
. __ ._-._ .. _-------------------------------

COPIED FROM ORIGINAL

Imperial College of Science and Technology

 Computer Unit

LISP on the Imperial College 7090 Computer

The LISP version available on this machine is LISP 1.55, the Stanford

(California) Export Version of LISP 1.5. Details regarding the structure

of the system and preparation of program decks may be found in the LISP 1.5

PROGRAMMER's MANUAL, published by the M.I.T. Press. Any program prepared

for LISP 1.5 will run without change in the present system. The extra

features available in LISP 1.55 are listed in notes available from Programs

Records Office, Room 405, Electrical Engineering Dept., Imperial College,

London SW7.

The system uses the FMS monitor and a small FAP calling program to

gain control, and returns control to the FMS monitor at the end of a job.

A complete job, with calling program, will have the form:

*10 7

*
*
*
*
* *

10C

*

PLEASE LOAD CURRENT LISP TAPES
PAUSE
XEQ
PACK
FAP
RTBB 7
RCHB 10C
LCHB (.1
TRA 1
IOCT (.1,,3
END
DATA

(transfer card: 7, 9 in column 1: 2,3,4,5,6,8,9 in column 3)
(blank card)
(LISP program)
(End-of-file card)

Assembled copies of cards 2 through 13 (i.e. including transfer card)
are available on request from the Reception Room 404, address as above.

SYSTAP is B7 and SYSTMP A5. Tape B7 should therefore be specified as
nLIsp n and A5 as scratch on the job slip. A5 could, of course, be reserved
and later used as SYSTAP. SYSPOT and SYSPPT are A3; punched output is
processed with the standard FMS output without any further action from the
programmer.

...
. ~ , , .

l~ERIA1 COLLEGE PROGRAMMING GUID:1_
,>;(',

I' ;

-f}

'..,.~. ~,;; I. ,,.. .•.. '

, '.
CONTliNTS
.... fl. 'I'PJ. i. ~ .

1. Plan q~ the Guide '" ~ .
2. Some History and' p'rop-aganda

3. References ••••••• ~ •.• ~

4.

5.

6.

7.

8.

9.

10.

.. Availability • •••••• e· •••••••••••••••••••••••• • • • • • • • . "

...
The Scope of LISP ~ ••.•• ~ ••.•. ~ •.•.•••.•••••.••.••••

Definitions of the Basic Entities in'LISP •••••.••••

The Atom NIL, and Equivalence' between 'Dot'
Notat:\,.on. and JList" Notation •••••••••••••••••••••••

. . .
The Functions CAR, "CDR and CONS., and the Computer
Representation of List Struct~re .•••.•••••••..••••••

Prefix' l'fotation' ~ ••••• 0 ••••••••••••••••••••• ',' ••••••

HoVJ to Write Simple .De.:Eini tidns of Functions ••••••• . .
11. The Use of QUOTE, ~d some· Special Atoms •••••••••• ~

12 • Predicate Funct.ions 7 and. COND •••••••• " ••••••••••••

13,. Recursi~ie Defini tion~ of' FUnctions ••••••••• ,' ••••• ~ ~
. .

1

1

2

3

3

4

5

·6

g'

9

10

12

13

14.

15.

16.

The Filnc ti on ERROR '. ~ '! 4 •• .; ••••••••••• e ••••••• '.. • • • •• 13
, ':'

The Functions LIST and APPEND·.: ••••••••••••••• e •••• J 14

Constants • • • • • • • • • • e' • e • • • • • 14

17. Example - Part of a LISP Programme ••••••••••••••••• 15
.. ,

; •• e

18. The Function EVAL . 17

19. The PROG Feature •. amd the FunctioD;s GO,. 'SETQ and
RETURlf ... " 18

20. Preparation of the Card Deck for an IBM 7090
LISP Programme 19

21. SOIDe Common Programming Errors •....••....•..•••.••• 22

22. Aids to Debugging ••..••...•........••••..••..•.•••• 23

(i)

~

.-

II'

I

I

,t

...
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.'

37 •

38.

39.

40.

41 •

42.

43.

44 •.

45.

46.

47.

l '

The Most Common Error Messages and their
Interpretation ••.•...•••.•..••.••••••••••.•.•.••••• 24

The Functi(lns SUBST and SUBLIS, and a Comment
about Stanq.e..+.:.~ Tabl~s ... o.f Integrals 25

1_.. ~ •• ", .~_ ~._ ,.. ••• '. '0' I •• :._ :;,

The Function b1~PLIST - an Introduction to
Functional ~lrgum.ents 26

Boolean Logic •...•••..••.•..••.••••••••••••••••• ~ •• 27

The Garbage Collector •• 0 •• 27

How to Write Functions of No Arguments ••••.•.•••••• 27'

Function's for Printing and Similar Operations •••..•• 28

Some More Useful Functions ••••...•••••••••••••••••• 29

Addttiona.l Functions in the LIS:P 1.6 System at
Imperial College ••••••••••.•.•••..••.•.•..••••••• : •• 29

The Postal Function POST ••.•. :••••••.....•..••• 33

Pause 1 .. 35

Peculiarities of C~O 3600 LISP ••.•.•••••••..•.••••• 35

Peculiarities of Atlas LISP ••••...•.••..•••••.•••••• 36

An Index for·the LISP 1.5 Programmer's Manual •••••• 36

List of Errata IO.r theLISI 1.5 Programmer's
"Ivlanual, •• _ " 0 •••••••••••••• ! • : ~ ••• ' •••••••••• 46

Commenta~y on Appendix 1 of the LISP 1.5 . .
t .. 47 Pro grammer s IY1anual •••••.•....•..•.•.••••••.•••••••

Some Usef~l Tricks in LAP •••••••••••••••••••.•••••• 48
, ,

T~~CESET and UNTRACESET for All Levels of a PROG .~. 50
. ,

Rea.da.ble Displays of Function-Definitions •••..••.•• 51
• . ~ -. !.... .."..

FORTRAN Input-Output JPormat •••••.•.•••••••. ' ...••••• 52

Pause 2' •••••••••••••••••••••••••• e' ••. ~ • • • • • • • • • • •• 53

Setting up an IBM 7090 LISP System ••.• :: 53

Feynman Diagrams and Traces - Programmes for
Thcore-Gical Physics ., •. , .•. 0 •••••••••••••••••••••••••••. 57

Help ~ • 9 • It 0 • 0 •• 0 • ~ •••••••.••••••••••••••••••• ~ •• 62

Postscript •.•....•....•.••••.••.••.••••••.•.•.•.••.• 63

.(ii)

1.

2.

()
" ,

Plan of the Guide -----------------
It is reported in section 3.1.4 of the User's Manual at

Imperial College tl?-a.t the programm~ng l~r.:g~gage LISP is r
available at Imper1al College but 18 td~l~lcult to learn.
This view may have been induced by a reading of the LISP
1.5 Programmer's Manual (reference (3.1)), which is a work
far morc sui ted to the regular us:,r of LISP than to the beg
inner. The first part Of the present Guide, up to Section 337'
has thG purpose of disproving the quotation in the first sen
tence above. With the help of this part ,it should be possible
to'write and run simplE: LISP programmes without reference to
the LIQi 1.5 Manual.

. Following the first Pa~~e at section 33 come nine sections
that presuppose knoyvledge of the LISP 1.5 Manual, (which, is
readily available ~rom efficient British "boo}cselle::."s) , and
that contain comments or reports of tricks which may be help
ful for the advanced programmer.

The second'Pause (siction 43) is f~llowed by some
information of use to·programmers.Vlho wish to construct their
own LIS? systems from, the set-up tape at Imperial,Collegeo
The set-up tape also contains card images for LISP programmes
that have applications in the physics, of sub-atomic particlGs~
and in, 'section 45 'there is a description of thse prO.gr,a~esO'

Apart from a postscr.ip·t, the Guide ends wi th a few, .. ,~: .
addresses of people who-may be able t~,provide advice if the
begi:rming programmer in LISP encounters what appear. to be
inexplicable bugs.

:.' -

. Most non-speci~lis~d 'liter~iur~ about compuier~, in'~he
classical (pre-1950?) period of thE; subject, 'spent much time
:in discussing their possibl~ uses for logical problems (~.g.
chess-playing) that could not prop~rly have been reduce~ to
problems only of ~umerical manipulation. At that stage it
would have seemed that numerical problems rEprEsented a very
small part of the ttital field of sci~ntific applications of
computsrs. Nevertheles~, 'the ~ost ~opular computing language
continues to be FORTRAH~' vihicIl is most effective only·for
p~q,gralTl_mes that consist mainly of .. arithmetic operations.

The earliest ~uccessful attempts' to construct a .
,p~ogra.mming language suitable for the description of general
manipulati~nsof data not limited ~~rely to numerical mat~rial
led. ,-Co the IPL seri'Gs·· of' languages. 'The best~YJlovjn memb~:r
of this series is IPL-V. dhile still used in some centre's 7

IPL-V is no~ rat~cr less popular than LISP7 because its ~
sup~rficially close resemblance to a machine code'm~kes it~ .
more difficult to employ either as a programming language or
as a medium for the, .tea.ching of principles of non-numerical

. c'Omputing.

- I -

. ...
LISP (LISP 1) da tes from'~1959, al though the first' publi.c, ' .

ations (notably a LJSP 1 PrograIIlI!ler's Manual)' 'to deal wi th it
did not appear until Ij60·. It was ,deve,~op'ed first for an
lEd 7090 at MIT by J. McCarthy and othGr's. Its flavour of
mathemat~cal logic (well demonstrated by the reference (3.4»,
which was carried over into the LISP 1.5 Prpgrammer's Manual
(3.1), may h~ve'beE..nres'ponsi~le f~:r;' the legends about the
difficul ty of LISP. , . ..

The MIT LISP 1.5 evoived into ;'LISP 1,_ 55 in Boston, and in
1963 and 1964 some further and more utilitarian additions (see
Appendix I of the reference (,.~» by~ cpurtesy of the Artificial
Intelligence Project at dtanford Univ"ersity turned it into
LISP 1.56. The LISP 1.56' sys'tem WB:_S imported from Stanford
to Imperial College in Fsbruary. 1965, and at various times up
to August 1966 it was altered somewhat to provide a rLISP 1.6'
which was of greater use for several specialised problems in
physics. However, to ayoid alienation of non-physicists, it has
,since been 'de-tuned' to approximately the ~pecification of
LISP 1,56. ' . --. .

Some of the examples in this Guide 'have a. bias towards',
theoretical physics, but that does not imply that the uses of
LISP are narrc wly specialised. TheLISF 1.5. ,.,manual lists as
uses game-playing, electrical circuit:-theory: and symbolic
calculations in differential and integral calculus. To this
list? from experience at Imperial College alone, we can add
moda1 ~ogic, the automatic proof of theorems in the first-order
predicate calculus, teaching, mechanical anthropology (including
the edi ting of text), spectroscopy (applied to physical Ch,effiistry),
group theory, nourophysiologY9,automatic writing and debugging
of FORTRAN programmes and tra.nslations hetwcen different machine
codes. In all of ~hese problems, LISP programmes have primarily
manipulated non-numerical data and, performed non-arithmetic '
operations. -Tnerefore-It is not:' nee essary to -conslder-=the-IBl':l,
7090 at Imperial College as being confined to, the very limite,d f

ran{~ of scientific problems that can be solved only by !!~~!:~£§:~
metL~ds and FORTRAN programmes. Any procedure that can be
described co'm, pletely in unambIguous English can be described (and
presumab~y execut~~J. in LISP ..

3. g~f£~~!!£~~

This Guide is not completely self-contained, and ideally it
should be read in conjunction wi th the L~SP 1.5 Programmer's'
Manual, which is in any case an essential reference for the
serious user ;~ .. LISP. The references (3.2) and (3.3) 'are 'in
effect commentaries on the Manual, with reports of original nork
on the uses of LISP and its preparation for computers other than
the IBIvI 7090. (3.4) is now largely of historical interest.
(3.5) is a Manual for LISP on the CDC 3600 computer, and its
points of difference with (3.1) demonstrate what are the most
difficult Narts of the ~b of setting up LISP for a new computer.

3.1. - 'LISP 1.5 Programmer's IIlanual' (J. McCarthy et al.)
MIT Press, Cambridge 42~ Massachusetts 02142, U.S.A.
The original edition was dated 17 August 1962, but
probably the only v(~rsion now obtainable is the revised
edition from February 1965. The price is %3.00, or 23/-
from British booksellers. '

- 2 -

, ,

3. 2.().
\

"

rphe Programming Language LISP, Its Operation and
Applications' (editors E.C. Berkeley and D. Bobro\1-),
Information International Inc., 200 Sixth Street,
Cambridge, Mass. (1964). Copies may stoill be ~40v~,ilable
from the Defense Documenta.tion Center, Arlington,
Virginia, U.S.A. for ~7.50. . .'

• • .,- II

3.3~- 'The Nature~ Uses and Implenentation of the Computer'
Programming Language LISP' (editors.E.C. Berkeley and
~. Edwards), Information International Inc., address as
in (3.2). The expec~ed date of publication is March 1967 •.

. -

3.4.- J. McCarthy, contributi·on to 'Computer Programming and' ,
Formal Systems' (editors P. Braffort and D.' Hirschb~rg),

,North-Holland Publishing Company, 'Amsterdam, Holland "·(~963).

3.5.-'LISP 3600: bser's Manual' (J.G. Kent)~ ~eknisk notat E-98~
Forsvarets Forskningsinstitutt, Box 25, Kjeller, Norway (1966).

.. ..
At 25 October 1966, LISP prog~ammihg systems were available

for four large commercial computers: IBM 7090/94, D.E.C. PDP-6,
CDC 3600 and IO'l: Atla.s (formerly Ferranti Atlas). Information
about PDP-6 LISP is rather vague, except that research efforts by
the System Development Corporation (2500 ~olprado Avenue, Santa
Monica, California 90406 9 U.S.A) on varieties of LISP 1~5 (NOT to
be confused with LIS? 2) are du~ to be transferred from the---
mili tary A~~/'j?SQ-32 machine to the PDP-6 shortly, -so that en(luiries
either to S.D.C. or to the Digital Equipment Corporation Users'
Service, Maynard, Massachusetts, U.~.A., should produc~ whatever
neVIs is avai la.bl e. ". 0 • • ... ,

. .
Details of CDC 3600 LIS~ can be derived from (3.5), or from

CO-OP, the CDC equivalent of the IBI'.1 SH.i~RE uoers' association.
In Europe, this LIS~ syste~~is avai~ab~e·in Kjeller and T~ris~

Atlas LISP has bGen dev~loped by Dr. ·D. Russell 'of the Atlas·
ComputGr Lctboratory, Chilton, Didcot , Berkshire, and is so f'ar
availa.ble only on the Chilton Atlas. The Atlas laboratory,
produces occasional duplicated she~ts. of :Lnformatipn about current
developments of its .LISP system. .

." .

A version 'of LI8P stl~ta;b'lefoor:' CDC computers in the 3600
series exist~ ~tit has not ~e~'b~e~ tested. It will be debugged
on the CDC 6400 of the Computing Cent.re, University of Adelaide,
Adelaide, South-#..ustralia,du.l'ing 1367.

". ,"\ "

.: . ',~

I.. .-.

Let us begin :n examina~ion of the advantages of LISP by a
short comparison with the well-known lal1guage FORTRAN. FirstlY7
FOR'J:RAN programm~s only described oi5°erations on numbers, whereas
LIS}:' allows operations on numbers, ~£~!~£~, ~~g~~~§~£-~;YIE2£!~

and text. decondly.~ FORllRAN programmmes have rigid requirements of
storage, VJhich means effec ti vely that any variable in a prograr!llllG,
or any member of a dimensioned array can only stand for a single
number. By contrast~ a varia.ble or a. member of an array in a
LISP programme can be made to stand not only for a sing-18 n~mber?

, ~

3 -
ow _ ..

· .- like 2.7, but :for a list of numbers, like (2.1 4.5 9 288.3l)~,
a letter like A,a word or combination of letters like LISP,
a list of these entitie~ in any order (e.g. (A LISP 2.7 4.5
9 288.31), a list of lists~ like (A (LISP 2.7) 4.5 «9»
288. 31), .and so on. Therefore qui te general opera ti.ons may
be programmed in LISP, and t.L18 conventional ari thmetic operations
make up ·a subset of LISP.

In theoretical physics, LISP programmes have been written
to take tl'aces of Dirac gamma matrices and their matrix
products ~ith four~vectors~ p~oducing as output the a!g~~~~!£ .
result of the trace ~8ration, and to perform the analytic . .
proccdurGs of integration both.over internal four.-momeuta in
ma.trix elemGnts derived from JPeynman diagrams and over phase
space in tho.fina.l state. Such programmes have derived results
iNhich are sums of up to 35000 algebraic terms in 20 minutes
of computing time on an IBM 7090. Other programmes have
generat~a Feynman diagrams, specified tl~e asymptotic behaviour
of scat~oring amplitudes at high energy, and reproduced the
calcula.tion for the magnetic moment of the elec-Gron,. correct to
fourth order in pErturbation theory.

There are two other advantages of LISP in comparison with
FORTRAN, I-t; is obvious to any user "iNhere a FORTHAN programme
stops and its data begins, because the rules for wri ting FORTl1Ai:J·
statements a.re laid dovJn in the programming manua.ls, while the
(different) rules for r~a~ing and writing data are in effect
contained in the FORl~L4.T statements of the programme. By contrast,
units of LISP programmes and data are both written in the same
basic form - the S-expression. (We shall examine the definition
of r S-expression r belovv.) It Iollows tha t programmes can be
treated as data, and in particular they can debug and correct
each other to a limited extent.

The final advantage of LIS} prograw~es oVer FORTRAN, since
they can operate on combinations of letters, number$ &nd .. t~xt, i g
that they can wri te other LIi)~e programmes - or even FOR~Rj: .. H .
programmes.· In practice, it is quit~ easy to design LISP prog-
ra.mmes to do this. .

In conclusion, a disadvantage. For large quantities of
ari thmetic, LISP is sie:nificantly slower than 1!-'ORTRAN. Therefore,
if a calculation is primarily numerical, as much of it as
possible should .be programmed in l?ORTRAH.

6. ~~f!g!~~2~~_£f_~g~_~~~~£_~~~!~~~~_~g_~!~~

The most ba.sic object that can occur in a LISP programme
(or data.) is an atom.

~. ~ ;----

~n atom·~~ eithe~'a number (fixed-point, floating-point ..
or ·octai·, i~·e·· ariy~nu:mber permissible in a FORTP .. .AH prograIP~rne,·
.except that the first character of the nunb~r must ~£! be the
decimal point): smaller in rna-gni tude than 21 8, 9.!: a. string of

·letters, certain special characters and decimal integers not
separated by blank spaces (provided that the first character in
the ~tring is a letter, and that the total length of the ~tring
dOt;s not exceed 29 characters in IBM 7090 LISP or 8·2 characters
in CDC 3600 LISP). Some possible atoms are:

- 4 -

,J

~ • __ .• -_.,'4)

I) 1 l.~ 3257Q (this is an octal number, equal
r ' to 1711) " ,

2. 986E+12'
SIIvIP+6

A ' AB. A2B A EXTRALOtrGSTRINGOF29Cllt1.RACT~iJH3
SIMP+6++~ ...

LI~:)P programmes e,1ways trea.t thGse atoms as, a vvhole', a:nd do not
spl'i t them up into their component characters.

The next object th~t we meet is the dotted pair. This is
most Sir:l'ply a pair of atoms v:hich is separated-by-a-dot (which
is the same thing as a decima.l point) and Enclos8c by a pair
of br~ckGts. A trivial dotted pair is:

(A QB)

and another possibility l' C!" vo

No\~ Vie can see why a number calIDot begin vii th a d ocimal point.,
Also, .to a.void ambiguity , it ·is always good to leave a blank
space between the dot and each of the elements of a dotted pair -
otherYiise Vle run the risk of 'viriting nonsense like (2.4.~.,3).

Next, a most important statement:' ,~~~_.§:!Q.~~_§:!:~
§.=~?fEE£~~!9.~~·

This starting point is sufficient for us to make a complete
definition of 'S-expression '0 Any S-e:Kp'ression consists of th~ followlng:------------------

. ~.'

in that order.

'A left-hana bracket
An S-expression
Opt"ions:l blank spaces
.A. dot
Optional blank spaces
An S-exprossion'
A right-hand 'bracket

t (t

,) r

• Notice that t S-expression' is 'defined in terms of i tsclf;
the d efini tion still makes. sense, though:, because we k110v-\~ tha.t
an atom is an S-cxpressio~. ' ~e call this ,property of 'definition
in terms of i tself l 'recursio'ii., .. Late-r \\e' "shallU:'se '~recursion
extensively to define-functrons in terms' of' themselves.

Obviously (A • B) obeys a.ll the demands' of the S-exPl'>8ssion
definition? so that it must ·be an S-expression. Therefore all
dotted pairs 'are S-expresSionso Therefore, ~sing the definition
again, v;e find. tha.t «A • B) • (C. D)) is an S-expre'ss'ion. So is '
«AB • (CD .• IiF)) '. (GlI. IJK2)). In this way" we can build up
S-expressions of a.rbitrary complexity. '

The Atom NIL, and Equiwaience between· 'Dot' :I:J.otation and 'List'
N~~~~r5~------~--~----~~-~~-----~-------------------------------------- '

ihe great~st difficulty in the writing of long S-expression
in the' doti 'notation .. above ii3 :tha.t i t involv~s mucp. hard viox-k
to get all of the dots and brackets in the right places. It
seems reasonable to expect some complication with brackets in
long lists, like:

'"

.... 5 :-'

•

8.

«1 1)(2 1.414)(3 1.732)(4 2) etc)
~ ..

(whose meaning should b£ evidont!) but the dots merely provide
wmecessary deta.il. Therefore, in LISP, the programmer m.ay use
an alternative 'list' notation and forget most of th~ dots.

Th~.;r2is a special atom named NIL in the LISP system, to
assist in the establishment of an equivalence betvJeen list
notatioil a.na dot notation., Let the 'lo'wer-case lett'ers x and y
stand for any S-expressions. Then we hav(two !~E~~!~~~_~!~~
identitios~

(x. l;IL) =. (x)
(x. (y») = (x y).

By :rep~ated use' oi' thee:: idGn-~.i ties 7 Vole cSin 1JVtri te .(for example):
. '. '. : . t: . _

.t ...

(ABeD)":;:: CA. (B. :(c. (D. NIL»)'))'· , .
((A, B: V.:' D) = «(A. (B. NIL); ((c .. (D. ':NIL» • NIL») •

,"

..

However, there is no guarantee that all dots can be removed with
the help of tllG ide.n,tities. :i'ts an "example «A. B). «C. D). NIL»
can be red uc ed only to «A. B) (C. D»). Therefore i,t. mus.t pe
possible to mix the use of list and' dot notations in any
S-expression.

. ... -........ .
.ltl though we need to VJri te a minimum of dots when V';8USG .. :-,:,

list notation, we must nevertheless remember the equivalenc~s
wi th ths dot notation 7 in order to understand how the most b2 .. sic
functions in the LISP.system obtain ,their result~.

