




INTERLISP REFERENCE MANUAL 

BY WARREN TEITELMAN 

contributions by: -

J. W. GOODWIN 
A. K. HARTLEY 
D. C. LEWIS 
J. J. VITTAL 
M.D.YONKE 

BOLT BERANEK & NEWMAN 

D. G. BOBROW 
R. M. KAPLAN 
L. M. MASINTER 
B. A. SHEIL 

XEROX PALO ALTO RESEARCH CENTER 

XEROX 
PALO ALTO RESEARCH CENTER 
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304 



BOLT, BERANEK & NEWMAN 
Copyright © 1974 

Revised October, 1974 
Revised December, 1975 
Revised October, 1978 

XEROX CORPORATION 



ACKNOWLEDGMENTS AND BACKGROUND 

lnterlisp has evolved from a succession of LISP systems that began with a LISP designed and 
implemented for the DEC PDP-1 by D. G. Bobrow and D. L. Murphyl at Bolt, Beranek and 
Newman in 1966, and documented by D. G. Bobrow. An upwards compatible version of this LISP 
was implemented for the SDS 940 in 1967, by Bobrow and Murphy. This system contained the 
seeds for many of the capabilities and features of the current system: a compatible compiler and 
interpreter,2 uniform error handling. an on-line LISP oriented editor,3 sophisticated debugging 
facilities.4 etc. 940 LISP was also the first LISP system to demonstrate the feasibility of using 
software paging techniques and a large virtual memory in conjunction with a list-processing system 
[Bob2J. DWIM, the Do-What-I-Mean error correction facility, was introduced into the system in 
1968 by W. Teitc1man rrei2], who was also responsible for documentation for the 940 LISP system. 

In 1970, an upwards compatible version of 940 LISP called BBN LISp5 was designed for the PDP-
10 by D. G. Bobrow, D. L. Murphy, A. K. Hartley, and W. Teitelman, and implemented by 
Hartley with assistance from Murphy. A. K. Hartley was also responsible for modifying the 940 
LISP compiler to generate code for the PDP-10. BBN-LISP ran under TENEX, a sophisticated 
time sharing system for the PDP-10 designed and implemented by D. O. Bobrow, 1. D. Burchfiel, 
D. L. Murphy, T. R. Strollo. and R. S. Tomlinson.[Bob1] With hardware paging and 256K of 
virtua1 memory provided by TENEX, it became practical to provide extensive and sophisticated 
interactive user support facilities, such as the programmer's assistant [Tci4J. CLISP [fei5], and a 
more sophisticated DWIM. all of which were designed and developed by W. Teitelman. In 1971, 
the block compiler was designed and implemented by D. O. Bobrow. In 1974, the ability to swap, 
i.e., overlay, compiled code was added. significantly increasing the virtual address space. In 1975, 
implementation of the spaghetti stack capability based on the Bobrow-Wegbreit model described in 
[Bob3] was completed by A.K. Hartley. The BBN-LISP Manual [Tei3] was written by W. 

1 

2 

3 

4 

5 

D. G. Bobrow is currently at Xerox Palo Alto Research Center (PARC). D. L. Murphy is with Digital Equipment 
Corp. 

The preliminary version of the compiler was written by L. P. Deutsch. now at Xerox P ARC. This was considerably 
modified and extended by D. L. Murphy before producing the final working version. 

The original idea of a LISP oriented structure editor belongs to L. P. Deutsch. The editor in its current form was 
written by W. Teitelman. now of Xerox PARCo 

Designed and implemented by W. Teitelman. 

The design. construction and documentation for nBN LISP was sponsored by the Information Processing Techniques 
Section of the Advanced Research Project Agency. as was all of the subsequent work on the system that was 
performed at BBN. Since March 1<)72, U1C contributions madc to thc development of U1C system by W. Tcitelman. 
including thc prcpamtion of this manual. were sponsorcd by Xerox Palo Alto Research Center. 

i 



Teitelman, with contributions from A. K. Hartley and from 1. W. Goodwin, who also wrote 
TRANSOR and the special arithmetic functions. as wen as a number of other utility functions. 
'The name of the system was changed fromBBN-LiSP to lntcrlisp in 1973. when the maintenance 
and development of the system evolved into a joint effort between Bolt Beranek and Newman, and 
Xerox Palo Alto Research Center. 1be Interlisp reference manual was wlitten by W. Teitc1man, 
with contributions from (in alphabetic order) D. G. Bobrow. J. W. Goodwin, A. K. Hartley, P. C. 
Jackson, D. C. Lewis, and L. M. Masinter. 'The cover was designed by Alice R. Fikes. 

Intcrlisp-lO is currently the LISP system used at Bolt Beranek and Newman. Xerox Palo Alto 
Research Center. Stanford Research Institute Artificial Intelligence Center, Information Sciences 
Institute, the SUMEX facility at Stanford University, Yale University, Cal tech, Rutgers, the 
University of Linkoping in Sweden and others. Interlisp-10 now runs under both the Tenex and 
TOPS-20 operating system. and is available through DECUS; the total Interlisp-10 user community 

. now comprises over three hundred users. To aid other Interlisp implementations and to encourage 
• compatability between implementations, specifications of lnterlisp can be found in "'The lnterlisp 

Virtual Machine Specification" [Moo]. . 

Interlisp is a continuously 'evolving system, both in response to complaints, suggestions, and 
requests of the many users scattered throughout the ARPA network, as well as the long range goals 
of the individuals primarily responsible for the system, which are currently: 

Person 
W. Teitelman 
Xerox Palo Alto 

Research Center 
3333 Coyote Hill Road 
Palo Alto, Calif. 94304 

A. K. Hartley 
Dolt Deranek & Newman 
50 Moulton Sl 
Cambridge, Mass. 02138 

O. C. Lewis 
Bolt Beranek & Newman 
50 Moulton Sl 
Cambridge, Mass. 02138 

L. M. Masinter 
Xerox Palo Alto 

Research Center 
3333 Coyote Hill Road 
Palo Alto, Calif. 94304 

R. M. Kaplan 
Xerox Palo Alto 

Research Center 
3333 Coyote Hill Road 
Palo Allo, Calif. 94304 

Responsible for 
User Facilities: i.e., pretty-print, editor, 
break and trace, advising, 
DWIM, CLlSP, programmer's assistant, etc. 

Interlisp-10 interpreter, garbage collector, 
all SUDR's (hand-code machine language functions), 
compiler, spaghetti stack. 

Interlisp-lO input-output, readtables, 
terminal tables, user data types, overlays, TENEX 
functions. 

pattern match compiler, record package, 
MASTERSCOPE. 

LlSPUSERS packages 

ii 



I 
1 
! 
1 

i 
i 

1 

1 
J 

I 
I 
i 
i , 
1 

1 
I 

The preparation of this manual has involved the efforts of several persons at Xerox PARC, whom I 
specifically want to mention, and to express my appreciation for their support through this arduous, 
and at times seemingly endless task. Thank you Suzan (Jerome), Janet (Farness),Peler (Deutsch), 
Bob (Walker), and Larry (Tesler). I couldn't have done it without you. 

Warren Teitelman 
Palo Alto 
December, 1973 

Special thanks go to R. L. Walker, L. M. Masinter, and L. P. Deutsch for assistance in the 
preparation of this first revision. 

W.T. 
October, 1974 

Special thanks go to Carol Van Jepmond for assistance in the preparation of this second revision. 

W.T. 
December, 1975 

Special thanks go to Sara Dake who did the bulk of the editing, to L. M. Masinter and R. M. 
Kaplan for their valuable suggestions and hclp in proofreading, to R. E. Fikes, who proofread and 
checked the entire indcx, and also to J. Maleson and D. C. Swinehart, for assisting with the 
software for generating a publishable quality copy of the manuscript. 

- -- --- - - -~-
, ~-".~ '-" 

iii 

W.T. 
October, 1978 





TABLE OF CONTENTS 

SECTION 1: INTRODUCTION 

SECTION 2: USING INTERLISP 

Using the Intcrlisp Manual 
. Using the Interlisp System 

SECTION 3: DATA TYPES, STORAGE ALLOCATION, 
GARBAGE COLLECTION, AND OVERLAYS 

Data Types 
Literal Atoms 
Pnames. . 
Value Cells . 
Numerical Atoms 
Lists . 
Arrays . 
Strings . 

User Defined Data-Types. 
Storage Allocation and Garbage .Collection 
Shared Intcrlisp-lO 
lbe Interlisp-lO Swapper . 

Overlays. 
Efficiency 
Specifications. 

SECTION 4: FUNCTION TYPES AND IMPLICIT PROGN 

Exprs . 
Compiled Functions 
Function Type 
Progn. 
Implicit Progn. 

SECTION 5: PRIMITIVE FUNCTIONS AND PREDICATES 

Primitive Functions . 
Changing and Restoring System State 

Predicates and Logical Connectives 

i 

1 
3 

1 
1 
2 
2 
3 
4 
5 
6 
7 
9 

11 
12 
12 
13 
14 

1 
2 
2 
3 
3 

1 
7 
9 



TABLE OF CONTENTS (cont.) 

SECTION 6: LIST MANIPULATION AND CONCATENATION 

SECTION 7: PROPERTY LISTS AND HASH LINKS 

Property Lists . 
Property List Functions . 

Hash Links 
Hash Link Functions. 
Hash Overflow . 

SECTION 8: FUNCTION DEFINITION AND EVALUATION 

SECTION 9: THE INTERlISP EDITOR 

Introduction . 
Commands for the New User. 
Attention Changing Commands 

Local Attention-Changing Commands 
Commands 'That Search . 

Search Algorithm . 
Search Commands. 
Location Specification. 

Commands That Save and Restore the Edit Chain 
Commands 111at Modify Structure 

Implementation of Structure Modification Commands 
The A, n, and : Commands . 
Form Oriented Editing and the Role of UP. 
Extract and Embed . 
The MOVE Command . 
Commands 'lbat Move Parentheses . 
TO and THRU . 
1be R Command 

Commands That Print. 
Commands That Evaluate. 
Commands 1bat Test. 
Macros 
Miscellaneous Commands. 

Commands for Leaving the Editor 
Nested Calls to Editor . 
Manipulating the Characters of an Atom or String 
Manipulating Predicates and Conditional Expressions 
History Commands in the Editor. 
Miscellaneous 

Undo. 
Editdefault 
Editor Functions 

ii 

, . 

'. 

1 
1 
3 
4 
5 

1 
7 

10 
10 
14 
16 
17 
19 
22 
24 
25 
26 
28 
29 
31 
33 
35 
38 
40 
41 
43 
45 
47 
47 
49 
50 
51 
52 
52 
54 
56 
58 



! 
I 

TABLE OF CONTENTS (cont.) 

SECTION 10: ATOM, STRING, ARRAY, AND STORAGE MANIPULATION 

Pnames and Atom Manipulation 
Stling Functions . 

Searching Strings. 
Example Problem 
String Storage 

Array Functions . 
Storage Functions. 

SECTION 11: FUNCTIONS WITH FUNCTIONAL ARGUMENTS 

1 
4 
6 
6 
7 
8 

10 

Funarg 3 
Example 4 

SECTION 12: VARIABLE BINDINGS, PUSHDOWN LIST FUNCTIONS, 
AND THE SPAGHETTI STACK 

The Pushdown List and the Interpreter 
Blip Functions . 

The Spaghetti Stack . 
Stack Functions . 
Releasing and Reusing Stack Pointers. 
Coroutines and Generators 

Possibilities Lists. 

SECTION 13: NUMBERS AND ARITHMETIC FUNCTIONS 

Integer Arithmetic. 
Small Integers 
Integer Functions 

Floating Point Arithmetic. 
Mixed Arithmetic . 
Special Functions . 
Reusing Boxed Numbers in Interlisp-l0 - Setn 

Caveats Concerning Use of Setn. 
Box and Unbox in Interlisp-l0 

SECTION 14: INPUT IOUTPUT FUNCTIONS 

Files . 
Manipulating File Names 
Addressable Files 

" . 
Closing and Reopening Files - The Whenclose Package . 

Input Functions . 
Output Functions. 

Printlevcl 

iii 

., 

2 
4 
4 
6 

12 
13 
16 

1 
1 
2 
5 
6 
7 
8 
9 

10 

1 
6 
7 
9 

11 
17 
18 



TABLE OF CONTENTS (cant.) 

Printing Numbers - 'lbe Printnum Package 
User Defined Printing . 
Dumping Unusual Data Structures 

Readtables and Terminal Tables 
Readtab1c Functions. 
Syntax Classes 
FOlmat Characters . 
Breaks, Separators, and Readtables 
Read-macro Characters . 
Terminal Tables. 
Terminal Table Functions 
Terminal Syntax Classes . 
Terminal Control Functions . 
Line-Buffering and Control . 
Turning-Off Line-Buffering. 

Miscellaneous Input/Output Control Functions 
Sysin and Sysout . 
Symbolic File Input . 

File Maps 
Readfile and Write file 

Prettyprint 
Comment Feature 
Comment Pointers 
Converting Comments to Lower Case 
Special Prettyprint Controls . 
Font Package 

File Package . 
Typed Definitions 
File Package Commands. 
File Package Types 
Marking Changes 
Noticing Files 
Updating Files . 
File Package Functions 
Functions for Manipulating Typed Definitions 
Defining New File Package Types . 
Defining New File Package Commands. 
Functions for Manipulating File Command Lists. 
Remaking a Symbolic File 
Prettydef Functions . 

". 

SECTION 15: DEBUGGING· THE BREAK PACKAGE 

Debugging Facilities . 
Breakl 

Break Commands 
Brkcoms. 
Brkfile . 
Breakmacros . 
Breakresetforms . 

iv 

20 
22 
22 
23 
24 
24 
25 
26 
26 
29 
29 
30 
30 
32 
33 
34 
36 
38 
41 
42 
43 
44 
45 
45 
48 
49 
54 
55 
56 
61 
62 
63 
63 
64 
69 
72 
73 
75 
77 
78 

1 
3 
5 

13 
13 
13 
14 



I 
j 

1 

• I 
f 

TABLE OF CONTENTS (cont.) 

Break Functions 14 
Breakin . 16 

SECTION 16: ERROR HANDLING 

Unbound Atoms and Undefined Functions 
Telminal Initiated Breaks. 

Control-H 
Control-B 
Control-E 

Other Types of Errors. 
Breakcheck - When to Break . 
Error Types . 

Error Handling by Error Type 
Error Functions . 

. Interrupt Characters . 

SECTION 17: AUTOMATIC ERROR CORRECTION - THE DWIM FACILITY 

Introduction . 
Interaction with Dwim 

Spelling Correction Protocol . 
Parentheses Errors Protocol . 
U.D.F. T Errors Protocol 

Spelling Correction 
Synonyms 
Spelling Lists. 
Generators for Spelling Correction 

Error Correction . 
Unbound Atoms. 
Undefined Car of Form . 
Undefined Function in Apply 

Dwimuserforms . 
Spelling Corrector Algorithm . 
Dwim Functions and Variables 
Askuser . 

Startup Protocol . 
Operation 
Format of Keylist 
Completing a Key 
Options. 
Special Keys . 

- -- -- -- ---
.--",-=-;-~~~...:.--

v 

1 
2 
2 
2 
2 
3 
3 
4 
9 

10 
12 

1 
3 
4 
5 
5 
7 
7 
8 
9 

10 
10 
12 
13 
14 
16 
17 
22 
22 
23 
24 
25 
26 
28 



TABLE OF CONTENTS (cont.) 

SECTION 18: . THE COMPILER AND ASSEMBLER 

The Compiler .. 
Compiler Questions . 
Compiling Nlambdas . 
Global Variables Vs Shallow Binding. 
Compiler Functions 

Declare: . 
Recompile . 

Open Functions . 
Compiler Macros . 

Constant. 
Compiletypelst 
Macrotran • 

Function and Functional Arguments 
Block Compiling • 

Retfns . . 
Blkapplyfns • 
Blklibrary . 

Linked Function Calls. 
Relinking . 

Localv.ars and Specvars 
The Block Compiler • 

Blockcompile. 
Block Declarations 
Bcompl. . 
Brecompile • 

Compiler Structure 
Assemble. • . . . 

Assemble Statements. 
Corevals. 

Lap • 
Lap Statements • 

Using Assemble • 
Miscellaneous. 
Compiler Printout and Error Messages 

SECTION 19: ADVISING 

Implementation of Advising • 
Advise Functions . 

vi 

. . 

1 
2 
3 
4 
5 
6 
1 
9 

10 
12 
12 
13 
13 
14 
14 
14 
15 
15 
11 
18 
19 
19 
20 
22 
22 
23 
24 
24 
21 
21 
21 
31 
32 
33 

2 
3 

... 



t 

1 

I 

TABLE OF CONTENTS (cont.) 

SECTION 20: MASTERSCOPE AND HELPSYS 

Masterscope . 
Command Language. 

Paths. 

Relations. 
Sets . 
Conjunctions 
Commands 

Affecting Masterscope Analysis 
Data-base Updating . 
Masterscope Entries . 
Error Messages . 
Noticing Changes that Require Recompiling. 
Implementation Notes 

Helpsys 

SECTION 21: MISCELLANEOUS 

Measuring Functions . 
Breakdown 

More Accurate Measurement 
Interfork Communication in Interlisp-l0 
Subsys. 
Miscellaneous Operating· System Functions 

Manipulating Tenex File Directories from Interlisp-l0 
JFN Functions in Interlisp-lO. 
Pmap Package. 
Typescript files 
Display Terminals. 
Gainspace. 

SECTION 22: THE PROGRAMMER'S ASSISTANT 

Introduction . 
Overview. 
Event Specification 
History Commands 

Implementation of Redo, Use, and Fix 
History Commands Applied to History Commands 
History Commands That Fail 
More History Commands 

Miscellaneous Features and Commands 
Undoing . 

Testmode 
Undoing out of order 
Saveset . 
Undonlsetq and Resetundo 

Format and Use of the History List 

---------
,",,"i:i'-,,_~-¥~' 

vii 

1 
3 
4 
6 
9 
9 

14 
16 
18 
18 
20 
20 
21 
22 

1 
4 
6 
6 
7 
8 

10 
11 
12 
15 
15 
16 

1 
4 

10 
12 
15 
16 
17 
17 
23 
31 
32 
33 
33 
34 
34 



TABLE OF CONTENTS (cont.) 

Lispx and Readline 
Functions. 
'The Editor and the Programmer's Assistant 
Statistics . 
Greeting and User Profiles 

SECTION 23: CUSP·CONVERSATIONAlliSP 

Introduction . 
Clisp Syntax . 
Infix Operators 
Prefix Operators 
Constructing Lists . the < and> Operators 
If,' TIlen, Else. 
Iterative Statements . 

Miscellaneous 
Errors in Iterative Statements 
Defining New Iterative Statement Operators . 

English Phrases 
Clisp Translations . 
Declarations . 

Table of Declarations 
Local Declarations . 

Record Package . 
Record Declarations . 
Create 
Type? 
Data-paths 
Changing Record Declarations 
Other Functions . 

Changetran 
Change Words Recognized by Changetran 

Clispify 
Dwimify . 

Compiling CUsp . 
The Printout Package. 

Overview and Examples . 
The Printout Form . 
Horizontal Spacing Commands 
Vertical Spacing Commands . 
Special Formatting Controls. . . 
Printing Specifications 
Escaping to Lisp. 
User-Defined Commands 
Special Printing Functions 

Clisp Operation . 
Clisp Interaction with User 
Clisp Internal Conventions 
Clisp Functions and Variables. 

viii 

. . 

35 
36 
45 
46 
46 

1 
6 
6 
8 

10 
10 
11 
17 
18 
19 
21 
22 
24 
24 
25 
25 
27 
32 
33 
34 
35 
35 
36 
37 
38 
40 
42 
43 
43 
44 
45 
46 
46 
47 
49 
49 
49 
50 
52 
53 
56 



TABLE OF CONTENTS (cont.) 

SECTION 24: LlSPUSERS PACKAGES 

Pattern Match Compiler 1 
Pattern Elements. 2 
Element Patterns. 2 
Segment Patterns. 4 
Assignments . 5 
Place-Markers 6 
Replacements 6 
Reconstruction 7 

Edita . 8 
Overview. 9 
Input Protocol 10 
Edita Commands and Variables. 11 
Editing Arrays 14 

Printing Reentrant and Circular List Structures 15 
Circ1print 15 
Printl 19 

Transor 21 
Introduction. 21 
Using Transor 22 
Translating . 22 
The Translation Notes 23 

I 
Errors and Messages. 24 
Transorset 24 
Transorset Commands 25 
The Remark Feature. 26 
Controlling the Sweep 28 

Indexing and Cross Referencing Files. 30 
Multifileindex 30 
Singlefileindex 31 

Databasefns 31 

I. 

Lambdatran 32 
Pennstatus. 34 
Whereis 34 
Cjsys . 35 
Scratchlist . 36 
Nobox. . 37 

Cons Cells 37 
Number Boxes 37 
Cautions. 39 

Datefonnat 40 
Exec 41 

Exec Lispxmacros . 41 

1 
Exec Functions 43 

Passwords. 44 
Telnet. 44 

i FTP 44 
NET . 46 
Hash--A Hash-coded Dictionary Facility 47 

/, Unstructured Pages and Symbol Tables. 51 



-- --- - -- ~ 

TABLE OF CONTENTS (cont.) 

The Printing Region. 
11le Ded Package, 

lntroduction , 
Using Declarations in Programs , 
Dlambdas 
Dprogs ., 
Declarations in Iterative Statements , , 
Declaring a Variable fora Restricted Lexical Scope, 
Declaring the Values of Expressions, 
Assertions 
Using Type Expressions as Predicates 
Enforcement, 
Decltypes 
Predefined Types 
Type Expression& 
Named Types 

Manipulating Named Types • 
Relations Between Types. 
The Declaration Database 
Declarations and Masterscope 

APPENDIX 1: CONTROL CHARACTERS 

MASTER INDEX 
INDEX OF FUNCTIONS 
INDEX OF VARfABLES AND PARAMETERS 

x 

""",~"",,~>.-~~.-,~,..-,-~ 

.. 

53 
53 
53 
54 
55 
57 
58 
58 
59 
59 
59 
59 
60 
61 
61 
63 
65 
65 
66 
67 



SECTION 1 

INTRODUCTION 

This document is a reference manual for Interlisp, a LISP system that is currently implemented on 
(or implementations are in progress for) at least five different machines. 'This manual is a reference 
manual for aU lnterlisp implementations, although it does contain some material that is relevant 
only to Interlisp-l0, the implementation of Interlisp for the DEC PDP-IO, models KA and KI, 
using the BBN TEN EX lime sharing system [Bobl] and the KL-lO using the TOPS-20 operating 
system.l Where this is the case, such material is clearly marked. 

Interlisp has been designed to be a good on-line interactive system (from which it derives its 
name). Some of the features provided include elaborate debugging facilities with tracing and 
conditional breakpoints (Section 15), and a sophisticated LISP oriented editor within the system 
(Section 9). Utilization of a uniform error processing through user accessible routines (Section 16) 
has allowed the implementation of DWIM, a 00-What-! -Mean. facility, which automatically corrects 
many types of errors without losing the context of computation (Section 17). 'The CLISP facility 
(Section 23) extends the LISP syntax by enabling ALGOL-like infix operators such as +. -, *. I. 
=, +-, AND, OR, etc., as well as IF-THEN-ELSE statements and FOR-WHILE-DO statements. 
CLISP expressions are automatically converted to equivalent lnterlisp forms when they are first 
encountered. CLISP also includes a sophisticated pattern match compiler, as well as a record 
package that facilitiates "data-less" programming. 

Interlisp has also been designed to be a flexible system. Advising (Section 19) enables users to 
selectively modify or short-circuit any system function. Even such "built-in" aspects of the system 
as interrupt characters, garbage collection allocation and messages, output radix, action on various 
error conditions. line-buffering protocol, etc., all can be modified through system functions 
provided for that purpose. Readtables and terminal tables (Section 14) allow the user complete 
control over input, including the ability to define read macro characters, specify echo modes, even 
redefine the action of formatting characters such as parentheses. The user can also define new 
data types (Section 23) in addition to the lists, strings, arrays, and hash association tables (hash 
links) already provided. 

A novel and useful facility of the Interlisp system is the programmer's assistant (Section 22), which 
monitors and records all user inputs. The user can instruct the programmer's assistant to repeat a 

1 Interlisp-lO is designed to provide the user access to the large virtual memory allowed by TENEX and TOPS-20. 
with relativcly small pcnalty in speed (using speci.·!l paging techniques described in [Bob2]). Intcrlisp-lO also provides 
for essentially unlimited quantity of compiled code via the overlay facility described in Section 3. Intcrlisp-lO was the 
first implementation of Interlisp. and is still the most widely used. 

1.1 



Section 1: Introduction 

particular opcration or scqucnce of opcrations, with possible modifications, or to UNDO the effects 
of spccified operations. Thc programmer's assistant also includes a (limited) error analysis 
capability. 'The goal of the progrmnmer's assistant, DWIM, CLlSP, etc. is to provide a 
prog~amming environment which will "cooperatc" with the user in the development of his 
programs, and free him to concentrate more fully on the conceptual difficulties and creative aspects 
of the problem he is trying to solve. 

Mastcrscope is an intcractive program for analyzing user programs and dctermining what fimctions 
are called and by whom, how and where variables are bound, set, or referenced, which functions 
usc particular record declarations, etc. It is extremely useful for building large systems. 

To aid in converting to Interlisp programs written in other LISP dialects, e.g., LISP 1.5, Stanford 
LISP, we have implemented TRANSOR, a subsystem which accepts transformations (or can 
operate from previously defined transfOlmations), and applies these transformations to source 
prograu1s written in another LISP dialect, producing object programs which will run on Interlisp 
(Appendix 1). In addition, TRANSOR alerts the programmer to problem areas that (may) need 
further attention. TRANSOR was used extensively in convcrting from 940 LISP to UUN-LISP on 
the PDP-10. A set of transformations is available for converting from Stanford LISP and LISP 1.5 
to Interlisp. 

A complete format directed list processing system FLIP [feil), is available for use within Intertisp. 
The TXDT package [Mo02] provides a powerful set of text editing primitives implemented in 
Interlisp from which the user can easily construct and experiment with a variety of editors. 
HELPSYS, an on-line information retrieval package that uses this manual as a data-base is also 
available to provide the user with immediate access to documentation. 

Although we have tried to be as clear and complete as possible, this document is not designed to 
be an introduction to LISP. Therefore, some parts may only be clear to people who have had 
some experience with other LISP systems. A good introduction to LISP has been written by Oark 
Weissman [Weil]. Although not completely accurate with respect to Interlisp, the differences are 
small enough to be mastered by use of this manual and on-line interaction. Another useful 
introduction is given by Berkeley [Berl] in the collection of Berkeley and Bobrow [Uer2]. 

1.2 



* * * 

First revision, October, 1974. 

'Ine first revision of the Interlisp Reference Manual corresponds to changes or additions to the 
Interlisp system during the first ten months of 1974. Approximately 200 (out of 700) pages have 
been changed to some extent in this revision. A significant number of these (about 60 pages) 
occur in Section 14 (input/output). About 30 pages of chapter 23 (CLISP) have been changed, 
and the rest of the changes arc scattered throughout the manual. Changed material in the text is 
flagged in the outside margin by the appearance of either a "+" (for addition of completely .new 
material), "." (for deletion of original material), or "*" (indicating changes to existing material that 
more or less preserve its original structure.) lnus the reader who is already familiar with the 
Interlisp manual can quickly determine what has been changed. Note: very few of these changes 
are not "upwards compatible" with the original manual, i.e., almost all of them represent extensions 
or additions. Nevertheless, the reader is encouraged to skim through the manual noting changes 
which may affect him. 

* * * 

Second revision, November, 1975. 

The second revision of the Interlisp Reference Manual corresponds to changes or additions to 
Interlisp from October, 1974 to November, 1975; the most important change is the introduction of .. 
the spaghetti stack capability, Section 12. As before, material in the text is flagged in the outside 
margin by the appearance of either a II + ", "*", or "_". 

* * * 

Third revision, October, 1978. 

The third revision of the Interlisp Reference Manual corresponds to changes or additions to 
Interlisp from November, 1975 to October, 1978. As before, new material is flagged with a "+" 
in the margin, changed material a "*". The most important change is the switch from a deep 
binding scheme to shallow binding (Section 12), with a significant improvement in performance of 
interpreted and non-block compiled programs. 

In addition, this new manual includes a number of packages and tools developed and then proven 
in actual use over the last several years by the user communities at PARe and BBN. Some of 
these arc now included as part of the standard system, and arc documented in the appropriate 
places in the manual, such as the font package tor producing listings with multiple fonts (Section 
14): the editdate package for time stamping changes to functions plus many new and powerful edit 
commands (Section 9): an improved and generalized file package (Section 14): the printout package 
which pemlits the user to specify in a single succinct expression, large variety of fancy printing 
controls, e.g. various flavors of prints, prettyprints, special number formalling. paragraph printing, 
centering, right justifying (Section 23); the Pmap facility which allows paged access to files in 

1.3 

• 



Section 1: Introduction 

Interlisp-lO (Section 21), etc. Others are not a part of the system (in the interest of space) but are 
available as loadable files. These are documented in Section 24, Lispusers Packages, and include: a 
hash package used for maintaining large symbolic databases on files, which permits information to 
be associaled with an atom or string and quickly returned; the Decl package which extends 
lnterlisp to allow declaration of the types of variables and expressions appearing in functions; the 
Exec package which provides a number of TENEX/TOPS-20 capabilities to Interlisp programs 
directly; the Ftp package which makes it possible to deal with files at other hosts on the Arpa 
network as if they were files on the user's local machine; etc. 

The last three years have seen a rapid growth in the Interlisp community, especially since the 
availability of Interlisp on the TOPS-20 operating system. As of this writing, Intcrlisp-lO is in use 
at 13 computer centers on 23 different computers, 11 of them KL-10's running TOPS-20. 

1.4 



I 
1 

1 
j 
I 

BIBLIOGRAPHY 

[Berl] 

[Ber2] 

[Bob 1] 

[Bob2] 

[Bob3] 

[Boy] 

[McC1] 

[Moo] 

[Mur1] 

[Smil] 

[Teil] 

[Tei2] 

[Tei3] 

Berk,eley, E.C., "LISP, A Simple Introduction" in Berkeley, E.C. and Bobrow, D.O. 
[Ber2]. 

Berkeley, E.C., and Bobrow, D.O. (Eds.), The Programming Language LISP, its 
Operation and Applications, MIT Press, 1966. 

Bobrow, D. 0., Burchfiel, J. D., Murphy, D. L., and Tomlinson, R. S. "TENEX, a 
Paged Time Sharing System for the PDP-lO", Communications of the ACM, March, 
1972. 

Bobrow, D.O., and Murphy, D.L. "The Structure of a LISP System Using Two Level 
Storage", Communications of the ACM, Vol. 10, 3, March 1967. 

Bobrow, D.O., and Wegbreit, B. "A Model and Stack Implementation for Multiple 
Environments", Communications of the ACM, Vol. 16, 10, October 1973. 

Boyer, Robert J., and Moore, J Strother. "A Fast String Searching Algorithm," to be 
published in CACM. 

McCarthy, J. et a1. LISP 1.5 Programmer's Manual, MIT Press, 1966. 

Moore, J Strother. The Interlisp Virtual Machine Specification (in preparation), 
Xerox Palo Alto Research Center Report, 1975. 

Murphy, D.L. "Storage Organization and Management in TENEX", Proceedings of 
Fall Joint Computer Conference, December 1972. 

Smith, D. "MLISP" Artificial Intelligence Memo No. 135 Stanford University, 
October 1970. 

Teitelman, W. FLIP, A Format Directed List Processor in LISP, BBN Report, 1967. 

Teitelman, W. "Toward a Programming Laboratory" in Walker, D. (cd.) International 
Joint Conference on Artificial Intelligence, May 1969. 

Teitelman, W., Bobrow, D.O., Hartley, A.K. Murphy, D.L. BBN-LISP TENEX 
Reference Manual, Bolt Beranek and Newman, July 1971, first revision February 
1972, second revision August 1972. 

[Tei4] Teitelman, W. "Automated Programmering - The Programmer's Assistant", 
Proceedings of the Fall Joint Computer Conference, December 1972. 

[Tei5] 

[Weil] 

Tcitelman, W. "CLISP - Conversational LISP". Third International Joint Conference 
on Artificial Intelligence, August 1973. 

Weissman, C. LISP 1.5 Primer, Dickenson Press (1967). 

1.S 





I 
I 

SECTION 2 

USING INTERLISP 

2.1 USING THE INTERLISP MANUAL - FORMAT, NOTATION, AND 
CONVENTIONS 

The Interlisp manual is divided into separate, more or less independent sections. Each section is 
paginated independently, to facilitate issuing updates of sections. Each section contains im index to 
key words, functions, and variables contained in that section. In addition, there is a composite 
index for the entire manual, plus several appendices and a table of contents. 

Interlisp is currently implemented on (or implementations are in progress for) at least four different 
computers. This manual purports to be a reference manual for all implementations of Interlisp, 
both present and future. However, since the largest user community is stin that of Interlisp-lO, the 
implementation for the DEC PDP-lO series,l the manual does contain some implementation 
dependent material. Where this is the case, the text refers to Interlisp-lO, and is indicated as such. 

Throughout the manual, terminology and conventions will be offset from the text and typed in 
italics, frequently at the beginning of a section. For example, one such notational convention is: 

The names of functions and variables are written in lower case and underlined when they appear 
in the text. Meta-LISP notation is used for describing forms. 

Examples: member[x;y] is equivalent to (MEMBER X V). member[car[x];FOO] is equivalent to 
(MEMBER (CAR X) (QUOTE FOO)}. Note that in meta-LISP notation lower case variables are 
evaluated, upper case guoted. 

. notation is used to distinguish between cons and list. 

e.g.,if!=(A B C}. (FOOx) is (FOO (A B C)}. whereas (FOO.x) is (FOO A B C). In 
other words, ! is cadr of (FOO x) but cdr of (FOO . x). Similarly, y. is caddr of (FOO x y). but cddr 
of (FOO x . y). Note that this convention is in fact followed by the read. program, 
i.e., (F 00 . (A B C» and (F 00 ABC) read in as equal structures. 

1 includes the KA and KI versions of the PDP-I0 running the TENEX operating system. and the KL-I0 or DEC 2020 + 
running the TOPS-20 operating system. + 

2.1 



Seclion 2: Using inlerlisp 

Other important conventions are: 

TRUE in Interlisp means not NIl. 

The purpose of this is to allow a single function to be used both for the computation of some 
quantity, and as a test for a condition. For example, the value of member[x;y] is either NIL, or 
the tail of y. beginning with!. Similarly, the value of or is the value of its first TRUE, i.e., non· 
NIL,;'expression,and the value of and is either NIL, or the value of its last expression. 

Although most lists terminate in NIL, the occasional list that ends in an atom, e.g., (A 8 . C) or 
worse, a number or string, could cause bizarre effects. Accordingly, we have made the following 
implementation decision: 

All functions that iterate through a list. e.g.. member, length. mape. etc. terminate by an nlistp 
check. rather than the conventional null-check. as a safety precaution against encountering data 
types which might cause infinite cdr loops, e.g.. strings, numbers, auays. 

Thus, 

mcmber[x;(A 8 . C)] = member[x:(A 8)1 
reverse[( ABC)] = reverse[( A B)] 
append[ (A 8 . C) ;y] = append[( A B) ;y) 

For users with an application requiring extreme efficiency,2 we have provided fast versions of 
memb, last, nth. assoc. and length which compile open and terminate on NIL checks, and therefore 
may cause infinite cdr loops if given. poorly formcd arguments. However, to help detect these 
situations, fmemb, flast, fnth, fassoc. and tlengtb all generate errors when interpreted if their 
argument cnds in a non-list other than NIL, e.g., BAD ARGUMENT - FlAST. 

Most functions that set system parameters. e.g., printlevel. linelength. radix. etc., return as their 
value the old setting. If given NIL as an argument, they return the current value without 
changing it. 

All SUBRS. Le., hand coded functions, such as read, print, eval. cons, etc., have "argument 
names" selected from U. V, W, X, Y. Z, as described under arglist, Section 8. However, for 
tutorial purposes, more suggestive names· are used in the descriptions of these functions in the text. 

Most functions whose names end in II are predicates, e.g., numberp. tai/p. exprp; most functions 
whose names end in !J. are nlambda's, i.e., do not require quoting their arguments, e.g., setq, 
de{ineq. nlsetg. 

"~ is equal to .r" means equal[x;yj is true, as opposed to '~ is.§!l to .Y" meaning eq/x;yj is true, 
i.e., ~ and.r are the same identical LISP pointer. 

2 A NIL check can becxccutcd in only one instruction, an nlistp on Intcrlisp'10 requires about 8. although both 
gencmle only one word of code. 

2.2 

------ -------- -
~!$Si(:-~''''¢ ..... > ."'~ ,-- - '---



Inrerlisp Manual Conventions 

When new literal atoms are created (by the read program. pack. or mkatom), they are provided 
with a function definition cell initialized to NIL (Section 8), and a property list iniiialized to NIL 
(Section 7). The function definition cell is accessed by the functiolls getd and putd described in 
Section 8, and the property list by the functions getproplist and setproplis/, (Sec/ion 7). 

fQ! of NIL and cdr of NIL are always NIL, and the system will resist attempts to clzange them. 

Neither NIL nor T can be used as bound variables, Le. used as the names of arguments in a + 
lambda expression, or as a Jll1!.g variable. + 

The tenn list refers to any structure created by one or more conses, Le., it does not lzave to end in 
NIL. For example, (A • B) is a list. The function listp, Section 5, is used 10 test for lists. 
Note that not being a list does not necessarily imply an atom, e.g., strings and a"ays are not lists, 
nor are they atoms. See Section 10. 

Many system functions have extra optional arguments for internal use that are not described in the 
writeups. For example, readline is described as a function of one argument, but 
arglist[READLINE] is (RDTBL LINE LISPXFLG). These arguments are indicated in the + 
manual by the appearance of "-" in the arglist, e.g. readline{rdtbl;-;-}. In such cases, the user + 
should just ignore the extra arguments. 

Interlisp departs from LISP 1.5 and other LISP dialects in that car of a fonn is never evaluated In 
other words, if car of a form is not an atom with a function definition, and not a function object, 
i.e., a list car of which is LAMBDA, NLAMBDA, or FUNARG, an error is generated . .mm!Y or 
rum!Y* (Section 8) must be used if the name of a function is to be computed as, for example, when 
functional arguments are applied. 

