
COGNITIVE AND INSTRUCTIONAL SCIENCES SERIES
CIS.5 (SSL-80-4) Revised

Papers on interlisp-D

CONTRIBUTlONS BY
Richard R. Burton, Ronald M. Kaplan, Larry M. Masinter, B. A. Sheil, Alan Bell
William van Metle, Daniel G. Bob row, 1. Peter Deutsch and Willie Sue Haugeland

SEPTEMBER 1980; Revised JULY 1981

@ Xerox Corporation 1980; 1981.

ABSTRACT

I i This report consists of five papers on Interlisp-0, a refinement and implementation of the

I [tnterlisp virtual machine [Moore, 761 which supports the interlisp programming system

[Teitelman et at., 781 on the Dolphin and Dorado personal computers.

1

KEY WORDS AND PHRASES

Interlisp, programming environments, personal computing, system construction, measurement,
optin~isation, campifation, input-output, graphics, user interfaces.

XEROX
PAL0 ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Papers on Interlisp-D

INTRODUCTION

Interlisp-D is both a revision and an implementation of the lnterlisp virtual machine WM)
specification [Moore, 761 for the Dolphin and Dorado personal computers. It qualifies as an
implementation of the VM by virtue of supporting both the lnterlisp system software
[Teitelman et al., 781 and several large, independently developed, application systems,
including the Mycin system for infectious disease diagnosis [Shortliffe, 761, the KLONE

knowledge representation language [Brachman, 781 and the West tutoring system [Burton &
Brown, 781. It qualifies as a revision of the VM for several reasons. first, the VM was based
mainly on an analysis of the structure of the PDP-10 implementation. Any thorough
reimplementation was bound to uncover a host of oversights and viable alternatives and
Interlisp-D did not disappoint us in this respect. Second, intwlisp-D is the first
implementation of interlisp in a pemnal computing environment and this raised some issues
which did not apply to the time shared system on which the VM was based. Finally, in the
interests of transportability, a deliberate attempt has been made throughout Interlisp-D to
minimize dependencies on the software environment. One of the ways this was done was by
implementing in Lisp many facifities that previous implementations had obtained from their
environment. This effectively extended the VM "downwards" far below the level which was
previously considered primitive.

Two of the papers that appear in this report were presented at the 1980 Lisp Conference.
They are reprinted here, with slight changes, so as to make them more widely available. The
next two were originally prepared as documentation and appear here for the first time. The
last, which is to appear in SIGART Newsletter, provides a more recent report on the system's
status and probable future development. The papers ate

interlisp-0: Overview and status
A report on the implementation, its goals and techniques, and some reflections thereon.

Local optimization in a compiler for stack based LISP machines
A description of the optimizations used during compilation of Lisp into the special
purpose Lisp instruction'set and their observed effectiveness.

The Interlisp-0 NO system
An outline of the design of the I/O system, coded in Lisp, that provides most of the
facilities that a Lisp implementation usually takes from the host operating system.

The interlisp-D display facilities (Revisedj
One of the goals of Interlisp-D is to make lnterlisp available as a personal computing
environment. Thus, it incorporates an extensive set of graphics facilities. This paper

describes the design of the Interlisp-0 low level graphics facilities, as they have
emerged from the first year of experimentation. In addition to their use in Interlisp-0,

we hope they will serve as a basis for other implementations' efforts to explore the use
of graphics in Interlisp.

Interlisp-D: Further steps in the flight from time-sharing
A status report and description of ongoing and planned extensions, as of June 1981.

ii Papers on lnte riisp- D -

As documented in the first paper, the implementation of Interlisp-D was a major effort, which
has taken a long period of time and included the efforts of a large number of people. The
integration of interlisp's programming support tools into a personal computing environment is
a task of similar magnitude. Our hope is that these papers may make the path somewhat
easier for future implementors.

REFERENCES

Brachrnan, R. et a].
UONE Reference Manual. BBN Report No. 3848, 1978.

Burton, R. and &own, 3,
An investigation of computer coaching for informal learning activities. International
Journal of Man-Machine Studies, 11, 1979, 5-24.

Moore, 3.
The Interlisp virtual machine specification. Xerox PARC, CSL-76-5, 1976.

Shortliffe, E.
Computer-based medical consolta tions. American ~lseiier, 1 976.

Teitelman, W, et a/.
The interlisp reference manual. Xerox PARC, 1978.

Interlisp-D: Overview and Status

Richard R. Burton, Larry M. Masinter, Alan Bell, Daniel G. Bobrow,

Willie Sue Haugeland, Ronald M. Kaplan and B. A. Sheii

Abstract

fnterfisp-f) is an implementation of the Interlisp programming system on the Dolphin and
Dorado, two large personal computers. it evolved from AltoLisp, an implementation on a less
powerful machine. This paper describes the current status of interlisp-D and discusses some
of the issues that arose during its implementation. The techniques that helped us improve
the performance included transferring much of the kernel software into Lisp, intensive use of
performance measurement tools to determine the areas of worst performance, and use of the
lnterlisp programming environment to allow rapid and widespread improvements to the
system code. The paper lists some areas in which performance was critical and offers some
observations on how our experience migh: be useful to other implementations of Interlisp.

BACKGROUND

lnterlisp is a dialect of Lisp whose most striking feature is a very extensive set of user
facilities including syntax extension, error correction, and type declarations [Teitelman et a!.,
781. It has been in wide use on a variety of time shared machines over the past ten years.

In 1974, an implementation of lnterlisp for the Alto, a small personal computer, was begun at
Xerox PARC by Peter Deutsch and Willie Sue Haugeland [Deutsch, 1973). This Altotisp
implementation introduced the idea of providing a microcoded target language for Lisp
compilations which modelled the basic operations of Lisp more closely than a general
purpose instruction set. A similar instruction set was also implemented for Maxc, a
microprogrammed machine run~ing the TENEX operating system [Fiala, 19781.

The design of AItoLisp is presented in [Deutsch, 79781. Its characteristics include a very
large address space (24 bits); deep binding; CDR encoding [Bobrow & Clark, 19791;
transaction garbage collection [Deutsch & Bobrow, 19761; and an extensive kernel
implemented in a mix of microcode and Bcpl. Although AltoLisp was completed and several
large lnterlisp programs were run on it, its performance was never satisfactory, due
principally to the limited amount of main memory and the lack of support in the processor

. architecture for either virtual memory management or byte code decoding. 1nterlisp.D is the
result of transferring AltoLisp to an environment with neit!~er of these limitations.

Int erlisp-0

The Dorado (Lampson 8 Pier, 19801 is a large, fast, microcodable personal machine with 16-
bit data paths. It has a large main memory (-1 megabyte) and hardware support for both

A revised version of a paper originally presented at the 7980 Lisp Conference, Stanford, Ca.

*
2 Papers on interlisp-D

instruction decoding and virtual memory management. The Dolphin is a similar, but smaller
and less powerful, machine.

Both machines have microcode to emulate the Alto, so the initial transfer of the running
AltoLisp system to them was straightforward. Although the microcode to interpret the Lisp
instruction set needed to be rewritten, the Bcpl runtime support system was transported with
only minor changes. However, initial performance was far worse than would be expected
from a simple consideration of machine features. We expected Dorado interlisp-D to
dominate interlisp-10 running on a single user DEC KA-10, but in fact, some computations
took 10 to 100 times longer. Our primary goal, then, became to improve the performance 01
the existing system. first, careful measurements were taken of the system doing a variety of
tasks. Functions which took inordinate amounts of time were examined in detail. Additional
microcode was written, and major portions of the Lisp ~ 0 d e were redone.

The most surprising thing to us was that we obtained considerable performance
improvements by moving large parts of the system from Bcpl into Lisp. This allowed us to
use a number of programming tools in the lnterlisp system, and allowed us to put more
structure into the layers of the system's kernel. Interlisp-D is now supporting a user
community. While speed ratios vary widely across different classes of computation, it
appears that Dorado Interlisp-D runs more than five times faster than Interlisp-10 on a singte-
user DEC KA-10. [Note: This figure is from August 1980; cf. remarks in "Further steps ...".I

THE " L1SPIFt CATION" OF INTERLISP- D

Much of the lnterlisp system is written in Lisp itself, resting on a kernel not defined in Lisp.
The Inter1 isp virtual machine specification [Moore, 19761 attempted to identify a set of kernel
facilities which would support the full lnterlisp system. This was done by carefully
documenting those parts of the PDP-10 lnterlisp system that were written in assembly
language or imported from the operating system. This specification is quite large. AltoLisp
reduced this kernel by implementing some of the VM facilities in Lisp; Interlisp-D
accelerated this development. In addition to improving the transportability of the
implementation, the move also improved performance, gave the implementors access to
more a more powerfuf implementation language and programming toots, and firnited the
breadth of expertise required of system implementors.

programs written in a higher level language are often less efficient than equivalent assembly
language programs, because they cannot exploit known invariances and optimizations which
would violate the strict semantics of the target language. Moving code from Lisp into the
kernel has been a traditional way of improving the performance of Lisp systems. Substantial
sections of the PDP-10 implementation of Interlisp, for example, are in machine code for this
reason. When a large proportion of AltoLisp was moved from Bcpl into Lisp in order to
improve memory utilization and aid modification, the speed of the system decreased by
nearly a factor of three [Deutsch, 19781. Thus, to improve Interlisp-D performance, we first
looked for Lisp-coded sections of the system that could be incorporated into the Bcpl kernel.
However, we soon discovered that' the poor performance was due more to the design of the

Overview and Status 3

algorithms in the kernel than to the language in which they were implemented. Since we did
not wish to carry out a large-scale redesign in the limited Bcpl programming environment, we
decided to go in the other direction: we would move code out of the extended Bcpl kernel
and into Lisp so that we would be better able to change the algorithms. Specific targets for
replacement were large sections of the Bcpl kernel with known performance problems whose
functionality could easily be expressed in Lisp; one of the major areas was the I/O system.

Language power and tools

A primary reason for implementing the bulk of a programming system in itself is that one
obtains the advantage of programming in a (presumably) more expressive and powerful
language. In addition, we felt that the major modifications and tuning that would be
necessary to provide adequate perfcnnance would be far more tractable in interlisp. In
interlisp we had both a first rate programming environment and instrumentation tools, and
we had no other system implementation language which had either. Our subsequent
experience has sustained this view.

Linguistic uniformity

An important sociological benefit of having a programming system described in the language
it implements is that the system's implementors and users share the same culture. Users can
inspect the system code, comment an it, adapt it for their own purposes, and sometimes
even change it. This involves the users of the system in its design and maintenance in a
way that would not be possible i f system construction took place in a different language
culture. Specifically, the avaikrbiiity of the system source code allows the system to grow
and adapt much more rapidly than environments in which a formal documentation phase is a
prerequisite to the development and distribution of new facilities. In turn, the users can
explore the behavior of the system "all the way to the edges", as there are no sharp
language barriers. The value of this linguistic uniformity has been confirmed by its
successful use in other language cultures, such as Smalltalk [Goldberg, 19801.

An example: the 10 system -
A high level language I/O system consists of both low level device handlers and device
independent sequential and random access. In most Interlisp implementations, the entire 1/0
system, up to and including the functions defined in the virtual machine, is provided by the
host operating system. In Interlisp-0, all of the logical I/O system and a substantial
proportion of the device dependent code is written in Lisp. The logical I/O system
implements the Interlisp user program I/O facilities and the underlying operations in terms of
which these are implemented. These include sequential and random access operations (i.e.,
read and write a byte, query end of file, reposition file pointer, etc.), buffer management
(both for system only and directly user accessible buffers) and a device independent
treatment of file properties. The logical level is in turn implemented in terms of the notion of
an I/O device. This is an object which provides a standard set of low level, device
dependent functions, such as those to read and write a page, create and delete files, etc.
Using this interface, the addition of a new device is simply a matter of writing a new set of
these functions. The Interlisp-D I/O system design is described in [Kaplan et a/., 19801.

4 Papers on Interlisp-D

IMPLEMENTATION TECHNIQUES

In tuning the performance of a program, it is crucial to be able to determine exactly where
time is being spent. With a large body of code and limited manpower, it is not possible to
"optimize everything." Our performance measurement system has proved invaluable in
tracking down specific (and unforeseen) problem.

The measurement system was originally developed for Altolisp by Deutsch and Haugeland. It
operates in two stages. First, the computation of interest is run with event logging enabled.
This produces a (very large) file of log events, which is later analyzed. The log events are
put out by both the microcode and the run time support system and include time-stamped
events for function call and return, entry and exit from the Bcpl routines, I/O activity, and
other events of interest. Alternatively, the microcode can also collect counts of opcode
frequencies and a frequency sample ot the microcode PC.

Statistics gathering can be enabled at any time that Lisp is running. One can decide
spontaneously to take measurements whenever performance .unexpectedly degrades.
Comparison of these measurements with those taken during a similar run that exhibited
normal performance can be used to identify the source of intermittent performance
problems. This technique was used, for example, to track down an intermittent slowdown in
the code that handled stack frame overflow.

The anafysis phase reads the log file and computes summary statistics from it. From call
and return events, the time spent in individual functions can be computed, either including or
excluding the time spent in the functions called by them. The accumulated times (including
the times spent by called functions) locate the higher leuel functions which are the root of a
large amount of time and which may be a candidates for redesign. The individual time
(excluding called functions' times) are useful for isolating what improvement can 'be
expected from optimizing or microcoding the body of that function.

C

Function performance data is presented in tables which show the number of times each
function .was called and the time spent in each function. For example:

funct ion #ofCalls * Time %ofTirne PerCall
1JTHCHC 1977 236702 10.6 119
\HT . FIND 1729 168492 7.6 97
L ITLEN 2111 131708 5.9 6 1
LITBASE 2141 118902 5 . 3 56

Tables such as this isolate very accurately those functions which are worth rewriting as well
as identifying those which are not. In this example, NTHCHC, which calls both LITLEN and
LI TBASE, is an obvious candidate. In another run we discovered that 15 percent of the time
was being spent adding one to a counter which had overflowed the small number range.
This prompted a redesign of the large number arithmetic.

