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ABSTRACT 

I i This report consists of five papers on Interlisp-0, a refinement and implementation of the 

I [  tnterlisp virtual machine [Moore, 761 which supports the interlisp programming system 

[Teitelman et at., 781 on the Dolphin and Dorado personal computers. 
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INTRODUCTION 

Interlisp-D is  both a revision and an implementation of the lnterlisp virtual machine WM) 
specification [Moore, 761 for the Dolphin and Dorado personal computers. It qualifies as an 
implementation of the VM by virtue of supporting both the lnterlisp system software 
[Teitelman et al., 781 and several large, independently developed, application systems, 
including the Mycin system for infectious disease diagnosis [Shortliffe, 761, the KLONE 

knowledge representation language [Brachman, 781 and the West tutoring system [Burton & 
Brown, 781. It qualifies as a revision of the VM for several reasons. first, the VM was based 
mainly on an analysis of the structure of the PDP-10 implementation. Any thorough 
reimplementation was bound to uncover a host of oversights and viable alternatives and 
Interlisp-D did not disappoint us in this respect. Second, intwlisp-D is the first 
implementation of interlisp in a pemnal computing environment and this raised some issues 
which did not apply to the time shared system on which the VM was based. Finally, in the 
interests of transportability, a deliberate attempt has been made throughout Interlisp-D to 
minimize dependencies on the software environment. One of the ways this was done was by 
implementing in Lisp many facifities that previous implementations had obtained from their 
environment. This effectively extended the VM "downwards" far below the level which was 
previously considered primitive. 

Two of the papers that appear in this report were presented at the 1980 Lisp Conference. 
They are reprinted here, with slight changes, so as to make them more widely available. The 
next two were originally prepared as documentation and appear here for the first time. The 
last, which is to appear in SIGART Newsletter, provides a more recent report on the system's 
status and probable future development. The papers ate 

interlisp-0: Overview and status 
A report on the implementation, its goals and techniques, and some reflections thereon. 

Local optimization in a compiler for stack based LISP machines 
A description of the optimizations used during compilation of Lisp into the special 
purpose Lisp instruction'set and their observed effectiveness. 

The Interlisp-0 NO system 
An outline of the design of the I/O system, coded in Lisp, that provides most of the 
facilities that a Lisp implementation usually takes from the host operating system. 

The interlisp-D display facilities (Revisedj 
One of the goals of Interlisp-D is to make lnterlisp available as a personal computing 
environment. Thus, it incorporates an extensive set of graphics facilities. This paper 

describes the design of the Interlisp-0 low level graphics facilities, as they have 
emerged from the first year of experimentation. In addition to their use in Interlisp-0, 

we hope they will serve as a basis for other implementations' efforts to explore the use 
of graphics in Interlisp. 

Interlisp-D: Further steps in the flight from time-sharing 
A status report and description of ongoing and planned extensions, as of June 1981. 
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As documented in the first paper, the implementation of Interlisp-D was a major effort, which 
has taken a long period of time and included the efforts of a large number of people. The 
integration of interlisp's programming support tools into a personal computing environment is 
a task of similar magnitude. Our hope is that these papers may make the path somewhat 
easier for future implementors. 
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Interlisp-D: Overview and Status 

Richard R. Burton, Larry M. Masinter, Alan Bell, Daniel G. Bobrow, 

Willie Sue Haugeland, Ronald M. Kaplan and B. A. Sheii 

Abstract 

fnterfisp-f) is an implementation of the Interlisp programming system on the Dolphin and 
Dorado, two large personal computers. it evolved from AltoLisp, an implementation on a less 
powerful machine. This paper describes the current status of interlisp-D and discusses some 
of the issues that arose during its implementation. The techniques that helped us improve 
the performance included transferring much of the kernel software into Lisp, intensive use of 
performance measurement tools to determine the areas of worst performance, and use of the 
lnterlisp programming environment to allow rapid and widespread improvements to the 
system code. The paper lists some areas in which performance was critical and offers some 
observations on how our experience migh: be useful to other implementations of Interlisp. 

BACKGROUND 

lnterlisp is a dialect of Lisp whose most striking feature is a very extensive set of user 
facilities including syntax extension, error correction, and type declarations [Teitelman et a!., 
781. It has been in wide use on a variety of time shared machines over the past ten years. 

In 1974, an implementation of lnterlisp for the Alto, a small personal computer, was begun at 
Xerox PARC by Peter Deutsch and Willie Sue Haugeland [Deutsch, 1973). This Altotisp 
implementation introduced the idea of providing a microcoded target language for Lisp 
compilations which modelled the basic operations of Lisp more closely than a general 
purpose instruction set. A similar instruction set was also implemented for Maxc, a 
microprogrammed machine run~ing the TENEX operating system [Fiala, 19781. 

The design of AItoLisp is presented in [Deutsch, 79781. Its characteristics include a very 
large address space (24 bits); deep binding; CDR encoding [Bobrow & Clark, 19791; 
transaction garbage collection [Deutsch & Bobrow, 19761; and an extensive kernel 
implemented in a mix of microcode and Bcpl. Although AltoLisp was completed and several 
large lnterlisp programs were run on it, its performance was never satisfactory, due 
principally to the limited amount of main memory and the lack of support in the processor 

. architecture for either virtual memory management or byte code decoding. 1nterlisp.D is the 
result of transferring AltoLisp to an environment with neit!~er of these limitations. 

Int erlisp-0 

The Dorado (Lampson 8 Pier, 19801 is a large, fast, microcodable personal machine with 16- 
bit data paths. It has a large main memory (-1 megabyte) and hardware support for both 

A revised version of a paper originally presented at the 7980 Lisp Conference, Stanford, Ca. 
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instruction decoding and virtual memory management. The Dolphin is a similar, but smaller 
and less powerful, machine. 

Both machines have microcode to emulate the Alto, so the initial transfer of the running 
AltoLisp system to them was straightforward. Although the microcode to interpret the Lisp 
instruction set needed to be rewritten, the Bcpl runtime support system was transported with 
only minor changes. However, initial performance was far worse than would be expected 
from a simple consideration of machine features. We expected Dorado interlisp-D to 
dominate interlisp-10 running on a single user DEC KA-10, but in fact, some computations 
took 10 to 100 times longer. Our primary goal, then, became to improve the performance 01 
the existing system. first, careful measurements were taken of the system doing a variety of 
tasks. Functions which took inordinate amounts of time were examined in detail. Additional 
microcode was written, and major portions of the Lisp ~ 0 d e  were redone. 

The most surprising thing to us was that we obtained considerable performance 
improvements by moving large parts of the system from Bcpl into Lisp. This allowed us to 
use a number of programming tools in the lnterlisp system, and allowed us to put more 
structure into the layers of the system's kernel. Interlisp-D is now supporting a user 
community. While speed ratios vary widely across different classes of computation, it 
appears that Dorado Interlisp-D runs more than five times faster than Interlisp-10 on a singte- 
user DEC KA-10. [Note: This figure is from August 1980; cf. remarks in "Further steps ...".I 

THE " L1SPIFt CATION" OF INTERLISP- D 

Much of the lnterlisp system is written in Lisp itself, resting on a kernel not defined in Lisp. 
The Inter1 isp virtual machine specification [Moore, 19761 attempted to identify a set of kernel 
facilities which would support the full lnterlisp system. This was done by carefully 
documenting those parts of the PDP-10 lnterlisp system that were written in assembly 
language or imported from the operating system. This specification is quite large. AltoLisp 
reduced this kernel by implementing some of the VM facilities in Lisp; Interlisp-D 
accelerated this development. In addition to improving the transportability of the 
implementation, the move also improved performance, gave the implementors access to 
more a more powerfuf implementation language and programming toots, and firnited the 
breadth of expertise required of system implementors. 

programs written in a higher level language are often less efficient than equivalent assembly 
language programs, because they cannot exploit known invariances and optimizations which 
would violate the strict semantics of the target language. Moving code from Lisp into the 
kernel has been a traditional way of improving the performance of Lisp systems. Substantial 
sections of the PDP-10 implementation of Interlisp, for example, are in machine code for this 
reason. When a large proportion of AltoLisp was moved from Bcpl into Lisp in order to 
improve memory utilization and aid modification, the speed of the system decreased by 
nearly a factor of three [Deutsch, 19781. Thus, to improve Interlisp-D performance, we first 
looked for Lisp-coded sections of the system that could be incorporated into the Bcpl kernel. 
However, we soon discovered that' the poor performance was due more to the design of the 
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algorithms in the kernel than to the language in which they were implemented. Since we did 
not wish to carry out a large-scale redesign in the limited Bcpl programming environment, we 
decided to go in the other direction: we would move code out of the extended Bcpl kernel 
and into Lisp so that we would be better able to change the algorithms. Specific targets for 
replacement were large sections of the Bcpl kernel with known performance problems whose 
functionality could easily be expressed in Lisp; one of the major areas was the I/O system. 

Language power and tools 

A primary reason for implementing the bulk of a programming system in itself is that one 
obtains the advantage of programming in a (presumably) more expressive and powerful 
language. In addition, we felt that the major modifications and tuning that would be 
necessary to provide adequate perfcnnance would be far more tractable in interlisp. In 
interlisp we had both a first rate programming environment and instrumentation tools, and 
we had no other system implementation language which had either. Our subsequent 
experience has sustained this view. 

Linguistic uniformity 

An important sociological benefit of having a programming system described in the language 
it implements is that the system's implementors and users share the same culture. Users can 
inspect the system code, comment an it, adapt it for their own purposes, and sometimes 
even change it. This involves the users of the system in its design and maintenance in a 
way that would not be possible i f  system construction took place in a different language 
culture. Specifically, the avaikrbiiity of the system source code allows the system to grow 
and adapt much more rapidly than environments in which a formal documentation phase is a 
prerequisite to the development and distribution of new facilities. In turn, the users can 
explore the behavior of the system "all the way to the edges", as there are no sharp 
language barriers. The value of this linguistic uniformity has been confirmed by its 
successful use in other language cultures, such as Smalltalk [Goldberg, 19801. 

An example: the 10 system - 
A high level language I/O system consists of both low level device handlers and device 
independent sequential and random access. In most Interlisp implementations, the entire 1/0 
system, up to and including the functions defined in the virtual machine, is provided by the 
host operating system. In Interlisp-0, all of the logical I/O system and a substantial 
proportion of the device dependent code is written in Lisp. The logical I/O system 
implements the Interlisp user program I/O facilities and the underlying operations in terms of 
which these are implemented. These include sequential and random access operations (i.e., 
read and write a byte, query end of file, reposition file pointer, etc.), buffer management 
(both for system only and directly user accessible buffers) and a device independent 
treatment of file properties. The logical level is in turn implemented in terms of the notion of 
an I/O device. This is an object which provides a standard set of low level, device 
dependent functions, such as those to read and write a page, create and delete files, etc. 
Using this interface, the addition of a new device is simply a matter of writing a new set of 
these functions. The Interlisp-D I/O system design is described in [Kaplan et a/., 19801. 
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IMPLEMENTATION TECHNIQUES 

In tuning the performance of a program, it is crucial to be able to determine exactly where 
time is being spent. With a large body of code and limited manpower, it is not possible to 
"optimize everything." Our performance measurement system has proved invaluable in 
tracking down specific (and unforeseen) problem. 

The measurement system was originally developed for Altolisp by Deutsch and Haugeland. It 
operates in two stages. First, the computation of interest is run with event logging enabled. 
This produces a (very large) file of log events, which is later analyzed. The log events are 
put out by both the microcode and the run time support system and include time-stamped 
events for function call and return, entry and exit from the Bcpl routines, I/O activity, and 
other events of interest. Alternatively, the microcode can also collect counts of opcode 
frequencies and a frequency sample ot the microcode PC. 

Statistics gathering can be enabled at any time that Lisp is running. One can decide 
spontaneously to take measurements whenever performance .unexpectedly degrades. 
Comparison of these measurements with those taken during a similar run that exhibited 
normal performance can be used to identify the source of intermittent performance 
problems. This technique was used, for example, to track down an intermittent slowdown in 
the code that handled stack frame overflow. 

The anafysis phase reads the log file and computes summary statistics from it. From call 
and return events, the time spent in individual functions can be computed, either including or 
excluding the time spent in the functions called by them. The accumulated times (including 
the times spent by called functions) locate the higher leuel functions which are the root of a 
large amount of time and which may be a candidates for redesign. The individual time 
(excluding called functions' times) are useful for isolating what improvement can 'be 
expected from optimizing or microcoding the body of that function. 

C 

Function performance data is presented in tables which show the number of times each 
function .was called and the time spent in each function. For example: 

funct ion #ofCalls * Time %ofTirne PerCall 
1JTHCHC 1977 236702 10.6 119 
\HT . FIND 1729 168492 7.6 97 
L ITLEN 2111 131708 5.9 6 1 
LITBASE 2141 118902 5 . 3  56 

Tables such as this isolate very accurately those functions which are worth rewriting as well 
as identifying those which are not. In this example, NTHCHC, which calls both LITLEN and 
LI TBASE, is an obvious candidate. In another run we discovered that 15 percent of the time 
was being spent adding one to a counter which had overflowed the small number range. 
This prompted a redesign of the large number arithmetic. 
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Additional controls on the analysis routines allow more specific questions to be answered. 
The analysis can be restricted to that part of the computation within any particular function. 
For example; only that part of the computation that takes place within READ can be analysed. 
The analysis can also be limited to a set of functions, in which case only these functions will 
appear in the table of results. Any time spent in a function not in the set wilt be charged to 
the closest bounding function that is. 

The analysis routines extract from the log file useful information besides performance data. 
For example, the dynamic calting behavior is captured in the log, so one frequently useful 
technique is to list which functions have catled (and been called by) other functions, and 
even how many arguments they were passed. The flexibility of the anafysis routines 
combined with the wealth of information cotieeted during the logging stage attows a given 
computation to be examined from many points of view. 