2.2 USING THE INTERLlS~ SYSTEM - AN OVERVIEW 

Call Interlisp by typing LISP followed by a carriage return. Interlisp will type an identifying 
message, the date, and a greeting, followed by a "+-". This prompt character indicates that the 
user is "talking to" the top level Interlisp executive, called evalqt. (for historical reasons), just as 
"@" indicates the user is talking to the operating system. evalqt calls lispx which accepts inputs in 
either eval or rum!Y format: if just one expression is typed on a line. it is evaluated; if two 
expressions are typed, the first is ~-ed to the second. eval and rum!Y are described in Section 
8. In both cases. the value is typed, followed by +- indicating lnterlisp is ready for another input. 

Interlisp is normally exited via the function logout, i.e., the user types LOGOUT ( ). However, 
typing control-C at any point in the computation returns control immediately to the operating 
system. The user can then continue his program with no ill effects with the CONTI NUE command, 
even if he interrupted it during a garbage collection.3 Typing control-D at any point during a 
computation will return control to evalqt. If typed during a garbage collection. the garbage 
collection will first be completed. and then control will be returned to lnterlisp's top level; 
otherwise, control returns immediately. 

3 Typing START will attempt to re-enter Intcrlisp at top level ~YnJ.g.t. However. there are many situations where this + 
might leave the system in an inconsistent Slate. Thus control-C START is definitely not adviscable unless no other + 
recourse is available (e.g. user accidentally turns all interrupts off). + 

2.3 



Section 2: Using lnterlisp 

When typing to the Interlisp read program, typing a control-Q4 will cause Interlisp to print" # #" 
and clear the line buffer, i.e., erase the entire line up to the last carriage return. Typing control-A5 
crases the last character typed in, echoing a \ and the erased character. Control-A will not back up 
beyond the last carriage return. Typing control-W within a call to read or readline will erase the 
last expression typed, echoing a \ \. Control-W will back up to previous lines. Control-Q can be 
used to immediately clear the output buffer, and < del> to immediately clear the input buffer.6 In 
addition, typing control-U7 will cause the lnterlisp editor (Section 9) to be called on the expression 
being read, when the read is completed. Appendix 1 contains a list of all control characters, and a 
reference to that part of the manual where they arc described. Section 16 describes how the 
system's interrupt characters can be disabled or redefined, as well as how the user can define his 
own interrupt characters. 

Since the Interlisp read program is normally line-buffered to make possible the action of 
control-Q,8 the user must type a carriage return before any characters arc delivered to the function 
requesting input, e.g., 

c-E n 
T 

9 

However, the read program automatically supplies (and prints) this carriage return when a 
matching right parenthesis is typed, making it unnecessary for the user to do so, e.g., 

c-eONS(A B) 
(A • B) 

The Interlispread program treats square brackets as "super-parenthes~s": a right square bracket 
automatically supplies enough right parentheses to match back to the last left square bracket (in the 
expression being read), or if none has appeared, to match the first left parentheses, e.g., 

(A (B (e]=(A (B (e»). 
(A [B (e (D] E)=(A (B (e (D») E). 

% is the universal escape character for read. Thus to input an atom containing a syntactic 
delimiter, precede it by %, e.g., AB% (C or %%. See Section 14 for more details. 

tV (control-V) can be used to type a control character that would otherwise interrupt the input 
process, e.g., control-D, control-C, etc. If the character following tV is A, B, ... or Z, the 
corresponding control character is input, e.g., tVAtVBtVC is the atom control-Acontrol-Bcontrol-C. 

+ 4 

+ 5 

6 

+ 7 

8 

9 

control-U for Interlisp-10 on TOPS-20. 

< del) for Intcrlisp-10 on TOPS-20. 

The action of control-Q takes place when it is read. If the user has "typed ahead'; several inputs, control'Q will only 
affect at most tile last line of input. < del) (control-Z on TOPS·20). however, is an interrupt character that will clear 
the entire input buffer as soon as it is (yped. i.e .. even during a garbage collection. 

control-N for Interlisp'10 on TOPS-20. 

Except following control[Tl, see Section 14. 

• ~' is used throughout the manual to denote carriage-return. 

2.4 



Using Inlerlisp . An Overview 

tV followed by any other character has no effect, Le., FOOtVI and FOOl are identical. For more 
details, see Appendix 1. 

Typing I immediately in front of any expression has the effect of quoting the expression, Le., 
(A I Be) is read as (A (QUOTE B) C). See Section 14. 

At any point during input, the user can type ? = followed by carriage· return and be given the 
argument names and corresponding values (if any) of the expression (form) being typed. Typing 
just ? carriage-return will cause the user to receive information from the lnterlisp manual about the 
expression or command being typed. In the following example underlined characters were typed 
by the user. 

~(SElQ Faa (ELl 3 ?=~ 
A = 3 
N = 

(ELl 3 II 

elt[a;n] 

(ELl 3 tW\\3 ~ 

Value is nth element of the array a. 
el t generates an error, ARG NOl ARRAY I 

if a is not the beginning of an array. 

? is also a programmer assistant command for use following an error. In many cases, the 
programmer's assistant can analyze the cause of the error (see example below). If not, the 
programmer's assistant simply presents information about the error from the manual. 

EXAMPLE 

Most of the "basics" of on-line use of lnterlisp, e.g., defining functions, error handling, editing, 
saving your work, etc., arc illustrated in the following brief console session. Underlined characters 
were typed by the user. 

L The user calls Interlisp from the operating system, in this case Tenex, Interlisp prints a date, 
and a greeting. The prompt character .... indicates the user is at the top level of Interlisp. 

2. The user defines a function, f.1ct, for computing f.1ctorial of n. In Interlisp. functions are 
defined via DE FIN E or DE FIN E Q , (Section 8). Functions may independently evaluate 
arguments, or not evaluate them, and spread their arguments. or not spread them (Section 4). 
'111e function fact shown here is an example of an everyday run-of the-mill function of one 
argument, which is evaluated. The function definition uses CLiSP (Conversational LISP, 
Section 23). 'lbe CLISP will automatically be converted to LISP when the function is run. 

3. 'nIe user "lookS" at the function definition. Function definitions in Interlisp are stored in a 
spccial ccll called the function defillition ccll, which is ai'isociated with the name of the 
function (Section 8). Thii'i cell is accci'ii'iiblc via the two functions, g(;tJ and putd, (define and 

2.5 



Section 2: Using ll11er/isp 

defineq use putd). Note that the user typed an input consisting of a single expression, i.e., 
(GElD (QUOTE FACT», which was therefore intcrpreted as a fonn for eval. The user 
could also have typed GETD(FACT). 

4. The user fUns his function. Two errors occur and corrections are offcred by DWIM (Section 
17). In each case, Ole user indicates his approval, DWIM makcs the correction, i.e., actually 
changes Ole definition of fact, and then continues the computation. 

5. An error occurs that DWIM cannot handle, and the system goes into a break. At this point, 
the user can type in cxprcssions to bc eval-cd or apply-cd cxactly as at the top level. The 
prompt character ":" indicates that the user is in a break, i.e., that the context of his 
computation is available. In other words, the system is actually "within" or "below" the call 
to iti~ in which the error occurred. 

6. The user types in the break command, BT, which calls for a back trace to be printed. In 
IntcrIisp, interpreted and compiled code (see Section 18 for discussion of the compiler) are 
completely comp«tible, and in both cases, the name of the function that was called, as well as 
the names and values of its arguments are stored on the stack. The stack can be searched 
and/or modified in various ways (sce Section 12). 

Break commands are discussed in Section 15, which also explains how the user can "break" a 
particular function, i.e., specify that the system go into a "break" whenever a certain function 
or functions are called. At that point the user can examine the state of the computation. 
TIlis facility is vcry uscful for debugging. 

7. Thc user asks for the value of the variable n, ie., thc most recent valuc, or binding. The 
interpreter will search the stack for the most rccent binding, and failing to find one, will 
obtain the top level value from Ole atom's value cell, which is car of the atom (Section 3). If 
there are no bindings, and the value cell contains the atom NOB I NO, an unbound atom error 
is. generated (Section 16). 

8. Thc user types ?, a command to the programmer's assistant (Section 22). The p.a. looks at 
the error and the context and using its information aboutITIMES, "cxplains" the error. 

9. 'The user realizes his error, and calls the editor to fix it. (Notethatthesystcm is still in the 
break.) 111e editor is dcscribed at length and in detail in Section 9. It is an extremely useful 
facility of Interlisp. Section 9 begins with a simple introduction designed for the new user. 

10. 111cuser instructs the editor to replace all NIL's (in this case Ulere is only one) by 1. lbe 
editor physically changes. the expression it is operating on so when the user exits from the 
editor, his Junction, as it is now being interpreted, has been changed. 

2.6 



1 

Using Interlisp - An Overview 

@LISP~ 1 

INTERLISP-10 14-JUL-78 ... 

Good Evening. 
~OEFINEQ«FACT (LAMBDDA (N) (IF N=O THEN NIL ELSE N*(FACTT N-1] 2 
(FACT) 
~(GETD 'FACT) 3 
(LAMBDDA (N) (IF N=O THEN NIL ELSE N*(FACTT N-1» 
~FACT(3) 4 
LAMBDOA {below FACT} -) LAMBDA 1 Yes 
FACTT {in FACT} -) FACT 1 yes 

NON-NUMERIC ARG 
NIL 
IN ITIMES 

(broken) 
:BH 
ITIMES 
COND 
FACT 
.COND 
FACT 
COND 
FACT 
"TOp·· 

:N'} 
1 
:11. 
because ITIMES requires that each of its arguments be a number 
but in (ITIMES N (FACT (SUB1 N}» {IN FACT}, 
the value of (FACT (SUB1 N)} is NIL when N=1 

5 

6 

7 

8 

:EDITF(FACT) 9 
EDIT 
*(R NIL 1) 10 
.OK~ 11 
FACT 
:RETURN 1'} 12 
'BREAK' = 1 
6 
~PP FACT'} 13 

(FACT 
[LAMBDA (N) 

(COND 
« ZEROP 0) 
1) 

(T (ITIMES N (FACT (SUB1 N]) 
FACT 
~MAKEFILES() 

····NOTE: The following are not contained on any file: 
the functions: FACT 

want to say where they g01 Yes 
(functions) 
FACT File Name: FACH 

new file? res 
2.7 

------~--__ ,_ o.-<-_'>-"~·~",,;c_ -, __ -0 __ _ 

. 14 
+ 
+ 
+ 
+ 
+ 
+ 
+ 



+ FACT ... 
+ «TEITELMAN)FACT. ;1) 
+ +-LOGOUT() 

Section 2: Using lnterlisp 

2.8 



Using Interlisp . An Overview 

11. The user exits from the editor and returns to the break. 

12. The user specifies the value to be used by itimes in place of NIL by using the break 
command RETURN. l11is causes the computation to continue, and 6 is ultimately returned as 
the value of the original input, fact(3). 

13. The user prettyprints (Section 14) fact, i.e., asks it be printed with appropriate indentations to 
indicate structure. Prettyprint also provides a comment facility. Note that both the changes 
made to fact by the editor and those made by DWIM are in evidence. 

14. The user calls make files (Section 14) to write out any changes he has made. The file package * 
knows that the function fact has been changed, but doesn't know on which file it belongs, and * 
asks the user as shown in the example. After this interaction, the symbolic file * 
(TEIITELMAN)FACT. ; 1 is written out. This file can be loaded into lnterlisp at a later date * 
via the function load (Section 14), will cause fact to be defined as it currently is. There is also * 
a facility in Interlisp for saving and restoring an entire core image via the functions Sysout 
and sysin (Section 14). 

15. The user logs out, returning control to Tenex. However, he can still continue his session by 
re-entering Interlisp via the Tenex CONTINUE command. 

2.9 





Index for Section 2 

APPLY[FN; ARGS] SUBR •••••.•••.•••••..••.•••.•..•• 
apply format .•••••••...•••.•.••.••••••. ~ ••••••••• 

~APPLY·[FN;ARGl;ARG2; . .-. ;ARGn] SUBR* ••••••••••••• 
ARGLIST[FN] •.•...•.••••.•.••••.••••••••••••••••• 
back trace •.•••..••..••.••.•••.••••••••••••••••••• 
BAD ARGUMENT - FASSOC(.r~or message) ••••••••••• 
BAD ARGUMENT - FLAST (error message) •••.•••••••• 
BAD ARGUMENT - FLENGTH (error message) •••••••••• 
BAD ARGUMENT - FMEMB (error message) •••••.•••••• 
BAD ARGUMENT - FNTH (error message) ••••••••••••• 
BT (break command) ••••••••••.••••••••••.•••••••• 
car of NIL ••.••••••••••••••••••••••••••••••••••• 
carri age-return •.••••••••••••.••••••••••••••••••• 
clearing input buffer ••••••••••••••••••••••••••• 
clearing output buffer ••••••••••••••••••.••••••• 
CONTINUE lfENEX command) •• '.' •••••••••••••••••••• 
CONTROL[FLG;RDTBL] SUBR ••••••••••••••••••••••••• 
control characters ............................. .. 
control-A ••••••••••••••••••••••••••••••• ~ •••••••• 
control-C . ~ .. '", ............ _ .................... . 
contr~ol-D ••.••••••••••••••••.•••••••••••••••••••• 
control-N CTOPS-20) ••••••••••••••••••••••••••••• 
control"O ••••••••••••• ~ •••••••••••••••••••••••••• 
control-Q .; ••••••••••••••••••••••••••••••••••••• ~ 
cnntrol--U ................................ '" .. ,- ... . 
control-U (TOPS-20) ••••••••••••••••••••••••••••• 
control-V ••••••••••••••••••••••••••••••••••••••• 
control-W· ••••••••••••••••••••••••••••••••••••••• 
control-Z (TOPS-20) •••••••••••••• r •••••••••••••• 

d~ebugging ••••••••••••••••••••••••••••••••••••••• 
D~EFINE[X; TYPE-IN] ••••••••••••••••••••••• ~ •••••••• 
DEFINEQ[Xl;XZ; ••• ;Xn] NL* ••••••••••••••••••••••• 
dot notat ion •••••••••••••••••••••••••••••••••••• 
DWIM .••.•••••.•••••••• ~ •••••••••••.•••••••••••••••• 
EQ[X; Y] SUBR •.•.••••...••••.•..•••...••••••••••• 
eq . 0'" ••••••••••••• Ii •••••••••••••••••••••••• " •••••• 

EQUAL[X; Y) SUBR ••••••••••••••••••••••••••••••••• 
-equal ............................................ . 
~escape~ charaCter •••••••••••••••••••••••••••••••• 
EVAL[X] SUBR •••••••••••••••••••••••••••••••••••• 
eval format .~ •••••••••••••••••••••••••••••••••••• 
EVALQT[LISpxin] ••••••••••••••••••••••••••••••••• 
FASSOC[KEY;ALST] ••••••••••••••••••••••••••••• ~ ••• 
FLAST[X] •••••••••••••••••••••••••••••••••••••••• 
FlENGTH[X] •••••••••••••••••••••••••••••••••••••• 
FMEMB[X:Y] •••••••••••••••••• ~ •••••••••••••••••••• 
FNTH[X;N] ••••••••.••••••••••••••••••••••••••••••• 
function definition cell •••••••••••••••••••••••• 
funct ional arguments •••••••••••••••••••••••••••• 
GETD[X] SUBR •••••••••••••••••••••••••••••••••••• 
GETPROPLIST[ATM] •••••••••••••••••••••••••••••••• 
GETTOPVAL[ATM] SUBR ••••••••••••••••••••••••••••• 
interrupt characters •••••••••••••••••••••••••••• 
LINELENGTH[N] SUBR •••••••••••••••••••••••••••••• 
1 ine-buffering •••••••••••••••••••••••••••••••••• 
lISTP[X] SUBR ..... , ........................ , •..• 

INDEX.2.t 

Page 
Numbers 

2.3 
2.3 
2.3 
2.2 
2.6 
2.2 
2.2 
2.2 
2.2 
2.2 
2.6 
2.3 
2.4 
2.4 
2.4 
2.3.9 
2.4 
2.3-4 
2.4 
2.3 
2.3 
2.4 
2.4 
2.4 
2.4 
2.4 
2.4 
2.4 
2.4 
2.6 
2.5 
2.5-6 
2.t 
2.6 
2.2 
2.2 
2.2 
2.2 
2.4 
2.3.6 
2.3 
2.3 
2.2 
2.2 
2.2 
2.2 
2.2 
2.3.5 
2.3 
2.3.5 
2.3 
2.3 
2.4 
2.2 
2.4 
2.3 



-- --

1 is ts ...•••••...•.••••.••.•.••••..•....••••••... 
LOAD[FILE;LDFLG;PRINTFLG] .•...•..••....•••••••.. 
LOGOUT [] SUB R •••••••.•.••••••••..•••••.•••.••••• 

. meta-LISP notation •.•..•..•••.•...•.•..••..••..• 
NIL •.•...•••.....••....••••••.••.••.•••••••.•..• 
NLISTP[X] ..•••...••...•••.•••.•..••.•••••••••.•• 
NOBIND •.•...•..•.•••.•.••.•••.••••••••..•••••••• 
null-check. •••..•.••...•••.•••.•••••••••••••••••. 
predicates •..••..•.•••••..•.••••.••..••.•••••.•• 
PRETTYPRINT[FNS; PRETTYDEFLG; FNSLST] .•••.•.•••••. 
PRINTLEVEL[CARN;CDRN] SUBR •••••••••••••••.•••••. 
prompt character •.•••.•••••••.•••.•.•.•••.• " ••. 
property 1 ist ••••••.•••.•••••.•••••.•••••••••••• 
pushdown list ••.•.•...••.••••.•••••••••••••••••• 
PUTD[FN;DEF] SUBR ••••••••••.•.•••••••••.•••••••• 
RADIX[N] SUBR .•••.••••••••.••••••••••••••.•.•••• 
RETURN (break. command) •.•••••••••••••••••••••••• 
SETPROPLlST[ATM; LST] .••.••••.•.••..••••••••••••• 
SETTOPVAL[ATM;VAL] SUBR ••••••.•••••••••••••••••• 
square brack.ets (use in input) ••••••••.••••••••• 
subrs •.•••.••••••••.••••••••••••••••••.••••••••• 
SYSIN[FILE] SUBR .••.•••.•••••.••••••••••••••••.• 
SYSOUT[FILE] SUBR ••••••••••••••••••••••••••••••• 
TENEX .•.•.•••••••••••••••••••.•.••••.•••.••••..• 
true ..•••••••••.•••.•••••••••.•••••••••••••••••• 
user interrupt characters ••••••••••••••••••••••• 
U.B.A. (error message) •••••••.•••••••••.•••••••• 
variable bindings ••••••••••••••••••••••••••••••• 
## (printed by system) ........................ .. 
% (escape character) •••••••••.•••••••••••••••••• 
, (as a read-macro) •••.••••••••••••••••••••••••• 
- (in argument list, in manual) ••••••••••••••••• 
. notat ion •••••••••••••••••••••••••••••••••••••• 
: (printed by system) ......................... .. 
<del> ..••.•••••••••.•••••••••••••••••••••••••••• 
<del> (TOPS-20) ••••••••••••••••••••••••••••••••• 
1 (prog. asst. command) ••••••••••••••••••••••••• 
1= (edi t command) ••••.•••••••••••••••••••••••••• 
\ (printed by system) ••••••••••••••••••••••••••• 
\\ (printed by system) •••••••••••••••••••••••••• 
] (use in input) •••••••••••••••••••••••••••••••• 
+- (printed by system) •••••••••••••••••••••••• ' ••• 

INDEX.2iZ 

'b -""';;. ~ :...-- ~""'·.I" _~~-.• 'r":- _ -

Page 
Numbers 

2.3 
2.9 
2.3 
2.1 
2.2 
2.2 
2.6 
2.2 
2.2 
2.9 
2.2 
2.3,5-6 
2.3 
2.6 
2.3.5 
2.2 
2.9 
2.3 
2.3 
2.4 
2.2 
2.9 
2.9 
2.1,3.5,9 
2.2 
2.4 
2.6 
2.6 
2.4 
2.4 
2.5 
2.3 
2.1 
2.6 
2.4 
2.4 
2.5 
2.5 
2.4 
2.4 
2.4 
2.3.5 



1 

SECTION 3 

DATA TYPES, STORAGE ALLOCATION 
GARBAGE COLLECTION, AND OVER LA YS 

Interlisp operates in an 18-bit address space.1 This address space is divided into 512 word pages 
with a limit of 512 pages, or 262,l44 words, but only that portion of address space currently in use 
actually exists on any storage medium. Interlisp itself and all data storage are contained within this 
address space. A pointer to a data element such as a number, atom, etc., is simply the address of 
the data element in this 18-bit address space. 

3.1 DATA TYPES 

The data-types of Interlisp are lists, atoms, pnames, value cells, arrays, large and small integers, 
floating point numbers, stack pointers, string characters and string pointers. There is also a way to 
define new data-types described below in section 3.2. Compiled code, read tables, terminal tables, 
and hash arrays are currently included with arrays. 

In the descriptions of the various data-types given below, for each data type, first the input syntax. 
and output format are described, that is, what input sequence will cause the Interlisp read program 
to construct an element of that type, and how the lnterlisp print program will print such an 
element. Next, those functions that construct elements of that data-type are given. Note that some 
data-types cannot be input, they can only be constructed, e.g. arrays. Finally, the format in which 
an clement of that data-type is stored in memory is described. 

3.1.1 LITERAL ATOMS 

A literal atom is input as any string of non-delimiting characters that cannot be interpreted as a 
number. The syntatic characters that delimit atoms called separator or break characters (Section 
14) and normally are space, end-of-line,2 line-feed, % ( ) .. I and [. However, these characters may 
be included in atoms by preceding them with the escape character %. 

Literal atoms are printed by print and prin2 as a sequence of characters with %'s inserted before all 

1 

2 

Interlisp is currently implemented on (or implementations are in progress for) at least four different machines. This 
section treats subjects that are for the most part somewhat implementation dependent. Where t11is is the case, the 
discussion refers to Interlisp-lO. the implementation for the DEC PDP-IO. on which Interlisp was first implemented. 

An end-of-line character is transmitted by TENEX when it sees a carriage-return. 

3.1 



Section 3: Data types. Storage Allocation, Garbage Collection, and Overlays 

delimiting characters (so that the atom will read back in properly). Literal atoms are printed by 
prin! as a sequence of characters wilhout these extra %'s. For example. the atom consisting of the 
five characters A. B. C. (. and 0 will be printed as ABC%( 0 by print and ABC( 0 by print. 
'Inc extra %'s are an artifact of the print program; lhey are not stored in the atom's pname. 

Literal atoms can be constructed by pack, mkatom, and gensym (which uses mkatom). 

Literal atoms are unique. In other words, ·if two literal atoms have the same pname, i.e. print the 
same, they will always be the same identical atom, that is, they will always have the same address 
in memory. or equivalently, they will always be £9..3 Thus if pack or mkatom is given a list of 
characters corresponding to a . literal atom that already exists, they return a pointer to that atom, 
and do not make a new atom. Similarly, if the read program is given as input of a sequence of 
characters for which an atom already exists, it returns a pointer to that atom. 

A literal atom is a datum consisting of the fonowing components: a property list, initially NIL. 
(accessed by getproplist and setproplist, Section 7), a value, (accessed by getatomval and setatomvID, 
Section 5), a function definition, initially NIL, (accessed by getd and putd, Section 8), and a 
pname, (not directly accessible). 

3.1.2 PNAMES 

The pnames of atoms4 comprise another data-type with storage assigned as it is needed. This 
data-type only occurs as a component of an atom or a string. It does not appear, for example, as 
an clement of a list. 

Pnames have no input syntax or output format as they cannot be directly referenced by user 
programs. 

A pname is a sequence of 7 bit characters packed 5 to a word, beginning at a word boundary. The 
first character of· a pname contains its length; thus the maximum length of a pname is 126 
characters. 

+ 3.1.3 VALUE CELLS 

+ The value cells of atoms comprise another data-type with storage assigned as it is needed. Value 
+ cells occur only as part of an atom. If an atom is ever referenced as a variable, either by setg. or 
+. by use as the argument of a function, or bound as a P!Q& variable, a value cell is created and 
+ assigned to the atom. The value cell will then always contain the current value of the atom. Note 
+ that from the standpoint of a function that references the value of an atom, an atom having no 

3 

4 

Note that this is not true for strings. large integers. floating point numbers. and lists. i.e. they all can print the same 
without being !;iI. 

All Interlisp pointers have pnames. since we define a pname Simply to be how that pointer is printed. However. only 

literal atoms and strings have their pnames explicitly stored. Thus. the use of the term pname in a discussion of 
data-types or storage allocation means pnamcs of atoms or strings. and refers to a sequence of characters stored in a 
certain part of Inlcrlisp's memory. 

3.2 



Data Types 

value cell is indistinguishable from an atom whose value cell contains the atom NOB I NO.5 + 
Value cells have no input syntax or output format as they cannot be directly referenced by user + 
programs. + 

3.1.4 NUMERICAL ATOMS 

Numerical atoms, or simply numbers, do not have property lists, value cells, functions definition 
cells, or explicit pnames. There are currently two types of numbers in Intcrlisp: integers, and 
floating point numbers. 

INTEGERS 

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of digits, 
followed by an optional Q.6 If the Q is present, the digits are interpreted in octal, otherwise in 
decimal, e.g. 77Q and 63 both correspond to the same integers, and in fact are indistinguishable 
internally since no record is kept of how integers were created. 

The setting of radix (Section 14), determines how integers are printed: signed or unsigned, octal or 
decimal. 

Integers are created by pack and mkatom when given a sequence of characters observing the above 
syntax, e.g. (PACK (LIST 1 2 (QUOTE Q») = 10. Integers are also created as a result of 
arithmetic operations, as described in Section 13. 

An integer is stored in one 36 bit word; thus its magnitude must be less than 2t35.1 To avoid 
having to store (and hence garbage collect) the values of small integers, a few pages of address 
space, overlapping the Interlisp-lO machine language code, are reserved for their representation. 
The small number pointer itself, minus a constant, is the value of the number. Currently the range 
of "small" integers is -1536 thru + 1535. The predicate smallp is used to test whether an integer is 
"small". . 

While small integers have a unique representation, large integers do not. In other words, two large 
integers may have the same value, but not the same address in memory, and therefore not be~. 
For this reason the function !£gQ (or equal) should be used to test equality of large integers. 

5 

6 

7 

The latter case can occur for example if the user types SET ( F 00 exp). then undoes (Section 22) the set operation, + 
thereby restoring the atom to its original "value". + 

and tenninated by a delimiting character. Note that some data-types are self-delimiting. e.g. lists. 

If the sequence of digits used to create the integer is too large. the high order portion is discarded. (The handling of 
overflow as a result of arithmetic operations is discussed in Section 13.) 

3.3 



Section 3: Data types, Storage Allocation, Garbage Collection, and Overlays 

FLOATING POINT NUMBERS 

A floating point number is input as a signed integer, followed by a decimal point, fonowed by 
another sequence of digits called the fraction, followed by an exponent (represented by E fonowed 
by a· signed integer).8 Both signs are optional, and either the fraction following the decimal point, 
or the integer preceding the decimal point may be omitted. One or the other of the decimal point 
or exponent may also be omitted, but at least one of them must be present to distinguish a floating 
point number from an integer. For example, the fonowing will be recogni~ed as floating point 
numbers: 

5. 5.00 5.01 
5E-3 

.3 
-5.2E+6 

5E2 5.1E2 

Floating point numbers are printed using the facilities provided by TENEX. Interlisp-10 calls the 
floating point number to string conversion routines9 using the format control specified by the 
function fltfmt (Section 14).10 fltfmt is initialized to T, or free format. For example, the above 
floating point numbers would be printed free format as: 

5.0 5.0 5.01 
.005 

.3 
-5.2E6 

500.0 510.0 

Floating point numbers are also created by pack and mkatom, and as a result of arithmetic 
operations as described in Section 13. 

A floating point number is stored in one 36 bit word in standard PDP-lO format. The range is 
+2.94E-39 thru +1.69E38 (or 2t-128 thru 2t127). 

3.1.5 LISTS 

The input syntax for a list is a sequence (at least one)l1 of Interlisp data elements, e.g. literal atoms 
numbers, other lists, etc. enclosed in parentheses or brackets. A bracket can be used to terminate 
several lists, e.g. (A (B (C 1, as described in Section 2. 

If there are two or more elements in a list, the final clement can be preceded by a . (delimited on 
both sides), indicating that cdr of the final node in the list is to be the element immediately 
following the ., e.g. (A . B) or (A Be.' D), otherwise cdr of the last node in a list will be 
NIl. 12 Note that the input sequence (A Be. NIL) is thus equivalent to (A Be), and that 
(A B • (C D» is thus equivalent to (A BCD). Note however that (A B • CD) will 
create a list containing the five literal atoms A B • C and D. 

8 

9 

+ 10 

+ 
11 

12 

and tenninated by a delimiter. 

Additional infonnation concerning these conversions may be obtained from the TEN EX JSYS Manual. 

The printn\!!!! package (Section 14) pennits greater controls on the printed appearance of floating point numbers, 
allowing such things as left-justification. suppression of trailing decimals, etc. 

o is read as the atom NIL. 

Note that in Interlisp terminology. a list docs not have to end ill NIL. it is simply a structure composed of one or 
more conses. 

3.4 



Data Types 

Lists are constructed by the primitive functions £Q!!§ and list. 

Lists are printed by printing a left parenthesis, and then printing the first element of the list,B 
then printing a space, then printing the second clement, etc. until the final node is reached. Lists 
arc considered to terminate when cdr of some node is not a list. If cdr of this terminal node is 
NIL (the usual case), car of the terminal node is printed followed by a right parenthesis. If cdr of 
the terminal node is not NIL. car of the terminal node is printed, followed by a space, a period, 
another space, cdr of the terminal node, and then the right parenthesis. Note that a list input as 
(A Be. NIL) will print as (A Be). and a list input as (A B . (C D» will print as 
(A BCD). Note also that printlevel affects the printing of lists to teletype, and that carriage 
returns may be inserted where dictated by linelength, as described in Section 14. 

A list is stored as a chain of list nodes. A list node is stored in one 36 bit word, the right half 
containing car of the list (a pointer to the first element of the list), and the left half containing cdr 
of the list (a pointer to the next node of the list). 

3.1.6 ARRAYS 

An array in Interlisp is a one dimensional block of contiguous storage of arbitrary length; Arrays 
do not have input syntax; they can only be created by the function array. Arrays are printed by 
both print, prin2, and print as # followed by the address of the array pointer (in octal). Array 
elements can be referenced by the functions elt and eltd, and set by the functions seta and setg, as 
described in Section 10. 

Arrays are partitioned into four sections: a header, a section containing unboxed numbers, a section 
containing Interlisp pointers, and a section containing relocation information. The last three 
sections can each be of arbitrary length (including 0); the header is two words long and contains 
the length of the other sections as indicated in the diagram below. 1ne unboxed number region of 
an array is used to store 36 bit quantities that are not Interlisp pointers, and therefore not to be 
chased from during garbage collections, e.g. machine instructions. The relocation informaion is 
used when the array contains the definition of a compiled function, and specifies which locations in 
the unboxed region of the array must be changed if the array is moved during a garbage collection. 

The format of an array in Interlisp-10 is as follows: 

13 The individual clements of a list are printed USing prin2 if the list is being printed by print or ruin2. and by prinl if 
the list is being printed by print 

) 

3.5 



Section 3: Data types, Storage Allocation, Garbage Collection, and Overlays 

HEADER WORD 0 

WORD 

FIRST DATA WORD 

The header contains: 

word 0 

word 1 

right 

left 

right 

left 

3.1.7 STRINGS 

ADDRESS OF RELOCATION 
INFORMATION LENGTH 

USED BY GARBAGE ADDRESS OF POINTERS 
COLLECTOR 

NON-POINTERS 

POINTERS 

RELOCATION 
INFORMATION 

FIGURE 3- I 

length of entire block=ARRAYSIZE+2. 

address of relocation infonnation relative to word 0 of block (> 0 if 
relocation infonnation exists, negative if array is a hash array, 0 if 
ordinary array). 

address of pointers relative to wor4 0 of block. 

used by garbage collector. 

The input syntax for a string is a ", followed by a sequence of any characters except " and %. 
tenninated by a ". .. and % may be included in a string by preceding them with the escape 
character %. .. 

Strings are printed by print and prin2 with initial and final '''s, and %'s inserted where necessary 
for it to read back in properly. Strings are printed by print without the delimiting '''s and extra 
90's. 

Strings are created by mkstring, substring •. and concat. 

Internally a string is stored in two parts; a string pointer and the sequence of characters. The 
Interlisp pointer to a string is the address' of the string pointer. rIlle string pointer, in tum, 
contains the character position at which the string characters begin, and the number of characters. 

3.6 



Data Types 

String pointers and string characters are two separate data-types.14 and several string pointers may 
reference the same characters. 'Ibis method of storing strings permits the creation of a substring 
by creating a new string pointer, thus avoiding copying of tile characters. For more details, see 
Section 10. 

String characters are 7 bit bytes packed 5 to a word. 'Ibe fonnat of a string pointer is: 

:# OF CHARACTERS S * ADDRESS OF STR I NG . + CHARACTER 
POSITION 

14 IS 

FIGURE 3-2 

'Ibe maximum length of a string is 32K (K = 1024) characters. 

3.2 USER DEFINED DATA TYPESlS 

In addition to the several built-in data-types such as atoms, lists, arrays, etc., Interlisp provides a 
way of dcfining completcly new classes of objects, with a fixed number of fields dctcnnined by the 
dcfinition of the data-type. Facilities arc provided for declaring the number and type of the fields 
for a given class, crcating objects of a given class, accessing and replacing the contents of each of 
the fields of such an object, as well as interrogating such objects. 

In order to define a new class of objects, the user must supply a name for the new data-type and 
specifications for each of its fields. Each field may contain either a pointer (Le., any arbitrary 
Interlisp datum), an integer, a floating point number, or an n-bit integer. 

The above operations are accomplished via the function declaredatatype. 

declaredatatype[ type name; fic1dspecs; -] 

14 

15 

typename is a literal atom, which specifies the name of the 
data-type. fic1dspecs is a list of field specifications. Each field 
specification may be one of the following: 

POINTER 
FIXP 

String characters are not directly accessible by user programs. 

field may contain any Interlisp datum 
field contains an integer 

The most convenient way to define new data-types is via DATATYPE declarations in :he RECORD package (as 

described in Section 23). 

3.7 



Section 3: Data f)-pes, Storage Allocation, Garbage Collection, and Overlays 

FLOATP 
(BITS n) 

dcclaredatatype returns 

field contains a floating point number 
field contains a non-negative integer less 

than 2n, . 

a list of field descriptors, one for each 
clement of fic1dspccs, '{be field 
descriptor contains information about 
where within the datum the field is 
actually stoJ;'ed. If typename is already 
declared a datatype, it is re-dedared. If 
fic1dspecs is NIL, typename is 
"undeclared" . 

fetchfield[descriptor;datum] Returns the contents of the field described by descriptor from 
. datum. descriptor must bea "field ·descriptor" as returned by 
declaredatatype. If datum is not an instance of the datatype of 
which descriptor isa descriptor, causes error 
DATUM OF 'INCORRECT TYPE.16 

replacefield[descriptor;datum;newvalue] 
Store newvalue into the field of datum described by descriptor. 
descriptor must be a field descriptor, as returned by 
dec1aredatatype, If datum is not an instance of the datatype of 
which descriptor is a descriptor, causes error 
DATUM OF INCORRECT TYPE. Value is newvalue. 

+ ncreate[typename;from] creates and returns a new instance of datatype typename. 

+ 
+ 
+ 

+ 
+ 

getfieldspecsI typename] 

getdescriptors[typename] 

If from is also a datum of datatype typename, the fields of the new 
object are initialized to the values of the corresponding fields in 
from. 

If typename is not the type name of a previously declared use,l7 
data type, generates an error, ILLEGAL DATA TYPE. 

. Returns a list which is equal to thefieldspecs argument given to 
declaredatatype for typename; if typename is not a currently 
declared data-type, returns NIL. 

Returns a list of field descriptors, equal to the value of 
declaredatatype for typename. 

16 In IlItcrlisp-10, if f!~:Scrintof is quoted, fctchficlg compiles open. This capability is used by the record package. 

+ 17 i.e .. !!ffcal!; will not work for built in dallitypes. such as ARRAYP, SIR INGP, etc. 

3.8 



User Defined Data Types 

userdatatypes[] Returns list of names of currently declared user datatypes. 

In Interlisp-lO, user datatypes are allocated starting with type number 31. The minimum amount 
of space that can be assigned to anyone data-type is one page, thus effectively limiting the number 
of possible data types. The fields are rearranged internally so that pointer fields come first; the 
remaining numeric fields, if any, are packed so as to optimize the space used. 

Note that the user can define how user datatypes are to be printed via defprint (Section 14), and + 
how they are to be evaluated by the interpreter via defeval (Section 8), and how they are to be + 
compiled by the compiler via compiletypelst (Section 18). + 

3.3 STORAGE ALLOCATION AND GARBAGE COLLECTION 

In the following discussion, we will speak of a quantity of memory being assigned to a particular 
data-type, meaning that the space is reserved for storage of clements of that type. Allocation will 
refer to the process used to obtain from the already assigned storage a particular location for 
storing one data element 

A small amount of storage is assigned to each data-type when Interlisp-lO is started; additional 
storage is assigned only during a garbage collection. 

The page is the smallest unit of memory that may be assigned for use by a particular data-type. 
For each page of memory there is a one word entry in a type table. The entry contains the 
data-type residing on the page as well as other information about the page. The type of a pointer 
is determined by examining the appropriate entry in the type table. 

Storage is allocated as is needed by the functions which create new data elements, such as con~ 
pack. mkstring. For example, when a large integer is created by iplus, the integer is stored in the 
next available location in the space assigned to integers. If there is no available location, a garbage 
collection is initiated, which may result in more storage being assigned. 

The storage allocation and garbage collection methods differ for the various data-types. The major 
distinction is between the types with elements of fixed length and the types with elements of 
arbitrary length. List nodes, atoms, large integers, floating point numbers. and string pointers are 
fixed length; all occupy 1 word except atoms which use 3 words. Arrays, pnames, and strings 
(string characters) are variable length. 

Elements of fixed length types are stored so that they do not overlap page boundaries. Thus the 
pages assigned to a fixed length type need not be adjacent. If more space is needed, any empty 
page will be used. The method of allocating storage for these types employs a free-list of available 
locations; that is, each available location contains a pointer to the next available location. A new 
element is stored at the first location on the free-list, and the free-list pointer is updated.18 

Elements of variable length data-types are allowed to overlap page boundaries. Consequently all 
pages assigned to a particular variable length type must be contiguous. Space for a new element is 
allocated following the last space used in the assigned block of contiguous storage. 