The Func-cions Cl..R CDR and CONS, and the Computer Representa.tion ___ ~ _____________ L ___ _

of List Structure :. ,

" .
The word-length in the core memory of the lBIE 7090 is 36

bits. The LI;31 system uses the posi tions of 6 o£ these bits for
special purposes (whose significance is outside the range of
this discussion), ,leaving 30,bits per ~ord for storage of
information. vIe divide thE word into tT.~;O IS-bit parts, . the
r address' part ~~d' the 'decrement' part:" '

, ,

BeCal-lSe the IBM 7090 has three special 15-bi t registers, vIe can
look at t~~,t~o ~arts o£ a ~ord separately, and use the ,two
parts to·~t9r~',se~ara~e pieces o~ i~formatio~ •. Recall~he·
dotted palr CA. B). We stors thlS ln an'obvlous··manner,·by
putting b in the address part of one computer word and"B in t~e'
d cerement part oi' t.he samt v;ord ~

. J CA. B) = [7"I-B"3
On a v8r~ basi6 level, then, we need LISP functions whieh
operate on a compound structure like this and give us back the
simpler parts of the structure, e.g. A orB.

- 6 -

..
, .

. .'

These t~o functions are~

CAtt ('contents of the·address register r
)

CDR ('contents of the dec~ement register')

In thE; simplGst case, the C_c_R of (i\.. B) is A, a21d the CDn of
(A. B) is B. M')rc generally, \vhcn x and y again stand for any
S-expression, we find that

CAR of (x) = x
CAR of ~~ y) = x

but CDR of y) is not y, it is (y)
dnd likewls'e CDR of (x) = NIL

These results are easy to understtnd if we remember the
equivalences between dot and li~t ~ot3tion from section 5.

, .'

How are structures more conplicated than (A. B) represented.
in the computer? For examplE:, the list (A B) ?

To do this, we must conside~ the manner in which the core
memory of the computer is organised. Ea.ch word of the memory
is an unique location, and this location is specified by an
octal number 'between 9f (~Q) and 32767 (77777Q) in the IBlVI 7090.
Suppose that the parts of (A B) = (A. (Bo NIL» are stored in
the computer like this:

Lt 5332Q

L4·7'214Q

??~ .
NIL

It is necossary to associate the' two wor~s in some way in order
to set up the list (A B). This is done by replacing I???' in
the decrGl'!1snt.partof the word at location 45332Q try a E2!~1~!:
to location /.{72IL~Q. The LISP. convention is ·that· ,the pointer
to, a.ny' loca tion L is the octal number c-qual to the difference of
lf5f1;J09):)' and L. Therefore, in thE: presf-,nt .case, t ??? t must be
replaced by the octa.l numb.er 39'564(=1¢p~¢9JQ- 472l4Q).

Now here is an important pi8ce of information which makes
life easy for the programmer. We need not worry about the
actual storage loc~tions of information, or about the need to
calculate the pointer explicitly_ This i3 done automatically
by the LIS} system, ~hich insG~ts new information, as it is
calculated or rGad in, into th,s flrst convenient unused lNord
which it finds in the cor6 mEmory. Because of the concept of
the pointer~ LISP (unlike FORTRAN) is not limited' to a sequential
type of storage or the storage of information which has a fixod
length.

In vieVl of vlhat has been said dboVG', VIC can represent (A B)
in a simple diagrammatic form~

, I----:-----f
~--~\~ _____ t ~l~_B ____ ~_I_~-I_L~

- 7 -

,.
~ • "4

Both the address part and the decrement part of any word used to
store information in LISP can ~ontain cith(;rinformation or
a pointsr to another location where inr~~i~~ion is stored;-
The functions C_ilR and CDR; as their nam€s~ imply, each detect
the contents oia half--Nord in the computer but, if v:hat tiley
find 'in, the half-word is a point~r, they follow up the pointer
to t~e place where information is stored, and return the
info~mation as their value.

Let us 8x8mine this in more detail by looking at a
complica,tcd ox.smple - (li (BC DEF (GHJ • K)) (Lf/n'!))). From -tho
principles that we have l(;arnc::d already, it is evident that
this structure can be rGpr-escnted diagrammatically, as:

UJ ;Hi L i--
. [BC I J. ~ DEF t

It is a.lso evident that repeated applications o.f thG functions,
Oi_11. and .CDRare necessa.ry to recover mosi. of the' atoms in this
list structure. Below, we write 'equatiohsf in which the
operations that occur to the left of ?riy .. := sign produce the
.rest~l ts on ,the right-hand side when they are applied to the
structure in the last diag-ram:

CAR = A
CAR of ODR = ._(BC DEF (GHJ • K))

CAR 0 f CAR of CDR, = Be
CAR of. ~:OR C?r CAR.,;O . .f CDR = DEF

'This tonds to become rather- tedious':, so the LISP system con';';ains
as nal:::.es of functions any cO!TIbination of As and Ds between ths
'C f and the IR', ?~'rovid~d that that combination has a ma.ximum .

. length of f04r cha.racters. Therefore we ca.n write CAADI-l= BC
and ClilliillR =. ·DEF. Let us now cOLlplete, the analysis of the
structure in the diagr~o

CAR of CDDADR = (GHJ. K)
CAAR of ODD1J)R = GHJ
CDAR ofl CDDADl1 = K

CDDR = ((LMN)))
CDDTIR = NIL

CDDDDR = undefined result (error
condition' in· prograliune)

CADDR = ~ (LM ... ~))
CAJ:.DDR = LWn\[) ..
CDADDR = NIL ...

Cji .. R of OAll-DDR = LMU
CDlt of CAAD))R = NIL

C .. ·:..H, CDR~nd their more complicated compounds are all'
functions of one 8.rgument, an S-expression 'Fliich is to be
analysed or spli t up in some vlay ..

, ,

The invcrse ~f.this type of operation is perfo~mad by a
fUJlction O·ONS~--·v.;hich takes t';:iO arguments (both S-expressionG)
and makes ·them into a new S-expression by crcating.a dotted pair.

- 8 -

• •

,.

9.

.) '.

For e;:9-mple",. CONS 'applied', t.O.1:t and B a.s a:r;-gumcnts ~iYes th.:;
~ resul t (A.]3) '," CONS applied. to - (J.. B t and "(C (D. E) ') gives

C(il. B) • (C (D~ E))) = «A B) C (D. E)) c'nd so on.

~/e· have nO'vl} seen the uses of the func tions- CONS, CAR,
CDR, ~Al:'J.R, CADR, CDAR, CDDR!j CAAAR, CAADR, CAD ... u.R, CADDR,
CDAAR, CDADR, CDDAR, CDnDR e.Jidthe 16 functions vlhoSG names t2vlc8
the form '0(4 letters, each being oither Aor D)R'. All of
these functions exist in the LIS? system,' and are. ready foi usc
by the programmer.

Prefix Notation
---------~--- ... -

S.uppose that we wish to carry out a simple operation, such
as thG addition of 2, 3 and 4. ~e write. ~ + 3 + 4 or perhaps"
2 PLUS '3 PLUS 4. The operator, is located between pairs of
operands. This is characteristic of infix notation, which we
use in ordinary numerical manipulations~and-ln-FORTRANo
In LISP, however, we always use prefix notation, in which the
operator occurs once, to the left of all its arguments.
Thus 2 + 3 + 4 becomes + 2 3 4 or PLUS 2 3 4, and a more
complicated example like, say, 2 + (3 x 4) + (5 x 6 x 7),
becomes PLUS 2 (TIMbS 34)(TIMBS 5 6 7).

This usage is consistent v,i th our conventional nota.tion,
for' functions, like F eX, Y) or G (X, Y, Z), Yihere the function-nal:lo
occurs once, to. the left of all its arguments.

Neither PLUS 2 3 4 nor G(X,Y,Z) is a valid S-expressiollo
Can vve find a consistent prefix-notation method of writing both
as S-expressions? The answer is simple. PLUS 2 3 4 becomes
(PLUS 2 3 4), and G(X,Y,Z) becomes (G X Y z).

The greatest part of the s~.Iecification of any LISP
programme is taken up \'Ii th defini tions (viri tten as S-expressions)
of fU.l1ctions which the programmer desi·gns to perform various
tasks, and to give various values.

Imagine that we want to define a LISl function ·t·o vihich Vie
give the' ng,meNIEJJTE. The function takes two arguments; but
its va.lue is .. always NIL. The S~8xpression defini tion whi'ch we
punch on an IBM card :"- r inclusion into aLI;::)}' programme is:

(NIEITTE {LAMBDA ' (, U V) NIL»)
. ,

i. e .. a list which has the ~vo 8lements on the top level., The
first element is the LISP atom which is the name of the
function, and the second is a speCification of the definition
of the function~ This second element is itself quite complics~
ted ~ we 2.1v:Jeys find that it lIas three' elements on i ts own top
level.

The first of tllese,61ements is the atom LAMBDA. (This is
a LIciF convention 9 which is justified in the reference (l.l)~
Hoviever, to begin v;ri ting simple programmes'j VIe do not ne0d, to
knOif: the jus tific8.tion). '

..,. 9 -

•

.. ~ ,

The second clement is a list of the (dummy) arguments for
the function. (By I duuUny' , 'we mean that t,he programme can
later substi tute any S-expression in their placG.) The nw:nb;~r
of elements of the list must be equal to the number of
arguments ,fqr the func tion.. If the func tion has no a.rguments,
the, jist becomes () or simply NIL, since t~(le LISP system
regards () and HIL as being equivalent. '

The til'ird element, Yv'hich is usually the longest and most
complicated S-express~on, is 2ither the valuE of tho function
or an S-expression which, on evaluation by the LISP system,
reduces to a final value for the function.

.~

HO-'::i do vie maJ:::e -the d efini tion of NIBUTE aV2:ilable to the
LISP systom? By itself, the card containing theS-expression
(lIIDH'l'E (L .. J;'IBD.t4 (U V) NIL) is insufficient.. ','ie :iust 'pr0C~~G 'it
in tho L~S.P progr~:Lr~:le by a c·':.rj containing

, DEFInE «

and follol:'] it by

on anotner card. In fact, any
number of complete function definitions can be inserted betvieen
anyone pair of thGs~ key cards, to make up a valid statement
of definition wh~chis part of a LISP programme. The effect of
the statement is to add the function-definitions to_the basic
LISP system. ".

In particular, after NlENTE haG been defined, any ~ubsequent
card in the programme which contains

NIJ.:;NTB (~ y)

fora.ny two S-expressions x, .:"lnd y will cause the LISP system to
return the value NIL a.nd print it in the output.. An examp10 of
this is presented in section 17.

Consic1er the atoms U and V in the dGfinition of HIENTE in
sGction 10. Obviously they cannot stand for themselves in a
programme, because then a card containing NI£NTE(A B) vfould
cause 'the LI8}J system to return 8. meaningless or undefined
reEult. They must be dUP." .. ul1Y variables, for lphich actual S-express
ions used in calculation may later be substituted •

.::~s 2.11 8xamplc ~ let us d ciine a function of· these arguments
which makes use of CONS.

DEFIN~ti; (((JOIN (L.;;.!:iBDA (U V Vi) (CONS U (CONS V ~~))))))

The result 'of JOIN(A B C) is (A. (B. C), JOIN (A BUlL) givGS
(A. (B. NIL) =,(A B), JOIN(~BC (DEF JHJ) (KLM) = (ABC (DEF
GHJ) KLIvI)9 and so on. Suppose that we now want to use JOIN to
bui'ld up many three-element lists Yihich have the common propGrty
that their last element isalvlays KLIJ. We should be able to do
this nith a new function JOIN2:

- 10

\~.

..)
(JOIN2 (L_~~BDA (X Y)(JOIN X Y (Kn~) »)

But this is wrong! The .LIRP system examines X and Y in the
definit~on in order to replace them by the current arguments
of tbe f,'unction JOIN2, bei"ore performing the functional·
operation JOIN on these arguments, st) ·it vlill try to do the
same thing vii th the S-expression (KLM). Vie must have some
means of distinguishing between dummy variables, which a:ce
to be evaluated (i.e. replaced by the S-expressions for which
they stand), and S-expressions ~hich stand for themselveso

. The dis·tinction is made possible by the r function ' QUOTE 1

which has one argument. "'Je may understand its· behaviour from
the· definition (QUOTE (LM:IBDA (X) X» • The correct structure
of JOIN2 is~

(JOIN2 (LAMBDA (X Y) (JOIN X Y (QUOTE (KLM)))

No0 you may object that the definition of NIENTE in section
lOis. w!ons - NIL in that defi~itio~ should. actually be written
(QUOTE NIL). The form (QUOTE rlIL) lS certalnly correct, but
there are three non-numerical atoms in the LISP system that do
not nGed to be QUOT:GD, because they have special propertiGs
which ma.ke it illegal for them to be ·used as dummy variables.
These three atoms are:

IE , F and NIL

T stands for 'true' and F for 'False'.

All num1;>ers share with T~ F and N. the qualification that
they never need· to be preceded by QUOTE~ they always stand for
themselves.

12. Predicate Functions and COND

..

A predicate is a function wJlich can take only two possible
values, T or F;according to whether the proposition which it .
expresses is true orfals.3. l!'or example, NULL is a commonly-used:
predicate function of one argument .. If this argument has the
current value of NIL, the value of the function is T; if the
argument ha.s .any other S-expression .as its current value, the
result is F. .

Now we .make an important defi~ition,.which is not.part of
the LISP programming-ranguage-;-'6ut-Vihlcfi we use frequently for
clarity iri later sections of this Introduction. Let r(•••).
be an abbreviation for 'the S-expression which is the current
value of ••• ,ioeo the S-6xpression whic~ th~ LISP system
causes to be substituted for 0 •• in a. programme'.

Our first us.e of this d efini tion occurs below, in· a
description of some of th~ other useful predicate functions
that are part of the basis LIS} system. .

(ATO£!I X).
(NOT X)

:True if reX) is an atom, false otherwise
:Trua if reX) is the·ctCrl .NIL or the r,too.F,
false otherwise

- 11 -

, ..
(EQU~':.L· X Y)

(EQ x Y)

:True if reX) and r(Y) are identical S-expTess~uns,

(NUMBERP"··X) .
(Iv!i:;IviB5i~ x. Y)

false otherwise ..
:A faster'version of EQUAL which, however, it
is only safe to use· in situations where it is

. known that reX) and r(Y) are 1;loth atoms .

.:True if reX) is a number, false otherwise
~True.if reX) is a ·member of r(Y) (which should
be a list) on· the top.level of r(Y)~ false
otherwise.

The three following predicates all generate error
conditions if reX) is not a numerical atom, and should therefore
be used with care. .

(Z.GROP X)

(ONE)? X)

(MINUSP X)

; True ·if rCA) is zero, false if reX) is· any
other numbr-;r

:True if reX) = 1, l.~, 1.~E+~~, 1.~E-~¢ or lQ,
false if reX) is any other number

:True if r(X) is a. negative number (including
any representation of zero which begins with 8.

minus s·ign), . false if r (X) is any. other number ..

The functionCOND .provides a fast ~eans of ·testing up to
20 predica.tes in order to find one which ha-s the value T. This
function can pave any number of arguments between 1 and 20, and
each argument is a list which is made up of two S-expressions?
so that it has the general form (p B).r(P) is almost always T,
F or NIL but, if reP) is any S-expression other than F or NIL~
its effGct on the function CONn is thE; same as if .r(P) = T.

The value of~

(C9ND (P.l~·: ~l·) (~2 .. E2) (P3 E3) CP4 E4) •••••••••••).

is the value of the ALGOL-like expression 'if reP) is T then
r(El), else if r(P2) is T then r(E2), .els~·if r(P3) is T then··
r(E3), else if r(P4) is T then r(E4) •••.. '. Note that, in
general, if no reP) in theCOND is effectively T,an error
condition ('error A3') will occur; for the only exception to
this rule see section 17. Therefore it is wise to make the
la3t reP) of the COND expression ~qual to T,·which is mos~
simply done if we put T in place of P itself.

In the evaluation of the function COND, the LISP system
scans the arguments of COND from left to right until it finds
some reP) that is effectively T. The value of the entire
function COND is then the value' ·of· the corresponding r(E). As
an example, let us define in LISP the step~function, which has
one arg·ument and v:!hich is defined as the intGgral . .from minus
infinity up to the value of that argument for the o~e-dimensional
D:!.rac delta function. This step function is zero' if· the argumGnt
is negative, $6.5 by convEntion wh8n· ·'the argument is zero, and 1
when th<:: argument is positive. If we give the function the
name oTBP in LISP, we can combine some of tl.i.6 resul ts of
sections 8 and 10 to write~

(STEP (Li1IvIBDA (n) (COND (ZLROPN) ,0.5,)
(MIiJUSP N) 95).

(T 1))) ..

- 12 -

,I. .

. \
, .

or.) Proba-bly about half of the functions used in any progratllne
are deiined by-consideration ofa finite number of cascs
~satisfi€d by their-arguments.· Therefore CONTI is of·great use
in th8 definition of· functions. ~e shall see our ~irst detailed
example ~n section 13, and others in section 17.

13. Recursive Definitions of Functions
---~----------------------------~-

.'

1:.:1. sections 11 and 12 \VG have I:1et examples _ of ho\'~ -a
programmcr can build up definitions of complicated functions by
using both the simpler functions definlJd in the LISF system and
simpler functions that he has previously defined for himself.
However, it is often true that the best definition of a fu~ction
is a definition (by induction) of the function in tarms of the
function its(;;lf (e.g. the factorial function-for positive
integers). . .

Consider one such function~ PAIR, whose two argume:p.ts arc
lists with the same number of ~lement~, and whose valua is a
list in which corresponding elements from the two arguments are
made into dotted pairs. For illustration, PAIR acting on
(AI A2 A3) and (BI B2 B5) gives «AI. Bl) (A2. B2) (A3. B3)).
The appropriate definition is~

(Pil.IR (LAMBDA (X Y) (CO~rD «NULL X) NIL) -
(T (COHS (CONS (CAR X) (C~l.R Y)) (PAIR (CDR X) (CDR Y)))))))

Firstly , it is strongly recommended that any intending LldP
~rogrammeT should spend some time analysing on paper the manner
in vlhich ·I;his function works, for the arguments (AI A2 A3) and
(El B2 B3). The structure of the -definition·of PAIR is a
structure that is highly characteristic in LISP, and it will be
encountered many times. If a simpler example is needed to
demonstrate only why the first o·f thG arguments of CONTI above
is «(:N1TLL X) NIL), then consid er the func tion RErIiAKE, which ac ts
on its one (list) argument like the unit qperator:

(REMAKE (LAMBDA (X) (COND «HULL X) NIL) .
(T(CONS (CAR X) . (REMAKE (CDR X) »)))

Secondly, the LISP system accepts-all recursive definitions_
of functions, and it handles computations with these recursive
functions very easily by making automatic use of an int~rnal
device that is. called push-down list •

. 14. ~.:;'.e Function: - _:}R ------------------
The functions STEP in section 12 and PAIR in section 13 will

work correctly v-vhen _ they are given arguments of the correct form,
but an error in computation vlill occur if the form is unacceptable -
e.g. a non-numerical argument for STEP or two lists of unequal
lengths for PAIR. - But the question of acceptability o~ the
argument(s) is merely a question that can be answered if an extra.
argument to test for acc_?ptability is given to COND in the
d efini tiol1. of th(~ original func tion. I fit is the case ·tha-t tho
form of the arguffiGnt(s) is wrong, vie may make use of the function
E~OR, t{Jhich has on(; argumc-;nt, to bring the computation to an
orderly halt. The choice of this onu argument is completely open
to us, and Vie use it to gain thE greatest possible amount of
inform8..tion about the source of the error. .

- 13 -

..
In particular, if PAIR works correctly, reX) should becocle

NIL ex~ctly when r(Y) becomes D~L, and not at any other point of
the cOfuuutation. Therefore we can amend the definitiOn in
section-II to;

- ,

(PAIR (LAlffiDA (X Y) (COND «NULL X) (COND «NULL Y) NIL)
(T (ERROR (QUOTE PAIR-IS-·,lROIJG))·))

(T (COns (CONS (C;.:.R x) (Cl~l-{ Y) $>AIR (CDR X)) (CDRY)) »))

The E10diiica.tion of th\j d 6fini tion of STEF, to cause
termination if th~; function is given a non-numcrical argUl1lcnt9
is left until section 17.

LIST provtdes a quick means of bypassing excessi~c u~e of·.
CONS and NIL when we are making up a list from ayariable
number of X-expressions (between I and 20). Some simple
equivalences are;

(LIST X) = ~COH::J
.. J" . NIL) A

(LIST X y) = CONS X (COJrS y HIL)
(LIST "\T Y z) (ConS x ("'0·'-·8 Y eJOHS z NIL))) A = 'v l:J

Therefore LIST is a function of betvleen 1 and :20 a.rguments, and
its value is a list of those arguments.

AFPBND is a function of tDO argumsnt~, that provides the
means for joining two lists into a single list without ~ultiple
uses of CONS 7 CAR and CDR~ For example, APP£ND applied to the
arguments (A (BC DE) FG) and . «HIJ KLl:JI) h-OP «(tRS. TUV) gi V(;S

the r8sult (A (Be DE) FG (EIJ KLM) NOP (~~S. TUV»).

It is useful also to bear in mind tilat AiPbND (y NIL) =
. A:-ep El~-D (NIL y): ~ y •...

16. Constants

Until novi, WE have only SEE:n functions that generate re;~ul ts
and cause them to be printed in the output from the computer.
Once··th~se results are printGd, they are not accessible to
subsequGnt steps' in a programme.. \~e may therefore ask: '~ih::tt is
the procedure for putting a result soaewherc in storage from·
which it can be recovered for- later use?'

The answer is th~t ~e can assign an unique name (a .LISP a~q~)
t:o the r8sul t 'J justas·~ach ~:nl1ction-d8fini tion that we·'make is
referenced by an uniquE.' name VJhich is the name; of that .function.
fie may later refer to this nau~ and thereby recover the ~esult.

For function c1efinitions, the assignment is performed by tho
function DBFIN~, which we hav~ seen already in section 10. The
analogo'13 function ~for storing rEsults (and fur storing li.18:ny it:2l!1S·
of input information that are not function-definitions), 8.l1d l:-;hich
makes the name of any result into a constant of the system, is
CSET. In SGl:1,; contexts 'IN:':" usc: CG.8TQ~-8notFier function Yihich has
the same offect.

Pra.ctical Gxarnp18s of tL.\.-~ USGS of C3l!;T and CS.li/~\~ v:iill bG
given ~n section 17.

~ A LISP programme.~s not or&anised sequentially, with a
well-defined beginning and end (which may be observed in any
numerica.l programming language lilee FORTRb.N). It consists
first cif a collection of programmer-defined functions to do
cert~ih parts of a given job, and then a command to the LISP
system to use those functions to do the job~ The functions
call each other, and there is one function which initiates
the entirG seQuence of c8.11s that occurs during the perform-.
ance of th8 job. The cOIllii1and that is mentioned two sentences
above consists of the occurrence of the name of that function
on one card of the programme, together with a list of the
function's a.rgwnents.

. As an example, we write a set of functions to perform the
algebraic expansion of (l+x)n for arbitrary x and (positive .
integer) n. EXPAIID is thE: initiating function, and it calls
EXPJ;_HD2, ~ijhich calls itself and BINOM, a function that
determines binomial coefficients and calls the function FAC,
the factorial lllilction 7 in order to do so. We also cause the
functions STEP and IJI.iiij:,fTE (which we have seen before) ·to be
defined at the same time, for convenience, because this does
not interfere in any way with the set of functions assobiated
wi th BL:-A1:1"D .. .

To do this, we punch on IBM cards;

DEFINE ((
(NIENTE (LAMBDA (U V) NIL»)

eSTI~p (LAlflBDA (Y) (COED «NOT (Nm~IBERP Y)) (E&'i{OR (LIST
(:,U-O'£E BTEP) Y))) .