Overview and Status 5

Additional controls on the analysis routines allow more specific questions to be answered.
The analysis can be restricted to that part of the computation within any particular function.
For example; only that part of the computation that takes place within READ can be analysed.
The analysis can also be limited to a set of functions, in which case only these functions will
appear in the table of results. Any time spent in a function not in the set wilt be charged to
the closest bounding function that is.

The analysis routines extract from the log file useful information besides performance data.
For example, the dynamic calting behavior is captured in the log, so one frequently useful
technique is to list which functions have catled (and been called by) other functions, and
even how many arguments they were passed. The flexibility of the anafysis routines
combined with the wealth of information cotieeted during the logging stage attows a given
computation to be examined from many points of view.

Initialization

There are several areas that cause fundamental problems for the implementation of a
language system in itself: memory management (which requires that the memory manager
itself will not cause memory faults), stack overflow recovery (where the stack manager must

i itself have some stack), and initialization. Initialization is difficult because the initialization
program must operate when the system is not in a well formed state. The problem in
initialization can be characterized by the question: "If the compiled code reader is itself

i

compiled code, who will read it in?"

Several methods of doing initialization suggest themselves. For example, the image can be
initialized by a program written in some other language. This is the solution adopted in
AltoLisp. Alternatively, if the interpreter is written in some other language, the compiied
code reader can be run interpretively to read itself in. However, both of these solutions
require a substantial amount of non-Lisp code either for storage allocation or for
interpretation.

We adopted still another solution. The compiled code reader was modified to load code into
an environment other than that in which it is running. The primitive functions that the loader
uses to manipulate the environment (e.g., fetch and store into specified virtual memory

li

- - .. locations) are replaced by functions that manipulate another memory image stored as a file.
To begin with, an empty memory image file is created and then the "indirect" version of Me

X

i compiled code reader is used to load the compiled files that constitute the lowest level of the
system into this empty image. We thus avoid the potential problem of maintaining two
different programs with knowledge of system data structures.

An appropriate programming environment

One of the advantages of writing most of the kernel in Lisp is that Interlisp provides a very

i
powerful programming environment. Its attributes that we found particularly useful were:

Language features: The advantages of "data-less" or datastructureindependent
programming have long been known: more readable code, fewer bugs, the ability to change

6 Papers on Interlisp-D

data structures without having to make major source program modifications. The Interlisp
record package and data type facility encourages this good practice by providing a uniform
and efficient way of creating, accessing and storing data symbolically, i.e., fields of data
structures are referred to by name. Because the interlisp-D implementation allows a large
number of data types, we have felt free to give system data structures (such as file-handles,
page buffers, read tables) their own data types. In addition, records could be overlaid on
structures not under Lisp's control (e.g., the leader page of a disk file or the format of a
network packet) to provide the same uniform access.

Cross compilation: We maintained an interlisp-10 environment in which we could edit,
compile and examine functions for the Dorado. The function and record definitions for the
Dorado implementation were kept on property lists instead of clefintion cells. This allowed us
to work on functions such as READ and ems without destroying the environment in which we
were working.

Masterscope: Many of our improvements to Altolisp involved massive changes throughout
the many system source files. Interlisp's Mastetscope program was an essential aid in
determining what would be affected by a proposed improvement and in actually performing
the necessary edits. Masterscope is an interactive program for analyzing and cross-
referencing Lisp functions. It constructs a database of which functions call which other I

functions, where variables are bound, used, or set, and where record declarations are I
I

referenced. Masterscope utilizes the information in the database to interpret a variety of
I

Englishelike commands. Our cross-compilation environment 4ncrementaJJy updated a I

database that was shared among all programmers on the project, so that with vety little
overhead the information in the database was kept consistent with the current state of the
evolving system.

Masterscope was most helpful in planning and carrying out modifications to major system
interfaces, which usually meant changing the numbers and kinds of arguments to various
functions. We would first a s k Masterscope to simply list the callers of those functions to give
some estimate of the impact of the proposed change, much as one might use a static cross-
reference program. W& would then invoke the srlow command, instructing Masterscope to
locate in the source-file definitions of all the callers the expressions that actually called the
interface functions. These expressions were gathered together and displayed as a group, so
that we could verify out intuitions about what assumptions clients were making about the

, . interface. In many cases, h e rapid source-code exploration that Masterscope made possible
.revealed Raws in our redesign which otherwise would not have become apparent untit much
more effort had been expended. Having decided that our modification was acceptable, we
us& Masterscope's Eorr command to actually drive the editing. This caused Masterscope to
load the definitions of all the client functions, call the Interlisp editor on each one, and
position the editor at each of the expressions that needed to be changed. Masterscope, not
the programmer, kept track of which functions had been changed and which still needed to
be edited. When Masterscope finished the editing sequence, the programmer was sure that
the changes had been made completely and consistently.

Our redesign of the I/O system [Kaplan et a/., 1980) is a good illustration of the power of
. this interactive tool. We completely replaced the lowest-level If0 interface, which involved

-
- -- - --

-

Overview and Status 7

3
changes to approximately 40 functions on 15 source files. The major part of the revision

9

a was accomptished in response to a single EDIT WHERE ANY CALLS '(BIN BOm ...) command,
without ever looking at hard-copy source listings.

8

t Rapid access to system sources: Our cross-compiiation environment maintained a shared
I data base which allows the definition of any Lisp function to be retrieved for viewing or

editing in a few seconds. The microcode and Bcpl can be "browsed" using the same
interface. Rapid online access to system sources lessened the need to work from listings.

Le welling

One of the original motivations for having a iarge part of AftoLisp in Bcpl was the belief that
it was important not to provide Lisp primitives that gave unrestricted access to the
implementation data structures. This reasoning fails to discriminate between the system
implementation and user program levels. Allowing system programs arbitrary access to
memory locations does not at all imply that user level code has this access.

Failing to make the system/user distinction hurt AltoLisp in three ways. First, it provided one
motivation for the large Bcpl kernel. Second, most of that part of the system which was
written in Lisp was prohibited from manipulating underlying data structures except through
overly general functional interfaces. Last, it discouraged the use of higher ievel structuring
facilities (such as the record package) so that code that required any knowiedge of system

I data structures tended to be written entirely in terms of low level primitives.

Using Lisp as a system implementation language requires very careful consideration of the
layering of the system into levels of access and knowiedge. Further, the precision that is
needed cannot be obtained by simple binary discriminations but must be carefully
considered for each piece of code. This presents a considerable challenge to the

i implementors' self restraint, as Lisp provides few facilities to enforce such a layering.
Appropriate use of abstraction is essential if layering is to be preserved under the constant
revision necessitated by intensive performance debugging.

Diagnostics

Development of the Lisp microcode was aided by a reasonably complete set of microcode
diagnostics-witten in Lisp. Diagrfostics are difficult because they are most useful .when very
little can be assumed a priori to work. It is also difficult to achieve complete coverage of all

! cases. In addition, extensive knowledge of the Lisp system was required to develop
diagnostics. For example, every opcode needs to be tested when encountering page faults
or stack overflows. Setting up a situation which will page fault or overflow the stack in the

1

! next opcode requires a very intimate knowledge of the implementation. Having undertaken
k several microcode revisions, development of a comprehensive set of diagnostics seems well
P

a worth the effort.
i

f
i {mportant performance issues
I
1 While not strictly a technique, we feel that it is important to mention the major areas in which
i
t
?

t

performance has proved to
Interlisp-D, we feel that they
Lisp systems.

be crucial. While some of these are undoubtedly specific to
deserve consideration by those who might be building similar

The earfier intuition that the hardware assist for decoding byte opcodes was important was
substantiated. Performance improved by nearly a factor of two when this was installed.
Implementing the decoding and dispatch in microcode is conceding a large performance
toss.

There are several parts of the system' for which it seems important to have microcode
support. When written in Lisp, the garbage cdlector seems to consume between lO-30% of
the processor, although the figure varies widely over different computations. Further, in a
system that uses deep binding, some form of microcode assist for free variable lookup is
very desirable. A speedup factor of between two and four accompanied the introduction d
microcode support for this in interlisp-D. Statistics show that less than one percent of the
execution time is now spent in free variable lookup.

Their heavy use in implementing system code almost mandates that the arithmetic functions
have complete microcode support. Further, we found it to be critical to have a large range
of small numbers (numbers without boxes), so that the performance critical, low level system
code did not invoke Lisp's storage management.

WHY tS AN INTERLISP iMPLEMEMATlON SO HARD?

The UdphinlDorado implementation of lnterlisp took many times the expected effort to
complete. Given the widespread intuition to the contrary, it is perhaps worthwhile to reflect
on why it has proved so difficult. The answer is painfully simple: interlisp is a very large
software system and large software systems are not easy to construct. Interlisp-D has on the
order of 17,000 lines of Lisp code, 6,000 lines of Bcpl, and 4,000 lines of microcode. In
many ways, the more interesting question is why does it look so straightforward?

Without a doubt, the perceived ease of implementing lnterlisp springs from the existence of
the virtual machine (VM) specification. This admirable document purports to give a complete
description of the facilities that are assumed by the higher level lnterlisp software, and does
a remarkable job of Saying out the foundations of this very large software confederation. It is
difficult to resisw-e implication that a straightforward implementation of this mere 120 pages
of specification, much ,of which is already described in programmatic form, wilt constitute a
new implementation of Interlisp. The issue is rather more complicated than that.

The VM specification looks small, but it is not. There is no simple correspondence between
the size of a specification and the volume of code required to implement it. Many of the
major problems of an lnterlisp implementation (e.g., performance, the garbage collector, the
compiler) are simply not addressed at all. We caution lnterlisp irnplernenters that the
slimness of that document is misleading.

Further, while the virtual machine specification is an excellent first pass, it is far from
complete. Many "incidental" functions and variables were left out (e.g. HOSTNAME). It is

Overview and Status Q

occasionally ambiguous in places where the system code relies on a specific interpretation.
Even though once complete, changes in the higher level code required that the VM be
extended to support new facilities. Finding all these variations is an exhausting task. It is
substantially easier to get 95% compatibility than' 99.9%, and amazing how many programs
are sensitive to the difference.

me way to look at the Lisp kernel that was written for Interlisp-D is as the definition of a
new VM specification in Lisp code. While much of the code is specific to the Dorado
environment. a great deal of it simply extends the virtual machine downwards by providing a
much iower level treatment of functions such as PRINT and READ. We hope our work wil
provide other new implementations with a firmer foundation than the VM document done.

Another probtem for any very large software system is the existence of a 4ong development
tail. A version of Interlisp-[) was "sort of running" years ago. Several other implementations
of Interlisp have "sort of ntn" but have never reached production status. One of the key
problems here is performance. The success of the POP-10 implementation of Interlisp is due
to a lot of hand tuning. Any straightforward, clean implementation will prove to be slow, and
finding performance problems is difficult, even with good measurement tools. A large
number of design decisions have to be made and a large amount of code has to be written.
While not all of the decisions have to be optimal, none of them can be pessimal. While the
Interlisp-l) experience can provide some guidance, many of these decisions will be
environment -if ic.

Finally, an important issue has been cornpatability with the PDP-10 implementation of
Intertisp. In some ways our determination to remain compatible has helped. Ambiguities and
omissions from the VM specification could always be resolved by copying the POP-10
implementation. However, this compatibility requirement was also a burden. Comptete
compatibility with another implementation is hard. This is particularly so when the new
implementation is in a quite different environment (a personal rather than a time-shared
machine). The tension between remaining compatible versus exploring the possibilities of a
personal machine environment is a continuing issue, which will probably be a focus of our
further efforts on the Interlisp-D system.

Acknowledgements

Peter Deutsch was a principa&&gner and motivating force behind AltoLisp, of which
Interlisp-D is a successor. Warren Te:kelman has made major contributions to the Interlisp-D
project. Martin Kay, Henry Thompson., Richard Fikes and Austin Henderson have also
contributed time and effort on various. aspects of the project.

REFERENCES

Bobrow, D.G. 8 Clark, D.W.
Compact encodings of list structure. ACM Transactions on programming languages
and systems 1 , 1979.

- " m%- .i&i f l .. *ln LW."UI*VPI --w nun *&,*&*--*

-.- d\

Papers on lnte rlisp-0

Deutsch, L.P.
A Lisp machine with very compact programs. Proceedings of the third international

. joint conference on e rtific ia f intelligence, Stanford 1 973.

Experience with a microprogrammed lnterlisp system. IEEE Micro-77 conference,
1978.

Deutsch, L.P. & Bobrow, D.G.
An efficient incremental, automatic garbage collector. CACM 19:9, 1976.

fiafa, E.R.
The Maxc systems. IEEE Computer I I , May 1978.

GoMbrg, A
Smallla& Dreams end schemes. Xemx PARC, to appear.

Kaplan, R.M., Sheil, BA., CJI Burton, R.R.
The interlisp-D I/O system. Xerox PARC, SSL-80-4, 1980.

tampson, B.W. & Pier, K.A.
A processor for a high-peformance personal computer. Seventh internafional
symposium on computer architecture, La Baule, ~rance, May 1980.

Masinter, L.M. & Deutsch, L.P.
Local optimization in a compiler for stack-based Lisp machines. Proceedings of the
1980 Lisp conference, Sbnford, 1- and Xerox PARC, SSL-80-4, 1980.

Moore, 9s.
The Interiisp virtual machine specification. Xerox PARC, CSL-76-5, 1976.

Teitelman, W. et a/.
Interlisp Reference Manual, Xerox PARC, 1978. 1

C

F

i
a i
i

Local Optimization in a Compiler for Stack- based Lisp Machines

Larry M. Masinter and L. Peter Deutsch

Abstract

We describe the local optimization phase of a compiler for translating the lnterlisp dialect of
Lisp into stack-architecture (0-address) instruction sets. We discuss the general organization
of the compiler, and then describe the set of optimization techniques found most useful,
based on empirical results gathered by compiling a large set of programs. The compiler and
optimization phase are machine independent, in that they generate a stream of instructions
for an abstract stack machine, which an -embier subsequently turns into the actual
machine instructions. The compiler has been in successful use for several years, producing
code for two different instruction sets.