18 The allocation routine for list nodes is more complicated. F:ach page containing list nodes has a separate free list. 
First a page is chosen (see CONS for details), then the free list for that page is used. Lists are the only data·type 
which operate this way. 

3.9 

f r -,~ 



Section 3: Data types. Storage Allocation, Garbage Collection, and Overlays 

When Interlisp-10 is first called, a few pages of memory arc assigned to each data-type. When the 
allocation routine for a type determines that no more space is available in the assigned storage for 
that type, a garbage collection is initiated. '111e garbage collector determines what data is currently 
in ust:: and reclaims that which is no longer in use. A garbage collection may also be initiated by 
the user with the function reclaim (Section 10). 

Data in usc (also called active data) is any data that can be "reached" from the currently running 
program (Le., variable bindings and functions in execution) or from atoms. To find the active data 
the garbage collector "chases" all pointers, beginning with the contents of the push-down lists and 
the components (Le., car, cdr, and function definition cell) of all atoms with at least one non-trivial 
component. 

When a previously unmarked datum is encountered, it is marked, and all pointers contained in it 
arc chased. Most data-types are marked using bit tables; that is tables containing one bit for each 
datum. Arrays, however, are marked using a half-word in the array header. 

When the mark and chase process is completed, unmarked (and therefore unused) space is 
reclaimed. Elements of fixed length types that arc no longer active are reclaimed by adding their 
locations to the free-list for that type. This free list allocation method permits reclaiming space 
without moving any data, thereby avoiding the time consuming process of updating all pointers to 
moved data. To reclaim unused space in a block of storage assigned to a variable length type, the 
active clements are compacted toward the beginning of the storage block, and then a scan of all 
active data that can contain pointers to the moved data is performed to update the pointers.19 

Whenever a garbage collection of any type is initiated,20 unused space for all fixed length types is 
reclaimed since the additional cost is slight. However, space for a variable length type is reclaimed 
only when that type initiated the garbage collection. 

If the amount of storage reclaimed for the type that initiated the garbage collection is less than the 
minimum free storage requirement for that type, the garbage collector will assign enough additional 
storage to satisfy the minimum free storage requirement. 'Ille minimum free storage requirement 
for each data may be set with the function minfs (Section 10). 'Ille garbage collector assigns 
additional storage to fixed length types by finding empty pages, and adding the appropriate size 
clements from each page to the free list. Assigning additional storage to a variable length type 
involves finding empty pages and moving data so that the empty pages arc at the end of the block 
of storage assigned to that type. 

In addition to increasing the storage assigned to the type initiating a garbage collection, the garbage 
collector will attempt to minimize garbage collections by assigning more storage to other fixed 
length types according to the following algorithm.21 If the amount of active data of a type has 
increased since the last garbage collection by more than 1/4 of the minfs value for that type, 

+ 19 

+ 
If Interlisp-10 types the message A R RA YS F OULE D during a garbage collection. it means that an array header has 
been clobbered and no longer makes sense. This t<1n be due to hardware malfunction. or an as yet undiscovered 
bug in IlItcrlisp. 'Ibe best thing to do under these circumstances is to give up and start over with a fresh system or 
sysoul 

+ 
+ 

20 

21 

The "type of a garbage collection" or the "type that initiated a garbage collection" means either the type that ran out 
of space and t<1l1ed the garbage collector, or the argument to reclaim. 

We may experiment with different algorithms. 

3.10 



Storage Allocation and Garbage Collection 

storage is increased (if necessary), to attain the minfs value. If active data has increased by less 
than 1/4 of the mints value, available storage is increased to 112 minfu. if there has been no 
increase, no more storage is added. For example, if the minfs setting is 2000 words, the number of 
active words has increased by 700. and after all unused words have been collected there are 1000 
words available, 1024 additional words (two pages) will be assigned to bring the total to 2024 words 
available. If the number of active words had increased by only 300, and there were 500 words 
available, 512 additional words would be assigned. 

3.4 SHARED INTERLlSP·10 

The Interlisp-l0 system initially obtained by the user is shared; that is, all active users of 
Interlisp-lO are actually using the same pages of memory. As a user adds to the system, private 
pages are added to his memory. Similarly, if the user changes anything in the original shared 
Interlisp-lO, for example, by advising a system function, a private copy of the changed page is 
created. 

In addition to the swapping time saved by having several users accessing the same memory, the 
sharing mechanism permits a large saving in garbage collection time. since we do not have to 
garbage collect any data in the shared system, and thus do not need to chase from any pointers on 
shared pages during garbage collections. 

This reduction in garbage collection time is possible because the shared system usually is not 
modified very much by the user. If the shared system is changed extensively, the savings in time 
will vanish, because once a page that was initially shared is made private, every pointer on it must 
be assumed active, because it may be pointed to by something in the shared system. Since every 
pointer on an initially shared but now private page can also point to private data, they must always 
be chased. 

A user may create his own shared system with the function makesys. If several people are using 
the same system, making the system be shared will result in a savings in swapping time. Similarly. 
if a system is large and seldom modified, making it be shared will result in a reduction of garbage 
collection time, and may therefore be worthwhile even if the system is only being used by one 
user. 

makesys[file] creates a saved file in which all pages in this system, including 
private user pages, are made read execute, i.e. shared. Illis system 
can then be run via the TENEX command RUN, or GET and 
START. 

For example, new Interlisp-lO systems arc brought up by loading the appropriate compiled files 
and then performing makesys[USP. SAV].22 

herald[string] makes string be the 'herald' for the system, i.e. the message printed 
when the system is first started. Primarily for usc in conjunction 

22 makeSi'!! is also advised (see section 19) to set the variable makcsysdate to (DATE). i.e. the time and date the system 
was made. 

3.11 



Section 3: Data types, Storage Allocation, Garbage Collection, and Overlays 

wi th makesys.23 

3.5 THE INTERLlSP-1 0 SWAPPER24 

Interlisp-10 provides a very large auxilary address space exclusively for swappable arrays (primarily 
compiled function definitions). In addition to the 256K of resident addr-css space, this "shadow 
space" can currently accomodate an additonal 256K words, can easily be expanded to 3.5 million 
words, and with some further modifications, could be expanded to 128 million words. Thus, the 
overlay system provides essentially unlimited space for compiled code.25 

Shadow space and the swapper are intended to be more or less transparent to the user. However, 
this section is included in the manual to give programmers a reasonable feeling for what overlays 
are like, without getting unnecessarily technical, as well as to document some new functions and 
system controls which may be of interest for authors of exceptionally large systems. 

3.4.1 OVERLAYS 

The shadow space is a very large auxiliary address space used exclusively for an Interlisp data-type 
called a swappab1e array. The regular address space is called the "resident" space to distinguish it 
from shadow space. Any kind of resident array - compiled code, pointer data, binary data, or a 
hash array - can be copied into shadow space ("made swappable"), from which it is referred to by 
a one-word resident entity called a handle. The resident space occupied by the original array can 
then be garbage collected normally (assuming there arc no remaining pointers to it, and it has not 
been made shared by a makesys). Similarly, a swappable array can be made resident again at any 
time, but of course this requires (re)allocating the necessary resident space. 

The main purpose and intent of the swapping system is to permit utilization of swappable arrays 
directly and interchangeably with resident arrays. thereby saving resident space which is then 
available for other data-types. such as lists. atoms, strings, etc. 

This is accomplished as follows: A section of the resident address space is permanently reserved for 

23 

24 

25 

!l1ak~ is advised to set the variable heraldstrin..& to the concatenation of "I n te r 1 is P -1 0". the month and day 
of 111e mak~!i, and ....... and to call herald on iliis string. Alternatively, makesYl! can be given as a second argument 
a String to be used instead of "I n ter 1 i sp-10", e.g. makesys[STREK. SAV; STAR-TREK] would cause the message 
STAR-TREK followed by ilie date and ....... to be printed when STREK,SAV was run. 

lbe Interlisp-lO swapper was designed by E. L. Wegbreit (PARC) and J. W. Goodwin (BBN), and implemented by 

J. W. Goodwin. 

Since compiled code arrays point to atoms for function names, and strings for error messages, not to mention the 
fact 111at programs usually have data base, which are typically lists raIDer ilian arrays, iliere is still a very real and 

/inite limit to IDe total size of programs iliat Tllterlisp-lO can accomodate. However, since much of IDe system and 
user compiled code can be made swapp:lble, 111ere is iliat much more resident space available for iliese other 
data-types. 

3.12 



The Inler/isp-lO Swapper 

a swapping buffer.26 When a particular swappablc array is requested, it is brought (swapped) in by 
mapping or overlaying the pages of shadow spacc in which it lies onto a section of the swapping 
buffer. 'Ibis process is thc swapping or overlaying from which the system takcs its name. lbe 
array is now (directly) acccssible. However, further requests for swapping could cause the array to 
be overlaid with something else, so in effect it is liable to go away at any time. lbus all system 
code that relates to arrays must recognize handles as a special kind of array, fetch them into the 
buffer (if not already there), when necessary check that they have not disappeared, fetch them back 
in if they have, and even be prepared for the second fetch to bring tlle swappable array in at a 
different place than did the first. 

lbe major emphasis in the design of the overlay system has bcen placed on running compiled 
code, because this accounts for the overwhelming majority of arrays in typical systems, and· for as 
much as 60% of the overall data and code. The system supports the running of compiled code 
directly from the swapping buffer, and the function calling mechanism knows when a swappable 
definition is being called, finds it in the buffer if it is already there, and brings it in otherwise. 
Thus, from the user's point of view, there is no need to distinguish between swappable and 
resident compiled definitions, and in fact ccodep will be true for either. 

3.4.2 EFFICIENCY 

Once of the most important design goals for the overlay system was that swappable code should 
not execute any extra instructions compared to resident code, once it had been swapped in. Thus, 
the instructions of a swapp able piece of code are identical (exce£t for two instructions at the entry 
point) to those of the resident code from which it was copied, 7 and similarly when a swappable 
function calls another function (of any kind) it uses the exact same calling sequence as any other 
code. lbus, all costs associated with running of swappable code arc paid at the point of entry 
(both calling and returning).28 

The cost of the swapping itself, i.e. the fetch of a new piece of swapped code into the buffer, is 
even harder to measure meaningfully, since two successive fetches of the same function are not the 
samc, due to thc fact that the instance created by the first fetch is almost certain to be resident 
when the second is done, if no swapping is done in between. Similarly, two successive PMAP's 
(the Tenex operation to fetch one page) are not the same from one moment to another, even if the 
virtual state of both forks is exactly the same - a difficult constraint to meet in itself.29 Thus, aU 
that can be reported is that empirical measurements and observations have shown no consistent 
slowdown in performance of systems containing swappable functions viz a viz resident functions. 

26 

27 

28 

29 

Initially 64 512 word pages, but can be changed via the function setsbsize described below. 

The relocatable instructions are indexed by a base register. to make them run equally well at any location in the 
buffer. lbe net slowdown due to this extra level of indirection is too small to measure accurately in the overall 
running of a program. On analytical grounds. one would expect it to be around 2%. 

If the function in question does nothing, e.g. a compiled (LAMB DA Nt L NIL). it costs approximately twice as much 
to enter its definition if it is swappable as compared to resident However, very small functions are normally not 
made swappable (see mkswapJ2. page 3.14). because they don't save much space. and are (typically) entered 
frequently. Larger programs don't exhibit a measurable slow down since they amortize the entry cost over longer 
runs. 

The cost of fetching is probably not in the mapping operation itself but in the first reference to the page, which has 
a high probability of faulting. This raises the problem of measuring page fault activity, another morass of 
uncertainty. 

3.13 



Section 3: Data types, Storage Allocation, Garbage Collection, and Overlays 

3.4.3 SPECIFICATIONS 

Associated with the overlay system is adatatype called a swparray, (type name SWPARRAYP), which 
occupies one word of resident space, plus however much of shadow space needed for the body of 
the array. arglist,.fu.!:yQ, nargs, getd, putd, argtype, arraysize, changename, caUs, break, advise, and 
edita all work equally well with swappable as resident programs. ccodep is true for all compiled 
functions/ definitions. 

swparrayp[x] 

+ scodep[x] 
+ 

mkswap[x] 

mkunswap[x] 

mkswapp[ fname;cdef] 

setsbsize[n] 

Analogous to arrayp. Returns ! if ! is a swapp able array and, NIL 
otherwise. 

analagous to ccodep. Returns T if ! is or has a swapped compiled 
definition. 

If! is a resident array, returns a swappable array which is a copy of 
!. If! is a literal atom and ccodep[x] is true, its definition is 
copied into a swappable array, and it is (undoably) redefined with 
the latter. 'Ibe value of mkswap is !. 

the inverse of mkswap. ! is either a swappable array, or an atom 
with swapped definition on its CODE property. 

All compiled definitions begin life as resident arrays, whether they 
are created by load, or by compiling to core. Before they are 
stored away into their atom's function cell, mkswapp is applied to 
the atom and the array. If the value of mkswapp is T, the 
definition is made swappable; otherwise, it is left resident. By 
redefining mkswapp or advising it, the user can completely control 
the swappability of all future definitions as they are created. The 
initial definition of mkswapp will make a function swappable if (1) 
noswapflg is NIL, and (2) the name of the function is not on 
noswapfns, and (3) the size of its definition is greater than 
mkswapsize words, initially 128. 

Sets the size of the swapping buffer to !!, a number of pages. 
Returns the previous value. setsbsize[] returns the current size 
without changing it 30 

30 Currently. the system lacks error recovery routines for situations such as a call to a swappable function which is too 
big for the swapping buffer. or when the size is zero. Therefore. sel~bsizc should be used with care. 

3.14 



Index for Section 3 

ARRAY[N;P;V] SUBR .............................. . 
array header ................................... . 

,array pointer •.................................. 
ARRAYP[X] SUBR ................................. . 
arrays .... " ..................................... . 
ARRAYS FOULED (error message) .................. . 
atoms ................ " .......................... . 
BITS (as a field specification) ......•.......... 
carri age-return .....................•........... 
CCODEP[FN] SUBR .................•............... 
CODE (property name) .......................... .. 
compact ing ..........................•........... 
CONCAT[X1;X2; ... ;Xn] SUBR* ..................... . 
CONS[X;Y] SUBR .....................•............ 
data-types ..........................•........... 
DATUM OF INCORRECT TYPE (error message) ..•...... 
DECLAREDATATYPE[TYPENAME;FIELDSPECS;FLG] ....... . 
E (in a floating point number) .............•.... 
ELT[A;N] SUBR •.................................. 
EL TD[A; N] SUBR .......•.................•.....•.. 
end-of-l ine ...•................................. 
EQP[X; Y] SUBR •.........••....••..••.....•.•.•... 
escape character ••....•...•••...•.....•.......•• 
FETCHFIELD[DESCRIPTOR;DATUM] ..•................. 
FIXP (as a field specification) .....•........... 
floating point numbers ................•.....•... 
FLOATP (as a field specification) .............. . 
FLTFMT[FORMATBITS] ...•.•..•..•..•...•..•.••...•. 
free-list ...................................... . 
garbage collection" •..........•••.....•• ; ••••••.. 
GENSYM[CHAR] ..........•....•..•................. 
GETDESCRIPTORS[TYPENAME] ....................... . 
GETFIELDSPECS[TYPENAME] .......•.........•....... 
handl e ............•...............•............. 
hash arrays .......•..........................•.. 
HERALD[STRING] SUBR ............................ . 
HERALDSTRING (system variable/parameter) .•.•.... 
ILLEGAL DATA TYPE (error message) .............. . 
integers .................................•...... 
1 arge integers ........•..•......•............... 
LINELENGTH[N] SUBR ............................. . 
1 ine-feed .................•.......•.......•..... 
LIST[X1;X2; ... ;Xn] SUBR* ..••......•............. 
l1st nodes .••........•..........•...•......•.... 
lists ........•............•..................... 
1 iteral atoms .•...•......••...•...•..•.....•.... 
MAKESYS[FILE] SUBR ....................•....•.... 
MAKESYSDATE (system variable/parameter) .....•..• 
MINFS[N;TYPE] .................................. . 
MKATOM[X] SUBR ................................. . 
MKSTRING[X] SUBR ....•..............•......•..... 
MKSWAP[X] •..••...••• It ••••••••••••••••••••••••••• 

MKSWAPP[FNAME;CDEF] .......•..............•.•.... 
MKSWAPSIZE (Overlay variable/parameter) ...•..•.• 
MKUNSWAP[X] .............•..........••........... 
NCREATE[TYPENAME;FROM] ....••....•....••.•.••••.• 

INDEX.3.1 

Page 
Numbers 

3.5 
3.5 
3.5 
3.14 
3.5,1,9-10 
3.10 
3.1,9 
3.8 
3.1 
3.13-14 
3.14 
3.10 
3.6 
3.5,9 
3.1,2-7,9 
3.B 

" 3.7 
3.4 
3.5 
3.5 
3.1 
3.3 
3.1 
3.B 
3.7 
3.4,1;3,9 
3.B 
3.4 
3.9-10 
3.9-11 
3.2 
3.B 
3.B 
3.12 
3.1 
3.11 
3.12 
3.B 
3.3 
3.3,1,9 
3.5 
3.1 
3.5 
3.6,9 
3.4,1 
3.1,2 
3.11 
3.11 
3.10-11 
3.2-4 
3.6,9 
3.14 
3.14 
3.14 
3.14 
3.B 



NOBIND " .••••..••.•••.•••••.•••••.••••••••••••.• 
NOSWAPFNS (Overlay variable/parameter) •••••••••. 
octal ••.•.••.•••••••..••••••••••••.••••••••••••• 
overl ays .••••.••..•••..••.•••.••.•••••••.••.•••• 
PACK[X] SUBR ••..••••••••••••••••••••••••••••••.• 
page •••...•••••••••••.•••••••••••••••••••••••••• 
pn ames •...•.•..••.•••.••.••••••••••••.•••••••••• 
poi nter •••.•..•....••.•••••••.•••••••••••••••••• 
POINTER (as a field specification) •••••••••••••• 
PRINT[X;FILE;RDTBL] SUBR •••••.•••••••••.•••••••• 
PRINTLEVEL[CARN;CDRN] SUBR •••••••••••••••••••••• 
PRIN1[X; FILE] SUBR ............................. . 
PRIN2[X;FILE;RDTBL] SUBR •••••••••••••••••••••••• 
private pages ••..••••••••••••.•••••••••••••••••• 
Q (following a number) ........................ .. 
RADIX[N] SUBR ••••.•.••.••••••••••••••••.•••••••• 
RECLAIM(TYPE] .....•...••••••••••••••.••••••••••• 
relocation information (in arrays) •••••••••••••• 
REPLACEFIELD(DESCRIPTOR;DATUM:NEWVALUE] ••••••••• 
RUN (TENEX command) ........................... .. 
SCODEP[FN] SUBR ••••••••••••••••••••••••.•••••••• 
SETA(A:N:V] •••.••.•••••••••••••••••••••••••••••• 
SETD[A:N:V] ••••.•••••••••••••.•••••••••••••••••• 
SETSBSIZE[N] SUBR ••••••••••••••••••••••••••••••• 
shared pages •••••••••••••••••••••••••••.•••••••• 
shared system •••..•...••.•.••.•••••••••..•••••.• 
sharing •••••.••••••••••••••••.•••••••••••••••••• 
sma 11 integers •.•••.•••••••••••••••••••.•••••••• 
SMALLP(N] .•••••••••••••••••••.•••••••••••••••••• 
space ••••••••••••••••••••••••••••••••••••••••••• 
storage allocation •••••••••••••••••••••••••••••• 
string characters •••••••••.•••••••••••••••••••.• 
string pointers ••••••••••••••••••••••••••••••••• 
strings •..•••••••••••••••••••••••••••••••••••••• 
SUBSTRING[X:N:M:OLDPTR] SUBR •.•••••••••••••••••• 
swappab1e array ••••••••••••••••••••••••••••••••• 
swapping buffer ••••••••••••••••••••••••••••••••• 
SWPARRAY(N:P~V] SUBR •••••••••••••••••••••••••••• 
SWPARRAYP[X] SUBR ••••••••••••••••••••••.•••••••• 
TENEX ••• < •••••••••••••••••••••••••••••••••••••••• 

unboxed numbers (in arrays) ••••••••••••••••••••• 
USERDATATYPES[] •• , •••••••••••••••••••••••••••••• 
value cell ••••.••••••••••••••••••••••••••••••••• 
[ •••••••••••••••••••••••••••••••••••••• < ••••••••• 

" .. " " " " " " " " " " " " " " " " " " "," " " " " " " " " " " " " " " " " " " " " " " " " " 
# (followed by a number) •••••••••••••••••••••••• 
% (escape character) •••••••••••••••••••••••••••• 
( .............................................. . 
( ) ............................................. . 
) """ " " " " " " " " " " " " " " " " " " " " , " " " " " " " " " " " " II " , " " " " " " " " 

(in a floating point number) •••••••••••••••••• 
] (use in input) •••••••••••••••••••••••••••••••• 

INDEX.3.2 

Page 
Numbers 

3.3 
3.14 
3.3,5 
3.12-14 
3.2-4,9 
3.9 
3.2,1,9 
3.1 
3.7 
3.1,5-6 

<3.5 
3.2,5-6 
3.1,5-6 
3.11 < 

3.3 
3.3 
3.10 
3.5 
3.8 
3.11 
3.14 
3.5 
3.5 
3.14 
3.11 
3.11 
3.11 
3.3,1 
3.3 
3.1 
3.9 
3.7,1,6,9 
3.7,1,9 
3.6 
3.6 
3.12 
3.13 
3.14 
3.14 
3.1,4,11 
3.5 
3.9 
3.2 
3.1 
3.6.1 
3.5 
3.1,6 
3.1 
3.4 
3.1 
3.4 
3.4 
3.1 



SECTION 4 

FUNCTION TYPES AND IMPLICIT PROGN 

In Interlisp, each function may independently have: 

a. its arguments evaluated or not evaluated; 
b. a fixed number of arguments or an indefinite number of arguments; 
c. be defined by an lnterlisp expression, by built-in machine code, or by compiled 

machine code. 

Hence there are twelve function types (2 x 2 x 3). 

4.1 EXPRS 

Functions defined by Interlisp expressions are called exprs. Exprs must begin with either LAMBDA 
or NLAMBDA, 1 indicating whether the arguments to the function are to be evaluated or not 
evaluated, respectively. Following the LAMBDA or NLAMBDA in the expr is the "argument list", 
which is either 

. (1) a list of literal atoms or NIL (fixed number of arguments); or 
(2) any literal atom other than NIL, (indefinite number of arguments).2 

Case (1) corresponds to a function with a fixed number of arguments. Each atom in the list is the 
name of an argument for the function defined by this expression. When the function is called, its 
arguments will be evaluated or not evaluated. as dictated by whether the definition begins with 
LAMBDA or NLAMBDA, and then paired with these argument names.3 This process is called 

1 

2 

3 

Where unambiguous, the tenn expr is used to refer to either the function, or its definition. 

Anything else will cause an ARG NOT LITATOM error. e.g. (LAMBDA "FOO" --), or (LAMBDA (X Z --). In + 
addition, if NIL or T is used as an argument lIame. the error ATTEMPT TO BJND NIL OR T is generated. + 

Note that the function itself can evaluate selected arguments by caJling eval. In. fact. since the function type can 
specify only that all arguments arc to be evaluated or none are to be evaluated. if it is desirable to write a function 
which only evaluates some of its argutnent~. e.g. !!"c;!g. the function is defined as an nlatnbda. i.e. no arguments are 
evaluated in the process of calling the function. and then included in the definition itself arc the appropriate calls to 
eva]. In this case. the user should also put 011 the property list of the function under the property INFO the value 
EVAL to infonn the various system packages such as nWIM. CLISP, PRINTSTRUCTURE, etc .. that Ulis function in 
fact does evaluate its arguments. even though it is an nlambda. 

4.1 



Section 4: Function Types 

"spreading" the arguments, and the function is called a spread-LAMBDA or a spread-NLAMBDA, or 
simply a spread function. 

Case (2) corresponds to a function with an indefinite number of arguments. Such a function is 
calkd a nospreadfunction. If its definition begins with NLAMBDA, the atom which constitutes its 
argument list is bound to the list of arguments to the function (unevaluated). For example, if FOO 
is defined by (NLAMBDA X --), when (FOO THIS IS A TEST) is evaluated, X will be bound to 
(THIS IS A TEST). 

If a nospread function begins with a LAMBDA, indicating its arguments are to be evaluated, each of 
its !! arguments are evaluated and their values stored on the pushdown list. The atom following 
the LAMBDA is then bound to the number of arguments which have been evaluated. For example, 
if FOO is defined by (LAMBDA X --) when (FOO ABC) is evaluated, A. B. and C are evaluated 
and X is bound to 3. A built-in function, arg[atm;m], is available for computing the value of the 
mth argument for the lambda-atom variable atm. ill:& is described in section 8. 

4.2 COMPILED FUNCTIONS 

Functions defined by expressions can be compiled by the Interlisp compiler, as described in section 
18, "The Compiler and Assembler". In interlisp-10, functions may also be written directly in 
machine code using the ASS EMB L E directive of the compiler. Functions created by the compiler. 
whether from S-expressions or AS S EMB L E directives, are referred to as compiled functions. In 
Interlisp-10, compiled functions may be resident or swapp able, as described in section 3. 

4.3 FUNCTION TYPE 

The function .f!:ilir.12 returns the function type of its argument. 'The value of .fu!.yp is one of the 
following 12 types: 

EXPR 
FEXPR 
EXPR* 
FEXPR* 

CEXPR 
CFEXPR 
CEXPR* 
CFEXPR* 

SUBR 
FSUBR 
SUBR* 
FSUBR* 

The types in the first column are all defined by expressions. The types in the second column are 
compiled versions of the types in the first column, as indicated by the prefix~. In the third 
column arc the parallel types for built-in subroutines. Functions of types in the first two rows 
have a fixed number of arguments, i.e., are spread functions. Functions in the third and fourth 
rows have an indefinite number of arguments, as indicated by the suffix *. 1ne prefix E indicates 
no evaluation of arguments. 1nus, for example, a C FE X P R'" is a compiled form of a nospread
NLAMBDA. 

A standard feature of the Interlisp system is that no error occurs if a spread function is called with 
100 many or 100 few arguments. If a function is called with 100 many arguments, the extra 
arguments are evaluated bUI ignored. If a fUllction is called with too few arguments. the 
unsupplied ones will be delivered as NIL. In fact, the jimction itself cannot distinguish between 
being given NIL as an argument. and not being given that argument. e.g., 
( F 00) and ( F 00 NIL) are exactly the same for spread functions. 

4.2 



PROGN 

4.4 PROGN 

progn is a function of an arbitrary number of arguments. progn evaluates the arguments in order 
and retumsthe value of the last, Le., it is an extension of the function prog2 of LISP 1.5. Both 
cond and lambda/nlambda expressions have been generalized to permit "implicit progns" as 
described below. 

4.5 IMPLICIT PROGN 

The conditional expression has been generalized so that each clause may contain n forms (n 2. 1) 
which are interpreted as follows: 

(COND 
(PI Ell E12 E13) 
(P2 E21 E22) 
(P3) 
(P4 E41» 

will be taken as equivalent to (in LISP 1.5): 

(COND 
(PI (PROGN Ell E12 E13» 
(P2 (PROGN E21 E22» 

[1] 

(P3 P3) [2] 
(P4 E41) 
(T NIL» 

Note however that P3 is evaluated only once in [1]. while it is evaluated a second time if the 
expression is written as in [2]. Thus a clause in a cond with only a predicate and no following 
expression causes the value of the predicate itself, if non-N I L, to be returned. Note also that NIL 
is returned if all the predicates have value NIL. i.e., the cond "falls off the end". No error is 
generated. 

LAMBDA and NLAMBDA expressions also allow implicit progn's; thus for example: 

(LAMBDA (VI V2) (Fl VI) (F2 V2) NIL) 

is interpreted as: 

(LAMBDA (VI V2) (PROGN (Fl VI) (F2 V2) NIL» 

The value of the last expression following LAMBDA (or NLA.MBDA) is returned as the value of the 
entire expression. In this example, the function would always return NIL. 

4.3 





t 
I 

Index for Section 4 

ARG[VAR ;M] FSUBR .•.•.••.•.•.••••..•.••.••••.•••• 
ARG NOT LITATOM (error message) .••••••.••..••••• 
argument evaluation .•..••.•••.••.•.•••.•••••••.• 
argument list .....••••..••••.•••.•.••••••..••..• 
ASSEMBLE ••••••..•.••.•...••....••..••••••.••.•.• 
ATTEMPT TO BIND NIL OR T (error message) •.••••.• 
CEXPR (function type) .......................... . 
CEXPR· (function type) ........................ .. 
CFEXPR (function type) ......................... . 
CFEXPR· (function type) •••••••••.••••••••••••••• 
compiled functions .•••••..••.•••.•••••.••••••••• 
compi 1 er ••••••.•••••••.••••••••••••••••••••••••• 
COND[Cl ;C2; ... ;Cn] fSUBR* ..................... .. 
EVAL[X] SUBR ••••.••••••..••••.•••.•••••.•••••••• 
EXPR (function type) .......................... .. 
exprs .•••••••••••••••••••••••••••.•••••••••••••• 
EXPR· (function type) ••••••.••••••.••••••••••••• 
FEXPR (function type) •••••••••••••.••••••••••••• 
FEXPR· (function type) •••••••••••••••••••••••••• 
fixed number of arguments ••••••••••••••••••••••• 
FNTYP[FN] ••••••••••••••••••••••••••••••••••••••• 
FSUBR (function type) •••••••••••••••••.••••••••• 
FSUBR· (function type) •••••••••••••••••••••••••• 
funct ion types .••••••••••••••••••••••••••••••••• 
implicit progn •••••••••••••••••••••••••••••••••• 
incorrect number of arguments ••••••••••••••••••• 
indefinite number of arguments •••••••••••••••••• 
INFO (property name) •••••••••••••••••••••••••••• 
LAMBDA •••••••••••••••••••••••••••••••••••••••••• 
NLAMBDA .••••••••••••••••••••••••••••••••••.•••.• 
nospread funct ions •••••••••••••••••••••••••••••• 
PROGN[Xl;X2; ••• ;Xn] fSUBR* •.•••••••••••••••••••• 
pushdown 1 ist ••••••••••••••••••••••••••••••••••• 
spread functions •••••••••••••••••••••••••••••••• 
spreading arguments •••••••••.••••••••••••••••••• 
SUBR (function type) •••••••••••••••••••••••••••• 
SUBR· (function type) ••••••••••••••••••••••••••• 
too few arguments ••••••••••••••••••••••••••••••• 
too many arguments •••••••••••••••••••••••••••••• 

INDEX.4.1 

Page 
Numbers 

4.2 
4.1 
4.1-2 
4.1 
4.2 
4.1 
4.2 
4.2 
4.2 
4.2 
4.2 
4.2 
4.3 
4.1 
4.2 
4.1 
4.2 
4.2 
4.2 
4.1 
4.2 
4.2 
4.2 
4.1-2 
4.3 
4.2 
4.2 
4.1 
4.1.2-3 
4.1.2-3 
4.2 
4.3 
4.2 
4.2 
4.2 
4.2 
4.2 
4.2 
4.2 





SECTION 5 

PRIMITIVE FUNCTIONS AND PREDICATES 

5.1 PRIMITIVE FUNCTIONS 

car[x] 

cdr[x] 

caar[x] = car[car[x]] 
cadr[x] = car[cdr[x]] 
cddddr[x] = 
cdr[cdr[cdr[cdr[x nn 

cons[x;y] 

cons[x;y] is placed 

car gives the first element of a list !. or the left element of a dotted 
pair!. car of NIL is always NI L. For aU other nontists. e.g., 
atoms. strings. arrays. and numbcrs. the value is undefined (and in 
some implementations may generate an error). 

cdr gives the rest of a list (all but the first element). This is also 
the right member of a dotted pair. cdr of NIL is always NIL. The 
value of cdr is undefined for other nonlists. 

AU 30 combinations of nested cars and cdrs up to ~ deep 
are included in the system. All are compiled 
open by the compiler. 

cons constructs a dottcd pair of ! and y.. If y. is a list. ! becomes 
the first clement of that list. To minimize drum accesses the 
following algorithm is used in Interlisp-10. for finding a page on 
which to put the constructed Interlisp word. 

1} 

2} 

3} 

4} 

on the page with y. if y. is a list and there is room; otherwise 

on the page with! if! is a list and there is room; otherwise 

on the same page as the last cons if there is room; otherwise 

on any page with a specified minimum of storage. presently 16 LISP words. 

conscount[-] value is the number of conses since this Interlisp was started up. 

rplacd[x;y] Places the pointer y.. in cdr of the cell poin~cd to by!. Thus it 

5.1 



+ 

+ 

+ 

+ 

rplaca[x;y) 

Section 5: Primitive Functions and Predicates 

physically changes the internal list structure of ,!, as opposed to 
cons which creates a new list clement. 'lbe only way to get a 
circular list is by using rplacd to place a pointer to the beginning of 
a list in a spot at the end of the list 

The value of rplacd is!. An attempt torplacd NIL will cause an 
error, ATTEMPT TO RPLAC NIL, (except for rplacd[NIL;NIL». 
An attempt to rplacd any other non-list will cause an error ARG 
NOT LIST • 

. similar to rplacd, but replaces the address . pointer of ,!, i.e., car, 
with Y... The value of rplaca is!. An attempt to rplaca NIL will 
cause an error, ATTEMPT TO RPLAC NIL. (except for 
rplaca[ NIL; NIL ]). An attempt to rplaca any other non-list will 
cause an error, ARG NOT LIST. 

Convention: Naming a function by prefixing an existing function' name with f usually indicates 
that the new function is a fast version of the old, Le., one which has the same definition but 
compiles open and runs without any ~'safety" error checks. 

frplacd[x;y] 

frplaca[x;y) 

rplnode[x ;a;d] 

rplnode2[x;y] 

frplnode[x;a;d] 

frplnode2(x;y] 

quote[x) 

Has the same definition as . rplac.d but compiles open. as one 
instruction. Note that no chccksare made on!, so that a compiled 

. ftylacd can clobber NIL, producing strange and wondrous effects. 

Similar to frplacd. 

performs rplaca[x;a], rplacd[x;d], and returns I. 

performs rplaca[x;car(y]], rplacd[x;cdr(y]] and returns I. 

fast version of rplriode that compiles open with no error checks. 

fast version of rplnode2 that compiles open with no error checks. 

This is a function that prevents its arguments from being eval~ated. 
Its value is 1£ itself, e.g., (QUOTE FOO) is FOO.l 

1 Since giving !l@~ more than one argument. e.g .• (QUOTE EXPR (CONS X Y». is almost always a parentheses 
error.· and one Ul3t would otherwise go undetected. .Q..uQt!! itself generates an error in this case, 
PAR[NTHESIS ERROR. 

5.2 

---
'~~~_'_"j,c~-"","~o~.,. ..... ~,.,_ 



kwote[x] 

Primitive Functions 

Value is an expression which when evaluated yields!. If! is NIL 
or a number, this is ! itself. Otherwise. (LI ST (QUOTE QUOTE) 
x). For example, if! = A, and y = B, then 
(KWOTE (CONS x y» = (QUOTE (A . B». 

The conditional function of Interlisp, cond, takes an indefinite 
number of arguments £1&2' ... £k' called clauses. Each clause £i is 
a list (~li ... ~ni) of n > _ 1 items, where the first element is the 
predicate, and the rest of the elements the consequents. The 
operation of cond can be paraphrased as 
IF ell THEN e21 ... enl ELSEIF e12 THEN e22 
... en2 ELSEIF e13 ~ 

The clauses are considered in sequence as follows: the first 
expression Qli of the clause £i is' evaluated and its value is classified 
as false (equal to NIL) or true (not equal to NIL). If the value of 
QU is true, the expressions Q2i ... Qni that follow in clause £i are 
evaluated in sequence, and the value of the conditional is the value 
of Qni' the last expression in the clause. In particular, if !! = 1, i.e., 
if there is only one expression in the clause £i' the value of the 
conditional is the value of Q1i' (which is evaluated only once). 

If ~U is false, then the remainder of clause £i is ignored, and the 
nex t clause £i + 1 is considered. If no ~li is true for any clause, the 
value of the conoitional expression is NIL. 

selectq[x;clausel ;clause2; ... ;clause ; default] 
seYects a form or sequence of forms based on the value of its first 
argument!. Each clausei is a list of the form (~i ~U ~2i '" ~ki) 
where ~i is the selection key. The operation of selectg can be 
paraphrased as: 
IF ~=sl THEN eli ... 8ki 
ELSEIF ~=s2 THEN ... ELSE default. 

If~· is an atom, the value of! is tested to see if it is ~ to ~ (not 
evaluated). If so, the expressions Qli'" ~ki are evaluated in 
sequence, and the value of the sc1ectg is the value of the last 
expression evaluated, i.e., ~ki' 

If ~. is a list, the value of ! is compared with each clement (not 
evafuated) of ~i' and if! is £9. to anyone of them, then ~li to ~ki 
are evaluated in tum as above. 

If clausei is not selected in one of the two ways described, 
clause, + 1 is tested, etc., until all the clause's have been tested. If 
none IS selected, the value of the scleclq is the value of default. 
default must be present. 

An example of the form of a selectg is: 

5.3 



+ 
+ 
+ 
+ 

prog[varslst;el ;e2 ; ... ;en] 

Section 5: Primitive Functions and Predicates 

[SELECTQ (CAR X) 
(Q (PRINT FOO) 

(FIE X» 
({A E IOU) 

(VOWEL X» 
(COND 

«NULL X) 
NIL) 

(T (QUOTE STOP] 

which has two cases, Q and (A E IOU) and a default condition 
which is a condo 

selectg compiles open, and is therefore very fast; however, it will 
not work if the value of ! is a list, a large integer, or floating point 
number, since se1cctg uses £Q for all comparisons. 

evaluates its arguments in order, that is, first !l' then !2' etc, and 
returns the value of its first argument !l' e.g., 
(PROGl X (SETQ X Y» sets.! to :t, and returns !'S original 
value. 

progn evaluates each of its arguments in order, and returns the 
value of its last argument as its value. progn is used to specify 
more than one computation where the syntax allows only one, e.g., 
(SELECTQ ..• (PROGN •.• » allows evaluation of several 
expressions as the default condition for a selectg. 

This function allows the user to write an ALGOL-like program 
containing Interlisp expressions (forms) to be executed. The first 
argument, varlst, is a list of local variables (must be NIL if no 
variables are used). Each atom in varlst is treated as the name of a 
local variable and bound to NIL. varlst can also contain lists of the 
form (atom form). In this case, atom is the name of the variable 
and is bound to the value of form. The evaluation takes place 
before any of the bindings are performed, e.g., 
(PROG « X Y) (Y X» ••• ) will bind! to the value of y and 
y to the (original) value of!. An attempt to use anything other 
than a literal atom as a ]2!Qg variable will cause an error, 
ARG NOT LITATOM. An attempt to use NIL or T as a P!Q& 
variable will cause an error, ATTEMPT TO BIND NIL OR T. 