«ZEROP y) ri5) « (MINUSPY) 9$) (T 1))))
(EXF .AND (L~~I!iBDA eX N) (LIST U<dUOTE l)LUS) l (EXPAIID2 X N 1))))

(EXPAND 2 (L.ArilBDA (]i~O RM N If .. ~) (CO HD
«E\~ N HA) PONS (LIST (~UOTE BXPT)70RMN) l~-IL))··

(T (CONS (LIST (i.2UOTE TIMES) (BINOM H NA) . ~
(COND «ONEP NA)FORM) (T (LIST (QUOTE EXPT)PORM NA»))

(EXP .. ~lm2 FORl\lI N (ADDl NA)J »))))
(Ere,TOM (LAMBDA (A B)· (,",UOTIi~NT (PAC A) . (TINiES (FAC B)

. .. (FAC(DIFFERBNOE A B)))'·)))
(FAC (Ll.;.HBDA (N) (OOHD «Z.sROP N) 1) (T (Tll~'lES N (FAC (SUBl N))))

)) » . ..

By vlay of addi tiona.l explanation, (ADDI X) is a Iuncti·o·l1' whose
value is the sum of 1 and reX) ~ and SUB.l X) subtracts 1 from
reX). . .

H01;i suppose that WE want to apply NI.si~TE to the argul1l011"GS
1 and FRED, STEP to 527 STEP to FRBD, EXP~.l~·D to (Tlivllf;S J..L?HAX)
and 4, FAC to. 4 and BlnOI .. I to 9 and 5.· He punch thEse cards~

NIErfTE (1 .. FR~BD)
STEP(52)
B TEP (:fIRED)
BX}"'.ti-ITD ((TIIE.2S .i .. LPHA X) 4)
FAC(4)
BIIJOM(9 5)

and add them to our card-deck after the function definitions.

- 15 _.

,"

. -. , , ~

Nhen all the cards are run on the computer as part ofa LISP
job, the'printed output looks approximately like this~
FUNCTION

DE:b'Il'ii!i
.L"!t.l:ll.l" u ••• ' t. 7)('C (,-.)

, « (fiI.:;jlj'TE (LAldBDA (U V) NIL) (STEI (L_-il\lBDA' (Y)
and so on, down to

(FAC (SUBI N»» »))
VhLU~ OF ~BSULT IS .•

(:l'JI~1.~·I.rE :JTEP BXF_,~JjD EXPArJD2 BINOM FAC)

FUNCTIon •••
1\[I3HT~

ARG(S) •••
(1 l!'RED)

VALUE OP RESULT IS ••
NIL

:B'UNCTION •••
STEP

l~RG (8) •••
(52)

VALU~ OF RESULT IS .•
I

FUI·re Tlon 0 ••

STEP
ARG(S) •••

(FRED)
------ERROR NUMBER A 1 ----
(STE,'P IT'H~D)
(STEP)

l:'Uj:.fC'rIO:H II ••
. .E..XP.!~HD
ARG(3) •••

((TI]\)']IiS ALPHA X) /+)
V;:iLUB 0]' :a.E5ULT IS ••

(PLITS 1 (TTT.{Ee~INIEs---~1L~PHA=x:}) (TIM~S 6 (EY~T (TI!:.1ES ALl'b.A x)
2) (TIl(ES 4 (EXPT rrI~JIES ALPHA x) 3) (£X?T (TII\I:::~S ALPHA x) l~))

Fu:aCTION •••
FhC
ARG(S) •••

(L~)
V bLUE OJ? l~~::SULT IS ••

24

FUNCTION •••
BINOIvI

ARG(S) •••
(9 5)

V.~UE OF RESULT IS ••
126

In the programme above, the: result of the: binomial expansion
for £;XPAHD is vrinted and the:n lost from the core memory of the
computer. Ho~ever, if we had ~ished to presErve it for future
use, "\VG could have decided on the nanG bXPA1~'i:)IOFffor it, and
replac ad the card VJi th the command EXF'.tiND ((TIiiiES ALPHA X) 4) by ~

- 16 -

.' (LASiIBDA (A B) (CSET (UUOTE EXPlliSION) (EXPAND A B))) «TIMBS
._ .. _. '" - . ., ALPHA X.) 4)

o~(LAl1BDA (1-i B) (CSf;TQ bXP~: .. HSION (.2XFAND A B))) «TIM.sS ALPHA X) 4)

The equivalence of these la.st two commands indicates -i;he
nature of the r81ationship b(tween the functions C8ET and CSETQ.

18. The Function EVJlL
---------~-------

'de h2..ve previously used the phr3.se I the LIS}. system' qv.l~Ge
freely. The system is a collection of basic £unctions (like CAR,
CDR, etc) -V\;ri tten in machinG code (Fll.l?, in the CEH3e of -cae I Dr!i 7090,
ABL in the case of the Atlas), "but there are several key functions
in the system whose taskit is to interpret ~~!2~~!~£~!!l all of
tilG operd-cions and commands that occur in any programme on cards.
The principsl function, VJhich is name d BV1:;LQUOTE 7 is discussed in
deta.il in -ells reference (3.1). EVJ;..LI~UOTE makes use of ~V.AL ~ a
function that is explicitly available for the purposes of the
prograIill11GT 0

BV..::\.L is a function of tViO arguments. For (EV ... iili X A) 7 reX) if:3

the quantity to bE evaluated 7 and rCA) is the association-list or
a-list~ which is also described in detail in (3.1). Howev~r, for
many practical uses of EVAL!/ "tie can repla.ce A or rCA) by HIL.
Let us look at a case where EVAL is needed. Consider a ·oa:-ct of a
programmG I0.ad e

i
up of the card s" J:

CS~T(TRICKLIST (PLUS 2 3 4)
DIiFljiE ((

(TBSTF1J (LP.1!IBDA (N) (COND «OULP
" (T (~VI1L TRICKLIST NIL»))

TESTFiJ(l)
TESTF'H (2)
EVAL(THICKLIST NIL)

N) 'fRICKLIST)
))

The last tl1r-C::8 steps in the printed output from this programme will
be~

FunCT.ION
'l'ESTFE

l-l.RG (S) 0 •

(1)
VALUE OF R:USUI.i.I: IS ••

(PLUS 2 3 1+)

FUNCTION •• 0

T~£!:STFN
ARG(S) •• o

(2)
V~i-l.LUE O~., }c~SUI/I' 13 ••

9

£V_AL
ARG(S) •••

(THI\jKLI8T NIL)
VALUl:; OI:' ~GSUIJT IS ••

(PLUS '2 :5 4)

This example demonstrates the most iIportant basic uses of CSET
and ~VAL.

~ 17 -

·(

Al though a complete'I,ISI programme is not organised 1i1(8 a
couplets]'OaTRAN programme, there are occasions on which it L12:.y

be desirable to write single LISP functions that are organised
like 2:. FORTBJu-T program1Il8o An example of this method. 'which usas
the so-ca.1Ied }'ROG I8ature, is thE: function L:2;iJGTH, vlhich has 6.S
i ts va.luf t~nG ll11Il1ber of S-c:xpre.-ssions on the top lEvel of i ts
2~rr;um~:l1t if -this argu.'UEnt is a list, and i.s zero if the arguElcn-c
is iJIL (ano is meaningless otherv:lise!). ..:·e vlri te ~

(LZ.l.\"GTH (Ll~.MBDA,·· (N) (FROG (1--: B)
(S'~,'m'" ,. rA) ., .

.c'..I.. I ; .d JJ

(S:E;lrQ B N)
GX' (COND «HULL 13) (RETURN A)))

~
S£TQ A (.11.DDI A)) .

. . SBTQ B (CDR B)).
GO GX) .))) .

The four nc:w func tional operations v;hich v:,re find here are
FROG, GO, SETQ and RbI'UHH. .

FROG occurs always i~ the positionsho~n,
definition which make use 'of the PROG feature.
conventiona.l LISP marker like LAL1BDA, . and !!lust
irrulledi2.tely by a list of prograr~lIne va.riables.
progranll~le variables, it should b(; follo\iied by
is unlikoly in the case of FORTRArt , in which
do not have to be a eclared 03 such}. .. '

in'a function
It is a special
be followed
If there are 110

() or MIL. (This
programme varieblGs

GO is effectiVely a tr8.nsft:;'r statemt:nt. It can be tUlder
stood imsedi&tely in terms of FORTRAN, except that the labels
of s-catGElsnts in 8. FROG fGatuTG in LISP are LISP atoms, not
numbers.

SllTQ is analogous to CS:8T(.t, except that its effect is
confin0d to the PROG feature within which it occurs. The
func tion-l1a.me S7~TQ is' 8.n abbrGvia tion of 'set and Cluote' 0

(EL;/EQ U V) 112.8 th(:; effect of establishing tllat the name U· (not.
reU)!) is associated temporarily with reV). In the P}lOG featuI'e
for th·:.; function LBl'TGTH, (S,;jT\~ A yf) is thL LISP equivalent of
thE: FO:':('j~rt~:.E s.t8.tament A = ¢, and (SE;T(~ A q;..DTIl A)) is equivc.lcnt
to .,:::., = il. +1.,0 0

kU:;TURlJ causes computation \'Ji thin the }lROG feature to snd.
(Rl;TUill~' V) ensures that reV) is the value of that computation ..
IL:;:TT.TPJJ may occur any num.b· ... r of tiDes v;i thin the one J?ROG.

If a FROG is not caug~lt up in a non-terriinating loop, if its
last statement is reached and that statement do~s not contain
R£TLJ3lJ, ths v 3.1u2 of the' COiuputa tion dct'2.LminE:d by that PROG
~ill 21~ays be NIL.

If no r (p) \/i thin th(. g;,~neral form of a func tion COND (800

section 12) on the top level inside a FROG is effectively equal
toT, an '':: r r- 0 r- can d i t ion ·~·';i 11 not 0 c c ur . :£111 e co ill put a t i 011 r; i J.1
proceed normally to tnE next at2temcnt of tile ~ROG.

Functions ca.n a.lso be defined recursiVely \i\;i th PHCGo ... :\ .. n
artifici~l.l but correct QX2.mple of this 'is :il1 d.l ter:riati vr::: .
defini -Cion of L.;:jl·~GTli~

- 18 -

...

20.

,- (LENGTH (Lj~.:IBDA (ll) (LGTH N ~)))
(LGTH· (L;~l\1BDA (If 1v1) (PROG (.h) .

(GO~dD «NULL H) (R£~raliillI M))}'
(SE'~Q A (ADTIl WI)) . .
(R~TUH.N (LGTH (CDR N) A)) »)),

Beware of a. common mistakE:? though - if RSTIURH is omi tted and thE:
last line of LGTH is simply (LGTli (CDR N) A), the result will
always bE: NIL.

Prepara·tion of the Card Deck for a.n IBM 70'30 LISP pro.c'ramme_
------~---_Q-----

We have already seen some exaliples of the contents of cards
vvhich m3.ke up part of a LIS} programme. The:: 'only important
additional item ofinforuation about.these cards is that their
contents can be punched anywhere in columns 1 through 72 of' es.ch
SO-column ca.rd, and they can ovsrflovJ from anyone card to the
next. No continu~tibn. markers are necessary.

L~t U~ now look at the components of
LIS:::' job.

the card deck for a

20.1 - the deck is headed ,by the Imperial.College ID card. The
correct entry for the section beginning at coluI!l1l·.3lis
FI!;IS J since LISP uses the]lMS moni tor. LISP jobs will
not run under the IBSYS monitor.

20.2 - A C0illl11Gnt c8.rd comes next,' wi th an asterisk' Ci) in colunni'
l~ and a message to the computer operators to mount a
current LIS~ system tape (you have the choice of.X51 or
X247~ but please specify one of these)1 to be saved and"
file-protected, on t2.pe d rive B.7. The message can be ,
punched in columns 7 through 72.

20.3 - the LISE loader, a short binary programme. Copies of the ,.
loe.ocr may be found in the 'LISP' librarY'dravler in Room
L~05 (and may be taken away for permanent use). Contents
of the c clrd s· or: thi3 load er are:; as' follows:-

Card 1

~ in: column 1, and the viord PAUSE beginning in column 7.

Card 2·

x in column l, and the viord X£Q beginning in colunUl 7.·

1 ? -, 7,9 punches in colv.rnn 1
1];Junc:1. in 'colu .. mn 2

l? -, 7~9 punches in COlUI111 4
1 l")unch in colunm 5

7,9 punches in co lUInn 6
7~9 puncl'l C:' S in column 9

'- 19 -

oi'

. .
.. Card 4 ------

11, 7, 9 punchos in column 1
1, 3 punches in column 2
0, 1, 2, 3, 6~ 8 9 punches in co luri1l1. 4

.. 0 pUllch in ooluon 5
11, 2, 5, 6, 7, 8)unches in colUII'Jl 6

1 punch in c.;olumn 7
1, 2, 3, Li 5, 8 plUlches in column 13 . ,

11" 2 5, 7, 8, 9 punchcs3 in COlULTln 1 -, -J
12, 1, 3, 4 punches in column 16

7 punch in column 18
12, 1, 3, L~ , 7 punches in column 19

5 punch in column 22'
9 punch in column 24

12, 0 l)unches in column 25
2, 3 punches in colwnn 26

Q~!:£_2.
* in colmu1 1, and vJord Di~Ti1. begilming in column 7

Cerd 6 ------
7, 9 punches in column 1
2, 3, 4,-5, 6, 8, 9 punch2s in column 3

Q.~E~_1
Blank cS/,I'd (optional but recomm.(;l1d8d)

20.4 - The LIS? programm8 itself

20.5 - A card cont8ining FIN in columns 8 through 10, and bl~nk
eI8E:;';.lH3re

20.6 - An end-oi-file card - punches in rows 7 and 8 of colu@na 1
2.ud 80, and blank tJ188v~here

The prograITlh'1.8 in (20.4) may be divided into a.ny number of
parts (including one). We may choose to allo~ these parts to
communicate \1i th each other, or to be self-contained. Each part
must bG head6d by a s.pecial control card ty.rhich is not-wrlttcn .
in LISF,-~~a-~oncluded by th~ statement STOP))))) on the last
card. The wo~~-ST0~-~hould be folloned by several right-hand
brack€ts 9 although the actual number of these brackets is
unimpox-tar.it.

Each such part of a LIS1~ programuc is called a packet.

It is important for the discussion below to note that, as
soon as the LISP loader is processed by the computer (and before
the processing of nny pack8ts)1 the; ma.chine puts a. copy of the
system tap~1s contents (from tap8 drive B7) onto a tape which
(for the p::::~S moni tor) is mount<:,d on tape dri VG B3 in the casE.
of Oxford LISP 1.6.

Tho control card at tl,lC Il«~.d of GaeL pac}:et should have: a
control viora beginning in colunn 8'i allG ',;':he,tevGr COr.ll:'J.cnts you
like (includin~ no comments. at all) in columns IE through 72.

Por basic programming, only thrE:8 control v:ords should be
lmov.:n.

-- 20 -

. . \ A packet ccntrolled by the word S3T wi~l be processed
conventionally, but~ if it is free from computational erro~s,

"the r e 8u1 ts of <:,,11 :J.e'N fune tion-d efini tions (viC! DE:B'IIJE) anG
"establishment of co.nstants (Vi8 CSET or CSETQ) will be added to
the basic LISP system. At the conclusion of the ~acket, the
computer popie8 this 'updated' LISP system onto the tape on the
driv8 B3; and uses that tape thereafter asfue source of the
system for all fur··~hcr packe ts. Hov,;ev:.:.r, i.f an error occurs
within the packet, nothing ~b copied onto B3.

A packet controlled by the ~ord S~TJET bGhaves in ~11
re~pect3 like a S~T packet, except that, if errors occur within
it, an updat~systen (complete ~ith the effects of the errors)
is cbpied onto B3. Therefore S~TSET should be used .with care
(or lO'fl cunning), or it will affect the behaviour of all
subsequstit packets adversely.

A packet controlled by the word T~ST can make use of
definitions and constants established in all previous S~TS~T or
error-free SET pabkets.· It is. self-contained because, even if
it is free from errors~ its definitions and constants are lost at
the 2nd of th0 pack~t and not copied onto B3. "

Finally, if we wish to preserve all the successful results
of SETS~T ~nd" SET packets from anyone job on tape (rather than
on cards) for use with other jobs at ~ater times, it is evident
that all we hav(to do is to ask the operators at the computer
installation ·to remove the tape on the drive B3 at tho end of
the job, and save i t. Thi~:3 tape should then be mounted on tllC
drive B7 for the latGr jobs, for which it becomes the LISP system
tape.

The job request slip for an ordinary LISP job should s~ecify
the use of the FdS monitor~ and indicate that either tape X51 or
tap$ X247 - TIhichever you prefer - should be placed (file
protected and saved) on the tape drive B7. Additionally, in
connection with the paragraph above, if the tape on B3 is to .be ~
savGd at the end of ~ job, presumably i t "will be a numbered tC:.l)C
\"111ich the p~ogrammer has ~ previously asked the tape librarian 'co
reserve. In that case, the job slip should also carry the

"request that this tape be mounted (saved but not file-protected)
on the tape drive B3.

If the tape on B3 is to be unloaded and saved at the end of
the job~ one method of ensuring that it is not partly over
written before it can be unloaded is the addition of a second
trick 'job' to the origingl card deck following its end-of-file
card. This trick job should have a. maximum running time of pf~l
minutes recorded on its ID card, and (in addition to the ID card)
shou~d consist of:

""

i) a comment card advising the operators that the job is
msrely to allow tics to unload B3 and B7

ii) a PitUSE card identical to the PJ),USE card of the LIS}}
loadEr (20.3)

iii) another and-of-file card

There is no need to make any ref2rence to this trick 'job' on
the job request slip.

Next, let us consider a short example that illustrates the
different uses of SET and TEST packets, by looking·at the card
deck~

21 - ."

. . SET ERROR-FREE EXAMFLE
CSET(EXhlV~LE (A BCD E)) STOP))))))))

SET EXAMPLE ·fiITH ~N ERROR (BRACKET MISSING)
CBET (E~:J':IPLE (A Be) .. S·To:'e))))))))

TEST THE EFFECT OF· TE:;; :E'REVIODS 2 PACKbTS
(L.:~liIBD1-i. (M) (PLUS IvI (LEl~GTH EXil.rILPLE))) (4) STOP)))))))

In the second SET packet, we have tried to make B:LJ.\ll?LE the n8,me
of a list (A B C) ~f length 30 However, that packet contains
an error, so our efforts are not recorded on the tape on the
drive B30 Instead, on B3 we have the earlier result that
::~j}'''~:~lFLI; is the nam(;; of a the list (A BCD E) of length 5.
The ca.lcul"tl.ted result in· th.e· T:SST packet is· therefore 4 + 5 = 9&.

Finally, a small point·about the pWlching of a card. deck.
Suppose tll£:l.t vJehaVe a function FN2 of one argument, a.nd that
the atoms T and F are likely to occur as possible values of th~
argument. The print-na.mes of T a.nd F are respectively ~T3f and
3EF;E, and the eff6ct of this information is to make the c.:Q.oice of
\vhic11 of th8 forms we punch dependent on how the function F:N"2 is
called. Below, \ve have three correc t examples (in the first
column) and three 'incorrect exemples~

. FN2 (:t:T*) FN2 C~)
. (LAMBDA" eX) (FH2 X)) (:lET*) (LAr·.1BDA (x) (FN2 X)) (T)

(LiG.:iBDA NIL (FH2 T)) () (LAMpDA NIL (FN2 ;'fT*)) ()

It is also a .point ·worth rGI:lsnbering that, inside the- LISP s:ys-Gem,
NIL can alv~ays replace F or ~F~ VIi thout 2J:lY undesirable ·resu~L.ts.
Therefore ·we need never punch F or ;£Fz at all, provided the..t ··ike
alwaYs put NIL in their placeso

With the use of the information in the first 20 sectionsi it
should be possible to write quite detailed LISP programmes. Most
of the sections which follow (up to section 32) contain inform- I

ation about more advanced concepts and functions which, in any
'case ,a.re c1 Elscri bed in th·e referenc e (3.1) . Therefore llO'iV is· the
tim.e for ':l. .pr&cticu.l t~viGVi· of the Dost common programming errors •.