This paper describes the local optimization phase of a compiler for translating the Interlisp
[Teitelman et al., 19781 dialect of Lisp into stack-architecture (0-address) instruction sets
[Deutsch, 79731. We discuss the general organization of the compiler, and then the set of
optimization techniques we have found most useful. The compiler and optimization phase are
machine independent, in that they generate a stream of instructions for an abstract stack
machine, which an assembler subsequently turns into the actual machine instructions. The
compiler has been in successM use fur several years, producing code both for an 8-bit Lisp
instruction set for several personal computers, [Deufsch, 1978, 1980, Burton el ale, 19801,
and a %bit instruction set for Maxc, a time-shared machine running the Tenex operating
sytem [Fiala, 1 9781.

There are always tradeoffs in designing a compiler. Each additional optimization usually
increases the running time of the compiler as well as its complexity. The improvement in the
code generated must be weighed against the benefit gained, measured by the amount of
code improvement weighted by the frequency with which the optimization is applicable.
Rather than provide a multiplicity of compiler controls, which most users wouM not want to
know about, the compiler designer shouM use empirical knowledge of "average" user
programs and make appropriate design choices. One of the major purposes of this paper is
to publish some empirical results on the relative &if.ity of different code transformations,
which can aid designers in making such choices. .,

Why this compiler is different

Compiling Lisp for a 0-address architecture differs from compiling other languages such as
PASCAL or ALGOL for several reasons. Procedures are independently compiled, so that global

A revised version of a paper originally presented at the 1980 Lisp Conference, Stanford, Ca.

+ 12 Papers on Interlisp-D

optimization techniques are not relevant. Compiling for a stack-based instruction set is
different from compiling for more conventional machine architectures, in that register
allocation is not relevant, and randomly addressable compiler-generated temporary variables
other. than top-of-stack are difficult to access.

In systems which provide interactive, symbolic debugging of compiled code, a compiler must
not manipulate source programs too freely, since even common optimizations like tail
recursion removal make it difficult or impossible to explain the dynamic state of the program
in terms of the original source. However. Lisp also provides an interpreter which can be
used for debugging purposes when strict faithMness is needed; interpreted and compiled
code can be mixed freely. Thus, we take the view that the compiler can rearrange the
implementation of an individual function in any manner consistent with the semantics of the
original program, even if finegrained debugging infomation may be lost or altered (e.g., if
variables that appeared in the source get eliminated).

What we did not handle

The compiler concentrates on local optimizations. More global transformations such as
pulling invariants out of loops or duplicate expression elimination would probably pay off
often enough to be worth the additional complication in an environment where speed was of
great concern and the individual functions were large.

Related work

A few of out cvmpiier's transformations, such as cross jumping and tail recursion removal,
have been part of the literature for some tine. We know of three other Lisp compilers that
both compile into a machine-independent intermediate language and do substantial
optimization.

The Standard Lisp project st the University of Utah has produced a transportable compiler
similar to ours [Griss 8 Hearn, 19793. Their intermediate language is register- rather than
stack-oriented. Their report mentions a number of the optimizations in our list, plus others
only applicable to registet machines, but their list is shorter and not accompanied by
empirical data.

Another similar compiler er the subject of a Ph.0. dissertaten [Urmi, 19781. The author in
this case was more concerned with the design of instruction sets, than with optimizing the
use of a given architecture. His report contains extensive statistics on the opcode
frequencies, and interesting suggestions for instruction set design, including a consideration
of both stack* and direct-address architectures; however, his optimizations are all in the
"peephole" category, being limited to a few adjacent instructions, except for the usual
optimization of ANDs and ORs.

The RABBIT compiler [Steele, 19781 translates an unusual lexically scoped Lisp dialect into
code for a register machine. Its optimization techniques are extremely sophisticated with
regard to removal of recursions and variable bindings. However, the differences in coding

Local Optimization for Stack-based Lisp Machines 13

style resulting from lexical scoping are so large that a comparison between RABBIT'S goals
?
1 and those of our compiler would not be meaningful.
I

i Results

Optimization in the byte compiler provides an average 510% speed improvement and a 10-
15% space improvement over completely unoptirnized code. While significant, this does not
make it one of the more significant factors affecting the performance of our Lisp systems

e [Burton el al., 19801. The most significant effect that a reasonable optimizing compiler has
for its users is a certain amount of unconcern for wgaries of syntax. Programmers can write
their routines for clarity, without concern for purely syntactic devices which might otherwise *

affect performance. For example, white inserting assignments inside expressions is allowed
and occasionatfy perspicuous, it generally is more readable to perform variable assignments
in separate statements, and to subsequently use the variables in an unnested manner.
Knowing that the compiler will do an adequate job of optimization means that a program
author can make choices based on legibility, even in the most time-critical routines.

I

+
ABOUT THE COMPILER AND THE OBJECT LANGUAGE

The compiler operates in several passes. The first pass takes the S-expression definition of
the function being compiled, and walks down it recursively, generating a simple intermediate

: code, called ByteLap, analogous to assembly code. During this first pass, the compiler
c expands all macros, CLISP, record accesses and iterative statements. A few optimizations are
5
d

1 performed during this pass, but most of the optimization work is saved for later. The next
@ pass of the compiler is a "post-optimization" phase, which performs transformations on the
e ByteLap to improve it. Transformations are tried repeatedly, until no further improvement is
i

g possible.
f
i

6 After the post-optimization phase is done, the results are passed to an assembler, which
I

transforms the 5yteLap into the actual machine instructions. We currently have two different
, assemblers in use, which generate code for two different instruction sets: one for the Maxc
i 9-bit instruction set and one for-the personal machine 8-bit instruction set. The Maxc and
P

i personal machine implementations of Interlisp differ considerably; for example, the Maxc
I

I system employs shallow variable binding, while the personal machine systems employ deep
binding. The translation from Bytelap to machine code is straightforward.

f
i
i

i -- - ..
The structure of ByteLap

t ?

I
The ByteLap intermediate code generated by the compiler can be viewed as the instruction

1 set for an abstract stack machine. The format of ByteLap is described here to simplify
2

subsequent discussion of optimizations. There are 15 opcodes, each of which has some
effect on the state of the linear temporary value stack. The instruction set is: I

f

i (VAR var) Push the value of the variable va r on the stack.

(SETQ v a r) Store the top of the stack into the variable var.

14

(pop

(COPY)

Pape ts on Interlisp-D

Pop the stack (i.e., throw away the top value and decrement
stack depth by one).

Duplicate (push again) the top of the stack.

(CONST val) Push the constant val on the stack (val may be of any Lisp
data type, e.g., an atom or a number.)

(JUMP tag) Jump to the location tag.

(FJUMP tag) Jump to the indicated location if top-of-stack is N I L , otherwise
continue. In either case, pop the stack.

(TJUMP tag) Similar to FJUHP, but jump if top-ofstack is non-NIL.

(NTJUMP .tag) Similar to TJUMP, but do rot pop if it jumps. This is useful when
a value is tested and then subsequently used.

(NFJUMP tag) Analogous to NT JUMP.

(fN n ?n) Call the function t n with n arguments.

(BIND (v ,... v,) (n ,... n,)) Bind the variables vl ,..., v, to the n values on the top of the
stack. Also bind the variables n1 ,..., nk to NIL. Al l bindings are
done in parallel. Remember the current stack location.

(UNBIND) Save the current top of stack. Throw away any other values on
the stack since the last (stacked) 0 f NO, and undo the bindings of
that 8 f NO. Re- push on the stack the saved vafue. This is used at
the end of PROG or LAMBDA expressions whose value is used.

(DUMB IND) SirniIar to UNBIND, but do not restore the value.

(RETURN) Return top-of-stack as the value of the current function, throwing
away any other values on the stack.

Note that a given ByteLap opcode could have one of several different translations in the
actual code executed. For example, both the personal machine and Maxc implementations
have a separate opcode for pushing NIL, in addition to a more general constant opcode.
The final code generation phase transforms the (CONS T #I L) Bytelap instruction into the
appropriate opcode. Operations such as arithmetic or CAR are encoded as-rn ccalls, even
though the instruction sets have specialized instructions to perform those operations. The
assemblers distinguish between the built-in operations and those that must actually perform
external calls; the compiler and the optimization phase do not care. Furthermore, a sequence
of ByteLap instructions can assemble into a single machine instruction; for example, both
instruction sets have instructions which can do a SETQ and a POP in the same instruction.
These are easily detected with a short look-ahead during code generation.

COMPILER OPTIMlZATIONS

One of the most important ground rules for the optimization phase has been that all

Local Optimization for Stack-based Lisp Machines 15
g - ::
F"

~t optimizations are conservative: they must not increase either code size or running time.
only optimizations which experience h& shown to be useful are described here.

The statistics given in the text below were obtained as a result of compiling a total of about
EM) functions, producing 65000 bytes of object code. Numbers in <angle brackets) in the

3
text indicate the number of times that a given optimizing transformation or technique was
applicable.

t

!
Optimizations during code generation

A few optimizations are performed during the iniW code generation phase. In particular, the
j compiler keeps track of the execution context of any given expression (similar to many other

Lisp compilers we know of). Thus, in the recursive descent of the S-expression definition, the
I Rag e f f e c t is set i f the current expression is being compiled for effect only, and the Rag

return if the value is being returned as the value of the entire function.

Remove no-effect constructs when compiling for effect <I 62)
!

Compiling a variable or constant for effect results in no code generated. A call to a function
t with no side effects merely causes its arguments to be evaluated for effect: for example, a
e macro might expand into (CAR (RPLACA X Y)) , which i f executed for effect only performs

i
the RPLACA, but i f the value is used will return the vafue stored.

Remove extraneous POP (2035)
i

r Knowledge of re turn context is used to omit extraneous POP instructions, since unused
P values can be left on the stack to be swept away when the frame is released by a (RETURN).

For example, in the function
!

(LAMBDA (X) (P R I N T X) (T E R P R I))
the first pass emits

i-
j
a (VAR X) (F N 1 PRINT) (F N 0 TERPRI) (RETURN)
t'

rather than U

t

(VAR X) (FN 1 P R I N T) (POP) (F N 0 TERPRI) (RETURN).
P

! The compiler also uses re turn context to eliminate extraneous JUMPS after ams of a
b

+ conditional to the end of the conditional code (each arm of the conditional is compiled in --,
C

<
I return context, which will cause it to be terminated by a (RETURN) opcode).

The compiler also removes tail recursion in re turn context <36>. In addition, constant
folding is done in the first pass for functions which are constant on constant arguments (e.g.
EQ and arithmetic opcodes) <34>. Constant folding is done after the code for each argument
is generated, so that constant detection can be achieved by looking for CONST opcodes,

I

rather than pre-expansion of macros.

16 Papers on Interlisp-D

The second pass of the compiler consists of several local transformations on the generated
Bytecap code which are tried repeatedly in turn until no further improvement can be made
<6461 passes total, including the final unsuccessful pass on each function>. While the
compiler contains many transformations, empirical results of compiling a large number of
files show that the following transformations are the most useful-we have excluded
transformations which were rarely effective. For each transformation we give its name, a
symbolic version of it, a brief discussion, and an example in which the optimization wwld be
effective.

COPY iniroduction <101-23)

val val --7 va1 (COPY)

This transformation reduces neither code size nor execution time; however, it often enables
other optimizations. The val opcodes can be two identical CONST or VAR opcodes, or a
SETQ followed .by a VAR with the same variable. For example, the expression

(FOO (SETQ X (FUM)) X)
compiles to

(F N 0 FUM) (SETQ X) (VAR X) (FN 2 FOO)
which gets transformed to

(FN 0 FUM) (SETQ X) (COPY) (FN 2 FOO).

Va tiable duplication (1 137)

{SETQ var) (POP) (VAR %far) - (SETQ var)

This transformation occurs frequentiy after assignments. For example, the expressions
(SETQ X Y) (CON0 (X (FN)))

compiles to
(VAR Y) (SETQ X) (POP) (VAR X) (TJUMP L 1) (FN 0 FN) L1:

which transforms into
(VAR Y) (SETQ X) ('TJUMP ~ i) (FN o FN) LI:

Dead assignment (661)

(SETQ var) (no subsequent use of var) *
The compiler scans ahead a short distance for either a (R E TURN) or subsequent (SETQ
var) with no intervening instruction which either uses (V A R var) or else calls a function
which might see the binding of var. For example, after the examples in bpth COPY
introduction and Variable duplication, the assignment to X might well be "dead", and the
(SETQ X) removed,

--
pr -
D.

t
81
i

. I Local Optimization for Stack-based Lisp Machines 17

i
1 Unused push <734>
i

I val (POP) -7

t
\

G ~l though the first pass avoids generating values followed by POP by the e f f e c t mechanism,
enough instances arise where subsequent optimizations uncover unused values to make this

5
transformation worthwhile during the post-optimization phase. v a l can be a CONST, VAR, or

i

I 1, COPY. In addition, if v a l is a (FN n f n), where f n is a side-effect free function, it is
I

I

B replaced by n (P0P)s .
f

Merge POP with DUNBIND <10D
,'

I j (POP) (DUNBIND) =s+ (DUNBIND)
i

This simple transformation takes advantage of the fact that h e DUNBIHD opcode irnplicitiy
>

pops any values left on the stack since the last B1ffO.
b

I
I

JUMP OPTlMlZATlONS ~ i
t
i Vacuous jump (1 033)

k (JUMP tag) t a g : -7
F
E (cJUMP t a g) tag: - (POP)
f
E While the first pass ByteLap generation explicitly deletes these <265 occurrences>, this
t

1 transformation is useful to clean up after others. In the pattern, c3UMP is either TJUMP or
f 3UMP.

!
i
Y 4

I Invert sense of jump (488)

(FJUMP t a g l) (JUMP tag2) t a g l : * (TJUMP tag2)
L

This transformation can occur, for example, when there are explicit GO'S in the source. For

i example, the expression

[(CON0 (X (G O LABEL1))3
5. compiles to

I (VAR X) (FJUMP L1) (JUMP LABEL.1) L1:
i which transforms into

(VAR X) (TJUMP LABELI) 11:

COPY introduction for TJUMP (241)

v a l (NTJUMP t a g) v a l * val (COPY) (TJUMP t a g) ,

This transformation notes that, whether or not the JUMP is taken, the value va l will remain
on the stack. The transformation is effective for both NT JUMP and NFJUMP. Note that vat will
be NIL in one of the cases.