Initialization 

There are several areas that cause fundamental problems for the implementation of a 
language system in itself: memory management (which requires that the memory manager 
itself will not cause memory faults), stack overflow recovery (where the stack manager must 

i itself have some stack), and initialization. Initialization is difficult because the initialization 
program must operate when the system is not in a well formed state. The problem in 
initialization can be characterized by the question: "If the compiled code reader is itself 

i 

compiled code, who will read it in?" 

Several methods of doing initialization suggest themselves. For example, the image can be 
initialized by a program written in some other language. This is the solution adopted in 
AltoLisp. Alternatively, if the interpreter is written in some other language, the compiied 
code reader can be run interpretively to read itself in. However, both of these solutions 
require a substantial amount of non-Lisp code either for storage allocation or for 
interpretation. 

We adopted still another solution. The compiled code reader was modified to load code into 
an environment other than that in which it is running. The primitive functions that the loader 
uses to manipulate the environment (e.g., fetch and store into specified virtual memory 

li 

- - .. locations) are replaced by functions that manipulate another memory image stored as a file. 
To begin with, an empty memory image file is created and then the "indirect" version of Me 

X 

i compiled code reader is used to load the compiled files that constitute the lowest level of the 
system into this empty image. We thus avoid the potential problem of maintaining two 
different programs with knowledge of system data structures. 

An appropriate programming environment 

One of the advantages of writing most of the kernel in Lisp is that Interlisp provides a very 

i 
powerful programming environment. Its attributes that we found particularly useful were: 

Language features: The advantages of "data-less" or datastructureindependent 
programming have long been known: more readable code, fewer bugs, the ability to change 
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data structures without having to make major source program modifications. The Interlisp 
record package and data type facility encourages this good practice by providing a uniform 
and efficient way of creating, accessing and storing data symbolically, i.e., fields of data 
structures are referred to by name. Because the interlisp-D implementation allows a large 
number of data types, we have felt free to give system data structures (such as file-handles, 
page buffers, read tables) their own data types. In addition, records could be overlaid on 
structures not under Lisp's control (e.g., the leader page of a disk file or the format of a 
network packet) to provide the same uniform access. 

Cross compilation: We maintained an interlisp-10 environment in which we could edit, 
compile and examine functions for the Dorado. The function and record definitions for the 
Dorado implementation were kept on property lists instead of clefintion cells. This allowed us 
to work on functions such as READ and ems without destroying the environment in which we 
were working. 

Masterscope: Many of our improvements to Altolisp involved massive changes throughout 
the many system source files. Interlisp's Mastetscope program was an essential aid in 
determining what would be affected by a proposed improvement and in actually performing 
the necessary edits. Masterscope is an interactive program for analyzing and cross- 
referencing Lisp functions. It constructs a database of which functions call which other I 

functions, where variables are bound, used, or set, and where record declarations are I 
I 

referenced. Masterscope utilizes the information in the database to interpret a variety of 
I 

Englishelike commands. Our cross-compilation environment 4ncrementaJJy updated a I 

database that was shared among all programmers on the project, so that with vety little 
overhead the information in the database was kept consistent with the current state of the 
evolving system. 

Masterscope was most helpful in planning and carrying out modifications to major system 
interfaces, which usually meant changing the numbers and kinds of arguments to various 
functions. We would first a s k  Masterscope to simply list the callers of those functions to give 
some estimate of the impact of the proposed change, much as one might use a static cross- 
reference program. W& would then invoke the srlow command, instructing Masterscope to 
locate in the source-file definitions of all the callers the expressions that actually called the 
interface functions. These expressions were gathered together and displayed as a group, so 
that we could verify out intuitions about what assumptions clients were making about the 

, .  interface. In many cases, h e  rapid source-code exploration that Masterscope made possible 
.revealed Raws in our redesign which otherwise would not have become apparent untit much 
more effort had been expended. Having decided that our modification was acceptable, we 
us& Masterscope's Eorr command to actually drive the editing. This caused Masterscope to 
load the definitions of all the client functions, call the Interlisp editor on each one, and 
position the editor at each of the expressions that needed to be changed. Masterscope, not 
the programmer, kept track of which functions had been changed and which still needed to 
be edited. When Masterscope finished the editing sequence, the programmer was sure that 
the changes had been made completely and consistently. 

Our redesign of the I/O system [Kaplan et a/., 1980) is a good illustration of the power of 
. this interactive tool. We completely replaced the lowest-level If0 interface, which involved 

- 
- -- - -- 

- 
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3 
changes to approximately 40 functions on 15 source files. The major part of the revision 

9 

a was accomptished in response to a single EDIT WHERE ANY CALLS '(BIN BOm ...) command, 
without ever looking at hard-copy source listings. 

8 

t Rapid access to system sources: Our cross-compiiation environment maintained a shared 
I data base which allows the definition of any Lisp function to be retrieved for viewing or 

editing in a few seconds. The microcode and Bcpl can be "browsed" using the same 
interface. Rapid online access to system sources lessened the need to work from listings. 

Le welling 

One of the original motivations for having a iarge part of AftoLisp in Bcpl was the belief that 
it was important not to provide Lisp primitives that gave unrestricted access to the 
implementation data structures. This reasoning fails to discriminate between the system 
implementation and user program levels. Allowing system programs arbitrary access to 
memory locations does not at all imply that user level code has this access. 

Failing to make the system/user distinction hurt AltoLisp in three ways. First, it provided one 
motivation for the large Bcpl kernel. Second, most of that part of the system which was 
written in Lisp was prohibited from manipulating underlying data structures except through 
overly general functional interfaces. Last, it discouraged the use of higher ievel structuring 
facilities (such as the record package) so that code that required any knowiedge of system 

I data structures tended to be written entirely in terms of low level primitives. 

Using Lisp as a system implementation language requires very careful consideration of the 
layering of the system into levels of access and knowiedge. Further, the precision that is 
needed cannot be obtained by simple binary discriminations but must be carefully 
considered for each piece of code. This presents a considerable challenge to the 

i implementors' self restraint, as Lisp provides few facilities to enforce such a layering. 
Appropriate use of abstraction is essential if layering is to be preserved under the constant 
revision necessitated by intensive performance debugging. 

Diagnostics 

Development of the Lisp microcode was aided by a reasonably complete set of microcode 
diagnostics-witten in Lisp. Diagrfostics are difficult because they are most useful .when very 
little can be assumed a priori to work. It is also difficult to achieve complete coverage of all 

! cases. In addition, extensive knowledge of the Lisp system was required to develop 
diagnostics. For example, every opcode needs to be tested when encountering page faults 
or stack overflows. Setting up a situation which will page fault or overflow the stack in the 

1 

! next opcode requires a very intimate knowledge of the implementation. Having undertaken 
k several microcode revisions, development of a comprehensive set of diagnostics seems well 
P 

a worth the effort. 
i 

f 
i {mportant performance issues 
I 
1 While not strictly a technique, we feel that it is important to mention the major areas in which 
i 
t 
? 

t 



performance has proved to 
Interlisp-D, we feel that they 
Lisp systems. 

be crucial. While some of these are undoubtedly specific to 
deserve consideration by those who might be building similar 

The earfier intuition that the hardware assist for decoding byte opcodes was important was 
substantiated. Performance improved by nearly a factor of two when this was installed. 
Implementing the decoding and dispatch in microcode is conceding a large performance 
toss. 

There are several parts of the system' for which it seems important to have microcode 
support. When written in Lisp, the garbage cdlector seems to consume between lO-30% of 
the processor, although the figure varies widely over different computations. Further, in a 
system that uses deep binding, some form of microcode assist for free variable lookup is 
very desirable. A speedup factor of between two and four accompanied the introduction d 
microcode support for this in interlisp-D. Statistics show that less than one percent of the 
execution time is now spent in free variable lookup. 

Their heavy use in implementing system code almost mandates that the arithmetic functions 
have complete microcode support. Further, we found it to be critical to have a large range 
of small numbers (numbers without boxes), so that the performance critical, low level system 
code did not invoke Lisp's storage management. 

WHY tS AN INTERLISP iMPLEMEMATlON SO HARD? 

The UdphinlDorado implementation of lnterlisp took many times the expected effort to 
complete. Given the widespread intuition to the contrary, it is perhaps worthwhile to reflect 
on why it has proved so difficult. The answer is painfully simple: interlisp is a very large 
software system and large software systems are not easy to construct. Interlisp-D has on the 
order of 17,000 lines of Lisp code, 6,000 lines of Bcpl, and 4,000 lines of microcode. In 
many ways, the more interesting question is why does it look so straightforward? 

Without a doubt, the perceived ease of implementing lnterlisp springs from the existence of 
the virtual machine (VM) specification. This admirable document purports to give a complete 
description of the facilities that are assumed by the higher level lnterlisp software, and does 
a remarkable job of Saying out the foundations of this very large software confederation. It is 
difficult to resisw-e implication that a straightforward implementation of this mere 120 pages 
of specification, much ,of which is already described in programmatic form, wilt constitute a 
new implementation of Interlisp. The issue is rather more complicated than that. 

The VM specification looks small, but it is not. There is no simple correspondence between 
the size of a specification and the volume of code required to implement it. Many of the 
major problems of an lnterlisp implementation (e.g., performance, the garbage collector, the 
compiler) are simply not addressed at all. We caution lnterlisp irnplernenters that the 
slimness of that document is misleading. 

Further, while the virtual machine specification is an excellent first pass, it is far from 
complete. Many "incidental" functions and variables were left out (e.g. HOSTNAME). It is 
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occasionally ambiguous in places where the system code relies on a specific interpretation. 
Even though once complete, changes in the higher level code required that the VM be 
extended to support new facilities. Finding all these variations is an exhausting task. It is 
substantially easier to get 95% compatibility than' 99.9%, and amazing how many programs 
are sensitive to the difference. 

me way to look at the Lisp kernel that was written for Interlisp-D is as the definition of a 
new VM specification in Lisp code. While much of the code is specific to the Dorado 
environment. a great deal of it simply extends the virtual machine downwards by providing a 
much iower level treatment of functions such as PRINT and READ. We hope our work wil 
provide other new implementations with a firmer foundation than the VM document done. 

Another probtem for any very large software system is the existence of a 4ong development 
tail. A version of Interlisp-[) was "sort of running" years ago. Several other implementations 
of Interlisp have "sort of ntn" but have never reached production status. One of the key 
problems here is performance. The success of the POP-10 implementation of Interlisp is due 
to a lot of hand tuning. Any straightforward, clean implementation will prove to be slow, and 
finding performance problems is difficult, even with good measurement tools. A large 
number of design decisions have to be made and a large amount of code has to be written. 
While not all of the decisions have to be optimal, none of them can be pessimal. While the 
Interlisp-l) experience can provide some guidance, many of these decisions will be 
environment -if ic. 

Finally, an important issue has been cornpatability with the PDP-10 implementation of 
Intertisp. In some ways our determination to remain compatible has helped. Ambiguities and 
omissions from the VM specification could always be resolved by copying the POP-10 
implementation. However, this compatibility requirement was also a burden. Comptete 
compatibility with another implementation is hard. This is particularly so when the new 
implementation is in a quite different environment (a personal rather than a time-shared 
machine). The tension between remaining compatible versus exploring the possibilities of a 
personal machine environment is a continuing issue, which will probably be a focus of our 
further efforts on the Interlisp-D system. 
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Local Optimization in a Compiler for Stack- based Lisp Machines 

Larry M. Masinter and L. Peter Deutsch 

Abstract 

We describe the local optimization phase of a compiler for translating the lnterlisp dialect of 
Lisp into stack-architecture (0-address) instruction sets. We discuss the general organization 
of the compiler, and then describe the set of optimization techniques found most useful, 
based on empirical results gathered by compiling a large set of programs. The compiler and 
optimization phase are machine independent, in that they generate a stream of instructions 
for an abstract stack machine, which an -embier subsequently turns into the actual 
machine instructions. The compiler has been in successful use for several years, producing 
code for two different instruction sets. 

This paper describes the local optimization phase of a compiler for translating the Interlisp 
[Teitelman et al., 19781 dialect of Lisp into stack-architecture (0-address) instruction sets 
[Deutsch, 79731. We discuss the general organization of the compiler, and then the set of 
optimization techniques we have found most useful. The compiler and optimization phase are 
machine independent, in that they generate a stream of instructions for an abstract stack 
machine, which an assembler subsequently turns into the actual machine instructions. The 
compiler has been in successM use fur several years, producing code both for an 8-bit Lisp 
instruction set for several personal computers, [Deufsch, 1978, 1980, Burton el ale, 19801, 
and a %bit instruction set for Maxc, a time-shared machine running the Tenex operating 
sytem [Fiala, 1 9781. 

There are always tradeoffs in designing a compiler. Each additional optimization usually 
increases the running time of the compiler as well as its complexity. The improvement in the 
code generated must be weighed against the benefit gained, measured by the amount of 
code improvement weighted by  the frequency with which the optimization is applicable. 
Rather than provide a multiplicity of compiler controls, which most users wouM not want to 
know about, the compiler designer shouM use empirical knowledge of "average" user 
programs and make appropriate design choices. One of the major purposes of this paper is 
to publish some empirical results on the relative &if.ity of different code transformations, 
which can aid designers in making such choices. ., 

Why this compiler is different 

Compiling Lisp for a 0-address architecture differs from compiling other languages such as 
PASCAL or ALGOL for several reasons. Procedures are independently compiled, so that global 

A revised version of a paper originally presented at the 1980 Lisp Conference, Stanford, Ca. 
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optimization techniques are not relevant. Compiling for a stack-based instruction set is 
different from compiling for more conventional machine architectures, in that register 
allocation is not relevant, and randomly addressable compiler-generated temporary variables 
other. than top-of-stack are difficult to access. 

