguments were transmitted.
fa,ea e...a,e5; E; ({APP, | APP,} e5)e()e CALLeC; D}
11.4.2.1.1. If a_ exists and is a fbpi.
11.4.2.1.1.1. If bv-of{/bpi} and a, ... a__, are conformal.
= {(); bind, {bv-of{fbpi}; ((ehE)Jo E); a,;...a_}; le . fOPI];
{S; E; C; Dt}

11.4.2.1.1.2. Otherwise = Dy conformat-apps
11.4.2.1.2. If a, exists and is % (FUNARG y sd « z) where sd has an E,

11.4.2.1.2.1. If y is fbpi.
11.4.2.1.2.1.1. If bv-of{/bpi} and a, ... a,, are conformal.
= {(); bind,{bv-of{/bpi}; ((ehEoIE )o(E ); ay3...a,,4; le,,, LfOPif;
{S; E; C; D}} ' '
11.4.2.1.2.1.2. Otherwise = D

non-conformal-app*
11.4.2.1.2.2. Otherwise
-{a je...2,00); ((ehEolE )etE ); (APPje())e()ea_o();
{S: E: C; D}}

11.4.2.1.3. Otherwise where a_ exists.
-{a"_,o. ..a,e(); ((ehEolE,)otE,).‘ (APPZO())o()oano(); {8 E; C: D}}

11.4.2.1.4. Otherwise where a, is not present.

{S; E; ({APP, [ APP,{ 65)e()eCALLeC; D}

= {()eS; E: C; D}
Comment: This rule is ordinary calling in the current environment with
arguments transmitted on the stack. Lexical bindings are dropped. CALL is
used by the compiled code to attain certain efficiencies. In particular, the last
argument a, can be treated somewhat more efficiently than the rest of the
arguments. Note the degenerate case: (CALL) = ().

11.4.2.2. If x is STATE the state saving operator it creates continuations
{a,e...2,05; E;(fAPP, | APP,{,eS) ¢()eSTATEeC; D}
- {sdeS; E; C; D}

where sd has {S; E; C; D}

Comment: This sd constructing operator can only capture the current §,E C,
and D. The optional argument a, if present is glonor (sce section on global
environments). Likewise, a, if present is glo/ss (see section on global environ-
ments). These optional arguments allow the saved state to pertain to global
environments other than the one current. If neither is specified then the
current global context is assumed.

11.4.2.3. Otherwise, some understood basic operator,

11.4.2.3.1. If bv-ofix} and a, ... a, are conformal then
~{x{ a,; ...a,; ((ehE)eE)}eS; E; C; D}
11.4.2.3.2. Otherwise = D

non-conformal-app’
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Dynamic Macros

11.5. If x = { mbpi | mlambda-abstraction} = Dy inampiicante
Comment: This would seemingly limit the free choice between macro definition and
function definition styles for operators but it can be over come by clever use of the
error channel! (see section on Program Events). In any case we detect that it is too
late to macro apply.

Closure Application

11.6. If x = funarg or constant-closure and y is the e-part and sd the s-part,
where sd has E, as its E-part then

11.6.1. If y is an fbpi.
11.6.1.1. If bv-of{y} and a, ... a_ are conformal then
= {(); bind,{bv-offy}; ((ehEelE )otE,); a,; ...2}; lc,,, £y $; {S: E: C; D}}
11.6.1.2. Otherwise = D, .niormat.app’ '

11.6.2. Otherwise - {a e...a,8(); E,; (APP o())e()eye(); {S; E; C; D}}

Comment: Notice the possible inconstancy of the constant-closure.

State Application

11.7 If x = sd where sd has {S,; E,; C,; D,} - {a,e5,; E.; C,; D}

Comment: A fact that this meta-language may not adequately convey is that S, and
C, of the sd are copies but E, and D, are shared references. This illustrates the
“continuation’ of a state.

« Code Abstraction Application

11.8. operator-code-abstraction.

{ae...,08; E; (fAPP, [ APP,} eS)e()e"(FR*CODE ¢, #...)e C; D}
~{a,e...2,085; E; ({APP, [ APP,{ ;eS) ¢()ee,sC; D}

Comment: This expression form is meant for the exploitation of the compiler and is
included here only to reveal its import to the interpreter. operaror-code-ahstractions
provide an escape, for compiled code. {from the domain of LISP ¢xpressions, and
into the domain of LAP code. They can be used by systems programmers to
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provide efficient, compiled realizations of basic operators or to provide access to
system function not normally provided for by LISP semantics. They are normally
used in operator position. It is hoped that such devices will be used only by the well
informed and well intended.

Sequence application

11.9. If x = ({SEQ, | SEQ .} S)
{aye...a,08; E; (I4PP| | APP )} j0S)ecs ({SEQ, | SEQ,] oS)« (1ag aux s...) » C,; D}

11.9.1. If qux and a, ... a_ are conformal
=~ {Qeae...2,08; E; (SEQ, | SEQ,} oS)« (tag auxs...) e (5...) ¢« Cy D}
11.9.2. Otherwise - D

non-conformal-app *

Comment: Central rule for the conformal mapping of aux on to the parameters.

Sequence Abstractions

11.10If x = %(SEQ - (tag auxs...))

= {a,e...2,08; E; (f{APP, [ APP,} j0S)ece (SEQ,eS)s (1ag auxs...) o C,; D}

Comment: Notice that SEQ, is categorically used here, this will serve as a static
scope stopper. A quoted or any constant or any computed seg-abstraction does not
have any inherited static context.

Inapplicable Objects

11.11. If x € {SF|MU-ABSTRACTION | CLOSED-CONTEXT} = D

st-inappticable

Comment: Here again we chose to intercept a case where it is now too late to not
evaluate the operands. In other words, having decided to do ordinary application
we find that the operator requires Spccial forms application and that is inconsistent.
therefore to be treated as an error.

1'1.12. Place-holder assignment (sce rule 20.)

11.13. Assignment (see ruie 19.)

11.14. If x is a constant not explicitly mentioned elsewhere in rule || then
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= Yinapplicable-wbject

Comment: The error channe! for D, ppiicabic-omrec: €aN bE replaced (by a function to
produce (x a, ... a,) for instance.) Traps are discussed is greater detail in a follow-
ing section. This is an instance where the model exposes the computational import
of a semantics question. The error trap channels provide flexibility but require
wanton CONSing and the creation of additional activation records.

Operator evaluation repeated

11.15. Operator not directly applicable.
Otherwise, - fa,e...a,¢(); ((ehE)eE); Xe(REAPe())exe(); {S; E: C; D}}

Comment: Application of x to the operand values is sometimes rcferred (o as ordinary
application. When x is a macro or meta form, an error break occurs. When x is a FU-
NARG, a new state must be created. When x is a constant form unknown to Rule 11, an
error break occurs. The otherwise clause is interesting because it illustrates the repeated
evaluation of the operator form until the applicable function it denotes is revealed.

Reapply reevaluated operator

12. Reapply reevaluated operator.

{zea ...a,eS; E; (REAPeS)exe C; D}

12.1. If x=z- Dinapplicable~obj’ea
12.2. Otherwise ..{ano...a,os: E: (APP;.S)°()’Z'C" D}

3 Comment: Reevaluation results in the dropping of lexical variables. Readers may
reasonably find fault with the trivial loop detection case semantics.

Meta Applicable Forms

o 13. Special Forms application.
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{a,eS8; E; SFexeC; D}
13.1. Conditional expressions.
{a,eS; E; SFeCONDeC; D} - {()eS; E; PREDO()oa, oC; D}

" a Comment: PRED is merely the meta-linguistic cog for the conditional. The balance
- of the rules for the conditional are given later.

13.2. Auxiliary stack-place values.

{a,08; E; SFeAUXeC; D} where a, = (x...).
13.2.1.If C=...y...e ({SEQ, [ SEQ,} oS )e (tag auxs...) e C,
where y # (SEQ,sS ;)
and qux = (qux-id...) and x = aux-id;
and §, = ...ea,...ea,...02, ¢S, then
~ {a,08; E; C; D}

13.2.2. Otherwise - D, .. ...

Comment: The basic access operator for the contents of a stack-place. Notice that
there is no access scope beyond the innermost computed sequence (indicated by
(SEQ,eS;) ). The reader may well ask: why was it necessary to introduce yet
another class of variables? The reply to that question is that S has some attractive
properties that we wish to exploit. Namely:

1. With respect to the rules of this semantics we notice that the constituents of §
are staticly determined from the point of view of C. This means that compiled
references m: / be early bound to constant offsets.

2. In the state saving and continuation of a state the values on § are not shared as
in the case of E. Because they are copied rather than referenced they are “undone".

13.3. Enter expression sequence.

{a,0S8; E; SFsPROGNeC; D} —={()eS; E: ESea oC; D}

e

Comment: This form is an applicable cxpression sequence operator. The balance of
the rules for expression sequence evaluation are given later ( sce rule 17).

13.4. Return expression.

{atOS; E; SFeRETURNeC; D} - {S; E; fel O },00); D}
where a; = {(e + z)|arom},.

Comment: Allowed anywhere a variable is allowed. Causes return with value from
the current state frame.

s,
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13.5. EXIT expression.

{a,e8; E; SFeEXIT oC; D} - {S: E; esEXITetageC; D}
where a, = (e + 1ag),

Comment: The action of this rule is to cause e to be evaluated like any other
operand expression of the current static statement context. Should that evaluation

produce a value then rule 18 will complete the exit. An identifier argument to EXIT
is treated as a variable not as a statement label.

&
-
: 13.6. Go expression.
{a,eS; E; SFeGO oC; D}
where a, = (st-lab, » v).
13.6.1.If C = -Y...0 ({SEQ, | SEQ,} oS )e (tag auxs...) (5;...)0C,.
where y # (SEQ,eS,)
where (s,...)=(...s1-lab, s,...),
and S must be ...eS,
=18, E: (§SEQ, | SEQ,} oS ,)e (st-lab, s,.. Je(s,...)eC,; D}
13.6.2. Otherwise,
-={st-lab eS; E; (APP 05 ,)e()e % (LAMBDA(?ARGS?)
(UNWIND((ERR2 10) 7ARGS?)))eC; D}
Comment: GO expressions affect only the control and stack. Which is, the
principal reason for a distinguished GO.
13.7. Closure forming expression.
{a,eS; E; SFexeC; D}
where x is {fFUNCTION | LAMBDA | MLAMBDA | FR*CODE | SEQ}, E
and a, = (y « w) then
13.7.1. If x is FUNCTION or FR*CODE and y is funarg,
) then — {funarg eS; E: C; D}
13.7.2. Otherwise, — {funarg, «S; E: C; D}. . E
where funarg, is created and has u as e-part and sd as s-part
where u is:
fyl
%(LAMBDA y « w) |
% (MLAMBDA y » w) |
’ % (FR*CODE y « w) |
| %(SEQy+w)},.
" ' and sq has E as its E-part.

i.e., the lexical bindings (if present) are operative in the environment of
the closure.

Comment: The lambda-expressions and miambda-expressions of LISP are prototypi-
cal functions and macros; upon evaluation their meaning is bound and they become
— functions and macros. The funarg (closure) contains the abstraction and the
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cnvironment that binds the variables. Note that the environments can be shared, e
indced any valuc object can be shared. Assignment and updating can thercfore
change the meaning of a variable. From this we conclude that meaning is not closed
(in the mathematical sense), only bound, by these closures. We will nevertheless
refer to them as closures (in a computational sense).

For the present model the representation of sd will not be defined. Only the
E component is needed by the FUNARG device. These funarg's and sd’s require
allocation, a sufficient reason to avoid the overuse of this mechanism. The
FUNCTION device is most useful when we wish to pass a functional object around

by name, i.e. ¢ is an id. It may be used to close any expression e with respect to E.
The FUNARG device is used to represent these closures.

Note that extraneous operands are ignored. Observe that (FUNCTION
mlambda-exp) is unproductive (will produce only "dynamic macro not allowed"
condition), but (FUNCTION lambda-exp) is productive but unnecessary.

13.8. LABEL expressions, evaluate with respect to a dummy environment.

{a,08; E; SFeLABELeC; D} - {bvebodye(); E,; bodyeLABEL «(); {S; E,- C: D}} A~
where a, is ( bv body « z). R
where E, = bind{bv; duibvi; ((eAEelE)etE} :

dufbvl = bvif bvisac.
(B+8) if bv is an ident
(dubv,} « dufbvy}) if bvis (bv; « bv,)
all other cases are undefined.

Comment: Label-expressions allow the computation of objects with shared refer-
ences without requiring the user to use the “‘dangerous™ update operators. It may ' 4
be used to create recursive functions, mutually recursive functions, and list struc- .
tures with shared references. The second part of LABEL expression evaluation. the
fixup phase, is found in rule 21. The problem that this opcrator only partially solves i
is to find solutions to all equations of the form: bv = e. This technigque works only if

a “guessed’™ structure of the same shape as bv with the variables denoting pairst, is

conformal to the value of ¢ computed in a context where v is bound to that struc- E
ture. In other words the solution shouid conform to Av and to e and the each
variable of 4v should be bound to its conformal component of the solution, and the

variable references in e should compute the value denoted by that variable in the

conformal mapping of bv on the solution.

t In the case of restricted type variables a better guess can be made.
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13.9. SETQ.

{a,68; E; SFeSETQeC; D} —{()eideS; E; ESe(e...)s(APP o5) ¢()eSETeC; D}
where a, is (id e).

Comment: SETQ will assign to lexical variables because of the use of APP,. This is
a consequence of the ur SET which is described in rule 19, and which this rule uses E
to accomplish its purpose. ' ]

13.10. Quotation.

{a,08; E; SFeQUOTEe(; Dt — {s-exp,eS; E; C; D}
where a, is (s-exp, « s-exp,).

Comment: In order to denote the non-idempotent forms (pairs. funargs and identifi-

] ers) the quotation device is necessary in LISP. This follows from the insistence that
expressions be data. Backus{2] points out “where meaning is not idempotent, we
have chains of meanings, e.g.: (QUOTE ¢) - e = f ... etc.”. In LISP such repeated
evaluation is implicit only for operators during ordinary application. normally
expression evaluation is one level of reduction. Notice that operator expression
quotation has the meaningful effect of assuring ordinary application without lexical
access!

13.11. Context application

{a,eS; E; SF @ % (MU bv « valuelist) o C; D}
~{vye...v,08; E; (APP 05)e()eAPP ;ebve 2,0C; D}
where valuelist = (v,...v,).

Comment: Appiication of a context abstraction is explained in terms of ordinary
application. Observe that such an applicable constant allows the imposition of a
limited set of bindings into the current context with out requiring state saving.
Note: The lexical variables (outside of &v) are inaccessible when a, finally evaluates.
(% (MU bv « valuelist) « exp-seq) is equivalent to:

(APPLX % (LAMBDA bv ¢ exp-seq) (QUOTE valuelist)).

13.12. Meta application of a context-closure

{a,e8; E; SFe % (FUNARG % (MU bv « valuelist) « sd ) «C: D}
={v e...v eS8 E ;s (APP 0())a()eAPP ebve a e(); |S: E: C: Dt}
where valuelist = (v,...v,) and sd, has E as its E-part.

Comment: This is the case of a context closure application where the surrounding
lexical context is accessible. More powerful than applying EVAL to (PROGN . a,)
and a state denoting E,. It is debatable whether (APP.e()) rather than (APP,e()) is
appropriate: in which case lexical access would be limited to within the scope of the
bv of the context-abstraction. V
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13.13. Context closure forming

{a,eS; E: SF e MU o C; D}
—={bveS; E;: (STATE)e(MUeS)e randlist ¢ C; D}
where a; = (bv ¢ randlist)

Comment: Ultimately evaluates to % (FUNARG % (MU bv « valuelist) « sd) see
rule 14. From the point of view of a simple understanding of "lexical variables”.

this operator is the forbidden fruit. The subsequent application of the funarg could
behave as if the computed expression occurred lexically in the same context as the
mu-expression that formed the closed-context. The safety of lexical variables is
therefore threatened by the MU operator. Were it not for this operator there would
be no possibility to update the lexicals with operations invisible to the lexical text.
The ability to treat lexical variables as place holders, subject to renaming (alpha-
conversion), removal from E, and binding contour flattening, is thus complicated by
the existence of this operator. These optimizations may not be practiced if a
mu-expression occurs in the context.

13.14. SETX.
{a,08; E; SFeSETXeC; D}
—>{()eideS; E; ESe(e...)o(APP eS) ¢()eAUXSETeC; D}
where a, is (id e).
Comment: SETX will assign io stack-place variables. See rule 20.
13.15. Ill-formed sf.
{a,e8; E; SFexeC; D} = Dy (o ineq -

where X is sf but none of the above applies

Comment: Rule 13 could be viewed as a subroutine of rule 8.
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Closed context preparation

14. {v,e...v ,es5d,0bveS; E: (MUsS)exeC; D}
14.1 If x = () then,

= {%(FUNARG %(MU bvv, ... v,) » sd,) oS; E; C; D}

Comment: A closed context is formed, it will apply specially to an expression that
wil have access to the lexical of sd, if there are any.

14.2 If x # () then prepare the value of the next rand.

{v,e...v,5d ,0bveS; E; (MUeS)e(rand, rand ...)eC; D}
= {v e...v,5d,ebveS; E; rand ,e(MUseS)e(rand ...)eC; D}

Comment: The values for the context are computed in left to right order, in the

context that the context-expression occurred at the time the context closure was
formed.

Conditional Expression

15. If PRED is at the head of control, it indicates completion of predicate,
{ueS; E; PREDe(e,...)exeC; D}
15.1. Continue on to next predicate consequent, if u is (),

15.1.1. If xis ((p; e,...)(p; €;...)...)
- {S; E; p,ePREDe(e,...)e ((p; e;...)...)eC; D}

15.1.2. If xis (atom « y)
- {()eS; E; PREDe(e,...)eyeC; D}

15.1.3. If x is atom
-{QeS; E; C; D}

15.2. If u # (), evaluate the consequent

15.2.1. If {ueS; E; PREDe(e, ¢,...)eye C; D} where u # ().
— {ueS; E; ESe(e, ¢,...)eC; D}

Comment: The possibility of multiple consequents is known in some LISP
system as the implied-PROGN feature. It can be considcred as syntactic
sugaring.
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15.2.2. If fueS; E; PREDeatome((p, ¢,...)...)eC; D} wherc u # ().
—~{ueS; E; C; D}

Comment: This is the case where no consequent is present, the predicate value is
then the value of the conditional.

Statement Sequence Evaluation
16. Statement sequence evaluation, if (SEQ ,,;#S) at head of control.
{xeS; E; (SEQ ,j0S)e(tag aux 5,...)eueC; D}

Comment: This form and its precursor PROG (now seen to be non-quintessentiai)
has been much maligned as not part of "pure LISP". In fact it is of great teleologi-
cal value because the common control structures are dcrivable from it and its
attendant GO and EXIT and statement label forms. (SEQ,,,eS) is merely the
meta-linguistic cog for statement context evaluation semantics.

16.1. If uis atom, then leave sequence with value of last program statement.
~ {xeS; E; C; D}

16.2. Statement labels are skipped, if u = (s¢-lad s...), then
{yeS; E; (SEQ ,;;#S)eze(st-labs...)eC; D}
-~ {()eS; E; (SEQ;,05)0z0(s...)oC; D}

Comment: No evaluation occurs for identifiers which occur as statement labels.
Identifiers which occur as consequents of conditionals and identifiers which occur as
arguments to exits are variables not statement labels. The fact that statement labels
have the value NIL rather than the previous retained value is deliberate. The reason
for this is that we wish be able to optimize the compilation of SEQ. In particular,
we presently have no means of preserving the last computed value after a branch in
a conditional to a final statement label.

16.3. If u = (ps « (5...)), program statcments are cvaluated sequentially,
{xeS; E: (SEQ,,;0S5)ez8( pse(s...)) «C; D}
= {S; E; pso(SEQ 05 )eze(s...) oC; D}

Comment: The statements are evaluated in sequence, the value of the previous

statement is not available during the current statements evaluation.
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Expression Sequence Evaluation E
17. If ES at head of control, then expression sequence evaluation, E
{xeS; E; ESeueC; D}

{7.1. Termination condition, if u is atom,

{xeS; E; ESeatomeC; D} - {xeS; E; C; D}

Comment: The retained last expression value is the.value of the sequence.
i ' 17.2. fu = (e, ez..'.), evaluate next expression in an expression sequence.

{xeS; E; ESe(¢, e,...)0C; D} = {S; E; ¢ 0ESe(e,...)eC; D}

Comment: Each expression of the expression sequence is evaluated in sequence
without access to the previous expression value.