18 Papers on Interlisp-D

JUMP code in-line (457)

(JUMP t a g) . . . tag : {code] {code) . . .
This transformation moves the entire segment {code) in line only in the situation where the
JUMP is the only way of reaching tag.

(juinp t a g) ... tag: (JUMP t a g 2) = (jump tsg2) ...
One of the most common transformations in the compiier occurs when the target of a jump
is itself a jump instruction. For example, the code generated for

(COND (A 8) (7 C))
is:

(VAR A) (FJUMP L1) (VAR 8) (JUMP L2) L1: (VAR C) L2:
If tbe variable B is replaced by a COND clause, the target of the jump at the end of that
CONDs second clause would itself be a jump instruction. The jump in the pattern above can
be any of the four jump opcodes. For example,

(COND (A B) (T (GO T A G))
would result in the fragment:

(VAR A) (FJUMP L2) ... L2: (JUMP TAG)
which can be transformed into

(VAR A) (FJUMP TAG) ...
Unreachable code (1670, removed 1784 instructbW

(JUMP tag) (code] - (JUMP tag)

The code after a JUMP or RETURN which is not itself jumped to can be deleted. The first pass
avoids generating any constructs of this form, but such situations can be generated by other
transformations. For example, in both preceding examples, the code at L2 might well be
unreachable and deleted.

*

NTJUMP introduction (610)

val (TJUMP tag) . . . tag: val j va l (NTJUMP tag+2) . . .
This optimization is esseotially COPY introduction across jumps. For example,

(PRoG NIL LP (FOO X) (CONO ((SETQ X (CDR X)) (GO LP))) ...)
tesytts in

LP: (VAR X) (FN 1 FOO) (POP) (VAR X) (FN 1 CDR) (SETQ X)(TJUMP LP) ...
which is then transformed to

(VAR X) LP1: (FN 1 FOO) (POP) (VAR X) (FN 1 CDR) (SETQ X) (NTJUMP LP1)

Local Optimization for Stack-based Lisp Machines 19

NTJUMP introduction with code movement <506>

val (FJUMP t a g) val {codel) ... tag: {code21
s v a 1 (NTJUMP tag2) {code21 tag2: {codel]

This transformation is a variation of NTJUMP introduction where it is necessary to move code
around. The two code sequences {code 1) and fcode2) must end with a JUMP or a RETURN.
Note that this transformation moves the entire segment of code {code21 inline. For example,
the expressions

(COffD (X (FM X)) (7' (FM2) (GO LAB))
compile to

(VAR X) (FJUMP L 1) (VAR X) (FN 1 FN1) (JUMP L2)
L1: (FN O FN2) (JUMP LAB) 12:

which gets transformed to
(VAR X) (NTJUMP L3) (FN 0 FN2) (JUMP LAB) L3: (FN 1 FN1) (JUMP L2) L2:

Jump to N I L / P O P <834>

(FJUMP t a g) ... tag: (CONST N I L) * (NFJUMP t a g + l)
(NcJUMP tag) ... tag: (POP) (cJUMP t a g + l)

The pattern NcJUMP stand for either flavor of N-conditional jump. In the first situation, the
W IL which is being found by the FJUMP may be logically distinct from the N I L after tag. For
example, the expression

(COND (A ...) (T (MYFN NIL))
compiles as

(VAR A) (fJUMP L1) ... L1: (CONST NIL) (FN 1 MYFM)
which is transformed into

(VAR A) (NFJUMP L2) ... L2 : (FN 1 MYFN).

The second form of the transformation normally occurs only after other transformations,
where a conditional, originally thought to be executed for value, does not need the value
being preserved by the NcJUMP.

1

Removal of loop variables <679>

(SETQ vsc) (POP) (JUMP tag) ... tag: (VAR ver)
=s (SETQ var) (JUMP tag+1)

This transformation is common m loops. For example,
(PROG N I L LP (PROCESS X) (SETQ X (NEXT X)) (GO L P))

compiles as
LP: (VAR X) (FN 1 PROCESS) (POP) (VAR X) (F N 1 NEXT) (SETQ X) (.POP)

(JUMP LP)
This transforms to:

LP: (VAR X) LP1: (F N 1 PROCESS) (POP) (VAR X) (F N 1 N E X T) (SETQ X)
(JUMP L P 1)

20 Papers on Interlisp-D

Cross jumping (1721 >
{code] (JUMP t a g) ... {code] tag: (JUMP tag2) ... tag2: {code)

This frequent transformation improves code space with no effect on running time. For
example, the expression

(COHO (A (FOO X)) (7 (FOO Y))
compiles as

(VAR A) (FJUMP L1) (VAR X) (FN 1 FOO) (JUMP 12)
L1: (VAR Y) (FN 1 FOO) L2:

The instruction before (JUMP L2) is identical to the instruction before the label L2, and so
this can be transformed into

(VAR A) (FJUMP L1) (VAR X) (JUMP 13) Ll: (VAR Y) C3: (FW 1 f O O)

Jump copy test (733)

v a l ' . f n l (jump tag) val ... tag: val * val (COPY) f n l (jump t a g t i)

In this transformation, f n l is a "clean" function of one argument, e.g., (F N 1 L I S T P) or
(FN 1 CDR), or even (CONST val) (FN 2 EQ). In this case, "clean" means that the function
cannot change the value of va l . For example, the expression:

(COND ((L I S T P X) (CAR X)) ((NUMBERP X) (ADD1 X)))
results in the fragments

(VAR X) (FN 1 LISTP) (FJUMP L1) (VAR X) ... Ll: (VAR X) (FN 1 NUMBERP) ...
which transforms into

(VAR X) (COPY) (FW 1 LISTP) (FJUMP L2) ,.. L2: (FN 1 NUMBERP) ...

Return optimizations

Return merge

(TJUMP tag) {code} (RETURN) ,..tagZ: {code) (RETURN)
* (FJUMP tag2) ... tag2: {code] (RETURN)

This is an effective code transformation which can merge completely unrelated (with regard
to flow-of-control) return sequences. it does not affect speed, only space. Return merge is
unique in not preserving the normal invarient that stack-depth is constant at any location in
the code. Normal code generation on1 y creates sequences of inst rue tions where the stack-
depth at any b d o n is static; all other transformations preserve that property. However, the
two occurrences of (code) in the pattern need not be at the same stack-depth, and thus,
stack-depth would be ambiguous after tag2. This is important if the target machine
language is dependent upon stack depth in the translation from ByteLap, as is the case with
the Maxc instruction set. Return merging must be disabled i f the two {code} sequences
occur at different stack depths, and if (code) contains any stack-level-sensitive operations.

Local Optimization for Stack-based Lisp Machines 21

Needless POP before RETURN (590)

(POP) v a l (R E T U R N) * v a l (RETURN)

This transforrnation is attempted only after it is known that there is no opportunity for
Unused push. In addition to removing POP opcodes, this transformation also removes
DUNBLND and UNBIND opcodes in the same position (except when v a l is a variable which
was bound in the frame corresponding to the UNBIND or DUNBIND).

Unused variable in B I N D (580)

(B I N D . . . (. . var . .)) {var not used) = (BIND . . . (. . . .) 1
(B I N D (. . v a r) . . .) {var not used] =s (POP) (B I N D (. .) . . .)

This transformation eliminates binds of local variables which are not used. Only the last
variable bound to a value can be so removed, because of the difficulty of inserting a POP at
the appropriate place back in the instruction stream. (This is an example where source level
transformation might be better way of doing optimization. Unfortunately, the last use of a
variabie is often removed by COPY inlroduction, which has no analogue in source code
transformations.) To detect unused variables, the compiler scans the code linearly for uses
of each variable in every B I N D . For example, the expression

(PROG (X) (SETQ X (FUM)) (FOO X X))
compiles into

(B I N D () (X)) (F N 0 FUM) (SETQ X) (POP) (VAR X) (VAR X) (FN 2 FOO)
which, after several transformations, turns into

(B I N D () (X)) (FN 0 ftm) (COPY) [FN 2 fOO).
Since X is no longer used, it can be diminat&. Note that this transformation is not
applicable to special variabfes (variables which can be referenced freely by functions called
from this one, e.g., FUM and FOO).

Unused B I N D (2035)

(B I N D (v l ... vm) (vm+1 ... vn)) (VAR v 1) ... (VAR vm) {last menfion of v 1 ... vm)
+ (CONST N I L) (n-mtimes)

<Of the 2035 occurrences, 440 eliminated BINDS which were generated in the compilation of
mapping functions.> This transformation eliminates 8 lNOs when the variable list is empty or
when the variables bound are only mentioned, in order, immediately following the BIND.
When this transformation is made, the compiler must also find all corfesponding DUNBIND'S
for this frame and turn them into the appr~priate number of POP'S. In addition, for every
UNBIND the stack level must be exactly one greater than it was at the BIND. If so, the
UNBIND can simply be deleted; i f not, this transformation cannot be made. Note, however,
that where a PROG or LAMBDA expression is the value returned by a function, no UNBIND or
DUN0 I ND opcodes are generated. For example, the expression

((LAMBDA (X) (FOO X X)) (FUM))
compiles into

(F N 0 FUM) (B I N D (X) ()) (VAR X) (VAR X) (F N 2 FOO)
which, aftei COPY introduction and Unused B I N D can be transformed into

(F N 0 FUM) (COPY) (FN 2 FOO).

22 Papers on Interlisp-D .

CONCLUSIONS

Because our instruction sets are so well suited to the Lisp language, it is possible to write
quite simple non-optimizing compilers for our Lisp machines. In fact, we have written a
simple but usable compiler in less than three pages of Lisp code. However, local
transformations can have an important impact on code space and running time.

As in production systems, the choice of order of application of transformations can affect the
results. Without eflecectively trying all possible orderings, one transformation can prevent a
better one from being used. In successive transformations made on a sample of user Lisp
programs, however, we have not observed this to be a major problem.

The programs our compiler genenlfw are still not optimized, in the strict sense of that term.
A sample of user Lisp programs which were "hand optimized" show that code size could be
compressed by as much as an additional 15% in some cases, with no speed penalty.
However, the transformations involved seem to require either much special-case pattern
matching or else transformations which temporarily reduce either space or speed. As usual
when employing "hill-climbing" algorithms, by requiring that all transformations we employ
are strict improvements, we occasionally find local optima which prevent better solutions
from being found.

Optimizing on a simple intermediate language is quite effective. Many of the transformations
made are not express~ible as source language ?ransformations (e.g., the COPY operator has
no direct counterpart in the Cisp language). Those that woufd be easier to express as source
transformations are often enabled by transfonmrations which have no direct analogue.
Peephole optimizers working on more complex assembly languages must be aware of more
special cases, because there are many more kinds of operations.

REFERENCES

Burton, R.R. et a/.
Overview and implementation status of Interlisp-D. Proceedings of the 7980 Lisp
conference, Stanford, 1980 and Xerox PARC, SSL-80-4, 1980.

Deutsch, L.P.
A Lisp machine with very compact program$. Proceedings of !he third international
joint conference on artificial intelligence, Stanford 1973.

Experience with a microprogrammed lnterlisp system. lEEE Micro-71 conference,

1978.

ByteLisp and its Alto implementation. Proceedings of the 1980 Lisp Conference,
Stanford, 1980.

Fiala, E.R.
The Maxc systems. lEEE Computer 11, May 1978.

--- 1-.- ..Î -* U' .--- i* " - *i ;.**i I .n, t -.. IIIIW.D-Y--I-qllb% uLa .Xn.xn.~n "l? ,l .*m,

Local Optimization for Stack-based Lisp Machines 23

Griss, M.L. & Hearn, A.C.
A portable Lisp compiler. Department of Computer Science, University of Utah, UCP-
76, .1979.

Steele, G.L.
RABBIT: A compiler for SCHEME (A study in compiler optimization). MIT Artificial
intelligence Laboratory. A/-TR-4 74, 1978.

Teitelman, W. et al.
Interlisp Reference Manual, Xerox ?ARC, 1978.

Umi, Jaak
A machine independent Lisp compiler and its implications for ideal hardware.
Linkoping studies in science and technology dissertations No. 22, Linkoping. Sweden,
1978.

I
I

I

I

I
I

i
i

The Interlisp-D I/O system

Ronald M. Kapfan, B. A. Sheif, and Richard R. Burton

One of the major stumbling blocks to a transportable version of lnterlisp is its extensive and
complex set of input/output facilities. The Interlisp virtual machine (VM) specification
provides assistance by specifying a smaller set of 1 / 0 primitives in terms of which the
complete set can be written. However, the primitives described in the VM were decisively
shaped by features of the Tenex operating system and transferring these primitives to other
operating systems has proven to be difficult. This paper describes an implementation of the
VM 110 primitives in Lisp which reduces the machine dependent aspects to the device level.
The design breaks the 110 ?ask into two levels: the logical level and the physical device
level. The logical level defines the notion of an abstract file device and captures the
operz+ions and information that are common to all devices, such as sequential 1/0 and
buffer management. The interface to the physical level is through a small set of device
dependent functions such as opening a file or reading a page. The imp/ementation of a new
device requires writing appropriate versions of each of these functions, but the interface to
this new device from the user level programs is exactly like any other file device. One
difficult problem solved in this design is the concurrent accessing of a file by both sequential
I/O and by page mapping. The primitives needed in this design are fewer and much easier
to implement on widely varying hardware than those defined in the VM.

BACKGROUND

Interlisp-0 [Burton et al., 19801 is an implementation of the Interlisp programming system
[Teitelman et at,, $9781 on the Dolphin and Dorado, personal computers with large virtual
address spaces [Lampson 8 Pier, 19801. Given Interlisp's extensive and complex set of
input/output facilities, it is clear that these will comprise a substantial portion of any
implementation. The lnterlisp virtual machine (henceforth, VM) specification [Moore, 19761
provides some assistance by describing a smaller set of 110 primitives in terms of which the
complete set can be written in, Lisp. Therefore, one approach is to implement the VM
primitives in terms of the I/O operations provided by the host operating system. This was
the approach used in the AltoLisp implementation of lntwlisp peutsch, 198OJ. Reflections
on this experience have convinced us that this is not a good implementation strategy.