In systems which provide interactive, symbolic debugging of compiled code, a compiler must 
not manipulate source programs too freely, since even common optimizations like tail 
recursion removal make it difficult or impossible to explain the dynamic state of the program 
in terms of the original source. However. Lisp also provides an interpreter which can be 
used for debugging purposes when strict faithMness is needed; interpreted and compiled 
code can be mixed freely. Thus, we take the view that the compiler can rearrange the 
implementation of an individual function in any manner consistent with the semantics of the 
original program, even if finegrained debugging infomation may be lost or altered (e.g., if 
variables that appeared in the source get eliminated). 

What we did not handle 

The compiler concentrates on local optimizations. More global transformations such as 
pulling invariants out of loops or duplicate expression elimination would probably pay off 
often enough to be worth the additional complication in an environment where speed was of 
great concern and the individual functions were large. 

Related work 

A few of out cvmpiier's transformations, such as cross jumping and tail recursion removal, 
have been part of the literature for some tine. We know of three other Lisp compilers that 
both compile into a machine-independent intermediate language and do substantial 
optimization. 

The Standard Lisp project st the University of Utah has produced a transportable compiler 
similar to ours [Griss 8 Hearn, 19793. Their intermediate language is register- rather than 
stack-oriented. Their report mentions a number of the optimizations in our list, plus others 
only applicable to registet machines, but their list is shorter and not accompanied by 
empirical data. 

Another similar compiler er the subject of a Ph.0. dissertaten [Urmi, 19781. The author in 
this case was more concerned with the design of instruction sets, than with optimizing the 
use of a given architecture. His report contains extensive statistics on the opcode 
frequencies, and interesting suggestions for instruction set design, including a consideration 
of both stack* and direct-address architectures; however, his optimizations are all in the 
"peephole" category, being limited to a few adjacent instructions, except for the usual 
optimization of ANDs and ORs. 

The RABBIT compiler [Steele, 19781 translates an unusual lexically scoped Lisp dialect into 
code for a register machine. Its optimization techniques are extremely sophisticated with 
regard to removal of recursions and variable bindings. However, the differences in coding 
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style resulting from lexical scoping are so large that a comparison between RABBIT'S goals 
? 
1 and those of our compiler would not be meaningful. 
I 

i Results 

Optimization in the byte compiler provides an average 510% speed improvement and a 10- 
15% space improvement over completely unoptirnized code. While significant, this does not 
make it one of the more significant factors affecting the performance of our Lisp systems 

e [Burton el al., 19801. The most significant effect that a reasonable optimizing compiler has 
for its users is a certain amount of unconcern for wgaries of syntax. Programmers can write 
their routines for clarity, without concern for purely syntactic devices which might otherwise * 

affect performance. For example, white inserting assignments inside expressions is allowed 
and occasionatfy perspicuous, it generally is more readable to perform variable assignments 
in separate statements, and to subsequently use the variables in an unnested manner. 
Knowing that the compiler will do an adequate job of optimization means that a program 
author can make choices based on legibility, even in the most time-critical routines. 

I 

+ 
ABOUT THE COMPILER AND THE OBJECT LANGUAGE 

The compiler operates in several passes. The first pass takes the S-expression definition of 
the function being compiled, and walks down it recursively, generating a simple intermediate 

: code, called ByteLap, analogous to assembly code. During this first pass, the compiler 
c expands all macros, CLISP, record accesses and iterative statements. A few optimizations are 
5 
d 

1 performed during this pass, but most of the optimization work is saved for later. The next 
@ pass of the compiler is a "post-optimization" phase, which performs transformations on the 
e ByteLap to improve it. Transformations are tried repeatedly, until no further improvement is 
i 

g possible. 
f 
i 

6 After the post-optimization phase is done, the results are passed to an assembler, which 
I 

transforms the 5yteLap into the actual machine instructions. We currently have two different 
, assemblers in use, which generate code for two different instruction sets: one for the Maxc 
i 9-bit instruction set and one for-the personal machine 8-bit instruction set. The Maxc and 
P 

i personal machine implementations of Interlisp differ considerably; for example, the Maxc 
I 

I system employs shallow variable binding, while the personal machine systems employ deep 
binding. The translation from Bytelap to machine code is straightforward. 

f 
i 
i 

i -- - .. 
The structure of ByteLap 

t ? 

I 
The ByteLap intermediate code generated by the compiler can be viewed as the instruction 

1 set for an abstract stack machine. The format of ByteLap is described here to simplify 
2 

subsequent discussion of optimizations. There are 15 opcodes, each of which has some 
effect on the state of the linear temporary value stack. The instruction set is: I 

f 

i (VAR var) Push the value of the variable va r  on the stack. 

(SETQ v a r )  Store the top of the stack into the variable var. 
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Pop the stack (i.e., throw away the top value and decrement 
stack depth by one). 

Duplicate (push again) the top of the stack. 

(CONST val ) Push the constant val  on the stack (val  may be of any Lisp 
data type, e.g., an atom or a number.) 

(JUMP tag)  Jump to the location tag. 

(FJUMP tag) Jump to the indicated location if top-of-stack is N I L ,  otherwise 
continue. In either case, pop the stack. 

(TJUMP tag)  Similar to FJUHP, but jump if top-ofstack is non-NIL. 

(NTJUMP .tag) Similar to TJUMP, but do rot pop if it jumps. This is useful when 
a value is tested and then subsequently used. 

(NFJUMP tag)  Analogous to NT JUMP. 

(fN n ?n) Call the function t n  with n arguments. 

(BIND ( v  ,... v,) ( n ,... n,) ) Bind the variables vl ,..., v, to the n values on the top of the 
stack. Also bind the variables n1 ,..., nk to NIL.  Al l  bindings are 
done in parallel. Remember the current stack location. 

(UNBIND) Save the current top of stack. Throw away any other values on 
the stack since the last (stacked) 0 f NO, and undo the bindings of 
that 8 f NO. Re- push on the stack the saved vafue. This is used at 
the end of PROG or LAMBDA expressions whose value is used. 

(DUMB IND)  SirniIar to UNBIND, but do not restore the value. 

(RETURN) Return top-of-stack as the value of the current function, throwing 
away any other values on the stack. 

Note that a given ByteLap opcode could have one of several different translations in the 
actual code executed. For example, both the personal machine and Maxc implementations 
have a separate opcode for pushing NIL, in addition to a more general constant opcode. 
The final code generation phase transforms the (CONS T #I L ) Bytelap instruction into the 
appropriate opcode. Operations such as arithmetic or CAR are encoded as-rn ccalls, even 
though the instruction sets have specialized instructions to perform those operations. The 
assemblers distinguish between the built-in operations and those that must actually perform 
external calls; the compiler and the optimization phase do not care. Furthermore, a sequence 
of ByteLap instructions can assemble into a single machine instruction; for example, both 
instruction sets have instructions which can do a SETQ and a POP in the same instruction. 
These are easily detected with a short look-ahead during code generation. 

COMPILER OPTIMlZATIONS 

One of the most important ground rules for the optimization phase has been that all 
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~t optimizations are conservative: they must not increase either code size or running time. 
only optimizations which experience h& shown to be useful are described here. 

The statistics given in the text below were obtained as a result of compiling a total of about 
EM) functions, producing 65000 bytes of object code. Numbers in <angle brackets) in the 

3 
text indicate the number of times that a given optimizing transformation or technique was 
applicable. 

t 

! 
Optimizations during code generation 

A few optimizations are performed during the iniW code generation phase. In particular, the 
j compiler keeps track of the execution context of any given expression (similar to many other 

Lisp compilers we know of). Thus, in the recursive descent of the S-expression definition, the 
I Rag e f f e c t  is set i f  the current expression is being compiled for effect only, and the Rag 

return  if the value is being returned as the value of the entire function. 

Remove no-effect constructs when compiling for effect <I 62) 
! 

Compiling a variable or constant for effect results in no code generated. A call to a function 
t with no side effects merely causes its arguments to be evaluated for effect: for example, a 
e macro might expand into ( CAR ( RPLACA X Y ) ) , which i f  executed for effect only performs 

i 
the RPLACA, but i f  the value is used will return the vafue stored. 

Remove extraneous POP (2035) 
i 

r Knowledge of re turn  context is used to omit extraneous POP instructions, since unused 
P values can be left on the stack to be swept away when the frame is released by a (RETURN). 

For example, in the function 
! 

(LAMBDA ( X )  ( P R I N T  X )  ( T E R P R I ) )  
the first pass emits 

i- 
j 
a (VAR X)  ( F N  1 PRINT)  ( F N  0 TERPRI )  (RETURN) 
t' 

rather than U 

t 

(VAR X )  (FN  1 P R I N T )  (POP)  ( F N  0 TERPRI) (RETURN). 
P 

! The compiler also uses re turn  context to eliminate extraneous JUMPS after ams of a 
b 

+ conditional to the end of the conditional code (each arm of the conditional is compiled in --, 
C 

< 
I return context, which will cause it to be terminated by a (RETURN) opcode). 

The compiler also removes tail recursion in re turn  context <36>. In addition, constant 
folding is done in the first pass for functions which are constant on constant arguments (e.g. 
EQ and arithmetic opcodes) <34>. Constant folding is done after the code for each argument 
is generated,  so that constant detection can be achieved by looking for CONST opcodes, 

I 

rather than pre-expansion of macros. 



16 Papers on Interlisp-D 

The second pass of the compiler consists of several local transformations on the generated 
Bytecap code which are tried repeatedly in turn until no further improvement can be made 
<6461 passes total, including the final unsuccessful pass on each function>. While the 
compiler contains many transformations, empirical results of compiling a large number of 
files show that the following transformations are the most useful-we have excluded 
transformations which were rarely effective. For each transformation we give its name, a 
symbolic version of it, a brief discussion, and an example in which the optimization wwld be 
effective. 

COPY iniroduction <101-23) 

val val --7 va1 (COPY) 

This transformation reduces neither code size nor execution time; however, it often enables 
other optimizations. The val opcodes can be two identical CONST or VAR opcodes, or a 
SETQ followed .by a VAR with the same variable. For example, the expression 

(FOO (SETQ X (FUM)) X) 
compiles to 

( F N  0 FUM) (SETQ X )  (VAR X )  (FN 2 FOO) 
which gets transformed to 

(FN 0 FUM) (SETQ X )  (COPY) (FN 2 FOO). 

Va tiable duplication (1 137) 

{SETQ var ) (POP)  (VAR %far) - (SETQ var) 

This transformation occurs frequentiy after assignments. For example, the expressions 
(SETQ X Y )  (CON0 ( X  (FN) ) )  

compiles to 
(VAR Y )  (SETQ X )  (POP) (VAR X )  (TJUMP L 1 )  (FN 0 FN) L1: 

which transforms into 
(VAR Y )  (SETQ X )  ('TJUMP ~ i )  (FN  o FN) LI: 

Dead assignment (661) 

(SETQ var ) (no subsequent use of var) * 
The compiler scans ahead a short distance for either a ( R E  TURN) or subsequent (SETQ 
var) with no intervening instruction which either uses ( V A R  var )  or else calls a function 
which might see the binding of var. For example, after the examples in bpth COPY 
introduction and Variable duplication, the assignment to X might well be "dead", and the 
(SETQ X )  removed, 
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i 
1 Unused push <734> 
i 

I val (POP) -7 

t 
\ 

G ~l though the first pass avoids generating values followed by POP by the e f f e c t  mechanism, 
enough instances arise where subsequent optimizations uncover unused values to make this 

5 
transformation worthwhile during the post-optimization phase. v a l  can be a CONST, VAR, or 

i 

I 1, COPY. In addition, if v a l  is a (FN n f n), where f n is a side-effect free function, it is 
I 

I 

B replaced by n (P0P)s .  
f 

Merge POP with DUNBIND <10D 
,' 

I j (POP) (DUNBIND) =s+ (DUNBIND) 
i 

This simple transformation takes advantage of the fact that h e  DUNBIHD opcode irnplicitiy 
> 

pops any values left on the stack since the last B1ffO. 
b 

I 
I 

JUMP OPTlMlZATlONS ~ i 
t 
i Vacuous jump (1 033) 

k (JUMP tag)  t a g :  -7 
F 
E (cJUMP t a g )  tag:  - (POP) 
f 
E While the first pass ByteLap generation explicitly deletes these <265 occurrences>, this 
t 

1 transformation is useful to clean up after others. In the pattern, c3UMP is either TJUMP or 
f 3UMP. 

! 
i 
Y 4 

I Invert sense of jump (488) 

(FJUMP t a g l )  (JUMP tag2)  t a g l :  * (TJUMP tag2) 
L 

This transformation can occur, for example, when there are explicit GO'S in the source. For 

i example, the expression 

[ (CON0 ( X  ( G O  LABEL1))3 
5. compiles to 

I (VAR X )  (FJUMP L1) (JUMP LABEL.1) L1: 
i which transforms into 

(VAR X )  (TJUMP LABELI) 11: 

COPY introduction for TJUMP (241) 

v a l  (NTJUMP t a g )  v a l  * val  (COPY) (TJUMP t a g )  , 

This transformation notes that, whether or not the JUMP is taken, the value va l  will remain 
on the stack. The transformation is effective for both NT JUMP and NFJUMP. Note that vat  will 
be NIL  in one of the cases. 
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JUMP code in-line (457) 

(JUMP t a g )  . . . tag :  {code] {code) . . . 
This transformation moves the entire segment {code) in line only in the situation where the 
JUMP is the only way of reaching tag. 