Exit sequence expression

18. {xeS; E; EXITetag,sC; D}
18.1.1f C = ...y...(SEQ ,,;8S)e(tag, aux s,...)sueC ; D}
and § must be ...eS,
and y# (SEQ,eS )
then —={xeS,; E; C,; D}

18.2. Otherwise, - D

exit-error *

Comment: The action of rule 13.5 has evaluated the argument with respect to the static
scope of the current sequence, in the case currently under consideration that c¢valuation
completed without changing the control state, and the computed value is now to be
returned as the value of the enclosing sequence with the matching rag.
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Assignment

19. Assignment (This rule could have been 11.13 but was left out so that the memory M
need not be introduced until it was required.)

19.1. Ifyisanid

-~ {{Efy:ASSIGN:x{, | fluidfy; ASSIGN:x},}eS; E; C; DiM,
and {Efy;LOOKUP;(), | fluidfy;LOOKUP; ()} ,} M, = x

Comment: Only in the case that APP, pertains are lexical bindings sought.

19.2. If y is a funarg which has z as the e-part and E, as the E-part of the s-part then
—{xeze(); E,; (APP o())e()eSETe(); {S; E; C; Dt}

19.3. Otherwise = {SETexeyeS; E; (4PP 65)e()e %(LAMBDA ?ARGS?
((ERR2 11)?7ARGS?))eC; D} .

20. Place-holder assignment (see rule 11.12. and 13.14.)

{zeid,eS; E; (APP eS) ¢ ()eAUXSETeC; DM,
20.1.IfC = ...y...e ({SEQ, | SEQ,{ ¢S ,)e (tag aux,s...) ¢ C,
where y # (SEQ,eS;)
and aux, = (aux-id...) and id, = qux-id,
and S, /M ,} = ...ea,...3,... 02, ¢S, then
- {2eS; E; C; DIM, and S {M,{ = ...ea,...0Zea, |...02, oS,

20.2- OtheTWise - Du"bou"d." UXSET
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Comment: The basic update operator for the contents of a stack-place.

LABEL Operator

21. LABEL environment fixup phase.

{xebvebodyeS; E;; LABELeC; D} M,
= {refix{bv; x; fixup{E,; bv; x}M }eS; C; D} M,

fixuplE;; bv; x{ M, = E, M},
fixup: E x BV x S-EXP x M - S-EXP x E x M.

Where fixupiE ; bv; x{ M, =
if bvisacthenE x M,
if bvis an ident i.e. {(FLUID id,) | (LEX id,) | id,} then
if { X ¢ VALUES o000 by boay| X € ATOM } then setqy,, ., fid,; x}
if x is a pair x=(x, » X,) then
rplacdg, ¢ rolacatE, fid,; LOOKUP; (); x,}; x,}
if bv is (bv, « bv,) then
if x € ATOM then undefined for now
if x = (x, « x,) then fixupi{fixupiE ; bv;s x4 by xo}
all other cases are undefined.

The meta operators setq, rplacd, rplaca, and E are the rather obvious functions
whose value domain is { S-EXP x E x M/. Normally it will be sufficient to ignore
the £ and M aspects of such functions and they will be simpiy thought of as denot-
ing s-exp. Occasionally (as is the case above) the £ and M are the domains of
interest and are indicated as above by the subscripting. It is generally tiresome to
continually include the environment and memory in the domain and range consider-
ations of all functions and so we are prone to leave them out. The reader is expect-
ed to assume that they are intended and to tell from context whether they are
relevant.

refix{bv; x; E,} =
if bvisacthenc
if bvis an ident i.e. {(FLUID id;) | (LEX id,) | id,} then E,}id,: LOOKUP; ()¢
if bvis a pair (bv, « bv,) and x is a pair (x, « X;) then
rplacdirplacaix; refixibv ; x,; E }{; refixibv,; x,; E }}
else undefined.

Comment: Havirig evaluated the body of the LABEL expression with respect to an
environment in which the elements of bv were bound to dummy pairs, we now
update those pairs under the assumption that the value x is an object of the same
shape as bv. It has been suggested that if the initial guess for the dummy bindings
leads to an undefined case during fixup, the actual value delivered should be chosen
as a new dummy and the evaluate phase repeated, etc. The complete LABEL for
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typed variables will generate dum/my values of the indicated kind. A word about the
purpose of all this: We wish to compute self referring structures and LABEL
provides that ability. So does SETQ, SET, RPLACA and RPLACD. Our definition
of LABEL uses the meta linguistic equivalents of these opcrators. Why not just
stick to the update operators? The answer is that the updatc operators can alter
previously computed values thus changing their interpretation. Label does not have
that property. It is not as dangerous!
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THE INTERRUPT SYSTEM

Interrupts are external events rather that objects of the system, furthcrmore
their detection is usually provided for in the underlying computing cngine. This
scetion posits a model that is tentative, and while it meets certain current practical
demands, may serve as a start point for the development of a better model.

The event that causes the interrupt communicates this to LISP by updating
some shared storage structures. LISP polls to see if any interrupt has occurred. It
does this at times when it has a “clean state™.

If an interrupt is pending a DISPATCHER is called. It dispatches the
interrupt service function for the highest priority pending interrupt whose priority is
greater than the current level of priority of the interrupted process.

The global variable EXTERNAL-EVENTS-CHANNELS has a vaiue which
is a vector whose k" element is a function of no arguments, which should be the
service function for interrupts of type k. See Table 1, for the detailed definition for
each channel. This vector is 2 LISP reference vector and normal vector operations
may be used on it, with caution!

The function SSERRORLOOP is most commonly employed as the service
function. It is basically a READ, EVAL, PRINT loop. One can exit normally to
resume the interrupted process by incanting (FIN ¢). One can do a UNWIND
which is an non-local goto to the nearest error catcher; as SSERRORLOOP itself
has such a catcher one must signal it to do an UNWIND by (UNWIND n) where
n>0. The action of UNWIND should reset the current priority level to 0 and turn
the polling back on. Uncontrolled continuation (applying states) from high priority
interrupts could cause loss of sensitivity to lower priority interrupts.
S.ERRORLOOQP1 is just like S.SERRORLOOP except it doesn’t have it own error
catcher. It is used when the system is seriously out of space.

In the case of the SECD machine we must extend our description to encom-
pass these events. This can be done in the following manner:

A new meta-linguistic state component is introduced which is nothing more
than some special storage which we shall view as a kind of circular list:

I=((priority-level, n, « k,)... (priority-level . n_« k o I)
where priority-level, is a small positive integer that determines the priority of
the intcrrupts of type X,
and »; is a count of how may unserviced interrupts of the type &, are pending,
and k; is an integer which identifies a type or class of interrupt.

For example, I currently accommodates 7 unique interrupt classes.

I=((1 0e1)(30e2)(1003)(5004)(50e5)(30e6)(10e7)el)
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The purpose or definition of each interrupt class is given by Table 1.

This would suffice if interrupts had only to announce their occurrcence. It is
however the casc that when certain interrupts occur they bring some data with them. This
data must be enqucued in some manner. An association of such queues to interrupt types
is provided by the following addition to the LISP machine:

R is a vector whose kth element is a reference to a LISP data object in the LISP
heap which defines the queue of pending data for pending interrupts of type A.

The data object representing such queues is a vector of non-pointer fixed-point
numbers. R has associated with each element two index numbers which serve to define
the place that new data is fed into the vector by interrupts and the place that data is next
to be eaten by service functions. These indices wrap around as they are advanced beyond
the capacity of the vector. In the case where the feed index would advance to the eat
index the interrupt is lost and the index advance does not occur. The function NEW-
QUEUE is provide to allow the user to redefine any particular one of these queues.

An interrupt is said to have occurred when the count of the element of I corre-
sponding to an interrupt of that type is increased to reflect that occurrence. At the time of
the interrupt the data queue if present would be fed data. In addition to the above a one
bit flag is turned on. This requires yet another meta-linguistic state component which we
shall designate as POLL. We also add yet another component, P, to our machine which is
an integer defining the current level of priority. After interrupts occur they must be
detected and serviced, this is accomplished by the following extensions.

The application rule is extended for subrule 1 1.1.1., where a lambda-abstraction, is
being applied. If &vis conformal with a,...a,, and POLL is in the on condition then:

-~ {(); bind,{bv; {b((ehEolE)Oc‘E)l((ehE)oE) b ags .. b
(DISPATCHER) oESeexp-seqe(); {S; E; C; D}}

The action of DISPATCHER is to search [/ for an element u;
if u = ( priority-level, n; « k) for some u ¢ 1,
and priority-level, >P and n;>0, is the interrupt element of the highest priori-
ty, pending interrupt then u<(priority-level, n,-1 « k). Should no interrupt of
sufficient priority pend POLL is turned olf and control returns [rom DIS-
PATCHER.
(note: < is used to denote "is updated to"")
For this highest priority, pending interrupt DISPATCHER will invoke:
((ELT EXTERNAL-EVENTS-CHANNELS k) &) with POLL turned off and P =
priority-level,.

When and if control returns P is reset to zero and the search, of /. for the highest is
repeated and when no more pend POLL is turned off. Control then returns from
the DISPATCHER.
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To repeat what has alrcady been mentioned above: Uncontrolled continuation
(applying states) from high priority interrupts could causc loss of sensitivity to lower
priority interrupts which were in process and interrupted. In some cases this could
be exactly what was intended.

Summing up, it seems that some sort of process data object, a blocked process
qucue, extensions to the scheduling in DISPATCHER, cte could all be brought
together under a unified processing model. The main problem seems to be that no
compelling model has appeared and as yet no compelling interest in a better model
has developed. '

- The application rule is extended for subruie 11.3.1. where a conformal fbpi is
being applied, and POLL is in the on condition.

— {(); bind,{bv-of{x}; ((ehE)oE); a,;...a,}; (DISPATCHER)e lc,,, . x/; IS: E; C; D}}

Rule 11.6.1.1.. where funargs with a fbpi as e-part are applied, similarly extended
(using the environment of the s-part of course); as are the macro application rules, 9.1.1.,
9.2.1,9.3.1.1.,, and 9.3.2.1. .

The Go expression rule 13.6.1 is also extended so that in the case of a pending
interrupt:

~{S,; E; (DISPATCHER)e ({SEQ, | SEQ )} ¢S,)e (st-lab, 5,...)e(s,...)sC ;; D}

These extensions allow for the timely service of the events that are pending.

The number of, priority. levels of, and types of interrupts of a given SECD
machine are rather fixed and ad hoc. The allocation of ncw [ and R require capability not
provided as LISP basic operators. System programmer help is required to replace [ and R.
A basic primitive for replacing the elements of R with new allocations of queue space, is
provided and is called NEWQUEUE.

(NEWQUEUE k m) Replaces the k" element of R with a new vector which has capacity
for m eclements. This operation can only take place when no interrupts are
pending. Upon successful completion NEWQUEUE returns the new vector.

EXTERNAL-EVENTS-CHANNELS has a value which is a vector whose k' element is a
function of one argument, the integer k, which should be the service function
for interrupts of type k. See Table 1, for the detailed definition for each

T channel. As this vector is a LISP reference vector normal vector opcrations
: may be used on it, with caution!
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Table . The External Events Channels Ef__%' i
“haanel
(hgnm i Service Expression Definition or Explanation 3
Number | .k
0 Not rcally a channel. Reserved [or future use.

Currently, UNUSED-CHANNELL
with priority 1.

EXTERNAL-INTERRUPT =

2 %(LAMBDA()(S.ERRORLOOP 16 'EXT' (STATE)))
__.| _has priority 3. S y .
3 |ALARMCLOCK

Not yet provided timer interrupt with priority 1.

OUT-OF-STACK=
4 % (LAMBDA()(S.ERRORLOOP1 17 'STACK-FULL'))
has very high priority 5.

OUT-OF-HEAP =

S %(LAMBDA()(S,ERRORLOOPI1 18 '"HEAP-FULL'))
has very high priority 5. o
6 RECLAIM

modest priority 3.

Currently, UNUSED-CHANNEL7?
with priority 1.

8...n | Currently unallocated.

External events may be posted by LISP programs through the use of the basic
function POST.

(POST k data...) Causes pending of a user interrupt of class k in /. Enqueues data, an
integer if present, in R. Returns k if the enqueuing was successful and NIL
otherwise. -

(EAT k) Eats one data element of R. Returns NIL if the qucue is cmpty or if no such
queue is present, otherwise the value is the integer data value caten.

The ability of the user to redefine EXTERNAL-EVENTS-CHANNELS may lead
to inconsistency. It is still an open issue whether this ability is worth its added danger.
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TRAPS

Traps are program, or cndogenous, events that happen synchronously.  Like
external cvents they are divided into classes and each program event is associated with a
program events scrvice channel. Unlike external events they may receive operands, and
may return a value.

A principal use for program events is error handling. Errors are detected and
various program cvent channels are used to provide error servicing. Several classes of
errors occur in LISP:

1. LISP machine check --- The LISP state is not recoverable and the error is
uncorrectable. The only user actions possible correspond to debugging in the
micro-code (with respect to the fiction of therc being a LISP machine),
stopping or abnormal termination, and resetting or restart.  No user service
channels are provided for errors of this class.

2. Uncorrectable error --- The LISP state is well defined, but there is no
meaningful recovery. In such cases user channels are invoked but if the
channel attempts to return a value an automatic unwind occurs.

3. Correctable error --- The LISP state is clean and it is possible to proceed if
the user service channel provides a value.

See Table 2, for the explicit details for each channel. The semantics
rule should be scrutinized for occurrences of ERR2, that is, instances of error
channels being invoked. These distinctions are not a property of the service
expression but rather how it is invoked.

(ERR2 n) = %(LAMBDA (7ARGS?)
: (S,ERRORLOOP n TARGS? (STATE)))

S.ERRORLOQP becomes a new understood basic function. The
current implementation of which is to put you in the break state supervisor.
This supervisor runs in its own state but has the interrupted state passed as a
parameter. The first action of the break state supervisor is to ask il it should
try to run in the interrupted state. It does this by making strange and wonder-
ful tests, one necessary condition of which is to test some "heaven-box". The
programmer can force the break supervisor to run in the "safe” state by
causing the heaven-box to be set to zero through some external means. In
- whatever state it runs it does so by causing the n'* element of PROGRAM-

EVENTS to be applied to n, the arguments and the current state.

The user should refrain from updating the "safe” state once he is running in it. For
PROGRAM-EVENTS variables bound in the user’s state. the user may invoke the
channels in a similar manner and may update each channe!l with his own definitions.
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Table 2. The Program Events Channels
h. v 3 ;
N Purpose, Explanation, and Initial value , Value of ! Value
No. ~ ?ARGS? i Expected
[ No current purpose.
_ Initial valwe NIL. "0 e
'UR DOMAIN ERROR' | e which user
2 |Initially: S;ERRORLOOP (a,...a, ur) % supplies for
I , v I recvaluation.
'NON-CONFORMAL MACRO APP! (Car o )' e which user
Expect user to supply expression for correctl. = O r)ar : supplies for
3 value of the macro application, or to h X . : reevaluation as
(UNWIND). ”Zrzrge’i‘n'f :“"' | the value of
Initially: S,ERRORLOOP e d~” P~ the macro ap-
T ; plication.
'"NON-CONFORMAL APP ! (a,...a, x) | .
. ! ) e which user
4 Expect user to supply expression for correct| . where x is supplies f
value of the application, or to (UNWIND). | function being re:ilfs[, or
| ‘ .
Initially: S.ERRORLOOP applied. #ation
'DYNAMIC MACROS NOT ALLOWED!
Attempted to apply a macro to computed ope- (a,...a, x) ; which
rands. Expect user to supply expression for| where x is ma- ¢ “? user
5 . ) supplies for
correct value of the application, or to| cro being ap- reevaluation
(UNWIND). plied. | ation.
Initially: S,ERRORLOOP o B _
'APP OF THE INAPPLICABLE ' : |
Application of a constant or expression that! (3.2 %)
evaluates to itself. Usually means undefined wherg ‘( i; con. ¢ which user
6 (i.e. inapplicable) function. Expect user to sup-; stant b'cin ‘a . supplies for
ply expression for correct value of the applica-| . gap : reevaluation.
tion, or to (UNWIND). | plied
Initially: S, ERRORLOQP | ~ o
' - ' !
NON-SD 2ND ARG ey ... EVAL): .
EVAL was not given an sd as second argument. where—was ;e which user
7 Expect user to supply expression for correctg < 0\‘c(); ‘o bc supplics for
value of the evaluation. or to (UNWIND). . ppq. o "1 reevaluation.
~__ | Initially: SERRORLOOP _ | o
'ARITHMETIC ROUTINE ERROR! i (a,...a, x) .
. ; . i e which user
3 Expect user to supply expression for correct| where x is rou- | supplies I
value of the evaluation, or to (UNWIND). ! tine being ap- | pplic: ‘or
.. i ] ; reevaluation.
Initially: SSERRORLOOP | plied. j
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i
TOUT OF STATEMENT CONTEXT GO !

GO expression occurred out of statement con-|

e which user
supplies for

I
flcx(. Expect user to supply expression for cor- (GO st-lab) f recvaluation.
irect value of the evaluation, or to (UNWIND). — ! (probably not
[ Initially: SSERRORLOOP i ! dynamically
S ~ correctable)
'NO SUCH LABEL TOGO TO'! I
(GO st-lab) in statement context has no corre- |
10 sponding {abel. User is placed in brealf loop but (GO st-lab) ’ na.
control will not return to the offending state-] = ;
ment context, instead an UNWIND will occur. ‘
Initially: S,ERRORLOOP - L
"IST ARG TOSETNOTID ' ;
Attempted assignment to a non-id. Expect user| (y xSET) ; e which user
11 |to supply expression for correct value of the| where y is not ; supplies for
evaluation, or to (UNWIND). an id. | reevaluation.
Initially: S,ERRORLOOP ‘; o
'"USER CALLED ERROR W/ RETURN EX- |
PECTED' |
The explicit call to ERROR channel. The argu- e which user
12 |ment is provided in the expression (ERROR s-exp ; supplies for
mes). Expect user to supply expression for cor- ; reevaluation.
rect value of the evaluation, or to (UNWIND).
Initially: S,ERRORLOOP i o
'NON-CONFORMAL LABEL-EXP ' § '
Non-conformal label-exp. Expect user to supply | i e which user
13 jexpression for correct value of the evaluation,; label-exp . supplics for
or to (UNWIND). ? " reevaluation.
Initially: S,ERRORLOOP I L
'USER CALLED ERROR W/ UNWIND EX-
PECTED'
14 [ERROR with explicit unwind provided. Expect s-exp n.a
user to look around at his state.
Initially: S,ERRORLOOP
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GLOBAL ENVIRONMENTS,
EXIT ROUTINES AND AN EFFICIENCY DEVICE

In the original definition of E the metalinguistic function: fluid}id/ ;x;y;E} was not
fully explained. The fact is that a search avoidance mechanism is built into the state
machinery. This was called the shallow binding by Bobrow and Wegbreit{4].

A provision for general exit functions not unlike that suggested by Bobrow and
Wegbreit is also provided. This device is used by the search avoidance scheme. It is
therefor convenient to introduce both in this section.

The earlier definition of E also had reference to the the case that pertains when
the bindings search is applied to ailE (which defines the end of the environment created by
bind). The comment was that some agreed upon binding would be produced. This section
also implements that notion.

To the normal {S;E;C;D} state we add a new component called the exit which we
shall denote by X. This gives {S;E;C;D;X} as the state.

Recall from the previous sections that the state was applied to M, that this
notation was used to model the notion that the state transitions take place with respect to
a memory. For the implementation of search avoidance, a special metalinguistic compo-
nent is added to denote the current environment-path. Environment-path identifiers arc
metalinguistic data objects whose principle property is that they identily an environment
search path. A secondary, but useful, property is that they possess some space for saving
and restoring some state components during path switching.

The metalinguistic function bind will be presumed to have been extended so that
when it binds the ident (FLUID iden) it also stores a reference to the new fluid binding
(s-exp e ident). and the current environment-path identifier. The storage for these two

. objects is called the shallow-cell. Each id which has ever been fluid bound has an associat-
ed shallow-cell. This fact should be kept in mind as shallow-cclls may very well be a
scarce resource. The following diagram details the structure of the shallow-cell in one
actual implementation.

sbst, the shallow binding state ptr.

sboff, the offset ptr. to the actual value
cell.

acd, the environment path identifier.

sbid, the id-delta, an offset ptr. to a com-
munication cell whose contents is an id.