Although the VM primitives are sufficient to support the higher levels of Interlisp, they are by
no means the only such set, nor are they necessarily the most principled. In fact, the
selection and definition of primitives were shaped in large measure by the properties of the
Tenex operating system [Bobrow et at., 19721 for which lnterlisp was originally developed,
and by the interface between Lisp and the machine-language kernel of Tenex-Interlisp. It is
not an easy task to reconstruct this particular set of primitives with operating system
capabilities that do not match those of Tenex. For example, lnterlisp assumes the existence
of a mechanism, modelled after the Tenex page-mapping mechanism, to map any page of an
arbitrary file into the virtual memory without disturbing ongoing sequential I/O to that file.
Few other operating systems provide such a capability and retrofitting it to an existing
system is non-trivial.

26 Papers on Inte rlisp-D

As it turns out, many of the VM "primitives" are not in fact primitive: they can easily be
expressed in Lisp in terms of a more basic set of operations. There are several good
reasons for pursuing such a lower-level decomposition. First, the result would be a more
elegant and satisfying implementation than an attempt to interface two incompatible
operating system designs would produce. Second, writing more of the implementation in
Lisp would reduce the amount of non-Lisp expertise (e.g., knowledge of the host operating
system) required to build and maintain the I/O system. Third, the lower-level decomposition
would represent a more principled understanding of the structure of this part of lnterlisp than
the current VM specification embodies. Specifically, it would move the boundary of lnterlisp
(the place where different implementations are free to vary) closer to the hardware, where
the environmental differences are real, rather than leaving it at the operating system level,
where the differences are mostly manufactured.

The most important reason, however, is that a lower-level decomposition would offer more
assistance to other implementations of f~terlisp. As the declining cost of hardware makes
new environments for lntertisp more attractive, transportability becomes an increasingly
important consideration. Consequently, we designed a framework for the lower levels of
lnterlisp l/O that serves not only as a basis for the Interlisp-D implementation but also is
likely to be better than the current VM specification as a foundation for the 1/0 facilities of
other implementations. This paper reports on that design.

DESIGN OVERVIEW

The basic distinction in the fnterfisp-U I/O system is between the software used to control
the variqus physical devices and a "fogical" If0 iayer that bridges the gap between the
devices and the VM specifications. The logical layer, which is written entirely in Lisp,
provides services that are usually supplied by code in the non-Lisp kernel or the operating
system. It manages the allocation of virtual memory buffers and their assignment to specific
pages in particular files, maintains the state inforn~ation necessary to support sequential and
random access streams, and coordinates stream and page-mapped file access.

L

The logical 1/0 system rests on an interface to the physical devices which defines the notion
of an abstract file device. This characterizes the capabilities that physical file 'devices must
possess and defines a uniform set of operations for manipulating those devices. Since
physical devices (e.g., local disks and network file servers) come with widely varying software
and hardware attributes, the design does not specify how the interface functionality is to be
implemented for particular devices. Separate code is written for each device, perhaps even
in different programming languages, in order to take advantage of and/or to compensate for
the features that the device provides.

The device operations are defined at a very low level. The device does not manage the
memory buffers into which it reads and writes, nor does it directly provide operations such
as sequential, byte-stream access. These are implemented in a device independent way in
the logical I/O system. The low level of the device interface has two advantages. First, the

uniform interface for the logical I/O system guarantees that all devices will exhibit the same
behavior in terms of the higher level protocols. Second, by minimizing the amount of code
that must be written for each new device, it makes it relatively easy to add devices to the

The Interlisp-D I/O system 27

system. Thus, when we found that substantial time was being spent reading and writing the
compiler's temporary files, it was a simple matter to implement a CORE device. This provides
the same user program abstraction as the disk but "reads" and "writes" from temporary
storage in main memory, thus avoiding the cost of the actual data transfer.

THE ABSTRACT DEVICE

The device interface prescribes a set of properties on which devices may vary and a set of
operations that may be applied to any device and the files that reside on it. A device may
also perform additional operations which' directly reflect its physical characteristics (e.g.,
REWIND on a tape device). These are for programs that need to make direct use of the
idiosyncratic properties of specific devices. Each physical file device is known to user
programs by a device name, with which is associated a iile device datum containing both its
device properties and its implementation of the generic operations. The device datum
represents the operations in object-oriented style: It contains a vector of Lisp callable
functions, one for each of the generic operations. The generic operations are defined simply
to transfer control to the corresponding element of the appropriate file device.

The use of an object oriented representation at the device level reflects the great deal of
variability in the underlying physical device hardware. Each device can decide

h independently which properties and operations it will support and which it will not. By ,
5

contrast, in the logical I/O system this variability is much less pronounced, due to the
1 constraints imposed by the interlisp specification, so a more conventional functional interface
1

is used.

The generic operations defined by the device abstraction were carefolly cholwen to allow the
flexibility of different implementations where this was required by different real devices, while
providing a uniform set of building blocks for higher level facilities. Thus, the virtual device
provides operations to

translate between file names and device-dependent file specifications (a directory),

' create, destroy, and "open" files,

' move information in page-size units between files and memory, and

' provide information about the status of a file on that device.

The interface between the device and its clients is in terms of file names and file handles. A
file name is a user sensible identification of a file. This is presented to the logical file system
when some 1/0 service is requested. A file handle is a device-generated, unique
identification of a file on that device. It specifies the device on which the file resides, a
complete name for the file and any other (device-dependent) information that may be needed
to reference the file. Apart from name interpretation (directory services), a file handle is the
interface to all device level file operations. Thus the operations to delete a file, read and
write pages, interrogate status, etc., all require file handles as arguments.

The mapping between names and handles is one of the more complex aspect of the device
interface. As the I/O system was specifically designed to allow uniform reference to files on
file systems over whose naming conventions we had no control (e.g., remote file servers),

28 Papers on Interlisp-D

user sensible file names are considered to have two separate components: a device
specification in a prescribed, uniform syntax and a device-specific file specification in an
arbitrary syntax. When a nzme is presented to the I/O system, its device specification is
used to locate the corresponding device datum. The name interpretation code of that device
is then applied to the complete name.

Interlisp's more esoteric name interpretation facilities (the names presented to operations
such as opening a fife can be incomplete, specify wild-carding or expansion of various
forms, or be misspetled) are handfed at the logical level. This sometimes imposes some
comptexity on these afgorithms since, for example, name interpretation cannot be made
indivisible with resource atiocation at the device level. Thus, if two processes
"simultaneously" request the 1/43 system to open the next version of the same file, both will
compute the same value far the next version, so one request will fail due to the other having
succeeded in opening the file first. The logical file system discriminates and recovers from
this situation. The alternative, an expand-file-name-and-open-it operation, is unattractive
because it would replicate the Interlisp name expansion rules within every device.

Devices also include operations which interrogate their properties and those of their files.
(GETFILEINFO filehandle attribute) returns the value of the specified attribute (e.g., AUTHOR,

WRITEDATE, LENGTH) for the given file and (SETFILEINFO filehandle attribute newvalue) allows
(some of) those values to be modified. The functions GETDEVICEINFO and SETDEVICEINFO are
the analogous functions for obtaining information (such as its natural page-size, the amount
of space currently free, and its name) about the device. 80th sets of properlies are device
dependent; each device can decide to which properties it wii? respond.

THE LOGICAL 1/0 SYSTEM

In addition to being a complete specification of a file on some device, a file handle allows
certain information about that file to be obtained. When the file is opened, it also permits
the contents of the file to be accessed and provides the capability of changing all of the
file's properties (dates, author, etc.). The act of opening the file is a device dependent
operation, since the device may need to establish some special state information (e.g. a
network socket for a remote file server). From the point of the client Lisp program, however,
only the logical file state, which is maintained in an open file descriptor (OFD), is important.

An WD contains the device independent information associated with an open file. This
includes the file's file handle (which in turn specifies the file device), its access mode (either
INPUT, OUTPUT, APPEND, BOTH, as specified by interlisp), and an indication of the current file
byte and line positions. All of this is completely device independent; device dependent
information is all stored in the file handle. An OFD is created by the logical file system file-
opening operation: (OPENFILE name access recognitionmode), where access indicates the
access capabilities desired and recognitionmode the rules for completing an incomplete
name. After computing a complete file name, this operation calls the device opening routine
to do the device dependent opening operations, and then initializes the logical file state. If

access is other than INPUT, the device opening operation will cause the file to be created if it
does not already exist. When the file is closed, the OFO is marked as defunct so it cannot be
further used.

The Interlisp-D I /O system 29

The primary function of the logical I/O systent is to fasflion sequential and random access

byte level I/O from the page level transfer operations provided by the device interface. To
this end, the functions BIN (read a byte) and e o u ~ (write a byte) are defined. These keep
track of the current file page and position within that page; detect page overflow, and, for
input, end of file; and call the buffer management routines to replace buffers when the
sequential access or random positioning causes the logical file position to leave the current
page. Also implemented at this level are functions for obtaining and setting information
about the state of the open file, such as the current file length.

These functions provide the implementation primitives in terms of which the existing higher
kvel Interlisp I/O code is directiy implemented.

USER BUFFER ACCESS

As we have seen, the device layer is not responsible for managing the virtual memory buffers
that file data is transferred to and from. Buffer management is common to all devices and is
therefore implemented in the logical I/O layer. Buffers are allocated and assigned to a file

8 on demand and are accessible from its OFD. When BIN or BOUT reaches the end of a page,
code in the logical layer chooses a buffer for the next page. If it chooses a buffer that
already contains a page of the file and i f that buffer has been written onto, then the device
WRITEPAGE function will be invoked to flush the contents of the buffer back to the file. The
buffer is then initialized by reading in the next file page (via READPAGE, which zeroes the
buffer i f the page does not yet exist in the file). The srN or WT operation is then
completed, updating the relevant fieids in the OFD as appropriate to maintain the current
position in the sequential stream.

When the logical close routine is called to close the file, its currently dirty buffers are first
flushed to the file device, the buffers are de-allocated, and the device close operation is
called on the file handle. The OFD is then marked as defunct and the file handle is marked
closed, so that future attempts to use them will result in errors.

The buffer management strategy we have outlined is quite conventional. The user interacts
with the buffers only through the carefully controlled interface functions that read and write a
byte and reset the file position. The system is therefore free to allocate, deallocate, and

i recirculate buffers according to whatever heuristics seem appropriate. ~owevkr, the Interlisp
I/.Q,specifications permit the user to gain direct access to the file buffers, and this imposes

7

i strong constraints on the buffer management regime.
2-

8

t Interlisp's page-mapping facility is similar to that of the Tenex operating system. It allows
user programs to examine and modify information in a file page as i f it were part of ordinary
virtual memory. Complex data structures, not just linear byte sequences, can be created on
the file and manipulated using the normal machinery for referencing memory. In particular,
symbolic names can be defined for the fields of these structures by overlaying a record
structure on a mapped in page, so that manipulation of file-resident databases becomes a
very easy thing to do. Various lnterlisp system packages (e.g. HASH, WHEREIS) depend on this
capability, and it supports a variety of user application including the file-resident memory
system of the KRL implementation [Bobrow 8 Winograd, 19771.

Papers on Interlisp-D

To a certain extent, this kind of access to file information can be obtained without new
system facilities. I f the user wants to view information on a file in a structured fashion, he
can use the ordinary sequential I/O facilities to copy the data from the file buffer into a
storage array. However, the user would not only pay the extra (but possibly small) cost of
the copy, he would also have the responsibility of noticing when information in the array was
changed and therefore has to be copied back to the file buffer. Considered in this light,
implementing a system page-mapping operation merely centralizes the bookkeeping
necessary to maintain consistency between the file and the in-memory image of its pages.

There is a more crucial feature of the page-mapping mechanism that sirnpfy cannot be
simulated by user programs: the page-mapping specification provides for the coordination
between modifications done to the page considered as a part of the address space and
those done by the sequential 1/0 operations. Thus, doing a sour to a mapped page will
cause an immediate modification to the corresponding memory word, and information placed
in that word by a store operation will be returned by the next 8iN operation. Thb user really
does have a pointer to the system buffer lor that fife. TMs means that the reading and
writing of structured information on a fife page can be intermixed with input and output by
the complete set of sequential I/O operations, including the higher-level READ and PRINT

routines. A user can maintain his own data structures as long as that is easy and necessary,
but he can fall back on the facilities for transferring arbitrary s-expressions when that
becomes more suitable.

Distributing buffer pointers to the user seriously undermines the simple, conventional buffer
management strategy. A buffer to which the user has been given a pointer must not be re-
allocated as long as the user holds onto that pointer. By asking for a pointer, the user has
indicated that he intends to operate on that file page for an extended period. This flies in
the face of the pressure to re-circulate buffers for new pages and files in order to minimize
the address space and working set devoted to buffers. The PMAP package in Interlisp-10
defines functions by which the user can lock and unlock buffers, but this does not
completely solve the problem. First, there are situations where a buffer can be quietly
recirculated before the reduest to lock it down can be processed, and second, the user
might mistakenly unlock a buffer when in fact he retains a pointer to it that he later uses.

Interlisp-D permits an interesting and unique solution to this problem. Given that buffer
management is implemented in Lisp, and given that Interlisp-D includes an incremental,
reference-counting garbage collector, we have a very simple way of determining whether the
user is still holding a buffer pointer that has been distributed to him. When a buffer pointer
is given to the user, that buffer is marked so that it will not be recirculated according to the
normai heuristics. The collection phase of the garbage collector distinguishes pointers to
buffers from other kinds of data objects. When the reference count of a buffer goes to zero,
the buffer is unmarked so that normal de-allocation is again enabled. Buffers for most files
are unmarked so that the most efficient recirculation strategies may be employed, but
deallocation of a user-mapped page is postponed until the next collection phase after the
last user pointer to the page has been dropped. Thus, the dangling reference problem for
file buffers is solved by a completely general mechanism.

The Interlisp-D I/O system 31

PROBLEMS AND PLANS

The major weakness of the design presented here is that it is primarily oriented to file
devices. ~evices without file name structures, displays, and conversational devices fit less
well into this framework. In large part, this is because these devices are given special
treatment in the lnterlisp I/O specifications, and we have replicated some of this
awkwardness in our design. As an example of the type of problem that arises, consider the
representation of a network connection. Such a connection is usually required, by the
protocols of its network, to be a duplex object, i.e., it must be possible to both read and
write independently to its input and output channels. Unfortunately, lnterlisp assumes that
an open file has but one logical file position, end of file, etc.. Following Interlisp, wr i/O
system makes the same assumption.