(juinp t a g )  ... tag: (JUMP t a g 2 )  = (jump tsg2) ... 
One of the most common transformations in the compiier occurs when the target of a jump 
is itself a jump instruction. For example, the code generated for 

(COND ( A  8)  ( 7  C ) )  
is: 

(VAR A )  (FJUMP L1) (VAR 8) (JUMP L2) L1: (VAR C )  L2: 
If tbe variable B is replaced by a COND clause, the target of the jump at the end of that 
CONDs second clause would itself be a jump instruction. The jump in the pattern above can 
be any of the four jump opcodes. For example, 

(COND ( A  B )  ( T  (GO T A G ) )  
would result in the fragment: 

(VAR A )  (FJUMP L2 )  ... L2: (JUMP TAG) 
which can be transformed into 

(VAR A )  (FJUMP TAG) ... 
Unreachable code (1670, removed 1784 instructbW 

(JUMP tag)  (code] - (JUMP tag) 

The code after a JUMP or RETURN which is not itself jumped to can be deleted. The first pass 
avoids generating any constructs of this form, but such situations can be generated by other 
transformations. For example, in both preceding examples, the code at L2 might well be 
unreachable and deleted. 

* 

NTJUMP introduction (610) 

val (TJUMP tag)  . . . tag: val j va l  (NTJUMP tag+2) . . . 
This optimization is esseotially COPY introduction across jumps. For example, 

(PRoG NIL LP (FOO X )  (CONO ((SETQ X (CDR X ) )  (GO LP))) ...) 
tesytts in 

LP: (VAR X )  (FN 1 FOO) (POP) (VAR X )  (FN 1 CDR) (SETQ X)(TJUMP LP) ... 
which is then transformed to 

(VAR X )  LP1: (FN 1 FOO) (POP) (VAR X )  (FN 1 CDR) (SETQ X )  (NTJUMP LP1)  



Local Optimization for Stack-based Lisp Machines 19 

NTJUMP introduction with code movement <506> 

val (FJUMP t a g )  val  {codel)  ... tag: {code21 
s v a 1  (NTJUMP tag2)  {code21 tag2: {codel] 

This transformation is a variation of NTJUMP introduction where it is necessary to move code 
around. The two code sequences {code 1 )  and fcode2) must end with a JUMP or a RETURN. 
Note that this transformation moves the entire segment of code {code21 inline. For example, 
the expressions 

(COffD ( X  (FM X ) )  (7' (FM2) (GO LAB)) 
compile to 

(VAR X )  (FJUMP L 1 )  (VAR X )  (FN 1 FN1) (JUMP L2) 
L1: (FN O FN2) (JUMP LAB) 12: 

which gets transformed to 
(VAR X) (NTJUMP L3) (FN 0 FN2) (JUMP LAB) L3: (FN 1 FN1) (JUMP L2) L2: 

Jump to N I L / P O P  <834> 

(FJUMP t a g )  ... tag: (CONST N I L )  * (NFJUMP t a g + l )  
(NcJUMP tag)  ... tag: (POP) (cJUMP t a g + l )  

The pattern NcJUMP stand for either flavor of N-conditional jump. In the first situation, the 
W IL which is being found by the FJUMP may be logically distinct from the N I L  after tag. For 
example, the expression 

(COND ( A  ...) ( T  (MYFN NIL)) 
compiles as 

(VAR A )  (fJUMP L1 )  ... L1: (CONST NIL) (FN 1 MYFM) 
which is transformed into 

(VAR A )  (NFJUMP L2) ... L2 :  (FN 1 MYFN). 

The second form of the transformation normally occurs only after other transformations, 
where a conditional, originally thought to be executed for value, does not need the value 
being preserved by the NcJUMP. 

1 

Removal of loop variables <679> 

(SETQ vsc) (POP) (JUMP tag) ... tag: (VAR ver) 
=s (SETQ var) (JUMP tag+1) 

This transformation is common m loops. For example, 
(PROG N I L  LP (PROCESS X) (SETQ X (NEXT X ) )  (GO L P ) )  

compiles as 
LP: (VAR X )  (FN 1 PROCESS) (POP) (VAR X) ( F N  1 NEXT) (SETQ X) (.POP) 

(JUMP LP)  
This transforms to: 

LP: (VAR X)  LP1:  ( F N  1 PROCESS) (POP) (VAR X )  ( F N  1 N E X T )  (SETQ X )  
(JUMP L P 1 )  
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Cross jumping (1721 > 
{code] (JUMP t a g )  ... {code] tag: (JUMP tag2) ... tag2: {code) 

This frequent transformation improves code space with no effect on running time. For 
example, the expression 

(COHO ( A  (FOO X ) )  ( 7  (FOO Y ) )  
compiles as 

(VAR A )  (FJUMP L1) (VAR X )  (FN  1 FOO) (JUMP 12) 
L1:  (VAR Y )  (FN 1 FOO) L2: 

The instruction before (JUMP L2) is identical to the instruction before the label L2, and so 
this can be transformed into 

(VAR A )  (FJUMP L1) (VAR X )  (JUMP 13) Ll: (VAR Y )  C3: (FW 1 f O O )  

Jump copy test (733) 

v a l ' . f n l  (jump tag) val ... tag: val * val  (COPY) f n l  (jump t a g t i )  

In this transformation, f n l  is a "clean" function of one argument, e.g., ( F N  1 L I S T P )  or 
( FN 1 CDR), or even (CONST val  ) ( FN 2 EQ). In this case, "clean" means that the function 
cannot change the value of va l .  For example, the expression: 

(COND ( ( L I S T P  X) (CAR X ) )  ((NUMBERP X)  (ADD1 X ) ) )  
results in the fragments 

(VAR X )  (FN 1 LISTP) (FJUMP L1) (VAR X )  ... Ll: (VAR X )  (FN 1 NUMBERP) ... 
which transforms into 

(VAR X )  (COPY) (FW 1 LISTP) (FJUMP L2) ,.. L2: (FN 1 NUMBERP) ... 

Return optimizations 

Return merge 

(TJUMP tag) {code} (RETURN) ,..tagZ: {code) (RETURN) 
* (FJUMP tag2)  ... tag2: {code] (RETURN) 

This is an effective code transformation which can merge completely unrelated (with regard 
to flow-of-control) return sequences. it does not affect speed, only space. Return merge is 
unique in not preserving the normal invarient that stack-depth is constant at any location in 
the code. Normal code generation on1 y creates sequences of inst rue tions where the stack- 
depth at any b d o n  is static; all other transformations preserve that property. However, the 
two occurrences of (code) in the pattern need not be at the same stack-depth, and thus, 
stack-depth would be ambiguous after tag2. This is important if the target machine 
language is dependent upon stack depth in the translation from ByteLap, as is the case with 
the Maxc instruction set. Return merging must be disabled i f  the two {code} sequences 
occur at different stack depths, and if (code) contains any stack-level-sensitive operations. 



Local Optimization for Stack-based Lisp Machines 21 

Needless POP before RETURN (590) 

(POP)  v a l  ( R E T U R N ) * v a l  (RETURN) 

This transforrnation is attempted only after it is known that there is no opportunity for 
Unused push. In addition to removing POP opcodes, this transformation also removes 
DUNBLND and UNBIND opcodes in the same position (except when v a l  is a variable which 
was bound in the frame corresponding to the UNBIND or DUNBIND). 

Unused variable in B I N D  (580) 

( B I N D  . . . ( . . var . . ) ) {var not used) = (BIND . . . ( . . . . ) 1 
( B I N D  ( . . v a r )  . . . ) {var  not used] =s (POP) ( B I N D  ( . . ) . . . ) 

This transformation eliminates binds of local variables which are not used. Only the last 
variable bound to a value can be so removed, because of the difficulty of inserting a POP at 
the appropriate place back in the instruction stream. (This is an example where source level 
transformation might be better way of doing optimization. Unfortunately, the last use of a 
variabie is often removed by COPY inlroduction, which has no analogue in source code 
transformations.) To detect unused variables, the compiler scans the code linearly for uses 
of each variable in every B I N D .  For example, the expression 

(PROG ( X )  (SETQ X (FUM) )  (FOO X X ) )  
compiles into 

( B I N D  ( )  ( X ) )  ( F N  0 FUM) (SETQ X )  (POP) (VAR X )  (VAR X )  (FN 2 FOO) 
which, after several transformations, turns into 

( B I N D  ( )  ( X ) )  (FN 0 ftm) (COPY) [FN 2 fOO). 
Since X is no longer used, it can be diminat&. Note that this transformation is not 
applicable to special variabfes (variables which can be referenced freely by functions called 
from this one, e.g., FUM and FOO). 

Unused B I N D  (2035) 

( B I N D  ( v l  ... vm) (vm+1 ... vn) ) (VAR v 1 )  ... (VAR vm) {last menfion of v 1  ... vm) 
+ (CONST N I L )  (n-mtimes) 

<Of the 2035 occurrences, 440 eliminated BINDS which were generated in the compilation of 
mapping functions.> This transformation eliminates 8 lNOs when the variable list is empty or 
when the variables bound are only mentioned, in order, immediately following the BIND. 
When this transformation is made, the compiler must also find all corfesponding DUNBIND'S 
for this frame and turn them into the appr~priate number of POP'S. In addition, for every 
UNBIND the stack level must be exactly one greater than it was at the BIND.  If so, the 
UNBIND can simply be deleted; i f  not, this transformation cannot be made. Note, however, 
that where a PROG or LAMBDA expression is the value returned by a function, no UNBIND or 
DUN0 I ND opcodes are generated. For example, the expression 

((LAMBDA ( X )  (FOO X X ) )  (FUM) )  
compiles into 

( F N  0 FUM) ( B I N D  ( X )  ( ) )  (VAR X )  (VAR X )  ( F N  2 FOO) 
which, aftei COPY introduction and Unused B I N D  can be transformed into 

( F N  0 FUM) (COPY) (FN 2 FOO). 
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CONCLUSIONS 

Because our instruction sets are so well suited to the Lisp language, it is possible to write 
quite simple non-optimizing compilers for our Lisp machines. In fact, we have written a 
simple but usable compiler in less than three pages of Lisp code. However, local 
transformations can have an important impact on code space and running time. 

As in production systems, the choice of order of application of transformations can affect the 
results. Without eflecectively trying all possible orderings, one transformation can prevent a 
better one from being used. In successive transformations made on a sample of user Lisp 
programs, however, we have not observed this to be a major problem. 

The programs our compiler genenlfw are still not optimized, in the strict sense of that term. 
A sample of user Lisp programs which were "hand optimized" show that code size could be 
compressed by as much as an additional 15% in some cases, with no speed penalty. 
However, the transformations involved seem to require either much special-case pattern 
matching or else transformations which temporarily reduce either space or speed. As usual 
when employing "hill-climbing" algorithms, by requiring that all transformations we employ 
are strict improvements, we occasionally find local optima which prevent better solutions 
from being found. 

Optimizing on a simple intermediate language is quite effective. Many of the transformations 
made are not express~ible as source language ?ransformations (e.g., the COPY operator has 
no direct counterpart in the Cisp language). Those that woufd be easier to express as source 
transformations are often enabled by transfonmrations which have no direct analogue. 
Peephole optimizers working on more complex assembly languages must be aware of more 
special cases, because there are many more kinds of operations. 
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--- .. . . 1-.- ..Î  -* U' .--- i* " - *i ;.**i I .n, t -.. IIIIW.D-Y--I-qllb% uLa .Xn.xn.~n "l? ,l .*m, 

Local Optimization for Stack-based Lisp Machines 23 

Griss, M.L. & Hearn, A.C. 
A portable Lisp compiler. Department of Computer Science, University of Utah, UCP- 
76, .1979. 

Steele, G.L. 
RABBIT: A compiler for SCHEME (A study in compiler optimization). MIT Artificial 
intelligence Laboratory. A/-TR-4 74, 1978. 

Teitelman, W. et al. 
Interlisp Reference Manual, Xerox ?ARC, 1978. 

Umi,  Jaak 
A machine independent Lisp compiler and its implications for ideal hardware. 
Linkoping studies in science and technology dissertations No. 22, Linkoping. Sweden, 
1978. 

I 
I 

I 

I 

I 
I 

i 
i 



The Interlisp-D I/O system 

Ronald M. Kapfan, B. A. Sheif, and Richard R. Burton 

One of the major stumbling blocks to a transportable version of lnterlisp is its extensive and 
complex set of input/output facilities. The Interlisp virtual machine (VM) specification 
provides assistance by specifying a smaller set of 1 / 0  primitives in terms of which the 
complete set can be written. However, the primitives described in the VM were decisively 
shaped by features of the Tenex operating system and transferring these primitives to other 
operating systems has proven to be difficult. This paper describes an implementation of the 
VM 110 primitives in Lisp which reduces the machine dependent aspects to the device level. 
The design breaks the 110 ?ask into two levels: the logical level and the physical device 
level. The logical level defines the notion of an abstract file device and captures the 
operz+ions and information that are common to all devices, such as sequential 1/0 and 
buffer management. The interface to the physical level is through a small set of device 
dependent functions such as opening a file or reading a page. The imp/ementation of a new 
device requires writing appropriate versions of each of these functions, but the interface to 
this new device from the user level programs is exactly like any other file device. One 
difficult problem solved in this design is the concurrent accessing of a file by both sequential 
I/O and by page mapping. The primitives needed in this design are fewer and much easier 
to implement on widely varying hardware than those defined in the VM. 

BACKGROUND 

Interlisp-0 [Burton et al., 19801 is an implementation of the Interlisp programming system 
[Teitelman et at,, $9781 on the Dolphin and Dorado, personal computers with large virtual 
address spaces [Lampson 8 Pier, 19801. Given Interlisp's extensive and complex set of 
input/output facilities, it is clear that these will comprise a substantial portion of any 
implementation. The lnterlisp virtual machine (henceforth, VM) specification [Moore, 19761 
provides some assistance by describing a smaller set of 110 primitives in terms of which the 
complete set can be written in, Lisp. Therefore, one approach is to implement the VM 
primitives in terms of the I/O operations provided by the host operating system. This was 
the approach used in the AltoLisp implementation of lntwlisp peutsch, 198OJ. Reflections 
on this experience have convinced us that this is not a good implementation strategy. 