21.1 - By far the most important error is failure to count.
brackets correctly. In any function or command, in fact
in .any non-atomic S-expression, the number of left-hand
-brackets. should 8Clual the number of right-hand brackGts •.
In any.packet, the refusal t6 obey this rule means that
part or all of the packet will not be processed. It is
a peculiar psych6logical effect that right-hand brackets
arc omitt~d between 8 snd 10 times a~·frequently as lcft
hand brackets 0 In either case, the lesson is: C::>TJHT YOUH
BRkCK3TS CAR~FULLY~ This is. initially the most-dlfflcuIt
~~~~-~f-tIgF-~i~~~amming, but it may be some consolation 
th;Jt anyLIS~P progranll!ler can usually count brackets sub
conpciously (sud cotrectly) after two or three months of 
experience with the language. 

21.2 - Quite frequently some QU2lltity Cl is written where 
(QU01'E q) is intend ed 'J. or needed. Thus the programme ·-Gries 
to Gv~uate q, and usually produces· th€ error messages ~8 
or £9. In such a cess, q is printed out on the line belo~ 
the error message in th.::; output, so that the mistake can 
be identified quickly.· 

- 2? -



. . " 21.3 - .L.~ function may be given the. wrong number of argUments, 
',:11ic11 leads ·~o the err'or l!lCsnagcs F2 or F3. The most 
common ca.use of th.8 error is that one argument is omitted. 
a.t th~:: snd of a recursi v€ d efini tion of H function, e. g • 

.. (FN (LIJtiBDA eX Y) (COND «l;ULL x) Y) 
«ATCM (CAR X)(CONS (C~R X)(FN (CAR x) Y) » 
(T (jONS (Cl .. R Y) (FN (CDR X» » ») 

This error may also have a psychological origin - it . 
always seems to happen in the same place as it is 
displayed in FH. 

21.4 - Physicists and other binomial-series expanders may h2Y8 
trouble v!i th ueculiarities of the nUBGrical functions 
(EXPT X Y) and (RECIP X), which arc; equivalent to xY 2.11<1 

l/X respectively. For thG first argument of EXPT, reX) 
must not be negative, otherwise an error message I2 will 
occur. A similar LIS}' deficiency, which is harder to 
identify because it produces no ,error message directly, is 
that (RBCIP X) is zero if reX) is a fixed-point or octal 
number. A cure for this inconvenience is that fixed-point 
·nwl1b6rs can be turned into floating-point numbers by. the 
follo\·~,;ing trick.! .. , .' / " -

(FLOAT (L~iBDA (N) (PLUS 2.~ N - 2.3») 

Oc t~_:l l1tD~lber[3 :-::-..re· SU8C epti bl€ to the sane; trick. 

21.5 - A nu,merical prGdicate like ZEROP or OlJEP ma.y be giv2n··a.n 
argu~ent which is not a n~lGrical atom. This produces 
'i,:h;.:; error n1eSsagG 13. 

21.6 - ijU~)POI3G that Via define a function i.\_BCF as a S:GT pEl.ckct, 
&.l1G 'chat th0 defini tion is correct, but tha.-t sonG othGl""> 
erroi" occurs in the pa.cket. :rhen A1;5CF is not avail.3.ble 
for use in any subsequent packet. If we try to us~ it 
by making reference to the naDS ABCF, WE get tho error 
nl8Sf;3.68 A2, and the name of the func tion is printed out 
all the line 'below the error message for rapid identification. 

21.7· - ·CAB., CDR, and their compound functions CADR, CDDAA.R etc. 
produce undefined results when they are given· atoms as 
argluncnts. You may gGt away 'with the application of CD}~ 
to an atom ~ithout generating an error message, but the 
result ~ill be a long and irrelevant ·list which will 
p:cobably stop your computation at some later stage bCCE,USG 
your ov:n functions eXp8ct to be given sensible lists as 
2.rgw..'-1cnts. On the oth8r hand, C.:iR applied to 8..n atOI:.l 

generates bst~e6n ¢.5 and ? pa~es of junk, in which *T* 
TXI, hIL and 10ft-hand brack~ts are prominent, follo0cd 
by elY! error- message GC2. Once seen, the unique; tygo of 
junk -Chat C~~H of an atom pY'oduces in IBU 700)0 LIS}' is 
not forgotten. 

22. Aidsto Debu~ging 
-----------~~---

Once., ';;e haVe OY·.;rcoms thE. mGtllodological errors (m::'.inly 
th032 mentioned in section 21) in a LIS} programme, we ~ay find 
that some seQuence of functions is not Vlorking correctly because 

- 23 -



.. 

23. 

. . 
of faults in the conc.epts· of th-:; func tion-d efini tiqns. We may 

.have pe.r-ticular difficulty Vii th recursive functions, beca.use 
frqm the computer output. it may not be obvious at what stagG of 
the rGcil~sion the trouble occurs. 

dhen this happcns~ and in any caso in a T~ST orSBT packet 
which is'not YJlown to work correctly, it is d good ioea t01!lE!.l:s 
the first card of that packGt; 

TH.ACECOTJ1~T (0) (~here iis a zero). 

Then, if an error occurs, the err6r message will include a 
s ta tem~nt a.bout NUM1ISR OF FUj~~:J'I'IOH £L't:rRi"d~"C~S ~ together iNi th a 
numbc::r. Subtract e.bout 450 from that nt-unber, c.nd call the 
result il. If this n is negativ6 7 call it z~ro. Now suppose 
th~t ~e 2130 hav~ an idea of the ssquenc( of functions in ~hich 
the 61'ror !llUSt he.v\.-: occurred. ~j'ri to? d01'~/n a list of the names of 
th0:S2 imLc ·cions ~ 2..no .let it be d eno t<:::d by m. --Iii the next .. '---.t- ,.. J ": 

computer job which contains the relevant packet, make ~he first 
two c&rds of the packet 

and 
1R.tiCbCOUNT Cn) 

TP,-~CE(m) 

The computer will print out the name of any function in ill, 
together wi th i ts a.rguments, 'ne·a.r the' point 01 error, every- time 
that the; function ia call~d (recur.sivcly or othcrviise), and v'iil1 
also state its value. " 

If, at any later point in the pack2t7 we wish to cease 
tracing all -1:;11-3 functions whose names \'.;8 can \vri tG in a li~t 
denoted by mm, we only n€' ed to ins crt the card UN TRACE (r.i.l1il) at 
that point. 

In ~ PROG f8atu~e~ W6 may require more d~tailed tracing: it 
may be necessary to print out tl::e value of evr-:ry programme 
'variable every tiill0 it is set or r£set by SBTQ. If we denote by 
.n.mm a list of names of all the functions for which this facility 
is desired, we insert the cOnlIl12.nd T~:.CJ~S:6T (mmp]). The inverse 
operation, UNTRACESET, is not included in the system. 

11. ':fi112~1 (udva.ncGd) 2.id to d ebuggin~ is the: function ERTI01:1B~T, 
which is d 8scribed in (3.1). ]jjrrors that occur under the con"Grol 
. of ERRORf3~/T, if they a.re the only errors in a SET packet, do not 
prevent the resul ts of tha..t packet from being added to an 
'updated' LISE system tape on th~ tape drive B3. 

The Most COElIilon Error Messc~g':'s and their Inj;erpretation 
---------------------~-----~---------------------------

Al ~ This occurs whenever the fU:lction £RROR is called. lJP.J.lOH., 
Bhich is 'uGcdby the progranncr and not autonatically by the 
LISP systG~, is described in s~ctioi 12. ~ 

A2: An atom has been used as the name 01 2 function, but th2t 
atom has not been successfully associated with any function- . 
definition by DEFINE. See (21.6). 

A3 ~ Out of 3.11 of the argu .. mcnts of thc form (p E) for COHD, 
each reF) is either F or NIL, and non~ is T. Phis fault will not 
occur, hO\iiiev;::;r, for COUD USed on the tope lev-=:l within a p~\OG 
f E: a tv.l"' 8. 

- 24 -



. .. 
. • . ~" AS or A9 ~ The second most' popular caus e of these niessag8$ 

is' 'given in (21.2). ,rrhey o(!cur most commonly, though , whilo the 
LIS:S .s.ystem is trying to process a :pa.cket in yl~ich th~ brackets 
are not matched ~correctly (see 21.1). If the bracketlng error 
(t~pe TIl, or occasionally F2) is corrected~ thEse errors may also 

24. 

disappear'v 

F2 or F3:' £ither some left-hand brackets are missing from a 
packet, or th~ cause of the messages is to be found. in (21.3). 

Gl: You hav0 probably tried to divide by zero. 

GC2~ If this message is pl"'ecedod by junk in the outputtyou 
~;have probably att~mpted ,to take the CAR of an atom. See (21.7). 

Howev2r, if.the Jili,a.racteristic junk is missing and there is no 
obvioussourca of error, it is most probable that the computation 
is too large for the cor~ ~emory of the computer. . 

I~: The first argument of the function £XPT is a negative 
number. 

13: A function which:should have a numerical atom as an 
argumen~1:i h2~S been glven some different type of S-expression. 

$0'5: The control' 'card' of the pack81! has been w.rongly· 
p'repared 0 Check that the "control word begins in column 8,. f-uic1, 
that no COl.i1.~lel1tS arE} punched to the left of column 160' -

Rl: SOlle right-hand brackets are missing from ~' packeto 
Balow the error message 9 the whole packet ~ill be ~rint8d out, 
ending with STOP and one or more right-hand brackets. The 
nrnnbGr of these brackGts is the total number of brackets missing 
from within the packet. 

For the interpretation of other error m6ssages, see the 
reference (3.1). 

The Functions SUBST and BUBLIS and 8. Comment about Standard 
TabIes-or-·IntGrrraIs~~~--___ --_L-__ --_------------------------------------_Q_--- .' . 

(SUBST X Y Z) examin'es r(Z), substitutes reX) for any 
occurrence of r(Y) on any level (not merely the top level) .'. 
therein~ end returns as its value thz modified 'value of r(Z). 
For example, 

SUBST( .A 1~ 732 (ABC D (3 1.'.732) .1.732 3) )=(ABC D (3 A) A 3) 

r(Y) can be any S-expression 7 ,not only an atom. 

(SUBLIS U V) is a generalisation of SUBST. r(U) must'be of 
the form:'( (Gl • HI) (G2 ,., H2) etc. ). SUBLIS then causes r(Bl) 
to be substituted for any occurrence of r(Gl) in reV), r(H2) fOl'> , 

any occurrence of r(G2) in reV), and so on. For exa.mple~ 

SUBLIS( «A. 1) (Be 2) (C. 3)) (A (B C) D (A B)) ) :;= (1 (2 3) D (1 2}) 

SUBST and SUBLIS are obViously two very useful functions, 
vlhich occur in many plaCeS in El0St l:-Jrgc LISP programmes. In 
p8rticular 7 in somo calculations in thooretical physics that 
involve extensi VG use of integrals, SUBST and 0UBLIS inser-l; 
particular values (the limits of integration) in standard forms 

- 25 -



for indefini-lic integrals, .u.simpl . .:: r:C;:-J.rlf~ of n':~king uP' a tabl( of 
illtegrels 3.1l'eac1y ex:j..sts - th:; fl.riction CSBf. If Vie denote b~r x 
a list of th6 form ((AI Bl)(A2 B2) Gte. ), where AI, A2 ••• ·arc 
intsgrands and BI, B2 are" th~ corresponding int2grals~ we can 
ins(;rt~ 

CSET(TLBLB x) 

into OUl' p:r:'ogranirnE and thereby SGt up a table of integJ:'.~ls -t;h~~-G 
c?.u lc~t~I' b~::. add:cesseCl b~y its nam0 7 T . .i-iBLE. 

A simple table of one-dimensional intEgrals nay bcgin~ 

( ( (TI~v1ES A CrtXPT X N)) (TIHES A (REO II' (ADDl N)) (EXPT X (lWDl XI}))) 
. «COS X) (SIl:J" etc.). 

It has already proved practical to extend this method to four
dimensional integrals, and to build up tables of inte~rals by 
LI3P functional operations (e.g. integration by parts) on the 
contents of the original table. 

Consid8r a COITililon. type of problem in LI~rt' programning. ;:ie 
have a list, say (1 '2 3 4), and 'lJ0 v:isl1: to perform a coaplrGation 
which will have as its value a list ·in which all elGm8nt~ of the 
original list have been subj~cted to the sace operation. If this 
operation is, say'} the addition of 2, our anSVler will be (3!} 56). 
It is most corJ.venit::nt to have a single function that can £18P any 
given operation onto any given list. This fUnction is hl~PLIST; 

(I'ilAP.LIST (LAi.~BD.L (X FN) (COl·JD «i-fULL X) NIL) 
(1' (COlI,:) Cf'h X) (r.1Al)LI3'l! (CDH X) FN) )).))) 

Two ~recautions must b8 observed in connection with this 
d (;; fini tion! 

25.1 - Note that we have (FIT X) in the last linE of the COND, ana 
not (FN· (C.-1_R X)). The most cornnon prograhlIuing nista.ke T~i t~T .. 
Ni~I;LlaT is the assumption that the argutlcnt of Ffl-ls-"[Cii"R :r). 
The ff:l.C t that v:e he.vG (FN X) expl8.inswhy (C~tR J) OCCU1'S in 
the function ADD2LIST bolow. 

25.2 - 1[Ls.2LIST is not defined in the LI31i system according to -~lle 
S-expression form above, but ~t is ~ritten in machine code. 
The defini tion above is only intended to sho\lv roughly how 
}l1iPLIST works. Programmers cannot use DEFINE to define 
their oV/n new func tions that takE' func tional argumc:n t; 
such fWlctions will not vjork! 

An example of the use of· :Mr .. PLI~:)T to add 2 to 88.ch element 
of a list of numbers is given belo~: 

(ADD2LIST (Li-u:lBDA (U.) (NL~PLIJT U (li'Ul~C'rIOn (LJil.fIBDA (3) 
( FLU S 2 ( C _~H J)) ))) )) 

It B~y seem at first that tho final part of the definition of 
AJ)J)2LldT should be (PLDS 2 J). But thin is not so, it is :m 
illustration of the mistake (25.1). 

- 26 -



", 

The corr8ct specificaticn of tile functional ~-_...., ...... oJ 

aX'gtunent of 1:L.4.:t'LIST must begin with the a tom FU1\fCT'IOH, 
which the LISP system uses temporarily as the name of the 

.. f.ullction '..hese ·5t::fini tion is ." p~~rt of th2 c::rgument. 

Other functions of tne LISP system that use func-cioli.al 
2_I'gvl!l:.:n ts ar6:MAP, ilU'1.PC01T, SEARCH and PROP. Thes8 Cl.l:'G 
~iscussed fully in ADPG~dix A of(3~1). 

Boole;:~n L00'ic -_._---_ .. __ ._Q--

The t:u.ree basic Boole2.n functions arE ":'~r\rD, OR and NOT. 
Ve h2va already encountered NOT in section 12. AND and OR al~0 
exist in the LI8~ system. Like PLUS and TI~ES~ they are allo~ea 
to h8.ve ~1.ny number of arguments between 2 a.nd 20. The LISP 
syste~ eVJ.luatss the arguments of AND and OR from left to. ri 6ht. 

If each result of the evalu2.tion of argu.InGnts for AND is Ir, 
the value of AND is T. If anyone evaluation gives the result F 
or iTIL? evc:.luation of all arguments to the right of that 
argument :u) not carried out'} and· the \Dlue of A:rTD' 'is 1!' •. 

OR behavss in the same manner. If·all evaluations of 
arguments giVE::: F or NIL'} the value of'OR i8 F. However 1 if any 
one c:.rgument ha.s the value T on evaluation, .all arguments to the 
right of that argUL'YlCnt are not processed, and the valuG of OI-\. 
is T. 

In section 8 VJe havo discussed the· way in ilihich new infor!21-
ation produced by the LISP system during readingope~ations or 
compute,tio1l8 if:;. inserted into the most convenient unused 1;;orCls in 
core melilory. Eventually., though, this proc8<Iure must fill all 
of the 3p2.C·(;, available for storage. · .. ie must have a msans of 
removing .information from storage when it is no' longer nseded. 
The g2rbagc collector is a function, written in machine code, 
~hich does this. . 

During ordinary opera~lon of the computer~ the LISP system 
uses the garbage collector automatically wh0never the storago 
ava.ilz..~ble for computa.tion .is full. liO\\iev€r 7 the programrler may 
start a garbage collectlon hiElself by using the function HECI ... : .. II.'.I, 
""ihieh is 8. lunc tion of no argwnents. Because of this 18. tt6r fact, 
r;e· put it onto an lBUi c:ard as: 

R.GULAIY[ ( ) 

For short programmes, howevcr~ this option.is not necessary. 

fhe~lue of RECLAIM (Bhich is uniruportant by comparison 
~ith its effect) is NIL. . 

28. Eo':\' to ·"iTite Functions of No Ar~umG·nts --------------------------------------
The li3t structure ( ) is equivG.lent to ~J'IL. Either 

struc ture is a. 8pecification of no .=.~.rguments for a function. 
Therefore R~CL~IM ( ) and R~CL~IM NIL are equivalent. 

- 27 -



... 
Now suppose that he must make RBCL~IM into part of a 

function-defini tion or . a :PHOG feature. ·'Ne must use prefix 
notation, as with any othsr function. Rem€~ber that G(X,Y) in 
infix notation becomes (G X Y) in prefix notation. Therefore 
G( ) bGcomes (G). Similarly, HECLMiIlVI( ) beC0l:18S (RECLAIf.iI). For 
example~ we m~y write a function-definition~ 

(TESTFH (LAHBDA (X) (P? .. OG (A 13) 

!
~1ETI~ .A (C.!~R X» 
SETQ B (CDR X)) 
RECLAIM) 
RbTURE (CONS B A)) ))) 

and another definition, in Yvhich RBCL.s.IIvI occurs inside a COrID, is: 

(Al"1"OTHBR (LAMBDA eX) (C01,[D (NULL x) (It£0L) .. IIVI)) (T x) ») 

The LISP system will normally print out only the final. 
result of·a computation, as we can see from the examples in 
section 17. But YJ6 may want to have some intermediate results 
of a computation printed (or punched on cards) also. {fe have 
five ftUlci:;ions availabla for operations of this type. 

(PRIN~ X) will print reX), space up the carriage of the 
printer by one line? and also return reX) as its {alue. 

(PUNCH X) will punch reX) in S-expression form on I B1Vi ce.ras·, 
and also return r (X) ;3,S ita value.· 

(PRIlll X) will work only if reX) is an atom, In that· case, 
its value is reX), but it will also print reX) followed by a 
blank space, and leave the carriage of the printer on the same 
line. 

(TBRPRI), a function of no arguments~ spaces up the; carriage 
of the printer by one line. It has the value NIL. 

(~JECT) spaces ~p the carriage to the top of a nen page. 
Its value is NIL. 

Here is an example \'.'flich uses all of the printing and output 
functions: 

(PRINTTEST (L.;::.I\1BDA (N) (PROG (A B) 
(PRINI (QUOiiE CALCULATION» 
(F:8.INI (:<~UOTE B~G INS) ) 
(TBRPRI) 
( 

<:::: "t;-"rj1.~ t, (rt:. -JJ .. "C 1'~)) 
U..J.J..t.~.t1. vi.,.·.I.\. _IJ· 

(S~T( B (CDDR N» 
(S:L/[:~~ C (FRINT (llUNCH (LIST ·B A (C.r1.R lJ) )) 
(P.;J.INI (' . .,iUOTE C.L.l;.LCUL.H.TION» 

~ p.'. RINl (t~2UOl'E FIHI6HED)) 
.. J"t-;".(!ln) 
-} .:.:.Iv.!.. I 

(?G~TUR}J C) ))) " 

- 28 -



, .. 
30.' SOHl3 hl'JI'G Useful :B'unctions ------------------------..,-- ..... 

30.1--In addition to the functions th2.t have been mentioned '--'.' 
"fullctions included in the LIS} system, .the i'ollo\;~ing non-ari tllEle

JGic 
functions are members of the systera; 

(L~.liGl1H X), which has as its value the nWllbGr of elements on 
the tJp level of the list reX). If reX) = ( ) = NIL7 the value 
1.3 zero. 

(P2V£;HSB X) has the vij,lue of the;; list obtained from reX) 
by the rcv0rsal of the order in which its elements occur on the 
top level. For example: 

REVERSE ( (1:.. (BO)(D E) F» = (F (DE)(BC) A) 

(DbLETE XY) returns rCY) from which the .first occurrence of 
reX) on the top 18vel has been removed. For example: 

DJ1LBTE (L (.it B !.i. 0» = (B b. '0) . 
DELETE(A (B 0 D) = (B C D) 

DELLTE(A (B (OA) D» = (B (C A) D) 

(Si;'},DIFL' X Y) is a 'S(3t difference'· of its arguments. i.o. 
it treats reX) and r(Y) as sets and returns reX) - r(Y). 
For 8x8.mple~ 

Sb.··.TDIFF~ ~A 13 C) ~B C D) ) = (A) 
S3TDIFF BCD) A B C) ) = CD) 
S~TDIFF A B C) D) ) = (A B 0) 

30.2 - 'rIle following arithnetic functions (in a.ddition to thos8 
illsntioned in previous sections) are available in the 

LISr system: . 

IMX takes any number of ctrguffi(;:;nts between tViO and tv:ent~/ (b~lt 
all of them must eva.luate to numErical atoLls), and returns as its 
value the l£:i.rgest of themo MIN does the same for the smallest of 
them. 

(GltE~~.,.IIERP X Y) is T if r (X)· is grec~ ter than r (Y), s.nd F 
othertuisc g A predicate fUJ."lction LBSSP, \'.'hose meaning is obvious, 
also exists in the system. 

EX}!T, RECI? (for information about these two flmctions anci 
their' shortcomings, see (21.4) -), PLuS and TlIii:CS are availc:.b12 • 

. (MINUS X) has the value .-reX) 
(])I}TTIi~R:2.;IJCJ:; X Y) has tl18 value reX) - r(Y) 
(QUO'II~Nf X Y) ha.s the vc1 lue r (X )/r CY) 

. Sev\.;ral neVJ functions not listed i.n the refl::rence ('3.1) {:'.1'O 

present orr the LISP system ·~·p6S. They are described belo~ by . 
name~ property (LXPR or SUB~), S-8~prcssion definition~ effect, 
v 2_1 t.U-; 2.11 d ( if i.'"H:: C C 8 8 2T Y ) 8 ~":~:;!.la p 1 e S ;3.11 0. C 0 I!1lH (:; n t S 0 

(SUBR) FNL 
-tPHL ( _. ',"'r.BD· -dIL f""J'IL)) 1,~-:.i~1 i\.1.. .1. 

Ve.lue: NIL 
- 29 -

" 



DEL.iiJTE (SUER) 

(D].:LETE(LAMBDA eX Y) .( COND . «NULL Y ) NIL) 
I CS:~~U:'~L X (C~:iR Y») (CDR Y) 
~T (CONS (CAR Y) (D~LETE X (CDR Y» » ») 

£ffec t 7 va.lue and ex~mplGs': See section 30· .. '." 