For the most part, these problems do not impact the utility of the design as a basis for the
existing lnterlisp I/O facilities, since special code to accomodate existing problem areas
such as the controlling terminal is already in place. As we extend fnterlisp into a personal
computing environment, we will surely revisit these issues and attempt to give them a
principled treatment. In particular, as many of the facilities that make Interlisp-10 such an
attractive environment involve shared resources, making these available in a personal
machine environment will require a comprehensive treatment of remote I/O. Unfortunately,
the major part of this work will be extending the existing semantics of lnterlisp I/O.

Acknowledgements

The Interlisp-D 110 system evolved from an earlier design dune by Peter Deutsch for the Atto
computer. Willie Sue Haugeland navigated us through the shoats of the Alto operating
system,' We are also happy to acknowledge the contributions of Dan Bobrow, Richard Fikes,
and Larry Masinter to the design and implementation of the system reported here.

REFERENCES

Bobrow, D.G. et a/.
Tenex, a paged time sharing system for the POP-10, CACM, March 1972.

Bobrow, D.G. 8 Winograd, T.
Overview of KRLO: A knowledge representation language. Cognitive Science, 1, 3-46,
1977. --- ..

Burton, R. R. et al.
Interlisp-0: Overview ana status. Proceedings of the 1980 Lisp Conference, Stanford
and Xerox PARC, SSL-80-4, 1980.

Deutsch, L.P.
A Lisp machine with very compact programs. Proceedings of the third intern-ational
joint conference on artificial intelligence, Stanford 1973.

Experience with a microprogrammed lnterlisp system. /EEE Micro- 1 1 conference,
1978.

Papers rzn Interlisp-D

Lampson, B.W. & Pier, K.A.
A processor for a high-peforrnance persona! computer. Seventh inlernafional
symposium on computer architecture, La Baule, France, May 1980. j

Moore, J.S.
The Interlisp virtual machine specification. Xerox PARC, CSL-76-5, 1976.

Teitelman, W. et al.
Interlisp Reference Manual, Xerox PARC, 1978.

Interlisp-D Display Facilities

Richard R. Burton

Abstract

As one of the goals of Interlisp-D is to make lnterlisp available as a personal computing
environment, it incorporates an extensive set of graphics facilities. This memo documents
the abstractions and functions which comprise these facilities.

INTRODUCTION

This memo documents the abstractions and functions which have been designed to support
the use of the tn4wIisp.D &play. These functions provide the display primitives upon which
DLISP is based. Their design was initially based on the ADIS primitives [Sproull, 19791 for the
Alto and was later influenced by other graphics work at Xerox PARC [Warnock, 19801.

This document is intended both to document the existing facilities and to provide a
framework within which extensions to the lnterlisp graphics interface can be made. It is
hoped that these primitives will provide a standard far lnterlisp display facilities at a
corresponding level in other implementations and that the framework will be extended (by
ourselves and others) to more general graphics devices such as color, grey scale and high
resolution printing media.

Geometric Operations

The display facilities provide three different types of geometric procedures: figure generating,
transformations and clipping. Figure generating procedures include routines to place text,
draw lines and curves, and fill in areas. Transformation routines allow programs to construct
images with local coordinate systems, provide translation and will be extended to include
scaling and rotation. The clipping routines allow an image to be clipped against a region
(currently a single rectangular region, extending to a set of arbitrary polygons.)

POSITION

A Position denotes a point in a coordinate system. It is characterized by its x and y
coordinates. A POSITION is an instance of a record with fields XCWRD and YCWRD. It is
manipulated with the standard record package facilities.

REGION

A Region denotes a rectangular area in a coordinate system. It is primarily used to specify
clipping regions which limit the areas into which figures are displayed. Regions are
characterized by the coordinates of their bottom left corner and their width and height. A
REGION is a record with fields LEFT, BOTTOM, WIDTH and HEIGHT. It is manipulated with the
standard record package facilities. The global variable WHOLEDISPLAY is a region which
covers the entire display screen.

34 Papers on Interlisp-0

The primitives manipulate graphical images in the form of bitmaps. A bitmap is a
rectangular array of bits. If a bit is 0, the corresponding location on the image is white. If a
bit is 1, its location is black, Bitmaps use a positive integer coordinate system with the lower
left corner bit being (0,O). Bitmaps are represented as instances of the datatype (BITMAP)

with fields BITMAPWIDTH, BITMAPHEIGHT, BITMAPRASTERWIDTH and BITMAPBASE. Only the width
and height fields are of interest to the user. (For Interlisp-D, the BITMAPRASTERWIDTH is the
number of words required to hold one line of the bitmap; the BITMNBASE is a pointer to the
first word of the bits.)

To extend the display scheme to higher resolution devices, the notion of bit is changed to "pixel" and fractional
parts of pixels can be darkened or greyed as required. To handle this extension, the coordinate system is
represented in floating point numbers rather than integers. For expediency, the initial version of the display
facility does not include this capability. It is expected that the current frashework will extend in this manner.)

There are two distinguished bitmaps that are "read" by the hardware to become visible as
the screen and the cursor. The screen is a bitmap SCREENWIDTH wide by SCREENHEIGHT high.
(For Interlisp-D, SCREENWIDTH is 620, SCREENHEIGHT i$ 808.) ,The cursor is CURSORWIDTH by
CURSORHEIGHT. (FOT Interlisp-D, CURSORWIDTH is 16, CURSORHEIGHT is 16.)

The functions to manipulate bitmaps are:

BITMAPCREATE[Width Height]
Creates and returns a new bitmap which is Width bits wide by Height bits high.

BITMAPBIT[Bitmap X Y NewValue]
X and Y are measured (as always) from the left bottom, 0 as origin. If NewValue is 0
or 1, the bit (X,Y) is changed to NewValue and the old value is returned. If NewValue
is NIL, the Bitmap is not changed but the value of the bit is returned.

BITMAPCOPY [Bitmap]
Returns a new bitmap which is a copy of Bitmap (same dimensions and contents).

There are two distinguished bitmaps that are "read" by the hardware to become visible as
the screen and the cursor. The screen is a bitmap SCREENWIDTH wide by SCREENHEIGHT high.
(For Interlisp-D, SCREENWIDTH is 620, SCREENHEIGHT is 808.) The cursor is CURSORWIDTH by
CURSORHEIGHT. (For Interlisp-D, CURSORWIDTH is 16, CURSORHEIGHT IS 16.) They are accessed
by:

SCREENBITMAP[]
Returns the screen bitrnap.

CURSORBITMAP[]
Returns the cursor bitmap.

Inte rlisp- 0 Display Facilities 35

BITBLT

BITBLT is the primitive function for moving bits from one bitmap to another.

BITBLT[SourceBitmap SourceLeft SourceBottorn DestinationBitmap Destinationleft
DestinationBottom Width Height SourceType Operation Texture CIippingRegion]

Width and height define a pair of rectangles, one in each of the SourceBitmap and
DestinationBitmap whose left, bottom corners are at, respectively, (SourceLeft,
SourceBottom) and (DestinationLeft, DestinationBottom). If these rectangles overlap
the boundaries of either bitmap they are both reduced in size (without translation) so
that they fit within their respective boundaries. If CIippingRegion is non-NIL it should
be a Region and is interpreted as a clipping region within DestinationBitmap; clipping
to this region may further reduce the defining rectangles. These (possibly reduced)
rectangles define the source and destination rectangles for BITBLT.

The mode of transferring bits is defined by SourceType and Operation. The SourceType and
Operation specify boolean functions that are used to determine, respectively, the method of
combining the SourceBitmap bits with the Texture and the operation between these resultant
bits and the DestinationBitmap. The specification given below defines the modes allowed by
Interlisp-D; extensions are seen as necessary for other implementations, in particular those
providing color or grey scale.

Texture is a gray pattern, as described in the section below.

Sourcetype specifies how to combine the bits of an input bitmap (in this case, the pattern
specifying the character) with the bits from a texture (background pattern; see below) to
produce a source. This is designed to allow characters and figures to be placed on a
background.

SourceType Source
SOURCEINPUT Input
SOURCEINVERT (NOT Input)
SOURCEMERGE (AND Input Texture)
SOURCETEXTURE Texture

The various SourceTypes such as SOURCEINPUT are global variables which are declared as
constants. For the SOURCEINPUT case, the Texture argument to BITBLT is ignored. For the
SOURCETEXTURE case, the SourceBitmap argument is ignored.

Operation specifies how this source is combined with the bits in the Destination bitmap and
stored back into the Destination bitmap.

Operation Destination
OPREPLACE source
OPPAINT (OR Destination Source)
OPFLIP (XOR Destination Source)
OPERASE (AND Destination (NOT Source))

The various Operations such as OPREPLACE are global variables which are declared as
constants.

36 Papers on interlisp.0

SourceBitmap and DestinationBitrnap default to the screen. SourceLeff, SourceBottom,
DestinationLeft and DestinationBottom default to 0. Width and Height default to the width
and height of the SourceBitmap. Texture defaults to WHITESHADE. SourceType defaults to
INPUT. Operation defaults to REPLACE. If ClippingRegion is not provided, no additional
clipping is done. BITBLT returns T if any bits were moved; NIL otherwise. J

TEXTURE

A Texture denotes a pattern of gray which can be used by ~ B L ? to (conceptual3y) tessellate
the plane to form an infinite sheet of gray. For intetli*D,.it is a 4 by 4 pattern. Textures
are created from bitmaps.

CREATETEXTUREFROMBlTMAP[8itmap] I

Returns a texture object that wile p the textw8 given from Bitmap. If Bitmap is
too large, its lower left portion is used. If Bitmap is too small, it is repeated to fill out
the texture.

The common textures white, black and gray are, avai as system constants WHITEWADE,

BLACKSHADE and -.GRAYSHADE. Thwihgnrnent of tfrefu2ta#t~ekplrattm with BITBLT is S U C ~ that the
origin of the destination bitmap is at an in temmtb of the "tiles".

SAVING BITMAPS

Bitmaps can be saved on files with the file package command BITMAPS, analogous to the file
package ARRAYS command. This uses the two functions PRINTBITMAP and READBITMAP which
.translate bitmaps into and out of numeric representdons which may be used to transfer
bitmaps from other systems.

READBITMAP[Width Height BitsPerlnteger]
Creates a bitmap which is Width by Height bits in size and gets values for its bits by
 READ^^^ an expression that should be a list of integers. (This convention is adopted
from the method of saving arrays on files.) BitsPerlnteger is the number of low order
bits that should be taken from each integer in the read list. Each line of the bitmap
begins on a new integer. Thus, the fist' of integers should be (((Width-
l)/BitsPerlnteger) + 1)*Height elements long. If WiMh is not a multiple of
BitsPerlnteger, the most significant of the BitsPerlnZeger bits from the last integer of
each line will be used. This design allows bitmaps to be written on the files in an implementation

independent way. BitsPerlnteger should be kept small (less than 20) so that the integers can be read
by the READ function on machines of smaller word size without overflow. For Interlisp-D, BitsPerlnteger
is 16.

PRINTBITMAP[Var]
Var is an atom whose value should be a bitmap. The function prints a call to the
function READBITMAP with the appropriate values followed by a list of the integers
representing the pattern of bits in that bitmap.

Inte tlisp-D Display Facilities 37

SUPPORT FOR THE MOUSE

The screen relative position at which the cursor bitmap is being displayed can be read or set
using the functions:

>

CURSORPOSITION[Posltion]
This returns the present location of the cursor. If Position is non-NIL, it should be a
position and the cursor will be positioned at Position relative to the whole screen.

ADJUSTCURSORPOStTION[deltax deltay]
Positions the cursor offset from its current location by deltax and deltay which are
integer increments which default to 0.

The cursor can be changed like any other bitmap by B I T B L T ~ ~ ~ into it or pointing a display
stream at it and printing or drawing curves. However, for pointing applications, it is
necessary to locate the "hot spot" within the CURSORWIDTH by CURSORHEIGHT area which is
used to determine a point position for the cursor. The function:

SETCURSOR[Bitmap X Y]
Copies Bitmap into the cursor and indicates to the system that location (X,Y) within
that area is used tjls the hot spot; i.e., the value of CURSORPOSITION. If Bitmap has
dimensions different from CURSORWIDTH by CURSORHEIGHT, the lesser of the widths and
the lesser of the heights are used to determine how many bits actually get copied
into the lower left corner of the cursor. If X. or Y is NIL, that coordinate is not
changed. For Interlisp-D the default cursor is the uparrow and the default hot spot is
(0,15), the upper left corner which is the tip of the arrow.

Reading the Mouse

The mouse can be read in either a polling or in a queued manner. For polling, use

GETMOUSESTATE[}
Reads the current state of the mouse and sets the variables LASTMOUSEX, LASTMOUSEY,

LASTMOUSEBUTTONS, LASTMOUSETIME, and LASTKEYSET (which holds the State of the five
finger keyset.) In Interlisp-0, these are all 16-bit positive integers. Since the time is
in milliseconds, it rolls over every 64 seconds or so. In polling mode, the program
must remember the previous state and look for changes such as a button or key
going up or down or the position moving outside a region of interest.

In queuing use, the state of the mouse is saved whenever there is a transition in one of the
mouse buttons or keyset keys. In this mode the button clicks are treated much like typed in
keyboard strokes; saved until the program next asks for them. To coordinate the keyboard
with the mouse clicks, the mouse interrupt handler will put a designated character in the
keyboard input buffer. A common practice is to have this character be a read macro
character that handles the mouse event. To tell the system to start queueing mouse events,

ENABLEMOUSE[# EVENTS CHARCODE]
#EVENTS gives the number of events to save (Interlisp-D limit is 49). If more than
#EVENTS events occur, further events are ignored and the screen is flashed.