Although the VM primitives are sufficient to support the higher levels of Interlisp, they are by 
no means the only such set, nor are they necessarily the most principled. In fact, the 
selection and definition of primitives were shaped in large measure by the properties of the 
Tenex operating system [Bobrow et at., 19721 for which lnterlisp was originally developed, 
and by the interface between Lisp and the machine-language kernel of Tenex-Interlisp. It is 
not an easy task to reconstruct this particular set of primitives with operating system 
capabilities that do not match those of Tenex. For example, lnterlisp assumes the existence 
of a mechanism, modelled after the Tenex page-mapping mechanism, to map any page of an 
arbitrary file into the virtual memory without disturbing ongoing sequential I/O to that file. 
Few other operating systems provide such a capability and retrofitting it to an existing 
system is non-trivial. 
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As it turns out, many of the VM "primitives" are not in fact primitive: they can easily be 
expressed in Lisp in terms of a more basic set of operations. There are several good 
reasons for pursuing such a lower-level decomposition. First, the result would be a more 
elegant and satisfying implementation than an attempt to interface two incompatible 
operating system designs would produce. Second, writing more of the implementation in 
Lisp would reduce the amount of non-Lisp expertise (e.g., knowledge of the host operating 
system) required to build and maintain the I/O system. Third, the lower-level decomposition 
would represent a more principled understanding of the structure of this part of lnterlisp than 
the current VM specification embodies. Specifically, it would move the boundary of lnterlisp 
(the place where different implementations are free to vary) closer to the hardware, where 
the environmental differences are real, rather than leaving it at the operating system level, 
where the differences are mostly manufactured. 

The most important reason, however, is that a lower-level decomposition would offer more 
assistance to other implementations of f~terlisp. As the declining cost of hardware makes 
new environments for lntertisp more attractive, transportability becomes an increasingly 
important consideration. Consequently, we designed a framework for the lower levels of 
lnterlisp l/O that serves not only as a basis for the Interlisp-D implementation but also is 
likely to be better than the current VM specification as a foundation for the 1/0 facilities of 
other implementations. This paper reports on that design. 

DESIGN OVERVIEW 

The basic distinction in the fnterfisp-U I/O system is between the software used to control 
the variqus physical devices and a "fogical" If0 iayer that bridges the gap between the 
devices and the VM specifications. The logical layer, which is written entirely in Lisp, 
provides services that are usually supplied by code in the non-Lisp kernel or the operating 
system. It manages the allocation of virtual memory buffers and their assignment to specific 
pages in particular files, maintains the state inforn~ation necessary to support sequential and 
random access streams, and coordinates stream and page-mapped file access. 

L 

The logical 1/0 system rests on an interface to the physical devices which defines the notion 
of an abstract file device. This characterizes the capabilities that physical file 'devices must 
possess and defines a uniform set of operations for manipulating those devices. Since 
physical devices (e.g., local disks and network file servers) come with widely varying software 
and hardware attributes, the design does not specify how the interface functionality is to be 
implemented for particular devices. Separate code is written for each device, perhaps even 
in different programming languages, in order to take advantage of and/or to compensate for 
the features that the device provides. 

The device operations are defined at a very low level. The device does not manage the 
memory buffers into which it reads and writes, nor does it directly provide operations such 
as sequential, byte-stream access. These are implemented in a device independent way in 
the logical I/O system. The low level of the device interface has two advantages. First, the 

uniform interface for the logical I/O system guarantees that all devices will exhibit the same 
behavior in terms of the higher level protocols. Second, by minimizing the amount of code 
that must be written for each new device, it makes it relatively easy to add devices to the 
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system. Thus, when we found that substantial time was being spent reading and writing the 
compiler's temporary files, it was a simple matter to implement a CORE device. This provides 
the same user program abstraction as the disk but "reads" and "writes" from temporary 
storage in main memory, thus avoiding the cost of the actual data transfer. 

THE ABSTRACT DEVICE 

The device interface prescribes a set of properties on which devices may vary and a set of 
operations that may be applied to any device and the files that reside on it. A device may 
also perform additional operations which' directly reflect its physical characteristics (e.g., 
REWIND on a tape device). These are for programs that need to make direct use of the 
idiosyncratic properties of specific devices. Each physical file device is known to user 
programs by a device name, with which is associated a iile device datum containing both its 
device properties and its implementation of the generic operations. The device datum 
represents the operations in object-oriented style: It contains a vector of Lisp callable 
functions, one for each of the generic operations. The generic operations are defined simply 
to transfer control to the corresponding element of the appropriate file device. 

The use of an object oriented representation at the device level reflects the great deal of 
variability in the underlying physical device hardware. Each device can decide 

h independently which properties and operations it will support and which it will not. By , 
5 

contrast, in the logical I/O system this variability is much less pronounced, due to the 
1 constraints imposed by the interlisp specification, so a more conventional functional interface 
1 

is used. 

The generic operations defined by the device abstraction were carefolly cholwen to allow the 
flexibility of different implementations where this was required by different real devices, while 
providing a uniform set of building blocks for higher level facilities. Thus, the virtual device 
provides operations to 

translate between file names and device-dependent file specifications (a directory), 

' create, destroy, and "open" files, 

' move information in page-size units between files and memory, and 

' provide information about the status of a file on that device. 

The interface between the device and its clients is in terms of file names and file handles. A 
file name is a user sensible identification of a file. This is presented to the logical file system 
when some 1/0 service is requested. A file handle is a device-generated, unique 
identification of a file on that device. It specifies the device on which the file resides, a 
complete name for the file and any other (device-dependent) information that may be needed 
to reference the file. Apart from name interpretation (directory services), a file handle is the 
interface to all device level file operations. Thus the operations to delete a file, read and 
write pages, interrogate status, etc., all require file handles as arguments. 

The mapping between names and handles is one of the more complex aspect of the device 
interface. As the I/O system was specifically designed to allow uniform reference to files on 
file systems over whose naming conventions we had no control (e.g., remote file servers), 



28 Papers on Interlisp-D 

user sensible file names are considered to have two separate components: a device 
specification in a prescribed, uniform syntax and a device-specific file specification in an 
arbitrary syntax. When a nzme is presented to the I/O system, its device specification is 
used to locate the corresponding device datum. The name interpretation code of that device 
is then applied to the complete name. 

Interlisp's more esoteric name interpretation facilities (the names presented to operations 
such as opening a fife can be incomplete, specify wild-carding or expansion of various 
forms, or be misspetled) are handfed at the logical level. This sometimes imposes some 
comptexity on these afgorithms since, for example, name interpretation cannot be made 
indivisible with resource atiocation at the device level. Thus, if two processes 
"simultaneously" request the 1/43 system to open the next version of the same file, both will 
compute the same value far the next version, so one request will fail due to the other having 
succeeded in opening the file first. The logical file system discriminates and recovers from 
this situation. The alternative, an expand-file-name-and-open-it operation, is unattractive 
because it would replicate the Interlisp name expansion rules within every device. 

Devices also include operations which interrogate their properties and those of their files. 
(GETFILEINFO filehandle attribute) returns the value of the specified attribute (e.g., AUTHOR, 

WRITEDATE, LENGTH) for the given file and (SETFILEINFO filehandle attribute newvalue) allows 
(some of) those values to be modified. The functions GETDEVICEINFO and SETDEVICEINFO are 
the analogous functions for obtaining information (such as its natural page-size, the amount 
of space currently free, and its name) about the device. 80th sets of properlies are device 
dependent; each device can decide to which properties it wii? respond. 

THE LOGICAL 1/0 SYSTEM 

In addition to being a complete specification of a file on some device, a file handle allows 
certain information about that file to be obtained. When the file is opened, it also permits 
the contents of the file to be accessed and provides the capability of changing all of the 
file's properties (dates, author, etc.). The act of opening the file is a device dependent 
operation, since the device may need to establish some special state information (e.g. a 
network socket for a remote file server). From the point of the client Lisp program, however, 
only the logical file state, which is maintained in an open file descriptor (OFD), is important. 

An WD contains the device independent information associated with an open file. This 
includes the file's file handle (which in turn specifies the file device), its access mode (either 
INPUT, OUTPUT, APPEND, BOTH, as specified by interlisp), and an indication of the current file 
byte and line positions. All of this is completely device independent; device dependent 
information is all stored in the file handle. An OFD is created by the logical file system file- 
opening operation: (OPENFILE name access recognitionmode), where access indicates the 
access capabilities desired and recognitionmode the rules for completing an incomplete 
name. After computing a complete file name, this operation calls the device opening routine 
to do the device dependent opening operations, and then initializes the logical file state. If 

access is other than INPUT, the device opening operation will cause the file to be created if it 
does not already exist. When the file is closed, the OFO is marked as defunct so it cannot be 
further used. 
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The primary function of the logical I/O systent is to fasflion sequential and random access 

byte level I/O from the page level transfer operations provided by the device interface. To 
this end, the functions BIN (read a byte) and e o u ~  (write a byte) are defined. These keep 
track of the current file page and position within that page; detect page overflow, and, for 
input, end of file; and call the buffer management routines to replace buffers when the 
sequential access or random positioning causes the logical file position to leave the current 
page. Also implemented at this level are functions for obtaining and setting information 
about the state of the open file, such as the current file length. 

These functions provide the implementation primitives in terms of which the existing higher 
kvel Interlisp I/O code is directiy implemented. 

USER BUFFER ACCESS 

As we have seen, the device layer is not responsible for managing the virtual memory buffers 
that file data is transferred to and from. Buffer management is common to all devices and is 
therefore implemented in the logical I/O layer. Buffers are allocated and assigned to a file 

8 on demand and are accessible from its OFD. When BIN or BOUT reaches the end of a page, 
code in the logical layer chooses a buffer for the next page. If it chooses a buffer that 
already contains a page of the file and i f  that buffer has been written onto, then the device 
WRITEPAGE function will be invoked to flush the contents of the buffer back to the file. The 
buffer is then initialized by reading in the next file page (via READPAGE, which zeroes the 
buffer i f  the page does not yet exist in the file). The srN or WT operation is then 
completed, updating the relevant fieids in the OFD as appropriate to maintain the current 
position in the sequential stream. 

When the logical close routine is called to close the file, its currently dirty buffers are first 
flushed to the file device, the buffers are de-allocated, and the device close operation is 
called on the file handle. The OFD is then marked as defunct and the file handle is marked 
closed, so that future attempts to use them will result in errors. 

The buffer management strategy we have outlined is quite conventional. The user interacts 
with the buffers only through the carefully controlled interface functions that read and write a 
byte and reset the file position. The system is therefore free to allocate, deallocate, and 

i recirculate buffers according to whatever heuristics seem appropriate. ~owevkr, the Interlisp 
I/.Q,specifications permit the user to gain direct access to the file buffers, and this imposes 

7 

i strong constraints on the buffer management regime. 
2- 

8 

t Interlisp's page-mapping facility is similar to that of the Tenex operating system. It allows 
user programs to examine and modify information in a file page as i f  it were part of ordinary 
virtual memory. Complex data structures, not just linear byte sequences, can be created on 
the file and manipulated using the normal machinery for referencing memory. In particular, 
symbolic names can be defined for the fields of these structures by overlaying a record 
structure on a mapped in page, so that manipulation of file-resident databases becomes a 
very easy thing to do. Various lnterlisp system packages (e.g. HASH, WHEREIS) depend on this 
capability, and it supports a variety of user application including the file-resident memory 
system of the KRL implementation [Bobrow 8 Winograd, 19771. 
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To a certain extent, this kind of access to file information can be obtained without new 
system facilities. I f  the user wants to view information on a file in a structured fashion, he 
can use the ordinary sequential I/O facilities to copy the data from the file buffer into a 
storage array. However, the user would not only pay the extra (but possibly small) cost of 
the copy, he would also have the responsibility of noticing when information in the array was 
changed and therefore has to be copied back to the file buffer. Considered in this light, 
implementing a system page-mapping operation merely centralizes the bookkeeping 
necessary to maintain consistency between the file and the in-memory image of its pages. 

There is a more crucial feature of the page-mapping mechanism that sirnpfy cannot be 
simulated by user programs: the page-mapping specification provides for the coordination 
between modifications done to the page considered as a part of the address space and 
those done by the sequential 1/0 operations. Thus, doing a sour to a mapped page will 
cause an immediate modification to the corresponding memory word, and information placed 
in that word by a store operation will be returned by the next 8iN operation. Thb user really 
does have a pointer to the system buffer lor that fife. TMs means that the reading and 
writing of structured information on a fife page can be intermixed with input and output by 
the complete set of sequential I/O operations, including the higher-level READ and PRINT 

routines. A user can maintain his own data structures as long as that is easy and necessary, 
but he can fall back on the facilities for transferring arbitrary s-expressions when that 
becomes more suitable. 

Distributing buffer pointers to the user seriously undermines the simple, conventional buffer 
management strategy. A buffer to which the user has been given a pointer must not be re- 
allocated as long as the user holds onto that pointer. By asking for a pointer, the user has 
indicated that he intends to operate on that file page for an extended period. This flies in 
the face of the pressure to re-circulate buffers for new pages and files in order to minimize 
the address space and working set devoted to buffers. The PMAP package in Interlisp-10 
defines functions by which the user can lock and unlock buffers, but this does not 
completely solve the problem. First, there are situations where a buffer can be quietly 
recirculated before the reduest to lock it down can be processed, and second, the user 
might mistakenly unlock a buffer when in fact he retains a pointer to it that he later uses. 