COl·"l'l"rl~-l·t"· sup c-: l"I" 1" C1" '-'lly 1" t ....... ~.~r ~".-""" -l-l'l·'t .l-·····L~ .t:>unctl" on· ·.:-~\";,:.r~i;' .41J.u\jl •.. \7,; 0.' "!.J.~)...J ...,CI;L .. vl.::;Y lJl!.";.L _.:.J....:.t;"-~""-'-" 

~;";hich is 8,lso in the LIS? SyStEE1:1 dOGS Gxactly tiu: S;.:1.nl2 thing 
as DELLTE. 'i:his is not stl'ictly true. fA good· rulr':: of thUBb· is 
th2.. t DELETE should a.l\".'&Ys 9G us cd in prEfcr-enc e to EPJI.LCE un';;il 
on8' has Ulldc.rstood· fully i) . thE:: Cliff(;rencE. bct·'N(:;en :r,jL~P B.nd 
-, il' f· FLIST ~" ") th f R-r'-' (C· :l ~)~-L' 0i\ lV~.. . 1 ane\ 11· 8 us c; a _ i:' l.J.:"!.v_Ll ana .!:.~.t' ·i-l.vl.J. 

PLUSP (SUBR) 

(PLUSP (LJJ'tlBD.A. (N) (COND«ZbRO? N) :B') (T (NO'.!: (lfIHUSP N))) )) 

Value ; T if r (N) is 8 posi ti ve nuraber, F if r(N) is a negative 
number or any representation of zero~ and undefined ('error 13 1

) 

other~.7is e. 

Comment~ in practice, PLUSP St2effiS to be needed more frGquGl1tl~; 
th~~n I.=I:\~-U;jP., 

8~T.JIFF (SUER) 

(8.G'.I:DI}:lF (Ll.J'!IBD.4"i (X Y) ((JOlJ}) «HULL Y) X) 
. (T (b~TDIPF (D~LETS (C~R Y) X) (CDR Y)) ))) 

Value an6 examples: 80e section 30. 

TRTM (StiBH) 

( m··~I-r- IT . .,. ......... -;-0.,/ (v) (I""!O~l·.f-JJ' « ..... ·\'.\T,F.T·L· '}.'_) J.'.J"IL) . J.:Lt M \ .LJll.HLb1hl. .i'>.. v "" _ 

«(IJ}tI.1B:8R (CljR X) «;DR X)) (TRIM (CDR X))) 
(T (COlJS (C.AR X) CIHIM (CJ)R X)) » »)) 

Value: ·the list obtained from the list reX) by the deletion 
fron reX) on the t·op level of ::tll but the la.st occurrences of 2:.UY 
of its elements w~~ch occur more than onCG. 

Exa.E1ple: TRIM{ · .. 'A B li C CD A) A E.8.) ) == (B C CD.A) 

(SUBR) 

Value: (r(X) if reX) is 2n dtom, otherwise the list obtained 
from reX) by the remoyal of 311 brackets on all levels and all 
dots in all explicit dotted ~airs. 

j~z~:nlplc ~1?1;'.TS:Ei; ( (1:~ ( (:8 C)) (D • S) « (2 3)) 4») ) == 
(~ BCD E 2 3 4) 

~~Ll~T~?~'!."( ~A • ·B) ) = (A B) 
.r:'L_~Trl:.8.N ( i~ ) = (A) . 

- 30 -



.. 
, -'.ALLOUT 
, -------- (SUBR) 

~. (ALLOUT (LAl/iBDA N:IL.(PROG2 (REWlPROP (~2U()TE~) (QUOTE SYM») ( 
EXCISE T) ») . ~ 

Effect: ALLOUT removes LAP and the compiler from storage, 
thus making more space available for computation. It is 
probably not necessary to insert the doublet EXCISE(NIL) into a 
programme until the same programme (~Ni thou~· it) has run out of 
space and produced the error message GC2 as a result. (Thi~ 
doublet removes only the compiler). Further, it is unnecessary 
to use ALLOUT( ) unti.l ~ pro~;r-;T·~~_:': COllt lining EXOISE(NIL) has 
run out of space in the same manner. 

Value: nIL. 

Comment~ After LAP has been removed, functions in whose 
definitions the programmer has-made use of LAP (see section 39) 
will not work, and will cause the computer to stop processing 
the entire LISP job..' - . 

FLAGP (SUBR) 

(FLAGP (LAMBDA (A PR) (COND «NULL A) F) 
(EQ (CAR A) PR) T) 

. (T (FLAGP (CDR A) PR» ))) 

Value: T if the froperty-1ist of rCA) contains tha flag 
r(PR), and F otherwis~, provided that rCA) is an atom. It is 
not intended for use with any other form of rCA). . 

Comment: The function FLAG, which is mentioned on p.60 of 
the reference- (3.1), can be used to place flags on the property
lists of atoms. FLAGP tests forthe presence of such flags. 

ATOMLIS (SUBH) 

(ATOl\1LIS (LAHBDA (X) (OR (NULL X) (AND (AT01JI (CAR X) (ATOMLIS 
(CDR X» » ) 

_ Value: T if reX) is a list whose members on the top level 
are all a.toms, and F if reX) is any ·other kind of list. reX) 
should not be an atom, or an explicit dotte~ pair like (A • B). 

Nl.J1:ffiIS ---_ ... _ .... (SUBR) 

. (NUIvILIS (LAIvIBDA (X) (OR (NULL X) (;~..iID (nm~B3RP(CAR X)) {}JUiVILIS 
(CDR X» » ) 

. Valu~: T if reX) is a l~st whose members on the top level 
a.re all numbers, and F if reX) is any other kind of list. The 
restrictions on rCX) are the sarne as those for ATOr:!LIS. 

TRAC :iiSET (EXPR) 

/ (TRil.C·~S£;T (LAMBDA (U) (r.1AP U (FUNCTION (LAMBDA (J) 
IVIAP (CADDAR (PROP (CAR J) (QUOTE EY~R) (FUI~CTI01f (LAMBDA ( ) 
PROG HIL (PRINI (CAR J» (PRINT (QUOTE ~t~ HAS no EJ{PRt») 
RETURN (QUOTE «UIL NIL (NIL))))) »»)) 
FURCTION (L)1{lBDA (Ie) (CONI) «OR (NULL K) (ATOM (CAR K» 

. NOT (i;QUAL (CAAR K) (QUOTE SbTQ)))) NIL) 
(T (RPLACD K (APPLND (SUBST (CAD. AR K) U2UOTE VBL) (QUOTE (( 

. . PRIlll ('~JUOTE VBL» . . 
(P:R.INT «(-~UOTE $tt =$» (PRINT VEL) ('J:E:rtPRI ) ») (CDR K) 

. ) ) ) ) ) ) ) ) ) ) ) ) 
- 31 -



... , ' 

Value: IJIL 

.Effect~ Let r(U) be 3 list of naQes of flli1ctions. Any function 
in thfs list which is defined e-s a.n BXPR via the l)ROG feature 
will have its definition in storage.altere6 ~o that, whenev2r 
the function is used· subsequently ~ all programme variables th2.t 
are bo~nd by 'SbTQ on the top lev~l of the PROG will be printed 
au; autcmaticallY7 to~ether ~lith·their current values, whenever 
these values are changed or re-established. 

EzaLlple ~ Suppose we have defined a functi'on (FN (LAMEDA (Y) 
(FROG (A B) (3:tTQ A (CAR Y) ) (SETQ B (CDR Y») (RETURN 
(CONi3 B i .. ~) )))? and have alsoappli6d TR.Ii.C.:GS~T to it. Then, if 
]'H ( ((K L) (M N). ) is presented for execution by EVAL,:;.UOT3, 
the a~p~~rance of the printed output is; 

FUHCTICiJ ••• 
F~T 
ARG(S) ••• 

( «.K L) (M l'J)) , 
A = 
(K L) 
B = 
((I/L 1\f» 
VJlliUB OF RESULT IS •• 
« (M N» K L) 

Comment~· Section 40 contains an improved d ef:Lni tion of 
TRACSSET. The function UNTlliillE3ET in section 40, while being the 
inverse 'of the function T~~C':=:Sb'r there, is obviously not the
inverse of TRACESbT as defined above. 

(SUER) 

(S.AluEF (L)]/IBTh (U V) (COlITI (NULL U) (j:TULL V)) 
·(T (AND (MEIEBER (CAR U) V} (3AMLP (CDR U) (DELETE (CAR U) 
. . V)) )) ))) . 

Value~ T ·either :Lf .. r(U) and reV) arc identical lists or if 
r (u) ~7.n be 0 btained from r (V) by permutations of the msmbers 
of r(7; on the top level only, and F otherwise. 

"Q~~Q~ '(sriER) 

Definition: See p.15 of the reference (3.1). UNION hast~o 
arguments. 

Value ~ A singlo list equivalent to tr.l.8 set-theoretic ll..lJ.iOll 
O f t :'l r:. 0'··,70 .9 r (jllrn ''='nt 8 . ... v U ," ~ b w.:':'J.1.:' • 

Exp.mplE;s~ UNION ( (J... Be) (D:SF G) ) = (li. BCD EF G) 
unI.OH~ (A B C) (B C DE) ) = (A B C DE) 
UN I 0 H (A (B C)) ( B D) E (B C)) ) = (A (B C) ( .s D) E) 
UNION NIL (A) ) = UNIOn ( (A) 11 IL) = (A) 

- 32 -



. . 
.. 

XN (SUBH) 

Definition: See p. 15 of the reference (3.1). xu has t".;o 
arguments._ 

. Value: A single list equivalent to the set-theoretic 
intersection of the tV/O arguments. 

~xamples: ~~! ~A B C) (D LF G) ) = NIL 
XN ABC) (B C D:U ) ) = (B C) 
XN A (B C») «B D) E (B C)) ) = 
XN NIL (A)') = NIL 

(A (B C) (B D) ~) 

EXPEL (SUBR) 

Effect: EXPEL takes one argument a list of atoms for vthich 
all properties (including ·print-nakes) are to be removed·from 
thE system - most frequently, to make more space availa~le !o!: .. _ 
computation. bXPJ:;L is an improved version of tht functlon .tL:.a;1V.D, 
which is ~Gntioned on p.67 of the reference (3.1). Note that, 
al though the argument of LXPl;L is a list of atoms, REr·!.LOB can only 
be applied to one atom at a time. 

Value ~ NIL'. 

POST (SUBR) 

(POS T (Ll-:JYIBDA. (Ni~lVT~ NR LIH3) (PROG (PA ). 
. ~('~-::;T~· -,;. (r.,.; f'i1 j\T.·j1/T·!=; (·,.u~.m7-'r.:'XI)R))) 

IJ...J .,. r..!.1. I,;u..;l .L'LI.~J.".1...!~ .: U 1~...:1 ... 

001113 CPA (GO GX») (T:8B.PHI) ·(Pl1.INI l'J:u.1E) (PRINT (.~UOT3 tf:1i5 
. HAS l~-O EXPR.3» . 

(TERPRI.). 
GX (CON') «EQ -2 NR) (DBFINE (CONS (LIST LINE PA) NIL))) 

«(IIIIHUSP l'IR) (}1PLAC.A (apR P J0 LINL) ) 
. (T (GO (GA.))) 

(GO GB) 
GA (PSUB (C.ADDR PA) LINE NR) 
GB (RETURN (GET· N.AIvIE «(:tUOTE EX:FR))) )) 
(PSUB (LAMBDA (J~ B N) (CON]) «MINUSP l~) (ERROR N» 

( (ZEROP N) (RPLACD.A· B) ) 
(T (PSUB (CDR A) B (SUBI N») ») 

Comment: The £unction PSUB cannot be called directly 
by.name by the programmer. 

Further informationo See section 32. 

32. ~Q~_~Q~!~~_~~g£!!Qg_~Q§~ 

Suppose that we have followed the: option (se~ section 20) 
of updating the basic LISP sy~tem for our own specific use 

t' . 

by adding some of our own function~definitions to it and 
{eser"Q'ir.g a numbered tape which contains this updated system. 
8uppose also that, at some later time, we find.that we ~~uld 
like to make changes in the definitions of some of the functions 
that,we,have added to the system. Th~ simplest method of. 
repalr lS,to ma~~ ~h~.changes in the original cards containing 
th~ functlon dellnltlons, and add these cards as a whole to 

- 33 - .. 



.~ the card decks for all later jobs. (In such c~~es, the 
definition on cards oVGrrides the definition on tape)~ Howev~r, 
if there ~re many repairs, card decks cen grow excessively larget.· 
This is a particular problem for tho user who posts card decks :~ 
to Imperial College and receives c8.rds and output by post also. 
If·amrd deck has· more than about 40 cards, it must go by parcel 
post and cannot.conveniently be packEd·int) the same envelope 
as printed output) for transmission by let~er post. Th~refore 
one tries to 8xpx'ess repairs by punches on as f·€vi cards as 
possiblE. 

The function POST is desi~nGd for this purpose. Its three 
distinct USGS can be sv..nlmarisE.d by exe.mple. Imagine that our 
systeD contains as functiori-definitions: 

(FRJ1D (L-,~liIBDA (Xy Z) (PROG·(li.B) (TBR1?RI)H(COND «HULLY) ( 
RE'rUIDr A))) (SET~}.. (COl-iS (CAR Y) .A)) 

(SETQ 13 (CONS (1. JR X) B)) (COND «SM!rEP A B) (GO H)) (T 
. . (RBTURN (FRED2 A B)))) ))) 

(FRED2 (Ll-uYIBDA (U V) (COirn «NUMBERP (CAR U)) ~.) «NUMBERP 
. . (CAR V)) u) (T (LIST U V)) ))) 

and -ti"lat \';e want 'to do the follov.jingthings! 

i) I~lak6 (X Y) tho list of dummy argu.w.ents for FRED, 
because Z is superfluous. 

ii) Replace th~ mistake ACR by CAR in FRED. Note that, if 
v~'e start counting on the top level th8 members of the list ..... 
v{hich begins \iii th the atom PROG ~ but exclude PROG itself frOB 
the cOlmting, the [Jistake occurs in the sixth elef:lent. 

iii) Define a completely new function-TOM-having the saBe 
definition f..1.~3 FRED2 above. 

. i v) Finally change thE d efini tion of F'RED2 to replac e LIST 
by APPEND. (LIST occurs in the third argULl.ent of COND) 0. 

We achieve them by punching on cards only the following four 
specificatiol1E: 

POST(FRED -1 (X Y) ) 
POST(FRED 6 (SETQ B (CONS (CAR X) B)) ) 
.POST (i'RED2 -2 TOM) 
POST (FRED 2 3 (T (APPEIID U V)) ) 

With luck, these corrections should fit onto two cards, and 
there.fore avoid the necessity of having to include all o.f the 
original function-definitions on cards as part of the job. 

Yii thout the LISP 1 .. 5 I'.~anual , it should be possible to 
undel~stand exactly what POST dOGS when its second argument is 
either -2 or -1 from a study of the definition of POST in section 
51. An lJ.llderstanding of lNhs.t hD:ppens when the argument is a 
posi tivG integer requires knO?Iledge of the fUl:ctions RPLAG)lo and 
RPLACD, but the [tctu2l USG of POST for corrections wilen the 
argument is posi tivc: is simply B. :~'atter of careful counting of 
S-expr·cssions inside the defini tion of the function to 1Y~ . 
corrected. 

The v::tlue of POST is in every case the corrected definition 
of the func tion named as the £irs t argur:lGnt. 

- 34 -



.. 
-" . -

-\' 

For programmers "familiar Yvi th the conc2pt of EXPR and the 
use of COIJPILE, it is wo:r;th mentioning that POST willvlJork 
correctly only if the funct,ion named as the first argum2nt h2.s 
its definition" in the form of an .8XPR in the syste~. 

33. Pause I 

All of the preceding material is desi[ned to be useful to the 
intending LIS? programmer who has no access to the LIS; 1.5 
~ilanu8..I. Tha.t N~anual is an essential reference for serious 
progralllIl1ing, "but it is not an expo si tory manual in the usual 
sense, so th2t this Guideo ll).8.kes pro,f;i. ta-ble ·r~a:d:Ll1g in parallel °GO 
cl-ear Ul) lJoints that ms.y bo' obscure. 

The ten following sections assume. a knowledge of the 1I2.l1U2:). 
(3.1), gnd a certain aDount of program_mingo experience·.. Sections 
34 and 35 are for the IBM 7090 LISP user who may haVe to rlll c~rd 
decks temporarily on CDC 3600 or Ferranti Atlas computers olse
where in Europe, ·sections 36, 37 and 38 are especially recommended 
as companion pieces to the Manual, and the remaining sections 
record various specialised prograrfuuing tricks that hnvebeen 
effectiye in filling some obvious gaps in LISF procedure. 

CDC 3600 LISP is available to any CDC 3600 installation through 
CO-OP? the CDC equivalsnt of Shi~RE. The relevant manual for its 
general operation is the ref~r€nC8 (3.5). However,. let us 
consider the Dore spEcific problem of getting a ctird deck cif a 
successful IE1L 7090 LI81:' job to run on a 3600, for which LI;j} is 
implemented. The following points shou~d be noted: 

34.1 - The division of the card deck into packets is not 
per~itted. lt must be in effect a single packet~ without ~ 
STOF))))) cards or Overlord directive cards (iticlading FIN). 
ThGrefore all of these cards must be renoved. 

34.2 - The FI.lS identifying card (20.1), cOlTlnent cards (20.2) 2.nd 
the LIS? loader m~st also be rGflo~ed and replaced by: 

the ?JOB c:::,r"d of "the: 3600 installation 
?~QUIP,6=(BINARY LISP3600),SV 
?l~C.~UIP, 10=;:60 
?};~i:~UIP? 11=61 
?LOi~D, 6 
card containing ?RUN, in the first five COll.U!UlS, 

and a speci£ication of the maximum job tine and . 
lines output according to the direction of the 
installation 

Above, ?stands for 7-9 punch. Punching on all of "thes2 cards. 
begins in column 1. 

34. 3 - Ref-10VU the end -of-file card from the d eclc, a.nd be: sure that 
the FIN card is also remov~d. ThE CDC 3600 LISP deck ends 
~~!i th tv;o stands.rd· c~';..lrds, fi1'stly a card wi th a 4-8 'punch . 
in collli-nn 1 ~ and secondly an r c;nd -o.f -fils" card" v!i th 7-3 
punch~s in columns 1 ~D~~2. 

- 35 -



" , . 34.4 Of the functions present in the LISP 1.5 Progra~8Gr'S 
IVlanual (refc'~Gnce 3.1)), subject to·the corrections ill 
Si~ction 37, ;.:It least t11E. following are not .available: 
-- . -... CO'- 1"1)1- T.l ' . ,,,... "( I .-. ,- ('L"" R'P' UFT.1 Tl-m-"m r -. ,''''''7)" '. 1I1T . -;:)'0 I. "r .lu·U:' , l.J.r lJ~, .:.!;..t\.c, ~~, v '.L~~J. JJ ..i:!, ..l..i'J .l ... :;£ ~, 1dh.l\ ...I"l.li.l, ~ li,:,,1.L\'il.l, 

~::i}lRORS~T, R8CLLII':l, COUi,;'T, Ui.fUOUl,rr, SF Li~K, SYriT":1.B, LIS;~ILT(~, . 
TR:L~C~:COUNT, HHE':l.D ,NIT'EIr~-T, R~;~'~ IND, Bil.C}~8.i .. ~aJi;, Ti~HPUS-EIDG-IT 7 

TILlE, TIl:IE1: B.L:~CK~:;:lACi::;, d}~II.CiJ, .GJECT~ PLB, VlI;RBOS. 
None of the functions in Section 31 is included. However, 
thu popular character-reading procedure:; (L.nI:~BD.A HIL 
(li~'T~Rl;! (MK1~.al:;i)) ( ) is performed by f.1KLTOr:I ( ). 

34.5 - If :I:?L11.CE is used ;:~t8.11 in the .job, its first (OG.~.lrronco 
should be precedod by the doublet S~TBIT(7). 

,)4.6 - In -the reference (3.1), it is stated ttlat Oi.fl!;P, Zj,(;HOP, 
E~~U.i:l.L EtnO EeL (for numericsl argu1Jents) operate vJ·i th 2~ 
tol~rance'of 3 x 10-6 . In CDC. 3600 LISP, this figure is 
10-tJ. 

34.7 Ci;.R of an a tom is not junk, but the print-nane or PN.t::rij'~ 
of that atom. 

3488 - + and - should not be used as characters of an atom. 

34.9 - If PHIl,fl is us~d anY'where (e.g •. in D. PROG) , it is iiot 
advisable for PRINT to be the next function to be GXGcu~ed 

-~b'y' b"Vll.L~yUOTE. For sa:fct~ ... ~ .. - X Ti..llFRt,) should -he insorted 
., botl.:· 68n the:m:. in such a case. 

The ~t1as LISP syste~ is still in a state of flux 1 but the 
material prs8Gnted in this sGction will probably not become 
obsolete for SOl:.:.G title. ·...Jith respect to the current state of 
L,tlas LIdF, documelltc.tion :1.nd/or folklore 8.re available fro::l the 
At1a~ Co~putcr Laboratory~ Chilton, Didcot, Berkshire. 

35.1 - Th8re are no packats in Atlas LIS? Th~refore all 
control cards and STOP))))) cards should be removed froD 
a70g0 LISP deck. If 3ny S~OP card is left in the deck, 
the ktlas systen will take it at its facs velue and r~~d 
no aore input beyond it. 

35.2 - Reaove the FIn control card and FlvlS end-of-file card at 
tneend of the deck. Substitute an Atlas tend-of-filc i 

card vvi th a 7-8 punch in column 1 and Z in colunm 80. 

35.3 - R8Dove the LISP loader, and substitute the presoribed 
Atl.::.1.s job request car'ds (ID,' maXiI1UIJ. number of lines 
output 9 D.aximum runnin,~ time etc.). The last thrGe job 
cards, ~hich are specific to LISP jobs, should be: 

, TAPE 1 SRe GQMPILERS FP* 
COIvIPIL~.it. J1ECI.i-i.L 
~ilK,04 . '.'C th~, 10' is a .zero,,' no t 2. lL~tGr) 

35. if - ;.rho follov.!in·~:, rcgul£.rly-used functions are not inp18L1011-G8d 
in J.i tl~~~s LISP: .ARRAY, Ij::Ii,~.8, iiIMEl, ERROHSiiT, all 
CAR-CDR-tvns functions ~ith four As and Ds between the 
'e' and th~ 'R', all charact~~=~eading andcharact2r
cla.ssifying fUr:Jc··;ions. COMPILE exists, but it is f8.irly 
radimGntary. 

- 36 -
;; 

.... ;~ ... - . 



.. , . 

36. 

.,. 

35.5 LAP is defined in Atlas LISP, but it USGS ABL in~tructions. 
Therefore it is 9.£r:g£1~!~~~ iricompa ti bls wi th I Br:I 7090. LAP •. 

35.6 - Do not· use the atoss SY~T~i, INDbX and USE. 

35.7 - OAR of an atom will not producG 7090-type junk, but the 
message SV OP~&~HD, which is an error LlE:Ssage. On 
occasions, though, r:18.ny pa.ges of ord ered junk viil1 occur 
b8C~US8 the backtracG folloDing an error is not ~s 
effectively inhibited in Atlas LIS} as in 7090 LI3I.. 
On these occasions, your chances that E~4L~UOT2 will 
process any doublets' after the one which caused thG 
error are extremely small. 

35.8 - The tolerance of' 3 x 10-.6 between numbers compared by ~' .. ~ 
end E~.lUil.L in 'logo LI,.JP is exac tly zero in Atlas LI~r2. 
For this reason, it is dangerous to have EQUAL and EQ 
compc..re numbers of different types. For exappl.e, Ei:iU.L1L 
(1 1.0) may be false because of changes in the f1oating
point number (round.-off effects) during reading-in. 
Therefore it is safe to say that EQ and E~2U.AL ·v":.il.l:· almost 
always have the value NIL if either or both of their 
arguments arc floa.ting-point (or octal with negative 
exponent). 

35.9 - Tfu:l.C~~T;:3 ... T and UHTRLC5S2T 7 working on the: top level of ;:;"l.ny 
FROG, are ulready defined in the Atlas LISP syste@. There 
is [!.n addi·tional valuable debugging aid: the function 
(DEFTH N), ~hich sets up a push-down-list tr~p in 2 manner 
siTIil3r to that in which (COUNT N) sets up a CONS counter 
trap. ~!he inverse of DEPTH is (UlTDEPTH), VJhich is to be 
cOBp~red with (UNCOUNT NIL). (Note the diff~rence in 
nUHber of arguments!) In this connection, thG function 
(HO"':~D}l;BP) is the analogue of (SF31~KlJIL). 

35.10 -Tile applic;.;Ltion of CDR to an atom, to get the property 
list of that atom, is not allowed; it lea~ to th2 orror 
dcscri bed in (35. 7) • .l". tlas LIS}? has a special func tioll 
(PLIGT X) ~hose value is the prop~rty list of reX) •. 

There is a final practic2l point tb observe. I.C~T. c2rd' 
r08.ders digest I.B.ln:. c.:;rds ~I';'i thout cor1plaint, but the converse 
~~.BQ~ tr~e. Therefore, if an I.B.M. deck is developed by 
sever2.1 rUllS at an Atl3.s installation, during which tine·.tho 
devu1opocnts arc added to th2 deck on I.C.T. c2rds, those c2rds 
shoul/] bc'rcplaccdby duplicated I.B.M. cards if the deck is ·c.o 
be run gt:;.D.in on a 70'90 or 7094. 