-~

The function fluid is designed to avoid the environment search for a [ree variable
in the case that the path identifier (acd) of the shallow-cell of the id in question, is
identical to the current environment-path identifier.
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The search may also be avoided in the case that a distinguished aed indicates that
this id has never been fluid bound. In which case the identifier in question could only have
been locally bound (in which case we don't care), or it was globally bound in which casc
the binding is correctly indicated if the shst is EQ to the current global environment path
identificr.

In the case that fluid is unable to avoid search, the shallow ccll is reestablished for
the current path.

As a result of much consideration, several false starts, and dogged persistence. the
ideal embodyment of environment-path identifiers is believed to be: state descriptors. The
total state then consists of the ordinary state, now shown to be {S;E:C;D;X}, applied to
M, applied to the environment path identifier.
ie. {S;E;C;D: X} {M} {sd} .

State descriptors (sd’s) have the following components:

1. The D-part which is an ordinary state {§;E;C;D;X} also known as an activation
record. The ordinary state is distinguished because we will often copy it. but we
would seldom copy the total state.

2. The path descriptor of the using state, which is the sd that identifies the path that
is to be restored when control exits this path. For state descriptors that are not "in
control” this is a self denotation. The path descriptor of any state is in effect the
most recent sd with respect to which evaluation takes place.

3. The exit field hideaway, which is the X of the using state. The use of this field
will be explained in the details that follow.

4. The gloE-part, or global environment path identifier which is a gloE. See pages 8
and 9.
A few words of comment about gloL:
First of all, gloE are not regular data objects, they are however components of
sd which are data objects. _
Also, glodat which are ignored by the basic system processes, are inherently
dangerous. User defined glonor prescriptions that utilize them must maintain
consistent interpretations for them whenever glolsts are shared.

Meta-syntactically: sd, = {D,:sd,:X:gloE}. Remember that sd’s have no equivalence
preserving, external representation, unlike all other LISP data objects.

It is now possible to explain what was meant by the phrase in the dcfinition of

Efid,}
if E = ailE then some agreed upon global binding, globaliid, ;x;yi.
ailE the distinguished empty environment acts as a terminator {or that part of the environ-
ment created by bind, which shall be referred to as the normal environment. The gloE of
the currcnt path descriptor defines an addition or extent to the normal environment known
as the global environment. The definition of the environment function provides for the
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production of bindings on first reference, global context switching, direct access data
bascs, and in gencral is limited only by the imagination of the programmer, and his desire
to be consistent.

For what lollows, it will be sufficient to just describe the total state as if it were:
{S;E;C;D;X}sd . The following description is given as modifications and additions to
several of the existing rules. Most readers will find these modifications complicated and
uninteresting and are encouraged to skip to the next section.

- 2. Value return restoring the former state. With exit {unctions added.
. {xe8,; E;; ;1S Eys Cp Dy Xy} X }sd,

if X, is () or X, then = {x08,; E,; Cy; Dy X,} sd,
Comment: () as exit indicates no exit function and stack contiguity. X,
just indicates no exit function.

if X,issd, = {D,;sd; X,; gloE,}
- {xeS E;; () {8y Ey Cyy Dy Xy} 0 X} 5d,
and sd, « {D ;sd ; X, gloE. }
Note: < is used to denote "is updated to be".

Comment: This case illustrates the return of control to a context de-
scribed by another path descriptor.

if X, is a pair (a « b) then
~ {xoS,; E,; ‘APP *S ' o()e2ae(); {S,; E;: C.: D,: X ,}; blsd,
Comment: Illustrates a composition of exit functions.

if X, is X,,,, then
- {xeS,; E,; C,; D;; X,} sd; and, spoil-fluidifvd}.

Comment: X, is used to invalidate the shallow cells of fluids bound

spoi
when this state was created. [t will require either a new binding or a
subsequent environment search to rcestablish the shallow cell.  For
compiled code, the shallow cell’s original contents were saved on func-
tion entry and restored on exit. X, and X, are equivalent to ()
and 'Xspuil
indicate stack frames whose deletion is other than the normal case.

from the point of view of this semantics. They serve o

otherwise - {xeS,; E;; ‘APP,*S,'e(Je X 0(); {S ;s E;; Cx Dy: X -} Xplsd,
Comment: The specified exit function is applied to the vatue, control
will then normally return to former state.
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6. Closure evaluation

{S: E; funargeC: D; X, lsd,

where ¢ is the e-part and sd, is the s-part of funare.

and sd, = {D ;w;v.gloF } and ‘

D _has E, as its E-part.

~{(): ((ehEelE )otE ); eo(); {S; E: C: D; X,{;sd,}sd,
if w=sd,then sd; = sd,; sd, ~ {D ;sd,; X fecses BIOE }
if w# sd, then sd; = {D; sd,; de,:g,lolz‘x}mw
Comment: This expression represents an expression closed with respect (o the environ-
ment of sd. In the absence of updating, such expressions denote the same value regardless
of the context in which the closure is evaluated.

9. Macro application (only the significant changes)
{yeS; E: MAPPexeC; D: X,}sd,
9.1. If x = mbpi

9.1.1. If bv-ofix} and a, ... a_ are conformal
= {(0); bind{bv-ofix}; y; ((ehE)eE) }; le i d%4; {87 E; C; D; X |} X, bsd,
where X, is:
() or X, in the case where no fluids were bound: ]
or in the case where fluids were bound, their old shst, shoff. and 4
acd, are pushed on the stack and an exit function internal to the
mbpi restores them prior to normal contour exit. acd, is sd, if the
old acd in the shallow-cell is the same as sd, otherwise acd, is a
spoiler acd. The spoiler acd when restored prevents fluid from
avoiding the environment search.
9.1.2. Otherwise - D

non-conformai-app®

9.2. If x = % (MLAMBDA bv « exp-seq)

9.2.1. Andy is conformal with bv
= {()e(); bind{bv; y; ((ehEe())eER; STMT ,0exp-seqe():
AS; E; C: D: X }; ulsd,
where u is X, or X poirz If there were any fluids in v otherwise X

0.

decre OF

9.2.2. Otherwise - D

non-conformal-app®
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9.3. Il x is a macro-funarg with 7. the e-purt and sd, the s-purt
where sd, = {D,. w: v; gloE) } and D has an E, as its E-part then
9.3.1. If z is mbpi )
9.3.1.1. If bv-of}z} and y are conformal
= {();bindibv-ofizt; y; ((ehEelE JotE,) : e, fz{:
{S:E;C;D:X | }isd }sd,
9.3.1.2. Otherwise — D,,,...0 non-conformai®
9.3.2. If z = %(MLAMBDA bv « exp-seq)
9.3.2.1 If y is conformal with bv
~{0Oe(); bind$bv; y; ((ehEelE )otE }; STMT aexp-seqe(); {S: E;
G D; X,}; sd;}sd,
where
if w = sd, then sd; = sd,;
sdy <D 5d;; X jgerse | spoirzys BIOE,}
if w# sd, thensd; = {D ;sd;; X ;... | spoit2 8IOE .} o,
9.3.2.2. Otherwise - D

macro-non-conformai®

Comment: Macro application with respect to an environment causes a change in the
current environment-path designator. It is possible to use a sd, itself as the current path
designator unless sd, is already in current use, as indicated the presence of a using state.
note: The notational form {D; a; b; gleE} ., indicates allocation of a new sd from the
heap.

11. Ordinary application, (significant changes only).
{a e...a,08; E; ({APP [ APP,} eS)ecexeC; D; X }sd,
11.1 If x = APP, then
{a,e...2,08: E; ({APP, | APP,} 0S)ece APP 0 bv @ exp-seqeC,: D}

{11 Ifbvanda, ... a, arc conformal
~{()e(); bind,{bv; { ((ehEelE)etE)|((¢hE)eE) }; a; ... }: ES .ecxp-seqe():
1S, E:C:D: X} u}sd,

where uis X, or X .. if there were any fluids in bv otherwise X

5poi or
0.

spoil decte
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L4141 xis the EVAL, and a, and a, are present.
ja,e...0,080 E: (JAPP, [ APP.{ 08) ¢()eEVALeC; D: X isd,

11.4.1.4.1. Ifa,issd,
= 10): ((ehE)eE ): a,0(); 1S; E; C: D: X} 5d,isd,
where if a, = sd, where sd, = {D . w. v; gloE } and
D, has an E, as its E-part then
if w=sd,thensd; =sd,: sd, «{D ;sd,: X . 8loE }
ifw#sd,thensd; = {D ;sd; X,,..; gloE }

new

11.4.2.1. CALL, the function to apply the operator which is computed after the
operands to however many arguments were transmitted. ‘
{a ea, e...2,08; E; ({APP, [ APP,{ eS) ¢()eCALL®C; D; X }sd,

11.4.2.1.2. If a, = %(FUNARG vy sd,s z) where sd, = {D: w; v;
gloE } and D, has an E; as its E-part then
11.4.2.1.2.1. If yis fbpi.
11.4.2.1.2.1.1. If bv-ofifbpi} and a, ... a,, arc conformal.
- {(); bind,{bv-of {/bpi}; ((ehEelE )otE ); a,; ...a . }: kc,,, 2fbpif:
{S: E; C; D; X,}: 5d3}5d3
where
if w=sd,thensd, =sd, sd, « {D;sd;: X, 8loE }
. if w % sd, thensd; = {D,;sd;; X, gloE }
11.4.2.1.2.1.2. Otherwise = D, ... smai-upp*
11.4.2.1.2.2. Otherwise ,
~{a, e...a,8(); ((ehEelE )otE ); (APP,8())e()ea o();
{S; E; C; D; X,}; lsd,

new

11.4.2.1.3. Otherwise
~{a,  je...2,0(); ((ehEelE )otE,); (APP,o())e()oa of); {S: E; C: D: X, };
Nisd,

Comment: This rule is ordinary calling in the current environment with arguments
transmitted on the stack.

Page S
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11.4.2.2. 1 x is STATE the state saving operator it creates continuations

fa e...0,08; E: (fAPP, [ APP.{ eS)e()eSTATESC: D: X {sd,

-~ {sd,e8; E; C: D}; X, sd,

where sd, = 1187 E; C; D; Xt sd i () wi
and w = (glonot, « glolst,)

new
new i (Z...08) = 8§ or

if (7...08) = (glonoteS), or
if (7...08) = (x...0glolst o glonot ¢ S) ,
where sd, = {D; u; v; (glonot, « glolst}),}.

w = (glonot « glolst )

new

w = (glonot « gloist)

ncw

Comment: This sd constructing operator can only capture the current S,E,C, and D.
[t can however have a different global environment associated with E. The new
global environment is specified by the two optionai parameters of STATE.

11.4.7. Closure forming expression.
{a e...2,08; E;(fAPP, | APP,} eS)e()exeC; D; X ,}sd,
where x is {FUNCTION | LAMBDA | MLAMBDA | FR*CODE},
and a, = (y « w) then
11.4.7.1. If xis FUNCTION or FR*CODE and y is funarg, then
— {funarg,eS; E; C; D; X ,}s5d,
11.4.7.2. Otherwise, — {funarg,eS; E; C; D; X ,}sd,.
where funarg, is created and has u as e-parr and sd, as s-part

where u is:
{yl

%(LAMBDA y « w) |

% (MLAMBDA y « w) |

%(FR*CODE y « w) },,
where sd; = {{0; E; (); (i0},45 5d;5 X5 8lOE |}, and gloE, is the gloE
of sd,.
i.e., the lexical bindings (if present) are operative in the environment of
the closure.
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LG, 1T x = funarg and y is the e-part and sd, the s-part.
where sd, = {D iw;vgloE } and D _has an E, as its E-part then

11.6.1. 1f y is an fbpi.
L1.6.1.1. If by-offy} and a, ... a_ arc conformal then

—= {(); bind,{bv-ofiy}; ((ehEelE )JetE ); a; ...a }; le,, . Lyf: {S; E;: C; D; X,};

entry

sd,}sd,
11.6.1.2. Otherwise - D

non-conformal-app®

11.6.2. Otherwise—={a e...a,6(); E;; (APP e())e()eye(); {S; E; C; D; X,};

sd;isd,;
where
if w = sd, thensd; = s5d,; sd, « {D,; sd;; X,,..: 8loE }
if w £ sd, thensd; = {D,;sd,; X, . gloE } ..

where sd, = {D = {S,; E;; C;; Dy X,}; w: v; gloE |}

where

sdy = {Dygi w; v; ok } .,
Comment: A fact that this meta-language may not adequately convey is that §, and
C, of the sd are copies but E, and D, are shared references.

11.4.2.2. The EXFN function. Not previously defined.
{z...xeS; E; (APP;; | ,,*S)e()eéEXENeC; D; X} 5d,

~{xeS; E; C; D; X,}sd,
if X, = sd,={D,; a; b: gleE ,} then X, = sd,«~{D,;a:cgloE,},
ifb={(0 | X,}thenc=x,
otherwise ¢ = (x « b)
if X, = () then X, = (x + X)),
otherwise X, = (x « X).

Comment: This addition to the exit routine capabilities could be used to establish a user
defined exit function.

13.12. Meta application of a context-closure

{a,08; E; SFe% (FUNARG % (MU bv « valuelist) « sd,) ¢C; D; X ;}sd,
+{v,e...v,eS8; E ;(APP e())e()eAPP ebve 2 6(); {S; E; C; D: X ,};5d,}sd,;
where valuelist = (v,...v,) and sd, has E, as its E-part.
where sd, = {D w: v; gloE } and
D, has an E, as its E-part then

Page 53
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ilw =sd,thensd, = sd,isd, «={D;sd;: X, . gloE |
il w# sd,thensd, =D ;sd;; X .. gloE }

ecte new




R
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THE LISP/370 DESTRUCTIVE STREAM FACILITY

In Stoy and Strachey{ 1] streams were used as vehicles for the transfer of information in
systems. Their streams were destructive, i.e., a destructive stream is a stream with updata-
ble private storage. This allows successive items of a stream to occupy the same storage.
Burge[2] has described an even more general stream model in which destructive streams are
a special case. In Burge’s more general model non-destructive streams are applicable
functions, which are retained and thus reuseable. “A stream is a functional analog of a
coroutine [3, 4] and may be considered to be a particular method of representing a list in
which the creation of each list element is delayed until it is actually needed.”

: Landin [5] appears to have [irst proposed streams as an alternative to lists. He used
streams to model the concept of a “‘control-list”, a term he used to mean the successive

. values of the for-statement control variable. He noted streams similarity to coroutines and
suggested them as a model for input/output.

In LISP/370 we copy the Stoy and Strachey destructive stream concept to a large extent.
Functional streams are definable, but we choose to supply with the language a data-
structure model for streams and basic facilities to manipulate it. The data-structure model
was selected instead of functionals after considering current efficiency tradeoffs.

The non-empty stream data structure has two components; the first element is the current
item at the head of the sequence, and the second element defines the ress of the scquence,
a (possibly empty) stream which is denoted by either a stream terminator structure or
another pair. An empty stream is denoted by a stream terminator, which is either an ssd
(for special stream descriptor) or other-atom (any other non-pair data structure). The rest
is not an accessible component; the stream it denotes is computed by one of the stream
successor functions.

It can be seen from the following description that several types of strcams are provided.
We intend that certain functions which scan or create lists can be converted into functions

» which scan c. create streams. The resulting functions will benefit from the more abstract
nature of streams; for example, the elements of a stream need not all exist in storage but
can be generated as needed. Because the stream facilities provided are destructive of the
stream they use, we cannot conveniently convert most list functions, which are often
expected to be retentive.

. 1. J. E. Stoy and C. Strachey. “OS6—An Experimental Operating System for a Small Comput-
er.” Computer J. 15, No. 2, 117 and No. 3. 195 (1972)

2. W. H. Burge. “Stream Processing Functions™ IBM J. Res. Develop. 19, 12 (1975).

3. M. E. Conway. “Design of a Separable Transition-diagram Compiler.” Commun. ACM 6, 396
(1963).

4. A.Evans. “PAL—A Language Designed for Teaching Programming Linguistics.” Proc. 23rd
ACM Conf., 395 (1968).

5. P. J. Landin. “Correspondencc Between ALGOL 60 and Church’s Lambda-notation.’

Commun. ACM 8, Part 1, 89, Part 2 158 (1965).
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A stream data structure, stream is
cither a pair ( feads « rests ) where,
heads is the next item of the scquence (any s-exp),
and rests is a stream which defines the rest of the sequence.
or an atom sirmternt.

A strmterm may be a special stream descriptor ssd, (implemented by a vector), or any
other non-pair other-atom. An ssd ‘implies’ a function which defines another stream
(probably occupying the same pair as the original stream). Fast-streams of characters are
an efficient subset of such implicitly defined stream functions.

An ssd has the form <rfn bd asc [any...]s-type>,
where rfn is {next | write | bidirect | ...}t
where next is a one argument, input-stream successor function,
next: STREAM ~ QUS ~ STMTERM = STREAM §
and write is a two argument, output-stream successor function,
write: S-EXP X STREAM = STREAM,
and bidirect is a three argument, bi-directional stream successor function,
bidirect: S-EXP x BDS x {IN | OUT} = STREAM,
and bd is the buffer description:
nil in the case of slow-streams,
or a fast-stream-buffer in the case of fast-streams.
and asc is the associated-states. which is an a-list,
and any is any stream dependent information that the user provides.
and s-type the stream type should conform to rfn, i.e.
{IN | OUT | BDS | ...},.

Thus it can be seen from the structure description that streams are differentiated as to
input-streams ins, output-streams ous and bi-directional streams bds.

. STREAM = LISTSUINSU QUS U BDS
andins € INS is (heads « < next x... IN>),
and ous € OUS is (heads « < write x... QUT>),
and bds € BDS is (heads « < bidirect x... BDS> )

A fast-stream-buffer has the form:
& buffer begindex curindex endindex x...>,
where buffer is nil for inactive streams,
and string otherwise,

where begindex the beginning index is a 0| 1] ... sizedsiringit,
and curindex the current character index is a {0 1 ] ... size{string}},
and endindex the boundary index isa {0] 1|... size{srring}}.

t Subscripts arc used to indicate a correspondence.
t ~ is a left-associative set difference operator.
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The basic functions on streams arc: HEADS, NEXT, WRITE, IS-EOB. DEF-STRM. and
NULLS.

The following axioms characterize system provided streams:
Forse {STREAM ~ QUSY;

(NEXT (WRITE xs)) = s,

If (NOT (NULLS s)) then (WRITE (HEADS s) (NEXT s)) =,
(HEADS (WRITE x stream)) = X,

(NEXT ous) is a domain error,

(HEADS strmterm) is a domain error,

(NEXT strmterm) is a domain error,

(NOT (NULLS (WRITE x stream))),

(NULLS strmterm),

If (EQ (HEADS stream) stream) then (NULLS stream).

Not only are streams similar to lists; lists may be used as streams, /iststrm., which is any
non-empty stream that is not included in:

INSUOUSUBDS.

Keep in mind that the argument list is updated by most of the stream primitives. It should
be noted that we often think of lists as scanned from the left, and also prefer to augment
on the left. The basic stream functions provided reflect this bias when operating on
liststrm. This is to be contrasted with current preferences for input and output files. Input
files are also scanned from the left, but output files are usually augmented on the right.
Streams can be so defined so that they are scanned or augmented in either direction. It is
important that the user keep the conventions of stream producers and stream consumers
consistent.

° The list analogy is show in the following chart.

Non-
Destructive Destructive Listnn Analogy
List Analogy |

Stream
Operator

(HEADS x)  |(CARX) (CARX) e ,
(NEXTx)  {(CDRx) |(RPLACD (RPLACA x (CADR x))(CDDR x))
(WRITE xy)_ |(CONS xy)_|(RPLACA (RPLACD y (CONS (CAR y)(CDR y)))x)
(NULLS x) I (ATOM x) [(OR (ATOM x)(EQ (CAR x) x))

Slow-streams provide for the generality of user defined streams. Fach successor stream is
defined by the application of the user provided rfn. These functions necd not comply with
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the destructive stream analogy. Nevertheless, what LISP/370 provides is primarily meant
to exhibit the sequential evaluation behavior of destructive streams,

Fast-streams provide a more efficient successor method through the use of huffers. In
LISP/370 this is only provided for character-object streams. System dependent input and
output is achieved through the use some distinguished fast-streams, or through uscr
defined system dependent fast-streams. NEXT and WRITE have been extended to give
fast-streams special treatment. Fast-streams for real input-output liles contain the
essential file information in their ssd.

As yet the system provides no bi-directional stream facilities: they are included in this
description as a suggestion for user development,

The full descriptions of the basic stream primitives follow:
(NULLS stream)

This tests if stream is an empty stream. Returns true if stream ¢ STMTERM or if
heads is the stream itself; it returns false otherwise.i Defines the set of empty
streams, NULLS. There may be many empty streams that are not EQUAL.