Interlisp-D permits an interesting and unique solution to this problem. Given that buffer 
management is implemented in Lisp, and given that Interlisp-D includes an incremental, 
reference-counting garbage collector, we have a very simple way of determining whether the 
user is still holding a buffer pointer that has been distributed to him. When a buffer pointer 
is given to the user, that buffer is marked so that it will not be recirculated according to the 
normai heuristics. The collection phase of the garbage collector distinguishes pointers to 
buffers from other kinds of data objects. When the reference count of a buffer goes to zero, 
the buffer is unmarked so that normal de-allocation is again enabled. Buffers for most files 
are unmarked so that the most efficient recirculation strategies may be employed, but 
deallocation of a user-mapped page is postponed until the next collection phase after the 
last user pointer to the page has been dropped. Thus, the dangling reference problem for 
file buffers is solved by a completely general mechanism. 
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PROBLEMS AND PLANS 

The major weakness of the design presented here is that it is primarily oriented to file 
devices. ~evices without file name structures, displays, and conversational devices fit less 
well into this framework. In large part, this is because these devices are given special 
treatment in the lnterlisp I/O specifications, and we have replicated some of this 
awkwardness in our design. As an example of the type of problem that arises, consider the 
representation of a network connection. Such a connection is usually required, by the 
protocols of its network, to be a duplex object, i.e., it must be possible to both read and 
write independently to its input and output channels. Unfortunately, lnterlisp assumes that 
an open file has but one logical file position, end of file, etc.. Following Interlisp, wr i/O 
system makes the same assumption. 

For the most part, these problems do not impact the utility of the design as a basis for the 
existing lnterlisp I/O facilities, since special code to accomodate existing problem areas 
such as the controlling terminal is already in place. As we extend fnterlisp into a personal 
computing environment, we will surely revisit these issues and attempt to give them a 
principled treatment. In particular, as many of the facilities that make Interlisp-10 such an 
attractive environment involve shared resources, making these available in a personal 
machine environment will require a comprehensive treatment of remote I/O. Unfortunately, 
the major part of this work will be extending the existing semantics of lnterlisp I/O. 
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Interlisp-D Display Facilities 

Richard R. Burton 

Abstract 

As one of the goals of Interlisp-D is to make lnterlisp available as a personal computing 
environment, it incorporates an extensive set of graphics facilities. This memo documents 
the abstractions and functions which comprise these facilities. 

INTRODUCTION 

This memo documents the abstractions and functions which have been designed to support 
the use of the tn4wIisp.D &play. These functions provide the display primitives upon which 
DLISP is based. Their design was initially based on the ADIS primitives [Sproull, 19791 for the 
Alto and was later influenced by other graphics work at Xerox PARC [Warnock, 19801. 

This document is intended both to document the existing facilities and to provide a 
framework within which extensions to the lnterlisp graphics interface can be made. It is 
hoped that these primitives will provide a standard far lnterlisp display facilities at a 
corresponding level in other implementations and that the framework will be extended (by 
ourselves and others) to more general graphics devices such as color, grey scale and high 
resolution printing media. 

Geometric Operations 

The display facilities provide three different types of geometric procedures: figure generating, 
transformations and clipping. Figure generating procedures include routines to place text, 
draw lines and curves, and fill in areas. Transformation routines allow programs to construct 
images with local coordinate systems, provide translation and will be extended to include 
scaling and rotation. The clipping routines allow an image to be clipped against a region 
(currently a single rectangular region, extending to a set of arbitrary polygons.) 

POSITION 

A Position denotes a point in a coordinate system. It is characterized by its x and y 
coordinates. A POSITION is an instance of a record with fields XCWRD and YCWRD. It is 
manipulated with the standard record package facilities. 

REGION 

A Region denotes a rectangular area in a coordinate system. It is primarily used to specify 
clipping regions which limit the areas into which figures are displayed. Regions are 
characterized by the coordinates of their bottom left corner and their width and height. A 
REGION is a record with fields LEFT, BOTTOM, WIDTH and HEIGHT. It is manipulated with the 
standard record package facilities. The global variable WHOLEDISPLAY is a region which 
covers the entire display screen. 
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The primitives manipulate graphical images in the form of bitmaps. A bitmap is a 
rectangular array of bits. If a bit is 0, the corresponding location on the image is white. If a 
bit is 1, its location is black, Bitmaps use a positive integer coordinate system with the lower 
left corner bit being (0,O). Bitmaps are represented as instances of the datatype (BITMAP) 

with fields BITMAPWIDTH, BITMAPHEIGHT, BITMAPRASTERWIDTH and BITMAPBASE. Only the width 
and height fields are of interest to the user. (For Interlisp-D, the BITMAPRASTERWIDTH is the 
number of words required to hold one line of the bitmap; the BITMNBASE is a pointer to the 
first word of the bits.) 

To extend the display scheme to higher resolution devices, the notion of bit is changed to "pixel" and fractional 
parts of pixels can be darkened or greyed as required. To handle this extension, the coordinate system is 
represented in floating point numbers rather than integers. For expediency, the initial version of the display 
facility does not include this capability. It is expected that the current frashework will extend in this manner.) 

There are two distinguished bitmaps that are "read" by the hardware to become visible as 
the screen and the cursor. The screen is a bitmap SCREENWIDTH wide by SCREENHEIGHT high. 
(For Interlisp-D, SCREENWIDTH is 620, SCREENHEIGHT i$ 808.) ,The cursor is CURSORWIDTH by 
CURSORHEIGHT. (FOT Interlisp-D, CURSORWIDTH is 16, CURSORHEIGHT is 16.) 

The functions to manipulate bitmaps are: 

BITMAPCREATE[Width Height] 
Creates and returns a new bitmap which is Width bits wide by Height bits high. 

BITMAPBIT[Bitmap X Y NewValue] 
X and Y are measured (as always) from the left bottom, 0 as origin. If NewValue is 0 
or 1, the bit (X,Y) is changed to NewValue and the old value is returned. If NewValue 
is NIL, the Bitmap is not changed but the value of the bit is returned. 

BITMAPCOPY [Bitmap] 
Returns a new bitmap which is a copy of Bitmap (same dimensions and contents). 

There are two distinguished bitmaps that are "read" by the hardware to become visible as 
the screen and the cursor. The screen is a bitmap SCREENWIDTH wide by SCREENHEIGHT high. 
(For Interlisp-D, SCREENWIDTH is 620, SCREENHEIGHT is 808.) The cursor is CURSORWIDTH by 
CURSORHEIGHT. (For Interlisp-D, CURSORWIDTH is 16, CURSORHEIGHT IS 16.) They are accessed 
by: 

SCREENBITMAP[] 
Returns the screen bitrnap. 

CURSORBITMAP[] 
Returns the cursor bitmap. 
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BITBLT 

BITBLT is the primitive function for moving bits from one bitmap to another. 

BITBLT[SourceBitmap SourceLeft SourceBottorn DestinationBitmap Destinationleft 
DestinationBottom Width Height SourceType Operation Texture CIippingRegion] 

Width and height define a pair of rectangles, one in each of the SourceBitmap and 
DestinationBitmap whose left, bottom corners are at, respectively, (SourceLeft, 
SourceBottom) and (DestinationLeft, DestinationBottom). If these rectangles overlap 
the boundaries of either bitmap they are both reduced in size (without translation) so 
that they fit within their respective boundaries. If CIippingRegion is non-NIL it should 
be a Region and is interpreted as a clipping region within DestinationBitmap; clipping 
to this region may further reduce the defining rectangles. These (possibly reduced) 
rectangles define the source and destination rectangles for BITBLT. 

The mode of transferring bits is defined by SourceType and Operation. The SourceType and 
Operation specify boolean functions that are used to determine, respectively, the method of 
combining the SourceBitmap bits with the Texture and the operation between these resultant 
bits and the DestinationBitmap. The specification given below defines the modes allowed by 
Interlisp-D; extensions are seen as necessary for other implementations, in particular those 
providing color or grey scale. 

Texture is a gray pattern, as described in the section below. 

Sourcetype specifies how to combine the bits of an input bitmap (in this case, the pattern 
specifying the character) with the bits from a texture (background pattern; see below) to 
produce a source. This is designed to allow characters and figures to be placed on a 
background. 

SourceType Source 
SOURCEINPUT Input 
SOURCEINVERT (NOT Input) 
SOURCEMERGE (AND Input Texture) 
SOURCETEXTURE Texture 

The various SourceTypes such as SOURCEINPUT are global variables which are declared as 
constants. For the SOURCEINPUT case, the Texture argument to BITBLT is ignored. For the 
SOURCETEXTURE case, the SourceBitmap argument is ignored. 

Operation specifies how this source is combined with the bits in the Destination bitmap and 
stored back into the Destination bitmap. 

Operation Destination 
OPREPLACE source 
OPPAINT (OR Destination Source) 
OPFLIP (XOR Destination Source) 
OPERASE (AND Destination (NOT Source)) 

The various Operations such as OPREPLACE are global variables which are declared as 
constants. 
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SourceBitmap and DestinationBitrnap default to the screen. SourceLeff, SourceBottom, 
DestinationLeft and DestinationBottom default to 0. Width and Height default to the width 
and height of the SourceBitmap. Texture defaults to WHITESHADE. SourceType defaults to 
INPUT. Operation defaults to REPLACE. If ClippingRegion is not provided, no additional 
clipping is done. BITBLT returns T if any bits were moved; NIL otherwise. J 

TEXTURE 

A Texture denotes a pattern of gray which can be used by ~ B L ?  to (conceptual3y) tessellate 
the plane to form an infinite sheet of gray. For intetli*D,.it is a 4 by 4 pattern. Textures 
are created from bitmaps. 

CREATETEXTUREFROMBlTMAP[8itmap] I 

Returns a texture object that wile p the textw8 given from Bitmap. If Bitmap is 
too large, its lower left portion is used. If Bitmap is too small, it is repeated to fill out 
the texture. 

The common textures white, black and gray are, avai as system constants WHITEWADE, 

BLACKSHADE and -.GRAYSHADE. Thwihgnrnent of tfrefu2ta#t~ekplrattm with BITBLT is S U C ~  that the 
origin of the destination bitmap is at an in temmtb of the "tiles". 

SAVING BITMAPS 

Bitmaps can be saved on files with the file package command BITMAPS, analogous to the file 
package ARRAYS command. This uses the two functions PRINTBITMAP and READBITMAP which 
.translate bitmaps into and out of numeric representdons which may be used to transfer 
bitmaps from other systems. 

READBITMAP[Width Height BitsPerlnteger] 
Creates a bitmap which is Width by Height bits in size and gets values for its bits by 
 READ^^^ an expression that should be a list of integers. (This convention is adopted 
from the method of saving arrays on files.) BitsPerlnteger is the number of low order 
bits that should be taken from each integer in the read list. Each line of the bitmap 
begins on a new integer. Thus, the fist' of integers should be (((Width- 
l)/BitsPerlnteger) + 1 )*Height elements long. If WiMh is not a multiple of 
BitsPerlnteger, the most significant of the BitsPerlnZeger bits from the last integer of 
each line will be used. This design allows bitmaps to be written on the files in an implementation 

independent way. BitsPerlnteger should be kept small (less than 20) so that the integers can be read 
by the READ function on machines of smaller word size without overflow. For Interlisp-D, BitsPerlnteger 
is 16. 

PRINTBITMAP[Var] 
Var is an atom whose value should be a bitmap. The function prints a call to the 
function READBITMAP with the appropriate values followed by a list of the integers 
representing the pattern of bits in that bitmap. 
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SUPPORT FOR THE MOUSE 

The screen relative position at which the cursor bitmap is being displayed can be read or set 
using the functions: 

> 

CURSORPOSITION[Posltion] 
This returns the present location of the cursor. If Position is non-NIL, it should be a 
position and the cursor will be positioned at Position relative to the whole screen. 

ADJUSTCURSORPOStTION[deltax deltay] 
Positions the cursor offset from its current location by deltax and deltay which are 
integer increments which default to 0. 

The cursor can be changed like any other bitmap by B I T B L T ~ ~ ~  into it or pointing a display 
stream at it and printing or drawing curves. However, for pointing applications, it is 
necessary to locate the "hot spot" within the CURSORWIDTH by CURSORHEIGHT area which is 
used to determine a point position for the cursor. The function: 

SETCURSOR[Bitmap X Y] 
Copies Bitmap into the cursor and indicates to the system that location (X,Y) within 
that area is used tjls the hot spot; i.e., the value of CURSORPOSITION. If Bitmap has 
dimensions different from CURSORWIDTH by CURSORHEIGHT, the lesser of the widths and 
the lesser of the heights are used to determine how many bits actually get copied 
into the lower left corner of the cursor. If X. or Y is NIL, that coordinate is not 
changed. For Interlisp-D the default cursor is the uparrow and the default hot spot is 
(0,15), the upper left corner which is the tip of the arrow. 

Reading the Mouse 

The mouse can be read in either a polling or in a queued manner. For polling, use 

GETMOUSESTATE[ } 
Reads the current state of the mouse and sets the variables LASTMOUSEX, LASTMOUSEY, 

LASTMOUSEBUTTONS, LASTMOUSETIME, and LASTKEYSET (which holds the State of the five 
finger keyset.) In Interlisp-0, these are all 16-bit positive integers. Since the time is 
in milliseconds, it rolls over every 64 seconds or so. In polling mode, the program 
must remember the previous state and look for changes such as a button or key 
going up or down or the position moving outside a region of interest. 

In queuing use, the state of the mouse is saved whenever there is a transition in one of the 
mouse buttons or keyset keys. In this mode the button clicks are treated much like typed in 
keyboard strokes; saved until the program next asks for them. To coordinate the keyboard 
with the mouse clicks, the mouse interrupt handler will put a designated character in the 
keyboard input buffer. A common practice is to have this character be a read macro 
character that handles the mouse event. To tell the system to start queueing mouse events, 

ENABLEMOUSE[ # EVENTS CHARCODE] 
#EVENTS gives the number of events to save (Interlisp-D limit is 49). If more than 
#EVENTS events occur, further events are ignored and the screen is flashed. 
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CHARCODE is the character code that will be inserted into the keyboard stream when 
the mouse event occurs. If CHARCODE is not given, nothing will be put into the 
keyboard buffer. i f  CHARCODE is given, CLEARBUF will clear the mouse queue as well 
as the input buffer. If CHARCODE is not given, the mouse queue can be cleared by 
recalling ENABLEMOUSE with the same arguments. To turn off mouse queuing, 
ENABLEMOUSE is calied with no arguments. 