The rest of the PIQg is a sequence of non-atomic statements (forms) 
and atomic symbols. i.e. litatoms, used as labels for gQ. lbe fOIll1s 
are evaluated sequentially; the labels serve only as markers. The 
two special functions gg and return alter this flow of control as 
described below. The value of the PIQg is usually specified by the 
function return. If no return is executed, Le., if the prog "faUs off 
the end," the value of the PIQg is NIL. 

5.4 



go[x) 

return[x] 

Primitive Functions 

gQ is the function used to cause a transfer in a m:Q&. ( GOl) will 
cause the program to continue at the label L. A gQ can be used at 
any level in a m:Qg. If the label is not found. gQ will search higher 
progs within the same function, e.g., 
(PROG -- A -- (PROG -- (GO A»). If the label is not 
found in the function in which the m:Q& appears, an error is 
generated. UNDEFINED OR ILLEGAL GO. 

A return is the normal exit for a IrrQ&. Its argument is evaluated 
and is the value of the IrrQ& in which it appears. 

If a gQ or return is executed in an interpreted fUllction which is not a J2[Qg. the gQ or return will 
be executed in the last interpreted l!!.QJ: entered if any, otherwise cause an error. 

gQ or return inside of a compiled function that is not a J2[Qg is not allowed. and will cause an 
e"or at compile time. 

As a corollary, gQ or return in a functional argument, e.g., to sort, will not work compiled. Also, 
since nlsetg's and ersetg's compile as separate functions, a gQ or return cannot be used inside of a 
compiled nlsetg or ersetg if the corresponding IrrQ& is outside, i.e., above, the nlsetg or ersetg. 

set[x;y) 

setq[x;y) 

setqq[x;y) 

gettopval[atm) 

This function sets ! to y. Its value is y. If! is not a literal atom, 
causes an error, ARG NOT lITATOM. If! is NIL, causes an error, 
ATTEMPT TO SET NIL. Note that set is a normal lambda-spread 
function, i.e., its arguments arc evaluated before it is called. Thus, 
if the value of! is £, and the value of y. is .12, then set[x;y] would 
result in £ having value .12, and .12 being returned as the value of sel 

An nlambda version of set: the first argument is not evaluated, the 
second is.2 Thus if the value of X is C and the value of Y is B. 
( S ETQ X Y) would result in X (not C) being set to B, and B 
being returned. If! is not a literal atom, an error is generated, 
ARG NOT lITATOM. If ! is NIL. the error ATTEMPT TO SET 
NIL is generated. 

Like setg except that neither argument is 
evaluated, e.g., (SETQQ X (A B C» sets! to (A B C). 

returns top level value of atm from its value cell (even if NOBIND), 
regardless of any intervening bindings. Interpreted, generates an 
error, ARG NOT LITATOM, if atm is not a literal atom. 

2 Since ~~1q is an nlambda. neither argument is evaluated during the calling process. However, ~ruJ itself calls j:val on 
its second argument. Note that as a result. typing (SETQ var form) and SETQ(var form) to .li~! is equivale~lt: in 
both cases var is not evaluated. and form is. 

5.5 



scttopval[atm;val] 

Section 5: Primitive Functions and Predicates 

Scts top lcvel value of atm, regardless of any intervening bindings, 
i.e., stores val in value cell of atm. Value is val. Interpreted, 
generates an error ATTEMPT TO SET NIL, if atm=NIL, or ARG 
NOT LITATOM, if atm is not a literal atom. 

+ Note: gellopval and setlopval are rarely used in a system which employs shallow binding such as 
+ In terlisp-l 0, as it is more economical to simply rebind variables. In a deep bound system. 
+ gellopval and settopval are very efficient since they do not have to search the stack, but can simply 
+ access the value cell directly. In a shallow bound system. the opposite is true: gettopval and 
+ seltopval have to search the stack for rebindings and hence can be quite expensive. 

+ In order to provide a convenient way for both deep and shallow bound systems of referring to 
+ what are conceptually global variables, the following functions are provided: 

+ getatomval[atm) 
+ 

+ setatomval[atm;val] 
+ 

in shallow system, such as Interlisp-10, same as evalv[atm], or 
simply atm. In deep bound system, same as gettopval[atm). 

in shallow bound system, same as sei. in deep bound system, same 
as settopval. 

+ In other words, getatomval and setatomval always access a variable's value cell,3 regardless of 
+ whether the system is deep or shallow bound 

rpaq[x;y] 

rpaqq[x;y) 

An nlambda function like setg, except always works on top level 
value of!, i.e., on the value cell. 

An nlambda function like ~ for top level values. 

~ and ~ are used by the file package (Section 14). Both!lli!9. and ~ generate errors if 
! is not a literal atom. Both are affected by the value of dfnflg (Section 8). If dfnflg=ALLPROP 
(and the value of! is other than NOBIND), instead of setling !, the corresponding value is stored 
on the property list of! under the properly VALUE. Both are undoable. 

+ addtovar[var;x1 ;x2; ... ;xnl 
+ 
+ 
+ 
+ 
+ 

nlambda, nospread function. Each !i that is not a member of the 
value of var is added to it, i.e. after addtovar completes, the value 
of var will be union[list[x 1 ;x2; ... ;xn];var]. addtovar is used by 
prettydef for implementing the ADDVARS command. It perfonns 
some file package (see Section 14) related operations, i.e. "notices" 
that var has been changed. Value is W (not the value of var). 

+ 3 As described in Section 3. an atom which has not previously been used as a variable does not have a value cell in 
+ Interlisp·10. I low ever. from the standpoint of R<;.t~!flval and evalv the atom looks likc it has a value cell which 
+ cont.1ins tilC atom NOB IND. 

5.6 

-, ------
~-"'~~_._<.5_...,,_,,'-'~~ilt;""--.,.,;;~~."s_...,,-_o, -_--=-_" 



Primitive Functions 

CHANGING AND RESTORING SYSTEM STATE 

In Interlisp, a computation can be interrupted/aborted at any point due to an error, or more 
. forcefully, because a control-D was typed, causing return to the top level. 'This situation creates 
problems for programs that need to perform a computation with the system in a "different state", 
e.g., different radix, input file, readtable, etc. but want to "protect" the calling environment, i.e., be 
able to restore the state when the computation has completed. While errors can be "caught" by 
errorsets, control-D cannot.4 Thus the system may be left in its changed state as a result of the 
computation being aborted. The following functions address this problem:5 

resetlst[ resetx] nlambda, nospread. resetx is a list of forms. resctlst sets up an 
errorset so that any reset operations performed by rcsetsave (see 
below) are restored when the evaluation of resetx has been 
completed (or an error occurs, or a control-D is typed). If no error 
occurs, the value of resetlst is the value of the last form on resetx, 
otherwise resetlst generates an error (after performing the necessary 
restorations). resetlst compiles open. 

resetsave[resetx] nlambda, nospread function for use under a resetlst.6 If car of 
resetx is atomic, resets the top level value of car of resetx to the 
value of cadr of resetx,r--- e.g., 
(RESETSAVE LISPXHISTORY EDITHISTORY) resets the value 
of lispxhistory to be edithistory and provides for· the original value 
of lispxhistory to be restored when the resellst completes operation, 
(or an error occurs, or a control-D is typed). 

4 

5 

6 

7 

8 

If car of resetx is not atomic, it is a form that is evaluated. If cdr 
of resets ave is NIL, e.g., ( RESETSAVE (RADIX 8 »,the form 
must return as its value its "former state", so that the effect of 
evaluating the form can be reversed, and the system state can be 
restored, by applying car of the form to the value of the form,8 e.g., 
(RESETSAVE (RADIX 8» performs (RADIX 8), and provides 
for radix to be reset to its original value when the resetlst completes 
by applying radix to the value returned by (RADIX 8). 

i.e., not conveniently. The program could of course redefine control-D as a userinterrupt, check for it, reenable it, 
and call reset or something similar. 

Note that these functions do not (cannot) handle the situation where their environment is exited via anything other + 
than a normal return, an error, or a reset E.g. a reteval, retfrom,~, etc., will never be seen. + 

resetsave can be called when not under a resetlst. In this case, the restoration will be performed at the next RESET, 
i.e .• control-D or call to reset. In other words, there is an "implicit" resetlst at the top level in evalgt. 

This use is somewhat anachronistic in Interlisp-lO in thal in a shallow bound system. it is sufficient to siinply rebind + 
the variable. Furthermore. if there are any rebindings. the resetsave will not affect the most recent binding but will + 
change only the top level value, and therefore probably nol have the intended effect + 

except if lAir of the form is ~. the ~~q is transparent for the purposes of res~o;ave. i.e. the user could also have + 
written (RESETSAVE (SETQ X (RADIX 8))). and restoration would be performed bv applying radix. nol§tlg. + 
to the previous value of radix. + 

5.7 



resetvar[ var; newvalue; form] 

+ resetvars[varslst;el;e2;···;en] 
+ 
+ 
+ 

Section 5: Primitive Functions and Predicates 

For functions which do not return their "previous setting", the 
restoring expression can be specified as the value of the second 
argument to resetsave, which in this case is evaluated before the 
first argument, e.g., 
[RESETSAVE(SETBRK --)(LIST(QUOTE SETBRK)(GETBRK]9 
will restore the break characters by applying se~brk to the value 
returned by (GETBRK), which was computed before the (SETBRK 
- -) expression was evaluated. 

(RESETSAVE NIL form) is permissible. It simply specifies that 
the value of form be treated as a restoration expression, e.g., 
(RESETSAVE NIL (LIST (QUOTE CLOSH) FILE» will 
cause file to be closed when the resetlst that the resetsave is under 
completes (or an error occurs or a control-D is typed). 

resetsave compiles open. Its value is not a "useful" quantity. 

Nlambda function. Simplified form of resetlst and resetsave for 
resetting and restoring global variables.1O Equivalent to 
(RESETLST (RESETSAVE var newvalue) form), e.g., 
(RESETVAR LISPXHISTORY EDITHISTORY (FOO» r~ets 
lispxhistory to the value of edithistory while evaluating (FOO). 
rcsctvar compiles open. If no error occurs, its value is the value of 
form. 

nlambda function, similar to P!Qg, except the variables in varslst are 
global variables. In a shallow bound system (Interlisp-IO) resetvars 
and P!Qg are identica1.11 In a deep bound system, each variable is 
"rebound" using resetsave. 

+ resetvars, like getatomval and setatomval, is provided to permit compatibility (i.e. transportablility) 
+ between a shallow bound and deep bound system with respect to conceptually global variables. 

resetform[resetform;forml;form2;···;formn] 
Nlambda function. Simplified form of resetlst and resetsave for 
resetting a system state when the corresponding function returns as 
its value the "previous setting." Equivalent to 
(RESETLST (RESETSAVE resetform) forml form2 ... fonnn), e.g., 
(RESETFORM (RADIX 8) (FOO». resetf()nn compiles open. If 
no error occurs, its value is the value returned by fonnn. 

9 

+ 10 

+ 11 

Note that the restoration expression is still "evaluated" by applying its car to its cdr. 

Unnecessarily expensive in a shallow bound system as the variable can simply be rebound. 

except that the compiler insures that variables bound in a resetvars are declared as SPECVARS (see St.-ction 18). 

5.8 



Primitive Functions 

For some applications, the restoration operation must be different depending on whether the 
computation completed successfully or was aborted by an error or control-D. To facilitate this, 
while the restoration operation. is being perfonned, the value of resetstate will be bound to NIL. 
ERROR. or RESET, depending on whether the exit was nonnal, due to an error, or reset (Le., 
control-D, or in Interlisp-lO, control-C followed by reenter). For example, 

(RESETLST (RESETSAVE (INFILE X) (LIST '[LAMBDA (FL) 
(AND (EQ RESETSTATE 'RESET) (CLOSEF FL) (DELFILE FL] X» 
. fonns) 

will cause X to be closed and deleted only if a control-D was typed during the execution of fonns. 

For convenience in specifying complicated restoring expressions, the variable oldvalue is bound at 
the time the restoring operation is performed to the value of the saving expression. For example, 

(RESETLST (RESETSAVE (INPUT FL) '(AND RESETSTATE (INPUT OLDVALUE»)U 
. fonns) . 

will restore the primary input file if an error or control-D occurs. 

In addition, the function resetundo, in conjunction with resetlst and resetsave, provides a way of 
specifying that the system be restored to its prior state by undoing the side effects of the 
computations perfonned under the resetlst. Undoing and resetundo are described in Section 22. 

5.2 PREDICATES AND LOGICAL CONNECTIVES 

atom[x) is T if! is an atom; NIL otherwise. 

litatom[x] is T if ! is a literal atom, i.e .• an atom and not a number, NIL 
otherwise. 

numberp[x) is ! if! is a number. NIL otherwise. 

Convention: Functions that end in p. are usually predicates, i.e., they test for some condition. 

stringp[x] is ! if! is a string, NIL otherwise.13 

12 

13 

As mentioned earlier. restoring is performed by applying car of the restoring expression to cdr. This particular 
example works because and applied to (RESETSTATE (INPUT OLDVALUE» is the same as evanng 
(AND RESETS TATE (INPUT OLDVALUE». progn also has this property. Note that without using oldvalue. the 
user would have to Write 

(RESETLST 
(SETQ TEM (INPUT FL» 
(RESETSAVE NIL (LIST '(LAMBDA (FL) (AND RESETSTATE (INPUT FL») 

TEM) ) 
forms) 

For other string functions. see Section 10. 

5.9 

* 
* 
* 



arrayp[x] 

listp[x] 

Section 5: Primitive Functions and Predicates 

is ! if! is an array. NIL otherwise. 

is ! if ! is a list-structure. i.e .• one created by one or more ~; 
NIL otherwise. 

Note that arrays and strings are not atoms, but are also not lists, i.e., both atom and listp will 
return NIL when given an array or a string. 

nlistp[x] 

eq[x;y] 

neq[x;y] 

nul1[x] 

not[x) 

ni11[] 

not[listp[ x)] 

The value of £9 is T, if! and yare pointers to the same structure 
in memory. and NIL otherwise. £9.' is compiled open by the 
compiler. Its value is not guaranteed T for equal numbers which 
are not small integers. See~. 

The value of neg is T. if! is not £9. to y, and NIL otherwise. 

eq[x;NIl] 

same as null, that is eq[x;NIL). 

value is NIL. nill is useful for those cases where one wants to 
supply a functional argument which will always return NIL. 

+ negate[x] 
+ 

returns the negation of x. For example: 
negate[(MEMBER X Y)]= (NOT (MEMBER- X Y», 

+ 
+ 
+ 

eqp[x;y] 

equal[x;y] 

negate[( EO X Y)]= (NEO X V), 
negate[(AND X (NLISTP X»]=(OR (NULL X) (LISTP X», 
etc. 

The value of £QQ is T if! and yare £9., i.e.. pointers to the same 
structure in memory, or if! and yare numbers and are equal in 
value.14 Its value is NIL otherwise. 

The value of equal is T (1) if! and yare £9. i.e .• pointers to the 
same structure in memory; or (2) £QQ. i.e., numbers with equal 
value; or (3) strequal, i.e., strings containing the same sequence of 
characters; or (4) lists and car of! is equal to car of y. and cdr of ! 

14 For more discussion of.£ill? and other number functions, see Section 13. 

5.10 



cqualal1[x;y] 

eqlcngth[x;n] 

equaln[x;y;depth] 

Predicates and Logical Connectives 

is equal to cdr of y.15 'The value of equal is NIL otherwise. Note 
that! and y. do not have to be ~. 

like equal, except always descends to atomic levels, i.e. will compare + 
the contents of arrays, hash arrays, user data types, etc. + 

equivalent to equal[1cngth[x];n], but more efficient, i.e. stops as soon + 
as it knows that! is longer than n. Note that eqlength is safe to use + 
on circular lists, since it is "bounded" by n. + 

like equal, for use with (possibly) circular structures. Whenever * 
depth of car recursion plus depth of cdr recursion exceeds depth, * 
equaln does not search further along that chain. If equaln * 
determines that the expressions ! and y.. are equal, i.e. recursion * 
never exceeds depth, value. of equaln is T. If they are determined * 
to be unequal, value is NIL. Otherwise, i.e. recursion exceeds * 
depth at some pOint, value is ?, e.g. * 
equaln[( «A» B); (( Z» B); 2]=1. For depth=3, the value * 
would be NIL. ... 

Takes an indefinite number of arguments (including 0). If all of its 
arguments have non-null value, its value is the value of its last 
argument, otherwise NIL. e.g., and[x;member[x;y]] will have as its 
value either NIL or a tail of y. and[] = T. Evaluation stops at the 
first argument whose value is NIL. 

Takes an indefinite number of arguments (including 0). Its value is 
that of the first argument whose value is not NIL. otherwise NIL if 
all arguments have value NI L. e.g., or[x;numberp[y]] has its value 
!, y, or NIL. or[] = NIL. Evaluation stops at the first argument 
whose value is not NIL. 

every[everyx;everyfnl;everyfn2] 

15 

16 

Is T if the result of applying everyfnl to each element in everyx is 
true, otherwise NIL. e.g., every[ (X Y Z); A TOM] = T • 

every operates by computing everyfnl[car[everyx]].16 If this yields 
NIL. every immediately returns NIL. Otherwise, every computes 
everyfn2[everyx], or cdr[everyx] if everyfn2=NIL, and uses this as 
the "new" everyx, and the process continues, e.g., 
every[x;ATOM ; COOR] is true if every other element of! is atomic. 

every compiles open. 

A loose description of £illIal might be to say that .1f and y. are ~1! if they print out the same way. 

Actually. evcryfnl[car[everyx]:evcryx] is computed. so for example !!.\'<TI'f!l.! can look at the next clement on evcn'! if 
nccessary. 

5.11 



Section 5: PrimilNe Functions and Predicates 

some[somex;somefnl;somefn2] value is the t1i1 of ~ beginning with the first element that 
satisfies somefnl, i.e., for which somefnl applied to that· clement is 
true. . Value is NIL if no such clement exists. 
e.g.,some[x;(LAMBDA (Z) (EQUAL Z Y»] is equivalent to 
membcr[y;x]. some operates analogously to even:. At each stage. 
somefnl[car[somex];somex] is computed, and if this is not NIL, 
somex is returned as the value of some. Otherwise, somefn2[somex] 
is computed,· or cdr[somex] if somefn2=NIL, and used for the 
next~. 

~ compiles open. 

notany[somex;somefnl.somefn2] 
. same as not[some[somex;somefnl;somefn211 

notevery[everyx;everyfnl;everyfn2] 

memb[x;y] 

fihemb[x;y] 

member[x;y] 

+ eqmemb[x;y] 
+ 

.. not[every[everyx;everyfnl;everyfn211 

Determines if! is a member of the list I. i.e., if there is an element 
of I ~ to!. If so. its value is the tail of the list y. starting with 
that element. If not, its value is NIL. 

Fast version ofmemb that compiles open as a five instruction loop, 
terminating on a NULL check. Interpreted. fihemb gives an error, 
BAD ARGUMENT, - FMEMB, if ~ ends in a non-list other than 
NIL. 

Identical to memb except that it uses equal instead of ~ to check 
membership of! in I. 

true if either! is ~ to I, or else y. isa list and ! is an fulemb of 1... 
Compiles open. . 

The reason for the existence of both memb and member is that EJ. compiles as one instruction but 
equal requires a function call. and is therefore considerably more expensive. Wherever possible, the 
user should write (and use) functions that use §9. instead of equal; 

tailp[x;y] Is x, if ! is a tail of I. i.e .• ! is £Q to some number ofcdrs 2. 0 of 
I.17 NIL otherwise. ' 

17 If! is ~ to some number ofcdrs > 0 of 1. we say.! is a proper tail. 

5.12 



assoc(key;alst] 

fassoc[key;alst] 

sassoc[key;alst] 

putassoc[key;va1;alst] 

listget[lst;prop] 

listput[lst;prop;val] 

listgetl[1st;prop ] 

listput1[1st;prop;val] 

Predicates and Logical Connectives 

alst is a list of lists (usually dotted pairs). The value of assoc is the 
first sub list of alst whose fill: is £g to key. If such a list is not 
found, the value is NIL. Example: 
assoc[B:«A . 1) (B . 2) (C . 3»] = (B • 2). 

Fast version of assoc that compiles open as a 6 instruction loop. 
terminating on a NULL check. Interpreted, fassoc gives an error if 
alst ends in a non-list other than NIL. 
BAD ARGUMENT - FASSOC. 

Same as assoc but uses equal instead of ~. 

Searches a1st for an element car of which is ~ to~. If one is,.· 
found, cdr is replaced (using rplacd) with val. If no such element is 
found, cons[key;val] is added at the end of alst Value is val. If ... 
alst is not a list, generates an error, ARG NOT LIST. 

Similar to getprop (Section 7) but works on lists using property list 
format. Searches 1st two elements at a time, i.e., by cddr, looking 
for an element ~ to m:QP. If one is found, returns the next 
element of 1st, otherwise NIL. Returns NIL if 1st is not a list 

Similar to putprop. Searches 1st by cddr looking for an element ~ 
to P!QP. If P!QP is found, replaces the next element of 1st with val. 
Otherwise, m:QP and val are added to the end of 1st 18 Value is val. 
Generates an ARG NOT LIST error if 1st is not a list 

Like list{ijt, but searches 1st one cdr at a time, i.e., looks at each 
element. 

Like listput. except searches 1st one cdr at a time. 

18 If ~ is a list with an odd number of elements, or ends in a non-list other than NIL, m:Q1! and val ate added at its 
beginning. 

19 listgcU used to be called &!;!. 

5.13 





Index for Section 5 

ADDTOVAR[VAR:Xl:X2: ... :Xn] NL •.................. 
ALL PROP (as value of DFNFLG) ................... . 

. AND[Xl:X2: ... :Xn] FSUBR· ....................... . 
ARG NOT LIST (error message) ................... . 
ARG NOT LITATOM (error message) ................ . 
ARRAYP[X] SUBR ................................. . 
arrays ......................................... . 
ASSOC[KEY;ALST] ................................ . 
ATOM[X] SUBR ................................... . 
ATTEMPT TO BIND NIL OR T (error message) ....... . 
ATTEMPT TO RPLAC NIL (error message) ........... . 
ATTEMPT TO SET NIL (error message) ............. . 
BAD ARGUMENT - FASSOC (error message) .......... . 
BAD ARGUMENT - FMEMB (error message) ........... . 
CAR[X] SUBR ........•...........................• 
CDR[X] SUBR .................................... . 
COND[Cl:C2; ... ;Cn] FSUBR· .•........•......••...• 
cond clause ......................•.............. 
CONS[ X: Y] SUBR .....•..........................•• 
cons a1 gorithm ...••....•...•..••...........•...•• 
CONSCOUNT[N] SUBR •.............................. 
DFNFLG (system variable/parameter) .•.•..••...•.• 
dotted pair ...................................•. 
EQ[X: Y] SUBR ...........•...•..........•......... 
EQMEM8[X: Y] .....•................•....•...•..... 
EQP[X:Y] SUBR ......••.....................•..... 
EQUAL(X:Y] SUBR .•...............••...•..•.•..... 
EQUALALL[X:Y] ...•.••••.....•..............••..•. 
EQUALN[X;Y;DEPTH] ••.......••........•..•..•••... 
ERSETQ[ERSETX] NL ...•...••••..•...•...•...•...•. 
EVALQT[LISPXID] .............••.•.....••......... 
EVERY[EVERYX; EVERYFN1; EVERYFN2] ...........•..... 
false ..........................................• 
FASSOC[KEY;ALST] .•...•..•.....•................. 
FMEMB[X; Y] ......................•...••....•..... 
FRPLACA[X; Y] SUBR •..•....•.•..............•.•... 
FRPLACD[X;Y] SUBR ..•...•............•......•...• 
FRPLNODE[X;A;D] .•.••.....•...•.............•.... 
FRPLNODE2[X;Y] ..•.........••.........•.....•...• 
GETATOMVAL[ATM] SUBR .....•..............•.....•• 
GETTOPVAL[ATM] SUBR ........•.................... 
GO[X] FSUBR· ..................................•. 
ILLEGAL RETURN (error message) .....•.•.......... 
KWOTE[X] ...............•...•.......•.......•.... 
1 arge integers ..•.......•.••....•.......•.•..... 
LISTGET[LST;PROP] ...••.......•.•..•.....•.•..... 
LISTGET1[LST: PROP] .•....•........••............. 
LISTP[X] SUBR ......•...........••.............•. 
LISTPUT[LST;PROP;VAL] .......•..............•.... 
LISTPUT1[LST; PROP:VAL] ..................•....... 
1 ists .......................................... . 
LITATOM[X] SUBR •.•.•.............•.•...•...•.... 
1 itera1 atoms ...•.........•.......••............ 
local variables ................................ . 
MEMB[X:Y] .••.•.•••.••••••••••••..•••.•••..•....• 
MEMBER[X;Y] •.•.•••.•••.••••••••.•••.••.••.••••.•• 

INDEX.5.1 

Page 
Numbers 

5.6 
5.6 
5.11 
5.2,13 
5.4-6 
5.10 
5.10 
5.13 
5.9 
5.4 
5.Z 
5.5 
5.13 
5.U 
5.1 
5.1 
5.3 
5.3 
5.1 
5.1 
5.1 
5.6 
5.1 
5.10 
5.12 
5.10 
5.10 
5.11 
5.11 
5.5 
5.7 
5.11 
5.3 
5.13 
5.U 
5.2 
5.2 
5.2 
5.2 
5.6 
5.5 
5.5 
5.5 
5.3 
5.10 
5.13 
5.13 
5.10 
5.13 
5.13 
5.10 
5.9 
5.9 
5.4 
5.U 
5.12 



NEGATE[XJ ••••••••••••••••••••••••••••••••••••••• 
NEQ[X;Y] •••••••••••••••••••••.•••••••••••••••••• 
NILL[] •••••••••••••••••••••••••••••••••••••••••• 
,NLISTP[X] •••.••••••••••••••.•••••••••••••••••••• 
NLSElQ[NLSETX] NL ••.••••••••••••••••••.••••••••• 
NOBIND •••••••••••••••••••••••••••••••••••••••••• 
NOT[X] SUBR •••••••••••••••••.••••••••••.•••••••• 
NOTANY[SOMEX;SOMEFNl;SOMEFN2] ••••••••••••••••••• 
NOTEVERY[EVERYX;EVERYFNl;EVERYFN2] •••••••••••••• 
NULL[X] SUBR •••••••••••••••••••••••••••••••••••• 
NUMBERP[X] SUBR ••••••••••••••••••••••••••••••••• 
numbers ••••••••••••••••••••••••••••••••.•••••••• 
OLDVALUE (system variable/parameter) •••••••••••• 
OR[Xl;X2; ••• ;Xn] FSUBR* ••••••••••••••••••••••••• 
PARENTHESIS ERROR (error message) ••••••••••••••• 
predicates .' ••••••••.•••••••••••••••••••••••••••• 
PROG[VARLST;El;E2; •.• ;En] FSUBR* •••••••••••••••• 
PROG 1 abel •••••••••••••••••••••••••••••••••••••• 
PROGN[Xl;X2; ••• ;Xn] FSUBR* •••••••••••••••••••••• 
PROGl[Xl;X2; ••. ;Xn] FSUBR* •••••••••••••••••••••• 
proper ,tai 1 •...•.••..•.• ' ........................ . 
PUTASSOC(KEY;VAl;AlST] •••••••••••••••••••••••••• 
QUOTE[X] Nl* •••••••••••••••••••••••••••••••••••• 
RESET ••••••••••••••••••••••••••••••••••••••••••• 
RESETFORM[RESETFORM;FORMl;FORM2; ••• ;FORMn] Nl* 
RESETLST[RESETX] NL* •••••••••••••••••••••••••••• 
RESETSAVE[RESETX] NL* ••••••••••••••••••••••••••• 
RESETUNDO[X;STOPFLG] •••••••••••••••••••••••••••• 
RESETVAR[VAR;NEWVALUE;FORM] Nl •••••••••••••••••• 
RESETVARS[VARSLST;El;E2; ••• ;En] FSUBR* •••••••••• 
RETURN[X] SUBR •••••••••••••••••••••••••••••••••• 
RPAQ[X: Y] Nl •••••••.•••••••••••••••••••••••••••• 
RPAQQ[X ;Y] NL ••••••••••••••••••••••••••••••••••• 
RPlACA[X;Y] ••••••••••••••••••••••••••••••••••••• 
RPLACD{X;Y] ••••••••••••••••••••••••••••••••••••• 
RPLNODE[X ;A;D] •••••••••••••••••••••••••••••••••• 
RPLNODE2[X; Y] ••••••••••••••••••••••••••••••••••• 
SASSOC[KEY;ALST] •••••••••••••••••••••••••••••••• 
SELECTQ[X;CLAUSE1;ClAUSE2;~ •• ;CLAUSEn;DEFAUlT] Nl* 
SET[X; Y] SUBR ••••••••••••••••••••••••••••••••••• 
SETATOMVAL[ATM;VAL] SUBR •••••••••••••••••••••••• 
SETQ[X; Y] FSUBR* •••••••••••••••••••••••••••••••• 
SETQQ[X ;Y] NL ••••••••••••••••••••••••••••••••••• 
SETTOPVAL{ATM;VAL] SUBR ••••••••••••••••••••••••• 
shallow binding ••••••••••••••••••••••••••••••••• 
small integers, •••••••••••••••••••••••••••••••••• 
SOME[SOMEX;SOMEFNl;SOMEFN2] ••••••••••••••••••••• 
SPECVARS (compiler variable/parameter) •••••••••• 
STRINGP[X] SUBR •••••••••• ' ••••••••••••••••••••••• 
strings •••••••••••••••••••••••••••••••••••••••• ', 
tail of a list •••••••••••••••••••••••••••••••••• 
TAILP[X;Y] •••••••••••••••••••••••••••••••••••••• 
top level value .... , .. "I •••••••••••••••••••••••• " 

true ......................... I·, ••••••••••••••••• 
UNDEFINED OR ILLEGAL GO (error message) ••••••••• 
value cell ..................................... . 
VALUE (property name) ••••••••••••••••••••••••••• 

INDEX.5.2 

-~ --~ --

Page 
Numbers 

5.10 
5.10 
5.10 
5.10 
5.5 
5.6 
5.10 
5.12 
5.12 
5.10 
5.9 
5.9 
5.9 
5.11 
5.2 
5.9 
5.4 

'5.4 
5.4 
5.4 
5.12 
5.13 
5.2 
5.7 
5.8 
5.7 
5.7 
5.9 
5.8 
5.8 
5.5 
5.6 
5.6 
5.2 
5.1 
5.2 
5.2 
5.13 
6.3.4 
5.5 
5.6 
5.5 
5'.5 
5.6 
5.6 
5.10 
5.12 
5.8 
5.9. 
5.9 
5.12 
5.12 
5.6 
5.3 
5.5 
5.6 
5.6 



SECTION 6 

LIST MANIPULATION AND CONCATENATION 

lambda-nospread function. Its' value is a list of the values of its 
arguments. 

Copies the top level of the list !l and appends this to a copy of top 
level list !2 appended to ... appended to !n' e.g., 
append[( A B) (C 0 E) (F G)] = (A B C 0 E F G). 
Note that only the first n-l lists are copied. However n = 1 is 
treated specially; i.e .• appendIx) can be used to copy the top level of 
a single list.l 

The following examples illustrate the treatment of non-lists. 

append[(A B C) ;0] = (A Be. 0) 
append[ A ; (B CO)] = (B CO) 
append[(A B C . O);(E F G)] = (A B C E F G) 
append[(A B C • 0)] = (A Be. 0). 

Returns same value as append but actually modifies the list 
structure of xl'" Xn-1' 

Note that nconc cannot change NIL to a list. In other words, if the value of foo is NIL, then the 
value of (NCONC FOO (QUOTE (A B C») is (A B C), but foo will not have been changed. 
The "problem" is that nconc simply has a collection of pointers to work with, and does not know 
where they originally came from. i.e., does not know that this NIL is the value of foo, and while it 
is possible to alter list structure using rplaca, there is no way to change a non-list to a list. 

nconcl[lst;x] Performs nconc[lst;list[x]]. 

1 To copy a list to a111evcls. use~. 

6.1 



tconc[ptr;x] 

1conc[ptr;x] 

Section 6: List Manipulation and Concatenation 

teone is useful for building a list by adding clements one at a time 
at the end. i.e., its role is similar to that of neonel. However, 
unlike nconcl, tcone does not have to search to the end of the list 
each time it is called. It does this by keeping a pointer to the end 
of the list being assembled, and updating this pointer after each 
eaU. 10e savings can be considerable for long lists. The cost is the 
extra word required for storing both the list being assembled, and 
the end of the list. p!!: is that word: ear[ptr] is the list being 
assembled, edr[ptr] is last [ear[ptr]]. The value of teone is rut, with 
the appropriate modifications to car and cdr. Example: 

~(RPTQ 5 (SETQ FOO (TCONC FOO RPTN») 
«5 432 1) 1). 

teone can be initialized in two ways. If mr is NI L, tconc will make 
up a mr. In this case, the program must set some variable to the 
value of the first call to teone. After that, it is unnecessary to reset 
mr since teone physically changes it. Thus: 

~(SET FOO (TCONC NIL I}) 
«1) I} 
~(RPTQ 4 (TeONC FOO RPTN» 
«1 4 3 2 1) 1). 

If mr is initially (N I L), the value of tcone is the same as for 
p!!: = NIL, but teone changes rut, e.g., 

~(SETQ FOO (CONS» 
(NIL) 
~(RPTQ 5 (TCONC FOO RPTN» 
«5 4 3 2 I) 1). 

The latter method allows the program to initialize, and then call 
teonc without having to perform setg on its value. 

Where teone is used to add elements at the end of a list, leone is 
used for building a list by adding lists at the end, i.e., it is similar 
to ncone instead of neonel, e.g., 

~(SETQ FOO (CONS)) 
(NIL) 
~{LCONC FOO (LIST 1 2» 
({I 2) 2) 
~(LCONC FOO (LIST 3 4 5» 
{(I 2 3 4 5) 5) 
~(LCONC FOO NIL) 
({I 2 3 4 5) 5) 

Note that 

~(TCONC FOO NIL) 
«1 2 3 4 5 NIL) NIL) 
~(TCONC FOO (LIST 3 4 5» 
«1 2 3 4 5 NIL (3 4 5)} (3 4 5» 

6.2 



Section 6: List Manipulation and COT/catenation 

leonc uses the same pointer conventions as tconc for eliminating 
searching to the end of the list, so that the same pointer can be 
given to tconc and leonc interchangeably. 

'The functions docol1ect and endcol1ect also permit building up lists from left-to-right a 1a tconc, + 
but without the overhead of the extra cons cell. 1be list being maintained is kept as a circular list. + 
docollect adds items; endcollect replaces the tail with its second argument, and returns the full list + 

docollect[item;lst) "adds" item. to end oflst. 

endcollect[1st; tail) "adds" tail onto end of 1st and returns 1st. 

For example, mapcar is essentially: 

(LAMBDA (L FN) 
[PROG (VAL) 

LP (COND «NLISTP L) (RETURN (ENDCOLLECT VAL»» 
(SETQ VAL (DOCOLLECT (APPLY· FN (CAR L» VAL» 
(SETQ L (CDR L» 
(GO LP)] 

attach[x;l] 

remove[x;l) 

Value is equal to consIx;I], but attaches! to the front of 1 by doing 
an rplaca and rplacd. i.e., the value of attach is £g to 1. which it 
physically changes. attach[x;NIL] is the same as cons[x;NIL]. 
Otherwise, if! is not a list. an error is generated, ARG NOT LIST. 

Removes all occurrences of! from list 1. giving a £QPX of! with all 
elements equal to ! removed. 

Convention: Naming a function by prefixing an existing function with if frequently indicates the 
new function is a gestructive version of the old one, i.e., it does not make any new structure but 
cannibalizes its argument(s). 

dremove[x;l] Similar to remove. but uses £g instead of equal. and actually 
modifies the list ! when removing !. and thus does not use any 
additional storage. More efficient than remove. 

Note that dremove cannot change a list to NIl. For example. if the value of foo is (A). then 
(DREMOVE (QUOTE A) Faa) will return NIL, and not perform any conses. but the value of faa 
will still be (A) because there is not way to change a list to a non-list. See discussion following 
description of nconc on page 6.2. 

+ 

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 

* 
* 

mklist[x] if !. is a list or NIL, value is!. Otherwise, value is list[x]. + 
Compiles open. + 

6.3 



copy[x1 

copyall[x] 

+ hcopyaU[x] 
+ 

reverse{11 

dreverse[1] 

subst[new;01d;expr] 

dsubstlnew;old;expr] 

lsubst[new;old;expr] 

Section 6: List Manipulation and Concatenation 

Makes a copy of the list x. The value of fQQY is the copied list. 
All1evels of! are copied,L down to non-lists, so that if! contains 
arrays and strings, the copy of ! will contain the same arrays and 
strings, not copies. Qmy is recursive in the car direction only, so 
that very long lists can be copied. 

Like f.QQY except copies down to atoms, i.e., arrays, hash-arrays, 
sLlings, user data types, etc., are all copied. 3 

Like copyaU except will work even if data structure contains circular 
pointers. 

Reverses (and copies) the top· level of a list, e.g., 
reverser (A B (C D»] = « CD) B A). If! is not a list, value 
is }. 

Value is same as that of reverse, but dreverse destroys the original 
list 1 and thus does not use any additional storage. More efficient 
than reverse. 

Value is the result of substituting the S-expression new for all 
occurrences of the S-expression old in the S-expression expr. 
Substitution occurs whenever old is equal to car of some 
subexpression of expr, or when old is both atomic and not NIL and 
£g to cdr of some subexpression of expr. For example: 

subst[A;B;{C B (X • B»] = (C A (X . A» 
subst[ A ; (B C): « B C) D B C)] = (A D B C). 

not (A D • A). 

The value of subst is a copy of expr with the appropriate changes. 
Furthermore, if new is a list, it is copied at each substitution. 

Similar to subst, but does not copy expr, but changes the list 
structure expr itself. Like subst, dsubst substitutes with a copy of 
new. More efficient than subst. 

Like subst except new is substituted as a segment, e.g., 
lsubst[(A B);Y;(X Y Z)]is (X A B Z). Note that if ~ is 
NIL, produces a copy of expr WiUl all old's deleted. 