Consider the following fast-stream which is not empty but is nearly so:
%L1t=(eob » %L2=<next <string 0 n n> nil IN>) where a subsequent applica- :
tion of NEXT will produce %L2 as value and %L1l —- %LI=(%L1 « %L2), an

empty stream.

The interpretation of the original stream is as a stream with end-of-block eod
(represented by % .EOB) as its last and only item. The stream itself serves as an
emptied stream indicator when it appears as heads. We install this convention
because many routines depend upon the EQ’ness preservation property of destruc-
tive streams.

(HEADS s) wheres ¢ STMTERM

HEADS is the access function used to peep at the current element of the stream.
It has no side effects and can be used repeatedly without advancing the sequence.

heads{ % L1 =(heads « rests)} -
if heads# %L1 then heads,
il heads="%L1 then accessing cmpty stream crror.

1 In LISP/370 false is denoted by the distinguished object nif and true by any other object.

t In this paper the labels used to convey EQ’ness have scope extending over the entire equation or
sentence in which they are used.
For example in: g{%L1=(a ¢ b)} = %LI1=(c « d) it is mcant that ©GL 1 is updated.
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(NEXT s) wheres € STREAM ~ QUS ~ STMTERM.

NEXT is a function from streams to streams. For most arguments it produces as
value the argument stream updated. NEXT is most efficient for fast-streams. The
action of NEXT is defined by the following rules:

next} Y%oL1=( heads « other-atom ) } -
other-atom and %L1 - %L1=(%L! « other-atom).

next{ %LI=(x y«s2)} - %Li=(y«2z).
next{%L1=(heads « <next nil x... IN>)} = next{%L1}.
next{%L1=((zeads' * <bidirect nil x... BDS>)} = bidirect{nil;%L1;IN}.
next{%L1=(heads « %L2=<rfn %L3 x... s-type>)}

where % L3=<buffer begindex curindex endindex>

Note: By convention, when buffer is nil then curindex must equal
endindex and the rfn must replace it with a srring which it must allocate.

if curindex > endindex then
if heads = eob then
if %L2 = <nexr ... IN> = next{%L1}

if %L2 = <bidirect ... BDS> - bidirect{nil;%L1;IN}
if heads # eob -~ %L 1=(eob « %L2),
(This illustrates the production of the end-of-block symbol after the last
data)
if curindex < endindex then - %L1=(y » Y%L2=<r/n %L3 x...>)

where % L3=<string begindex curindex+ 1 endindex>
and y = fetchchar{string ; curindexi .

Rage 59
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(WRITE s-exp stream)
write! X.atomt = (x o arom) .

write}X:"0l.1=(y ¢ 2)} = “OLI=(xy ¢ 2)
where 72 = other-atom or <next w... IN> or (heads « rests).
WRITE to an input stream is was called PUTBACK by Stoy and Strachey.

write}x; %L1 =(y » <write nil w... OUT>)} - writefx:%L1}.
write{x; % L1=(y « <bidirect nil z... BDS>)} - bidirect{x:%L1;0UT}.
write{x;%L1l=(y « %L2=<rfn %L3 z...>)}
where %L3=<string begindex curindex endindex>, and rfn # <next ... IN>
if curindex < endindex, and X is a character,
- %Li=(x ¢ L2=<rfn %L3 2...>)
and %L3 -
%L3=<storechr{string;curindex;x} begindex curindex+ [ endindex>
(Notice that WRITE to a fast-stream does augmenting on the right.)
otherwise - rfn{x;%L1;0UT}.
(TEREAD stream)
TEREAD repeatedly nexts the current stream until it encounters an end-of-block
condition and leaves the stream in an end-of-block condition. Primarily intended
for input fast-streams.
teread{atom} -~ (eob « atom).

teread{ %L1=(e0b « y)} = %L1l=(eob « y) .

For x # eob :
tercad{ % L1=(x « other-atom)t = % L1=(e0b « other-atom).

teread{ Yo L1=(x » pair)} = Y% L1=(e0b + cdritereadipairi}) .

teread{ % L1=(x » Wl2=<rfmnil x...>)} = oLlI=(e0b « "01.2) .

teread} % L | = (xterenditfilststtcam D fffen wssx) - u fr
- Y%L1=(eob « <rfn fast-stream-buffer, w...>) '
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(TERPRI stream)
TERPRI forces the stream-dependent successor function if one is present.
terpri{x} = terprix{eob;x}.
terprix{x; % L1=(y « {other-atom | %L1})} - %L1 .
terprix{x;(y + stream)} - terprix{x; stream} .
terprix{x; %L1=(y « <rfnz...>)} = rfn{x:%L1:0UT}.
(Notice that the rfn has eob as the object written. This convention serves as a
signal that TERPRI is happening.)
(IS-EOB x)
Predicate that returns true if the argument value is the eob distinguished object and
() otherwise.
(DEF-STRM heads rests)
Creates the new stream:
(heads « rests)

where heads is the value of heads,
and rests is the value of rests.

. Some Distinguished Streams

LISPIT the console input-stream.

LISPIT is a fluid variable with the following initial value:
YoL1=(eob « <LISPITTIN < nil 0 0 0> asc nil IN>)
where asc=((DEVICE « CONSOLE)(MODE « )(QUAL « V)(OWN « 9%L1)).

After the file is activated:

%L1=(heads « <LISPITTIN <string begindex curindex endindex> asc p-list IN>)
where p-{ist denotes a system dependent I/O control block. or ni/
and LISPITTIN denotes a console input-stream successor function which is capable
of activating the file when the p-/ist field contains nil. More precisely, LISPITTIN
has such a function as the value of its binding in the initial global-environment.
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The function LISPITTIN achieves system independency by special calls to system depend-
ent portais for all system dependent computation. Activating this stream consists of:

1. Building an input console p-/ist in a system dependent manner.

2. Determining the console linelength (also system dependent) and allocating string, a
LISP/370 character vector used to provide an input area for the terminal line. The
capacity of string is sufficient to hold the determined maximum input linelength, and
its contents-length reveals how many it actually holds.

3. Initializing begindex and curindex to 0, and endindex to lineiength.
4. Applying LISPITTIN to the now active stream.

When LISPITTIN is applied to an active stream it causes a system dependent console
input operation to refill string, resetting the contents length of string to the actual number
of characters read, setting endindex to that number also. and setting begindex to zero and
curindex to one. If the number of characters read was zero the stream becomes:

%L1=(eob « <LISPITTIN <'' 0 0 0> asc p-list IN>).

- 'When more than zero characters were read it becomes:
%L1=(cy » <LISPITTIN <'Cq...C, intex.;' O | endindex> asc p-list IN>).

LISPOT the console output-stream.

LISPOT is a fluid variable with the following initial value:

%L1=(eob « <LISPOTOUT <nil 0 0 0> asc, p-list OUT>)
where asc,=((DEVICE « CONSOLE)(MODE « O)(OWN « % L1)), and
p-list=nil,
and LISPOTOUT is similar to LISPITTIN except it needs less information to build
the p-list.

After %L1 is activated by LISPOTOUT by write{c; %L 1 } it becomes:

%L1=(c « <LISPOTOUT < string 0 1 endindex> asc p-list OQOUT>)
where endindex is the system dependent preferred console output line-length and
string is 'c' . The capacity of srring is endindex characters.

One peculiarity of LISPOTOUT (and hopefully any output-stream which is inactive)
occurs when the initial write is in effect a TERPRI.

write{eod; % L1=(eob » <LISPOTOUT <nil 00 0> asc nil OUT>)} e
- %L1=(eod « <LISPOTOUT <string 0 0 endindex> asc nil OUT>)
where string= "' but has capacity for ‘endindex’ characters.
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User Stream Definition Facilities

(DEFIOSTREAM asc linelen position)

DEFIOSTREAM produces as value a fast-stream which interfaces with the real
input/output devices.

The actual stream produced is system dependent but the operation of saving a LISP/370
system and bringing it up on another operating system entails the reactivation of all such
streams; in which case they may become defined for the new system. The user would have
to contrive to have the actual files moved and converted if that were necessary.

The parameters of DEFIOSTREAM are as follows:

asc is an a-list, i.e. (property...)
where property is:

{(FILE « {(fname [ftype [fmodel]) | (dsname-component...)}) |
(DEVICE « CONSOLE) } or,

(RECFM « {F | V})or,
(MODE . {I | INPUT | O | OUTPUT}) or,
(QUAL .
if CONSOLE input then {S|T|U | V| X}
if CONSOLE output then {LIFO | FIFO | NOEDIT} or.

(OWN -« pair)

The value of the FILE property is a list of identifiers corresponding to the naming conven-
tions of the underlying operating system.

linelen is linelength if required, else ni/. For input files, the user supplicd linelen is passed
to a system dependent portal and the portal gives back a number (possibly the same one)
which is used as the actual capacity of the buffer string which is allocated at activation
time. This parameter does not specify a truncation column. For oulput-streams linclen
determines both string capacity and endindex.

position is a linenumber which defines the starting position if required: else, nil.

What follows are some examples of operating system interface strcams, their definition
and use.
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(DEFIOSTREAM asc 72 1)
where asc = ((FILE XXX LISP)Y(RECFM « V)(MODE « N(OWN « %L1=pair)). T

- %L1=(eob « < ,FILEIN <nil072 72> ascnil 1 IN>)

This defines an input-stream from the file system. The number 72 is the user’s idea of the
length of the longest record. For most operating systems the actual file characteristics will
take precedence. If the file had a maximum record of 120 characters and the first record
was 100 characters then the following holds:

next{%L1=(eod < ,FILEIN <nil 072 72> ascnil 1 IN>)}
-+ %L1=(cy « <,FILEIN €% 120'cq...co0' 0 1 100> asc p-list 2 IN>)

where the string 'cq...Coq' in this instance has 100 characters but has a capacity for 120
. characters because 120 was determined to be the actual longest record of the [ile.

where p-list is a system dependent 1/0O control block designation and will not be
explained.

This illustrates normal behavior of nmext when curindex> endindex, heads is the eob, and the
block read is not empty.

If the first block were empty:
next{ %L1}~ %L1=(eob « %L2=<,FILEIN <% 120'' 00 0> asc p-list 2 IN>)

and similarly for subsequent empty lines;
on end of file: next{ % L1}=%L2 and %LI=(%L1 « %L2).
(DEFIOSTREAM asc 72 1)

where ase=((FILE YYY LIST)}(RECFM . V)(MODE . O))

- (eob « < ,FILEOUT <% 72" 00 72> asc nil | OUT>) where '' has capacity for
72 characters.

This defines a file system output-stream. In the case that an old output file exists. we
currently update it starting from the position specified. The longest block that we wish to
write is 72 characters.

writefce;%oL1=(eob « <, FILEOUT <'' 00 72> asc nil 1 OUT> )
- %L1=(co » <,FILEOUT <'co' 0 I 72> asc p-list | OUT>) ' -

However,
write{eob; % L1=(eob + <. FILEOUT <'' 00 72> asc mil 1 OUT>)}
- %L1=(eob « <, FILEOUT <'' 00 72> asc p-list 20UT>)

An empty record was written.
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Summary and Comment

The destructive characteristics of NEXT and WRITE in all but the slow stream case.
coupled with the dependence of LISP/370's READ and PRINT functions on this behav-
ior, more or less dictate that user defined slow-streams also conform to the convention
that the EQ-uality of the stream be preserved. If the user intends to use non-destructive
streams, he cannot expect to substitute them for destructive ones.

Associated with real [/O streams are certain operators that test or change various system
dependent status properties, e.g. IOSTATE, IOSTATEW, IS-CONSOLE. and SHUT.

In addition to the queuing disciplines so far discussed LISP/370 has functions for key-
sequenced streams. These random access streams are described elsewhere under the
descriptions of RDEFIOSTREAM, RREAD, RSHUT, and RWRITE.

Ideally streams would be typed as to queuing discipline and the destructive or non-
destructive property, and domain errors would be generated when streams of the wrong
type are supplied.

In LISP/370 input streams and lists with FIFO discipline are well provided for. output
streams and key sequence streams are of a limited nature, and no bi-directional stream
facilities are provided.

In our model streams are similar to lists and obey similar axioms. The user who is familiar
with list-processing should have little difficulty using streams and extending his processes
into the domain of real 1/0.

Page 65
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PART 2
DATA TYPES, POINTERS, YALUES AND PRIMITIVE OPERATORS

It is common, when speaking of LISP data objects, to talk about a vector, or an
identifier, or perhaps a list cell, when in fact the object being discussed is actually a pointer
to that vector, identifier, et-cetera. It is useful to form subclasses of this one type (or
typeless system). For instance, we have a predisposition to think about numbers, notwith-
standing the fact that the object is implemented as a poinrer of that particular subclass.
Our practices and prejudices for such type systems are often varied. In this LISP system a
rich set of types has been provided. This multiplicity of types can be either comfort or
confusion to the user. It should be noted that the types discussed are a rather ad hoc set of
representation types and not abstract data types. Good programming style should dictate
“the avoidance of representation dependencies. Non-the-less, pragmatics dictate that the
abstract data structures be mapped onto the supported types of the underlying representa-
tion. This document generally deals with the pragmatics of the underlying system as its
principle concern.

In order to prevent confusion, the tenets of the type scheme must be understood
by the user. He must know what types are available and have some idea of the useful
properties of each. He must know the type specific or generic operators that are available,
and what constraints they have, and what useful purpose they serve. He may avail himself
of the benefits of static checking though the use of constrained variables. He may
constrain both the domains and ranges of functions he defines. thus extending the prag-
matics of static type checking beyond the range of the system provided primitives. He
cannot (as yet) define his own abstract types nor can he define new representation types.

In this LISP the user may constrain the definitions that he creates but is not
required to do so. Many of the system primitives are constrained. Some are not con-
strained by type but do a considerable amount of internal checking that can lead to a
programmed invocation of an ERROR state.

It is intended that the system primitives are implemented in such a way that they
do not give the user the capability to destroy the integrity of the implementation. An
exception to this is provided in those implementations that support LAP and the compila-
tion of operator-code-abstractions. (a dubious activity for the privileged class of user) It is
furthermore the goal that for a suitably constrained program the compiler (or some other
preprocessor) may frequently report that no call to ERROR can be cvoked by its use.
This does not preclude inadequate programs, non-terminating programs, or even programs
that indeed can invoke ERROR, but it docs serve to assure the user that the particular
program is at least "well formed with regard to type". In the presence of sufficient
constraints static type checking is utilized by the compiler to produce code that is both
efficient and free from static type ERRORs.

The evaluation processes detect and report on violations of the type constraints.
Through out this system we maintain this capability for dynamic type checking. A goal of
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compilation is to satis{y these constraints at compile time, thus removing the nccessity for
some of the dynamic checks.

The following is a hierarchical classification schema for the computational data
types of LISP1.8+0.3i. It serves as a table of contents for the sections that follow.

Each type is given with a notational shorthand called its type class designator in uppercase
italic.

t is used to indicate not yet defined or available.

t is used to indicate the presence of a limitation of the current implementation.

THE TYPE SCHEMA

Type:
Pointer ¢ PTR :
Simple-objects € SIMP :
nil ¢ NIL. (the distinguished object)
Decimal-number ¢ NUM :
Integere I :
small-integer ¢ SM1 ;
intermediate-integer € 11 .
large-integer € L.
Jloating-point € FP ;
rational € 1,
complexe 1t ;
interval € 1.
characters ¢ CHAR:
Truth-values € TVALY.
Composite-objects € COMP: (has components)
Arrays € A: (components of uniform type)
pair ¢ PR = PTR?; (accessed by unique selectors)
Ranked-arrays € RA: (uniformly accessed)
Rank-one-arrays € R1A: (n elements)
Vector ¢ VEC : (nis [lixcd)
pointer-vector € VP = PTR":
intermediate-integer-vector ¢ VIl = 11"
floating-poini-vector ¢ VF = FP".
Siring € STR : (n<capacity)
character-string € SC = CHAR" ;
bit-string e SB =TVAL".
Lists € LIST = PTR": (n variable) 1
Higher-rank-arrays € MATRIXT ;
Records ¢ REC. (components possibly not of uniform type.)
Id € ID . (has print name component)
norid € NORID ;
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gensym e GENSYM ;
unide 1 ;
mobid € 1.
Applicative-objects € APPL: (system constructs, diverse
accessing?)
Abstractions € T ABST:
lambda-abstraction e LAM
mlambda-abstraction € MLAM
mu-abstraction e MU .
operator-code-abstractions € ORCD .
state-descriptor € SD .
funargs € FUN .
bpie t:
fbpi e FBPI ;
mbpi e MBPI .
sfe SF:
ure UR =:
fix-ur ¢ FUR ;
mult-ure MUR .
Ntuples € NT, (uniform accessing, user definable) *
Complex € PLEX. (variable set of possibiy not uniform compo-
nent types, user definable, uniform access.) 7

POINTERS

LISP/370% implementation, pointer format:

XXXX {YYYY] AAAAAAAAAAAAAAAAAAAAAAAA

The pointers used by LISP/370% are full words (32 bits) and are rich pointers.
The first four bits (XXXX) is mandatory type information, the second field (YYYY) is
either additional type information or part of the immediate data, the third field is either the
address or more immediate data. The reason for having these rich pointers. which do
consume more storage space than would otherwise be necessary, has to do with efficiency.
Many of the frequently occurring LISP operations require arguments of a specificd type.
Since the result of an operation performed on an invalid type of argument may actually
destroy the LISP system, checking the types of arguments is vital, and this checking may -
be more cfficicntly performed if the type code is part of the pointer. This is not to say that
other implementation strategies are inefficient. We do like to notc that the type cannot in
general simply'be associated with an address because some types do not denote objects in
storage therefore have no address!

Pointers are the principle internal value objects of LISP/370%, all other data types
are subtypes of these computational objects, or unions of subtypes. The user will prefer to
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think of these objects as lists, trees, graphs, etc., but these interpretations arce in the mind
of the user. The only variables in LISP/370t are those which hold pointer values.

There is a distinction to be made between pointers which contain the address of
stored data, and pointers which might be thought of as containing immediatc data. In the
latter case, the type code in the pointer indicates that the value of this data object is stored
in the pointer itself, not in some other storage location. For example, small-integer
numbers are stored as part of a pointer with an appropriate type code, while floating point
numbers are always stored in a memory location whose address is part of a pointer with
appropriate type code.

The reader may reasonably ask why we don’t simply call these objects types and
avoid the confusion of thinking about pointers that don’t point to anything? One answer
is that in our early experience they did and we are so conservative that we now view the
non-stored objects as existing in some extension to the memory that is neither accessed
nor updated. It can be argued that pointers capture the notion that we are representing
types which are infinite on a computer with finite limitations.

The significance of this distinction between immediate data and stored data
affects the concepts of sharing and updating. Some classes of stored data may be updated.
and if shared by several structures, the updated data will also be shared (that is, all of the
sharing structures are simultaneously updated). Immediate data is intrinsically non-

sharable; therefore, in this sense it is not updatable.

In order to model operations on the storable values, we postulate the existence of
several domains:

The basic domains:
PTR = pointers = location handles
s-exp = storable values pointed to or denoted by pointers
M = memory
Abstractly, the nature of pointers and memories can be characterized by specify-
ing an initial memory and a few primitive functions for accessing, updating, allocating,
freeing, reading into. and writing out from. As will be secn by what follows, LISP/370t

supplies such primitives for each primitive subtype.

Because the pointers give an indirect access to storabic data types, they are not a
primitive type, in the sensc that the pointer type is the union of these other types.

Pointer type cl.ass: PTR = { SIMP U COMP}

These subclasses will be defined in the following text.

Abstract syntax: PTR {M{ = s-exp = { simple-object U composite-object}

Page 69
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Pointers (prr € PTR) of the memory (M) are said to denote s-exp a class of values.
If ptr {M } = s-exp,, and prr {M,f = s-exp, then it does not follow that;

s-exp, = s-exp,. In other words the value interpretation we give a pointer depends
on the current state of the memory.

Primitives:

As this is the typeless or general class and the one obtained by default, many system
provided functions are of this domain. In order to avoid an unbounded cnumera-
tion, only certain functions and classes of these general functions will be discussed.

The pointer identity predicate: % «EQ : PTRx PTR - TVAL
where TVAL the domain of truth valuesis: {() | { PTR~ () }}

Here we establish the convention for truth values: () for false, any other PTR
for true. We can see that the set TV AL is not supported as a distinct repre-
se ..ation type.

(% +EQ ptr, ptr)) = () iff ptr #ptr,
otherwise ptr, € {TVAL~ () }

Notation: The use of b to indicate required spaces is eschewed here
and in much of what follows. The ordinary space is thought to suffice.