Papers on Interlisp-D

CHARCODE is the character code that will be inserted into the keyboard stream when
the mouse event occurs. If CHARCODE is not given, nothing will be put into the
keyboard buffer. i f CHARCODE is given, CLEARBUF will clear the mouse queue as well
as the input buffer. If CHARCODE is not given, the mouse queue can be cleared by
recalling ENABLEMOUSE with the same arguments. To turn off mouse queuing,
ENABLEMOUSE is calied with no arguments.

GETMOUSEEVENT[FLG] 1

Examines the state of the mouse queue and may read the next event (set the
variables mentioned above.) If FLG is NIL, GETMOUSEEVW~ returns the time of the next
event if there is one (returns NIL if there are no events) but does not read it. If FLG is
not NIL, the time is returned and the event will be "read" into the variable
LASTMOUSEX, etC.

MOUSEBUF[FLG]
If FLG is T, this returns ithe internal b.uffer of mouse events that were saved at the last
CLEARBUF[T TI. If FLG is NIL, the internal mouse event buffer is cleared.

BKMOUSEBUF[EVENTLST]
EVENTLST is a list of mouse events. BKMOUSEBUF sets the mouse queue to this list of
events. In typical usage, EVENTLST is a list obtained by a call to MOUSEBUF. The form
of the mouse events is a list of (MouseX Mousey MouseButtons MouseTime KeySet).

DISPLAY STREAMS

Display Streams allow uniform, convenient manipulation of bitmaps. Display streams have
the properties necessary to implement transformation, clipping and aspects of figure
generation. One property of display streams is the bitmap they modify called its Destination.
Changing the destination to an auxilliary bitmap can be used to construct figures, possibly
save them and then display them in a single operation. Display streams have their own
coordinate system and a current Position in that system which is changed as characters are
printed or lines drawn. Having the coordinate system local to the display stream allows
objects to be displayed at different places on by translating the display stream's coordinate
system relative to its destination bitmap's. The translation is given by x and y Offsets.
Display streams also have a ClippingRegion which limits the extent of both characters
displayed and lines drawn. Display streams have a Font that consists of a font family, a size
and faces (Italic, Bold), and that dictates how characters appear. Other properties of a
Display stream are its Operation (how the characters or lines should be integrated with the
bits that are already on the screen eg. REPLACE^, F~lPed, etc.); Texture (of gray for
background); how far the y position is advanced on a LineFeed; where the LeftMargin is; and
whether or not to Scrooll the contents when reaching the bottom of the clipping region.
Display streams also have Brush characteristic for drawing curves.

Functions are provided for creating DisplayStreams, and manipulating both them and their
component parts. The package also supports the notion of a current Displaystream, which
can be set and manipulated, and which is used implicitly by omitting a DisplayStream
argument from functions which take such arguments.

Inte rlisp-D Display Facilities 39

There are two general types of figure generating procedures: character printing, and line and
curve drawing. Display streams are recognized throughout the system as a legal file
argument. Characters are printed using the normal Lisp print functions (PRINT, PRINI, etc.) by
giving a display stream as the file argument. Functions are provided to draw lines and
curves.

MANIPULATING DISPLAY STREAMS

The attributes of a Displaystream include:
Destination a bitmap
XPosition an integer which is the current x position (in the display

stream's coordinate system)
YPosition an integer which is the current y position (in the display

stream's coordinate system)
XUffM an integer which is the x translation of the display stream's

coordinate system from the bitmap's.
YOffset an integer which is the y translation of the display stream's

coordinate system from the bitmap's.
Clipping Region a Region which limits the extent of lines and characters
Sou rceType a BITBLT source type
Operation a B~TBLT operation
Texture a Texture which is the background pattern
Font a FontDescriptor
Italic
Bold

ON or OFF

ON Or OFF

Scroll ON or OFF (If ON, the destination is scrolled up after an EOL

enough to have the next printed character appear.)
Left margin an integer which is the x position after an EOL (in the display

stream's coordinate system)
Li nefeed an integer which specifies the Y increment each linefeed
Brush a bitmap which is used to draw curves

The default values for these characteristics are:
Destination the screen bitmap
XPosition 0
YPosition 0
XOffset 0 (no x-coordinate translation)
YOffset 0 (no y-coordinate translation)
Clipping Region set so that no clipping occurs
SourceType 'INPUT

Operation 'REPLACE

Texture WHITESHADE

Font HELVETICAIO

Italic 'OFF
Bold 'OFF

Scroll 'OFF

Papers on Interlisp-D

Left margin 0
Li nefeed minus the height of the font
Brush a bitmap of a single bit

Displaystreams are represented as instances of the datatype DisplayStream.

The following functions manipulate the fields of a DisplayStream. The functions return the
old value (the one being replaced). A value of NIL for the new value will return the current
setting without changing it. This provides a uniform way of "reading" the current setting. In
the case of fields which can only be either OFF or ON, NIL returns the current setting, the
special value OFF turns the feature off, and anything else turns it ON. These functions do not
change the destination bitmap; just the effect of future operations done through the display
stream.

DSPCREATE[]
Returns a new DisplayStream, settings are copies of the initial DisplayStream (see
above).

DSPDESTINATION[Destination DisplayStream]

DSPXPOSITION[XPosition DisplayStream]

DSPYPOSITION[YPosition DisplayStream]

DSPCLIPPINGREGION[Region DisplayStream]

DSPXOFFSET[XOffset DisplayStream]

DSPYOFFSET[YOff:set DisplayStream]

DSPSOURCETYPE[SourceType DisplayStream]

DSPOPERATION[Operation DisplayStream]

DSPTEXTURE[Texture DisplayStream]

DSPSCROtL[SwitchSetting DisplayStream]
Controls whether or not the bitmap contents are moved up when a linefeed would put
any of the next line of characters off the bitrnap.

DSPLEFTMARGIN[XPosition DisplayStream]

DSPLINEFEED[DeltaY DisplayStream]
This is the amount the y coordinate is increased by when a linefeed is printed. It is
normally a small negative number.

DSPBRUSH[Bitmap DisplayStream]

The font related functions DSPFONT, DSPITALIC and DSPBOLD are described in the section on
display stream font functions below

There is a distinguished display stream, called the current display stream, which is used by
any function which is given NIL as a DisplayStream argument. To change the current
DisplayStream, use the function

Interlisp-+D Display Facilities

CURRENTDlSPtAYSTREAM[~playStream]

As is the case with other,functions, CURRENTDISPLAYSTREAM returns the old value of the
current display streem, : Lf DisplayStream is NIL, the current display stream is not affected.

DSPFILL[Region Texture Operation DisplayStream]
Fills Region of 'he destination bitmap (within the clipping region) with Texture (a
patteh of 'bw. 'ff Rbgion is NIL, the whole destination (within the clipping region) is
used. If 'fewtu& or Operation are NIL, the values from DisplayStream are used.

DSPRESET[ream]
Sets the position of DisplayStream to its (0,O) position and clears its destination to its
background Texture.

<i,-tr,- "
D S P B I T B L T (S ~ ~ & ~ ~ ~ I ~ ~ S ~ ~ ~ ~ ~ SourceLeft SourceBottom DestinationDisplayStream

DestinationLeft DestinationBottom Width Height SourceType Operation Texture]

Similar to B ~ L T but uses the coordinate systems of the SourceDisplayStream and
~ e s t h d 6 r i ~ l s ~ k y s t r e a m to do the transferring. The rectangle of bits (SourceLeft
~buica~drtol i i : Wldfh Height) in SourceDisplayStream's destination are clipped by
~ourcebispiay~trerin's clipping region and tranferred to the rectangle
(Destfn&tionLM BtsstinationBottom Width Height) in DestinationDisplayStream's
destination' klipped by DestinationDisplayStream's clipping region using the
~oufceQpe and Operation to determine the tranfer function. If SourceLeft,
Sour~e8uft6m, DeMnationLeft or DestinationBottom are NIL, 0 is used. If Width or
Height is NIL,' the1 gbsitive quadrant of the SourceDisplayStream is used. If
SourceTyddi or Operation is NIL, the values from DestinationDisplayStream are used.
Returns t if any bits were transferred, NIL otherwise.

DSPBIT[X Y newvaw DhplayStream]
Similar to BITMAPBIT but uses the coordinate system of DisplayStream. If newvalue is
0 or 1, the bit (x,Y) of the destination bitmap of DisplayStream is changed to
newvalue and the old value is returned. If newvalue is NIL, the bit is not changed but
the value of the bit is returned.

MOVETO[x y DisplayStream]
Changes the current position of DisplayStream to the point (x,y).

RELMOVETO[dx dy DisplayStream]
Changes the current position to the point (dx,dy) coordinates away from current
position of DisplayStream.

CHARACTERS AND FONTS -

Fonts are viewed as having a distinctive form or family name (such as Helvetica, Gacha or
TimesRoman), a size and some face characteristics (e.g, bold and italic). Using a display
stream, each of these parameters can be changed and the characters appearing on that

42 Papers on Interlisp-D

display stream will henceforth be in the changed font. While the specification allows any
size, in practice the user will find that only certain sizes are available. Note that the display
stream functions that change the font (DSPFONT, DSPBOLD and DSPITALIC) may change other
attributes of the display stream, e.g. the line feed height to the height of the new font.

Most users will deal with fonts only by way of display streams and hence can skim to the
next section.

A font is characterized by an ascent, descent and height (= "ascent + descent), and, for
each character, a width and bitpattern. The ascent is the maximum extent of any character
in the font above its base line (the printing position). The descent is the maximum extent of
any character below the base line such as the lower part of a "p". The width of each
character is the number of bits in width used by that character and can vary in "variable
pitch" fonts.

The information about a particular fully instantiated font is represented in a FontDescriptor.
Functions to manipulate FontDescriptors are:

FONTCREATE[FontFamily Size Face ErrorFlg]
Returns a FontDescriptor for the specified font, Size is an integer indicating the width
of the font in points. Face specifies the face characteristics and should be one of
(STANDARD, BOLD, ITALIC or BOLDITALIC). If Face is NIL, STANDARD is used. For Interlisp-
D, fonts are stored as STRIKE files. The operatian of FONTCREATE is to look for a
STRIKE file with the appropriate name. (In the case of (FONTCREATE 'HELVETICA 8
'BOLDITALIC), the first file looked for is HELVETCMBI.STRIKE.) If the file is found, it is
read into a FontDescriptor. If the file is not found, the function will look for fonts with
less face information (in the example, HELVETICAIOI.STRIKE and "fake" the remaining
faces (by doubling the bits in the pattern of each character or slanting them). If no
appropriately sized font is found, the action of the function is determined by ErrorFlg.
If ErrorFlg is NIL, it returns NIL. If ErrorFIg is non-NIL, it will generate a "file not
found" error with the name of the most general file tried (in the example
HELVETICA8,STRIKE) (in the example HELVETICA8.STRIKE).

FONTNAME[FontDescriptor]
Returns the font name of the described font.

FONTSIZE[FontDescriptor]
Returns the font size of the described font.

FONTFACE[FontDescriptor]
Returns the font face of the described font: STANDARD, BOLD, ITALIC Or BOLDITALIC.

FONTASCENT[FontDescriptor]
Returns the ascent of the described font.

FONTDESCENT[FontDescriptor]
Returns the descent of the described font.

FONTHEIGHT[FontDescriptor]
Returns the height of the described font.

Interlisp-D Display Facilities

CHARACTERWIDTH[CharacterCode FontDescriptor]
CharacterCode is an integer that describes a valid character. If FontDescriptor is a
DisplayStream, its font is used. It returns the width of the bit pattern of the character.

STRlNGWlDTH[Str FontDescriptor Flg Rdtbl]
Str is a lisp object. It returns the width of the bit pattern of the printname for the
object i f printed in FontDescriptor. If FontDescriptor is a DisplayStream, its font is
used. If Flg is non-NIL, the width of the PRIN~-pname with respect to the readtable
Rdtbl is returned.

DISPLAY STREAM FONT OPERATIONS

The following functions are provided for dealing with a display stream's font characteristics:

DSPFONTlFont Size Face DisplayStream]
Sets the font of DisplayStream. (This also sets the linefeed to the height of the font.)
Font is ebdhw a FontDescriptor or the name of a font family. Size is an integer
indicating t h ~ , 'font size. Face is one of STANDARD, BOLD, ITALIC Of' BOLDITALIC. If Font
is a FontDescriptor, its font name and size are used. If Face is given and is different
from the face of "Font which is a FontDescriptor, the face of the new font is
determined by combining the bold and italic attributes of Font with pace. If Font,
Size or Face are NIL and Font is not a FontDescriptor, their values are not changed.
The value returned is the FontDescriptor of the previous font.

DSPBOLD[SwitchSetting DisplayStream]
Sets the bold switch (= changes the font face) of DisplayStream.

DSPITALIC[SwitchSetting DisplayStream]
Sets the italic switch (= changes the font face) of DisplayStream.

BLTCHAR[CharacterCode DisplayStream]
BLTCHAR will display the bit representation of CharacterCode in the font of
DisplayStream at the current position of DisplayStream using the face charateristics,
clipping region, source type, operation and texture of DisplayStream. CharacterCode
is an integer representation of a character (as returned from CHCONI). If the
character is not an EOL, BLTCHAR increases the x position of DisplayStream by the
width of the character. If the character is an EOL, BLTCHAR increases the Y position
by DisplayStream's Linefeed and resets the x position to its Left Margin.

DSPBACKU P[Width DisplayStream]
Backs up DisplayStream over a character which is Width points wide. OSPBACKUP fills
the backed up over area to the display stream's background texture. OSPBACKUP

decreases the x position by Width. If this would put the x position less than
DisplayStream's left margin, its operation is stopped at left margin. It returns T i f any
bits were changed, NIL otherwise.

DRAWING LINES AND SPLINES

The display facility implements the following functions for drawing lines on bitmaps:

44 Papers an Interlisp-D

DRAWTO[x y width operation DisplayStream]
Draws a line width points wide from the current position to the po~nt (x,y) onto the
destination bitmap of DisplayStream. The clipping region is taken from DisplayStream.
Width is defaulted to 1. Operation is a BITBLT operation which indicates how the bits
of the line should be merged with the existing bits. Operation is defaulted to the
Operation of DisplayStream. The position of DisplayStream is left at (x,y).