2 To copy jusl the top level of !. do append[x). 

3 Nole: £Q!:!'.Itl!1 (Section S) is to col2Y:ll.I what NY:ll is to eoill'. i.c. it will descend into arays. hash arrays, etc. and 
compare their elements. 

6.4 



Section 6: List Manipulation and Concatenation 

esubst[new;old;expr;errorflg;chartlg] 

sublis[alst;expr;tlg] 

dsublis[alst;expr;flg] 

subpair[old;new;expr;flg] 

Similar to dsubst. but first checks to see if old actually appears in 
expr. Implements the editors Rand RC command. More complete 
discussion can be found in Section 9. 

alst is a list of pairs: «ul . vI) (u2 . v2) ... (un' vn» with each ~ 
atomic. 

The value of sublis[alst;expr;tlg] is the result of substituting each :t. 
for the corresponding !:! in expr, 4 e.g., 
sublis[ « A . X) (C . Y»; (A BCD)] = (X B YO). 
New structure is created only if needed, or if !1g=T, e.g., if 
!1g=NIL and there are no substitutions, value is ~ to expr. 

Similar to sublis, but docs not copy expr, but changes the list .+ 
structure expr itself. + 

Similar to sublis, except that clements of new are substituted for 
corresponding atoms of old in expr, e.g., 
subpair[ (A C); (X Y); (A BCD)] = (X B YO) 
As with sublis. new structure is created only if needed, or if !lg=1. 
e.g., if !1g = NIL and there are no substitutions, the value is ~ to 
expr. 

If old ends in an atom other than NIL, the rest of the clements on 
new are substituted for that atom. For example, if 
old = (A B . C) and ~ = (U V X Y Z), U is substituted for 
A, V for B, and (X Y Z) for C. Similarly, if old itself is an atom 
(other than NI L). the entire list new is substituted for it 

Note that subst, dsubst. lsubst. and esubst all substitute copies of the appropriate expression, 
whereas subpair and sublis substitute the identical structure (unless &=1). 

last[x) 

flast[x) 

nleft[l; n; tail) 

Value is a pointer to the last node in the list !, e.g., if! = (A B C) 
then last[x] = (C). If!=(A B . C) last[x] = (B • C). Value 
is NIL if! is not a list 

Fast version of last that compiles open as a 5 instruction loop, 
terminating on a null-check. Interpreted, generates an error, 
BAD ARGUMENT - FLAST, if! ends in other than NIL. 

Tail is a tail of ! or NIL. The value of nleft is the tail of! that 

4 To remember the order on ~ think of it as old to new, i.e., ui • > Vi' 

6.5 



lastn[l;n] 

nth[x;n1 

fnth[x;n1 

length[x] 

flength[x1 

+ eqlength[x;n] 
+ 
+ 
+ 

count[x] 

Section 6: List Manipulation and Concatenation 

contains n more elemcnts than tail,5 e.g., if 
! = (A BCD E), nlcfl[x;2] = (0 E). 
n1cfl[x;1;cddr[x]]=(B C 0 E). Thus nIeft can be used to work 
back wards th rough a list. Value is NIL if! does not contain n 
more clements than tail. 

Value is cons[x;y], where y. is the last n elements of 1, and! is the 
initial segment, e.g., 
lastn[ (A BCD E); 2] = ( (A Be) 0 E) 
lastn[ (A B) i 2] =: (N I LAB). 

Value is NIL, if! is not a list containing at least.!! elements. 

Value is the tail of! beginning with the nili1element, e.g., if n=2, 
value is cdr[x), if n=3, cddr[x), etc. If n= 1, value is !, if n=O, for 
consistency, value is cons[NI L;x]. If! has fewer than n elements, 
value is NIL, e.g., nth[(AB) i3]=NIL, as is nth[(A . B) ;31 
Note that nth[ (A • B) i 2]=B. 

Fast version of nth that compiles open as a 3 instruction loop, 
terminating on a null-check. Interpreted. generates an error, 
BAD ARGUMENT- FNTH, if! ends in other than NIL. 

Value is thc length of the list! where length is defined as the 
number of cdrs required to reach anon-list, e.g., 
lcngth[ (A B C)] = 3 
length[ (A Be. 0)] = 3 
length [ A] = 0 

Fast version of length that compiles open as a 4 instruction loop, 
terminating on a null-check. Interpreted, generates an error, 
BAD ARGUMENT - FLENGTH. if! ends in other than NIL • 

. equivalent to equal[length[x];n], but more efficient, i.e. eglength 
stops as soon as it knows that ! is longer than n. Note that 
eglcngth is also safe to usc on (possibly) circular lists, since it is 
"bounded" by n. 

Value is the number of list words in the structure!. Thus, count is 
like a length that goes to all levels. Count of a non-list is O. 

5 If tail is not NIL, but not a tail of 1. the result is the same as if !!til were NIL, i.e., !lkJ! operates by scanning! 
looking for \;lil, not by computing the lengths of J and tail. 

6.6 



countdown[x;n] 

ldift{x;y;z] 

Section 6: List Manipulation and Concatenation 

Counts number of list words in !. decrementing n for each one. + 
SLops when it finishes counting !. or when!! reaches O. Value is ~e + 
current !!. In other words. the value of countdown is the larger of 0 + 
and idifference[n;count[x]]. but countdown is more efficent, and can + 
be used on circular structures since it is "bounded" by!!. Note + 
that countdown is to count what egualn (Section 5) is to equal. + 

y must be a tail of!. i.e., s:g to the result of applying some number 
of cdrs to!. Idifflx;y] gives a list of all clements in ! up to y, i.e., 
the list difference of! and y. Thus Idifflx;member[FOO;x]] gives all 
elements in ! up to the first FOO. 

Note that the value of ldiff is always new list structure unless ,E=NIL. in which case the value is :! 
itself. 

Idifference[ a; b] 

intersection[ x;y] 

union[x;y] 

sortl data;comparefnj1 

If ~ is not NIL, the value of ldiff is effectively nconc[z;ldift{x;y]], 
i.e., the list difference is added at the end of ~. 

If 1. is not a tail of,!., generates an error, LDIFF: NOT A TAIL. 
ldiff terminates on a null-check. 

list difference. Value is list of those elements in ! that are not + 
members of 2~ + 

Value is a list whose elements are members of both lists! and I. 
Note that intersection[x;x] gives a list of all members of! without 
any duplications. 

Value is a (new) list consisting of all elements included on either of 
the two original lists. It is more efficient to make x be the shorter 
list6 -

data is a -list of items to be sorted using comparefn. a predicate 
function of two arguments which can compare any two items on 
data and return T if the first one belongs before the second. If 
comparefn is NIL, alphorder is used; thus sort[data] will 
alphabetize a list. If comparefn is T, car's of items that are lists are 
given to alphorder. otherwise the items themselves; thus 

6 The value of !!.nion is 1- with all elements of ! not in 1- consed on the front of it Therefore. if an element appears 
twice in y. it will appear twice in union[x;y). Also, since union[ (A) : (A A)] • (A A), while 
union[ (A A): (A)] • (A). union is non-commutative. 

7 sort was written by L. P. Deutsch. 

6.7 



+ 
+ 

Section 6: List Manipulation alld Concatenation 

sort[a-list;T] will alphabetize an as soc list by the car of each item. 
sort[x;ILESSP] will sort a list of integers. 

The value of sort is the sorted list. The sort is destructive and uses 
no extra storage. lbe value returned is .£g to data but elements 
have been switched around. Interrupting with control D, E, or B 
may cause loss of data, but control H may be used at any time, and 
sort will break at a clean state from which t or control characters 
are safe. The algorithm used by sort is such that the maximum 
number of compares is n*10g2 11, where!! is length[data). 

Note: if comparefnfa:b] = comparefnfb:a], then the ordering of g and l! mayor may not be 
preserved 

For example, if (FOO . FIE) appears before (FOO . FUM) in !, sort[x;T] mayor may not 
reverse the order of these two elements. Of course, the user can always specify a more precise 
comparefu. 

merge[a;b;comparefu] 

alphorder[a;b] 

~ and 12 are lists which have previously 1:>een sorted using sort and 
comparefn. Value is a destructive merging of the two lists. It does 
not matter which list is longer. After merging both ~ and Q are 
equal to the merged list. (In fact, cdr[a) is ~ to cdr[b)). merge may 
be aborted after control-H. 

A predicate function of two arguments, for alphabetizing. Returns 
T if its arguments are in order, Le., if Q does not belong before !!. 
Numbers come before literal atoms, and are ordered by magnitude 
(using greaterp). Literal atoms and strings are ordered by 
comparing the (ASCII) character codes in their pnames. Thus 
alphorder[23;123] is T • whereas alphorder[A23;A123] is NIL, 
because the character code for the digit 2 is greater than the code 
for 1. 

Atoms and strings are ordered before all other data types. If 
neither ~ nor 12 are atoms or strings, the value of alphorder is T, 
Le., in order. 

Note: alphorder does no unpacks, chcons, conses or nthchars. It is several times faster for 
alphabetizing than anything that can be written using these other functions. 

mergeinsert[new;lsl;oneflg] 1st is NIL or a list of partially sorted items. mergeinsert tries. to 
find the "best" place to (destructively) insert new, e.g., 
mergcinsert[FIE2; (FOO FOOl FIE FUM)]= 
(FOO FOOl FIE FIE2 FUM). Value is 1st. mergeinsert is 
undoable. 

If oneflg = T and new is already a member of 1st, mergeinsert does 
nothing and returns 1st. 

6.8 



Section 6: List Manipulation and Concatenation 

mergeinsert is used by addtofile (Section 14) to insert the name of a new function into a list of 
functions.. 'Ine algorithm is essentially to look for the item with the longest common leading 
sequence of characters with respect to new, and then merge new in starting at that point 

comparelists[x;y] compares ! and y.. and prints their differences, i.e., comparelists is + 
essentially a SRCCOM for list structures. + 

6.9 





Index for Section 6 

ALPHORDER[A:B] ......................•.......•... 
APPEND[Xl;X2: ... ;Xn]· . . ' ............... ,., ...••.. 
ARG NOT LIST (error message) ................... . 
ATTACH[X: L] .................................... . 
ATTEMPT TO RPLAC NIL (error message) ........... . 
BAD ARGUMENT - FLAST (error message) ........... . 
BAD ARGUMENT - FLENGTH (error message) ......... . 
BAD ARGUMENT - FNTH (error message) ............ . 
COMPARELISTS[X: Y] .............................. . 
COPY[X] ........................................ . 
copy .....•......................•....••..•... , .. 
COPYALL[X] ..........................•........... 
COUNT[XJ .••.•..••.•••.••.••.•••••••.•••.•.••..•. 
COUNTDOWN[X: N] .................•...•.....•...... 
destructive functions ..........•.......•........ 
DOCOLLECT[ ITEM: LST] .............•......•........ 
DREMOVE[X: L] ................................... . 
DREVERSE[L] .....•..•....•.............•..••..•... 
DSUBLIS[ALST;EXPR:FLG] .........•......•......... 
DSUBST[NEW;OLD;EXPR] .........•...........••..... 
ENDCOLLECT[LST:TAIL] .........•.................. 
EQLENGTH[X; N] ............•......•......•..•...... 
ESUBST[NEW;OLD:EXPR;ERRORFLG;CHARFLG] ...•......• 
FLAST[X] ...............................••.....•• 
fLENGTH[X] ......................•...•.••........ 
FNTH[X ;N] •.•..........••..•..••......•.......... 
HCOPYALL[X] ..........•.......•....•.•..••.•....• 
INTERSECTION[X:Y] .....••....•.....•....•••...... 
LAST[X] .... I.' ••••••••••••••••••••••••••••••••••• 
LASTN[L:N] •.......•......•.............•..•..... 
LCONC[PTR; X] •.............•...•••.•.•........•... 
LDIFF[X:Y:Z] •.....•.......•..................... 
LDIFFERENCE[A: B] ....•.•........•...............• 
LDIFF: NOT A TAIL (error message) ............. .. 
LENGTH[X] ............•....•...•.....•.......••.. 
LIST[Xl:X2: ... ;Xn] SUBR* .........••.........•.•. 
1 ist manipul at ion and concatenation ............ . 
LSUBST[NEW:OLD:EXPR] .•............••............ 
MERGE [A: B; COMPAREFN] ..••..•...•..•.............• 
MERGEINSERT[NEW:LST:ONEFLG] •......••.........•.. 
MKLIST[X] ............•.••...•......•.•..•....•.. 
NCONC[Xl:X2: ... :Xn] SUBR* ..........•.........•.. 
NCONC1[LST: X] ...........••.......... ' ........... . 
NLEFT[L:N:TAIL] ...............••...•...•••.•.... 
NTH[X :N] ................................•....... 
null-check ....................•..........•...•.. 
REMOVE[X: L] ..........•.......•.•..•...•••.••.•.• 
REVERSE[L] ............•.•.•...•.......••.....•.. 
SORT[DATA:COMPAREFN] ............•.•........•.... 
SRCCOM •..••.•••••••••••••••••••••••••••••••••••• 
SUBLIS[ALST: EXPR; FLG] .....•..•........•...•..... 
SUBPAIR[OLD;NEW;EXPR:FLG] .•....•.•.....•.....•.. 
SUBST[NEW;OLD;EXPR] ......•...•.................. 
TCONC[PTR:X] ..•..••...•..•...••...•..•..•....... 
UNION[X: Y] ....•....••.•••.•..••....•.•... , .••••• 

INDEX.6.t 

Page 
Numbers 

6.8 
6.1 
6.3 
6.3 
6.3 
6.5 
6.6 
6.6 
6.9 
6.4 
6.4,1,5 
6.4 
6.6 
6.7 
6.3"'4 
6.3 
6.3 
6.4 
6.5 
6.4,5 
6.3 

.6.6 
6.5 
6.5 
6.6 
6.6 
6.4 
6.7 
6.5 
6.6 
8.2.3 
6.7 
6.7 
6.7 
6.6 
6.1 
6.1-9 
8.4.5 
6.6 
6.6 
6.3 
8.1.2 
8.1.2 
6.5 
6.6 
6.5-7 
6.3 
6.4 
6.7 
6.9 
6.5 
6.5 
8.4.6 
8.2.3 
6.7 





SECTION 7 

PROPERTY LISTS AND HASH LINKS 

7.1 PROPERTY LISTS 

Property lists are entities associated with literal atoms. Property lists are conventionally lists of the 
fonn (property value property value ... property value) although the user can store anything he 
wishes in the property list of a literal atom However, the functions which manipulate property 
lists observe this convention by cycling down the property lists two cdrs at a time. Most of these 
functions also generate an error, ARG NOT LITATOM, if given an argument which is not a literal 
atom, i.e., they cannot be used directly on lists. 

The tenn "property name" or "property" is used for the property indicators appearing in the odd 
positions, and the tenn "property value" or "value of a property" or simply "value" for the values 
appearing in the even positions. Sometimes the phrase "to store on the property --" is used, 
meaning to place the indicated in/onnation on the property list under the property name --. 

Properties are usually atoms, although no checks are made to eliminate use of non-atoms in an 
odd position. However, the property list searching functions all use !.9.. 

PROPERTY LIST FUNCTIONS 

getproplist[atm) 

setproplist[atm;lst] 

getprop[atm;prop]l 

1 ~~1lli!12 used to be called P&m. 

if atm is a literal atom, returns property list of atm. Otherwise, 
generates ARG NOT LIT ATOM error. In Interlisp-10, getproplist 
compiles open without any error checks. 

if atm is a non-N I L literal atom, sets property list of atm to be 1st, 
and returns 1st as its value. If atm is NIL, generates an ATTEMPT 
TO RPLAC NIL (unless 1st is also NIL). If atm is not a literal 
atom, generates an ARG NOT LITATOM error. 

gcts the property value for P!QP from the property list of atm. The 
valuc of gctprop is NIL if atm is not a literal atom, or .P!QP is not 
found. 

7.1 



* 
* 

Section 7: Property Lists and lJash Links 

Note: the value of getprop may also be NI L, if there is an occurrence of J2!QP. but the 
corresponding property value is NIL. The only way to distinguish these two cases is to per/onn 
memb{prop;getproplist{ aIm]]. 

putprop[atm;prop;val] 

Note: Since getprop searches a list two items at a time, the same 
object can be used as both a property name and a property value, 
e.g., if the property list ofatm is (PROP1 A PROP2 B A C), 
then getprop[atm;A] = C. 

puts on the property list of atm,2 the property 12!QQ with value val. 
val replaces any previous value for the property 12!QQ on this 
property list. Generates an error, A R G NOT LIT ATOM, if atm is 
not a literal atom. Value is val. 

+ putprops[atm;proP1;va11;···;propJ};valn] 
+ nlambda nospread version of putprop. For i = L.n, puts 12!QQi' 
+ value va1i' on property list of atm. Performs some file package (see 
+ Section 14) related operations, i.e. "notices" that the corresponding 
+ properties have been changed. Used by for implementing various 
+ file package commands. 

+ saveput[atm;prop;val] 
+ 

addprop[atm;prop;new;flg] 

remprop[atm;prop] 

+ remproplist{atm;props] 

same as p.!!!, but marks the corresponding property value as having 
been changed (for the file package, Section 14). 

adds the value new to the list which is the value of property Q!'QQ 
on property list of atm. If f!g is T, new is consed onto the front of 
value of Q!QQ, otherwise it is nconced on the end (neonc!). If atm 
does not have a property Q!QQ, the effect is the same as 
putprop[atm;prop;list[new]], for example, if 
addprop[FOO;PROP;FIE] is followed by 
addprop[ FOO; PROP; FUM], getprop( FOO; PROP] will 
be (F I E FUM). The value of addprop is the (new) property value. 
If atm is not a literal atom, generates an error, ARG NOT 
LITATOM. 

removes all occurrences of the property Q!QQ (and its value) from 
the property list of atm. Value is Q!QQ if any were found, otherwise 
NIL. If atm is not a literal atom, generates an error, 
ARG NOT LITATOM. 

removes all occurrences of all properties on ~ and their 

2 lil!ill...l!!. IislRutt li~tgc!. and liS!gt:H arc functions similar to illl!tlliill and &£.tpron that work directly on lists. They are 
described in Section 5. 

7.2 



Property Lists 

corresponding property values from property list of atm. Value is + 
NIL. + 

changeprop(x ;propl ;prop2] 

propnames[atm] 

getlis[x ;props] 

deflist[l;prop] 

Changes name of property ru:QQl to m:.<m2 on property list of !. 
(but does not affect the value of the property). Value is ~. unless 
ru:QQl is not found, in which case, the value is NIL. If! is not a 
lileral atom. generates an error, ARG NOT LITATOM. 

value is a list of the property names on the property list of atm. 

searches the property list of!. and returns the property list as of 
the first property on Q!Qm! that it finds e.g., if the property list of! 
is (PROPl A PROP3 B A C)i 
geU~~;(PROP2 PROP3)];(PROP3 B A C) 
Value is NIL if no clement on Q!Qm! is found. ~ can also be a list 
itself. in which case it is searched as above. 

is used to put values under tlle same property name on the 
property lists of several atoms. ! is a list of two~element lists. The 
first element of each is a literal atom, and the second element is the 
property value for the property Q!QQ. The value of deflist is NIL. 

Note: Many atoms in the system already have property lists, with properties used by the compiler, 
the break package, DWIM, etc. Be careful not to clobber such system properties. The value of 
sysprops gives the complete list of the property names used by the system. 

7.2 HASH LINKS 

The description of the hash link facility in Interlisp is included in the chapter on property lists 
because of the similarities in the ways the two features arc used. A property list provides a way of 
associating information with a particular atom. A hash link is an association bctween any Interlisp 
pointer (atoms, numbers, arrays, strings. lists, et a1) called the hash-item, and any other Interlisp 
pointer called the hash-value. Hash links are implemented by computing an address, called the 
hash-address. in a specified array, called the hash-array, and storing the hash-value and the 
hash-item into the cell with that address. rThe contents of that cell. i.e. the hash-value and 
hash-item, is then called the hash-link.3 

Since the hash-array is obviously much smaller than the total number of possible hash-itcms,4 the 

3 

4 

The leon hash link (unhyphenated) refers to the process of associating infoonation this way, or the "association" as 
an abstract concept 

which is the tot!1 nllmber of Intcrlisp pointers. i.e. in Interlisp·10. 256K. 

7.3 

~~ --------- -----------------

+ 

<_t:>;;'-"_*;>,-,,,,"_~ -"-_ __~_._" _,;O_ro~ ___ ~-'"_';.r-_-,., .. ""',,..~, 



Section 7: Property Lists and I/ash Links 

hash~addrcss computed from item may already contain a hash-link. If this link is from item,5 the 
new hash-value simply replaces the old hash-value. OtJlerwise, another hash-address (in IDe same 
hash-array) must be computed, etc, until an empty cell is found, 6 or a cell contaihing a hash-link 
from item. 

When a hash link for item is' being retrieved, the hash-address is computed using .IDe same 
algorilJ1m as lJ1at employed for making lJ1e hash link. If ilie corresponding cell is empty, there is 
no hash link for item. If it contains a hash-link from item, the hash-value is returned. Oilierwise, --- ---
another hash-address must be computed, and so forth. 

Note ilial more than one hash link can be associated with a given hash-item by using more than, 
one hash-array. 

HASH'LlNK FUNCTIONS 

In the description of the functions below, the argument array has one of three forms: [1] NI L. in 
which case the hash-array provided by ilie system, syshasharray, is used; 7 [2] a hash-array created 
by the function harray; or [3] a list' car of which is a hash-array. The latter form is used for 
specifying what is to be done on overflow, as described below. 

harray[n] creates a hash-array of size at least !!,8 equivalent to 
clrhash[ array[ nJ]. 

+ harrayp[x] value is !, if! is a hash array. 

+ harraysize[harray] returns size of harray. 

* clrhash(harray] clears all hash links of harray. Value is harray. 

pulJ1ash[item:val:harray] puts into harray a hash-link from item to val. Replaces previous 
link from same item, if any. If val = NIL any old link is removed, 
(hence a hash-value of NIL is not allowed). Value is val. 

gethash[item;harray] finds hash-link from item in harray, and returns the hash-value. 
Value is NIL, if no link exists. gethash compiles open. 

5 

6 

7 

£g is used for comparing item with the hash-item in the cell. 

When the hash array becomes 7/8 full, it is considered to be full, and the array is either enlarged, or an error is 
generated, as described below in the discussion of overflow, 

syshasharray is not used by the system, it is provided solely for the user's benefit It is initially 512 words large, and 
is automatically enlarged by 50% whenever it is "full". See page 7.5. 

+ 8 In Interlisp-10. the size of the hash array may be increased so that it is relatively prime to possible probe intervals. 

7.4 



rehash[oldar;newar] 

maphash[array;maphfn] 

Hash Links 

hashes all items and values in·oldar into newar. The two arrays do 
riot have to be (and usually aren't) the same size. Value is ~. 

maphfn is a function of two arguments. For each hash-link in 
array. maphfn will be applied to the hash-value and hash-item, e.g. 
maphash[a;(LAMBDA (X Y) (AND (LISTP Y) (PRINT X»)] 
will print the hash-value for all hash-links from lists. The value of 
maphash is array. ' , " 

dmphash[ arrayname1 ;arrayname2 ; ... ;arraynamen) , 
Nlambda-nospread that prints on the primary output file loadable 
forms which will restore what is in the hash-array specified by 
arraynam~, e.g. (E (DMPHASH SYSHASHARRAY» as a file 
package command will dump the system hash-array. 

Note: all f!J. identities except atoms and small integers are lost ,by dumping and loading because 
read will create new structure for each item. Thus if two lists contain an f!J. substructure, when 
thel are dumped and loaded back in. the corresponding substructures while equal are no longer 
!!!J.. 

HASH OVERFLOW 

By using an array argument of a special form, the user c,an provide for automatic enlargement of a 
hash-array when it overflows, i.e., is full and an attempt is made to store, a hash link into it. The 
array argument is either of the form [1] (hash-array. 'n), !! a positive integer; [2} (hash-array. t), f 
a floating point number; [3] (hash-array); or [4] (hash-array. fn), fn a function name or a lambda 
expression. In the first case, a new hash-array is created with !! more cells than the current 
hash-array. In the second case, the new hash array will be f times the size of the current 
hash-array. lne third case, (hash-array), is equivalent to (hash-array. 1.5). In the fourth case, 
(hash-array . fn), fn is called with (hash-array . fn) as its argument. If fn returns a number, the 
number will be the size of the new hash array. Otherwise, the new size defaults to 1.5 times the 
size of the old hash array, e.g. fn could be used to print a message, or perform some monitor 
function. In each case, the new hash-array is rplacaed into the dotted pair, and the computation 
continues. 

If a hash-array overflows, and the array argument used was not one of these three forms, the error 
HASH TABLE FULL is generated. which will either cause a break or unwind to the last errorset, as 
per treatment of errors described in Section 16. 

The system hash array, syshasharray, is automatically enlarged by 1.5 when it is full. 

9 The HORRIBLEVARS prcttydef command (Section 14) provides a way of dumping bash tables such that, these + 
identities are preserved. + 

7.S 





Index for Section 7 

ADDPROP[ATM;PROP;NEW;FLG] ...................... . 
ARG NOT LITATOM (error message) ................ . 
ATTEMPT TO RPLAC NIL (error message) ........... . 
CHANGEPROP[X;PROP1;PROP2] ...................... . 
CLRHASH[HARRAY] SUBR ........................... . 
DEFLIST[L; PROP] ................................ . 
DMPHASH[ARRAYNAME1; ... ;ARRAYNAMEn] NL* ......... . 
ERRORSET[FORM;FLG] SUBR ........................ . 
GETHASH[ITEM;HARRAY] SUBR ...................... . 
GETLIS[X; PROPSl ................................ . 
GETPROP[ATM; PROP] .............................. . 
GETPROPLIST[ATM] ............................... . 
HARRAY[N] SUBR .. , .............................. . 
HARRAYP[X] ..................................... . 
HARRAYSIZE[HARRAY] ............................. . 
hash 1 ink funct ions ............................ . 
hash links ..................................... . 
hash overflow .................................. . 
HASH TABLE FULL (error message) ................ . 
hash-address ................................... . 
has h- ar ray ..................................... . 
hash-item ...................................... . 
hash-link ...................................... . 
hash-val ue ..........•........................... 
MAP HASH [ARRAY; MAPH FN] .......................... . 
property 1 ist .................................. . 
property name .................................. . 
property val ue ................................. . 
PROPNAMES[ATM] ................................. . 
PUTHASH[ITEM;VAL;HARRAY] SUBR ..................• 
PUTPROP[ATM;PROP;VAL] .......................... . 
PUTPROPS[ATM;PROP1;VAL1; ... ;PROPn;VALn] NL* 
REHASH[OLDAR;NEWAR] SUBR ....................... . 
REMPROP[ATM;PROP] .............................. . 
REMPROPLIST[ATM;PROPS] ......................... . 
SAVEPUT[ATM;PROP;VAL] .......................... . 
SETPROPLIST[ATM;LST] ......................•..... 
SYSHASHARRAY (system variable/parameter) ....... . 
SYSPROPS (system variable/parameter) ...........• 
val ue of a property ............................ . 

INDEX.7.t 

Page 
Numbers 

7.2 
7.1-3 
7.1 
7.3 
7.4 
7.3 
7.5 
7.5 
7.4 
7.3 
7.1 
7.1 
7.4 
7.4 
7.4 
7.4-5 
7.3-5 
7.5 
7.5 
7.3 
7.3-5 
7.3-5 
7.3-5 
7.3-5 
7.5 
7.1.2-3 
7.1.3 
7.1.3 
7.3 
7.4 
7.2 
7.2 
7.5 
7.2 
7.2 
7.2 
7.t 
7.4-5 
7.3 
7.1 





SECTION 8 

FUNCTION DEFINITION AND EVALUATION 

GENERAL COMMENTS 

A function definition in Intcrlisp is stored in a special cell called the function definition cell. which 
is associated with each literal atom. 'Ibis cell is directly accessible via the two functions putg, 
which puts a gefinition in the cell, and getd which g£!s the gefinition from the cell. In addition, 
the function fntyp returns the function type, Le., EXPR. EXPR* ... FSUBR* as described in 
Section 4. ~,ccodep, and subrp are. true if the function is an expr, compiled function. or subr 
respectively; argtype returns 0, 1, 2, or 3, depending on whether the function is a spread or 
nospread (Le., its fu!yp ends in *), or evaluate or no-evaluate (Le., its ~ begins with F or CF); 
arglist returns the list of arguments; and nargs returns the number of arguments. ..fu!m, gpm. 
ccodcp, subrp, argtype, arglist, and nargs can be given either a literal atom, in which case they 
obtain the function definition from the atom's definition cell, or a function definition itself. 

SUBRS 

Because subrs1 are called in a special way, their definitions are stored differently than those of 
compiled or interpreted functions. getd of a subr returns a dotted pair, car of which is an 
encoding of the argtype and number of arguments of the subr, and cdr of which is the address of 
the first instruction. Note that each getd of a subr performs a cons. Similarly, putd of a definition 
of the form (number. address), where number and address are in the appropriate ranges, stores the 
definition as a subr. 

VALIDITY OF DEFINITIONS IN INTERLlSP·10 

Although the function definition cell is intended for function definitions, putd and getd do not 
make thorough checks on the validity of definitions that "look like" exprs, compiled code, or subrs. 
Thus if putd is given an array pointer, it treats it as compiled code, and simply stores the array 
pointer in the definition cell. getd will then return the array pointer. Similarly, a call to that 
function will simply transfer to what would normally be the entry point for the function. and 
produce random results if the array were not compiled function. 

1 Dasic functions, handcoded in machine language, e.g., con~, car, condo The tenns subr includes spread/nospread, 
eval/noeval functions, i.e., the four .fu!..m's SUBR, FSUBR. SUBR*, and FSUBR·, 

8.1 



Section 8: Function Definition and Evaluation 

Similarly, if putd is given a dotted pair of the form (number. address) where number and address 
fall in the subr range, putd assumes it is a subr and stores it away as described earlier. getd would 
then return a dotted pair equal (but not eg) to the expression originally given putd. Similarly, a 
call to this function would transfer to the corresponding address. 

Finally, if putd is given any other list, it simply stores it away. A call to this function would then 
go through the interpreter as described in the appendix. 

Note that putd does not actually check to see if the s-expression is valid definition, i.e., begins with 
LAMBDA or NLAMBDA. Similarly, ~ is true if a definition is a list and not of the form 
(number. address), number = 0, 1, 2, or 3 and address a subr address; subrp is true if it is of this 
form. arglist and nargs work correspondingly. 

Only fu.!yp and argtype check function definitions further than that described above: both argtype 
and fntyp return NI L when ~ is true but car of the definition is not LAMBDA or NLAMBDA. 2 
In other words, if the user uses putd to put (A Be) in a function definition cell, getd will return 
this value, the editor and prettyprint will both treat it as a definition, ~ will return T I ccodep 
and subrp NIL I arglist B, and nargs 1. 

getd[x] 

fgetd[x] 

putd[fn;det] 

putdq[fn;det] 

+ putdq?[fn;det] 
+ 

~s the function gefinition of!. Value is the definition.3 Value is 
NIL if! is not a literal atom, or has no definition. 

fast version of getd that compiles open. Interpreted, generates an 
error, BAD ARGUMENT - FGETD, if! is not a literal atom. Fgetd 
is intended primarily to check whether a. function has a definition, 
rather than to obtain the definition. Therefore, for subrs, fgetd 
returns just the address of the function definition, not the dotted 
pair returned by getd, page 8.1, thereby saving the cons. 

p!!!s the gefinition def into fn's . function cell. Value is def. 
Generates an error, ARG NOT LITATOM, if fn is not a literal atom. 
Generates an error, ILLEGAL ARG, ifdef is a string, number, or 
literal atom other than NIL. 

nlambda version of putd; both arguments are considered quoted. 
Value is fn. 

nlambda version of putd. If fn is not defined, same as putd[fu;det]. 
Otherwise, does nothing and returns NIL. 

2 These functions have different values on LAMBDAs and NLAMBDAs and hence must check. The compiler and 
interpreter also take different actions for LAMBDAs and NLAMBDAs, and therefore generate errors if the definition is 
neither. 

3 Note that in Illterlisp-lO, ~ of a subr performs a cons, as described on page 8.1. 

8.2 



movd[from;to;copyflg] 

movd?[from;to;copyflg] 

Section 8: Functioll Definition and Evaluation 

Moves the 4efinition of from to to, i.e., redefines to. If 
copyflg = T, a fQQY of the definition of from is used. copyflg = T is 
only meaningful for exprs, although movd works for compiled 
functions and subrs as well. Ine value of movd-is to. 

if to is not defined, same as movd[from;to;copyflg]. Otherwise, + 
does nothing and returns NIL. + 

Note: i!JJJ!Jz, subrp, ccodep. scodep, exprp, argtype, nargs, and argUst all can be given either the 
name of a function, or a definition. 

fntyp[fn] 

subrp[fn] 

ccodep[fn] 

scodep[fn] 

exprp[fn] 

argtype[fn] 

Value is NIL if fn is not a function definition or the name of a 
defined function. Otherwise frityp returns one of the following as 
defined in the section on function types: 

EXPR 
FEXPR 
EXPR* 
FEXPR* 

CEXPR 
CFEXPR 
CEXPR* 
CFEXPR* 

SUBR 
FSUBR 
SUBR* 
FSUBR* 

The prefix f indicates unevaluated arguments, the prefix ~ indicates 
compiled code, and the suffix * indicates an indefinite number of 
arguments . 

.f!.1.!Y12 returns FUNARG if fn is a funarg expression. See Section 11. 

is true if and only if fntyp[fn] is either SUBR, FSUBR. SUBR*. or 
FSUBR*. i.e., the third column of fntyp's. 

is true if and only if fntyp[fn] is either CEXPR. CFEXPR. 
CEXPR*. or CFEXPR*. Le., second column of fntyp's. 

is true if fn has or is a swapped compiled definition (see Section 3). + 

is true if fntyp[fu] is either EXPR, FEXPR, EXPR*, or FEXPR*, 
i.e., first column of fntyp's. However, exprp[fn] is also true if fn is 
(has) a list definition that is not a SUBR, but does not begin with 
either LAMBDA or NLAMBDA. In other words, ~ is not quite as 
selective as fu!.yp. 

fn is the name of a function or its definition. 'Ibe value of argtype 
is the argtype of fn, Le., 0, 1, 2, or 3, or NIL if fn is not a function. 
'Inc interpretation of the argtypc is: 

o evallspreadfunction (EXPR,CEXPR,SUBR) 

8.3 

-- -----~-
~~,~_-..;~_,_"'4 .. 'o". _d.--,,- ___ -~, ~ .' ',,-,~.--;;,:-,;;·,,"i .. :_: 



+ 
+ 
+ 
+ 

Section 8: Functi()1! Definition and Evaluation 

1 . no-eva1/spread,ftl~ctions (FEXPR. CFEXPR. fSUBR) 

2 eval/nospread functions (EXPR'" .CEXPR .... SUBR·) 

3 no-evallnospread functions (FEXPR .... CFEXPR*. FSUBR*) 

i.e., argtype corresponds to the rows of fntyPs. 

, nargs[fn] value is the number of arguments of fn, or NIL if fn is not a 
function.4 nargs uses ~, not .fu!yp, so that 
nargs[ ( A (B C) D)] = 2. If fn isa nospread function, the valueof 
nargs is 1. 

arglist[fn] valuc is the "argumcnt list" for fn. Note that the "argument list" is 
an' atom for nospread functions. Since NIL is a possible value for 
arg1i~, an error is gencrated, ARGS NOT AVAILABLE. if fn is not 
a function.s . 

If fn is a SUBR or FSUBR in Interlisp-lO, the value of arglist is (U), (U V), (U V W},etc. 
dcpending on the number of arguments, if a SUBR* or FSUBR"'. the value is U. This is merely a 
"featurc" of arglist, subrs do not actuallystorc the names of their argumcnts(s) on the stack. 

smartarglist[fn;cxplainflg;tail] If explainflg = T and fn is a nospread function, e.g., list, sclcctg, etc., 
smartarglist uses hclpsys to interrogate the Interlisp manual to 
obtain more descriptive argument names. e.g., 
smartarglist[ SELECTQ; T] = (X Y1 Y2 .•. YN Z). If fn is a 
nosprcad function, and cxplainflg = NIL, thcn smartarglist returns 
arglist[fn]. 

4 

5 

If fn is a sprcad SUBR, regardless of the value of exptainflg, 
smartarglist also consults the manual. e.g., 
smartarglist[READ]=( FILE RDtBL FLG). 
smartarglist[STKPOS]= (FN N POS). 

For all othcr cascs, and whcn helpsys is undefined or unsuccessful 
in finding the arguments, smartarglist simply returns arglist[fn]. 

smartargtist first calls fncheck (Section 17) on fn. fnchcck will 

Le .• if £!Rm. ccod£!? and subrp are all NI L. 

If ill is a compiled function. the argument list is constructed. i.e .• cach call to J.!m!!~t requires making a new list For 
interpreted functions. whose dcfinitions are lists of the form (LAMBDA --) or (NlAMBDA --). the argument list is 
Simply c;ldr of &£19. If ill has a list dcfinition. and ~! of the definition is not LAMBDA or NLAMBDA. arglist will 
check to sec if 9! of the dcfinition is a member of !;l.t!!!l.@llJ,~t (sce Section 17). If it is. !lrglis~ presumes this is a 
function objcct thc user is defining via an appropriate .!!win!~li.®)rm (Section 17). and simply rcturns cadr of the def 
as its argumcnt list. OUlcrwise ~rlilili!: generates an error as dcscribed above. 

8.4 



Section 8: Function Definition and Evaluation 

attempt spelling correction if fn is not the name of a function.6 If 
unsuccessful, an error will be generated, fn NOT A FUNCTION. 

smartarglist is used by break (Section 15) and advise (Section 19) with explainflg = NIL for 
constructing equivalent EXPR definitions, and by the ?= lispxmacro (Section 22), with 
explainflg=T. In 'order to avoid repeated calls to helpsys, and also to provide the user with an 
override, smartarglist stores the arguments returned from helpsys on the property list of fn under 
the properly ARGNAMES and checks for this property before calling helpsys.1 

define[x;-] The argument of define is a list. Each element of the list is itself a 
list either of the form (name definition) or (name arguments ... ). In 
the second case, following "arguments" is the body of the 
definition. As an example, consider the following two equivalent 
expressions for defining the function null. 
U (NULL (LAMBDA (X) (EQ X NIL») 
~ (NULL (X) (EQ X NIL» 

define will generate an error, INCORRECT DEFINING FORM, on encountering an atom where a 
defining list is expected. If dfnflg = NIL, an attempt to redefine a function fn will cause define to 
print the message (fn REDEFINED) and to save the old definition of fn using savedef before 
redefining it.8 If dfnflg= T, the function is simply redefined. If dfnflg= PROP or ALLPROP. the 
new definition is stored on the property list under the property EXPR. (ALLPROP affects the 
operation of !ru!Q9. and .!lillY, Section 5). dfnflg is initially NIL. 

dfnflg is reset by load to enable various ways of handling the defining of functions and setting of 
variables when loading a file. For most applications, the user will not reset dfnflg directly himself. 