GETMOUSEEVENT[FLG] 1 

Examines the state of the mouse queue and may read the next event (set the 
variables mentioned above.) If FLG is NIL, GETMOUSEEVW~ returns the time of the next 
event if there is one (returns NIL if there are no events) but does not read it. If FLG is 
not NIL, the time is returned and the event will be "read" into the variable 
LASTMOUSEX, etC. 

MOUSEBUF[FLG] 
If FLG is T, this returns ithe internal b.uffer of mouse events that were saved at the last 
CLEARBUF[T TI. If FLG is NIL, the internal mouse event buffer is cleared. 

BKMOUSEBUF[EVENTLST] 
EVENTLST is a list of mouse events. BKMOUSEBUF sets the mouse queue to this list of 
events. In typical usage, EVENTLST is a list obtained by a call to MOUSEBUF. The form 
of the mouse events is a list of (MouseX Mousey MouseButtons MouseTime KeySet). 

DISPLAY STREAMS 

Display Streams allow uniform, convenient manipulation of bitmaps. Display streams have 
the properties necessary to implement transformation, clipping and aspects of figure 
generation. One property of display streams is the bitmap they modify called its Destination. 
Changing the destination to an auxilliary bitmap can be used to construct figures, possibly 
save them and then display them in a single operation. Display streams have their own 
coordinate system and a current Position in that system which is changed as characters are 
printed or lines drawn. Having the coordinate system local to the display stream allows 
objects to be displayed at different places on by translating the display stream's coordinate 
system relative to its destination bitmap's. The translation is given by x and y Offsets. 
Display streams also have a ClippingRegion which limits the extent of both characters 
displayed and lines drawn. Display streams have a Font that consists of a font family, a size 
and faces (Italic, Bold), and that dictates how characters appear. Other properties of a 
Display stream are its Operation (how the characters or lines should be integrated with the 
bits that are already on the screen eg.  REPLACE^, F~lPed, etc.); Texture (of gray for 
background); how far the y position is advanced on a LineFeed; where the LeftMargin is; and 
whether or not to Scrooll the contents when reaching the bottom of the clipping region. 
Display streams also have Brush characteristic for drawing curves. 

Functions are provided for creating DisplayStreams, and manipulating both them and their 
component parts. The package also supports the notion of a current Displaystream, which 
can be set and manipulated, and which is used implicitly by omitting a DisplayStream 
argument from functions which take such arguments. 
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There are two general types of figure generating procedures: character printing, and line and 
curve drawing. Display streams are recognized throughout the system as a legal file 
argument. Characters are printed using the normal Lisp print functions (PRINT, PRINI, etc.) by 
giving a display stream as the file argument. Functions are provided to draw lines and 
curves. 

MANIPULATING DISPLAY STREAMS 

The attributes of a Displaystream include: 
Destination a bitmap 
XPosition an integer which is the current x position (in the display 

stream's coordinate system) 
YPosition an integer which is the current y position (in the display 

stream's coordinate system) 
XUffM an integer which is the x translation of the display stream's 

coordinate system from the bitmap's. 
YOffset an integer which is the y translation of the display stream's 

coordinate system from the bitmap's. 
Clipping Region a Region which limits the extent of lines and characters 
Sou rceType a BITBLT source type 
Operation a B~TBLT operation 
Texture a Texture which is the background pattern 
Font a FontDescriptor 
Italic 
Bold 

ON or OFF 

ON Or OFF 

Scroll ON or OFF (If ON, the destination is scrolled up after an EOL 

enough to have the next printed character appear.) 
Left margin an integer which is the x position after an EOL (in the display 

stream's coordinate system) 
Li nefeed an integer which specifies the Y increment each linefeed 
Brush a bitmap which is used to draw curves 

The default values for these characteristics are: 
Destination the screen bitmap 
XPosition 0 
YPosition 0 
XOffset 0 (no x-coordinate translation) 
YOffset 0 (no y-coordinate translation) 
Clipping Region set so that no clipping occurs 
SourceType 'INPUT 

Operation 'REPLACE 

Texture WHITESHADE 

Font HELVETICAIO 

Italic 'OFF 
Bold 'OFF 

Scroll 'OFF 
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Left margin 0 
Li nefeed minus the height of the font 
Brush a bitmap of a single bit 

Displaystreams are represented as instances of the datatype DisplayStream. 

The following functions manipulate the fields of a DisplayStream. The functions return the 
old value (the one being replaced). A value of NIL for the new value will return the current 
setting without changing it. This provides a uniform way of "reading" the current setting. In 
the case of fields which can only be either OFF or ON, NIL returns the current setting, the 
special value OFF turns the feature off, and anything else turns it ON. These functions do not 
change the destination bitmap; just the effect of future operations done through the display 
stream. 

DSPCREATE[ ] 
Returns a new DisplayStream, settings are copies of the initial DisplayStream (see 
above). 

DSPDESTINATION[Destination DisplayStream] 

DSPXPOSITION[XPosition DisplayStream] 

DSPYPOSITION[YPosition DisplayStream] 

DSPCLIPPINGREGION[Region DisplayStream] 

DSPXOFFSET[XOffset DisplayStream] 

DSPYOFFSET[YOff:set DisplayStream] 

DSPSOURCETYPE[SourceType DisplayStream] 

DSPOPERATION[Operation DisplayStream] 

DSPTEXTURE[Texture DisplayStream] 

DSPSCROtL[SwitchSetting DisplayStream] 
Controls whether or not the bitmap contents are moved up when a linefeed would put 
any of the next line of characters off the bitrnap. 

DSPLEFTMARGIN[XPosition DisplayStream] 

DSPLINEFEED[DeltaY DisplayStream] 
This is the amount the y coordinate is increased by when a linefeed is printed. It is 
normally a small negative number. 

DSPBRUSH[Bitmap DisplayStream] 

The font related functions DSPFONT, DSPITALIC and DSPBOLD are described in the section on 
display stream font functions below 

There is a distinguished display stream, called the current display stream, which is used by 
any function which is given NIL as a DisplayStream argument. To change the current 
DisplayStream, use the function 
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CURRENTDlSPtAYSTREAM[~playStream] 

As is the case with other,functions, CURRENTDISPLAYSTREAM returns the old value of the 
current display streem, : Lf DisplayStream is NIL, the current display stream is not affected. 

DSPFILL[Region Texture Operation DisplayStream] 
Fills Region of 'he destination bitmap (within the clipping region) with Texture (a 
patteh of 'bw. 'ff Rbgion is NIL, the whole destination (within the clipping region) is 
used. If 'fewtu& or Operation are NIL, the values from DisplayStream are used. 

DSPRESET[ ream] 
Sets the position of DisplayStream to its (0,O) position and clears its destination to its 
background Texture. 

<i,-tr,- " 
D S P B I T B L T ( S ~ ~ & ~ ~ ~ I ~ ~ S ~ ~ ~ ~ ~  SourceLeft SourceBottom DestinationDisplayStream 

DestinationLeft DestinationBottom Width Height SourceType Operation Texture] 

Similar to B ~ L T  but uses the coordinate systems of the SourceDisplayStream and 
~ e s t h d 6 r i ~ l s ~ k y s t r e a m  to do the transferring. The rectangle of bits (SourceLeft 
~buica~drtol i i :  Wldfh Height) in SourceDisplayStream's destination are clipped by 
~ourcebispiay~trerin's clipping region and tranferred to the rectangle 
(Destfn&tionLM BtsstinationBottom Width Height) in DestinationDisplayStream's 
destination' klipped by DestinationDisplayStream's clipping region using the 
~oufceQpe and Operation to determine the tranfer function. If SourceLeft, 
Sour~e8uft6m, DeMnationLeft or DestinationBottom are NIL, 0 is used. If Width or 
Height is NIL,' the1 gbsitive quadrant of the SourceDisplayStream is used. If 
SourceTyddi or Operation is NIL, the values from DestinationDisplayStream are used. 
Returns t if any bits were transferred, NIL otherwise. 

DSPBIT[X Y newvaw DhplayStream] 
Similar to BITMAPBIT but uses the coordinate system of DisplayStream. If newvalue is 
0 or 1, the bit (x,Y) of the destination bitmap of DisplayStream is changed to 
newvalue and the old value is returned. If newvalue is NIL, the bit is not changed but 
the value of the bit is returned. 

MOVETO[x y DisplayStream] 
Changes the current position of DisplayStream to the point (x,y). 

RELMOVETO[dx dy DisplayStream] 
Changes the current position to the point (dx,dy) coordinates away from current 
position of DisplayStream. 

CHARACTERS AND FONTS - 

Fonts are viewed as having a distinctive form or family name (such as Helvetica, Gacha or 
TimesRoman), a size and some face characteristics (e.g, bold and italic). Using a display 
stream, each of these parameters can be changed and the characters appearing on that 
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display stream will henceforth be in the changed font. While the specification allows any 
size, in practice the user will find that only certain sizes are available. Note that the display 
stream functions that change the font (DSPFONT, DSPBOLD and DSPITALIC) may change other 
attributes of the display stream, e.g. the line feed height to the height of the new font. 

Most users will deal with fonts only by way of display streams and hence can skim to the 
next section. 

A font is characterized by an ascent, descent and height ( =  "ascent + descent), and, for 
each character, a width and bitpattern. The ascent is the maximum extent of any character 
in the font above its base line (the printing position). The descent is the maximum extent of 
any character below the base line such as the lower part of a "p". The width of each 
character is the number of bits in width used by that character and can vary in "variable 
pitch" fonts. 

The information about a particular fully instantiated font is represented in a FontDescriptor. 
Functions to manipulate FontDescriptors are: 

FONTCREATE[FontFamily Size Face ErrorFlg] 
Returns a FontDescriptor for the specified font, Size is an integer indicating the width 
of the font in points. Face specifies the face characteristics and should be one of 
(STANDARD, BOLD, ITALIC or BOLDITALIC). If Face is NIL, STANDARD is used. For Interlisp- 
D, fonts are stored as STRIKE files. The operatian of FONTCREATE is to look for a 
STRIKE file with the appropriate name. (In the case of (FONTCREATE 'HELVETICA 8 
'BOLDITALIC), the first file looked for is HELVETCMBI.STRIKE.) If the file is found, it is 
read into a FontDescriptor. If the file is not found, the function will look for fonts with 
less face information (in the example, HELVETICAIOI.STRIKE and "fake" the remaining 
faces (by doubling the bits in the pattern of each character or slanting them). If no 
appropriately sized font is found, the action of the function is determined by ErrorFlg. 
If ErrorFlg is NIL, it returns NIL. If ErrorFIg is non-NIL, it will generate a "file not 
found" error with the name of the most general file tried (in the example 
HELVETICA8,STRIKE) (in the example HELVETICA8.STRIKE). 

FONTNAME[FontDescriptor] 
Returns the font name of the described font. 

FONTSIZE[FontDescriptor] 
Returns the font size of the described font. 

FONTFACE[FontDescriptor] 
Returns the font face of the described font: STANDARD, BOLD, ITALIC Or BOLDITALIC. 

FONTASCENT[FontDescriptor] 
Returns the ascent of the described font. 

FONTDESCENT[FontDescriptor] 
Returns the descent of the described font. 

FONTHEIGHT[FontDescriptor] 
Returns the height of the described font. 



Interlisp-D Display Facilities 

CHARACTERWIDTH[CharacterCode FontDescriptor] 
CharacterCode is an integer that describes a valid character. If FontDescriptor is a 
DisplayStream, its font is used. It returns the width of the bit pattern of the character. 

STRlNGWlDTH[Str FontDescriptor Flg Rdtbl] 
Str is a lisp object. It returns the width of the bit pattern of the printname for the 
object i f  printed in FontDescriptor. If FontDescriptor is a DisplayStream, its font is 
used. If Flg is non-NIL, the width of the PRIN~-pname with respect to the readtable 
Rdtbl is returned. 

DISPLAY STREAM FONT OPERATIONS 

The following functions are provided for dealing with a display stream's font characteristics: 

DSPFONTlFont Size Face DisplayStream] 
Sets the font of DisplayStream. (This also sets the linefeed to the height of the font.) 
Font is ebdhw a FontDescriptor or the name of a font family. Size is an integer 
indicating t h ~ ,  'font size. Face is one of STANDARD, BOLD, ITALIC Of' BOLDITALIC. If Font 
is a FontDescriptor, its font name and size are used. If Face is given and is different 
from the face of "Font which is a FontDescriptor, the face of the new font is 
determined by combining the bold and italic attributes of Font with pace. If Font, 
Size or Face are NIL and Font is not a FontDescriptor, their values are not changed. 
The value returned is the FontDescriptor of the previous font. 

DSPBOLD[SwitchSetting DisplayStream] 
Sets the bold switch ( =  changes the font face) of DisplayStream. 

DSPITALIC[SwitchSetting DisplayStream] 
Sets the italic switch ( =  changes the font face) of DisplayStream. 

BLTCHAR[CharacterCode DisplayStream] 
BLTCHAR will display the bit representation of CharacterCode in the font of 
DisplayStream at the current position of DisplayStream using the face charateristics, 
clipping region, source type, operation and texture of DisplayStream. CharacterCode 
is an integer representation of a character (as returned from CHCONI). If the 
character is not an EOL, BLTCHAR increases the x position of DisplayStream by the 
width of the character. If the character is an EOL, BLTCHAR increases the Y position 
by DisplayStream's Linefeed and resets the x position to its Left Margin. 

DSPBACKU P[Width DisplayStream] 
Backs up DisplayStream over a character which is Width points wide. OSPBACKUP fills 
the backed up over area to the display stream's background texture. OSPBACKUP 

decreases the x position by Width. If this would put the x position less than 
DisplayStream's left margin, its operation is stopped at left margin. It returns T i f  any 
bits were changed, NIL otherwise. 