RELDRAWTO[dx dy width operation DisplayStream]
Draws a line width points wide from the current position to the point (dx,dy)
coordinates away onto the destination bitmap of DisplayStream. The clipping region
is taken from DisplayStream. Width is defaulted to 1. Operetion is a BITBLT operation
which indicates how the bits of the line should be merged with the existing bits.
Operation is defaulted to the Oper&on of DisplayStream. The position of
DisplayStream is left at the end of the line.

DRAWLINE[xl yl x2 y2 width operation DisplayStream]
Draws a line width points wide from the point (x7,yl) to the point (x2,y2) onto
the destination bitmap of DisplayStream. The clipping region is taken from
DisplayStream. Width is defaulted to 1. Operation is defaulted to the Operation of
DisplayStre~rl?. The position of DisplayStream is left at (x2,y2). The cases of
horizontal and vertical lines are recognized so the users should not feel the need to
call BITBLT directly for line drawing applications.

Curves

Curves are drawn using spline techniques. At each point along the spline, the brush bitmap
is placed, positioned so that its center falls on the spline. The brush can be an arbitrary
bitmap. (In Interlisp-D, a special case is made of the single point bitmap for efficiency.)
However, some standard shapes and sizes are provided by the following function.

BRUSHBITMAP[BrushShape BrushWidth]
Returns a bitmap for a brush of shape Brushshape and size BrushWidth. For
Interlisp- D, the recognized brush shapes are ROUND, SQUARE, HORIZONTAL, VERTICAL

and DIAGONAL. Brushwidth indicates how wide the brush is to be. For Interlisp-0,
BrushWidth is rounded to the nearest power of two and limited to a maximum of 16.

In the curve drawing functions, operation is a BITBLT operation which indicates how the curve
brush bits should be merged with the existing bits. Because of the problem of overlapping
brush points, in Interlisp-D only the PAINT and ERASE operations are supported. The other
operations can be obtained by first drawing the curve in an auxilliary bitmap and then
bitblting it (DSPBITBLT or BITBLT) with the desired operation.

DRAWSPLINE[knots closed DisplayStream]
Draws a spline curve. Knots is a list of positions the spline must go through. Closed
is a flag which indicates whether or not the spline is to be closed. The operation,
brush and clipping region are taken from DisplayStream.

DRAWCIRCLE[x y radius quadrants DisplayStream]
Draws a circle with a radius of radius about the point (x,y) onto the destination

Interlisp-D Display Facilities 45

bitrnap of DigpfoyStream, Quadrants, if given, is a list of the quarter circles that
should be displayed, numbered counterclockwise from 1 to 4 with + x, + y being 1.
The operation, brush and clipping region are taken from DisplayStream.

APPENDIX

This appendix documents some parts of the Interlisp-D graphics facilities that will soon be
deimplemented. These are described here both for the purpose of documenting them until
they are obsolete and as a suggestion to other implementors as to how to cope with the
transition to a system that is fully based on the display.

This section is temporary until "display mode" is the only way of interacting with the display.

DISPLAYSTREAMINIT[N TTYATBOTTOMFLG]
~ e f o r e);b ' use7'the display, the display stream facility must be initialized. This is
done $ith\he f"nction DISPLAYSTREAMINIT which clears the screen and leaves N lines
of "teletype simulation area" at the top or bottom depending on the setting of
T T ~ A T B O T T P (~ F ~ ~ , The teletype region gets the normal Lisp TTY output while the rest
of the s c r y n , i+s &ang& with various Display Stream functions. The variables
\~is~la~V'ihdtt(& \ ~ i s ~ l a ~ ~ e i ~ h t are set to the width and height of the display. The
bottom lee .comer is (0,O).

To initialize the ~i$play&reams facility without effecting the display, use

lNlTl ALIZEDISPLAYSTREAW
Sets up the Displaystream mechanisms. Automatically calls InitializeDisplay if that
function has not been already been called. Rreturns a "default" DisplayStream which
is also made the current DisplayStream.

To couple the hardware to the special bitmaps, use

STARTDISPLAY[width height TTYAtBottom]
Height refers to how much of the screen is to be used in the bitmap (as opposed to
teletype) mode. Width determines how much of the screen will be seen but the extra
width is not used if this is less than \Screenwidth (currently 620). If these are NIL,

then the values from the last call are used (or reasonable defaults if this is the first
call). The remainder of the screen is In teletype mode. The teletype portion is at the
top of the screen normally; if rrvAteottom is non-NIL then the TTY portion is at the
bottom of the screen. This functlon (like InitializeDisplayStreams) will automatically
call InitializeDisplay if that function has not been called before this one is. This
function can be called repeatedly to change how much of the screen is to be used in
bitmap mode. The bits in the screen bitmap are not cleared by this operation so that
if the same width is given, the screen will be part of what was there before.

To return to the state where the full display is in teletype mode, use the function:
STOPDISPLAY[]

46 Papers on Interlisp-D

To find out whether the special display bitmaps have been initialized, use the function:
DISPLAYINITIALIZEDP[]

To find out whether the DisplayStreams have been initialized, use the function:
DlSPLAYSTREAMSlNITlALIZEDP[]

To find out whether the display is currently on, use the function:
DISPLAYSTARTEDP[]

Preservation of state over LOGOUT and SYSOUT
1

All bitmaps, FontDescriptors and Displaystreams are unaffected by SYSOUTS and LOGOUTS.
The system calls STARTDISPLAY again to continue after SYSOUT automatically.

Display stream insert mode

This mode was included in an effort to speed up the DLISP editor. It is an inadequate
solution which has problems with seaming of the background texture. If a better solution
can be found, this will be deimplemented.

Before the character is placed, if DisplayStreamlnsert is non-NIL, the region of the
Displaystream's bitmap from the left edge of the character to the right edge of the clipping
region (and with height of the active font) is moved right by the width of the character. That
is, the character is "inserted". This may cause seams to appear if characters are being
printed on a gray background. [Implementation note: The function BltChnr returns a dotted pair the CAR
of which is T if any of the character fell within the clipping region, otherwise NIL; the CDR of which is T iff the
insertion was to the left of the clipping region and caused unknown stuff to be "pushed" into view, NIL
otherwise. Unknown stuff is denoted by reverse background.]

Acknowledgements

Warren Teitelman, Austin Henderson and Willie Sue Haugeland designed the initial version of
the display facilities. This document benefited by discussions with Warren Teitelman, Peter
Deutsch, and John Warnock.

REFERENCES

Sproull, R.
Raster graphics for interactive programming environments. Xerox PARC, CSL-79-6,
1979.

Warnock, J.
Personal communication, August 1980.

Further steps in the flight from time-sharing

The interlisp-D group.

A bst tact

One of the goals of the Interlisp-D effort has been to provide tnterlisp's programming support
tools in a personal computing environment. This report outlines the current status of the
Interlisp-D implementation, and describes some of the interactive programming tools that
have recently been added to the system.

BACKGROUND

The interlisp-D project was formed to develop a personal machine implementation of loterlisp
for use as an environment for research in artificial intelligence and cognitive science [Burton
et a]., 80b]. This note describes the principal developments since our last report almost a
year ago [Burton et el., 80a].

Principal characteristics of Interlisp-D

Interlisp-D is an implementation of the lnterlisp programming environment [Teitelrnan 8
Masinter, 811 for the Dolphin and Dorado personal computers. Both the Dolphin and Dorado
are microprogrammed personal computers, with 16-bit data paths and relatively large main
memories (-1 megabyte) and virtual address spaces (4 -16M 16 bit words). Both machines
have a medium sized local disk, Ethernet controller, a large raster scanned display and a
standard Alto keyboard and 'house" pointing device.

Both the internal structure of Interlisp-D and an account of its development are presented in
[Burton et at, 80b]. Briefly, Interlisp-D uses a byte-coded instruction set, deep binding, CDR
encoding (in a 32 bit CONE cell) and incremental, reference counted garbage collection. The
use of deep binding, together with a complete implementation of spaghetti stacks, allows
very rapid context switching for both system and user processes. Virtually all of the
Interlisp-D system is written in Lisp. A relatively small amount of microcode implements the
Interlisp-0 instruction set and provides support for a small set of other performance critical
operations. The at one time quite large Bcpl kernef has been afZ but compietely absorbed
into Lisp, for the reasons outlined in [Burton et al, &Obj.

interlisp-D is completely upward compatible with the widely used POP-10 version. All the
lnterfisp system software documented in the lnterlisp Reference Manual [Teitelman et al., 781
runs under Interlisp-0, exqepting only a few capabilities explicitly indicated in that manual as
applicable only to Interlisp-10. The completeness of the implementation has been
demonstrated by the faat that several very large, independently developed, application
systems, such as the KLONE knowledge representation language [Brachman, 781, have been

A version of this paper is to appear in SIGART Newsletter, NO. 77, August 1981.

50 Papers on Interlisp-D

brought up in interlisp-D with little or no modification. Interlisp-D is in active use by
researchers (other than its impternentors) at both Xerox PARC and Stanford University and is
now approaching the level of stability and reliability of Interlisp-10.

CURRENT PERFORMANCE

The performance engineering of a large Lisp system is distinctly non-trivial. We have
invested considerable effort, including the development of several performance analysis
tools, on the performance of interlisp-D and, as a result, seen its performance improve by
nearly a factor of fiive over the last year. Although relative performance estimates can be
misleading, because of variation due to choice of benchmarks and compilation strategy, the
overall performance of Interlisp-D on the Dolphin currently seems to be about twice that of
Interlisp- t 0 on
the Dolphin a
improvements

an otherwise unloaded PDP KA- 10. Although this level of performance makes
comfortable personal working environment, we have identified a number of
which we anticipate will further improve execution speed by 20% to 100%.

MACHtNE INDEPENDENCE

Another major thrust has been to reduce the dependencies o n specific features of the
present environment, so as to facilitate Interlisp-D's implementation on other hardware.
Dependencies on the operating system have been removed by absorbing most of the higher
(generally machine independent) facilities provided by the operating system into Lisp code.
Gratuitous dependencies on attributes of the hardware, such as the 16-bit word size, have
been removed and inherent ones isolated. in addition to an abstract desire for
transportability, our sharing of code with other Interlisp implementation projects provides a
on-going motivation for this effort.

EXTENDED FUNCTIONALITY

The principal innovations in Interlisp-D, with respect to previous implementations of Interlisp,
involve the extensions required to allow the Interlisp user access to a personal machine

X

computing environment.

Network facilities

While network access is a valuable facility in any computing environment, it is of particular
importance to the crser of a personal machine, as it is the means by which the shared
resources of the community are accessed. Over the last year, Interlisp-0 has incorporated

both low level Ethernet access and a collection of various higher level protocols used to
communicate with the printing and file servers in use at PARC. It is now straightforward to
conduct all file operations directly with remote file servers. This both allows the sharing of
common files (e.g., for multi-person projects, such as the construction of Interlisp-D itself),
permits a user to move easily from one machine to another, and eliminates any constraints
of local disk size. We have also begun to investigate the possibility of paging from a remote
virtual memory elsewhere on the network. This would not only allow completely transparent
relocation of a user's environment from one machine to another, but would open up a variety
of interesting schemes for distributing a computation across a set of machines.

Further steps in the flight from time-sharing

High level graphics facilities

Interlisp-D has always had a complete set of raster scan graphics operations (documented in
[Burton, Bob]). More recent developments include a collection of higher level user graphics
facilities, akin to those found in other personal computing environments. The most important

of these is the Interlisp-D window package. This facility differs in spirit from most other
window systems in that, rather than imposing an elaborate structure on programs that use it,
it is a self consciously minimal collection of facifities which aUow multiple programs to share
the same display. Although some mechanism is necessary to adjudicate a harmonious
sharing of the display, we feel that higher level display structuring conventions are still an
open research question and therefore should not yet be incorporated into a mandatory
system facility. The window package does provide both interactive and programatic
constructs for creating, moving, reshaping, overlapping and destroying windows, in such a
way that a program can be embedded in a window in a completely transparent (to that
program) fashion. This allows existing programs to continue to be used without change,
while providing a base for experimentation with more complex window semantics in the
context of individual applications.

One such existing application is a display based, structural program editor. This editor, in
contrast to the character orientation of most modern display based program editors, is the
result of marrying display techniques (selection and command specification by pointing,
incremental reprinting, efc) with the structure orientation of the existing lnteriisp editor.
indeed, the two editors are interfaced so that the considerable symbolic editing power of the
'existing editor remains available under the display based one. Although our initial
experience has been positive, the user interface is under continued revision as we gain
further experience with this style of editing.

FUTURE PLANS

i

I The area in which we antickpate most future development of Interlisp-0 is the personal
computing facilities, such as graphics and networking, and their integration into Interlisp's
rich collection of programming support tools. While radical changes to the underlying

I language structures are made difficult by our desire to preserve exact lnterlisp compatibility,
we also expect some language extensions, including some form of object oriented procedure

-- -. .* invocation.

f
f ., One of the great strengths of Interlisp has been the many contributions made by its active,

1 critical user community, We are hopeful that the recent commercial availability of Interlisp-D
f

,
to other sites, and the consequent growth of its user community, will be a similar source of

long term strength and; in the short term, significantly accelerate the pace with which s

lnterlisp evolves away from its time-shared origins into a personal computing environment.

REFERENCES
1

Brachman, R. et a/.
KLONE Reference Manual. BBN Report No. 3848, 1978.

b 52 Papers on Interlisp-D

Burton, R. et al.
. Overview and status of DoradoLisp. Proceedings of the 7980 Lisp Conference,

Stanford, 1 980a.

Burton, R, et at.
Papers on tnterlisp-0. Xerox ?ARC report, SSL-80-4, 1980b.

Teitefman, W. et a!.
The Interlisp reference manual. Xerox PARC, 1978.

Tebiman, W. and Masinter, L.
The Interlisp programming environment. IEEE Computer, 14:4 April 1981, pp. 25-34.

The members of the Inferlisp-D group are Beau Sheil, Bill van Melle, Alan Bell, Richard
Burton, Ron Kaplan and Larry Masinter.

	Interlisp-D: Overview and Status
	Local Optimization in a Compiler for Stack-based Lisp Machines
	The Interlisp-D I/O system
	Interlisp-D Display Facilities
	Further steps in the flight from time-sharing