Note: define will operate correctly if the function is already defined and broken, advised. or 
broken-in. 

6 

7 

8 

9 

nlambda nospread version of define, i.e., takes an indefinite number 
of arguments which are not evaluated. Each Xi must be a list; of 
the form described in define. defineg calls define, so dfnflg affects 
its operation the same as define.9 

tail is used for the call to fixspell. 

For spread functions. the argument list itself is stored. For nospread. the fom is (NIL arglistl . arglist2) where 
arglisLl is the value of m1!1rtarglisJ when explainflg=T. and 1!.I'glis~ the value when explainflg=NIL. e.g., 
getp[SELECTQ;ARGNAMES]-(NIL (X CLAUSE1 CLAUSE2 .,' CLAUSEN DEFAULT) • SELCQ). 

except if the old and new definitions are the same, i.e. equal. the effect is simply a no-op, 

For expressions involving type-in only. if the time stamp facility is enabled (Section 9). both defin~ and .!J.efineg will 
sUlmp the definition with Ule user's initials and date. 

8.S 

* 

+ 
+ 



savedef{fn]lO 

unsavedef{fn;prop]l1 

eval[x] 12 

Section 8: Function Definition and Evaluation 

Saves the definition of fn on its propelty list under property EX P R • 
CODE. or SUBR depending on its~. Value is the property 
name used. If getd[fn] is non-NI L. but fntyp[fn] is NIL. saves on 
property name LIST. This situation can arise when a function is 
redefined which was originally defined with LAMBDA misspelled or 
omitted. 

If fn is a list, savedef operates on each function in the list, and its 
value is a list of the individual values. 

Restores the definition of fn from its property list under property 
Q!QQ (sec savedef above). Value is Q!QQ. If nothing saved under 
Q!QQ, and fn is defined, returns (prop NOT FOUND), otherwise 
generates an error, NOT A FUNCTION. 

If Jmm. is not given, i.e., NIL. unsavedef looks under EXPR, 
CODE. and SUBR. in that order. The value of unsavedef is the 
property name, or if nothing is found and fn is a function, the 
value is (NOTHING FOUND); otherwise generates an error, NOT A 
FUNCTION. 

J f dfnflg = NIL, the current definition of fn, if any, is saved using 
savedef. Thus one can use unsavedef to switch back and forth 
between two definitions of the same function, keeping one on its 
property list and the other in the function definition celL 

If fn is a list, unsavedef operates on each function of the list, and 
its value is a list of the individual values. 

/ 

eval evaluates the expression ! and returns this value i.e., eval 
provides a way of calling the interpreter. Note that eval is itself a 
lambda type function, so its argument is first evaluated, e.g., 

+ 10 

+ 
Note: both savedef and unsavedef are redefined in more general terms in Section 14 to operate on typed definitions 
of which a function definition is but one example. Thus. their actual argument lists in Interlisp are different tllan 
given here: savcdef is a function of three arguments, name, ~, and definitiol}, and unsavedef a function of two 
arguments, name and ~. However, when their extra arguments are defaulted to NIL, they operate as described 
above. 

+ 
+ 
+ 

11 See previous footnote to savedef. 

12 In Interlisp-lO. eval is a subr so that the "name" ! does not actually appear on fue stack. 

8.6 



Section 8: Function Definition and Evaluation 

~SET{FOO (ADD1 3» 
(ADD! 3) 
~(EVAl FOO) 
4 
~EVAl(FOO) or (EVAL (QUOTE FOO» 
(ADD13) 

boundp[ var] returns T if var is bound in the current context (even if bound to + 
NOBIND), or if var has a top level value other than NOBIND. In + 
other words, eval[x], where! is an atom, will cause an error, i.e. a + 
call to faulteval (Section 16), if and only if the value of boundp[x] is + 
NIL. + 

defeval[type;fn] specifies how a datum of a particular type is to be evaluated,l3 + 
Intended primarily for user defined data types, but works for all + 
data types except lists, literal atoms, and numbers. !Yru: is a type + 
name or type number. fn is a function object, i.e. name of a + 
function or a lambda expression. Whenever the interpreter + 
encounters a datum of the indicated type, fn is applied to the + 
datum and its value returned as the result of the evaluation. The + 
value of defeval is the previous evaling fn. If fn=NIL, defeval + 
returns current evaling fn without changing it. Iffn=T, sets + 
evaling function back to system default (which for all data types + 
except lists is to return the datum itself). + 

apply[fn;args] IDm!Y applies the function fn to the arguments args. The individual 
elements of args are not evaluated by IDm!Y, fn is simply called with 
~ as its argument list. 14 Thus for the purposes of IDm!I, 
nlambda's and lambda's are treated the same. However like eval, 
IDm!Y is a lambda function so its arguments are evaluated before it 
is called e.g., 

13 

14 

compilet~ (Section 18) pennits the user to specify how a datum of a particular type is to be compiled. 

Note that [11 may still explicitly evaluate one or more of its arguments itself, as in the case of g!g. lbus, 
(APPLY (QUOTE SETQ) (QUOTE (FOO (ADD1 3»» will set FOO to 4, whereas 
(APPLY (QUOTE ISH) (QUOTE (FOO (ADD1 3»» will set FOO to the expression (ADDl 3). 

8.7 

+ 



apply*[fn;arg1;arg2;···;argn1 

evala[x;a1 

rpt[rptn;rptt] 

Section 8: Function Definition and Evaluation 

~SET( FOOl 3) 
3 
~SET( F002 4) 
4 
~(APPLY (QUOTE IPLUS) (LIST FOOl F002] 
7 

Here, fool and fo02 were evaluated when the second argument to 
.!:llm!Y was evaluated. Compare with: 

~SET(FOOl (ADDl 2» 
(ADDl 2) 
~SET(F002 (SUBl 6» 
(SUBl 5) 
~(APPLY (QUOTE IPLUS) (LIST fOOl F002] 

NON-NUMERIC ARG 
(ADDl 2) 

equivalent to apply[fn;1ist[arg1;arg2; ... ;argn]] For example, if fn is 
the name of a functional argument to be applied to ! and 1, one 
can write (APPLY* FN X Y), which is equivalent to 
(APPLY FN (LIST X Y}). Note that (FN X Y) spccifiesacall 
to the function F N itself, and will cause an error if F N is not 
defined. (See Section 16.) FN will not be evaluated. 

Simulates a-list evaluation as in LISP 1.5.! is a form, ~ is a list of 
dotted pairs of variable name and value. ~ is "spread" on the 
stack, and then! is evaluated, i.e., any variables appearing free in !, 
that also appears as car of an element of ~ will be given the value 
in the cdr of that element. 

Evaluates the expression m!f .ill!!! times. At any point, mill is the 
number of evaluations yet to take place. Returns the value of the 
last evaluation. If ill.!!! i.. 0, !llif is not evaluated, and the value of 
ill! is NIL. 

Note: !12!. is a lambda function, so both its arguments are evaluated before!1!l is called. For most 
applications, the user will probably want to use.!1!J.g. 

rptq[n;form1;form2; ... ;formn1 nlambda, nospread version of m!: g is evaluated, formi are not, 
e.g., (RPTQ 10 (READ» will perform ten calls to read. !lllil 
compiles open. 

+ frptq[n;form1;form2; ... ;formn] fast version of !Jllil that compiles open using an assemble macro. 
Does not bind g. 

8.8 



1 

arg[var;m] 

setarg[var;m;x] 

Section 8: Function Definition and Evaluation 

Used to access the individual arguments of a lambda nospread 
function. £!ffi is an nlambda function used like set. var is the name 
of the atomic argument list to a laml1da-nospread function, and is 
not evaluated; m is the number of the desired argument, and is 
evaluated. For example, consider the following definition of iplus 
in terms of plus. 

[LAMBDA X 
(PROG «M 0) 

(N 0» 
LP (COND 

«EQ N X) 
(RETURN M») 

(SETQ N (ADDl N» 
[SETQ M (PLUS M (ARG X N») 
(GO LP] 

The value of £!ffi is undefined for m less than or equal to 0 or 
greater than the value of var. 15-Lower numbered arguments 
appear earlier in the form, e.g., for (I PLUS ABC). 
arg[X; lJ = the value of A. 
arg[X; 2J = the value of B. and 
arg[X; 3 J = the value of C. 

Note that the lambda variable should never be reset. However, 
individual arguments can be reset using setarg described below. 

£!ffi compiles open if var is bound locally in the function in which + 
the call to £!ffi appears. Otherwise, .!!ffi compiles closed and evaluates + 
its first argument on each call. Note that this means that the value + 
of var must be a SPECVAR. + 

sets to ! the mth £!ffiument for the lambda nospread function whose 
argument list is var. var is considered quoted, m and ! are 
evaluated; e.g., in the previous example, 
(SETARG X (ADDl N)(MINUS M» would be an example of the 
correct form for setarg. 

15 For lambda nosprcad functions. the lambda variable is bound to the number of arguments actually given to the 
function. See Section 4. 

8.9 

--- - ----:--------=-----:-:--;,.>'-it>->,::::;-----------~---:-;-::-;-~~-~----- - --





Index for Section 8 

ADVISED (property name) .•.••.••..••..•••.•....•• 
ALLPROP (as value of DFNFLG) •••....•.•.•...•.••. 
APPLY[FN;ARGS] SUBR ..•.•..•••••••••.••..••.•..•. 
APPLY*[FN;ARG1;ARG2; ... ;ARGn] SUBR'" ..•....••.••. 
ARG[VAR;M] FSUBR .••••.•.•••.••••••••••.••••••••• 
ARG NOT LITATOM (error message) •••••.••.•..••••. 
ARGLIST[FN] .•••...•..•...•••••.••••.••....••.•.. 
ARGNAMES (property name) ..•..••••••••••.•••••.•. 
ARGS NOT AVAILABLE (error message) •.•.••..••.••. 
ARGTYPE[FN] SUBR •••..••...•••..•••.••.•.••••.••. 
argument 1 ist •••••...•...••....••••••.•••••••••• 
a-1 ist •••••.•••.•.•.•.•..•••..•••••••••••••••••• 
BAD ARGUMENT - FGETD (error message) •.•••••••••• 
BOUNDP[VAR] ..•.•••.•.•••••••...••••••••••.•••••• 
BROKEN (property name) ••••.•.•••••••..••••••••••• 
BROKEN-IN (property name) ••••••••.•••••••••••••• 
CCODEP[FN] SUBR .•.•.••..••.•••••••••••••••••••.• 
CEXPR (function type) .......................... , 
CEXPR* (function type) ........................ .. 
CFEXPR (function type) ........................ .. 
CFEXPR* (function type) •.••••.•••••••••••••••••. 
CODE (property name) .......................... .. 
COMPILETYPELST (compiler variable/parameter) 
DEFEVAL[TYPE; FN] •.•..••..••••.•••••••••••••••••• 
DEFINE[X;TYPE-IN] .••••••••••••••.•••..•••••••••• 
DEFINEQ[X1;X2; ••. ;Xn] NL'" •••••.••••••••••••••••• 
DFNFLG (system variable/parameter) ••••••••..•••• 
EVAL[X] SUBR ••..••.•.••••.•••.•••••••••••••••••• 
EVALA[X; A] SUBR •••••.••.•••••••••••••••••••••••• 
EXPR (funct i on type) •••.••••••.••••••.•••••••••• 
EXPR (property name) ••••••••...••••.••••••.••••. 
EXPRP[FN] SUBR •.•.••••••••••••.••••••••••••••.•. 
EXPR'" (function type) ......................... .. 
FEXPR (function type) ......................... .. 
FEXPR'" (function type) ........................ .. 
FGETD[X] •....•..•....••..•••...••..••••••••••••• 
FNCHECK[FN;NOERRORFLG;SPELLFLG;PROPFLG;TAIL] 
FNTYP[FN] ...•...••....•.•..••..••••••••••••••.•• 
FRPTQ[N;FORM1;FORM2; •.. ;FORMn] NL'" ••••••••••.••• 
FSUBR (function type) ......................... .. 
FSUBR* (function type) ..............•..•••.••.•. 
FUNARG (function type) ....••••••••.•••.••.•••••• 
function definition and evaluation .••••••••••••• 
function definition cell ....................... . 
functional arguments •••.•.•••••.•.•••••••• , .••••. 
GETD[X] SUBR ...•..••.•....•.•••••.•.•..•••...••. 
ILLEGAL ARG (error message) ..••.•.•....•••.••••• 
INCORRECT DEFINING FORM (error message) ••..••••• 
interpreter ••....•••••.••.•...•..••••••••..•.••• 
LAMBDA ..••••.•.•...••..••....•..••••••••••.••••• 
LAMBDASPLST (dwim variable/parameter) •••••.•..•. 
LIST (p roperty name) ..•..•..•.••.•••••.••••••.•. 
MOVD[FROM;TO;COPYFLG] ••..•••••••••.•••.••••••... 
MOVD?[FROM;TO;COPVFLG] •••••....••.•••••••••••••• 
NARGS[FN] ••••••••••••••...•.•.••.•..••••••••••.• 
NLAMBDA •••••••••••••••••..•••••••.•••••••••••••• 

INDEX.B.l 

Page 
Numbers 

8.5 
8.5 
8.7 
8.8 
8.9 
8.2 
8.4,1-3 
8.5 
8.4 
8.3,1-3 
8.1 
8·.8 
8.2 
8.7 
8.5 
8.5 
8.3,1-3 
8.3 
8.3-4 
8.3-4 • 
8.3-4 
8.6 
8.7 
8.7 
8.5 
8.5 
8.6,6 
8.6 
8.8 
8.3 
8.6,6 
8.3,1-2,4 
8.3-4 
8.3-4 
8.3-4 
8.2 
8.4 
8.3,1-2,4,6 
8.8 
8.3-4 
8.3-4 
8.3 
8.1-9 
8.1 
8.8 
8.2,1,6 
8.2 
8.5 
8.6 
8.2-3,6 
8.4 
8.6 
8.3 
8.3 
8.4,1-3 
8.2-3 

-, ~<,ilI;;~q~.?, --_,. <.- - "'" K~o>!-,_"~;,,;fi'iiI-,.,-<;t~'"""''''-'' ,·,.,."'.r.~-,_."_~ c~c 
,--



NOBIND ......................................... . 
nospread functions ........•..................... 
NOT A FUNCTION (error message) ................. . 
(NOT FOUND) (value of unsavedef) ..........•..... 
(NOTHING FOUND) .................. '. •............. 
PROP (as value of DFNFLG) ...................... . 
PUTD[FN ;DEF] SUBR .............................. . 
PUTDQ[FN ;DEF] NL ............................... . 
PUTDQ7[FN;DEF] NL .................•.....•......• 
(REDEFINED) (printed by system) ................• 
RPT[RPTN; RPTF] ...................•.............. 
RPTQ[N;FORMl;FORM2; ... ;FORMn] NL- ...•........... 
SAVEDEF[NAME;TYPE;DEFINITION] ...•............... 
SCODE P[ FN] SUBR ................................ . 
SETARG[VAR;M;X] FSUBR ..........•..............•. 
SMARTARGLIST[FN;EXPLAINFLG;TAIL] ............... . 
spread functions .........•.................... ' .. 
SUBR. (function type) ............•............... 
SUBR (property name) ....•....................... 
SUBRP[FN] SUBR ................................. . 
subrs ......................................•..•. 
SUBR- (function type) ...............•...••.•...• 
time stamp packaglJ ............................. . 
U (value of ARGLIST) .' ........•......••.•.•.....• 
unbound atom ..............•....•....•.•........• 
UNSAVEDEF[NAME;TYPE;DEF] •..•............•....... 

INDEX.S.2 

Page 
Numbers 

8.7 
8.1 
8.5-6 
8.6 
8.6 
8.5 
8.2,1-2 
8.2 
8.2 
8.5 
8.S 
8.8 
8.6 
8.3,-3 
8.9 
8.4 
8.1 

, 8.3-4 
8.6 
8.3,1-3 
8.1 
8.3-4 
8.5 
8.4 
8.7 
8.6 

( 



SECTION 9 

THE INTERLISP EDITORl 

The Interlisp editor allows rapid, convenient modification of list structures. Most often it is used to 
edit function definitions, (often while the function itself is running) via the function editf, e.g., 
ED IT F ( FOO). However, the editor can also be used to edit the value of a variable, via editv, to 
edit a property list, via editp, or to edit an arbitrary expression, via edite. It is an important 
feature which allows good on-line interaction in the Interlisp system. 

This chapter begins with a lengthy introduction intended for the new user. The reference portion 
begins on page 9.10. 

9.1 INTRODUCTION 

Let us introduce some of the basic editor commands, and give a flavor for the editor's language 
structure by guiding the reader through a hypothetical editing session. Suppose we are editing the 
following incorrect definition of append: 

[LAMBDA (X) 
Y 
(COND 

({NUL X) 
Z) 

(T (CONS (CAR) 
(APPEND (CDR X Y] 

We call the editor via the function editf: 

+-EDITF(APPEND) 
EDIT ... 

The editor responds by typing EDIT followed by"', which is the editor's prompt character, i.e., it 
signifies that the editor is ready to accept commands.2 

1 The editor was written by and is the responsibility of W. Teitelman. 

2 In other words. all lines beginning with • were typed by the user. the rest by the editor. 

9.1 



Section 9: The lnterlisp Editor 

At any given moment, the editor's attention is centered on some substructure of the expression 
being edited. This substructure is called the current expression, and it is what the user sees when 
he gives the editor the command P, for print. Initially, the current expression is the top level one, 
i.e., the entire expression being edited. '11lUS: 

.p 
(LAMBDA (X) Y (COND & &» 
• 

Note that the editor prints the current expression as though printlevel were set to (2 . 20), i.e., 
sublists of sublists are printed as &, tails of long lists printed as -- . '111e command? will print the 
current expression as though printlevel were 1000. 

*7 
(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR) (APPEND (CDR X V»~»~»~ 
* 
and the command P P will prettyprint the current expression. 

A positive integer is interpreted by the editor as a command to descend into the correspondingly 
numbered element of the current expression. Thus: 

*2 
*p 
(X) 
* 

A negative integer has a similar effect, but counting begins from the end of the current expression 
and proceeds backward, i.e., -1 refers to the last element in the current expression, -2 the next to 
the last, etc. For either positive integer or negative integer, if there is no such element, an error 
occurs,3 the editor types the faulty command followed by a ?, and then another·. The current 
expression is never changed when a command causes an error. Thus: 

*p 
(X) 
*2 

2 ? 
*1 
*p 
X 
* 

A phrase of the form "the current expression is changed" or 'the current expression becomes' refers 
to a shift in the editor's attention, not to a modification of the structure being edited 

3 'Editor errors' are not of the flavor described in Section 16. i.e., they never cause breaks or even go through the 
error machinery but are direct calls to ~rmd iudicating that a command is in some way faulty. What happens next 
depends on Ule context in which the command was being executed. For example. there are conditional commands 
which branch on errors. In most situations. though. an error will cause the editor to type the faulty command 
followed by a ? and wait for more input. Note that typing control-E while a command is being executed aborts the 
command exactly as UlOugh it had caused an error. 

9.2 



Introduction 

When the user changes the current expression by descending into it, the old current expression is 
not lost. Instead, the editor actually operates by maintaining a chain of expressions leading to the 
current one. The current expression is simply the last link in the chain. Descending adds the 
indicated subexpression onto the end of the chain, thereby making it be the current expression. 
The command 0 is used to ascend the chain; it removes the last link of the chain, thereby making 
the previous link be the current expression. Thus: 

*p 
X 
*0 P 
(X) 
*0 -1 P 
(COND (& Z) (T &» 
* 

Note the use of several commands on a single line in the previous output. The editor operates in 
a line buffered mode, the same as evalqt. Thus no command is actually seen by the editor, or 
executed, until the line is terminated, either by a carriage return, or a matching right parenthesis. 
The user can thus use control-A and control-Q for line-editing edit commands, the same as he does 
for inputs to evalqt. 

In our editing session, we will make the following corrections to append: delete Y from where it 
appears, add Y to the end of the argument list,4 change NUL to NULL, change Z to Y, add Z after 
CAR, and insert a right parenthesis following CDR X. 

First we will delete Y. By now we have forgotten where we are in the function definition, but we 
want to be at the "top" so we use the command t, which ascends through the entire chain of 
expressions to the top level expression, which then becomes the current expression, i.e., l' removes 
all links except the first one. 

*1' P 
(LAMBDA (X) Y (COND & &)} 
* 

Note that if we are already at the top, l' has no effect, i.e., it is a no-op. However, 0 would 
generate an error. In other words, t means "go to the top," while 0 means "ascend one link." 

4 These two operations eould be though of as one operation. i.e .. MOVE Y from its current position to a new position, 
and in fact there is a MOVE command in the editor. However. for the purposes of this introduction, we will confine 
ourselves to the simpler edit commands. 

9.3 

- ----~-~~- ----- ---------~--------
-~~- . . 



Section 9: The lnterlisp Editor 

The basic structure modification commands in the editor are: 

(n) 

Thus: 

*p 

n .L 1 deletes the corresponding 
clement from the current expression. 

n,m .L 1 replaces the nth element in the current expression with 
el'" em' 

n,m .L 1 inserts el ... em before the nth clement in the current 
expression. 

(LAMBDA (X) Y (COND & &» 
*(3) 
*(2 (X Y» 
*p 
(LAMBDA (X Y) (COND & &» 
* 

All structure modification done by the editor is destructive, i.e., the editor uses rplaca and rplacdlo 
physically change the structure it was given. 

Note that all three of the above commands perform their operation with respect to the nth element 
from the front of the current expression; the sign Of n is used to specify whether the operation is 
replacement or insertion. Thus, there is no way to specify deletion or replacement of the nth 
element from the end of the current expression, or insertion before the nth clement from the end 
without counting out that element's position from the front of the list. Similarly. because we 
cannot specify insertion after a particular clement, we cannot attach something at the end of the 
current expression using the above commands. Instead, we use the command N (for ncone). Thus 
we could have performed the above changes instead by: 

*p 
(LAMBDA (X) Y (COND & &» 
*(3) 
*2 (N Y) 
*p 
(X Y) 
*1' P 
*(LAMBDA (X Y) (COND & &» 

* 
Now we are ready to change NUL to NULL. Rather than specify the sequence of descent 
commands necessary to reach NUL, and then replace it with NULL t e.g., 3 2 1 (1 NULL) t we 
will use F. the find command, to find NUL: 

9.4 



Introduction 

.p 
(LAMBDA (X Y) (COND & &» 
·F NUL 
.p 
(NUL X) 
*(1 NULL) 
·0 P 
{(NULL X) l) 
• 

Note that F is special in that it corresponds to two inputs. In other words, F says to the editor, 
"treat your next command as an expression to be searched for." The search is carried out in 
printout order in the current expression. If the target expression is not found there, F 
automatically ascends and searches those portions of the higher expressions that would appear after 
(in a printout) the current expression. If the search is successful, the new current expression will 
be the structure where the expression was found,5 and the chain will be the same as one resulting 
from the appropriate sequence of ascent and descent commands. If the search is not successful, an 
error occurs, and neither the current expression nor the chain is changed:6 

.p 
{(NULL X) l) 
"'F COND P 

COND ? 
.p 
"'«NULL X) l) 
'" 

Here the search failed to find a cond following the current expression, although of course a cond 
does appear earlier in the structure. 111is last example illustrates another facet of the error recovery 
mechanism: to avoid further confusion when an error occurs, all commands on the line beyond the 
one which caused the error (and all commands that may have been typed ahead while the editor 
was computing) are forgotten'? 

We could also have used the R command (for replace) to change NUL to NULL. A command of 
the form (R el e2) will replace all occurrences of el in the current expression by e2' There must 
be at least one such occurrence or the R command will generate an error. Let us use the R 
command to change all l's (even though there is only one) in append to Y: 

5 

6 

7 

If the search is for an at(lm, e.g., F NUL, the current expression will be the structure containing the atom. 

F is never a no-op, i.e .. if successful. the current expression after the search will never be the same as the current 
expression before the search. Ihus F £!em: repeatcd without intervening commands that change the cdit chain can be 
used to find successive instances of ~. 

i.e .. the input buffer is cleared (and saved) (see fk:J.J:.buf, Section 14). It can be restored, and the type-ahead 
recovered via the command $BUFS (esc BUFS). described in Section 22. 

9.5 



Section 9: The Interlisp Editor 

*t (R Z Y) 
*F Z 

Z ? 
*PP 

[LAMBDA (X Y) 
(COND 

• 

« NULL X) 
Y) 

(T (CONS (CAR) 
(APPEND (COR X Y] 

. The next task is to change (CAR) to (CAR X). We could do this by (R (CAR) (CAR X», or 
by: 

*F CAR 
*(N X) 
*p 
(CAR X) 
• 

The expression we now want to change is the next expression after the current expression, i.e., we 
are currently looking at (CAR X) in (CONS (CAR X) (APPEND (COR X Y»). We could get 
to the append expression by typing 0 and then 3 or -I, or we can use the command NX. which 
docs both operations: 

*p 
(CAR X) 
*NX P 
(APPEND (COR X V»~ 
* 

Finally, to change (APPEND (CDR X Y» to (APPEND (COR X) V). we could perfonn (2 
(CDR X) Y), or (2 (COR X» and (N Y), or 2 and (3). deleting the Y. and then 0 (N V). 
However, if Y were a complex· expression, we would not want to have to retype it. Instead, we 
could use a command which effectively inserts and/or removes left and right parentheses. There 
are six of these commands: BI. BO. LI • La. RI. and RO. for Qoth in, Qoth Qut, left in, left QUt, 
right in, and right QUt. Of course, we will always have the same number of left parentheses as 
right parentheses. because the parentheses are just a notational guide to structure that is provided 
by our print program.8 Thus, left in, left out, right in, and right out actually do not insert or 
remove just one parenthesis, but this is very suggestive of what actually happens. 

In this case, we would like a right parenthesis to appear following X in (COR X Y). Therefore, 
we use the command (R I 2 2), which means insert a right parentheses after the second element 
in the second clement (of the current expression): 

8 Herein lies one of the principal advantages of a LISP oriented editor over a text editor: unbalanced parentheses 
errors are not possible. 

/---

9.6 

~------~~-- --- -- -----
'. zr" P--_iIIf .. 



*p 
(APPEND (CDR X V»~ 
*(RI 2 2) 
*p 
(APPEND (CDR X) Y) 
* . 

Introduction 

We have now finished our editing, and can exit from the editor, to test append, or we could test it 
while still inside of the editor, by using the E command: 

*E APPEND«A B) (C.D E» 
(A BCD E) 
* 

The E command causes the next input to be given to evalqt. If there is another input following it, 
as in the above example, the first will be applied @PP!Y) to the second. Otherwise, the input is 
evaluated (eval). . 

We prettyprint append, and leave the editor. 

*pp 
[LAMBDA (X Y) 

(COND . 

*OK 
APPEND 

«NULL X) 
Y) 

(T (CONS (CAR X) 
(APPEND (CDR X) Y] 

9.2 COMMANDS FOR THE NEW USER 

As mentioned earlier, the Interlisp manual is intended primarily as a reference manual, and the 
remainder of this chapter is organized and presented accordingly. While the commands introduced 
in the previous scenario constitute a complete set, i.e., Ule user could perform any and all editing 
operations using just those commands, there are many situations in which knowing the right 
command(s) can save the user considerable effort. We include here as part of U1e introduction a 
list of U10se commands which arc not only frequently applicable but also easy to use. They are not 
presented in any particular order, and arc all discussed in detail in U1e reference portion of U1e 
chapter. 

UNDO 

BK 

undoes U1e last modification to the structure being edited, e.g., if 
the user deletes the wrong element. UNDO will restore it. The 
availability of UNDO should give the user confidence to experiment 
with any and all editing commands, no matter how complex, 
because he can always reverse the effect of the command. 

like N X, except makes the expression immediately before the 
current expression become current. 

9.7 



BF 

\ 

\P 

Section 9: The lnterlisp Editor 

Qackwards find. Like F. except searches backwards, i.e., in inverse 
print order. 

Restores the current expression to the· expression before the last 
"big jump", e.g., a find command, an t, or another \. For 
example, if the user types F COND. and then F CAR. \ would 
take him back to the COND. Another \ would take him back to the 
CAR. 

like \ except it restores the edit chain to its state as of the last 
print, either by P, 1, or P P. If the edit chain has not been 
changed since the last print, \P restores it to its state as of the 
printing before that one, i.e., two chains .are always saved. 

Thus if the user types P followed by 3 2 1 P, \P will take him bade to the first P, i.e., would 
be equivalent to 000. Another \P would then take him back to the second P. Thus the user can 
use \ P to flip back and forth between two current expressions. 

&.-- The search expression given to the F or B F command need not be 
a literal S-expression. Instead, it can be a pattern. The symbol & 
can be used anywhere within this pattern to match with any single 
element of a list, and -- can be used to match with any segment of a 
list. Thus, in the incorrect definition of append used earlier, 
F (NUL &) could have been used to find (NUL X), and 
F (CDR --) or F (CDR & &). but not F (CDR &). to find 
(CDRXY). 

Note that & and -- can be nested arbitrarily deeply in the pattern. For example, if there are many 
places where the variable X is set, F SETQ may not find the desired. expression, nor may 
F (SETQ X &). It may be necessary to use F (SETQ X (LIST --». However, the usual 
technique in such a case is to pick out a unique atom which occurs prior to the desired expression, 
and perform two F commands. This "homing in" process seems to be more corlvenient than ultra
precise specification of the pattern. 

$«esc» $ is equivalent to -- at the character level, e.g., VE R$ will match 
with VERYLONGATOM. as will $ATOM, $LONG$, (but not 
$LONG) and $V$N$M$. $ can be nested inside of a pattern, e.g., 
F (SETQ VER$ (CONS --». 
If the scarch is successful, the editor will print = followed by the 
atom which matched with the $-atom, e.g., 
*F (SETQ VER$ &) 
:;VERYLONGATOM 
• 

Frequently the user will want to replace the entire current expression, or insert something before it. 
In order to do this using a command of the form (n el ... cm) or (-n el ... em)' the user must be 
above the current expression. In other words, he would have to perform a 0 followed by a 

9.8 

-- ---ill, _II 



Commands for the New User 

command with the appropriate number. However, if he has reached the current expression via an 
F command, he may not know what that number is. In this case, the user would like a command 
whose effect would be to modify the edit chain so that the current expression became the first 
element in a new, higher current expression. Then he could perform the desired operation via (1 
e1 ... em) or (-1 e1 ... em)' UP is provided for this purpose. 

UP 

(A el"'~) 

(: el"'~) 

DELETE 

after UP operates, the old current expression is the first element of 
the new current expression. Note that if the current expression 
happens to be the first element in the next higher expression, then 
UP is exactly the same as O. Otherwise, UP modifies the edit chain 
so that the new current expression is a tail9 of the next higher 
expression: 

*F APPEND P 
(APPEND (CDR X) Y) 
*UP P 
... (APPEND & V»~ 
*0 P 
(CONS (CAR X) (APPEND & V»~ 
• 
The ... is used by the editor to indicate that the current expression 
is a tail of the next higher expression as opposed to being an 
element (Le., a member) of the next higher expression. Note: if the 
current expression is already a tail, UP has no effect 

inserts el ... em before the current expression, i.e., does an UP and 
then a -1. 

inserts .e1 ... em _after the current expression, i.e., d~s an UP and"':;· 
then e~the~ a (2 e1 ... em) or an (~ e1'" em)'. If the current 
expressIon IS the last one 1D the next hIgher expressIon. 

replaces current expression by el ... em' i.e., does an UP and then a 
(1 e1 ... em)' 

deletes current expression; equivalent to (:). 

Earlier, we introduced the R I command in the append example. The rest of the commands in this 
family: B I. BO. LI, LO. and RO, perform similar functions and are useful in certain situations. 
In addition, the commands MBD and XTR can be used to combine the effects of several commands 
of the BI-BO family. MBD is used to embed the current expression in a larger expression. For 
example, if the current expression is (PRINT bigexpression), and the user wants to replace it by 

9 Throughout this chapter "tail" means "proper taU" (sec Section S). 

9.9 



Section 9: The Interlisp Editor 

(CONO (FLG (PRINTbigexpression»), he could accomplish this by (LI 1). (-1 FLG). 
(LI 1). and (-1 CONO). or by a single MBO command, page 9.30. 

XTR is used to extract an expression from the current expression. For example, extracting the 
PRINT expression from the above CONO could be accomplished by (1), (LO 1). (1), and (LO 1) 
or by a single XTR command. TIle new user is encouraged to include XTR and MBO in his 
repertoire as soon as he is familiar with the more basic commands. 

This ends the introductory material. 

9.3 ATTENTION CHANGING COMMANDS 

Commands to the editor fall into three classes: commands that change the current expression (i.e .• 
change the edit chain) thereby "shifting the editor's attention," commands that modify the structure 
being edited, and miscellaneous commands, e.g., exiting from the editor, printing, evaluating 
expressions, etc. 

Within the context of commands that shift the editor's attention, we can distinguish among (1) 
those commands whose operation depends only on the structure of the edit chain, e.g., 0, UP. NX; 
(2) those which depend on the contents of the structure, i.e., commands that search; and (3) those 
commands which simply restore the edit chain to some previous state, e.g., \, \P. (1) and (2) can 
also be thought of as local, small steps versus open ended, big jumps. Commands of type (1) are 
discussed on page 9.10-14, type (2) on page 9.14-22, and type (3) on page 9.22-23. 

9.3.1 LOCAL ATTENTION-CHANGING COMMANDS 

UP 

10 

(1) If a P command would cause the editor to type ... before typing 
the current expression, ie .. , the current expression is a tail of the 
next higher expression, UP has no effect; otherwise 
(2) UP modifies the edit chain so that the old current expression 
(Le., the one at the time UP was called) is the first element in the 
new current expression.l° 

If the current expression is the first element in the next higher expression UP simply docs a O. Otherwise UP adds the 
corresponding tail to the edit chain. 

9.10 



Local Attention Changing Commands 

Examples: The current expression in each case is (COND «NULL X) (RETURN Y»). 

1. *1 P 
COND 
*UP P 

2. 

3. 

(COND (& &» 

*-1 P 
«NULL X) (RETURN V»~ 
*UP P 

«NULL X) (RETURN V»~ 
*UP P 

«NULL X) (RETURN V»~) 

*F NULL P 
(NULL X) 
*up P 
«NULL X) (RETURN V»~ 
*UP P 
••• «NULL X) (RETURN V»~) 

The execution of UP is straightforward, except in those cases where the current expression appears 
more than once in the next higher expression. For example, if the current expression is (A NIL 
B NIL C NIL) and the user performs 4 followed by UP, the current expression should then 
be . .. NIL C NIL). UP can determine which tail is the correct one because the commands that 
descend save the last tail on an internal editor variable, lastaiL Thus after the 4 command is 
executed, lastail is (NIL C NIL). When UP is called, it first determines if the current expression 
is a tail of the next higher expression. If it is, UP is finished. Otherwise, UP computes 
memb[currellt-expression;next-higher-expression] to obtain a tail beginning with the current 
expression,u If there arc no other instances of the current expression in the next higher expression, 
this tail is the correct one. Otherwise UP uses lastail to select the correct tail.12 

n (n 2. 1) adds the nth element of the current expression to the front of the 
edit chain, thereby making it be the new current expression. Sets 
lastail for use by UP. Generates an error if the current expression 
is not a list that contains at least nelements. 

-n (n 2. 1) adds the nth clement from the end of the current expression to the 
front of the edit chain, thereby making it be the new current 
expression. Sets lastail for use by UP. Generates an error if the 
current expression is not a list that contains at least n clements. 

11 

12 

The current expression should always be either a tailor an element of the next higher expression. If it is neither. for 
example the user has directly (and incorrectly) manipulated the edit chain. UP generates an error. 

Occasionally the user can get the edit chain into a state where lastail cannot resolve tIle ambiguity. for example if 
there were two non-atomic structures in the same expression that were £Q, and the user descended more than one 
level into one of them and then tried to come back out using UP. III this case, UP prints LOCATION UNCERTAIN 
and generates an error. Of course, we could have solved this problem completely ill our implementation by saving at 
each desccnt both elemellts and t.1i1S. However. this would be a costly solution to a situation that arises infrequently. 
and when it docs, has no detrimental effects. The last;!i1 solution is cheap and resolves 99% of the ambiguities. 

9.11 



o 

Section 9: The lnterlisp Editor 

Sets edit chain to cdr of edit chain, thereby making the next higher 
expression be the new current expression. Generates an error if 
there is no higher expression, i.e., cdr of edit chain is NIl. 

Note that 0 usually corresponds to going back to the next higher left parenthesis, but not always. 
For example, if the current expression is (A BCD E F B), and the user performs: 

"'3 UP P 
... C D E F G) 
"'3 UP P ... E F G} 
"'0 P 
... C D E F G) 

If the intention is to go back to the next higher left parenthesis, regardless of any intervening tails, 
the command 10 can be used.13 . 

10 

t 

NX 

BK 

does repeated O's until it reaches a point where the current 
expression is not a tail of the next higher expression, i.e., always 
goes back to the next higher left parenthesis. 

sets edit chain to last of edit chain, thereby making the top level 
expression be the current expression. Never generates an error. 

effectively does an UP followed by a 2,14 thereby making the 
current expression be the next expression. Generates an error if 
the current expression is the last one in a list. (However, I NX 
described below will handle this case.) 

makes the current expression be the previous expression in . the next 
higher expression. Generates an error if the current expression is 
the first expression in a list. 

For example, if the current expression is (COND « NULL X) (RETURN Y»): 

"'F RETURN P 
(RETURN Y) 
"'BK P 
(NULL X) 

(NX n) n 2. 1 equivalent to !! N X commands, except if an error occurs, the edit 
chain is not changed. 

13 

14 

!O is pronounced bang· zero. 

Doth NX and BK operate. by pcrfonning a !O followed by an llppropriatc number. i.e .• there won't be an extra tail 
above the new current expression, as there would be if NX operated by perfonning an UP followed by a 2. 

9.12 

-----_.-- - --



(BK n) n 2. 1 

Local Attention Changing Commands 

equivalent to !! B K commands, except if an error occurs, the edit 
chain is not changed. 

Note: (NX -n) is equivalent to (BK n), and vice versa. 

INX 

For example: 

*pp 

makes current expression be the next expression at a higher level, 
i.e., goes through any number of right parentheses to get to the 
next expression. 