An Index for the LISP 1.5 Pro~ranmer's Manual 
-----------------------------~---------------

Tho LI31 1.5 Programmer's Manual (3.1) is supplied without? 
general ind0x. To improve its rsadability, B.C. Berkeley ~nd 
D.C. Bobro~ h~ve supplied such an index, on page ~77 of the 
ref::;rGnce (30 2 ) D For conveniGnce, an updated version of the 
index, relevant to the IJ65 r0printing of the Monual, is 
reproduced here. i~(;fsr8nC0s to fuY.;.ctions not mentioned 9810:;[ ·L18.Y 
be found in the index on P2.ge 100 of "fne Manual. 

- ) 7 -



.. . . 
, . 

'a' in multiple c~r's and cdr's, 4 
AI, A2, 'A3,A4, A5(.error diagnostics), 32 
A6; A7"A8(error diagnostics) 32 
A9, Cl, Clil(error diagnostics~, 3) 
absolute value, 6, 24 
active list, 43~ 
actuctl interp.re::ter, 1 7 
add, 26 
ADD 1 , 26 
Address 1 36, 41 
Aavanta~es nf list structur~s, 37 
.ALGOL-like· programme, 29 
a-list, 17, 18, 19, 30, 71, 72 
allocation of storage, 1, 89 
alphabetic characters, 16 
.l-l.ND, 21, 22 
ambiguity, 24 
AI'FEND, l;L, 61 
APPLY, 13, 14, 17, 18, 70 
APPLY, d~finition of, 70 
A:-PPLY, S~~~flG descriptive definition of, 13 
args (arguments), ~O, 12 
argulllcnt (d (:;;fini tion) , 21 
argwnents, 2, 5, 10, 16, 19 
arguments, functional, 79 
2.rgvlllEllts of a fu...11.C tion, 7, 16 
ari trul1Gtic, 24 
ari tbl~letic errors, .33 
arithmetic functions, 25 
ari tb_f:.112tic predicates, 25 
AR.5Ui.Y, 27 
arrey fe~tur0; 27: 
arrOi[v·, 9 
assembly-type language, 18 
association list, 12, 13, 14 
ator!l, 3 
.i~TOM,. 13 . 
atomic argu ... rnents, 14 
atomic syabol, 1, 2, 8, ;16, 24, 30, 36, 39 
atomic symbol (definition), 2 
atomic symbo~~, list of, 43 
auxiliary function, 12 
axes, ~28 

BACKSPAOE, 96 
backtrace, 321 97 
BACKTH ... ~CE, 97 
Backus notation, 8 
base rogistGrs, 43 
b2.8ic flulctions, 16 
BCD charact~rs, 36 
BCD print-names, 43 
binary progralmne spac e , 28, 89 
binding variables, "17 
bi t table, 4~) 
b 1 anlc , L~ , 16 
bl:J.nJcs, 16 
blanks in lists, 4 
blocks of storage, 27, 38 



" 
Boolean connectives, 21 
lJound, 8, 18 
bound func tion nar.l€;, 8 
bou...l1.cl val'is.bles, '7, 8, 9, 13, lit, 17, 30 
br~ c· lr(.c -G' c::o. 9 

c~ ~~.. ;:;r, 
bra.nell.:: s ,. 5 
brE.l1ching, 1 
built-in functions, 14 
C .. ,,-R ,. :~, 10, 13 ~ 1 L~ , "3 6 , 5 6 
CAR (definition) 2, 56 
car, vc1ue in syst~~, 14 
card boundari~s, 16 
csrd deck preparation, 31 
c [~rd . f 0 rna t ? 16 
CDR, 3, 13, 14, 36, 56 . 
CDR(definition), 3, 56 
CH2, CH3(error diagnostics), 33. 
chnngG, 21 
character errors CR, 33 
character-classifying predicates, 87 
character-hRndling functions, 33 
character-reading functions 7 87 
character objects, 84 
charact~r strings, 3 
charactGristics of the LISP systec, 80 
characters, 84 
characters in atoBic symbols, 8 
characters, packing and unpacking of, 86 
circular lists, 37 
closed machine-languags subroutines, 18 
combining of S-expressions, 2 
c OEll'!l3. 3 .q~, 16 
coanas in lists, 4 
cO~D~nds to effect an action, 20 
C02~on sub2xpressions, 37 
cODpilGr, 18, 33, 76 
conpiler errors, 33 
coopilcr, non-printing, 94 
cospiler spGed, 18 
cOBp1e~ent of address, 36 
complete c2rd deck, 31 
co6posite, 3 . 
cocposition, 2,.5 . 
cOL'lpo6ition of car's and cdr's, ·3, 4 
c02position of functions, 2, 5, 3 
computeble functions, 41 
CONTI, 10, 13,14, 18, 29, 30 
conditional expressions, 5, J, 10 11, 30 
conditional expressions (definition) , 5 
conditional Gxpressions in paOGs, 30 
CONS, 2, 13, 18, 39, 41, 56 
CONS(dofinition) , 2, 56 
CONS counter, 34 
constant, 9, 17, 18,24 
constants, 9, 10, 14, 17, 18 
constants, function~l, 78 
constant predicates, 22 
constant tr2nslation, 10 



CONS trap, 35 
construction of list structure, 38 
control cards, 31, 81 
co-ordinates, 28 
core dV..ll1.PS s 31 
correction cards, octal, 80 
COUH'T, 34 
critical subfunctions, 32 
CSET, 17, 18, 20, 59 
'd' in Dultiple car's' and ddr's, 4 
dat8. in LISP, 1 
data language, 8 

,DEBUG, 81 
debugging, 32 
decimal points, 24 
dccre~snt, 36~ 41 
nefine, 9, 15, 18, 20, 40, 41 
DEFI~~, 15, 18, 58 
defining. functions, 9 
defininC functions recursivGly, 9 
defining new' functions, 15 
definition of functions, 18 
DEFLlST, 41, 58 
diagnostics, 31 
diagra~~ed S-expressions, 36 
diagrams of lists, 36 
Dl FF lil1.ENC},i; , 26 , 64 
dimensions, 27 
distinction ,betvJeen function 'and predicate, 23 
DIVIDE, 26, 64 
divide chock, 26 
dot, 2 
dot notation~ 2, 4, 9, 16, 24 
dotted pairs, 16 
doublets, 15, 17, 31, 32 
dunlL1Y vo.ri2.bles, 7 
DUMP (function) , 67 
DIT1VIP ( con tro 1 VI 0 rd)', 81 
E in nv~bers, 24 
LJ~C T, 95 
elementary functions of dottsd pairs, 2 
elementary fl~nctions of lists, 4-
elementary LISF, 41 
e1eI:1Gnta:cy rules for writing LISP 1.5 prograLTIeS, 
elsnents, 15~ 16 
elements of t'.lll array, 28 
elenents'of lists 1 16 

, . elsillGnts of the syntax, 8 
E~,l , ,3, 11, 1:3, 14, 23, 57' 
:E;'.~, cffec t \7ii th non-atomic sYI1bo1s, 23 
E(lU,,:1.L, 11, 26, 57 
equality sign, 8 
error, 32 
error diagnostics, 32 
errOl" D:LD..gno~:3tics, L"':l.'P, ':"5 
error in a 6£T pack~t, 31 
errors, lL~ 
bRROH;~L;T, ,)4, 35 
E~_c 110 ean algori t:b...I!l, 7 
~V~L, 13, 14, 17, 18, 19~ 71 
EVAL(definition) , 71 

,' ..... -4Gj' '-, 
.. :, .. 

15 



.. . EVA~. (simplified illustrative definition), 13 
EVALQUOTE, 10, 11, 12, 13, 14, 16, 17, 20, 21, 31, 70, 96 

.. BV ;_L'~UCT~L (d efini tion) , 70 
BV) .. L',~UOTJ1 (simplified illustrative definition), .13 
evaluating variables, 17 
evalue.tion of ;:·,.rgumer.lts, 19 
evaluation of a recursive function, 6, 91 
exclusive OR~ 27 
exhaustion of storage, 43 
exponent in~ication, 24 
exponents, 24 

-EXPR, 18, 39~40 
Gxpression, 5 
extensions of LISP, 20 
F, 3, 1 L!., 16, 18, 22 
Fl through F5(Grror diagnostics), 33 
factorial, 6, 27 
£2.1se, 3 
:falsity, 5, 22 
:fetal errors, 32 
FEXPR, 19 
ff, 8, 10 
FF,. 6, 10, 40 
fields ,LAP, 74 
FIN, 31, 81 
first atoLlic symbol, 6 
fixed-point arguments, 25 
floating-point numbsrs, 14, 24 
floating-point trap, 93 
fn, 10, l:2 
FOR, 98 
forma.l nathDL1atical language, 1 
form2.t, 9 
format on cards, 16 
forns, 7, 9, 10, 13 
~REE, ,42 . 
Iree-s~orage 11St, 38, 42, 43, go 
free-storage space, 43, go 
fr2e-vs..ri.::1..b1es, 7, 21, 77 
FSUBR, 19 
full '/!ords, 43 
full-wordspace~ 43, 89 
function, 7, 9, 10, 16, 18 
FUNCTION, 21 
function bound to variable, 21 
function definition, 18 
function evaluation,13 
function names, 2, 5, 99 10, 24 
function na.illes in meta-langue.ge, 5 
functional argwnents, 10, 20, 21, 79 
function~l constants, 78 
functional syntax of LISP, 20 
functions, 7, 9, 13, 18 
functions, arithmetic, 25 
functions, built-in, 14 
functions, index to descriptions of, 100 
functions Dith functions as arguments, 20 
Gl through G5(error diagnostics), 33 
ga.rbage collector, 33, 36 '. 4~". 43, 89· 
garbage collec~or errors, 33 

- 41 -



, . 
GC1, GC2 (error diagnostics}, .. 33 
G. C .D. algorithm, " 7 
G~HSYIt:1, 66, 97 
glossary of LIS} t~r~i~ology, 103 
GO, 29, ' 30, 72' 
go-list, 71 
grp, 39, L~2 _ .' .. 
higher-level bindings, 17 . 
11 through IL~( error diagnostics), 1'3, 34 
ID card, 31 
idnntical S-expressions, 11 
id~~tity function, 20 
IF, 98 
illegal BCD character, 40 
inaccessiblG registers, 43 
indefinite nlmber of argunents, ,19 
indentation, 16 
index to descriptions of functions, 100 
indicator,· 18,3.9, 41 
indicator(dcfinition), 39 
indices of arrays, 27 
infinite recursion, 6, 10 
infix notation, 22 
input and output in LISP, 83 
input at top level, 19 
input-output errors, 34 
internal representation, 37 
interpreter, see EV.4.L,.:2UOTE 
int8rpreter errors, 32 
intGrpreting S-expressions? 1 
LAB~L~ 8, 9, 10, 13, 14, 18 
label notation, 8 
Ll-JtIBDA, 10 , 13, 14 
laQbda notation, 7, 8, 9, 17 
LAP, 18, 73, 94 
LAP assembly, origin for, 73 
LAP error diagnostics, 34, 75 
LAP fields, 74 
LAP instructions, 75 
left parenthesis, 2 
link, 79 
LISP compiler, 18, 76 
LISP for SH.AHE distribution, 93 
LIS}? functions, 10 
LISP interpreter, 15 (see also EV~LQUOTE) 
LISP library, 56 
LISP loader, 31 
LISP prograE~es, 15 
LIS}' prograaming system, 14 
LISP system, 31 
LISP syst~m, characteristics of, 80 
list clements, 16 
list function, 39 
LISTIHG, 94-
list notation, 4, 9 
list of al~gw:'lcnts, 10, 16, 19. 
list of etomic symbols, 43 
list of p3irs~ 12 
list structures, 1, 36 



.. 
. . 

list structure, advantages oi', 37 
list-structure operators,' 41 
lists, 4, 16, 27, 36, 39 
location .m~·.rker, 30 
log~l"'i thqs, 26 
10gic8.1 .lll}'D, 27 
logic.?:l C0l111ecti ves, 21 
logical OR, 26 
logical shifts, 27 
logical words, 24, 25 
loop, 6 
lo~~r-case letters, 2, 9 
machine-language function~, 18, 40 
MAPLI6T, 20 9 21, 63 
nargin2l indexing, . 28 
memory~ allocation of, 89 
memory organisation, 1 
meta-language, 1, 5, 8, 9 
meta-language (definition), 9 
M-expressions, 1, 5, 10, 20, 22, 29 
M-expressions as S-expressions, 10 
minus. slgn, 24 
niscGllaneous errors, 33 

, mltgrp, 39, 42 
~odifying list structure~ 41 

, MPRIlIT, 96 
liIREAD, 96 
names bound to function-definitions, 18: 
names of functions, 18 
negative octol numbers, 25 
negative signs in garb2ge collection, 43 
n<.?w LIS1') system tape, . 31 i 82' 
NIL, 4, 9, 11, 16, 18, ~2, 39, 40 
NIL as falsity, 22 

·NIL in diagruLls of S-expressions, 36 
NIL, int~rnal representation of, 40 
non-active registers, 43 
non-atonic, . 3 
non-p~inting c6mpiler, 94 
NULL, 11,2:), 57 
null list, 4 . 
number formats, 24 
numbGr of expressions, ,37 
NUI~J3. ~:RP , 26 9 64 
nunbcr rE:}?resentation, 36 
nwnbers, 24, 41,43 
nunbers 2S variables, 24 
numb6rs, fix2d-point, 14 

. nluJbers, . floating-point, 14 
numbers, int6rna1 representation of, 41 
numerical corn.putations, 6 ' 
OBKBEP, 17 
octal correction cards, 80 
octal numbGrs, 25 
operate, 20 
ord er of arguElents 1 22 
overlord (LISP monitor), 31, 32, 80 
overlord Girection c2rds, 31, 81 
overlord errors, 34 

- 4} -

• 



." packets, 31 
p~cking end unpacking of.characters, 86 
parameter, 7 
parentheses, 2, 19, 31' 
partial function, 7 
pgrp, 42 
p-list, 17, 18 
plus-sign 7 24 
pmltgrp, 42 
PN .. JdE, 39 
pointers, 18, 36, 37,43 
powers, 26 
predicate(s), 3, II) 14, 21, 22, 23, 25 
predic2.tes ~ ari thBetic, 25 
predicates, character-classifying, ·87 
prefix notation, 22 
PRINT, 20, 65, 84 
print-name, 39, 40 
prill t-names, L~3 
printing of numbers, 24 
FROG feature, 29, 71 
programBe form, 30 
programme fOr!21at, 16 
programme S-expressions, 29 
programme variables, 29, 30 
progra.TI1J21GS for execution, 15 
properties of atoms, 41· 
property list, 17, 18, 36, 39 
property list (definition), 39 
propositional connectives,· 20 
propositional position in conditional expressions, 9 
pseudo-atomic symbols, 14 
p s e ud 0 - fun c t i on ( s ) ~ 15, 1 7, '18, 2 0, 27, 32, 35, 41 , 42 
punctuation lU8.rks, 1 
r pure' LIi3P j 20 
push-down list, 91 
Q in octal numbers, 25 
QUOTE, 10, 13, 14, 18, 21, 22, 71 
quoted, 24 
QUOTE F, 14, 16, 22 
~UOT.l; UIL, ·16, 22 
QUOT~ T, 10,.14, 16, 22, 23 
rea.d error,· 31 
Rl through R6(error diagnostics), 34 
reading of nU8bers, 24 
reading of octal nV.!!lbers,· 25 
reclaiI!18r, 33 
reciprocal, 26 
recl..n:sion, 91 
recursive, 6, 15, 18, 27, 30 
rEcursive fUllctions, 1, 6 7 8,· 18, 32 
registers containing psrtial resultsoi LI6P computation in 

progrGSS 5 43 ~ 
rem, 7 
rCDovnl of propertiss, 41 
replacemont of addresses or decrements, 41 
representing oxpressions, =)6 
5L~:ti _~RV ~SD , 9 7 
rev, 30 
H:C~:IND, 96 



.. 
. . " 

right parenthesis, 2, 31 
.rulGS for LIS} progra~lles, 15, 16 
rules for tr3J:lslation of-functions, 10 
running the LISI system, 31,'80, 82 
scale f~ctor, 25 
scope of bindings, 17 
semicolon, 2 
semicolons, 5, 9 
sense 8\;i tches, us of, 82 
separators of list elements, 4 
b!!iT(func";~ion), 30, 71 
'SET (control word), 31, 81 
SbTSET, 31, 81 . 
setting of constants~ 17 
S-expression diagraBs, 36 
S-exprcssiOll(definition), 2 
S-expressions, 1, 2, 5, 9, 10, 16, 20, 22 
S-expressions for functional a.rguments, '21, 79 
SHARE LISP, 93 
significGut digits, 24 
SIZE, 81 
source language, 1 
SPliCD, 95 
special forms, 18, !21 
SPR:ill.tiD, 70 
square brackets, 2, 5, 9 
STOP, 31 
STH tr2-11, 33 
SUB2'J 12 
subexpression(s), 2, 3, 37,38 
SUBLIS, 12, 61, 98 
sub1ists, 4 
SUER, 18, 39, 40 
SUBST, 11, 41, 61 
substitution~ 11, 12 
sun, 25 
SYIVl, 73 
synbo1ic da to.. proc essing, 1 
symbolic expressions, . 1, '41, 
synbols, 18 
SYltiN .A1VI , 97 
STI1 TAB, 94 
syntactic sillunary, 8 
syntax, 8, 20 
system memory, 31 
T, 3, 5, 9, 10, 14, 16, 18, 22 
table-searching function, 12 
tags for numbers, 41 
TAPE(function) , 95 
TAPE (control word), 81 
temporary tape, 31, 80, 82 
terminator for lists, 4 
T~ST, 31, 81 
test cases, 15, 30 
theorybf r3cursiv2 functions, 41 
thl" roc:) ·')·1 .... ,.f"llrI1::~,.lts 5 c... ... b "-"_ .. _.....-J. , 

TIHE, 93 
TlrLIE1, 93 
TRACE, 32, 41'J 66, 79 

- 4-5 -



, . , - TRi~CECOUNT, 94 
tracing, 32 
tracing of cospiled functions, 79 
translation from M-expressions to S-expressions, 10 
trap, 33, 93 
trapping on errors, 35 
tre6-typ~ structures, 1 
trees, 36 
true, 3 
truth, 5, 2-3 
truth as negation of NIL, 23 
truth-in LISP, 22 
'TST, 81 
TXL instruction, 40 
unbound variable, 32 
undefined conditionals, 5 
universal function, 10, 17, 20 
universal LISP functions, ,10 
unpaired parentheses, 31 
UNTIliIE, 95 
upper-case letters, 2, 8 
valid S-expressions, 9 
value of atomic symbol, 39 
value of conditional expressions (definition), 5 
value of constant, 17 
value of numbers, 24 
values of arithmetic functions, 25 
variable, 7, 9, 16~ 17 
variable names, 5 
variablGs, 3, 7, 9, 10, 12, 16, 24 
variables, free, 77 
variables not allowed~ 18 
variables paired ~ai th arguments, 1 7 
v2.rie.bles, prograrJU'1e, 29, 30, 72 
well-defined recursive definitions, 6 

The following list is intended for use only with the 
February 1965-reprinting of the Manual. The 1962 edition c,ont8.ins 
Bany more defects which have been corrected in the later version. 

!:~g~,- Line 

11 17 
18 --3 

59 -8 

63 2 

63 6 

67 3 

Correction 

For atomic symbol !:~~~ S-expression 
. For fro:J. "10 t-:.- 100 r~'J.d froD -., '·to :40 

For is the vc~lue is read _ is the value of 

For from the list L !:~~~ froD the top level 
of-the list J, 

Note that this line refers to the text below 
It~-not above it 

For MIT users only read MIT and Atlas users only 

- Ll-,6 -



~ 
.~ ':' 

.!:@:g~ 

67 
67 

67 

67 

68 

77 

80 

93 

95 

97 

98 

Line 

18 

19 

19 

19 

2 

5 

12 

-1 

-1 

1 

1 

18 

Correction 

Underline excise -..-----_ ..... - . 

~Q~ pair E~~~ doublet 

g~~~£!!~~ ~eGpr6p 

Add Howevsr, in the sys~eQ &t Imperial CQllcge, 
f:£~E.EQE (~; 81M) and ~?S£!~£ (:ET::.e) need never 
eXGcuted. Th~ir conbined ~ff~ct'is produced 
by the.nc~ function ~!!£~1( ) . 
~dd this LISP set-up tape, which is' distributed 
by-SHARE, is NOlr equivalent ~o the setup ttt.po 
(X 248) at Imperial College, ~o that the . 
dsscriptions of ,the library functions (with the 
exception of tre.ceset) do liot apply.' tracesG-G 
is included automatIcally in the setting=iip---
procedure from X 248. 

Add If such a free variable is y, the typic~l 
diagnostic reads(y UHDECL}_RjED) •. There is no 
error m.essage 

For A4 E~~£ 1\.3 

Add This -facility exists at Imperial Col1e&e~ 

For A4, A5, A6, ~7, A8, B2, B3, B4, B5, B6 reBd 
X~; A6, B6, A7, B4, B2, A5, BI, .B5, B6. 
!~~~E! The paragraphs he~ded Q~~~~E and 
Heserved on th~page are inapplicable to the 
systen-at Imperial College. 

Insert The paragraphs headed If, For and Sublis 
on-thIs page are inapplic8.bl8 to the-syst8B-~t-
Imperial College. 

~dd H6wever, the present 8ysteB at Imperial 
C6Ilege differs fron this s~ecificatio~ of t~e 
SHl~RE LIS:2 SystC1J in the follcv/ing respects: 

SyStS!.l Tcnpors.ry Tape (3Y5Tr:IP) B3 
SW2 and 804 nominally have no eff~ct 

but it is. wise to leave them both off 
if unprec1ictable effects are to. be 
avoided. 

V-.:,rbos· and the G81'bEge Collector: This forD of non-t.?l},,::.:',·cive 
garbugo cGl18ctor is now tne. standard for all current LIS~ 
systens ~xc2ptAtlas LIS? 

PI.:.::; Trap ~ In brief, [;.n une f:;rfloYi during an arl th;:lc'cic 
cPGr~~tiol1 pY'oduc::s 8 rec;ult of zero for th.:lt oPer:.:::tiono No 
error DGSsag8 occurs. 



. ~ 

39. 

Time: The til:ling print-out has the :fOrmat 

a ~.1IN b 11S. c MIN d· MS 

(I\~S = milliseconds). It (j .;curs automatice;·lly at the beginning 
(directly 2fter the print-out of the control-card) ane end of 
ea.ch packGt. a = b = ¢ at the beginning. Q.:f.._~p.y packet, but 
a an~ b at the end of that·p~ck~t measure thcti~e taken for 
tl18 prl.)c Gssing of the packet 0 The" r age I . of the systerr.. is 
l:le2.Su·i:ed by c and d. 'Hi thout affecting any of these nWllbE:l"'s, 
We c~~n usc 1'1111£; 2~nd irIlvIEl insidG any packet.- -TI:t!IE1( ) causes 
8.. print-out in which a~ =:= .. b. =: C = d = ~. Thereafter, TINE ( ) 
Elay be ·used any number:. of t.imes. .Its·. effect is as described 
in thG il.:9pendix. Tho' i. ag·e.' of the system, mention.ed above, is 
th~ tiD8 that the LISP j6b has· run since all of the relevant 
tapes have been r.l :>unted and f ST ... · ... RT' pressed on the 7090 console. 

'Lap Q.nd Symtabj Non-Printing Compiler: Unless there is a 
special' advantage in having t.he LAP code for cOElpiled functions 
printed out·,' ·i·t is vlise to .. execute SYI!lTAB(NIL) and LISTIHG(HIL) 
b.efore any -coI!lpilation. . ... '" _ . 

Tracecount~ see section 22 

S~ace and. ~ject: see section 29 

TQ,pe~ 
llpEropriate 

For the Imperial College. LISP sy~iem, note the 
correction in section 37. 

Backtrace.: Ideally BACKTRACL( ) should be executed by 
EVALQUOTE (i.e. it should nCVGr occur on·co.rds as (BACK jfR:-..O.8)), 
but frequently one can get a-way wi th its use in other contexts. 
This loopholG has been exploited, ·for· example, in some 
self-debugging programll18s. : 

. ., . 

. Obkeep; 
sys tem. . 

Reserved: Not in theImpe~i~l College LISP 
.~~".'.:' . 

If; For:' Not in the I!:lperial College LISP system. 

Sublis~ This note is not applicablG to the Imperial 
College LIS~ systen. 

Ch~ractG~~stics of· the System: Use Appenalx E in 
pref8rence to this parag~aph, and note the corrections in 
seqtion 37~ . 

SODe Useful Tricks in LAP 
-------------~-~------~--

39.1 - IN~ET: Occasionally it may be necessary to insert a 
giy.en .. e~p:r~e..s_9J.9:~·_:~. (V) .. in to a specific loea tion r(U) in 
core. storage.' 'r(U) is "o'bviously an octal nunber; sl.ud·,· 
since the .contGnts 'of any word in oore storage can be 
'\Nri tten e~s 2n oc tal number of up to 12 digi ts, . so is 
r (V). The d8fini tion of' thcfunetion which performs ti18 
insertion is: 

(INSET (LrJdBDA (U V) (L.i:..P (CONS U (COLfS (COIJ'S V NIL) 
NIL)) NIL))) 



... 

39.2 
• 

-:t'9 '7 ) . .) 

~\ 

TMP: Here Vie find the first practical instance oj' tile 
use of INclBT. Suppose the.t Vie have a prograrmne vlhich iB 
so .long tha t . it canno t i'i t onto one LI Sf' sys t en tap e, but 
it C8.rl be di vid ed between t~NO such tapGs. If the 
processing of dEl.ta by the first r half' of this progralill~le 
is cOBp~ete before the application of any operationa from 
th~ second 'half l

, we can use MPRIHT in the first he1! 
to put the intermediate results onto a scratch t3pe, from 
"'.:11icr.:. ERi~jl.D in the s~cond half can recover theD for t~.1C 
r8st of th~ processing - E~2.~~Q~9. tilat we have SOl":lC menns 