Comment: Identity in the sense of being the same pointer.

The EQ relation is of singular importance because it defines the separate elements
of PTR, the EQ-class objects.

The allocation functions:
To allocate a PTR one must allocate some underlying primitive subtype object.
These operators (to be described) will allocate a new pointer denoting a described
object of that subtype.

The type predicates:
% etype-class : PTR - TVAL
For all elements of type-class except NIL:
(% etype-class ptr)) = ptr iff ptr; € class whose name is rype-class.
 otherwise ().
See the section on the distinguished object nil, which follows for the NIL case.
Where type-class = { NUM | SMU | NIL | 11 | L | FP | CHAR | COMP |
AJRAIVEC|VP|VIH|VF|STR|SC|SB| PR |
REC | ID | NORID | GENSYM | APPL | ABST | LAM |} oo
MLAM | MU | ORCD | SD | FUN | FBPI | MBP! | SF | e
UR | FUR | MUR | NT | PLEX }
Consult the type schema for a more complete hierarchical cnumeration. These
primitive type classes are disjoint and distinct.
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The type constraints:
% e =type-class : PTR - PTR | V
(% « =type-class ptr,) = ptr, iff ptr, € class whose name is rype-class otherwise V.

Notation: V for run time detected domain error.

The allowable type-class names were mentioned in the type schema outline, and will
be further elaborated in the descriptions of the the subclasses of the type hierarchy.

The type constraints differ from the type predicates in that the constraints are the
guarantors of type. In the case that the value does conform it is passed through,
otherwise an exception state is applied to the offending value. The nature of the
exception handling is described in the interrupt section, returning with a proper
value is just one of the actions possible. The important role that these constraint
operators have is in defining functions whose parameters are constrained or whose
value type is to be understood.
For example:
% (%>LAMBDA ((% +=SMI X)(Y . Z)) (% «=SMI body))
is the abstract description form for a function of precisely two arguments, the
first of which must be a small integer, the second of which must be a pair, and
the value of the function must be a small integer.

The constrained definitional process is not described in detail in this document. The
user need not bother with constraints until such a time that their use and benefits
are upderstood. At the time of this writing the full implementation of constraints is
not yet in sight.

Access functions:
No access functions are provided to access the components of the pointer. To the
extent that the pointer denotes an object of storage of some subtype. that storage
object may have components which can be accessed by type specific access func-
y tions. The type specific access functions are described later.

Update functions:
Likewise, no functions are provided to update the ficlds of the pointer object. As
stated with regard to access, the components of a denoted stored object may be
updated by the type specific update functions.

Other primitives:

The output or canonical representation function:
% «PRINT : PTR x STREAM x M - PTR x M
(% «PRINT prr, stream,) M, = pir, x §M.}
where ptr {M,{ = s-exp,
stream, {M,{ is the result of
(% « WRITE char, stream,) for each successive char in the canonical
representation of s-exp, as defined in the next section.
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% « WRITE is a primitive stream operator and is defined in the section
pertaining to streams.
Streams are an interpretation on pairs that serves to define, abstractly,
a sequence of elements. Streams are primarily used for input and
output.

The reasons for the primitive nature of % « PRINT are two fold: [irstly it serves asa
definition of the representations (s-exp) of s-exp: secondly it may be rclicd on by
the system for system to user communications. In other words it defines a standard
and ingrained notation. This has the drawback that for some programs it may be
difficult to prevent that notation from showing through. This drawback scems
common to computing systems with layered architecture. The benefits of layered
architecture are substantial but no attempt to further justify this concept will be
pursued here.

Syntactic representations for the data types

The traditional designation for the data objects of LISP is the term symbolic
expressions or s-exp. The notation s-exp is used to denote the class of objects, and s-exp
is used to denote the canonical representation form as a linear string of characters. For
the most part s-exp bear a strong correspondence to the computational data types for
pointer objects. The most obvious non-correspondence is that internal data types have a
location handle which EQ is capable of comparing, but there is no comparable handle on
s-exps. The transformations from data types to s-exp and vice versa do not in general
preserve the EQ-equivalence class of the object. While the EQ-equivalence class is of
considerable computational interest it is not state invariant.

The EQ-equivalence class of an object is equivalent to the place it is assigned
when it is allocated. In an infinite memory this place could remain constant and would
serve to simply denote each EQ-class object for all time in the history of a given memory.
None the less, the piace of an object (viewed as an object) has an interpretation which is
meaningful only with respect to the memory in which it was created. Practically speaking,
the memory is not infinite, and keeping track of an object’s “‘creation number™ would be
prohibitively expensive. Indeed. it scems very difficuit to conceive of a representation for
the EQ-class objects which is memory invariant and in which commensurate objects are
easily recognizable. One might also add that attendant to a memory placc are other
properties that the user would appreciate being abstracted from, such as: size, alignment,
storage protection state, ... .

LISP engenders a somewhat complex relationship betwecn the internal computa-
tional domain and the abstract data object domain. It attempts to fool us into believing
that we can operate in both isomorphically. It achieves necessary efficiencies by actually
providing the computational EQ-class objects. The user (and also the system) then give
these objects more abstract connotations as is the case with external representations.

e
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S-exp do not reveal the EQ-class or place objects whercas, pointers do. The
EQ-class objects are the most primitive, most computationally interesting, and most
difficult to manage objects.

On the other hand. if the concern is for the structure of the object itself. and not
the structure of the memory, we can consider the data objects as rooted directed graphs.
Which was just what was done when we chose our external representation. This scems the
most complete (yet memory independent) interpretation for data as objects. If we update
a structure in memory it may no longer denote the same graph. But updating cannot in
general extend beyond the memory, so it should not affect our choice of external repre-
sentation. The sharing within the structure of an object is both representable and detecta-
bie. We therefore chose an external data model which shows both cyclic and acyclic
sharing within the structure. Naturally. other models can be featured such as lists, and
trees. While the latter will be more convenient from time to time, revealing the complete
sharing within a structure is possible, shows more, is not memory dependent, and is in fact
what is provided by defauit.

We are motivated in proposing the external notation to move the user from the
pointer domain to an object domain. It is our goal to select an object domain with
sufficient structure to be interesting, and efficient, yet as minimal as reasonable. Naturally
there is in this selection a component of choice which does not rest entirely upon reason.

In the following description of the external syntax the hierarchical classification
schema is slightly different than that used above in the internal data type schema. Here
the expression language interpretation of the data is emphasized, rather than the relation-
ship to underlying data primitives.

In the following syntax definitions, only the output or canonical form will be
defined. This leaves some freedom to be permissive for the input forms. The definition of
what is permissible input will not be given precisely at this time. Permissible input does
naturally include canonical form.

{ and } are used for metalinguistic grouping.

§{ and } are used for set braces.

[ and ] are used to indicate optionality.

| is used to separate alternatives.

Vertical alignment is also used for alternatives.

The ellipsis "..." is used to denote zero or more objects. Thus x... means zero or
more x's, but ...x means zero or more of anything but x and then x.

LT et =L 0%, Y S S L 47 =" and B are all used as special
symbols in forming s-expression representations (also called s-exp). There are other
isomorphic representations involving the choice of other characters. It isin the
interest of communication that a single standard be chosen. The standard symbol
goal is difficult to attain due to incompatibility of character sets, and the individual
preferences among users.

x", is used to indicate zero or more x separated by blanks.
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x*, is used to indicate one or more x scparated by blanks.

~ is used as a metalinguistic set difference operator. M~N for the complement of N
in M all points of M notin N,

Output Canonical Form

An s-exp is:

[label)icb | idb | funarg | combination }
where label is {label-name = }, and
where label-name is { %o Ldigit,.. digit } where 1<n<8 and.
where id € ID the set of identifiers (names), and
where ¢ € C the set of constants, and
where funarg = %( %FUNARG be b - b sd)
where sd = (no syntactic form available or intended) {, and
where combination = ( comp*, [b +b comp ])
where comp is {label-name | ¢ | id | funarg | combinarion |
{label comp} }

A constant is:
{decimal-number | applicative-constant | nil | ranked-array | selector-structure}
where decimal-number = {integer | floating-point | rational | complex |
interval }
where integer = [sign) digir*
where sign = {+ | -}
where digit = {0 112131415]6171819}
where floating-point =
integer « digit... [E decimal-number]
where rational = % (/b numb denom)t
where num = integer
where denom = integer
where complex = Yo(ib r-part b i-part)t
where r-part = integer | floating-point
where i-part = integer | floating-point
. where interval = % (+b hi-end b low-end)t
/ ‘ where hi-end = {integer | floating-point | complex | rational}
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where low-end = {integer | floating-point | complex | rational}
where applicative-constant = §{ abstraction | bpi | sf | ur}
where abstraction = { lambda-abstraction | mlambda-abstraction |
' operator-code-abstraction}
where lambda-abstraction =
% ( %' LAMBDADb bv b « b exp-seq)

. where mlambda-abstraction =
% ( % MLAMBDADbD bv b « b exp-seq)
. where mlambda-abstraction =

% ( %>MLAMBDADbD bv b « b exp-seq)
where sequence-abstraction =
% ( %-SEQb rag aux b « b ps-list)
where operator-code-abstraction =
%( %sFR*CODEb e b f-list b « b lap-code)
where bpi = 1
where sf = %> { LAMBDA | MLAMBDA | MU | QUOTE | SETQ
| FUNCTION | LABEL | COND | SEQ | GO | EXIT
| PROGN | RETURN | FR*CODE | AUX | SETX }
where ur = {fix-ur | mult-ur}
where fix-ur = %+ {EVAl | MDEFX | APPLX |
EVAL | SET | CLOSURE | ...}
Comment: Many more basic operators
that take definite numbers of arguments
will fall into this class.
where mult-ur = %:{STATE | CALL | ... }

' Comment: Many more basic operators that
take indefinite numbers of arguments will fall
into this class.

where nil = () ‘
where ranked-array = {vector | string}
where vector = {pointer-vector | intermediate-integer-vector |
[floating-point-vector}
. where pointer-vector = < comp’,, >
where intermediate-integer-vector = 1< integer’, >
where floating-point-vector = %F < floating-point™, >
where string = { character-string | bit-string }
where character-string =
{ ' char" ' | %chr-capacity ' char® '}
where chr-capacity—n > 3 &
and chr-capacity = 1 +4i whereie {12 ...}
where char = {chr | lanychr}
where chr ¢ CHR = JANYCHR ~ §' |i}
where ANYCHR is the sct of all characters available

where bitstring =
. %B [capacity] § * hex” ' | :[comtent-len] ' hex' ' }
. where capacity = 8+32i whereie {12 ...}
Comment: capacity is present if there is an cxcess of 32
bits over the content-len. where conteni-len = digir*, and
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content-len is present if the number of bits contained is not
a multipie of four. ;
where hex =
{01112131415161718|91AIB|C|IDICI|E|F}
where selecior-structure = {ntuple | plex}
where ntuple = % (+ b comp®, [b+ b bir-string]) +
where plex = % (e« b comp®, [b« b bit-siring]) +

Anid is: {norid | gensym | unid | mobid}
where norid € {x| {non-num id-chr...}}
where non-num € {ID-CHR ~ DIGIT}
where id-chr = {xe {ANYCHR ~ IDDELIM} | lanychri
- where iddelim = {b | (|) | < | >}
where gensym = % Ggennum
where gennum = digit*
where unid = %gennum:norid t
where mobid = % «(noridb « b directory) +
where directory = t

The print representations will be described in more detail in the descriptions of the
subclasses.

The input or s-exp recognition function:
% sREAD : STREAM x M - PTR x M P
(% «READ stream,) {M } = ptr, x {M,}
where ptr f{M,§ = s-exp,
stream, {M,{ is the result of
(% « NEXT stream,) until sufficient char in the stream are recognized to
form a s-exp representation, the corresponding value s-exp, is allocated.
% «NEXT is a primitive input output operator and is defined in the
section pertaining to that topic.
% «READ is included as a basic primitive for recognizing s-exp and allocating
pointers.

Input Syntax Commentary

There are many isomorphic forms for LISP input. for many applications unigue
parsers are required. The primitive understood operator for the LISP reader % «READ
may provide additional conveniences, such as macro characters. Whilc such extensions
should not be curtailed. if allowed to supplant the standard external form, they will lcad to
the Tower of Babel phenomena. This applics to syntax sugaring extensions not to
developments that correct some logical deficiency.

% «READ should be liberal about the use of blanks. Canonical form should enjoy
a certain primitive status, % «READ should at the very least accept it.

YX AL

With regard to the string delimiter character we have been accused of “*adding
to the Babeling” by not adopting “"”. ALGOL and certain versions of LISP have
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preferred “"*". In defense of this convention it should be noted that ' docs ¢njoy a
certain current popularity for this purpose. PL/I, FORTRAN, ASSEMBLER, APL.
SNOBOL and IBM COBOL all use this convention. The underlying rational scems to be
that in a minimal character set the ' is a more useful character to have if a choice must
be made.

A similar line of argument holds with regard to our choice of % as an extender of
the character set. We have chosen this ugly minimal character set approach over the
introduction of an ideal character set. This is unlike ALGOL 68 which “‘eschews™ the
problem.

These two operators are essential to the initial supervisor which is in essence:
(%SEQ () () TAG (% «PRINT (% <EVAI1 (% +READ USERINSTREAM)) USER-
OUTSTREAM) (GO TAG))

The access equivalence relation: % «EQUAL : PTR x PTR - TVAL
(% «EQUAL prr, ptr,) = () iff

access,{ptr,} = access,{ptr,} and,

access, {ptr,} = access, {ptr,}
for each access, possible for both ptr, and prr,.
Informally, access functions traverse the underlying structure denoted
by the pointer and retrieve a value, but do not update the memory. It
should be noted that certain structures are presumed composite even if
no access functions are provide to the user.

Caution: Two expressions that are % «sEQUAL may not be computationally
equivalent. For example:
(% +EQ (QUOTE %L1=(A)) (QUOTE %L1)) is true in any context, and
(% +EQ (QUOTE (A)) (QUOTE (A))) is false in any context.

But the two operand expressions are % « EQUAL and evaluated in the same con-
text! Indeed the two expressions are themselves % « EQUAL but denote different
values. This illustrates the difficulty that the EQ-class objects create.

If two pointer values are % « EQUAL then they both denote the same (possibly
infinite) tree.

The update equivalence relation: % «EQUUP : PTR x PTR - TV AL
(% «EQUUP prr, prr,) = () iff
(% «EQUAL prr, ptry) # () after any

update {ptr,}. and update {ptr,}.

where update, is any allowed update operation on either ptr, or pir,.
If two pointer values are % « EQUUP they denote the same expression. That is, if
they were each evaluated in the same context they would produce % «EQUUP
values. Furthermore, if the independent % « PRINT represcntation of two pointers
is the same then they are % « EQUUP and vice versa. Update equivalence is
preserved by % « READ unless the structure contains a gensym.
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If two pointers are % « EQUUP they both denote the same rooted, directed. graph.

We proceed with the elaboration of the descriptions of the types of the hierarchy
of types:

SIMPLE OBJECTS

Simple-objects do not depend upon their components. That is, either they have no
accessible components, or the properties of the class in question does not depend on the
components.

There is some question as to whether or not identifiers should belong (o this class.
Because the truth values are inciuded in this class it is not a distinct representation type
class.

Abstract syntax: SIMP{M{ = inil U decimal-number U character U truth-value }
THE DISTINGUISHED NIL OBJECT

The nil object () is given the interpretation that it denotes the truth-value false. ()
is also commonly used as a list terminator and thought of as an empty list. The convention
through out this system is to consider any non pair object as a suitable list terminator. ()
as a terminator does enjoy a certain exalted status in that (A « ()) prints as (A). Clearly,
we consider () as denoting false and like any non-pair it is not a list. In the interest of the
final elimination of reserved identifiers (for LISP370): the identifier NIL is not “6+EQ to
(). The variable NIL will be normally given the global value (). It may be necessary to
convert all occurrences of NIL in old or foreign source files of s-exp’s to (). Notice: There
really is no empty list provided by the underlying implementation!

Pointer type class: NIL = (). A primitive type.

The type predicate: %« NIL .
% eNIL : PTR - PTR
(% oNIL ptr)) = () iff ptr () otherwise prr, where prry # () and denotes true.

There are no access, update or allocate functions for nil. In certain other LISP systems the

- access functions CAR and CDR are well defined if applied to nil but always yield the value
nil. But in these very same systems the pair updating operators are not well defined when : ,»
applied to nil. This inconsistent approach would seem to complicate the scheme for g
constrained types. The point of view of this system is that nil is a unique non-pair used to
denote falsity whose representation makes its use as list terminator result in a simple list.
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NUMBERS

Pointer type class: NUM

Abstract syntax: NUM{M/{ = linteger U floating-point U rationalt U complext U
intervalt}

LISP/370 currently operates on three basic types of numbers, and several other types of
numbers are anticipated. A basic numeric data item may be an integer or a floating-point.
Integers are stored in one of two possible formats, and each is denoted by a pointer of a
distinct type, depending upon their value. In the range =227 10 2¥7=1 (~134,217,728 to
134,217,727), the small-integer type is used (see Small Integer Format). This type pointer
(designated SMTI) encodes the numeric value as immediate data, and so achieves greater
efficiency in computation and storage than the large-integer format which is used for all
other integer values. All integers are stored exactly by LISP. The only limitation on size is
the available space in the heap.

Primitives:
Type predicate: % «NUM
The type constraint: % «=NUM

(% «=NUM ptr,) = ptr, iff ptr, ¢ NUM, otherwise V.

Generic Arithmetic Operators:

‘operator operation type of operands | type of result
. integer. il all opcrands
addition floating-point or are of type i Ip
oating-poi re of type integer,
% :+ (Y:+m...)= . g . .
integer floating -point other-
) wise »
. integer, if all operands
subtraction [floati oint or areegf type i tp
ing-poin o ¢ integer.
% o= (Y%e=mn) = . 8P . yp )
integer floating-poim other-
m=n .
wise
o integer, il all operands
multiplication ) . .
floating -point or arc of type inreger,
Y%:* (Y%:*m...) = ' ) .
' integer Sfloating -point other-
Mm... .
e I WISC o




pmsn

(YoeL=mn) =

integer

equality predicate

(Y e=0m)

%= (Yoe=mn) = s-exp
m=n
% «CHS change sign floating -point or
°* (% «CHS m) integer
absolute value floating-point or
%eABS (% +ABS m) = P
|m| i
% o =0 zero predicate floating -point or

integer
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quotient Toating-point o ”ngr; il al? operands
%o/ (%s/ mn) = / g -p are 0‘ ype‘m!eger,
n integer [floating-point other-
I R 3 L fwise
decimal division floating-point or
% « DIV (%<DIV mn) = roatng-p [floating-point
integer
m+n [ . —— e m— e
floating-point integer, if
Floatin int o all operands are of
O o ** mn . &-po type integer,
integer . .
floating-point other-
wise
remainder mod n
% «MOD (% +MOD mn) = integer integer
m—n*(m -+ n) o
less than predicate .
ting-point TVA
%< (%eg mn) = ﬂoamgpoz or . L '
integer m if true, otherwise ().
A m<n —— -
y icat
greater than predicate Tloating-point o TVAL
Y%oe> (Y%e>mn) = . . .
integer m if true, otherwise ().
m>n -
not less than predicate . .
floating-point or TVAL
%e>= (%e>=mn) = ] . .
integer m if true, otherwise ().
m2n B o
not greater than predi-
cate oating-point or TVAL
o= [loating-p

m il true, otherwise ().

TVAL

integer. if operand is of
type integer,
[floating-point other-
wise

integer, if opcrand is of
type integer,
Soating-point other-

wise

0 if operand is 0, oth-

|erwise ()
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negative number predi- ) .
floating-point or

operand if operand is

Y <0 cate integer less than 0, otherwise
(%<0 m) 5 0
Small Integers:
Small Integer Pointer Format:
0011 | S---]  cececea-o-. s mceemaaa.

S is a sign bit (1 for negative value, in two's complement form);
- represents a data bit which is part of the actual numeric value.

Note that a small integer is actually a (non-stored) pointer value. It is not a

reference to another data object.

Pointer type class: SM/

Abstract syntax: SMI{M} = smi = —134,217,728 < integer < 134.217.727. A distin-

guished primitive class.

Primitives:
Type predicate: % «SMI
The type constraint: % e=SMI

(% «=SMI ptr,) = prr, iff ptr, € SMI, otherwise V.

Small integers are allowed inputs to and outputs of the ordinary gencric arithmetic

functions. In this role the smi are a subrange of the integers.