(PROG «L L) 
(UF L» 

LP (COND 

*F CDR P 
(CDR L) 
*NX 

NX 1 
*INX P 
(ERRORI) 
*INX P 

«NULL (SETQ L (CDR L») 
(ERROR I» 

([NULL (CDR (FMEMB (CAR L) 
(CADR L] 

(GO LP») 
(EDITCOM (QUOTE NX» 
(SETQ UNFIND UF) 
(RETURN L» 

«NULL &) (GO LP» 
*INX P 
(EDITCOM (QUOTE NX» 
* 

I NX operates by doing O's until it reaches a stage where the current expression is not the last 
expression in the next higher expression, and then does a NX. 'Thus I NX always goes through at 
least one unmatched right parenthesis, and the new current expression is always on a different 
level, i.e., I NX and NX always produce different results. For example using the previous current 
expression: 

*F CAR P 
(CAR L) 
*INX P 
(GO LP) 
*\P p 
(CAR L) 
*NX P 
(CADR L) 
• 

9.13 



+ 
+ 
+ 

+ 
+ 

+ 

(NTH n) n 1= 0 

Section 9: The Jnrerlisp Editor 

equivalent to .!! followed by UP, i.e., causes the list starting with the 
gth clement of the current expression (or nth from the end if 
n < 0) to become the current expression. IS- Causes an error if 
current expression does not have at least.!! elements. 

A generalized form of NTH using location specifications is described on page 9.21. 

< line-feed> 

< control-x> 16 

< control-z > 17 

moves to the "next" expression and prints it, i.e. performs aNX if 
possible, otherwise performs a !NX. (1ne latter case is indcated by 
first printing" > ".) 

moves to "previous" thing and then prints it, i.e. performs a BK if 
possible, otherwise a !O followed by a BK. 

moves to last expression and prints it, i.e. does -1 followed by P. 

+ Both < line-feed>, < control-x>, and < control-z > are immediate read macros; as soon as they 
+ are read, they abort the current printout. They thus provide a convenient way of moving around 
+ in the editor.l8 

9.3.2 COMMANDS THAT SEARCH 

All of the editor commands that search use the same pattern matching routine.19 We will therefore 
begin our discussion of searching by describing the pattern match mechanism. A pattern ~ 
matches with! if: 

15 

+ 16 

+ 17 

+ 18 

+ 
19 

1. ~ is ~ to!. 

2. ~ is &. 

3. ~ is a number and ~ to !. 

4. ill!! is a string and strequal(pat;x] is true. 

5. If car[pat] is the atom * ANY·, cdr[pat] is a list of patterns and ~ matches ~ if 
and only if one of the patterns on cdr(pat] matches x. 

(NTH 1) is a no-op. as is (NTH on) where n is the length of the current expression. 

< control-A> in Interlisp on TOPS-20. 

< control-L > in Interlisp on TOPS-20. 

In order to facilitate using different control characters for those macros. the function settermchars is provided. It is 
described in Section 14. 

This routine is available to the user directly. and is described on page 9.63. -

9.14 



Commands That Search 

6a. If ill!! is a literal atom or string containing one or more < esc> s,20 each $ can 
match an indefinite number (including 0) of contiguous characters in a literal 
atom or string, e.g., VER$ matches both VERYLONGATOM and 
"VERYLONGSTRING" as do $LONG$ (but not $LONG), and $V$L$T$. 

6b. If 1lli1 is a litcral atom or string ending in two < esc > s, ill!! matches with the 
first atom or string that is "closc" to Qill, in the sense used by the spelling 
corrector (Section 17). E.g. CONSS$$ matches with CONS, CNONC$$ with 
NCONC or NCONC1. 
The paltern matching routine always types a message of the form = x to inform 
the user of the object matched by a pattern of type 6a or 6b,21 
~~ ;VERYLONGATOM. 

7. If car[pat] is the atom --, ill!! matches! if 
a. cdr[pat] = NIL, i.e., ill!! = (--), e.g. 

( A - -) matches (A) (A B C) and (A • 8) 
In other words, -- can match any tail of a list. 

b. cdr[pat] matches with some tail of!, 
e.g., (A - - (&» will match with (A B C ( D ) ) , 
but not (A BCD), or (A B C (D) E). However, 
note that (A - - ( & ) - -) will match with 
(ABC(D)E). 
In other words, -- can match any interior segment of a list. 

8. If car[pat] is the atom = =, Qill matches! if and only if cdr[pat] is ~ to !.22 

9. If cadr[pat] is the atom .. , ill!! matches! if car[pat] matches car[x] and cddr[pat] + 
is contained in !. as described on page 9.21. + 

10. Otherwise if! is a list. Qill matches! if car[pat] 
matches car[x]. and cdr[pat] matches cdr[x]. 

When the editor is searching, the pattern matching routine is called to match with elements in the 
structure, unless the pattern begins with ... , in which case cdr of the pattern is matched against 
proper tails in the structure. lous if the current expression is (A 8 C (8 C», ) 

*F (8 --) 
*p (B C) 
*OF( ... 8--) 
*p 
... 8 C (8 e» 

Matching is also attempted with atomic tails (except for NIL). Thus 

20 

21 

22 

except that the atom $ ( < esc > ) matches only with itself. 

unless editguietflg = T • 

Pattern 8 is for use by programs that call the editor as a subroutine. since any non'atomic expression in a command 
typed in by the user obviously cannot be ~ to already existing structure. 

9.15 



*p 
(A (8 . C» 
*F C 
*p 
•••. C) 

Section 9: The Inter/isp Editor 

Allhough the current expression is the atom C after the final command, it is printed as .... C) to 
alert the user to the fact that C is a tail, not an element. Note that the pattern C will match with 
either instance of C in (A C (B • C», whereas (... . C) will match only the second C. 
111e pattern NIL will only match with NIL as an element, i.e., it will not match in (A 8). even 
though cddr of (A B) is NIL. However, (... . NIL) (or equivalently ( ... » may be used to 
specify a NIL tail, e.g., (.... NIL) will match with cdr of the third subexpression of 
«A. B) (C . D) (E». 

SEARCH ALGORITHM 

Searching begins with the current expression and proceeds in print order. Searching usually means 
find the· next instance of this pattern, and consequently a match is not attempted that would leave 
the edit chain unchanged.23 At each step, the pattern is matched against the next element in the 
expression currently being searched, unless the pattern begins with ... in which case it is matched 
against the next tail of the expression. 

If the match is not successful, the search operation is recursive first in the car direction, and. then 
in the cdr direction, i.e., if the element under examination is a list, the search descends into that 
list before attempting to match with other elements (or tails) at the same level24 

However, at no point is the total recursive depth of the search (sum of number of cars and cdrs 
descended into) allowed to exceed the value of the variable maxlevel. At that point, the search of 
that element or tail is abandoned, exactly as though the element or tail had been completely 
searched without finding a match, and the search continues with the element or tail for which the 
recursive depth is below maxlevel. This feature is designed to enable the user to search circular list 
structures (by setting maxlevel small), as well as protecting him from accidentally encountering a 
circular list structure in the course of normal editing. maxlevel is initially set to 300.25 

If a successful match is not found in the current expression, the search automatically ascends to the 
next higher expression,26 and continues searching there on the next expression after the expression 
it just finished searching. If there is none, it ascends again, etc. This process continues until the 
entire edit chain has been searched, at which point the search fails, and an error is generated. If 
the search fails (or, what is equivalent, is aborted by control-E), the edit chain is not changed (nor 
are any conses performed), 

23 

24 

However, there is a version of the find command which can succeed and leave the current expression unchanged 
(see page 9.17). 

There is also a version of the find command (see page 9.18) which only attempts matches at the top level of the 
current expression. i.e .. does 1I0t descend into clcments. or ascend to higher expressions. 

25 . maxlcvcl can also be set to NIL. which is cquivalcnt to infinity. 

26 Sce footnote 21. 

9.16 



Commands That Search 

If the search is successful, i.e., an expression is found that the pattern matches, the edit chain is set 
to the value it would have had had the user reached that expression via a sequence of integer 
commands. 

If the expression that matched was a list, it will be the final link in the edit chain, i.e., the new 
current expression. If the expression that matched is not a list, e.g., is an atom, the current 
expression will be the tail beginning with that atom,27 Le., that atom will be the first element in the 
new current expression. In other words, the search effectively does an UP. 28 

SEARCH COMMANDS 

All of the commands below set lastail for use by UP, set un find for use by \ (page 9.23), and do 
not change the edit chain or perform any couses if they are unsuccessful or aborted. 

F pattern i.e., two commands: the F informs the editor that the next 
command is to be interpreted as a pattern. This is the most 
common and useful form of the find command. If successful, the 
edit chain always changes, i.e., F pattern means find the next 
instance of pattern. 

If memb[pattern:current-expression] is true, F does not proceed 
with a full recursive search. If the value of the memb is NIl.. F 
invokes the search algorithm described earlier. 

Thus if the current expression is (PROG NIL LP (COND (-- (GO LP1») LPl 
••. ), F L PI will find the prog label, not the L PI inside of the GO expression, even though the 
latter appears first (in print order) in the current expression. Note that 1 (making the atom PROG 
be the current expression), followed by F LPI would find the first LP1. 

(F pattern N) 

(F pattern T) 

same as F pattern, i.e., finds the next instance of pattern, except the 
memb check of F pattern is not performed. 

Similar to F pattern, except may succeed without changing edit 
chain, and does not perform the memb check. 

Thus if the current expression is (COND •. ), F COND will look for the next COND, but 
(F COND T) will "stay here". 

(F pattern n) n 2.. 1 Finds the nth place that pattern matches. Equivalent to (F pattern 
T) followed by (F pattern N) repeated n-l times. Each time pattern 
successfully matches, n is decremented by 1, and the search 
continues, until n reaches O. Note that the pattern does not have to 

27 Unless the atom is a tail, e.g., B in (A . B). In this case, tile current expression will be B, but will print as .... B). 

28 Ulllcss !!Qfinill1g -, NIL (initially set to T). For discussion. see page 9.28-29, 

9.17 



i 
! .. 

(f pattern) or 
(f pattern NIL) 

Section 9: The lnterlisp Editor 

match with !! identical expressions; it just has t9 match 11 times. 
Thus if the current expression is (fOOl fOOZ F003), 
(F fOO$ 3) will find F003. 
If the pattern does not match successfully 11 times, an error is 
generated and the edit chain is unchanged (even if the pattern 
matched n-l times). 

only matches with elements at the 
top level of the current expression, i.e., the search will not descend 
into the current expression, nor will it go outside of the current 
expression. May succeed without changing edit chain. 

For example, if the current expression is 
(PROG NIL {SETQ X (COND & &» (COND &) ••. ). F COND will find the COND inside 
the S ETQ. whereas (F (COND - - » will find the top level COND, i.e:, the second one. 

(FS patternl ... patternu) 

(F= expression x) 

(OR F pattern! ... patternu) 

BF pattern 

equivalent to F p~tternl followed ~y F ~atternz .... followed by F 
patternu, so that If F patteI'11m fatls, edIt chatn IS left at place 
patteI'11m-l matched. 

equivalent to (F (= = . expression) x), i.e., searches for a structure 
~ to expression, see page 9.!5. 

equivalent to (F (·ANY· pattern! ... patternu) N), i.e., searches for 
an expression that is matched oy either pattern!, pattern2' ... or 
patteffiu. See page 9.14. 

Qackwards find. Searches in reverse print order, beginning with 
expression immediately before the current expression (unless the 
current expression is the top level expression, in which case B F 
searches the entire expression, in reverse order). 

B F uses the same pattern match routine as F, and maxlevel and 
upfindflg have the same effect, but the searching begins at the end 
of each list, and descends into each element before attempting to 
match that clement. If unsuccessful, the search continues with the 
next previous clement, etc., until the front of the list is reached, at 
which point B F ascends and backs up, etc. 

For example, if the current expression is 
(PROG NIL (SETQ X (SETQ Y (LIST Z») (COND ({SETQ W --) --» --). F LIST 
followed by BF SETQ wil11eave the current expression as (SETQ Y (LIST Z», as will F COND 
fol1owed by Bf SETQ. 

(B F pattern T) search always includes current expression, i.e., starts at the end of 
current expression and works backward, Ulen ascends and backs up, 
etc. 

9.18 



Commands That Search 

Thus in the previous example, where F CONO fonowed by BF SETQ found 
(SETQ Y (LIST Z», F COND followed by (BF SETQ T) would find the (SETQ W --) 
expression. 

(BF pattern) 
(BF pattern NIL) 

(GO label) 

same as B F pattern. 

makes the current expression be the first thing after the QIQg label + 
label, i.e. goes where an executed gQ would go. + 

LOCATION SPECIFICATION 

Many of the more sophisticated commands described later in this chapter use a more general 
method of specifying position called a location specification. A location specification is a list of edit 
commands that arc executed in the normal fashion with two exceptions. First, all commands not 
recognized by the editor arc interpreted as though they had been preceded by F. 29 For example, 
the location specification (COND 2 3) specifics the 3rd element in the first clause of the next 
COND. 30 

Secondly, if an error occurs while evaluating one of the commands in the location specification, and 
the edit chain had been changed, i.e., was not the same as it was at the beginning of that execution 
of the location specification, the location operation will continue. In other words, the location 
operation keeps going unless it reaches a state where it detects that it is "looping", at which point 
it gives up. Thus, if (COND 2 3) is being located, and the first clause of the next COND 
contained only two clements, the execution of the command 3 would cause an error. The search 
would then continue by looking for the next COND. However, if a point were reached where there 
were no further CONDs, then the first command, COND, would cause the error; the edit chain 
would not have been changed, and so the entire location operation would fail, and cause an error. 

The I F command in conjunction with the # # function provide a way of using arbitrary 
predicates applied to elements in the current expression. I F and # # will be described in detail 
later in the chapter, along with examples illustrating their use in location specifications. 

Throughout this chapter, the meta-symbol @ is used to denote a location specification. Thus @ is 
a list of commands interpreted as described above. @ can also be atomic, in which case it is 
interpreted as list[@]. 

(LC . @) provides a way of explicitly invoking the location operation, e.g., 
(LC COND 2 3) will perform the the search described above. 

(LCL . @) Same as LC except the search is confined to the current expression, 
i.e., the edit chain is rebound during the search so that it looks· as 
though the editor were called on just the current expression. For 

29 

30 

Nonnally such commands would cause errors. 

Note that the user could always write F eOND followed by 2 and 3 for (eOND 2 3) if he were not sure whether or 
lIot eDND was the name of an atomic command. 

9.19 



(2ND. @) 

(3RD • @) 

(+- pattern) 

For example: 

.pp 

Section 9: The interlisp Editor 

example, to find a COND containing a RETURN. one might use the 
location specification (COND (LCL RETURN) \) where the \ 
would reverse the effects of the LCL command, and make the final 
current expression be the COND. 

Same as (LC . @) followed by another (LC • @) except that if the 
first succeeds and second fails, no change is made to the edit chain. 

Similar to 2 NO. 

ascends the edit chain looking for a link which matches pattern. In 
other words, it keeps doing O's until it gets to a specified point If 
pattern is atomic, it is matched with the first element of each link, 
otherwise with the entire link.31 

[PROG NIL 
(COND 

·F CADR 
.( .... COND) 
.p 

[(NULL (SETQ L (CDR L») 
(COND 

(FLG (RETURN l] 
([NULL (CDR (FMEMB (CAR L) 

(CADR L]] 

(COND (& &) (& &» 
• 

Note that this command differs from B F in that it docs not search inside of each link, it simply 
ascends. Thus in the above example, F CADR followed by B F COND would find 
(COND (FLG (RETURN L»). not the higher COND. 

If no match is found, an error is generated, and the edit chain is 
unchanged. 

(BELOW com x) ascends the edit chain looking for a link specified by com, and 
stops !32 links below that,33 i.e. BELOW keeps doing O's until it gets 
to a specified point, and then backs off! O's. 

31 

32 

33 

If lliIttem is of the fonn (IF expression). expression is evaluated at each link, and if its value is NIL, or the 
evaluation causes an error, the ascent continues. 

! is evaluated, e.g., (BELOW com (IPLUS X Y». 

Only links that are elements are counted, not tails. 

9.20 



Commands That Search 

(BELOW com) same as (BELOW com 1). 

For example, (BELOW COND) will cause the cond clause containing the current expression to 
become the new current expression. Thus if the current expression is as shown above, F CADR 
followed by (BELOW CONo) will make the new expression be 
([NULL (CDR (FMEMB (CAR L) (CADR L] (GO LP», and is therefore equivalent to 
o 0 0 O. 

The BELOW command is useful for locating a substmclure by specifying something it contains. For 
example, suppose the user is editing a list of lists, and wants to find a sublist that contains a FOO 
(at any depth). HesimplyexecutesF FOO (BELOW \). 

(NEX x) same as (BELOW x) followed by NX. 

For example, if the user is deep inside of a SELECTQ clause, he can advance to the next clause 
with (NEX SELECTQ). 

NEX same as (NEX +-). 

The atomic form of NEX is useful if the user will be performing repeated executions of (NEX x). 
By simply MARKing (see page 9.22) the chain corresponding to !, he can use NEX to step through 
the sublists. 

(NTH x) generalized NTH command. Effectively performs (LCL. x), 
followed by (BELOW \), followed by UP. 

In other words, NTH locates !, using a search restricted to the current expression, and then backs 
up to the current level, where the new current expression is the tail whose first element contains, 
however deeply, the expression that was the terminus of the location operation. For example: 

*p 
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L» 
*(NTH UF) 
*p 

* 
(SETQ UNFIND UF) (RETURN L» 

If the search is unsuccessful, NTH generates an error and the edit 
chain is not changed. 

Note that (NTH n) is just a special case of (NTH x), and in fact, no special check is made for! a 
number; both commands are executed identically. 

(pattern .. @)34 e.g., (COND .. RETURN). Finds a cond that contains a return, at 

34 An infix command ....... is not a meta-symbol, it is the namc of the command. @ is .£.cld! of the command. Note that 
(pattcrn .. @) can also be used directly as an edit pattern as described 011 page 9.15, e.g. F (pattern .. @). 

9.21 



Section 9: The Interlisp Editor 

any depth. Equivalent to (but more efficient than) (F pattern N), 
(LCL . @) followed by ( ... pattern). 

For example, if the current expression is 
(PROG NIL [CONO «NULL L) (CONO (FLG (RETURN L] --), then (CONO .. RETURN) 
will make (CONO (FLG (RETURN L») be the current expression. Note that it is the innermost 
CO NO that is found, because this is the first CONO encountered when ascending from the RETURN. 
In other words, (pattern .. @) is not always equivalent to (F pattern N), followed by (LCL . @) 
followed by \. 

Note that @ is a location specification. not just a pattern. Thus (RETURN .. CO NO 2 3) can 
be used to find the RETURN which contains a CONO whose first clause contains (at least) three 
clements. Note also that since @ permits any edit command, the user can write commands of the 
form (CONO .. (R ETURN .. CONO», which will locate the first CONO that contains a RETURN 
that contains a CONO. 

9.3.3 COMMANDS THAT SA VE AND RESTORE THE EDIT CHAIN 

Several facilities are available for saving the current edit chain and later retrieving it: MARK, which 
marks the current chain for future reference, ... ,35 which returns to the last mark without destroying 
it, and ...... , which returns to the last mark and also erases it 

MARK adds the current edit chain to the front of the list marklst 

makes the new edit chain be (CAR MARKLST). Generates an error 
if marklst is NIL, i.e., no MARKs have been performed, or all have 
been erased. . 

similar to ... but also erases the MARK, i.e., performs 
(SETQ MARKLST (COR MARKLST». 

Note that if the user has two chains marked, and wishes to return to the first chain, he must 
perform ...... , which removes the second mark, and then .... However, the second mark is then no 
longer accessible. If the user wants to be able to return to either of two (or more) chains, he can 
use the following generalized MARK: 

(MARK atom) sets atom to the current edit chain, 

(\ atom) makes the current edit chain become the value of atom. 

If the user did not prepare in advance for returning to a particular edit chain, he may still be able 
to return to that chain with a single command by using \ or \P. 

35 An atomic command; do not confuse <- with the list command (<- pattern). 

9.22 

--------
-j-tttr;!: ill ib.,.:t'-_;;o-"..,.,,~>_,,-, 



\ 

Commands that Save and Restore the Edit Chain 

makes the edit chain be the value of unfind. Generates an error if 
un find = NIL. 

unfind is set to the current edit chain by each command that makes a "big jump", i.e., a command 
that usually performs more than a single ascent or descent, namely t, +-, +- +-, ! N X, all commands 
that involve a search, e.g., F, LC, •• , BE LOW, et al and \ and \P themsc1ves.36 

For example, if the user types F CONO, and then F CAR, \ would take him back to the CONO. 
Another \ would take him back to the CAR, etc. 

\P restores the edit chain to its state as of the last print operation. i.e., 
P, 7, or PP. If the edit chain has not changed since the last 
printing, \ P restores it to its state as of the plinting before that one, 
i.e., two chains are always saved. 

For example, if the user types P followed by 3 2 1 P, \P will return to the first P, i.e., would 
be equivalent to 0 0 0,37 Another \P would then take him back to the second P, i.e., the user 
could use \ P to flip back and forth between the two edit chains. 

(S var. @) Sets var (using setg) to the current expression after performing 
(LC • @). Edit chain is not changed. 

Thus (S F 00) will set foo to the current expression, (S F 00 -1 1) will set foo to the first 
element in the last clement of the current expression. 

This ends the section on "Attention Changing Commands." 

36 

37 

Except that un find is not reset when the current edit chain is the top level expression. since this could always be 

returned to via the t command. 

Note that if the user had typed P followed by F COND. he could use either \ or \P to return to the p. i.e., the 
action of \ and \P are independent 

9.23 



Section 9: The Interlup Editor 

9.4 COMMANDS THAT MODIFY STRUCTURE 

The basic structure modification commands in the editor are: 

(n) 

(n e1 ... em> 

(-n e1 ... Cut) 

As mentioned earlier: 

n 2. 1 deletes the corresponding clement from the current 
expression. 

n,m 2. 1 replaces the nth clement in the current expression with 
e1'" em' 

n,m 2. 1 inserts e1 ... em before the nth element in the current 
expression. 

m 2. 1 attaches e1 ... em at the end of the current expression. 

all structure modification done by }heeditor is destructive. i.e.. the editor uses rplaca and rplacd to 
physically change the structure it was given. . 

However, all structure modification is undoable, see UNDO page 9.54. 
- 1 - -

All of the above commands generate errors if the current expre$,~ion -is· npt a list, or in the case of 
the first· three commands, if the list contains fewer than. n elemetits~ In addition. the corrnriand (I), 
i.e .. delete the first element, will cause an error .if there is only one clement •. since deleting the first 
element must be done by replacing it with the second element, C:ilidthen deleting the second 
clement. Or, to look at it another way, deleting the first elementwhcn there is only one element 
would require changing a list to an atom (Le.,loNIL)which cannot bedone.38 

If the value of changesarray is a hash array, the editor will mark allstnictures that are changed by 
doing puthash[structure;fn;changesarray), where fn· is·- the name of the function. The algorithm 
used for marking is as follows: 

(1) If the expression is inside of another expression already marked as being changed, do nothing. 

(2) If the change is an insertion of or replacement with a list, mark the list as changed. 

(3) If the change is an insertion of or replacement with. an atom, or a deletion, mark the parent 
as changed. 

38 However. the command DELETE will work even if there is only one element in the current expreSSion, since itwiU 
ascend to a point where it can do the deletion. 

9.24 



Commands That Modify Structure 

changesarray is primarily for use by prettyprint (Section 14). When the value of changechar is not 
NIL, preltyprint, when printing to a file or display tenninal, prints changechar in the right margin 
while printing an expression marked as having been changed. changechar is initially I. 

9.4.1 IMPLEMENTATION OF STRUCTURE MODIFICATION COMMANDS 

Note: Since all commands that insert, replace, delete or attach strocture use the same low level 
editor functions, the remarks made here are valid for all strocture changing commands. 

For all replacement, insertion, and attaching at the end of a list, unless the command was typed in 
directly to the editor,39 copies of the corresponding structure are used, because of the possibility 
that the exact same command, (i.e., same list structure) might be used again. lbus if a program 
constructs the command (1 (A Be» e.g., via (LIST 1 FOO), and gives this command to the 
editor, the (A Be) used for the replacement will not be ~ to foo.40 

The rest of this section is included for applications wherein the editor is used to modify a data 
structure, and pointers into that data structure are stored elsewhere. In these cases, the actual 
mechanics of structure modification must be known in order to predict the effect that various 
commands may have on these outside pointers. For example, if the value of foo is cdr of the 
current expression, what will the commands (2). (3). (2 X Y Z). (- 2 X Y Z). etc. do to 
foo? 

Deletion of the first element in the current expression is perfonned by replacing it with the second 
element and deleting the second element by patching around it. Deletion of any other element is 
done by patching around it, i.e., the previous tail is altered. Thus if foo is £Q. to the current 
expression which is (A BCD). and fie is cdr of foo, after executing the command (I), foo will 
be (B CD) (which is equal but not £g to fie). However, under the same initial conditions, after 
executing (2) fie will be unchanged, i.e., fie will still be (B CD) even though the current 
expression and foo are now (A CD). 41 

Both replacement and insertion are accomplished by smashing both car and cdr of the 
corresponding tail. Thus, if foo were ~ to the current expression, (A BCD). after 
(1 X Y Z). foo would be (X Y Z BCD). Similarly, if foo were ~ to the current expression, 
(A BCD). then after (- 1 X Y Z). foo would be (X Y Z ABC D). 

'The N command is accomplished by smashing the last cdr of the current expression a la nconc. 
Thus if foo were £!l to any tail of the current expression, after executing an N command, the 
corresponding expressions would also appear at the end of foo. 

39 

40 

41 

Some editor commands take as arguments a list of edit commands, e.g., (LP F FOO (1 (CAR FOO»). In this 
case, the command (1 (CAR F 00» is not considered to have been "typed in" even though the LP command itself 
may have been typed in. Similarly, commands originating from macros, or commands given to the editor as 
arguments to editf, editv, et ai, e.g., EOITF (FOO F CONO (N --» are not considered typed in. 

The user can circumvent this by using the I command. which computes the structure to be used. In the above 
example, the form of the command would be (I 1 FOO), which would replace the first element with the value of 
foo itself. See page 9.42. 

A general solution of the problem just isn't possible, as it would require being able to make two lists ~ to each 
other that were originally different. Thus if flg is cdr of the current expression, and fum is cddJ of the current 
expression. perfomling (2) would have to make fie be .£Q to fum if all subsequent operations were to update both fie 
and fum cOITecUy. Think about it 

9.25 



Section 9: The Interlisp Editor 

In summary, the only situation in which an edit operation will not change an external pointer 
occurs when the external pointer is to a proper tail of the data structure, i.e., to cdr of some node 
in the structure, and the operation is deletion. If all external pointers are to elements of the 
structure, i.e., to car of some node, or if only insertions, replacements, or attachments are 
performed, the edit operation will always have the same effect on an external pointer as it does on 
the current expression. . 

9.4.2 THE A, B, AND: COMMANDS 

In the (n), (n el ... em)' and (-n el ... e ) commands, the sign of the integer is used to indicate 
the operation. As a result, there IS no dYrect way to express insertion after a particular element, 
(hence the necessity for a separate N command). Similarly, the user cannot specify deletion or 
replacement of the nth element from the end of a list without first converting .!! to the 
corresponding positive integer. Accordingly, we have: 

inserts el ... em Qefore the current expression. Equivalent to UP 
followed by (-1 el ... em)' 

For example, to insert FOO before the last element in the current expression, perform -1 and then 
(B FOO). 

DELETE or (:) 

inserts el ... e ~fter the current expression. Equivalent to UP 
followed by (-:reI'" em) or (N el ... em) whichever is appropriate. 

replaces the current expression by el ... em' Equivalent to UP 
followed by (1 el ... em)' 

deletes the current expression. 

DELETE first tries to delete the current expression by performing an UP and then a (1). This 
works in most cases. However, if after performing UP, the new current expression contains only 
one element, the command (1) will not work. Therefore, 0 E LET E starts over and performs a B K • 
followed by UP , followed by (2). For example, if the current expression is 
{COND « MEMB X Y» (T Y», and the user performs -1, and then DELETE. the BK-UP- (2) 
method is used, and the new current expression will be . .. « M EMB X Y») 

However, if the next higher expression contains only one element, BK will not work. So in this 
case, DELETE performs UP, followed by (: NIL), i.e., it replaces the higher expression by NIL. 
For example, if the current expression is (COND « MEMB X Y» (T Y» and the user performs 
F MEMB and then DELETE. the new current expression will be ... NIL (T Y» and the 
original expression would now be (COND NIL (T Y». 'Ibe rationale behind this is that deleting 
(MEMB X Y) from « MEMB X Y» changes a list of one clement to a list of no clements, i.e., 0 
or NIL. 

If the current expression is a tail, then B. A, :, and DELETE all work exactly the same as though 
the current expression were the first clement in that tail. 1bus if the current expression were 

9.26 



Commands That Modify Strufture 

... (PRINT Y) (PRINT Z», (B (PRINT X» would insert (PRINT X) before 
(PRINT Y), leaving the current expression ... (PRINT X) (PRINT Y) (PRINT Z». 

The following fonns of the A, B, and : commands incorporate a location specification: 

(INSERT el ... em BEFORE. @42 Similar to (LC .@)43 followed by (B el ... em)' 

*p 
(PROG (& & X) ··COMMENT·* (SELECTQ ATM & NIL) (OR & &) (PRINt & T) 
(PRINt & T) (SETQ X & 

*(INSERT LABEL BEFORE PRINt) 
*p 
(PROG (& & X) ··COMMENT** (SELECTQ ATM & NIL) (OR & &) LABEL 
(PRINt & T) ( 
* M 

Current edit chain is not changed, but unfind is set to the edit 
chain after the B was perfOlmed, i.e., \ will make the edit chain be 
that chain where the insertion was perfonned. 

(INSERT el ... em AFTER. @) . 
Similar to INSERT BEFORE except uses A instead of B. 

(INSERT el ... em FOR. @) 
similar to INSERT BEFORE except uses: for B. 

(REPLACE @ WITH el ... em)45 
Here @46 is the segment of the command between REPLACE and 
WITH. Same as (INSERT el ... em FOR. @). 

Example: (REPLACE COND -t WITH (T (RETURN L») 

(CHANGE @ TO el ... em) Same as REPLACE WITH. 

42 

43 

M 

45 

46 

i.e., @ is cdr[member[BEFORE;commandJ) 

except that if @ causes an error, the location process does not continue as described on page 9.19. For example if 
@=(COND 3) and the next COND does not have a 3rd element, the search stops and the INSERT fails. Note that 
the user can always write (LC COND 3) if he intends the search to continue. 

Sudden termination of output followed by a blank line return indicates printing was aborted by control-E. 

BY can be used for WITH. 

See footnote on page 9.27. 

9.27 



Section 9: The Interlisp Editor 

(DELETE. @) does a (LC . @)47 followed by DELETE. Current edit chain is not 
changed,48 but unfind is set to the edit chain afte( the DE LETE was 
perfonned. 

Example: (DELETE -1), (DELETE CO NO 3) 

Note: if @ is NIL (L e., empty). the corresponding operation is performed here (on the current edit 
chain). 

For example, (REPLACE WITH (CAR X» is equivalent to (: (CAR X». For added 
readability, HERE is also pennitted, e.g., (INSERT (PRINT X) BEFORE HERE} will insert 
(PRINT X). before the current expression (but not change the edit chain). 

Note: @ does not have to specify a location wi th i n the cu"ent expression, Le., it is perfectly 
legal to ascend to INSERT, REPLACE, or DELETE 

For example, (INSERT (RETURN) AFTER l' PROG -1) will go to the top, find the first PROG, 
and insert a (RETURN) at its end, and not change the current edit chain. 

The A, B, and: commands, commands, (and consequently INSERT, REPLACE, and CHANGE), 
all make special checks in elthru em. for expressions of the fonn (# # . corns). In this case, the 
expression used for inserting or replacmg is a copy of the current expression after executing.£Q!,!!§, a 
list of edit commands.49 For example, (INSERT (## F COND -1 -1) AFTER 3)50 will make a 
copy of the last fonn in the last clause of the next cond, and insert it after the third element of the 
current expression. 

9.4.3 FORM ORIENTED EDITING AND THE ROLE OF UP 

lbe UP that is perfonned before A, B, and: commands51 makes these operations fonn-oriented. 
For example, if the user types F SETQ. and then DELETE, or simply (DELETE SETQ) , he will 
delete the entire S ETQ expression, whereas (DE L E TE X) if X is a variable, deletes just the variable 
X. In both cases. the operation is perfonned on the corresponding form. and in both cases is 
probably what the user intended. Similarly, if the user types (INSERT (RETURN Y) BEFORE 

47 

48 

49 

50 

51 

See footnote on page 9.27. 

Unless the current expression is no longer a part of the expression being edited, e.g .• if the current expression is ... 
C) and the user perfonns (DELETE 1). the tail. (C). will have been cut off. Similarly. if the current expression is 
(CDR Y)andtheuserperfonns(REPLACE WITH (CAR X». 

The execution of coms does not change the current edit chain. 

Not (INSERT F COND -1 (1111 -1) AFTER 3). which inserts four elements after the third element, namely F. 
CONO. -1. and a copy of the last element in the current expression. 

and therefore in INSERT. CHANGE. REPLACE. and DELETE commands after the location portion of the 
operation has been pcrfonned 

9.28 



Commands That Modify Structure 

SETQ) • he means before the SETQ expression. not before the atom SETQ. 52 A consequent of this 
procedure is that a pattern of the form (S E T Q Y - -) can be viewed as simply an elaboration and 
further refinement of the pattern SETQ. 'lhus (INSERT (RETURN Y) BEFORE SETQ) and 
(INSERT (RETURN Y) BEFORE (SETQ Y --»perforrn the sameoperation53 and,in fact, this 
is one of tile motivations behind making the current expression after F SETQ. and F (SETQ Y 
- -) be the same .. 

Occasionally. however. a user may have a data structure in which no special significance or 
meaning is attached to the position of an atom in a list, as Interlisp attaches to atoms that appear 
as car of a list, versus those appearing elsewhere in a list. In general, the user may not even know 
whether a particular atom is at the head of a list or not. Thus, when he writes 
(INSERT expression BEFORE FOO). he means before the atom FOO. whether or not it is car of a 
list. By setting the variable upfindflg to NI L. 54 the user can suppress the implicit UP that follows 
searches for atoms, and thus achieve the desired effect. With upfindflg = NIL. following F FOO. 
for example, the current expression will be the atom FOO. In this case. the A. B. and : 
operations will operate with respect to the atom FOO. If the user intends the operation to refer to 
the list which F 00 heads, he simply uses instead the pattern ( F 00 - - ) . 

9.4.4 EXTRACT AND EMBED 

Extraction involves replacing the current expression with one of its subexpressions (from any 
depth). 

(XTR . @) replaces the original current expression with the expression that is 
current after performing (LCL • @).55 . 

For example, if the current expression is (COND «NULL X) (PRINT Y»). (XTR PRINT). 
or (XTR 2 2) will replace the cond by the print. 

If the current expression after (LC L . @) is a tail of a higher 
expression, its first element is used. 

For example, if the current expression is (COND «NULL X) Y) (T Z». then (XTR Y) will 
replace the cond with Y. even though the current expression after performing (L C L Y) is ... V). 

If the extracted expression is a list, then after XTR has finished, the 
current expression will be that list. 

Thus, in the first example, the current expression after the X T R would be (P R I NT Y). 

52 

53 

54 

55 

There is some ambiguity in (INSERT expr AFTER functionname), as the user might mean make expr be the 
function's first argument. Similarly, the user cannot write (REPLACE SETQ WITH SETQQ) meaning change the 

name of the function. The user must in these cases write (INSERT expr AFTER functioname 1), and (REPLACE 

SETQ 1 WITH SETQQ). 

assuming the next SETQ is of the form (SETQ Y --). 

Initially, and usually, set to T. 

See footnote on page 9.27. 

9.29 



Section 9: The Intcrlisp Editor 

If the ex tracted expression is not a list, the new current expression 
will be a tail whose first clement is tilat non-list. 

Thus, in the second example, tile current expression after tile XTR would be ... Y followed by 
whatever followed the COND. 

If the current expression initially is a tail, extraction works exactly tile same as though the current 
expression were tile first clement in that tail. '[bus if the current expression is 
.•• (CONO «NULL X) (PRINT Y») (RETURN Z». tilen (XTR PRINT) will replace the 
cond by the mil!.!:, leaving (PRINT Y) as the current expression. 

1be extract command can also incorporate a location specification: 

(EXTRACT @l FROM. @2)56 Performs (LC . @2)57 and then (XTR . @l)' Current edit chain is 
not changed, but unfind is set to the edit chain after the XTR was 
performed. 

Example: If the current expression is (PRINT (COND ({NULL X) Y) (T Z») tilen following 
(EXTRACT Y FROM COND). the current expression will be (PRINT Y). 
(EXTRACT 2 -1 FROM COND). (EXTRACT Y FROM 2). (EXTRACT 2 -1 FROM 2) will all 
produce the same result. 

While extracting replaces the current expression by a sub expression, embedding replaces the 
current expression with one containing it as a subexpression. 

MBD substitutes58 the current expression for all instances of the 
atom * in el ... em' and replaces the current expression with the 
result of that substItution. 

Examples: If the current expression is (PRINT Y), 
(MBD (COND «NULL X) ... ) «NULL (CAR V»~ ... (GO LP»» would replace (PRINT Y) 
with (CONO «NULL X) (PRINT V»~ «NULL (CAR V»~ (PRINT Y) (GO LP»). 

If the current expression is (RETURN X). (MBD (PRINT Y) (AND FLG *» would replace it 
with the two expressions (PRINT Y) and (AND FLG (RETURN X» i.e., if the (RETURN X) 
appeared in the cond clause (T (RETURN X». after the MBD. the clause would be 
(T (PRINT Y) (AND FLG (RETURN X»). 

If * does not appear in el ... em' the MBD is interpreted as 
(MBD (el ... em *». 

Examples: If the current expression is (PRINT Y). then (MBD SETQ X) will replace it with 
(SETQ X (PRINT Y». If the current expression is (PRINT Y). (MBD RETURN) will replace 
it wilh (RETURN (PRINT Y». 

56 @l is the segment between EXTRACT and FROM. 

57 Sec footnote on page 9.27. 

58 as with subst. a fresh copy is used for each substitution. 

9.30 

___ - _1 __ 
~ ~~ 3' .~ __ :;..0.; __ -. 



Commands That Modify Structure 

MBD leaves the edit chain so that the larger expression is the new current expression. 