of transferring control of the LISP job from one Syst8~ 
tGpe to another. . ~. 

Because we have sean on p.SO of the rsference (3.1) 
. that, after any T~6T packet, a copy of the systed for use 

\";i th the next pacl~et is rE:2"d in from the system tOLlporary 
te.pe (SYSTi:JP), it fo110vis that the core memory Dust 
contain one loca.tion ~'ii th information on wllere theSYSTMP 
ia to be found. In the Inperial College system~ this 
location is 367Q and, for the .conventional SYSTI~,IP 
2yllocation of tape drive B3, it contains the octal 
nUDber 2o.02223Q. The la.st digit is the tape-drivB 
nUDoer, tile first ~nd fourth digits are 2 if th6 channel 
is B and I if it is A, and the others are always as shown. 
Therefore~ if we put the tape containihG·~Lhe first half 
of our programme on B7 and the -tape containing the second 
half on (say) A5, and change 2002223Q at location 367: .. 2 
to IOOl225Q during the last T~ST packet that ll3kes use 
of the first half of the progra!:1me, the second half of 
the pi"'o::gramme will be read in from ;3.5 for the; next pac1ce-t. 
The function that performs thf?~ ~ trick is: 

TILP (I 001225 Q ) 

where we have 

(TIEr (LilnIBDA (n) (IH3:8T 367Q H))) 

Geheralisations of the tri~k_for longer ~nd more cosplex 
prograE!I.lGS a.re 0 bvious •. 

- G}ijTCEL~ It is desirable to h8.ve an invGrs6 of a function. 
that is as useful as INSbT. This function, G~TCEL, returns 
as its value the nurnb8r stored at the oct~~l location r (U) • 
GETCBL is defined in terms of the LAP function CL:/~T. 
12321Q is a location reserved for special use by G3TCEL, 
Defini tions ·:::.re as follo\']s ~ 

L~:..P« (GLPT SUER 0) (XbC EX.r.;V) (LDi_t OCT-D) (TRb. IlRJJO)) 
((OCTD • 54Ql) (EX.sV • 12321(~) (Ln~NO 136L!-5i~))) 

(GETC=L (LALIBDA. CU) (PEOG2 (Il',fSET 12321:~ ~PL"CfS U 5:~10)) 
~ 'i'TT) \ \ ) IJ.J.:J J ) . 

Prior to the definition of Gb'ItT, it is n8cessn.ry to rJ..::'..~(G 
th:~: Fi"P instruction X:JJ av·::il::ible to LAP by the G)c2cu-cion 
of GPDEFI~B«(XEC 522Q8))). L 

- 49 -



· . 
39.4 - ALI8T: The a-list or association list inside a ~ROG is~ 

not normally accessible to the programmer. Howev~r, if 
Vi.e I!l2.kc explici t use of functions like BV.£UJ and j·l.PPLY for 
which one c.l.rgUL12nt rJ~st be the a-lis t, we may need a 
flU1ction whos'cvalue is thG current· a-list. i~ function 
of, no argUL1Gnts which ha.s this propGrty is (ALIST). Its 
LAP definition is: 

39.5 

LA]? « (ALIST SUBR 0) (CLA .s'l~LIS T ) (TRA 1 4)) NI:rJ) 

- ORDERPg Suppose that we wiab. to establish a specific 
ordoring of certain atoms which occur as data. (~his 
ordering nay be of use in fast factoring functions ,for 
m~nipulation of algebraic polynomials). An ordering is 
established by the order in which the atoms are read into 
~he LISP syste~ for the first time. Therefore, if TIC 
r!ant iLil to precede AB, liB to precE-de AC, 9.nd so on, we 
can head the first SLT or S3TSET packet by a harmless 
doublet like: 

CAR«l~ AB ACAD AE etc.)) 

vihose value is unimportant but 'whose effect is ·to make 
the desired ordering. Vie noVJ need a predicate (ORDER U V·) 
which takes· tWQ atomic arguments, and ~hich is true if r(U) 
precedes r'(V)' in the order and false otherwise. In L..:-\.P, 
the relevant definition is. 

Lll.P « (ORDERP SU'BR 2) (40Q8 11.) (CLA, (,:2UOTE ~.~ )) 
(TRA. '1 4) A (PXD) (TR11. 1 4)) NIL) 

3906 - POL: If W8 k.re present" when e. LISf job is being run on 
the 7090, it m:.t.y be convenient to have certain r8sul ts 
printed on-line to avoid the delay involved in tho u.sual 
off-line printing of the output tape. We cen obtain 
on-line printing in bulk by depressing ~ense switch 3 on t 

the console, but the slow on-line printer effectively 
increases the running time of the job ·and usually prints 
out such inessentia.l l1lat6ria.l besides the inforl:lation 
that is ne~ded. Amore ef~icient method of printing i~. 
provided · .. ,\2' the function (POL U), which prints r(U) both 
on-line and off-line. This function temporarily alters 

,the instruction that tests the position of sense s~itch 3 
to an tinconditional transfer of control to the on~linc 
printing routine. In the Imperiel Collage systen, the 
sense-switch test occurs at location 1562Q and the 
printing routine begins at 1564Q 

(FROG (A B) 
(1562Q (52200001714i.~))) 
(1562Q (2000001564Q)))) 

The function TR..\CES.sT presently in tile system (See 
section 31) has the disadvantage that it detects· occurrences of 



• .fI.. ~, 

SThTQ onl~ on° the top level of a FROG, and not inside a aOND or 
·'in any other well-hidden.places. There is the fu~ther disad

vantage that the inverse function, naned UNTR ... ~CZSST in thE; LISf 
1.5 Px'ogr8.i.!lDer l s :Manual, is not defined in the systenl becaus·:; 
of the 2:.I!lOunt of storage which it takes up. 

Since Tlli~C.0SET has an bMR in the system, its old defintion 
can be removed by the e·xecution of R}ELiPRGP (TR ... ;.CEi:JET BXPR) 'J or 
sic"Lply ov;::rv~jri tten by a 0 progr2-Illi2ler r S new d efini tion if. DEFINE is 
used. Balow, rJC helVe the S-expression defini t'ions of a good 
version 0 f ;J:RACESET and lJ.~TTlL~CSSI!;T that volorks on So~TQ 2. t any pl2.c e 
inside a PROG. The subsidi·ary functions PNTSiiT, NBLKJ and NRP?S 
are C01:11:10n to TRACbSET and UNTRJ ... C.0~~T, as can be se'en froD . h8 
definitions. 

(TR.;:..C3S:GT (LAHBDA (V) (:EROG2 (CS~TQ TRACECT T) (MAP V (i~lUOTE 
'. NBLKJ))))) 

(UHTRL:J.CI;SET (LllMBDA (V) (PROG2 (CS.8TQ THAC2CT NIL) (I1i.!iP V . 
. . (QUOTE NBLKJ))))) 0 

(Nm.J (LM.1BDA (U) (PI~OG (PA) 
(SETQ' P .1.\0 (GET U (:~UOTE BXPR») 0 , 

(CONTI «NULL PA) (FROG NIL (PrlIHl (C_;;.R U» (PRINT (QUOTE $$$ 
Hi:.S NO EXPR$» (TERPRI») . 

«OR (ATOM (SETQ FA (CADDR P.~)) (:troLL (CDR PA») (N-ULL 
(CDDR

O 

Pi-.») NIL) . 
. ( T (GO P B ) ) ) 

:tB ~-:LKP PA (QUOTE NRP2S») )) 
(NRP2S (LiiLiBDA (X) (COl'H) 

«.ATOM (C.:~R X» NIL) 0 

(RBTU?J:J HIL) 

«(I'JOT (ii:Gt.iBbR· (CAil.R X) (iclUOTE (S~T'~ COl-TD PROG2»» (MAP 
o (C.~R X) (~~UOTE i,{EP2S)) 

(05\.~ (CL.ido~ X) (QUOTE SB':rCl» (E?LA-:~;A X (CONS (CI~LH X) (COBD 
(TF\...~CECT (LIST (C.A.D.1:..R X) 

(LIST (QUOTE PNT8JiiT) (LIST (\.}UOTE qUOTE) (CAD~~R X» 
(C~DnAR X)) (T (COrlS 

(C;l.Dll.R X) (COI'JD «OR (A'llOM (CA.:JDi-I.R X» (NOT (E~ (QUOTE 
PIJ~S~T ) (CLR (C.nDD.till· X) ) ) ) ) 

. (CADDi;.R X» (T (ODDE (C..7I.DDl1.3 X») » »» 
(tEQ (CAAR X) (QUOTE PROG2)) (!IhJ? (UD~_R X) (QUOTE lIRP2S») 
(T (IvTJJ> (eDAR X) (PUHCTIOH (L~-J:.'i3DA (J) (If£;..P (CAR J)' (QUOTE 

ilRP 2 S ») )) oJ) ))) . 
(PN"TSET (L;l\lBDA (X Y) (PROG NIL ~ T~R}:RI) : (PRIiJl X) (PHINT . 

\0 ':.'~~(y~l~ $.8.3 =}3») 

When i'unc tions are (1 GfinGo by DijFIlJE, their EXFRS are pri:i:ltGd 
in the output over tho full width of the page, in a singlG-s~acGd 
format th2.t is c1ifficul t to rcc:d. 'ro" i!:1provc the read2vbility of 
this output, functions are available to print 3XPRS in a decorative 
and spacious forDat (~t the rate of one per page). . 

If i.:,'G have ::~XPHS on C::I.I'CS '.:Jl.ich VJ2 .,..1s11 to introduce into 0. 

packet vis D£FINE and print in this_new fOTI2at at the saD0 tine, 
Vie ptUlch thG fUl1.ction-n3.I1G So)l.·i'IDbF in the place wh8re We vvould h9.VG 
put DE:FIN£ previously. If we 'i-iish to display, define and conpile 
the ~2X:PRS in the: one oper8.tion, the relevant function-nau8 is 
C . .:"i .. l.TDE;F ,. 

_ 5~ _ 



" 
.J 

42. 

i; 

If, 011 the oth(:;r hand, v]8 rpiv8 ~~rE:viously used D.8FIHE to put 
some EXPRS into a LISP job (or. onto a tape) and we want )nly to 
have these i!;XPRS printed readably 7 we use the function S:-IO'.1 ,. 
Ylhich must be given one argWTI8nt, a list of the nar~1es of the 
functions. to be displa.yed. 

Finally, if Be 7ish to display and co~pil8some fu~wtions 
th2.t h?;,:,ve j)reviously' been defined via DEFI:::i.B, the relevant function 
is CHO'N, v:hose argi.,lElent is the SarIle as for SHo·~rl .. 

All of the four display-functions are included in a single 
S~ST packet which is punched on cards in the drawer p.larked I LISP 
library' in HOOEl 405. Please duplicate your O'tvn copy froft'! this 
p2.cleGt and return the original cards to the drawer. 

FORT~~J Inuut-Outuut Format _________ .... ..:..-._ ... ______ ...L:. ________ _ 

The prefix notation (see section 9) characteristic of LIS? 
is occasionally difficult to handle. In particular, long &lgebraic 
results of LISP computations Gay be more easily' read by a gre~ter 
number of people if converted to the infix: notation of FORTRAN 
(with ~ for mulitplication, ** for exponentiation, and so on). 
The I LISP library I func tion (li.4~" THPltINT X ) prints r (X) in FORTH.A.N 
format in the output and returns the value HIL. 

The reading of FORT~~N-like input.by the conputer is a more 
diffic~lt proyosition, but it Day be necessary under SOBe 
circumstE~nces: ., Obviously such input cannot occur in the body 
of a packet in LISP3 as it is not in the form of' valid -;~ =_. 
S-expressions. However, wec~n legally put it in the 'tail' of 
a packet, i. e. between the \:;ord STOP and thE lal~genu...'1lbGr of 
righ t-hand brackets-which nOTmally follo'N STOP. i{j e can then 
make use of the fV.nc tion (l!L-tTHR:i:..d.D)!) analogous to (READ), vvi thin 
the packet 7 to ingest the FORTPJ~l\i-like input 2nd convert it 
8.utol:latically into S-expre'f3sions. Consider a simple example~ 

MATHMiill( ) 
(Ll:JEBDA (N) (TILltJS H (~V.h.L (:UIli.THB.E .. ~D) NIL))) (5). 
STOP 
(A*B/SQRTF (C) ) 
( 2~:E 6 ) ) ) ) ) ) ) ) 

As part of a LISP packet, these card-images produce the output 

FUNCTION ••• 
(L.i: .. EIBDA (}J ) ( T lEES N (~V J~L (IrLi ~l.i.l=(.8AD) NIL))) 

ARG(S) ••• 
C ) 

V~LUE OP RE6ULT IS •• 
320 

· - 52. -



• -J. 

... 
• 

~Vhen I,iATHRbi-:..D. is''''used:J the' 'fol~ow~ng E~!~~ for cE.rd
" punching must be observ.ed. 

42.1 - The word STOP at the end of 3 

by itself on a single card. 
pac}:ct 

I 

sh~uld ~bc_punchud 
. .. , .: . 

. 1+2. 2 . - I;8.ch FORC2P..1-\.l\f -like express ion to be read in should be 
'. '~:':':",> .. surroUYld cd by a. pair of brackets, adci tional to ap.y 

, ':" ... p2.irs th~t may be needed in thE: expression itself~' 

. ... - .. 

42.3 - E2.ch FOH'J:·RAH-like expr(;ssion to be read in should :jD8&:il1 
one.. nevI card. .~1.' ~:. --•• ~.: 

4~\;4 : ....... The last of th~ expressions to be 'read: 'in at the end of 
, · ;,;.--..ny paclust should be follo~::;ed by a large nllnber of 

right-hQud brackets. 

Th2 functions which mak~.up th~ complete 3pecification of 
T:1ATHPRIHT 'are' available in' £\··:·$;i.ngle.SET packet.. ..Another SJiT 
packet conteJil1s' fJIATHRElill. 111e- cards 'for each o:+ ... ~:the.~.q. ~~ckets 
are pres~nt in the' r LISP library r dr2.we:r;-. If· yo.u:~··\~{i.~p.· ... ~:q;·::.;\lse 
ei ther E ... iT}J1:f; .. ~:O: or :MJdI'HP:]:tIHT,- p·18$.se follow the~ .. i.~st.ruc ti'9ns in 
the l2 ... st· S211tcn'c e 'of sec tion .. 41. . . .' . ..\ '. 

43. Pause 2 -------- ... 

" . The last ntne sections nay be read in parall'e'l \vi th···tho·: ..... . 
LISE 1.5 Pro.granll1·er.'::s. Me.nual, B.S they contain informa tion"which 
has ~een learned OVG~~~bo~t.?5 Dan-y~ars of ~ISP programming. 

Th'8 reElaining ·sGct·i.ons dG8.1 'v .. i th L1atGri2.l~ .. which c10es not 
~hav~ par.~lel referertces in the il2nual~ Sectiori 44 sets out the 
procedure' ·~O.r the )~~tablishc10nt of a LIS} systeEl tape' from the,' 
source tEtpe, and s.'ectioh 45 gives an aceo·unt of' SOfle progl:'"c~Eli:les 
for ··,Use iri. theoretical phYslc.s tha.t 8re also stored:·lon the' ........ ,, <-

source tape. 

. "I~ 

,Th.9 :::;stah11sr.unent of a LIS} systs;n t8.p.e is a tlNo-pass 
~roc~s~.; The sourcctape, qontaining the 'cQrd images for both 

. passes ,is X 248 o.t Imperi2.l CollGgco If the syster:l is to be 
.set up c18e~;vhere 7 8.ny copy ai' Oll2 file of' X- ,248 onto 8. blank t?~PC 
constitutes an acceptable source tape • 

. . The first pcss produces a bin~ry deck of about 400 card~ . 
(~..vhich isp.2rt oi' the input for tll'..~ second pass) and printed _ 
output of about 17700 lines (300 pcges). The output is a listing 
of th,:; ~x::.:c'G c~f the 1;131: SystE;!J. th&t fills ~-:;,bout thd f"ir$t.20100Q 
loca tiolls of th2 COL'lputcr, plus L;:.l', p:-;;rlT:.2.nent list strLlctLJ.re 
.~nd entry points to the dospilcr ~hich occupy a,region dO~illj~rds 
fro~n locr:tion 77777Q. Check that the serial nUDber (col1..:tmns 73-30) 
of the first card of the bin~~y deck is LISPOOOO and th~t tho c~I0 
iti labelled li~~l.OO 3 71. 

- 5) -



. . 

The programme which produces the output is: 

·ro :\lsual Imperial College FMS In card 

* PLEASE f.10UNT TAPE X 248 (SAVE + FtJP.) ON. cHANNEL A.5 

* 

* 

PAUSE 

PACK. 

FAP 

UPDATE 9 
;wnro 

: :if you vTant to update the source tape, update cards 
in FAP format go here:: 

ENDEND END CONTIN 

i,; . 

t' 

On the job sliPt req~est tape X 248 (saved + file-protected) on channel A5, 
maximum output 18000 lines, maximwn running time 8.0 minuteso 

Important: The programme above, and all subsequent setting-up programmes 
in this Guide, must be punched according to the rules for FAP (FORTRAN II 
Assembly Programme)codingo The location field (containing the asterisks and the 
first liEn of ENDEND above) begins in column 1, the operation field (PAUSE, PACK 
etco) begins in column 8, and the variable field (1t9u :in UPDATE 9) begins in 
column 16 0 All serial numbers (eogo LS122070) for cards begin in column 730 
If these ·rules are ignored, the programmes will not worko Also, be sure that 
no programme deck is loaded on-lLne, because the on-line card reader does not 
sc~~ columns 73·to 800 ~ 

Ail prograrnme decks should end with an FNS end-of-file cardo 

The second pc~~' of the setting-up procedure produces the LISP system tape 
(SYSTAP)0 The binary programme from the previous pass is built upon from cards· 
vrith serial numbers prefixed by LU on the source tapeD We reserve from the 
tape librarian in Room 405 the tape to be used as a SYSTAP, and this is mounted 
on channel B3 (to be saved but not file-protected)o X 248 is mounted on A5:as 
before. The second-pass programme is as .~oll~ws: 

*ID 

* 
* 

* 
* 
* 

* 

. usual Imperial College FMS ID card 

PLE..4.SE MOUNT TAPE X 248 (SAVE + FoP.) ON CHANNEL A 5 
PLEASE NOUIfr TAPE (AND SAVE IT) ON CHANNEL B 3 

PAUSE 

XEQ . 

PACK 

FAP 

UPDATE 9, , ,NO 

SKIPTO 

ENDUP 

.. oS 

::(The number of 
your' reserved 
tape will go in 
the blruik space)~ 

LU9f¢¢¢¢.0 



t' 

PACK 

• FAP 

RTBA ·2 .. 

RCHA IOC 

LORA ¢ 

TRA 1 

IOC lOCT yf, ,3 

END 

* DATA 
: : the LISP binary deck from the first pass goes here :::. 

TAPE SYSPIT,A5 

SET 

~LAIM'NIL STOP)))))) 

FIN 

HowQ1:'.r, suppose that we\-.rant to alter some of the LU cards and pro4u~e 
an updated LISP system. In that case, we'r~~ a slightly different programme, 
which' takes account· of the FMS UPDATE option'o' .- X 248 goes on A5 and the . .:. 
intended SYSTAP on B3, as before, but in'addition we mount a good scratch tape 
on B5. This tape is not file-protected, and not saved after the job. The 
programme is: 

*ID' . 

* 

* 
* 
* .. 

Imperial College FNS ID card . ">. ," :; .. , -
. PLE£\SE HOUNT.TAPE X 248 (SAVE + F ... P.) ON CHANNEL A5 

PLEASE HOUNT (AND SAVE) TAPE ON CHANNEL B3 

PLEASE HAVE Jt GOOD SCRATCH 'f.iiPE ON CF..ANI\TEL B5 

PAUSE 

XEQ 
PACK 

* FAP 

* 
• 

roc 

UPDATE 9,lO,U,NO 

'SKIPTO 

. ", ; 



, . 

END 

DATA 

::the LISP binary deck fro~ the first pass goes here:: 

TAPE SYSPIT,B5 

SET 
RECLAIH NIL STOP))))) 

FIN 

t .. 

. On the job slips for either of these jobs, request.a maximum running 
tiue ~f 11.0 minu~es, and a maximum output of 3000 lines .. 

The result is that the tape on B3 at the end of either job i~ a LISP 
system tape, l/hich should be saved and mOlL'1ted on channel B7 in the usual \r;ay 
for all future standard LISP jobs .. 

To be sure that the tape on B3 is not overwritten at the end of the job,' 
please note the trick (see section 20) of putting a small O .. 1-minute Itps9'.ldo-joblt 

at the end of the regular card decko 

Whellpunching the TAPE control for .either of the t\·;o jobs above, be sure 
that there' :is no blank 011; either side._ 9:f . the Gomma in the variable· fieldo 

The SET packet: at the .. end"of the j()1?~. is e'ssential q 

Before updating can be decided upon for either of the two passes of the 
LISP f": ~tt)m .~ss6mb]y, it is necessary to kno\'! ':lhat is on the appropriate card 
images on the source tape "'. Card iI1.lages for the. first pass r;un from LS¢¢¢¢'¢'yrJ to 

. LS122¢7yf, and for the' second pass from LU.0'.0'..0¢¢0'·to LUYf13570.. Selective printing 
can be carried out by the folloVling programme: .. : 

*ID 

* 
* 

* 
* 

usual IoCo FHS ID card 

PLEASE MOUNT TAPE X 248 (SAVE + FoPo) ON CHANNEL A5 

PLEASE HOUNT A GOOD SCRATCH TAPE ON B:·, AND PRINT ONE FILE OF IT 
AFrER THE JOB 

PAUSE 

.PACK 

PAP 

UPDATE 9,10,U,NO 

SKIPTO : : columns 73-80 contain serial nr 0» of first card 

END OF PRINTING 

UNLOAD 9 

UNLOAD 

ENDUP 

to be printed:: 

: :colw:'1ns 73-80 contain serial nro of .. last card 
to be printed:: 

The job slip should be filled in accordinglyo 

- 5.6 -



. . 
•. 1 

~' The programme on the previous page can be used in' ~connection with the 
next section of tr.e Guide, to investigate the contents of the Physics 
Programmes -; iJ 8lld LXo 

45. Programmes for Calc~lationsin Theo~etical Physics 

The set-up tape eX 248) contains material for three programmes in 
theoretical physics o The firs.t, de:::;igned :!..argely by A~Co Hearn, occupies 
card-images with serial numbers LW¢¢¢¢~0 through LW014820, and is called 
programme L\'l belolvo It may be used to perform trace operations on products 
of terms containing Dirac gamma matrices, four-vectors and scalars" The. 
second, rUnJling from LW¢15¢4¢ to L\v¢1726;i, is a short programme to' 'sq~a:r~'- .'. 
matr~ elements of the type derived from the last programme on the tapeo This 
last programme (Programe LX) is accommodated on cards LX¢~¢¢00 through 
LX¢¢56?st" It takes as input a specification of a Feynmari diagram or diagrams 
and produces as output an expression for the corresponding matrix eleJ1lent(s)o 

Commentaries on each of the three programmes (under~. the headings . 
Programme L\'l, Lwf,15¢4¢' or . LX) are given belo\j ~ . 

In section 44, \Ve have already seen that two passes are required to 
mru<e up a basic LISP system tape (SYSTAP) from the set-up tape eX 248)0 We use 
a third pass to construct a system tape containing basic LISP plus any of the· 
three physics programmeso nL the job that constitutes the third pass, we ask 
for tape X 248 to .be placed on A5 and the SYSTAP 'resultL"'1g from the second pass 
of the LISP assembly to 'be placed on B7 (both tapes saved arid file-protected) 
We reserve fron the tape librnrinn in Roow ~5 a tape to carry our physics prog

:rorJDC, and have this placed (saved but not .. file-,Protected) on B30 Fin!?-lly, we 
request; a good $cratp~ tape on i\.7o . Al:S~' oi these r~que.st~. must be e~tercd '?r: ~he 
job slip an¢!. punche~' o~ cooraent ~aJ:d~ .. ,Jo go after the ID card that .is the f~rst 
card of the job' deck~ . After ~the last "'<Sf the comment cards, we put the following 
progrru::cc: 
• PAUSE 
* 
* .. 

* 

* 

XEQ 

FkP 

UPDATE 9,13,U,NO 

SKIPTO : :a:: 

: : any cards to update the programme go h~re, if needed::. 
'T 

TAPE SYSPIT,A2 ,; .. ,..... : :b:: 