DRAWING LINES AND SPLINES 

The display facility implements the following functions for drawing lines on bitmaps: 
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DRAWTO[x y width operation DisplayStream] 
Draws a line width points wide from the current position to the po~nt (x,y) onto the 
destination bitmap of DisplayStream. The clipping region is taken from DisplayStream. 
Width is defaulted to 1. Operation is a BITBLT operation which indicates how the bits 
of the line should be merged with the existing bits. Operation is defaulted to the 
Operation of DisplayStream. The position of DisplayStream is left at (x,y). 

RELDRAWTO[dx dy width operation DisplayStream] 
Draws a line width points wide from the current position to the point (dx,dy) 
coordinates away onto the destination bitmap of DisplayStream. The clipping region 
is taken from DisplayStream. Width is defaulted to 1. Operetion is a BITBLT operation 
which indicates how the bits of the line should be merged with the existing bits. 
Operation is defaulted to the Oper&on of DisplayStream. The position of 
DisplayStream is left at the end of the line. 

DRAWLINE[xl yl x2 y2 width operation DisplayStream] 
Draws a line width points wide from the point (x7,yl) to the point (x2,y2) onto 
the destination bitmap of DisplayStream. The clipping region is taken from 
DisplayStream. Width is defaulted to 1. Operation is defaulted to the Operation of 
DisplayStre~rl?. The position of DisplayStream is left at (x2,y2). The cases of 
horizontal and vertical lines are recognized so the users should not feel the need to 
call BITBLT directly for line drawing applications. 

Curves 

Curves are drawn using spline techniques. At each point along the spline, the brush bitmap 
is placed, positioned so that its center falls on the spline. The brush can be an arbitrary 
bitmap. (In Interlisp-D, a special case is made of the single point bitmap for efficiency.) 
However, some standard shapes and sizes are provided by the following function. 

BRUSHBITMAP[BrushShape BrushWidth] 
Returns a bitmap for a brush of shape Brushshape and size BrushWidth. For 
Interlisp- D, the recognized brush shapes are ROUND, SQUARE, HORIZONTAL, VERTICAL 

and DIAGONAL. Brushwidth indicates how wide the brush is to be. For Interlisp-0, 
BrushWidth is rounded to the nearest power of two and limited to a maximum of 16. 

In the curve drawing functions, operation is a BITBLT operation which indicates how the curve 
brush bits should be merged with the existing bits. Because of the problem of overlapping 
brush points, in Interlisp-D only the PAINT and ERASE operations are supported. The other 
operations can be obtained by first drawing the curve in an auxilliary bitmap and then 
bitblting it (DSPBITBLT or BITBLT) with the desired operation. 

DRAWSPLINE[knots closed DisplayStream] 
Draws a spline curve. Knots is a list of positions the spline must go through. Closed 
is a flag which indicates whether or not the spline is to be closed. The operation, 
brush and clipping region are taken from DisplayStream. 

DRAWCIRCLE[x y radius quadrants DisplayStream] 
Draws a circle with a radius of radius about the point (x,y) onto the destination 
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bitrnap of DigpfoyStream, Quadrants, if given, is a list of the quarter circles that 
should be displayed, numbered counterclockwise from 1 to 4 with + x, + y being 1. 
The operation, brush and clipping region are taken from DisplayStream. 

APPENDIX 

This appendix documents some parts of the Interlisp-D graphics facilities that will soon be 
deimplemented. These are described here both for the purpose of documenting them until 
they are obsolete and as a suggestion to other implementors as to how to cope with the 
transition to a system that is fully based on the display. 

This section is temporary until "display mode" is the only way of interacting with the display. 

DISPLAYSTREAMINIT[N TTYATBOTTOMFLG] 
~ e f o r e  );b ' use7'the display, the display stream facility must be initialized. This is 
done $ith\he f"nction DISPLAYSTREAMINIT which clears the screen and leaves N lines 
of "teletype simulation area" at the top or bottom depending on the setting of 
T T ~ A T B O T T P ( ~ F ~ ~ ,  The teletype region gets the normal Lisp TTY output while the rest 
of the s c r y n ,  i+s &ang& with various Display Stream functions. The variables 
\~is~la~V'ihdtt(& \ ~ i s ~ l a ~ ~ e i ~ h t  are set to the width and height of the display. The 
bottom lee .comer is (0,O). 

To initialize the ~i$play&reams facility without effecting the display, use 

lNlTl ALIZEDISPLAYSTREAW 
Sets up the Displaystream mechanisms. Automatically calls InitializeDisplay if that 
function has not been already been called. Rreturns a "default" DisplayStream which 
is also made the current DisplayStream. 

To couple the hardware to the special bitmaps, use 

STARTDISPLAY[width height TTYAtBottom] 
Height refers to how much of the screen is to be used in the bitmap (as opposed to 
teletype) mode. Width determines how much of the screen will be seen but the extra 
width is not used if this is less than \Screenwidth (currently 620). If these are NIL, 

then the values from the last call are used (or reasonable defaults if this is the first 
call). The remainder of the screen is In teletype mode. The teletype portion is at the 
top of the screen normally; if rrvAteottom is non-NIL then the TTY portion is at the 
bottom of the screen. This functlon (like InitializeDisplayStreams) will automatically 
call InitializeDisplay if that function has not been called before this one is. This 
function can be called repeatedly to change how much of the screen is to be used in 
bitmap mode. The bits in the screen bitmap are not cleared by this operation so that 
if the same width is given, the screen will be part of what was there before. 

To return to the state where the full display is in teletype mode, use the function: 
STOPDISPLAY[ ] 
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To find out whether the special display bitmaps have been initialized, use the function: 
DISPLAYINITIALIZEDP[ ] 

To find out whether the DisplayStreams have been initialized, use the function: 
DlSPLAYSTREAMSlNITlALIZEDP[ ] 

To find out whether the display is currently on, use the function: 
DISPLAYSTARTEDP[ ] 

Preservation of state over LOGOUT and SYSOUT 
1 

All bitmaps, FontDescriptors and Displaystreams are unaffected by SYSOUTS and LOGOUTS. 
The system calls STARTDISPLAY again to continue after SYSOUT automatically. 

Display stream insert mode 

This mode was included in an effort to speed up the DLISP editor. It is an inadequate 
solution which has problems with seaming of the background texture. If a better solution 
can be found, this will be deimplemented. 

Before the character is placed, if DisplayStreamlnsert is non-NIL, the region of the 
Displaystream's bitmap from the left edge of the character to the right edge of the clipping 
region (and with height of the active font) is moved right by the width of the character. That 
is, the character is "inserted". This may cause seams to appear if characters are being 
printed on a gray background. [Implementation note: The function BltChnr returns a dotted pair the CAR 
of which is T if any of the character fell within the clipping region, otherwise NIL; the CDR of which is T iff the 
insertion was to the left of the clipping region and caused unknown stuff to be "pushed" into view, NIL 
otherwise. Unknown stuff is denoted by reverse background.] 
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Further steps in the  flight from time-sharing 

The interlisp-D group. 

A bst tact 

One of the goals of the Interlisp-D effort has been to provide tnterlisp's programming support 
tools in a personal computing environment. This report outlines the current status of the 
Interlisp-D implementation, and describes some of the interactive programming tools that 
have recently been added to the system. 

BACKGROUND 

The interlisp-D project was formed to develop a personal machine implementation of loterlisp 
for use as an environment for research in artificial intelligence and cognitive science [Burton 
et a]., 80b]. This note describes the principal developments since our last report almost a 
year ago [Burton et el., 80a]. 

Principal characteristics of Interlisp-D 

Interlisp-D is an implementation of the lnterlisp programming environment [Teitelrnan 8 
Masinter, 811 for the Dolphin and Dorado personal computers. Both the Dolphin and Dorado 
are microprogrammed personal computers, with 16-bit data paths and relatively large main 
memories (-1 megabyte) and virtual address spaces (4 -16M 16 bit words). Both machines 
have a medium sized local disk, Ethernet controller, a large raster scanned display and a 
standard Alto keyboard and 'house" pointing device. 

Both the internal structure of Interlisp-D and an account of its development are presented in 
[Burton et at, 80b]. Briefly, Interlisp-D uses a byte-coded instruction set, deep binding, CDR 
encoding (in a 32 bit CONE cell) and incremental, reference counted garbage collection. The 
use of deep binding, together with a complete implementation of spaghetti stacks, allows 
very rapid context switching for both system and user processes. Virtually all of the 
Interlisp-D system is written in Lisp. A relatively small amount of microcode implements the 
Interlisp-0 instruction set and provides support for a small set of other performance critical 
operations. The at one time quite large Bcpl kernef has been afZ but compietely absorbed 
into Lisp, for the reasons outlined in [Burton et al, &Obj. 

interlisp-D is completely upward compatible with the widely used POP-10 version. All the 
lnterfisp system software documented in the lnterlisp Reference Manual [Teitelman et al., 781 
runs under Interlisp-0, exqepting only a few capabilities explicitly indicated in that manual as 
applicable only to Interlisp-10. The completeness of the implementation has been 
demonstrated by the faat that several very large, independently developed, application 
systems, such as the KLONE knowledge representation language [Brachman, 781, have been 

A version of this paper is to appear in SIGART Newsletter, NO. 77, August 1981. 
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brought up in interlisp-D with little or no modification. Interlisp-D is in active use by 
researchers (other than its impternentors) at both Xerox PARC and Stanford University and is 
now approaching the level of stability and reliability of Interlisp-10. 

CURRENT PERFORMANCE 

The performance engineering of a large Lisp system is distinctly non-trivial. We have 
invested considerable effort, including the development of several performance analysis 
tools, on the performance of interlisp-D and, as a result, seen its performance improve by 
nearly a factor of fiive over the last year. Although relative performance estimates can be 
misleading, because of variation due to choice of benchmarks and compilation strategy, the 
overall performance of Interlisp-D on the Dolphin currently seems to be about twice that of 
Interlisp- t 0 on 
the Dolphin a 
improvements 

an otherwise unloaded PDP KA- 10. Although this level of performance makes 
comfortable personal working environment, we have identified a number of 
which we anticipate will further improve execution speed by 20% to 100%. 

MACHtNE INDEPENDENCE 

Another major thrust has been to reduce the dependencies o n  specific features of the 
present environment, so as to facilitate Interlisp-D's implementation on other hardware. 
Dependencies on the operating system have been removed by absorbing most of the higher 
(generally machine independent) facilities provided by the operating system into Lisp code. 
Gratuitous dependencies on attributes of the hardware, such as the 16-bit word size, have 
been removed and inherent ones isolated. in addition to an abstract desire for 
transportability, our sharing of code with other Interlisp implementation projects provides a 
on-going motivation for this effort. 

EXTENDED FUNCTIONALITY 

The principal innovations in Interlisp-D, with respect to previous implementations of Interlisp, 
involve the extensions required to allow the Interlisp user access to a personal machine 

X 

computing environment. 

Network facilities 

While network access is a valuable facility in any computing environment, it is of particular 
importance to the crser of a personal machine, as it is the means by which the shared 
resources of the community are accessed. Over the last year, Interlisp-0 has incorporated 

both low level Ethernet access and a collection of various higher level protocols used to 
communicate with the printing and file servers in use at PARC. It is now straightforward to 
conduct all file operations directly with remote file servers. This both allows the sharing of 
common files (e.g., for multi-person projects, such as the construction of Interlisp-D itself), 
permits a user to move easily from one machine to another, and eliminates any constraints 
of local disk size. We have also begun to investigate the possibility of paging from a remote 
virtual memory elsewhere on the network. This would not only allow completely transparent 
relocation of a user's environment from one machine to another, but would open up a variety 
of interesting schemes for distributing a computation across a set of machines. 
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High level graphics facilities 

Interlisp-D has always had a complete set of raster scan graphics operations (documented in 
[Burton, Bob]). More recent developments include a collection of higher level user graphics 
facilities, akin to those found in other personal computing environments. The most important 

of these is the Interlisp-D window package. This facility differs in spirit from most other 
window systems in that, rather than imposing an elaborate structure on programs that use it, 
it is a self consciously minimal collection of facifities which aUow multiple programs to share 
the same display. Although some mechanism is necessary to adjudicate a harmonious 
sharing of the display, we feel that higher level display structuring conventions are still an 
open research question and therefore should not yet be incorporated into a mandatory 
system facility. The window package does provide both interactive and programatic 
constructs for creating, moving, reshaping, overlapping and destroying windows, in such a 
way that a program can be embedded in a window in a completely transparent (to that 
program) fashion. This allows existing programs to continue to be used without change, 
while providing a base for experimentation with more complex window semantics in the 
context of individual applications. 

One such existing application is a display based, structural program editor. This editor, in 
contrast to the character orientation of most modern display based program editors, is the 
result of marrying display techniques (selection and command specification by pointing, 
incremental reprinting, efc) with the structure orientation of the existing lnteriisp editor. 
indeed, the two editors are interfaced so that the considerable symbolic editing power of the 
'existing editor remains available under the display based one. Although our initial 
experience has been positive, the user interface is under continued revision as we gain 
further experience with this style of editing. 

FUTURE PLANS 

i 

I The area in which we antickpate most future development of Interlisp-0 is the personal 
computing facilities, such as graphics and networking, and their integration into Interlisp's 
rich collection of programming support tools. While radical changes to the underlying 

I language structures are made difficult by our desire to preserve exact lnterlisp compatibility, 
we also expect some language extensions, including some form of object oriented procedure 

-- -. .* invocation. 

f 
f ., One of the great strengths of Interlisp has been the many contributions made by its active, 

1 critical user community, We are hopeful that the recent commercial availability of Interlisp-D 
f 

, 
to other sites, and the consequent growth of its user community, will be a similar source of 

long term strength and; in the short term, significantly accelerate the pace with which s 

lnterlisp evolves away from its time-shared origins into a personal computing environment. 
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