Functions over the commutative ring s (an isomorph of smi):

%:S+ , %eS—, %:S*, %S/, %SMOD, %+S5**, % «SCHS . "% +SABS .
% +S<0. %S>, %eS<, %eS<=, %eS>=, %+S=0 .and %S.= .

These operators do arithmetic modulo 228 but the two's complement notation

results in numbers greater than (22— 1) being considered negative.
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We denote this domains = §{—=227, =2274+1, ..., 0, I, ..., 2271} .

For ®_ € { %:S+, %+S—, %:S*, %+S/, % SMOD . % «S**}, and
@ € f W+, %=, %:*, %/, Y%oeMOD , %.«** i

5@ 5, = =27 if 5,®s5, = —=277 _and
(% +MOD {s5,®s,} 2%) otherwise.
For ®, € { %+SCHS , %+SABS }, and

® € {%+CHS, %+ABS };

@5y = =227if @s, = =2%7 ;and .
(% +MOD {®s,} 2?7) otherwise.

Large Integers:

Large Integer Format:

LCBVTP | Vector Length in Bytes i
0 Low-order Digit (radix 23!) o
0 High-order digit (radix 2%')

The format pictured above defines the magnitude of a large integer. There are two pointer
type codes which designate large integers; one indicates a positive large integer, the other

indicates a negative large integer. Because these type codes are not in the class of vectors,

it is not possible to select an element (digit) of a large integer with vector functions such as
% ELT.

Pointer type class: L a distinguished primitive class.

Abstract syntax: L{M{ =lint = {integer < —134.217,728} U {integer > 134.217.727}.

Primitives:
Type predicate: %L

Type predicate: %L

The type constraint: % e=L
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(Yoe=L ptr)) = ptr iff ptr, € L, otherwise V.
Large integers are allowed inputs to and outputs of the ordinary generic arithmetic

functions. There is not provided any type specific basic constant functions with either
domain or range constrained to the type L.

Integers

"Pointer type class: /

Abstract syntax: IfM{ = integer = {smi U lint}
Type predicate: %l
The type constraint; %e«=I

(% e=Iptr,) = ptr, iff ptr, € I, otherwise V.
Primitives:

% «ODDP: I = TVAL
(%+0ODDP i) = () if ((MOD2)=0) otherwise i.

The following generic operators have integer values when given integer arguments:

%:+,%e~,%:*,%e/,%eMOD, %+CHS, %e**, %+ABS

Floating Point Numbers

The user can (at some peril) view the floating point numbers as real numbers
whose decimal representation was truncated some number of places to the right of the
decimal point. Until the computer provides efficient decimal floating point hardware that
has no perils, we will be content to use the available hexadecimal floating hardware. This
decision will affect (in a hopefully minor way) our ideals for conversion (o canonical
output form and our understanding of the rules of arithmetic. Floating-point numbers are
stored using System/370 double precision floating point format. yiclding 53 to 56 bits of
precision for the mantissa and a range of up to (about) 107, Floating-point numbers are
stored in a separate section of the heap used only for thesc data. This arca is allocated at
the high address end of the space reserved for the heap, and extends toward lower
addresses as new floating-point numbers are generated.

Pointer type class: FP a distinguished primitive class.
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Abstract syntax: FP{M{ = float shorthand for truncated-real

-Type predicate: % +FP
The type constraint: % «=FP
(% «=FP ptr)) = ptr, iff ptr, € FP, otherwise V.

When provided with floating arguments the following generic operators have
floating values:

%:+ , %o~ ,%:*, %QUOT, %+/,%CHS, %+**, %+ABS

Primitive operators whose domain and range is restricted to the floats:

%:FP+ , % «FP—, %:FP* , %+FP/, % +FP** % «FPCHS . % .FPABS
% +FP<0, %+FP> , % +FP< , % «FP<=, % +FP>=,and %-FP=0

The print representation for a floating-point number always includes a decimal
point to distinguish floating-points from integer values. This decimal point must be
preceded by at least one decimal digit, to avoid possible confusion with the period used in
printing pairs. A minus sign may precede the first digit to indicate a negative value.

Both integer and floating-point numbers may be followed by a decimal exponent
formed by the letter E, a plus or minus sign (plus is optional), and the exponent magnitude
expressed in decimal digits.

There are two parameters, FUZZ and NDIGITS. which control the way in which
floating-point numbers are translated into their print representations lor output. FUZZ
refers to a value used to define the intended precision of floating-point number opcrations.
Two numbers, X and Y, are equal in the LISP system if

|X-Y| <= FUZZ * maximum (| X|, | Y], 1.0)

Insofar as printing a floating-point number, X, is concerned, a character repre-
sentation is gencrated for the value in the range

X-FUZZ* | X | to X+FUZZ*|X|

which results in the shortest character string. This print representation may include an
exponent, in which case there will be exactly one decimal digit before the decimal point, or
in cases where the number of digits (exclusive of decimal point and a possible minus sign)
needed to represent the numeric value is less than NDIGITS, no exponcnt will be printed
and the decimal point will be placed wherever is required.

ey
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The user may specify values for FUZZ and NDIGITS by using the function % «SETFUZZ.

% +SETFUZZ : PR x PR - PR x M
(%+SETFUZZ pr)iM,} = profM,§
where pr,{M,{ = (float, « smi,) and, pr,iM,} = (float, » smi,) .
FUZZ/M { = float,,
FUZZ{M,} = floa:,,
. NDIGITS{M, } = smi,,
NDIGITS{M, ¢ = smi,,

CHARACTER OBJECTS

The characters are an understood subrange of the identifiers. They are not a
primitive type.

Pointer type class: CHAR

Abstract syntax: CHAR{M{ = {character}
CHAR < ID

Primitives:
Type predicate: % «CHAR
The type constraint: % «=CHAR
(% e«=CHAR ptr)) = ptr, iff ptr; € CHAR, otherwise V.

Character object to EBCDIC character code: % « CHIDEBCD
% « CHIDEBCD : CHAR - SMI
(% « CHIDEBCD char,) = smi,
where 0 < smi, < 255 and the correspondence is defined in IBM lorm number

GX20-1850-2 System/370 Reference Summary (the yellow card).

EBCDIC to character object: % «EBCDCHID
% +EBCDCHID : SMI - CHAR
(% «EBCDCHID smi,) = char,
where 0 < smi, € 255 and the correspondence is defined in IBM form number

GX20-1850-2 System/370 Reference Summary (the yellow card).
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TRUTH-VALUES

Truth-values are an interpretation on the set of all data objects. They are not a
distinct primitive class. If the object is () then we interpret it as false, otherwise it denotes
true.

Pointer type class: TVAL = PTR
Abstract syntax: TVAL{M{ = {true U false}
Primitives:
Truth value: %+TVAL
%«TVAL:PTR - {1 ]| 0}
(% «TVAL ptr,) = Oiff ptr, = (), otherwise 1.
Comment: The truth values are an interpretation on the total PTR domain. The justifica-
tion for this is that in the language syntax and semantics the predicate expressions of the
conditional are first class i.e. any expression can be written in that place. This results in an

elegance and versatility that can be appreciated from the point of view of theory and
pragmatics.

COMPOSITE OBJECTS

The composite objects are viewed as having components even il no access
function is provided. In the case of objects where no access function is provided the
access-equivalence operator % « = may consider otherwise inaccessible components as
comparable.

Pointer type code: COMP = { ARRAY U RECORD U COMPLEX}

Abstract syntax: COMP{M{ = {array U record U complex }
ARRAYS

Arrays are objects that have components of all the same type.
Pointer tybe class: 4 ={PR U RA}

Abstract syntax: 4fM/{ = { pair U ranked-array}

Primitives:
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Type predicate: % e«A
The type constraint: %e=A

(% e=A ptr)) = ptr, iff ptr, = € A, otherwise V.
PAIRS

LISP/370 implementation format of the storage object:

|

XXXX |YYYY| AAAAAAAAAAAAAAAAAAAAAAAA
|

XXXX [YYYY! AAAAAAAAAAAAAAAAAAAAAAAA

A pair is a stored data object having two component pointer objects which are
referred to as the CAR component and the CDR component (for historical and compati-
bility reasons). The storage allocation for a pair is two contiguous full-words. Both of
these words contain pointers. The CAR component occupies the first word; the CDR
component occupies the second word. Since a pointer is used to represent any LISP data
object, a pair is an association of two completely arbitrary LISP data objects.

Pointer type class: PR. A distinguished primitive class.

Abstract syntax: PR{M{ = pair = s-exp x s-exp

Primitives:
Type predicate: % «PR
The type constraint: % e«=PR
(% «=PR ptr)) = ptr, iff ptr, = € PR, otherwise V.

Access functions: % «CAR and % «CDR. Two basic functions are provided for selecting
part of a pair. % +«CAR and % «CDR applied to a pair return as their value the corre-
sponding component of the pair.
%<CAR : PR - PTR
(% «CAR pr,) = ptr,
where pr, = (ptr, « ptr,)
This is another example of a domain restricted primitive. It is defined
only over the pair domain. The definition of these primitives when the
domain is not conformal is V. As the notation is mecant to imply this it
is not explicitly stated.

%+CDR : PR - PTR

e o R P T
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(% +CDR pr,) = pir,
where pr, = (ptr, « ptr;)

Allocation function:

% +CONS : PTRxPTRxM - PRxM
(% +CONS ptr, ptry) M} = pry {M,{ = (pir, « pir,)
where pr, ¢ PTR of M,, and pr, ¢ PTR of M,, or simply, a new pointer
is allocated.
(% +CAR pry) {sz = prr,
(% +CDR pr,) {IM,} = ptr,

Update functions: % «RPLACA and % «RPLACD.

% «RPLACA : PRxPTRxM -~ PRxM
(% «RPLACA pr, ptr)) fM,§ = pr, IM,}
priiM = (x+y)
(%-CAR pr)) M.} = ptr,
pry My} = pryfM,f
for all pry € PTR of M,, such that pr, indep pr, .
Where the independence relation indep expresses the notion of
having no shared component.
X indep x is false
if X indep x', then x' indep x
if x indep x' then. X indep x',,
, for all components x'; of x'.
Simply stated, M, and M, differ only in the meaning of the composite objects
that share pr, as a component and not necessarily in those.

% «RPLACD : PRxPTRxM - PRxM
(% «RPLACD pr, ptr,) {M,§ = pr, IM }
priiMf = (x . y)
(% +CDR pr)) IM,} = prr,
pry [M'g} = P’;ile
for all pr, € PTR of M, such that pr, indep pr, .

The primitive print representation of a pair is a left parenthesis followed by the print :
representation of the first element of the pair, a blank, a period, a blank. the print repre-
sentation of the second element of the pair, and finally a right parenthesis.

(comp b «b comp)

In most cases, however, a more complex print representation is used. Thesc abrogations e,
of the above rule occur for cconomy of representation and because of the desire o sl
emphasize the list interpretation of these pair structures.
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RANKED ARRAYS

Pointcr type class: RA = {R1IA U MATRIX}
Abstract syntax: R4A{Mj} = {rank-one-array U matrix}
Primitives:

Rank function: % «RANK
% «RANK : PTR - SM1T
(% +RANK ptr,) =
Oiff ptr, ¢ RA, and
1iff pery € RIA, and
niff ptr) € MATRIX,
where n is the number of dimensions.

ARRAYS OF RANK ONE

LISP/370 rank-one-arrays are composite stored objects that have { 0, ..., n—1}
as an index set, also they have components of uniform type. Like pointers, this class is not
a primitive storage type but rather a union of subtypes.

Pointer type class: R/I4 = {LISTU STR U VEC} = PTR

Abstract syntax:

RIA{M{ = rank-one-array = { list U string U vector} = comp"
where comp the components are s-exp

and comp® implies an empty rank one array has an empty index set.

Because we allow the conventional interpretation that any non-pair has an
interpretation as an empty list; rank-one-arrays = s-exp.

Notation: a" fora x a x ... (n factors).

Rank-onec-arrays arc classified as vectors, strings, and lists. Vectors arce characterized their
cardinality, the number of elements they contain. The cardinality may be computed by the
operator % «NC. Strings on the other hand are characterized by current cardinality and
capacity for extension. "The capacity for extension of a string may be computed by

% «CAP . Lists are, as previously explained, an interpretation on s-exp. They are
dynamically extendible to the limit of available space. These objects will be described in
detail below.
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Except for bit strings, rank one arrays may have any length for which sufficicnt space
exists in the heap. Bit vectors (in LISP/370) may have a maximum of 22¢-1 (16,777.215)
elements (bits).

Primitives:

Type predicate: Not provided because this is not a distinct type.
Type constraint: Not provided because this is not a distinct type.
Cardinality function:

% eNC: RIA - SM]
(Y% eNCrla,) = smi,
smi fM§ = n, where ria, {M{ = ptrn.

Access function:

% +ELT : RIA x SMI - PTR
(% +ELT rla, smi,) = iff 0<i<n-1 then prr; otherwise 7,
where rla,{M} = ptr" = ptr,, ..., ptr,__,, and smi fMf = i.

Notation: V for run time detected domain error.

All rank one arrays use zero-origin indexing for identification of their components. The
function % <ELT is a general rank one array accessing function. appiicable to any type of
rank one array. Provided, of course, the index is within bounds. Thus

(% +ELT r1a 0)

is always the first element of rank one array. Other accessing functions. tailored to a
particular type of rank one array, are provided because they are more cfficient in execu-
tion. These are each described in the section about that rank one array.

Update function:

% +SETELT : R/IA x SMI x PTR x M - PTR x M

(% «SETELT ria, smi, ptr\){M,§ = iff 0<i<n then prr; x M, otherwise V.
where rla,fM{ = ptr", and smi, fM} = i.

(%<ELT rla, smi,){M,{ = prr, . and ’

Y% oELT rla, smiy)){M,} = (% «ELT rla, smi,}}M f

for all smi, = 0,..., n—1 where smi,#smi,, and -

piry {sz = P"’szlf
for all ptr, € PTR of M|, such that ptr, indep pir, .

LISP/370 structures may also be classified as: Pointer component vectors and no-pointer
component vectors. Pointer component vectors, as the name implies, may contain

RIS
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references to any LISP data objects (including themselves, so circular structures are
possible). Pointer component vectors are pointer-vectors and lists.

No-pointer vectors contain only binary information -- that is, data which cannot contain
references to other data objects. Thus, no-pointer vectors are non-descendable from the
point of view of the garbage collector and structure-dependent functions such as

% +EQUAL and % «PRINT. No-pointer vectors are: bit-strings, character-strings,
intermediate-integer-vectors, and floating-point-vectors.

Pairs As Lists

The abstract data structure list is usually defined as:
(list-element...) where () the empty-list is a list.
This system does not have a distinct LIST type class, therefore the domains and ranges of
functions, and the domains of variables cannot be constrained by primitive constraint
functions to this type class. On the other hand there are a great number of functions
pertaining to lists.

Lists are composite objects created by applying a conventional interprelation to
s-exp. Thus each pair is a list and any non-pair is an empty list. The CAR component of
the pair is interpreted as a list-element of that list, and the CDR component of the pair is
interpreted as the remainder of that list. The distinguished nil object () is commonly used
to denote the empty list. Thus, if the CDR of a pair is not a pair. there arc no remaining
elements in that list. Note: The CDR could be some other object. not a pair and not nil.
These empty lists are also lists! Because L/ST is isomorphic to. PTR, no type-class predi-
cate is provided nor is the type-constraint.

There are few strict list domain or range functions; the list functions provided by
the system are total functions. In this mode of interpretation all non-pair objects ( §PTR ~
PR}) may be used to terminate a list.

It may surprise the reader that LISP does not have lists as a distinguished type.
Lists are abstract data structures that originally were thought of as the principle data
structure for the language. When pragmatic concerns about insertion were considered the
pointer-pair schemes became an attractive solution. In most LISP sysicms today what we
have is a list notation for pairs.

For the purposes of functions which have a list interpretation on pairs. the CDR
component of the last pair of the list is not considered to be part of the list. Bccause of
this somewhat liberal interpretation of what is a list, a recursive function over pair
structures that only uses the “()™ test as a termination test is onty well defined for ()™
terminated lists. The system utility functions all use the **not pair™ termination test for
partial functions on lists.

The print representation of a list is a modification of the representation of its
component pairs as described above.. This modification is intendcd to improve readability
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by eliminating some of the parentheses while still divulging the sharing of data; however,
the inclusion of some (or all) of the deleted parentheses is always acceptable in input data.
This list notation form can be most simply understood as an elision rule applied to the pure
dotted pair notation:

whenever ““ « (*" occurs it may be replace by a blank and the balancing **)" deleted.

This seems more complicated when described in words than when illustrated by
example.

Thus, the list
(A« (B«(C«())))
would appear as
(ABC)
when printed.

Since a pair is a perfectly reasonable element of a list, it is possible to create lists
which include themselves, or parts of themselves, as elements. LISP/370 uses a general
scheme for input/output which indicates the sharing of data. This sharing scheme, as well
as other aspects of the LISP/370 input/output system, makes use of a hreak character
which is defined in the standard system as percent (%). An input expression written:

%Li=(A « %L1)

generates a pair whose CAR component is a pointer to the identifier A and whose CDR
component is a pointer to the pair itself. The list interpretation of this pair would be a
circular list, effectively an infinite list of A’s. A function meant to traverse lists might be
non-terminating for this object.

This sharing notation need not generate a circular list. For example, the expres-
sion:

(%L1=(A) %L1)
generates a list containing two elements. The first element is the list containing a single

element -- the identifier A -- and the second element is another identical pointer. This is
to be distinguished from the expression:

((A) (A))

which also generates a list of two elements, each of which is a list containing the single
identifier A. In this case, however, the two clements are diffcrent pointers, although they
point to equal (but separately stored) lists.
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For purposes of accessing the elements of the list, both cxpressions are equivalent
(but note that the list having the shared data requires less storage). These two lists are not
equivalent with respect to updating. That is, the product of updating one may not be the
same as the product achieved by the same updating operation applied to the other.

VECTORS

Pointer type class: VEC = {VPU VII U VF}

Abstract syntax:
VEC{M{ = vector = { pointer-vector U intermediate-integer-vector U floating-point-vector}

Type predicate: %«VEC
Type constraint: % «=VEC
(% +=VEC ptr,) = ptr, iff ptr, € FP otherwise V.

Reference vectors:

Reference Vector Format:

LCRVTP Vector Length in Bytes

Pointer for component 0

Pointer for component 1

Pointer for Last component

Pointer type class: VP. A distinguished primitive class.

Abstract syntax: VPfM} = pointer-vector = pointer"

Type predicate: %+ VP

Type constraint: % «=VP
(Y% «=VP ptr,) = ptr, iff ptr, € VP otherwise V.

Access function:
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% +VPELT : VP x SM! - PTR
(%« VPELT vp, smi,) = ifl 0<i<n—1 then ptr, otherwise V,
where vp, /M{ = ptr" = ptr, ..., ptr,_,, and smi (M} = i.

Update function:

% «VPSET : VP x SMI x PTR x M - PTR x M

(% « VPSET wp smi, ptr){M,§ = iff 0<i<n-—1 then prr, x M, otherwise V.,
where vp,{M{ = ptr" = pir, ..., ptr,_,, and smi fM} = i.

(% +VPELT vp, smi|){M,} = ptr, , and

(% « VPELT wp, smi,){M,{ = (% «VPELT vp, smi,){M,}
for all smi, = O,..., n—=1 where smi,#smi,, and

ptrz {sz =p'72{M1} .
for all ptrr, € PTR of M|, such that pir, indep pir, .

The pointer vector allocator:
%+VPGET : SMI xM - VP x M
smi fMf = k
(% «VPGET smi,;) {M,} = vp,IM,} = <(O)y... O, >
M,~ M, = vp,iM,}

vp, £ PTR of M,
Allocates an pointer vector with smi; elements all ().

The print format of a pointer vector uses angle brackets to delimit the extent of the vector
and blanks to separate components of the vector:

<comp, comp, ... comp_ > and < > denotes the empty pointer vector,

where comp, is the print representation of the LISP data object referenced by the i'th
component of the reference vector.

Intermediate-integer-vectors:

Intermediate-intcger-vectors Format:

LCRVTP Vector Length in Bytes

__Intermediate-integer for component 0

Intermediate-integer for component |

Intermediate-integer for Last component
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Pointer type class: VII

Abstract syntax: VIiI{M{ = intermediate-integer-vector = intermediate-integer®

Type predicate: %« VII

Type constraint: % «=VII
(% «=VIl ptr,) = ptr, iff ptr, € VII otherwise V.

Access function:

%+ VIIELT : VP x SMI - II
(% « VIIELT vii, smi,) = iff 0<i<n—1 then i, otherwise V,
where vii, IM{ = ii* = iiy, ..., ii,_,, and smi {M{ = i.