: : for Programme LX only, a card \~i th 'blanks up to column 72 
and serial nurnber LXyf05.679f .. beginning 'iri .co~~~ 73:: -' 

UNLOAD 9 
. REWIND 

ENDUP 
.. 
pACK 

FAP 

RTBB 

RCHB 
7 

lOCo 

LCHB }t 
TRA 1 

57 -



• 

roc 

* 

IOCT 

END 

DATA 

0,,3 

.. :. 

: :octal correction" cards'-'f()'i"'fhe~"ba"s:lc LISP sys:t;em, if' needed:: 

::tr'ansfer card - 7,9 punch0sin column 1, and 2,3,4,5,6,8,9 
, 'punches in COlW.Ul3~,·9th~~\"ise blank:: 

TAPE SYSPIT,A7 
, SET 

'I. 

RECLAIN NIL STOP))))) )') 
FIN . 

, : :F1-18 end-o'f-file card:: 

Follow the same rules for placement of columns that have bee~' stat~d in section 
44 (e.g. all F~ instructio~s li...U:e UPDAT~ begin in column 8, ; arstim'ents for the 
instructions oegin in colu.mn 16~ and" the":commas \'Jhich separate, arguments must 
not be preceded or.folloHed by a blank. 

The third-pass programme should run for a maximum of 1000 minutes and 
produce a ma~mum of 3000 lines. ,of ou~put .. 

'The'letters a arid b in the listing aboVe stand for the folloHing s¢ri~l 
numbers' (to "begin in. colunm ,73 of .. ,the relevant'. card~):: 0' 

Progrrul1~e LVI 
Pro granm1 e LW,01504¢ 
Programme LX 

........ 

a = 
a = 
a= 

IiJ¢yJyJ!t¢!i 
LW¢15¢4¢' 
r;x1t¢¢¢¢ 

b ; L\i~1'482yJ 
b =:= LH91172691°' 
b = LX09J566¢ 

The result of the third-pass prograJ!".me is the production of ,a."tape 
on B3 'containing the basic LISP system plus the specified physics prograrnrneD 
This tape should be saved and placed on B7 as a SYSTAP for future jobs which 
make use of that physics programmeo 

Programme L\1 

This prograInme occupies so much space in core storage that 1;/e cannot 
process it \vi th a conventional LISP system tape' of the type produced in the 
no-updating scheme in section 44.. During the second pass Of the as S€ r!lbly , "Ie 
must use updating to insert a nevi SIZ B control card in place of the standard 
card \dth the serial nur11ber -LU¢¢"yiy.14tj.1o Th.e oJ:dcard contains: 

where the usn occurs in COlUliUl 8 and. the nurnbers begin in COlur:ul 16, but the 
new card should contain: 

The following tt-JO cards should also be included in the appropriate place in 
the update section: 

, TAPE ( Ci 2;i4Q, 129f6Q 22)66Q 1207Q 2294Q 2202Q 1205Q. 22911 Q )) 
DELETE TERU 

- 53 -

Luy5114595 
Lu1121¢9f 



~I 

On the last card., the tvlO words should begin in columns 8, and 16 respectiv,ely .. 
I.'The serial numbers on all cards should begin in column 73. 

All errors' of the type A2 or R1 in the output acco~PQnying the second 
pass of the assembly of the system tape should be ignored. The tape produced 
on B3 r3..uring th:ls' pass can be mOill1ted on tape drive B7 for e~_bsequent assembly 
of PrograI:une 'L\1 by the methods lile,ntioned in the earlier part.,· of this sec~iono 

, Each trace calculation is the subject of a separate TEST packet. 
Following the TEST control card, ...,le ,place a card containing the vlords 
eTARTNIL STOP and nothing elseo Data for the calculation begin on the next 
card, and are surrounded by a pair of brackets. All operations '-Ii thin the data 
are punched in a FORTRAN-like note..'tion and separated by commas o They may have 
any number of arguments, also separated by commas.. The available popular 
operations are: 

4501 - FACTOR, an operation which causes its arg~~ents to be factored out 
where they occur in the result of the calculation, to make the reading 
of the result easier., 

45.2 - ORDER, \vhich establishes 8..:.-" order of precedence for its argtunents' in 
the printing of the result. 

INDEX, whose atomic arguments stand in the places where Greek indices 
are required. ' 

4504 - M""T, \-Jhose argwnents represent replacements to be made in a calbulation .. 
For example, if the scalal"l product of the four-momentum P1 with itself 
is the square,of,the electron mass EH and the four-momentum P2 refers to 
a proton, we'c~ pUnch: 

LET(P1 .. P1) == EH**2, (P2 .. PZ) == PH**2) 

'Note the convention used to denote scalar productse 

45 .. 5 - HSP.ELL, \'lhich specifies the four-momenta of particles ~:!hich are suppose'd 
to. be, on their mass shellsc. 

45.6 - FHAKE, each of whose arguments represents the substitutionfbr a 
functional form' used' as shorthand in the c;xpression to be simplified 
by trac'e or other,'operations. For example, 'if \'le b.ave to \vrite ' 
d + bx + cx2 frequently in the calculation, and wish to abbreviate it 
by f(x), \1e use: 

FNAKE(F(X) = D ,+B*X +C*X**2) 

11-507 - TITLE, \'lhose argument is the atom \1e 1:Jant to. use as ~ hea.ding for the 
printing of the result of a calculation, Only letters and digits can 
occur ill this atOI:lo 

45.8 - FollovJing the use of any cO[ibination of the seven operations listed 
above, we represent the expression to be simplified as the argument qf 
the functional overat'ion SM. 

, Dirac matrices and scalar products of the rlC'..trices l.'lith four-vectors 
are specified by the operator G, \\'hich has tHO argumentso The first 
argument is always a (non-numerical) atom labelling the ferl;1ion line 
on \.;hich the entity occurs. The second atomic cu ... gument, if previously 



.;. 
0, 

'Jj 

• aeclared as' one of th§ argUments of II\j1)~'{, CEtUses i:he e:x:pression· beginning \'lith 
G to be interpreted as a Di:t:ac matrix; other1tJise the second argument is 
assumed to be the name of a four-vector, so that the entire expression is 
interpreted as the inner product of Dirac matrices and a Iour-vector. 
A further operator EPS, havins four arguments, represents the' totally .. 

. . antisYl~.metric lUlit ·fourth-rank tensor if :111 of tI'e arguments have been 
declared via IND~",{, and is othervJise taken to be the partial con traction of 
this tensor with the (four-vector) argwi1el1ts that are not so dec1...aredo 
Finally, the occurrence of the Dirac matrix \-lith .subscript 5 on a fermion line 
labelled by, say, LB, is \vritten as G(LB , A)o A is a special symbol, so that 
\'Ie cannot use it else\vhere in the argument of SHo " . 

As a .simple examp:'e, suppose that ~.,:e ,.;ish to calculate the sum of t\vO 
termso The first is the product of the four-vector p (\Vi th index n:Iu), 
q (with index nll) and the unit second-rank tensor (indices mU·ru1d nu)o The 
second is. tho 'product of the inner product of Dirac matrices \d th P and the 
same matrices with qo .He pun,~h: 

TEST 
START NIL STOP 
(INDEX(U, V) , SH«(P.o U)*(U 0 V)*(Q o'.V) + G(L,P)*G(L,Q)) 

and the anS'der produced by the programme is 2* (p a Q) 0 

In any expression of the form G(L,P) + EH, l!here P is C'~ four:-vec·tor arid 
EI-'I is a scalar, the term Ei:-1 is assmned to be the product of this scalar and the 
unit 4x4 matrix. 

In addition to the operation described ap to (45",8) on the previous page, 
any function naYjed in the object list (l.VC can look for its presenGte by 
executing EVAL(OBLIST NIL» c&~ be used as an operatoro 

Conventional organisation of LISP I)ackets can be mixed \'Jith the type of 
organisation quoted in the example above, Hhcre Sr-1 actually uses the f~"lction 
NATHREAD to read any FORTRAN-·like mattrial follo1:!ing the atOI!1 STOPo 

This.programme is int&nded to extend slightly the usefulness of Programme 
LXo The IU.L'1ction RESPROC is ideally used after the function PROCESS from' 
Programme Iu"{. has printed its results on the ~utPll.t t"=lpe an~ \'Jritten then onto'. 
scratch ta.pe 1 via MRPINT o There:fore it is necessary to see the results of 
PROCESS and to understand broadly hO\"1 PROCESS \·!Orks before RESPROC and the 
other functions of Progra~me LW0150~ are usedo To STh~ up, its effect is to 
square the representation of a matri:( element and obte..in a qlk11lti ty 
pr?portional to a croGs-section .. 

Programmes L\v)1'J 5040 and LX ca."l be set up together onto one tape 0 

Programme LX 

The .structure of a Feynman dia.gram can be specified by. a list of sublists 
"lhich described individual vertices c Any sut.:i.€t is so arranged that CAR 
applied to it gives a list of the four-oor1cnta entering the vertex and CDR 
gives a. list of the four~momenta leaving it., Therefore '~G.can 1.vrite: 

(((P'l) K P2) ((p3 K) p4)) 

as a specification of the diagrc'<n1 shaped like an upper-case He 

- .GO -



,~ 

Ao ' 
D 

~t ) 
Y The principal function in Programme LX is ~ROC~SSo It has one ar~ent, a 

I.'~ list of lists like (45 .. 9). Because of this, we can give ~ arbit:rary number 
, Of"Feynman diagrams to PROCESS at anyone time, and the corresponding matrix 

elements are calculated one after the other. In practice, though, th~most 
common use of PROCESS deals "'Ii til only one diagram at a time.. If we want to 
apply PROCESS to (45 .. 9), we punch: ' 

EROCESS«C(P1) K P2) (p3 K) P4)))) 

Before using PROCESS~ be '~Ure that the reasons for the presence of each pair 
.of brac~ets in (45 .. 10). is w1derstoodo 

Each four-momentu'2! in an expression like (4509) has ,properties like spin 
and mass.. These properties must be assigned to the four-momenta prior to the 
use of PROCESS, by DEFLIST with the appropriate indicator as the second 
argument~ This requirement can be explairi,ed,' best bY'exaJnpleo Suppose that P1 
and P2 refer to electrons,P3 and p4 to protons and K to a photon. With some 
obvious mnemonics for rl1asses, we CCL"1. punch: 

The conventional spin ,assignments' for fermions (P1'to P1$.f), bosons of spin K 1 
(K1 to K6, then'K19') and bosons of spin rj (Q1 to Q1¢) are already in' the: 
system. K1 is given a polarisation four-vector ~1, K2 is given E2 and·so on. 
The current assignments' of mass give odd-nurilbered fermions masses of ME, even
numbered fermions masses' of' IvlP, all spin-1 bosons except K'Ji masses of LA . 
(K19' has zero mass) CLlld all spin-bosons masse of HU.. . . 

If there are any four-momenta, which must be integrated over during th~ 
determination of a matrix element, ~le IJU.."lCh:· 

LOOPVAR(x) " 

\vhere x is a list of these four-rnomentao 
If r-tny four-momenta are to be associated with anti-particles, \ole pu...'1ch: 
FLAG(x ,i\NTIPTL) , 

where x ,is a list of these four-mornentao 

-. ,,---

If 1:Ie introduce a.'1y ne\'! four-momenta (other than P1 to P1j5) \vhich stand for 
forr.4ions, we punch:'. : . 

FLAG (x FMN) \-There x has the usual ,meaning .. 

All uses of FLAG, DEFLIST, LOOPVAR 8nd similar initialising functions that 
we may wish to define must precede the use of PROCESS, which ~s the instruction 
to the prograT.me to determine matri:~«.~.lements .. , l ;,'... .U 

Recognition of integrals is ca;rried out through.the standard table ITYP near 
card L.X¢¢494}t in th~ listing of Programme LX. If \ole ltlish to' add new types 
of basic' integral to the table, \"8 use the fu..."1ction ITYPES in' the manner 
demonstrated neal.'" card LX¢'i6494¢.. Further comnlent on this poin't occurs belo\-! •. 
If ''Ie ,,:ish to intror'uce new· types .6f vertex or, particle, {'Ie use the function 
RULE near card LXyf~.1159fc> Cards LX09fl¢6yf to L.~9f9f1310 a.cntain e::{aiiJ;-les of RULEo' 

The section of Programme ·LX devoted to four-dimensional integration is 
presently prepared only to recognise denor:~inator terms of the forra k 2 - A. 2 
(to ,,,hich it' gives the code nuraber '1) and k2 - 2PDk (code number 2). In the 
table ITYP, for exarr.ple, (1 1 1) is a shorthand notation for(k2 - A,2)-3, al).d 
the list follol'Jing (1 1 1) is 'e~ representation of the result of the ;four
dimensional integral of this term over 1'-:0 (1 2 2) represents : 
(k2 - /,,2)-3(k2 - 2pok)-1 (k2 -2qok)-1 .. , vie can add different types 'of term to 



·J ') 

ITYF by making om ... own assigm!1ent of the codes 3, 't etc.' and nlOdifying the' 
LISP functions vJhich pE.rform recognition of integrals to take these new .. ,. , 
codes into accounto Hopefuily ., the integral-recognition functions arc 'So 
arranged tha.t the necessary modification vIill be confined to changes of , 
the definitions of the two fQ~ctions IRULE and CODES, to be found after card 
LX¢';654{i}lo Therefore, unlike the case of Programm.~ L\1, whose abilities and 
coding are fixed, Progra1:rrae LX requires modification under some circ!lmstanceso 
This is so because till metil:cc)(1s of taking traces are fixed and well-defined, 
v/hereas different strategies are appro r>riate to d.:;..fferent integrals where 
integration must be carried outo In that sense, Progranune LX is incomplete and 
\'Jill al\-!ays be incomplete, but an improved version of it should be available 
at the Stanford Linear Accelerator Centre and on the time-shared PDP-6 
computer of the Stanford Artificial Intelligence Project from April 19670 
Potential users of Programme luX 1:/ho ,Iish to include integrations in their 
calculatinns are cordially invited to read the previous 44 sections of this 
Guide and the LISP 1.,5 ProgrammerTs Manual (3 .. 1)".and learn enough LISP to 
be able to do their o~.'m progrm~nir_::: r,:cC}~rC:l "2J."1d dQv~lopr!ent .. 

In connection with the questions of use and development, all users should 
obtain listings of the programmes they Hish to use, in advance ,of setting up 
the progranunes'themselves, by executing the selective-printing programme 
given in section 440 A -study of any listing, even by someone \-.]ho knO\-Js very 
little LISP, is often quite useful "for.' an understanding of v/hat is' going on 
inside the programme \vhile it is running", . 

If Programme LX is used ind~ p~ndcntly of P-..cogrammeL"'~159f4yf, PROCESS vTill 
appear to be very taciturn and give the value NIL instead of the expe'cted 
r:latrix ele;:Ient~ VIe recapture the result of the calculation by follot'ling the 
PROCESS i!lstruction of the general form (45 0 10) in our card deck with: 

(LAHBDA NIL (PROG NIL (PRll,TT (NREAD 1») (PRINT (NREAD 1)) (PRINT (NREAD 1)) 
(PRINT (MREAD 1» (REv·IIND 1») ( ) 

Users who have read all of the preceding sections of this Guide trill 'doubtless . 
be ,able to effect this· proce'dlU'e more concisely and understand \1hy ;'i~:LS 
necessary .. 

460 Help l 
, . 

~ '. -

In case of trouble ''lith LISP progreJJmss ~that cannot be explained ~dequately 
either here or DL the reference (3~j), it may be a good thing to consult people 
who have had some experience in LISP programmingQ Such people are l{llown to 
exist in the followin$,places: 

*Atlas Computer Laboratory, Chilton, Didcot, Berkshire 
AERE Compu:tingCentre, Har\vell" Berkshire . 
Physics Department, Royal Hollovray College, Englefield ~E:el1, Surrey 

*Hathematics Department, University of Hanchester 
*depc..rtments and units cO:J.cerned vlith COIL1putirig~' University of Edil1:burgh, 

Edinburgh 8, Scotland 
P~losopl1y,:-Depar.tment, University of Oxford 
Project HAC, Nassachusetts Institute of Tech .. 11.ology, Cambridge 39, l"!ass. 

02139, USA 
Forsvarets Forsl<".ningsinstitutt, Kjeller, Norl"ray 

* Artificial Intelligence Pro j ect, Star.:.ford Uni versi ty , Stanford, Calif co 

. 9L1-305, USA 
National Bureau of Standards,' Boulder, Colorado, USA 

*Schcc:l of Physical SCiences, Flinders University, Bedford Park, 
South Australia 

- 6.2 -



I 
{, 'f I, Nathematics Depc rtment, King r s College, london 

Institut fUr thcoretisohe Physik, Johannes-Gutenberg-Universit!t~ 
Mainz, Germany .. 

Laboratori Na.zionali eli F.rascati, Frascati, (Roma), Italy 

Information about a2parent misbehaviour of the LISP system (as distinct from 
functiollS defined by the progrrunmer) is best obtained at the places marked 
\v'i th an e.sterisk. Good lnck ! 

470 Postscript 

For Imperial College users', copies of the LISP system exist on tapes X 51 
and X 247, and the set-up tape containing card images for LISP a.~d programmes 
in physics is X 248 .. At 11 December 1966, the address for mailing of.jobs 
was Computer Unit, Centr~ for Computing and Automation, PoOo,Box 346, 
Imperial College, Prince Consort Road, London, So\'107o 

For other readers of this Guide or intending users of LISP within range 
of an IBM 7090/94 installation, 90pies of the Guide can be obtained from 
Computer Reception, Room 404, Electrical Engineering Department, Imperial 
College, Exllibition Road, London, Sovla7o To set up a LISP system for the 
first time on a 7090 or 7094, send a blarJt tape to Imperial College vii th a 
request to copy one file of X 248 onto that tape.. The copy may be used to 
set up LISP according to the directions in the Guide section 440 The 
physics programmes may be set up from the same tape if the instructions 
in section 45 are followed 0 

63- -


	Campbell-Imperial_College_LISP_Guide0001_a
	Campbell-Imperial_College_LISP_Guide0002_a
	Campbell-Imperial_College_LISP_Guide0003_a
	Campbell-Imperial_College_LISP_Guide0004_a
	Campbell-Imperial_College_LISP_Guide0005_a
	Campbell-Imperial_College_LISP_Guide0006_a
	Campbell-Imperial_College_LISP_Guide0007_a
	Campbell-Imperial_College_LISP_Guide0008_a
	Campbell-Imperial_College_LISP_Guide0009_a
	Campbell-Imperial_College_LISP_Guide0010_a
	Campbell-Imperial_College_LISP_Guide0011_a
	Campbell-Imperial_College_LISP_Guide0012_a
	Campbell-Imperial_College_LISP_Guide0013_a
	Campbell-Imperial_College_LISP_Guide0014_a
	Campbell-Imperial_College_LISP_Guide0015_a
	Campbell-Imperial_College_LISP_Guide0016_a
	Campbell-Imperial_College_LISP_Guide0017_a
	Campbell-Imperial_College_LISP_Guide0018_a
	Campbell-Imperial_College_LISP_Guide0019_a
	Campbell-Imperial_College_LISP_Guide0020_a
	Campbell-Imperial_College_LISP_Guide0021_a
	Campbell-Imperial_College_LISP_Guide0022_a
	Campbell-Imperial_College_LISP_Guide0023_a
	Campbell-Imperial_College_LISP_Guide0024_a
	Campbell-Imperial_College_LISP_Guide0025_a
	Campbell-Imperial_College_LISP_Guide0026_a
	Campbell-Imperial_College_LISP_Guide0027_a
	Campbell-Imperial_College_LISP_Guide0028_a
	Campbell-Imperial_College_LISP_Guide0029_a
	Campbell-Imperial_College_LISP_Guide0030_a
	Campbell-Imperial_College_LISP_Guide0031_a
	Campbell-Imperial_College_LISP_Guide0032_a
	Campbell-Imperial_College_LISP_Guide0033_a
	Campbell-Imperial_College_LISP_Guide0034_a
	Campbell-Imperial_College_LISP_Guide0035_a
	Campbell-Imperial_College_LISP_Guide0036_a
	Campbell-Imperial_College_LISP_Guide0037_a
	Campbell-Imperial_College_LISP_Guide0038_a
	Campbell-Imperial_College_LISP_Guide0039_a
	Campbell-Imperial_College_LISP_Guide0040_a
	Campbell-Imperial_College_LISP_Guide0041_a
	Campbell-Imperial_College_LISP_Guide0042_a
	Campbell-Imperial_College_LISP_Guide0043_a
	Campbell-Imperial_College_LISP_Guide0044_a
	Campbell-Imperial_College_LISP_Guide0045_a
	Campbell-Imperial_College_LISP_Guide0046_a
	Campbell-Imperial_College_LISP_Guide0047_a
	Campbell-Imperial_College_LISP_Guide0048_a
	Campbell-Imperial_College_LISP_Guide0049_a
	Campbell-Imperial_College_LISP_Guide0050_a
	Campbell-Imperial_College_LISP_Guide0051_a
	Campbell-Imperial_College_LISP_Guide0052_a
	Campbell-Imperial_College_LISP_Guide0053_a
	Campbell-Imperial_College_LISP_Guide0054_a
	Campbell-Imperial_College_LISP_Guide0055_a
	Campbell-Imperial_College_LISP_Guide0056_a
	Campbell-Imperial_College_LISP_Guide0057_a
	Campbell-Imperial_College_LISP_Guide0058_a
	Campbell-Imperial_College_LISP_Guide0059_a
	Campbell-Imperial_College_LISP_Guide0060_a
	Campbell-Imperial_College_LISP_Guide0061_a
	Campbell-Imperial_College_LISP_Guide0062_a
	Campbell-Imperial_College_LISP_Guide0063_a
	Campbell-Imperial_College_LISP_Guide0064_a
	Campbell-Imperial_College_LISP_Guide0065_a
	Campbell-Imperial_College_LISP_Guide0066_a