Update function:

%eVISET : VI x SMI x II x M = Il x M

(%« VIISET vp, smi, ii,){M,} = iff 0<i<n—1 then ii, x M, otherwise V.
where vii M} = ii® = iiy, ..., ii,_,, and smi M} = i.

(%« VIIELT vii, smi,) {M,{ = ii, , and

(%« VIIELT vii| smi,) {M,§ = (% « VIIELT vii, smi,) {M,{
for all smi, = 0,..., n—1 where smi,#smi,, and

pir, {Mz.“ = P"zé‘M‘!
for all ptr, € PTR of M,, such that ptr| indep ptr, .

The intermediate-integer-vector allocator:

%+ VIIGET : SMI x M - VIl x M
smi fM} =k
(%« VIIGET smi|) {M,§ = vii {M,§ = %I1<0,... 0, _,>
M,~ M, = vii {M,]
vii, ¢ PTR of M,
Allocates an intermediate-integer vector with smi, elemcents all zcro.

The print format of an intermediate integer vector uses angie brackets to delimit the extent
of the vector and blanks to separate components of the vector:

% I<iiy ii; ... ii,> and %I< > denotes the empty intermediate integer vector.

where ii; is the print representation of the LISP intermediate integer referenced by the i'th
component of the vector.
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Floating-point Vectors:

Floating-point Vector Format:

LCRVTP Vector Length in Bytes

Floating-point for component 0

Floating-point for component |

Floating-point for Last component

Pointer type class: VF. A distinguished primitive class.

Abstract syntax: VF{M{ = floating-point-vector = floating-point"

Type predicate: % «VF

Type constraint: % e=VF
(% «=VF ptr|) = ptr, iff ptr, € VF otherwise V.

Access function:

% «VFELT : VF x SMI - FP
(% «VFELT vf, smi|) = iff 0<i<n—1 then fp, otherwise 7,
’ where vf,/M{ = vi* = fp,, ..., fp,_,, and smi IM{ = i.

Update function:

% +VFSET : VF x SMI x FP xM - FP x M

(%« VFSET vf, smi, fp )M} = iff 0<i<n-1 then fp, x M, otherwise V,
where vf, M} = fp" = fp,. ..., fp,_, . and smi {M{] = i. 4

(Y% «VFELT vf, smi ){M,{ = vf, . and ’ : .

(% « VFELT vf, smi,){M,{ = (% «VFELT vf, smi,) iM {
for all smiy = 0...., n—1 where smi,#smi,, and

. piry {M2} =P”2{M1}

for all piry € PTR of M|, such that ptr, indep ptr, .

The floating-point vector allocator:

%+ VFGET : SMI x M - VF x M
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smi iM{ =k
(%« VFGET smi)) {M,§ = vf {M,} = %F<0.... 0., _,>
M,~M, =vf M}
vf, £ PTRof M,
Allocates a floating-point vector with smi, elements all zero.

The print format of an floating-point vector uses angle brackets to delimit the extent of
the vector and blanks to separate components of the vector:

%F<fp, fp, ... fp,> and %F< > denotes the empty floating-point vector,

where fp; is the print representation of the LISP floating point number denoted by the i'th
component of the vector.

STRINGS

Strings (character and bit vectors) share a special storage characteristic in the
LISP/370 system. For reasons of economy (of both storage and processing time) they are
stored in contiguous blocks of storage. Nevertheless, because it is considered desirable to
allow them to vary in length, a compromise has been achieved which involves maintaining
two separate pieces of length information for each string. One length reflects the amount
of storage allocated for the string, in terms of the number of elements which may be put
into the string without having to allocate more storage for a larger string. The other length
refers to the current number of elements which are actually present, the cardinality, which
is less than or equal to the capacity of the string.

Pointer type class: STR

. Abstract syntax: STR{M}{ = {character-string U bit-string}
Primitives: |
The capacity function: % «CAP

% +CAP : STR - SMI
(% +CAP str|) = smi, =k, where
stryiM{ =
. Case 1: %k'char,...char,_,'
Case 2: 'char,...char _,'
Case 3: %Bk[:m]'hex,...hex,_,’
Case 4: %B'hex,...hex,_,', and k=4n.

n~{ °

The change cardinality (NC) function: % «CHGNC

% +CHGNC : STR x SMI x M - {STR xM | V }




Page 98 IBM INTERNAL Draft --- FWB, revised 09<18-79

(% «CHGNC str, smi ) {M ] |
=V iff (% e«CAP str)> {smi,+(% «NCsir))}M §} 20, ey
otherwise sir M, ], |

where (% «NC s5tr)IM,§ = {smi,+(% +NC str)) {M §} E

Character Vector Format: -

) 1
LCBVTP Vector Lengthin Bytess . E

. Current length of string | chary

char, char,

Pointer type class: SC. A distinguished primitive class.
Abstract syntax: SC{M{ = {character"}

Primitives:

Type predicate: % «SC
The type constraint: % «=SC

(% «=SC ptr)) = ptr, iff pir, = € SC, otherwise V.
The character string allocator:

%«SCGET:SMIxM -+ SCx M
(% «SCGET smi ;) {M,§ = sc,{M,§ = %k""
k = (((% «MOD (smi,;+6) 4) x 4) = 3)
M,~M, =sc,iM,}
sc, ¢ PTRof M,
Allocates a character string with capacity for at least smi, characters.

There are two input/output representations for character vectors. The more general
format is:

%k'c...c'.

where ‘k’ is the maximum number of characters which could be put into the vector for the
character string being read or printed. The actual contents of the character string 'c..c’
reflects only the current length of the string, and might be null. Any character may be
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included as part of a character string; however, the string delimiter character and the
letterizer character must be treated specially. In order to avoid confusion about whether a
string delimiter character actually delimits a string or is intendcd as a data character in a
string, every occurrence of the string delimiter character as a data character in a string
must be prefixed by a letterizer character. This letterizer character is not part of the
character string in storage; it is created during output by the print routine, and discarded
during input by the read routine. Likewise, every occurrence of the letterizer character as
a data character in a character string must be prefixed by the letterizer character.

For example, the string
e

contains one character (a string delimiter), and the string
{11

contains two characters (a letterizer and a string delimiter).

When it is not necessary to represent a character string whose total capacity is larger than
the shortest vector necessary to contain the characters specified. the simpler form:

te..c!
may be used. This designates a character vector which may have zero, one, two or three
unused elements. Referring to format diagram, it may be seen that if N is the number of
real characters in a string (letterizing characters are not counted), the number of unused

elements for this simplified notation is the residue, (N-1) MOD 4.

Example: to specify an eight-element character vector containing the letters .
'FUNCTION', write:

'FUNCTION'
This vector will have space for nine characters (see Format diagram.) and a current length
of eight. To specily a vector with a capacity of 100 characters, but with a current length

of zero, write:

% 100"’
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Bit Vector Format:

CLCBVTP | Vector Length in Bytes

Current length of string

bits 0 -
in bits bits0-7

bits 8 - 15 bits 16 - 23

Pointer type class: SB. A distinguished primitive class.

Abstract syntax: SB{M{ = {truth-value"}

Primitives:

Type predicate: % +SB

The type constraint: % «=SB
(% +=SB ptr|) = ptr, iff ptr, = € SB, otherwise V.

The bit string allocator:

% «SBGET: SMI xM - SB x M
(% +SBGET smi,) {M,§ = sb,{M,f = %Bk[:m]"’
k = (((%«MOD (smi,;+ (31+(3x8)) ) 32) x 32) — 24)
M,~M, =sb,iM,}
sb, ¢ PTR of M,
Allocates a bit string with capacity for at least smi, bits.

The input/output format of bit vectors is similar to the format for character vectors:
however: 4 bit elements are represented by one hex character and the current length field
is a count of the number of bits in the vector, not a count of the number of bytes (see
Format diagram.). Only the characters 0...9 and A...F may be spccificd as part of a bit
string.

) There are different input/output representations for bit vectors, depending upon the
v current length of the vector being considered. For bit vectors whose length is a multiple of
four bits, the format is:

%Bk'h...h’
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where ‘k’ is the maximum number of bits which the spcciflied vector could contain. The
actual contents of the bit string "h...h' reflects only the current length of the string. and
might be null.

As with character vectors, the maximum length field is optional and may be omitted when
representing a vector of length consistent with the explicitly specified data. A bit vector
specified without an explicit maximum length ‘k’ and with up to 28 unused elements has
the format:

%B'h...h!
For bit vectors whose current length is not a muitiple of four bits, the format is:

%Bk:c'h...h!

where ‘k’ is as previously defined and c is the current number of bits in the string. A bit
vector specified without a maximum ‘k’, but with a current length ‘c’ and with up to 31
unused elements has the format:

%B:c'h...h!

RECORDS

-Records are objects whose components are not necessarily of all the same type.
Pointer type class: REC = §{ID U APPL U NT U PLEX}
Abstract syntax: REC{M} = { identifier U applicative-object U n-tuple U complex }
Primitives:

e Type predicate: % +REC

The type constraint: % «=REC

(% +=REC ptr)) = ptr, iff ptr, = € REC, otherwise V.
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IDENTIFIERS

Identifiers are objects that have a pname component. ldentifiers are used as the
names of variables in e the expression interpretation of s=exp. In the past, the world of
LISP data objects was divided into pairs and atoms. The numbers were a distinguished
(reserved) subrange, as was NIL, what are now SF and UR. etc. Over the years the class
ATOM has come to mean, ‘““not a pair”, a somewhat miss-named distinction. As a result
of the elaboration of the type schema, it is no longer necessary or desirable to have the
evaluator consider any subrange of the identifiers as reserved.

An important characteristic of an identifier is whether it is % «INTERNed or not.
and if it is then in what obarrays.

The normal-identifiers are those which are % «INTERNed in the distinguished
system obarray OBARRAY, and only therein. For such identifiers, called NORID,
% «READ preserves % « EQ-ness.

Gensyms on the other hand are never interned and 9% « READ preserves only local
% «EQ-ness when they are recognized. In other words new ones are allocated.

The uninterned-identifiers and the multiply-interned-identifiers are not yet availa-
ble and will not be precisely defined.

Pointer type class: ID = {NORID U GENSYM U UNIDfU MOBID?}

Abstract syntax: /DfM} = { normal-identifier U generated-symbol U
uninterned-identifiertU multiply-interned-identifiert}

Primitives:
Type predicate: %«ID
The type constraint: % e«=ID
(% e+=ID ptr\) = ptr, iff ptr, = € ID, otherwise V.
The PNAM-property function:

% +PNAM : ID x M - {STR | SMI | SMI x STR | STR x LIST} x M
Case 1: NORID - STR '
Y% o PNAM norid ) = sir .
where str ¢M{ = "char,...' , and
where norid {M{ = char,... . and
Case 2: GENSYM - SMI
(% «PNAM gensym,) = smi, ,
where gensym fM{ = % Gsmi,
Case 3: UNID = SMI x STR 1

AN
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(% «PNAM unid,) = pr, .
where pr, = (smi, o str)),
where sir fM{ = 'char,..." , and
where unid {M§ = %smi,:char,,... .
Case 4: MOBID - STR x LIST t
(% «PNAM mobid,) = pr, .

] where pr, = (sir, « list,),
where sir {M{ = 'char,...' . and
N where unid {M} = % «(char,... « list)).

The NORID allocator:

% «INTERN : SCxM = NORIDxM
(% «INTERN str){M,} = norid M}
Where if an element of the global object array whose PNAME compo-
nent is % « EQUAL to the argument string sc, then the resultant value is
% «EQ to that object. If on the other hand no element of the global
object array with the same print name is found then a new norid is
allocated, and the global object array is updated to include it.

The canonical print representation of a norid is simply the characters of its pnam except
that certain of those characters must be letterized. For instance: any initial character that
is a digit, or any id-delimiter character.

The GENSYM allocator:
% «GENSYM : M - GENSYM x M
(% «GENSYM ) {M,{ = gensym {M,}
M,~ M, = gensym {M,}
gensym, £ PTR of M,

The canonical print format for a given gensyms, is:

% Ggennum where gennum is the print form of (% «PNAM gensym ).

APPLICATIVE-OBJECTS

In describing the semantics of applicative objects, the relevant sections of the
. meta-linguistic formal description section are referenced by the subsection numbers of that
section. The rcader can refer to that section for the detailed description of their the
semantics.

Pointer type class: APPL = {ABST U SD UFUN U BPI U SF U UR}

Abstract syntax: APPL{MJ = { abstraction U state-descriptor U funarg U binary-program-
image U special-function U understood-rator}
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Primitives:
Type predicate: % «APPL
The type constraint: % «=APPL

(% «=APPL ptr)) = ptr, iff ptr, = € APPL, otherwise 7.

- ABSTRACTIONS

This class of constant objects that are applicative is the consequence of eschewing
reserved combination forms. We found the need for an anonymous self describing
computational object that would pilay the role that was formerly played by things like
lambda-expressions. The binary program objects fill this role but are practically unuttera-
ble. We needed an object which had expressions as components.

Pointer type class: ABST = {LAM U MLAM U ORCD}

Abstract syntax: ABST/M{ = { lambda-abstraction U mlambda-abstraction U mu-
abstraction U operator-code-abstraction}

Primitives:

@,

Type predicate: % »ABST
The type constraint: % «=ABST

(% +=ABST pir,) = ptr iff ptr, = ¢ ABST, otherwise V.

. LAMBDA ABSTRACTIONS

Lambda-abstractions are ordinary applicative (“anonymous™) function description
constants. The description consists of two component parts:

1. The bv part describes the nature of the list of argument valucs and the variables
which conform to the components of this list. -
2. The exp-seq part, taken in the context of the function and its parameter varia-
bles, denotes the value of the function.

Pointer type class: LAM a distinguished type class.

Abstract syntax: LAM{M} = lambda-abstraction = bv x exp-seq o

Primitives:
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Type predicate: % +LAM
The type constraint: %e=LAM

(%e=LAM prr)) = ptriff ptir, = € LAM, otherwise V.

]
. Access functions: % +BV and % +«ESEQ.
r
% BV : LAM - PTR
(% BV lam,) = ptr,
where lam; = % (% \LAMBDA ptr, « pir,)
% +ESEQ : LAM - PTR
(% <ESEQ lam,) = ptr,
where lam, = % (%\LAMBDA ptr, « ptr,)
Allocation function:
% «LAMGET : PTRx PTRxM -~ LAMxM
(% LAMGET ptr, prrz) {M[f = Iam3 [sz = (Y% LAMBDA pir, o p(rz)
where lam, ¢ PTR of M\, and lam, ¢ PTR of M,, or simply, a new
pointer is allocated.
(% BV lam,) IM,§ = pir,
(% +ESEQ lam,) {M,} = ptr,
Print form:
% (%sLAMBDA bv « exp-seq)
where bv the print representation of the bound-variable part is
fc | (FLUID iden) | (LEX iden) | iden | ( by, e bv,) }
’ where iden is ([% « =type-class] id)
and exp-seq is {atom | (e...)}
Semantics: See rules 8.1.1.1. and 11.2.
The question has come up as to why an explicit lambda-abstraction in operator is not
lexical. As in:
N (% (%-LAMBDA (X) (% +«CONS X Y))Y)
The answer is that it denotes itself and not a closure. A lambda-expression however
; denotes a closure that captures the current environment and that includes lexicals. The

fact that the semantics describes several closure forming avoidance features is largely a
matter of pragmatics.

A similar argument holds for a quoted lambda expression which denotes 2 lambda expres-
sion not a closure.
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MLAMBDA ABSTRACTIONS

Miambda-abstractions are macro-composition (macro) description constants.
Macro composition is a transformation from an operator value which is a macro and the
original combination’s data structure, (rator rand...), which produces a new expression.
The description consists of two parts:

1. The bv part describes the nature of the argument and the variables which con-
form to the components of this list.

2. The exp-seq part, taken in the context of the macro and its parameter variables,
denotes the value of the function.

Pointer type class: MLAM a distinguished type class.

Abstract syntax: MLAM {M{ = mlambda-abstraction = bv x exp-seq

Primitives:

.

Prof. Dr. H, Stoyan
Universitit Erlangen-Nurnberg

Ingtitut fGr Mathematiache Maechinen
und Datenverarbeitung (informatik Vi

The type constraint: % s=MLAM Am Weichselgarten 9
91058 Erlgnysn

Type predicate: % «MLAM

=,

(% «=MLAM ptr|) = ptr ilf ptr; = ¢ MLAM, otherwise V.
Access functions: % +MBV and % «MESEQ.

%+MBV : MLAM - PTR
(% «MBV miam,) = ptr,
where mlam, = % (%-MLAMBDA ptr, « ptr,)

% sMESEQ : MLAM - PTR
(%% «MESEQ milam,) = ptr,
where mlam, = % (%MLAMBDA pir, « ptr,)

Allocation function:

% «MLAMGET : PTRxPTRxM = MLAM xM
(% «MLAMGET ptr, pir,) IM\f = miam, {M,§ = *6(%-MLAMBDA pir, o
ptry)
where mlam, ¢ PTR of M|, and miam; ¢ PTR of M, or simply. a new
pointer is allocated.
(% «MBV miam,) {M,} = prr,
(% «MESEQ miam,) {M,} = ptr,

Print form:
% (%sMLAMBDA by + exp-seq)
where by the print representation of the bound-variable part is
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-

fe | (FLUID iden) | (LEX iden) | iden | (bv, e bv,) |
and exp-seq is {atom | (e...)}

Semantics: See rules 8.1.1.2 and 9.2.

MU ABSTRACTIONS

Mu-abstractions are context description constants. They are special form applica-
ble to the unevaluated list of operand expressions and result in an ordinary application.
The description consists of two parts:

1. The bv part describes the nature of the argument parameter list and the variables
which conform to the components of this list.
2. The value-list part, the parameter values.

Pointer type class: MU a distinguished type ciass.
Abstract syntax: MUfM{ = mu-abstraction = bv x s-exp
Primitives:
Type predicate: % MU
The type constraint: % «=MU
(% e=MU ptr)) = ptr iff ptr, = € MU, otherwise V.
Access functions: % +MBV and % -MUVAL.
%eMBV : MU - PTR
(% «MBV mu,) = pir,
where mu, = % (%sMU ptr, « ptr,)
% +MUVAL : MU - PTR
(%« MUVAL mu;) = pir,
where mu; = % (%MU ptr, « ptr,)
Allocation function:
% «MUGET : PTR x PTRxM — MUxM
(% «MUGET prr, ptr,) M, { = mu, fM,} = (MU pir, « piry)
where mu, ¢ PTR of M,, and mu, € PTR of M,. or simply, a new
pointer is allocated.

(% «MBV mu,) {M,} = ptr,
(% «MUVAL mu,) {sz = pir,
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Print form:
% (%sMU bv « value-list) ’
where by the print representation of the bound-variable part is
fe | (FLUID iden) | (LEX iden) | iden | (bv, e bv,) }
and walue-list is an s-exp

Semantics: See rules 8.3 and 13.11.
SEQUENCE ABSTRACTIONS

Sequence-abstractions are ordinary applicable much like lambda-abstraction. They
differ in that £ is not changed and no new activation record is created. The description
consists of three parts:

. The tag part names this sequence so that exit-expressions can be sequence
specific.
2. The aux part, analogous to by but creates references to stack places rather than

bindings of E.
3. The list of program statements ps-list.

Pointer type class: SEQ a distinguished type class. A
Abstract syntax: SEQ{M{ = sequence-abstraction = tag x aux x ps-list
Primitives:
Type predicate: % «SEQ
The type constraint: % +«=SEQ
(% «=SEQ ptr,)) = ptr, iff ptr, = ¢ SEQ, otherwise V.
Access functions: %+TAG, %+AUX and % «PSLST.
%+TAG: SEQ - PTR
(% «TAG seg-abstraction,) = tag, -
where seq-abstraction, = Y% (%»SEQ tag, auxs ...)
% e«AUX : SEQ - PTR

(% « AUX seg-abstraction;) = aux,
where seq-abstraction; = % (%>SEQ tag aux; s ...)

% «PSLIST : SEQ - PTR
(% «PSLIST seq-abstraction,) = ps-list,
where seg-abstraction, = % (% SEQ tag aux « ps-lisi )
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Allocation function:

% «SEQGET : {/DU()}x PTRxPTRxM = SEQxM

(% «SEQGET tag, aux, ps-list)) M § = seq-absiraction, {M,f = % (% SEQ

1ag, aux, o ps-list|)
where seg-abstraction, ¢ PTR of M,, and seq-abstraction, € PTR of M,,
or simply, a new pointer is allocated.

(% « TAG seg-abstraction,) {M,} = tag,

(% « AUX seq-abstraction,) IM,} = aux,

(% «PSLIST seq-abstraction,) M, = ps-list,

Print form:
% (%+SEQ tag aux » ps-list)

Semantics: See rules 8.1.1.5, 11.9, 11.10 and 16.

OPERATOR CODE ABSTRACTIONS

Operator-code-abstractions are a bit odd; from the point of view of the interpreted
semantics it is just an operator expression with a great deal of redundant information
attached, compilation is determined by this information and the other operator expression
is ignored. The description consists of three parts:

[. The rator part is an expression that the interpreter considers to be equivalent to
the abstraction itself.
2. The f-list part, alerts the compiler to the free variables required.
3. The list lap-code of assembly code statements for the LAP assembler.
Pointer type class: FRCODE a distinguished type class.
Abstract syntax: FRCODE{M} = operator-code-abstraction = rator x f-list x lap-code
Primitives:
Type predicate: % .FRCODE
The type constraint: % «=FRCODE
(% «=FRCODE ptr)) = ptr iff ptr, = ¢ FRCODE. otherwise V.
Access functions: % «RATOR, % «FLIST and %.«LAPCODE.
% «RATOR : FRCODE - PTR

(% «RATOR operator-code-abstraction ) = rator,
where operalor-code-absiraction; = % (%sFR*CODE rator, f-list « lap-code)
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% «FLIST: FRCODE - PTR
(% « FLIST operator-code-abstraction ) = f-list,
where operator-code-abstraction; = % (% FR*CODE ratwor f-list, « lap-code)

% +LAPCODE : FRCODE - PTR
(% « LAPCODE operator-code-abstraction ) = ps-list,
where operator-code-abstraction, = % (%>FRCODE rator f-list « ps-list,)

Allocation function:

% «FRCODEGET : PTRx PTRxPTRxM - FRCODE xM
(% «FRCODEGET rator, f-list, ps-list)) {M,] = operator-code-abstraction,
- M} = %(%sFR*CODE rator, f-list| « ps-list,)

where operator-code-abstraction, ¢ PTR of M, and
operator-code-abstraction, € PTR of M,, or simply, a new pointer is
aliocated.

(% +RATOR operator-code-abstraction,) M, = rator,

(% «FLIST operator-code-abstraction,) {M,§ = [-list,

% s LAPCODE operator-code-abstraction,) {M,} = lap-code,

Print form:
% (%sFRCODE rator f-list + lap-code)

Semantics: See rules 8.1.1.4, and 11.8.

STATE DESCRIPTOR

State descriptors serve three purposes. Firstly, they dcfline an environment and
are used as a component of funargs (closures) for that purpose.

Secondly, they are actually saved states which may be applied to effect an leaving
of the current state and the continuation of the saved state. Execution will subsequently
proceed in the environment of the saved state, at the point immediately following the
STATE operation which created the saved state.

Thirdly, they are used for the implementation of binding scarch avoidance trick.
A special metalinguistic component is added to denote the current environment-path.
Environment-path identifiers are metalinguistic data objects whose principle property is
that they identify an environment scarch path. A secondary. but uscful. property is that
they possess some space for saving and restoring some state components during path
switching. As a result of much consideration, several false starts. and dogged persistence,
x the ideal embodyment of environment-path identifiers is believed to be: state desceriptors.
These environment path descriptions are used in conjunction with the shallow binding celis
to avoid searching E in many cases. The total state then consists of the ordinary state, T
now shown to be {S;E;C;D;X}, applied to M, applied to the environment path identifier. kW

Vo
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i.e. {S;E;C;D;: X} {M} {sd} .

It may prove to be a pragmatic necessity to create another object just for purposes
one and three. In these cases only E need be retained. The nature of our current imple-
mentation is such that E is not independent of D so no benefit would be realized. We are

waiting for our experience with this model to provide some guidance.

Refer to the section on Global Environments for a description of sd and its
components. :

Pointer type class: S§D a distinguished primitive class.
Abstract syntax: SDfM{ = state-descriptor = {D;sd;X.gloE}.
Type predicate: % «SD
The type constraint: % «=SD

(% +=SD ptr,) = ptr iff ptr, = ¢ SD, otherwise 7.
The state allocation (or saving) operator: %:STATE
See rule 11.4.2.2.
Two state descriptors are % « EQUAL or % «EQUUP iff they are % -EQ. The reason is
that we currently lack the motivation to descend the structure. The same is true for
% +READ and % «PRINT. If the meta-linguistic states, which occur as components of
state descriptors, were themselves data objects then it would be imperative that they be
first class. For reasons of stack deletion strategy this alternative was vetoed. Perhaps, the
future holds promise of efficient, meta-linguistic states implemented as first class data
objects.

Semantics:

State-descriptors evaluate as constants but the application of one is understood and of the
class of ordinary applications (rands evaluated).

See rule 11.7.

FUNARGS

A funarg is an expression closure -- that is, the combination of an expression with
a specific environment, contained in a sd component.

It has the following representation:
% (% 'FUNARG e « 5d)
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Note: %sFUNARG is not an applicative constant. It is merely part of the special
bracket symbol “% (% FUNARG™. This contrasts with %.LAMBDA and
%-MLAMBDA which are applicative and are also used to form special bracket
symbois.

Funarg’s have been called function closures because of the interpretation placed
upon these objects when they appear in particular contexts, such as an operator. It is more
correct to think of them as expression closures.

Funargs (closures) are closed in the following computational sense: the bindings
of the free variables are fixed (closed) but because those bindings are updatcable the
meaning is not closed until evaluation. In other words, the closure contains the informa-
tion about where resides the values upon which the meaning depends.

Pointer type class: FUN a distinguished primitive class.
Abstract syntax: FUN{MJ = funarg = expression x E
Semantics: See rules 6. 8.2,9.3, 11.6, 13.12, 13.13, and 14.
Primitives:
Closure forming primitives: { % FUNCTION | %,LAMBDA | %-MU | “%-MLAMBDA
| %,FR*CODE}
See SF application rule 13.7 and ruie 14.
Type predicate: % «FUN
The type constraint: % «=FUN
(% «=FUN ptr,) = ptr iff ptr, = ¢ FUN, otherwise V.
Funargs suffer from the fact that they contain a state descriptor as a component. There-
fore, they are not first class values objects. % «READ. % «PRINT. and ?% «EQUAL are

not well behaved with respect to them. Once again complcte consistency has been missed
due to lack of motivation.

BINARY PROGRAM IMAGES

Bpi object are applicative objects that are executed directly by the hardware
interpreter as opposed to abstractions which are LISP interpretable. These objects are
usually the result of compiling abstractions. In such a case it is the compilers responsibility k
that they be well formed. The actual case is that because of LAP and the
% (% FR*CODE construct a bpi which is ill behaved may be formed.
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Once again we have the intrusion of system programmer activity into the
“sanctity” of an otherwise inviolable system.

Pointer type class: BPI = {FBPI U MBP!}
Abstract syntax: BPI{M} = { function-binary-program U meta-program }
Primitives:
Type predicate: % «BPI
The type constraint: % «=BP]

(% «=BPl ptr|) = ptr iff ptir, = € BPI, otherwise V.
It is not yet possible to print binary program images in a form which would permit them to
be subsequently read by LISP and used like the original object. There are several reasons
for this, the major difficuity being the lack of interest due to the availability of a package
of special purpose programs for this purpose alone.
Therefore, since it frequently occurs that an object being printed contains refercnces (o
binary programs (e.g. in a backtrace), a convention is used which incorporates the
identification message of a binary program (normally. the identifier associated with the
BP! when it was compiled) in the form:

%F'BPlmessage' or %M'BPImessage’

where F is used for functions with evaluated arguments. and M is used for meta-
applicative binary-programs.

° If an attempt is made to read such a form, the read program will emit an error message and
use the NOVAL object instead of a binary program.

FUNCTION BINARY PROGRAM IMAGES

Pointer type class: FBPI = a distinguished primitive type.
Abstract syntax: FBPI{M{ = function-binary-program
Primitives:

Type pred?cate: % -FBPI

The type constraint: % «=FBPI

e e e et g e g s e
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(% «=FBPI ptr,) = ptr, iff pir, = € FBPI, otherwise .
Semantics: See rules 11.3, 11.4.2.1.1, and | 1.6.

META PROGRAMS

Pointer type class: MBPI = a distinguished primitive type.

Abstract syntax: MBPI{M{ = meta-program

Primitives:

Type predicate: % «MBPI

The type constraint: % «=MBP!I

(% «=MBPI ptr\) = ptr, iff ptr, = € MBPI, otherwise 7.

Semantics: See rules 8.2,9.1,9.3.1,and 1 1.5.




IBM INTERNAL Draft --- FWB, reviscd 09-18-79 Page LIS

SPECIAL FORMS

The special-forms are a distinguished class of constants that apply specially. In
most other LISP systems certain combination forms are reserved for the purpose of these
special constructs.

Pointer type class: SF a distinguished primitive class.
Abstract syntax: SFIM{ = { % LAMBDA | %-MLAMBDA | %.QUOTE | Y.SETQ
| %sFUNCTION | 9%.LABEL | %,COND | %sSEQ | %-GO | %EXIT |
%sPROGN | %RETURN | % FR*CODE }
Primitives:
Type predicate: % «SF
The type constraint: %e=SF
(% «=SF ptr,) = ptr, iff ptr; = € SF, otherwise V.

The following constants (sf) occur as rator value and denote special forms, i.e.
their application is special and defined by special rules involving transformations of the
metalinguistic machine.

{ %LAMBDA | %MLAMBDA | %QUOTE | %.SETQ | 2.FUNCTION |
%sLABEL | %-COND | %-SEQ | %GO | %-EXIT | %PROGN | %,RETURN |
%>FR*CODE }

As such special forms apply specially i.e.. they are applicd to their unevaluated

randlist, they often require that randlist have a definite syntax. The required syntax for

these built-in operators was defined earlier.

Special Forms Appiication

See rules 8.1.3, 8.3, 11.11, and 13.

UNDERSTOOD OPERATORS

Pointer type class: UR = {FIX-UR U MULT-UR}
Abstract syntax: UR{M{ = {fix-ur U mult-ur}
Primitives:

Type predicate: % +UR
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The type constraint: % «=UR
(Y% e=UR ptr)) = ptr, iff ptr, = € UR, otherwise V.

The understood operator class of applicative objects all are ordinary applicative (they
receive their arguments evaluated). The two subclasses distinguish those which have a
fixed number of operands fix-ur from those that have muitiple operands muit-ur.

FIX-UR

Pointer type class: FIX-UR
Abstract syntax: FIX-UR{M{ = fix-ur
Primitives:
Type predicate: % «FIX-UR
The type constraint: % «=FIX-UR
(% «=FIX-UR ptr|) = ptr, iff ptr, = ¢ FIX-UR, otherwise V.

The print representation for this class is % s followed by a reserved name. The semantics
of applying these constants is built in and the definitions have been previously given.
Several are sufficiently special to merit comment, namely:

% «APPLX, %«EVAL, % «EVAI, and % «SET.
(% +APPLX fn list) (RULE 11.4.1.3)
APPLX performs the ordinary application of its first operand value to the list of values
that is the value of the second operand. Lexical variables are not accessible during this
application.
(% +«MDEFX fn form) (RULE 11.4.1.2))

MDEFX is like APPLX except it performs a macro-application. It Joes not reevaluate the
resulting expression as is the case for evaluating combinations that are macro compos-
itions.
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(Y% <EVALe) (RULE 11.4.1.1.)

EVAT cvaluates its one operand value with respect to the current environment. Lexical
variables are not accessible during this evaluation.

(Y% +EVAL e sd) (RULE 11.4.14))

EVAL evaluates its first operand value with respect to the context of the state which is the
value of its second operand. This operator is very significant because it, along with state
descriptors and fluid variables, gives LISP its ability to dynamically construct an expres-
sion and then evaluate it with respect to an independent context. Were these not present
the environment and control would march along in lockstep and retention strategy would
not be required.

(%+SET a, a,) (RULE 19.)

SET is like SETQ except it evaluates its first operand, which must have an identifier as
value. Lexical variables are not accessible [or this assignment.

MULT-UR

’

Pointer type class: MULT-UR
Abstract syntax: MULT-UR{M{ = muit-ur
Primitives:
Type predicate: % +MULT-UR
The type constraint: % «=MULT-UR

(% +=MULT-UR prtr,) = ptr, iff ptr, = ¢ MULT-UR, otherwise V.
The print representation for this class is % : .followed by a reserved name. The semantics
of applying these constants is built in and the definitions have bec¢n previously given.
Several are sufficiently special to merit comment. namely:

%:CALL, and %:STATE.

(%:CALL a, ... fn) (RULE 11.4.2.1.)

CALL applies the value of its last operand to the list of values formed by evaluating its
earlier operands. Lexical variables are inaccessible during this application.
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(%:STATE [gloval [glolst]]) (RULE 11.4.2.2)) e,

STATE saves the current state, or a modified form of it in the case that optional argu-
ments were supplied.

The modificd form of the current state may differ only in the global environment gloE
component of the environment E. This component is exercised only when the normal

components of E (the bindings created by the application of abstractions) have becn
exhausted during the search for the most recent binding of a variable. The gloE gives the
dcfault or giobal binding.

The value is a state descriptor sd which denotes the state in which the STATE operator
was applied.

The sd may be used as an argument to EVAL to provide the environment of that state as
the binding context for the evaluation.

An sd may be applied causing the saved state to continue. In that case. the value of the

STATE operator is some data value (and not the saved state). In other words. the A

operator STATE gives an sd as value when saving. and some other message value il

continuing. AT

The optional arguments gloval and glelist describe the modifications to the gloE.

Lo .
i




IBM INTERNAL Draft --- FWB, revised (09-18-79

NTUPLES

Ntuples are provided in the hope that a type extension method will use them.
Because of this they ought not to be used except through this facility which has yct to be
defined. The system is prepared to storage manage, print and read them. They are

mentioned only as an inducement.

Ntuple Format:

|
LCMVTP | Vector Length in Bytes

Small integer length in bytes of pointer section

Pointer for Element O

Pointer for Element 1|

Pointer for Last Element

Unstructured binary data which is accessible only via a user-
written function.

Pointer type class: NT

Abstract syntax: NT{M{ = ntuple

Primitives:

Type predicate: % «NT

The type constraint: %oe=NT

Ntuple structures present a difficult problem for printing. because there is no standard
organization of the binary data section. Therefore, the print representation of an ntuple
is:

(Y% «=NT ptr,) = ptr, iff ptr, = € NT, otherwise V.

% (« comp” « bitstring)
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In effect, the binary data part of a selector structure is printed as if it were a bit vector.

COMPLEXES

Complexes are provided in the hope that a type extension method will use them.
Because of this they ought not to be used except through this facility which has yet to be
defined. The system is prepared to storage manage, print and read them. They are
mentioned only as an inducement.

Complexes Format:

LCMVTP Vector Length in Bytes

Small integer length in bytes of pointer section

Pointer for Element 0

Pointer for Element |

Pointer for Last Element

Unstructured binary data which is accessible only via a user-
: written function.

Pointer type class: PLEX
Abstract syntax: PLEX{M} =
Primitives:
Type predicate: % +PLEX
The type constraint: % e«=PLEX
(% «=PLEX prr|) = ptr iff ptr, = ¢ PLEX, otherwise V.

Complexes present a problem for printing, because therc is no standard organization of
the binary data section of a complex. Therefore, the print representation of a complex is:
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% (s comp’ « bitstring)

In effect, the binary data part of a complex is printed as if it were a bit vector.
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ISSUES and COMMENTS

The introduction of the mlambda-abstraction class of operators and their attendant
macro composition forms leads to a more complex formal definition than is usual for LISP.
It seems important, however, to raise these long term denizens of LISP systems to first
class status. This choice also leads to the strategy of evaluating the operator once and
classifying the type of application on the basis of that value.

The treatment of special forms and understood basic operators will be scen as
considerably different than the usual practice. While this treatment rcquires a few special
classes of constants, it gives back the full set of identifiers for use as variables.

The environment was admittedly embellished to provide a model for lexical
bindings. This gives rise to distinguished contours and coincidentally distinguished states.

The environment model was also extended to encompass the notion of variables of
constrained type. So long as we persist in the belief that we shouid be able to move freely
from compiled to interpretive evaluation or that the basic model for meaning is the
interpreter, then we feel obligated to have interpreter models for concepts even if they
arise from compilation technology. Note also the CALL construct.

The notion of dynamic evaluation context was continued in this LISP, the notion of
capturing a context and retaining it for later use was preserved. The fluid-variables
comprise the dynamicly inherited environment. We have required that they be distin-
guished whereas the lexical-variables are obtained by defauit.

The treatment of global environments is thought to be a reasonable extension and
improvement over ''atom-head-bindings".

The MU operator has been provided with the ability to expose lexicals (somewhat
grudgingly) as a powerful system programming tool. The ability to describe contexts
abstractly is due largely to Fraser{15]. This concept could have been realized by a method
that was conservative with regard to lexical access. The writers of the compiler and the
debugging facilities insisted on the right to implement these facilities entirely in LISP. A
conclusion of this was to provide a window into lexicals.

The SEQ operator represents considerable evolution in this design. deriving from
the PROG form. Statement sequences do not create binding contours. they can however
create named stack places. Pecrhaps we have intruded our desire to illustrale a computa-
tional consideration. The addition of the rag component was seen as the solution to a
problem that arose when scquences were automatically being wrapped around cxpressions
by macro’s. Wrapping gave rise to misinterpretations for exit expressions that were
imbedded within wrapped expressions.

Expression sequences we though to be sufficiently diffcrent from statement
sequences to merit special treatment. We note that they are parsimonious in the use of §.
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We also considered the so called implied PROGN for abstractions and conditionals as a
generally good idea.

The model described above treats GO as strictly local to a statement context.
This was done with considerable malice of forethought becausc it makes for a simpler
semantics. The unique behavior of this operator with respect to the state (i.e. it only
affects the stack and control) has led to its inclusion as a primitive. The semantics for go
expressions are somewhat complicated by the possibility that they can occur anywhere.
This small complexity does not, however, preclude a simple, efficient, compiled realization,
namely change of location counter.

The powerful operator STATE and the sd data objects were introduced in order to
model compiex control structures. There is reason to question whether certain control
construct are not deserving enough to merit direct, computationally efflicient. primitive
status.

Streams and the interrupt schema must be considered as not completed. As the
current models are used they probably will develop and be revised.

The treatment of self-referring structures, particularly with regard to the output
canonical representation and its relationship to equality is though to be a bit more thor-
ough that in most LISP systems. '

LISP1.8+0.3i provides a rich but rather ad hoc and fixed set of data objects. A
very general data type extension was anticipated (using ntuples and complexes) but has
never been completed.

For all the issues, lacks. and controversy. this effort at detailed definition has
proved to be of some benefit, as a specification document, to the designers and it is hope
that it will be even helpful to implementors.

LISP1.8+0.3i is a resuit of our developing LISP/370 and it represents how we
would propose to do it if we were to build another LISP system. Actually it might be
better to say that there are several proposals in our local community and this is one.

In conclusion, to repeat, the purpose of this document is to encourage interest and
comment. The author welcomes any and all such responces and commends those with the
persistence to have read any large part of this wearying document.
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APPENDIX A

Lexicon of named states.

D non-conformal-app = .
{xea e...2,05, ES
{APP 05 ,)e()e % (LAMBDA ?ARGS? ((ERR2 4)?ARGS?))eC,D} , -
D

=
macro-nan-conformal

{me(m rand...)eS;(APP,eS) e()e%(LAMBDA ?ARGS? ((ERR2 3)
7ARGS?))eC;D} '

D

macro-inapplicable =

{xea e...a,0S5, E;
(APP 05 )e()e % (LAMBDA ?ARGS? ((ERR2 5)?ARGS?))eC: D}

D.

inappficahle-object =
{xea e...2 05, E:
(APP oS )e()e % (LAMBDA ?ARGS? ((ERR2 6)?ARGS?))e C; D}
D

unbound-aux =

{a,eS; E:
(APP +S)e()e Y% (LAMBDA ?ARGS? ((ERR2 15)?ARGS?))eC; D}

D ifl-formed =

{xea eS; E;
(APP eS)e()e %(LAMBDA ?ARGS? ((ERR2 16)?ARGS?))eC. D}

D

. =
exit-error

{xea,eS; E:
(APP eS)s()e % (LAMBDA 7ARGS? ((ERR2 17)?ARGS?))e(); D}

D, hound-AUXSET =
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{zeid eS. E;
(APP,eS)e()e %(LAMBDA ?ARGS? ((ERR2 18)?ARGS?))eC; D}
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