If the current expression initially is a tail, embedding works exactly the same as though the current 
expression were the first clement in that tail. 'l1lUs if the current expression were ... 
(PRINT Y) (PRINT Z», (MBD SETQ X) would replace (PRINT Y) with (SETQ X 
(PRINT Y». 

The embed command can also incorporate a location specification: 

(EMBED @ IN • x)59 does (LC . @)60 and then (MBD . x). Edit chain is not changed, but 
unfind is set to the edit chain after the MBD was performed. 

Example: (EMBED PRINT IN SETQ X). (EMBED 3 2 IN RETURN). 
(EMBED COND 3 1 IN (OR • (NULL X»). 

WITH can be used for IN. and SURROUND can be used for EMBED. e.g., (SURROUND NUMBERP 
WITH (AND • (MINUSP X»). 

9.4.5 THE MOVE COMMAND 

The MOVE command allows the user to specify (1) the expression to be moved, (2) the place it is to 
be moved to, and (3) the operation to be performed there, e.g., insert it before. insert it after. 
replace. etc. 

where com is BEFORE. AFTER. or the name of a list command., 
e.g., :, N. etc. performs (LC . @l),62 and obtains the current 
expression there (or its first element, if it is a tail), which we will 
call expr; MOVE then goes back to the original edit chain. performs 
(LC . @2) followed by (com expr),63 then goes back to @1 and 
deletes expr. Edit chain is not changed. Unfind is set to edit chain 
after (com expr) was performed. 

For example, if the current expression is (A BCD). (MOVE 2 TO AFTER 4) will make the 
new current expression be (A C DB). Note that 4 was executed as of the original edit chain. 
and that the second element had not yet been removed.64 

59 

60 

61 

62 

63 

64 

@ is the segment between EMBED and IN. 

See footnote on page 9.21. 

@1 is the scgment bctween MOVE and TO. 

see footnote on page 9.27. 

Setting an internal flag so expr is not copied. 

If @'}, specifics a location inside of the expression to be moved, a message is printed and an crror is generated. e.g., 
(MOVE 2 TO A F TE R X). where X is contained inside of the second clement. 

9.31 



Seetion 9: The Interlisp Editor 

As the following examples taken from actual editing will show, the MOVE command is an extremely 
versatile and powerful feature of the editor. 

*7 
(PROG «l l» (EDlOC (CDDR C» (RETURN (CAR l») 
*(MOVE 3 TO : CAR) 
*7 
(PROG «l l» (RETURN (EDlOC (CDDR C»» 
* 
*p 

(SElECTQ OBJPR & &) (RETURN &) lP2 (COND & &» 
*(MOVE 2 TO N 1) 
*p 

(SElECTQ OBJPR & & &) lP2 (COND & &» 
* 
*p 
(OR (EQ X lASTAIl) (NOT &) (AND & & &» 
*(MOVE 4 TO AFTER (BELOW COND» 
*p 
(OR (EQ X lASTAIl) (NOT &» 

*' P (& &) (AND & & &) (T & &» 
* 
*p 
{(NUll X) **COMMENT** (COND & &» 
*(-3 (GO NXT] 
*(MOVE 4 TO N (~ PROG» 
*p 
«NUll X) **COMMENT** (GO NXT» 

*' P (PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND & &» 
*(INSERT NXT BEFORE -1)-
*p 
(PROG (&) **COMMENT** (COND & & &) (COND & & &) NXT (COND & &» 

Note that in the last example, the user could have added the prog label NXT and moved the cond 
in one operation by performing (MOVE 4 TO N (~ PROG) (N NXT». Similarly, in the next 
example, in the course of specifying @2' the location where the expression was to be moved to, the 
user also performs a structure modification, via (N (T». thus creating the structure that will 
receive the expression being moved. 

*p 
«COR &) **COMMENT** (SETQ Cl &) (EDITSMASH Cl & &» 
*MOVE 4 TO N 0 (N (T» -1] 
*p 
«CDR &) **COMMENT** (SETQ Cl &» 

*' P *(T (EDITSMASH Cl & &» 
* 

If@2 is NIL, or (HERE), the current position specifics where the operation is to take place. In this 
case, un find is set to where the expression that was moved was originally located, i.e., @l' For 
example: 

9.32 



Commands That Modify Structure 

"'P 
(TENEX) 
"'(MOVE t F APPLY TO N HERE) 
"'P 
(TENEX (APPLY & &» 
... 

"'P 
(PROG (& & & ATM 
(PRINt & T) ( 
PRINt & T) (SETQ 

IND VAL) (OR & &) 

IND 
65 

"'(MOVE • TO BEFORE HERE) 
"'P 

...... COMMENp ... (OR & &) 

(PROG (& & & ATM·IND VAL) (OR & &) (OR & &) (PRINl & 

"'P 
(T (PRINt C-EXP T» 
·(MOVE t BF PRINl TO N HERE) 
"'P 
(T (PRINt C-EXP T) (PRINt & T» 
... 

Finally, if @1 is NIL, the MOVE command allows the user to specify where the current expression 
is to be moved to. In this case, the edit chain is changed, and is the chain where the current 
expression was moved to; un find is set to where it was. 

"'P 
(SELECTQ OBJPR (&) (PROGN & &» 
"'(MOVE TO BEFORE LOOP) 
"'P 
... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP 
&) (SELECTQ 
... 

9.4.6 COMMANDS THAT MOVE PARENTHESES 

'The commands presented in this section permit modification of the list structure itself, as opposed 
to modifying components thereof. Their effect can be described as inserting or removing a single 
left or right parenthesis, or pair of left and right parentheses. Of course, there will always be the 
same number of left parentheses as right parentheses in any list structure, since the parentheses are 
just a notational guide to the structure provided by print. lbus, no command can insert or remove 
just one parenthesis, but this is suggestive of what actually happens. 

In all six commands, !! and m are used to specify an element of a list, usually of the current 
expression. In practice, !! and m are usually positive or negative integers with the obvious 
interpretation. However, all six commands use the generalized NTH command, page 9.21, to find 
their elemenl(s), so Ulal nth clement means the firsl clement of the tail found by performing (NTH 
n). In olher words, if the current expression is (LIST (CAR X) (SETQ Y (CONS W Z»). 
then (B I 2 CONS). (BI X -1), and (B I X Z) all specify the exact same operation. 

65 Sudden tcnnination of output fotlowed by a blank line indicates printing was aborted by control-E. 

9.33 

----~ 
__ c. __ =_.'. _~. ~ __ 



Section 9: The Interlisp Editor 

All six commands generate an error if the element is not found, i.e., the NTH fails. All are 
undoable. 

(81 n m) Qoth in, inserts a left parentheses before the 1!th element and after 
the mth clement in the current expression. Generates an error if 
the mth clement is not contained in the 1!th tail, i.e., the mth 
clement must be "to the right" of thcnth element 

Example: If the current expression· is (A 8 (C 0 E) F G). then (8 I 2 4) will modify it to 
be (A (B (C 0 E) F) G). 

(81 n) same as (BI n n). 

Example: If the current expression is (A 8 (C 0 E) F G). then (B I - 2) will modify it to be 
(A 8 (C 0 E) (F) G). 

(80 n) Qoth Qut Removes both parentheses from the nth element 
Generates an error if nth element is not a list 

Example: If the current expression is (A B (C 0 E) F G). then (80 D) will modify it to be 
(A 8 C 0 E F G). 

(LI n) left in, inserts a left parenthesis before the nth element (and a 
matching right parenthesis at the end of the current expression), i.e. 
equivalent to (B I n -1). 

Example: if the current expression is (A 8 (C 0 E) F G). then (L I 2) will modify it to be 
(A (8 (C 0 E) F G». 

(LO n) left Qut, removes a left parenthesis from the nth element A.II 
elements following the nth element are deleted. Generates an error 
if nth element is not a list. 

Example: If the current expression is (A B (C 0 E) F G), then (LO 3) will modify it to be 
(A 8 C 0 E). 

(RI n m) right in, inserts a right parenthesis after the mth element of the .nth 
element The rest of the nth element is brought up to the level of 
the current expression. 

Example: If the current expression is (A (B C 0 E) F G). ( R I 2 2) will modify it to be 
(A (B C) 0 E F G). Another way of thinking about R I is to read it as "move the right 
parenthesis at the end of the nth clement in to after its mth clement." 

(RO n) right Qut, removes the right parenthesis from the .nth elemen~ 
moving it to the end of the current expression. All clements 

9.34 



Commands That Modify Structure 

following the nth element are moved inside of the nth element. 
Generates an error if nth clement is not a list. 

Example: If the current expression is (A B (C DE) F G), (RO 3) will modify it to be (A 8 
(C D E F G». Another way of thinking about RO is to read it as "move the right parenthesis at 
the end of the nth 'element out to the end of the current expression." 

9.4.7 TO AND THRU 

EXTRACT, EM8ED, DELETE, REPLACE, and MOVE can be made to operate on several 
contiguous elements, i.e., a segment of a list, by using in their respective location specifications the 
TO or THRU command. 

does a (lC . @1)' followed by an UP, and then a (81 1 @2)' 
thereby grouping the segment into a single element, and finally 
does a I, making the final current expression be that element. 

For example, if the current expression is ( A (8 (C D) (£) (F G H) 1) J K). following 
(C THRU G). thecurrentexpressionwillbe«C D) (E) (F G H». 

Same as T H R U except last element not included, i.e .• after the 8 I • 
an (RI 1 -2) is performed. 

If both @l and @2 are numbers, and @2 is greater than @1. then @2 counts from the beginning 
of the current expression, the same as @l' In other words, if the current expression is 
(A 8 C D E F G), (3 THRU 5) means (C THRU E) not (C THRU G). In this case, the 
corresponding 81 command is (81 1 @2-@1 +1). 

THRU and TO are not very useful commands by themselves; they are intended to be used in 
conjunction with EXTRACT. EMBED. DELETE. REPLACE. and MOVE. After THRU and TO have 
operated, they set an internal editor flag informing the above commands that the element they are 
operating on is actually a segment, and that the extra pair of parentheses should be removed when 
the operation is complete. Thus: 

9.35 



Section 9: The lnrerlisp Editor 

"'P 
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ IND &) 
(SETQ VAL &) *"'COMMENT** (SETQQ 

"'{MOVE (3 THRU 4) TO BEFORE 7) 
"'P 
(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T) 
(PRIN1 & T) "'·COMMENT"'''' 

'" 

*p 
(. FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR 
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR WHICH 
WILL HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.) 
"'(DELETE (USER THRU CURR$» 
=CURRENTFORM. 
*p 
(* FAIL RETURN FROM EDITOR. CURRENTFORM IS 

• 

*p 
LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &) (RETURN V»~ 

·(MOVE (1 TO OUT) TO N HERE] 
.p 

OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL) (SETQ Y &» 
• 

.pp 
[PROG (RF TEMP1 TEMP2) 

(COND 
«NOT (MEMB REMARG LISTING» 

(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS» ··COMMENT •• 
(SETQ TEMP2 (CADR TEMP1» 
(GO SKIP» 

(T ··COMMENT"'· 
(SETQ TEMPt REMARG») 

(NCONC1 LISTING REMARG) 
(COND 

«NOT (SETQ TEMP2 (SASSOC 

*(EXTRACT (SETQ THRU CADR) FROM COND) 
.p 
(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) ·"'COMMENT·· (SETQ TEMP2 &) 
(NCONC1 LISTING REMARG) (COND & & 

• 

9.36 



Commandr That Modify Structure 

TO and THRU can also be used directly with XTR.66 Thus in the previous example, if the current 
expression had been the CONO, e.g., tile user had first performed F COND. he could have used 
(XTR (SETQ THRU CADR» to perfonn the extraction. 

(@1 TO), (@1 THRU) both same as (@1 THRU -1), i.e., from @1 through the end 
of the list. 

Examples: 

66 

*p 
(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD &) (RETURN» 
·(MOVE (2 TO) TO N (~ PROG» 
* (N (GO VAR» 
*p 
(VALUE (GO VAR» 

*p 
(T *·COMMENT** (COND &) **COMMENT·* (EDITSMASH CL & &) (COND &» 
*(-3 (GO REPLACE» 
·(MOVE (COND TO) TO N t PROG (N REPLACE» 
*p 
(T *·COMMENT** (GO REPLACE» 
*\ P 
(PROG (&) ··COMMENT** (COND & & &) (COND & & &) DELETE (COND & &) 
REPLACE (COND &) ··COMMENT*· (EDITSMASH CL & &) (COND &» 
* 

Because XTR involves a location specification whileA. B. :. and MBO do not 

9.37 



.pp 
[LAMBDA (CLAUSALA X) 

(PROG (A D) 
(SETQ A CLAUSALA) 

LP (COND 
« NULL A') 

(RETURN») 
(SERCH X A) 
(RUMARK (CDR A» 
(NOTICECL (CAR A» 
(SETQ A (CDR A» 
(GO LP] 

Section 9: The Interlisp Editor 

·(EXTRACT (SERCH THRU NOTS) FROM PROG) 
=NOnCECL 
.p 
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &» 
·(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) *] 
·PP 

[LAMBDA (CLAUSALA X) 
(MAP CLAUSALA (FUNCTION (LAMBDA (A) 

(SERCH X A) 

* 

(RUMARK (CDR A» 
(NOTICECL (CAR A] 

9.4.8 THE R COMMAND 

(R X y) replaces all instances of ! by '1. in the current expression, e.g., 
(R CAADR CADAR). Generates an error if there is not at least one 
instance. 

The R command operates in conjunction with the search mechanism of the editor. The search 
proceeds as described on page 9.16-17, and! can employ any of the patterns on page 9.14-16. 
Each time! matches an element of the structure, the element is replaced by (a copy ot) 'i.; each 
time! matches a tail of the structure, the tail is replaced by (a copy ot) .'i.. 

For example, if the current expression is (A (B C) ( B . C», 
(R CD) will change it to (A (B D) (B . D». 
(R .( • •• • C) D) to (A (B C) (B • 0». 
(R C (0 E» to (A (B ( 0 E» (B 0 E». and 
(R ( .... NIL) D) to (A (B C . D) (B . C) • D). 

If ! is an atom or string containing < esc > s, < esc > s appearing in .'1. stand for the characters 
matched by the corresponding < esc> in!. For example, (R FOO$ FIE$) means for all atoms 
or strings that begin with FOO, replace the characters "FOO" by "FI E" .67 Applied to the list 
(FOO F002 XFOOl), (R FOO$ FIE$) would produce (FIE FIE2 XFOOl). and 

67 If ! matches a string. it will be replaced by a string. Note that it docs not matter whether ! or Y. themselves are 
string.~, i.e. (R $0$ $A$). (R "$0$" $A$). (R $0$ "$A$"). and (R "$0$" "$A$") are equivalent Note 
also that ~ will never match with a number, i.c., (R S 1 $2) will not change 11 to 12 

9.38 



Commands That Modify Structure 

(R $FOO$ $FIE$) would produce (FIE FIE2 XFIE1). Simi1arly,~R $0$ $A$) will change 
{LIST (CADR X) (CADDR V»~ ~ (LIST (CAAR X) (CAADR».6 

The user will be informed of all such < esc> replacements by a message of the form x- > y, e.g., 
CADR->CAAR. 

Note that the $ feature can be used to delete or add characters, as well as replace them. For 
example, (R $1 $) will delete the terminating 1's from all1iteral atoms and stlings. Similarly, if an 
< esc> in! does not have a mate in y, the characters matched by the $ are effectively deleted. 

For example, (R $/$ $) will change AND/OR to AND.69 y can also be a list containing <esc>s, 
e.g., (R $1 (CAR $» will change FOOl to (CAR FOO), flU to (CAR FIE). 

If ! does not contain < esc> s, $ appearing in y refers to the entire expression matched by!, e.g .• 
(R LONGATOM '$) changes LONGATOM to 'LONGATOM, (R (SETQ X &) (PRINT $» 
changes every (SETQ X &) to (PRINT (SETQ X &».70 

Since (R $x$ $y$) is a frequently used operation for replacing fharacters, the following command is 
provided: 

(RC x y) equivalent to (R $x$ $y$) 

Rand RC change all instances of! to y. The commands R 1 and RC t are available for changing 
just one, (Le., the first) instance of! to y. 

(Rt x y) find the first instance of! and replace it by y. 

(RCt x y) (R 1 $x$ $y$). 

In addition, while Rand RC only operate within the current expression, R 1 and RC 1 will continue 
searching. a la the F command, until they find an instance of!. even if the search carries them 
beyond the current expression. 

(SW n m) switches the nth and mth elements of the current expression. 

For example, if the current expression is 
(LIST {CONS (CAR X) (CAR V»~ (CONS (CDR X) (CDR V»~). 

68 

69 

70 

Note that CAOOR was not changed to CAAAR. i.e., (R $0$ $A$) does not mean replace every 0 with A. but replace 
the first 0 in every atom or string by A. If the user wanted to replace every 0 by A, he could perfonn 
(LP (R $0$ $A$». 

However. there is no similar operation for changing AND/OR to OR. since the first $ ill Y always corresponds to the 
first $ in !. the second $ in y. to the second in !. etc. 

If ! is a pattern containing an < esc> pattern somewhere within it, the characters matched by the < esc> s are not 
available. and for the purposes of replacement. the effect is the same as though! did not contain any < esc> s. For 
example. if the user types (R (CAR F$) (PRINT $». the second $ will refer to the entire expression matched 
by (CAR F$). 

9.39 

--------------
- '~__:_~90_h_· ,.~ ,:.,.- ,.~" " 



Section 9: The lrzterlisp Editor 

(SW 2 3) will modify it to be 
(LIST (CONS (CDR X) (CDR Y» (CONS (CAR X) (CAR Y»). The relative order of D 
and m is not important, i.e., (SW 3 2) and (SW 2 3) are equivalent. 

SW uses the generalized NTH command to find the nth and mth 
clements, a la the B1-BO commands. 

Thus in the previous example, (SW CAR CDR) would produce the same result. 

+ (SWAP @1 @2) 
+ 

like SW except switches the expressions specified by @1 and @2, 
not the corresponding elements of the current expression, i.e. @1 
and· @2 can be at different levels in current expression, or one or 
both be outside of current expression. 

+ 
+ 

+ ThU$, using· the previous example, (SWAP CAR CDR) 
+ (LIST (CONS (CAR X) (CDR V»~ (CONS (CDR X) (CAR V»~). 

would result in 

9.5 COMMANDS THAT PRINT 

pp 

p 

(P m) 

(P 0) 

(P mn) 

? 

prettyprintsthe current expression. 

prints the current expression as though printlevel were set to 2. 

prints mth element of current expression as though printlevel were 
set to 2. 

same as P 

prints mth element of current expression as though printlevel were 
set to B. 

prints current expression as though printlevel were set to .n. 

same as (P 0 100) 

Both (P m) and (P m n) use the generalized NTH command to obtain the corresponding element, 
so that m docs not have to be a number, e.g., (P COND 3) will work. PP causes all comments to 
be printed as .... COMMENT .... (sec Section 14), P and? print as .... COMMENT·· only those 
comments lhat are (top level) elements of the current expression.ll 

71 Lower expressions are not really seen by the editor: the printing command simply sets prinUevel and calls print 

9.40 

- - "--- ----- --- --
,'~~~~->,-~-.-..,..~.,,;,-. 



Commands That Print 

PP* prettyprints current expression, including comments. 

pp* is equivalent to PP except that it first resets **comment**flg to NIL (see Section 14). 

PPV 

PPT 

?-.-

pretlyprints current expression as a variable, i.e., no special 
treatment for LAMBDA, COND, SETQ. etc., or for CLISP. 

prettyprints current expression, printing CLlSP translations, if any. 

prints the argument names and corresponding values for current 
expression. Analagous to ? = break command (Section 15). 

For example, if the current expression is (STRPOS "A01??" X N (QUOTE 1) T). ?= prints 

X = "A0111" 
Y = X 
START = N 
SKIP = (QUOTE 1) 
ANCHOR = T 
TAIL = 72 

All printing functions print to the terminal, regardless of the primary output file. All use the 
readtable T. No printing function ever changes the edit chain. All record the current edit chain 
for use by \P, page 9.23. All can be aborted with control-E. 

9.6 COMMANDS THAT EVALUATE 

E only when typed in, 73 causes the editor to call lispx giving it the 
next input as argument.74 

Example: 

72 

73 

74 

*E BREAK(FIE FUM) 
(FIE FUM) 
*E (FOO) 

(FIE BROKEN) 

The command MAKE described on page 9.54 is an imperative fonn of? =. It aIlows the user to specify a change to 
the clement of the current expression Ulat corresponds to a particular argument name. 

e.g. (INSERT 0 BEFORE E) will treat E as a pattern, and search for E. 

lispx is used by evalqt and break for processing terminal inputs. If nothing else is typed on Ule same line, lispx 
evaluates its argument. OUlerwise. !h~I!! applies it to Ule next input. In boUl cases, lliP! prints the result. See above 

example, and Sections 2 and 22. 

9.41 

----------------
--"~_ _ ,_.~';.~_;"J.,..,;:~'o _~ __ 

+ 
+ 



(E x) 

(E x T) 

Section 9: The IriterlEsp Editor 

evaluates !, i.e., perfonns eval[x], and prints the result on the 
tenninal. 

same as (E x) but does not print. 

The. (E x) and (E x T) commands are mainly intended for use by macros and subroutine calls to 
the editor; the user would probably type in a form for evaluation using the more convenient 
format of the (atomic) E command. 

same as (C Yl ... Yn) where Yl = eval[xil. 

Example: (I 3 (G ETD (QUO TE Faa») will replace the 3rd element of the current expressio~ 
with the definition of foo.75 (I N Faa (CAR FI E» will attach the value of foo and car of the 
value of fie to the end of the current expression. (I F = Faa T) will search for an'expression ~ 
to the value of foo. 

If £ is not an atom, £ is evaluated also. 

Example: (I (COND ({NULL FLG) (QUOTE -1» (T 1» Faa). if!1&.is NIL. inserts the 
value of foo before the first element of the current expression, otherwise replaces the first element 
by the value of foo. 

+ EVAL does an eval of the current expression. 

+ Note that EVAL, < line-feed>, and the GO command together effectively allow the user to 
+ "single-step" a program through its symbolic definition. 

+ GETVAL replaces the current expression by the result of evaluating it. 

75 

76 

is an NLAMBDA, NOSPREAD function (not a command). Its value is 
what the current expression would be after executing the edit 
commands coml ... COffin starting from the present edit chain. 
Generates an error if any of com ~ thm comn cause errors. The 
current edit chain is never changed. 6 

The I command sets an internal flag to indicate to the structure modification commands not to copy expression(s) 
when inserting. replacing. or attaching. 

Rt'C311 that A, B, :, INSERT, REPLACE, and CHANGE make special checks for ## forms in the expressions 
used for inserting or replacing. and usc a copy of # # form instead (see page 9.28). Thus, (INSERT 
(1111 3 2) AFTER 1) iscquivalclltto (I INSERT (COpy (1111 3 2» (QUOTE AFTER) 1). 

9.42 

--------



Commands That Evaluate 

Example: (I R (QUOTE X) (## (CONS .. Z») replaces all X's in the current expression by 
the first cons containing a Z. 

-The I command is not very convenient for computing an entire edit command for execution, since 
it computes the command name and its arguments separately. Also, the I command cannot be 
used to compute an atomic command. The following two commands provide more general ways of 
computing commands. 

Each !j is evaluated and its value is executed as a command. 

For example, (COMS (COND (X (LIST 1 X»» will replace the first element of the current 
expression with the value of! if non-N I L, otherwise do nothing.11 

(COMSQ coml ... comn) executes coml ... comn. 

COMSQ is mainly useful in conjunction with the COMS command. For example, suppose the user 
wishes to compute an entire list of commands for evaluation, as opposed to computing each 
command one at a time as does the COMS command. He would then write (COMS (CONS 
(QUOTE COMSQ) x» where x computed the list of commands, e.g., 
(COMS (CONS (QUOTE COMSQ) (GETP FOO (QUOTE COMMANDS»». 

9.7 COMMANDS THAT TEST 

(IF x) generates an error unless the value of eval[x] is true, i.e., if eval[x] 
causes an error or eval[x] == NIL, I F will cause an error. 

For some editor commands, the occurrence of an error has a well defined meaning, i.e., they use 
errors to branch on, as cond uses NIL and non-N I L. For example, an error condition in a location 
specification may simply mean "not this one, try the next." l11us the location specification 
(IPLUS {E {OR (NUMBERP (## 3» (ERRORI» T» specifies the first IPLUS whose 
second argument is a number. The I F command, by equating NIL to error, provides a more 
natural way of accomplishing the same result. luus, an equivalent location specification is {I PLUS 
(IF (NUMBERP (## 3»». 

The I F command can also be used to select between two alternate lists of commands for execution. 

If eval[x] is true, execute comsl; if eval[x] causes an error or is 
equal to NIL '. execute coms2.78 

For example, the command (IF (READP T) NIL (P» will print the current expression 
provided the input buffer is empty. 

77 

78 

because NIL as a command is a no-op. see page 9.52. 

Thus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND 
({CAR {NLSETQ (EVAL X») COMS1) 
(T COMS2»». 

9.43 



Section 9: The Interlisp Editor 

if eval[x] is true, execute corns!: otherwise generate an error. 

(LP . corns) repeatedly executes corns, a list of commands, until an error occurs; 

For· example, (L P F P R I NT (N T)} will attach a T at the end of every print expression. ( L P F 
PRINT (IF (UU 3) NIL « NT})}) will attach a T at the end of each print expression which 
does not already have a second argument79 

When an error occurs, LP prints n OCCURRENCES. where n is the 
number of times ~ was successfully executed. The edit chain is 
left as of the last complete successful execution of corns. 

(LPQ . corns) same as LP but does not print the message n OCCURRENCES. 

In order to prevent non-terminating loops, both LP and LPQ terminate when the number of 
iterations reaches maxloop, initially set to 30.80 Since the edit chain is left as of the last successful 
completion of the loop, the user can simply continue the LP command with REDO (Section 22). 

(SHOW. x) ! is a list of patterns. SHOW does a LPQ printing all instances of 
the indicated expression(s), e.g. (SHOW FOO (SETQ FIE &» will 
print all FOO's and all (SETQ FIE &}'s. Generates an error if 
there aren't any instances of the expression(s). 

(EXAM. x) like SHOW except calls the editor recursively (via the TTY: 
command described on page 9.49) on each instance of the 
indicated espression(s) so that the user can examine andlor change 
them. 

(ORR corns! ... comsn) ORR begins by executing corns!, a list of commands. If no error 
occurs, ORR is finished. Otherwise, ORR restores the edit chain to 
its original value, and continues by executing com~2' etc. If none 
of the command lists execute without errors, i.e., the ORR "drops 
off the end", ORR generates an error. Otherwise, the edit chain is 
left as of the completion of the first command list which executes 
without an error.81 

79 

80 

81 

i.e .• the form (UU 3) wi1\ cause an error if the edit command 3 causes an error, thereby selecting ( (N T» as the 
list of commands to be executed TIle IF could also be written as (IF (COOR (UU» NIL «N T»). 

maxloop can also be set to NIL. which is equivalent to setting it to infinity. 

NIL as a command list is perfectly legal. and will always execute successfu1\y. Thus. making the last "argument" to 
OR R be NIL will illsure that the OR R never causes an error. Any other atom is trcated as (a tom), i. e., the above 
example could be written as (ORR NX INX NIL). 

9.44 



Commands That Test 

For example, (ORR (NX) (INX) NIL) will perform a NX, if possible, otherwise a INX, if 
possible, otherwise do nothing. Similarly, DELETE could be written as 
(ORR (UP (1» {BK UP (2» (UP (: NIL»). 

9.8 MACROS 

Many of the more sophisticated branching commands in the editor, such as ORR, IF, etc., are 
most often used in conjunction with edit macros. The macro feature permits the user to define 
new commands and thereby expand the editor's repertoire, or redefine existing commands.82 * 
Macros are defined by using the M command. 

(M c . corns) For £ an atom, M defines £ as an atomic command.83 Executing £ is 
then the same as executing the list of commands corns. 

For example, (M B P B K UP P) will define B P as an atomic command which does three things, a 
BK, and UP, and a P. Macros can use commands defined by macros as well as built in commands 
in their definitions. For example, suppose Z is defined by 
( M Z - 1 (IF (R E A D P T) NIL (P»), i.e., Z does a -I, and then if nothing has been typed, a 
P. Now we can define ZZ by 
(M ZZ -1 Z), and ZZZ by (M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ). 

Macros can also define list commands, i.e., commands that take arguments. 

{M (c) (argl ... argn) . corns) £ an atom. M defines £ as a list command. Executing (c el ... e~) 
is then performed by substituting el for argl'''' en for argn 
throughout corns, and then executing corns. 

For example, we could define a more general BP by (M (BP) (N) (BK N) UP P). Thus, (BP 
3) would perform (B K 3), followed by an UP, followed by a P. 

A list command can be defined via a macro so as to take a fixed or indefinite number of 
"arguments", as with spread vs. nospread functions. The form given above specified a macro with 
a fixed number of arguments, as indicated by its argument list. If the "argument list" is atomic, 
the command takes an indefinite number of arguments.84 

(M (c) arg . corns) £, grg both atoms, defines £ as a list command. Executing 
(c el ... ell) is performed by substituting (el ... en)' i.e., cdr of the 
command, for grg throughout corns, and then executing corns. 

For example, the command 2ND, page 9.20, can be defined as a macro by 
(M (2ND) X (ORR «LC . X) (LC . X»». 

82 

83 

84 

To refer to the original definition of a built· in command when redefining it via a macro. use the ORIGINAL + 
command described below. + 

If a macro is redefined. its new definition replaces its old. 

Note parallelism to EXPR's and EXPR*·s. 

9.45 



Section 9: The Interlisp Editor 

Note that for all editor commands, "built in" commands as well as commands defined by macros, 
atomic definitions and list definitions are completely independent. In other words, the existence of 
an atomic definition for £ in no way affects the treatment of £ whc.n it appears as car of a list 
command, and the existence of a list definition for f in no way affects the trcatment of f when it 
appears as an atom. In particular, £ can be used as the name of either an atomic command, or a 
list command, or both. In the latter case, two entirely differcnt definitions can be used. 

Note also that once £ is defined as an at()mic command via a macro definition, it will not be 
searched for when used ina location specification, unless it is preceded by an F. Thus (INSERT 
-- BEFORE BP) would not search for BP, but instead perform a BK. and UP. and a p. and 
then do the insertion. The corresponding also holds true for list commands. 

Occasional1y, the user will want to employ the S command in a macro to save some temporary 
result. For example, the SW command could be defined as: 

(M (SW) (N M) (NTH N) (S FOO 1) MARK 0 (NTH M) (S FIE 1) 
(I 1 FOO) ~~ (I 1 FIE» ~ 

Since this version of SW sets foo and fie, using . SW may have undesirable side effects; especially 
when the editor was called from deep in a computation, we would have to be careful to make up 
unique names for dummy variables used in edit macros, which is bothersome. Furthermore. it 
would be impossible to define a command that called itself recursively while setting free variables. 
The B I NO command solves both problems. 

(BI NO . coms) binds three dummy variables #1, #2, #3, (initialized to NIl),and 
then executes the edit commands corns. Note that these bindings 
are only in effect while the commands are being executed, and that 
BIND can be used recursively; it will rebind #1, #2, and #3 each 
time.it is invoked. 86 

Thus we could now write SW safely as: 

{M (SW (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1) 
(I 1 #1) ~~ (I 1 #2»». 

User macros are stored on a list usermacros. The file package command USERMACROS (Section 
14), is available for dumping all or selected user macros. 

+ (ORIGINAL. coms) 
+ 

executes corns without regard to macro definitions. Useful for 
redcfining a built in command in terms of itself., i.e. effectively 
allows user to "advisc" edit commands. + 

85 

86 

A more elegant definition would be: 
(M (SW}(N M) (NTH N) MARK 0 (NTH M) (S FIE 1) (I 1 (1111 .. 1» .... (I 1 FIE». 
but this would still use one free variable. 

BIND is implemented by (PROG (111 112 113) (EDITCOMS (CDR COM») where cOl!!. corresponds to the BIND 
command. and edilcoms is an internal editor function which executes a list of commands. 

9.46 



1 

Miscellaneous Commands 

9.9 MISCELLANEOUS COMMANDS 

9.9.1 COMMANDS FOR LEAVING THE EDITOR 

OK 

STOP 

exits from the editor 

exits from the editor with an error. Mainly for use in conjunction 
with TTY: commands that the user wants to abort. 

Since all of the commands in the editor are errorset protected, the user must exit from the editor 
via a command.R7 STOP provides a way of distinguishing between a successful and unsuccessful 
(from the user's standpoint) editing session. For example, if. the user is executing (MOVE 3 TO 
AFTER COND TTY:). and he exits from the lower editor with an OK. the MOVE command will 
then complete its operation. If the user wants to abort the MOVE command, he must make the 
TTY: command generate an error. He does this by exiting from the lower editor with a STOP 
command. In this case, the higher editor's edit chain will not be changed by the TTY: command. 

SAVE exits from the editor and saves the "state of the edit" on the 
property list of the function or variable being edited under the 
property EDIT-SAVE. If the editor is called again on the same 
structure, the editing is effectively "continued," i.e., the edit chain. 
mark list, value of un find and undolst are restored. 

For example: 

.p 
(NULL X) 
*F COND P 
(COND (& &) (T &» 
*SAVE 
FOO 

.... EDITF (FOO) 
EDIT 
.p 
(COND (& &) (T &» 
*\ P 
(NULL X) 
• 

SAVE is necessary only if the user is editing many different expressions; an exit from the editor via 

87 Or by typing a control-D. STOP is preferred even if the user is editing at the ~.Yi!lq! level. as it witl perform the 
necessary "wrapup" to insure Ulat tlle changes made while editing will be ulldoable (see Section 22). 

9.47 



Section 9: The Interlisp Editor 

OK always saves the state of the edit of that call to the editor.88 Whenever the editor is entered, it 
checks to see if it is editing the same expression as the last one edited. In this case, it restores the 
mark list, the undolst, and sets tmfind to be the edit chain as of the previous exit from the editor. 
For example: 

~EDITF (FOO) 
EDIT 
*p 
(LAMBDA (X) (PROG & & LP & & & &» 

*p 
(COND & &) 
*OK 
FOO 

~EDITF (FOO) 
EDIT 
*p 

any number of lispx inputs 
except for calls to the editor 

(LAMBDA (X) (PROG & & LP & & & &» 
*\ P 
(COND & &) 
* 

Furthermore, as a result of the history feature (section 22), if the editor is called on the same 
expression within a certain number of lispx inputs,89 the state of the edit of that expression is 
restored, regardless of how many other expressions may have been edited in the meantime. 

88 

89 

on the property list of the atom EDIT, under the property name lASTVAlUE. OK also remprops EDIT-SAVE from 
the property list of the fUTIction or variable being edited. 

Namely, the size of the history Jist. initially 30, but it can be increased by the user. 

9.48 



Miscellaneous Commands 

For example: 

+-EDITF( FOO} 
EDIT 
• 

• p 
{COND (& &) (& &) (&) (T &» 
"'OK 
FOO 
to less than 30 lispx inputs, including editing 

+-EDITF (FOO) 
EDIT 
"" P 
(COND (& &) (& &) (&) (T &» 
'" 

Thus the user can always continue editing, including undoing changes from a previous editing 
session, if 

(1) No other expressions have been edited since that session;90 or 

(2) That session was "sufficiently" recent; or 

(3) It was ended with a SAVE command. 

9.9.2 NESTED CALLS TO EDITOR 

TTY: calls the editor recursively. The user can then type in commands, 
and have them executed. The TTY: command is completed when 
the user exits from the lower editor, (see OK and STOP below), 

The TTY: command is extremely useful. It enables the user to set up a complex operation, and 
perform interactive attention-changing commands part way through it. For example the command 
(MOVE 3 TO AFTER COND 3 P TTY:) allows the user to interact, in effect, within the MOVE 
command. 1bus he can verify for himself that the correct location has been found, or complete 
the specification "by hand." In effect, TTY: says ''I'll tell you what you should do when you get 
there," 

The TTY: command operates by printing TTY: and then calling the editor. The initial edit chain 
in the lower editor is the one that existed in the higher editor at the time the TTY: command was 
entered. Until the user exits from the lower editor, any attention changing commands he executes 

90 Since saving takes place at exit time. intervening calls that were aborted via control-n or exited via STOP will not 
affect the editor's memory of this last session. 

9.49 

------ -----_._. - --
_ ,,_, --"_" r.·"·~;.-: ... '_.:t'~r,.;,.. _,_, "",~; .. '-,; " 



Section 9: The Interlisp Editor 

only affect the lower editor's edit chain.91 When the TTY: command finishes, the lower editor's 
edit chain becomes the edit chain of the higher editor. 

+ EF calls editf on ~ of current expression. 

+- EV.EP calls editv, editp on car of current expression. 

9.9.3 MANIPULATING THE CHARACTERS OF AN ATOM OR STRING 

RAISE 

LOWER 

CAP 

is an edit macro defined as UP followed . by 
(I 1 (U-CASE <## 1»), i.e., it raises to upper-case the 
current expression, or if a tail, the first element of the current 
expression. 

Similar to RAISE, except uses l-case. 

First does a RAISE .. and then lowers all but the first character, i.e .• 
the first character is left capitalized. 

Note: RAISE, LOWER, and CAP are all no-ops if the corresponding atom or string is already in 
that state. 

(RAISE x) 

(LOWER x) 

equivalent to (I R (L-CASE x) x), i.e., changes every lower-case 
x to upper-case in the current expression. 

similar to RAISE, except performs {I R x (L-CASE x». 

Note in both ( RAISE x) and (LOWER x), ! is typed in in upper case. 

91 Of course, if the user. pcrfonns any structurc modification commands while under a TTY: command, these win 
modify the structure in both editors, sincc it is the SlIme structure. 

9.50 



REPACK 

For example: 

Miscellaneous Commands 

Pcnnits thc "cditing" of an atom or string. 

*p 
"THIS IS A LOGN STRING") 

*REPACK 
* EO IT 
P 
(T HIS % I S % A % LOG N % S T R I N G) 
*(SW G N) 
*OK 
"THIS IS A LONG STRING" 92 

• 
REPACK operatcs by calling the editor recursively on unpack of the current expression, or if it is a 
list, on unpack of its first clement. If the lowcr editor is exitcd successfully, i.e., via OK as opposed 
to STOP, the list of atoms is made into a single atom or string, which replaces the atom or string 
being 'repacked.' The new atom or string is always printed. 

(REPACK @) does (LC . @) followed by REPACK, e.g. (REPACK THIS$). 

9.9.4 MANIPULATING PREDICATES AND CONDITIONAL EXPRESSIONS 

JOINC 

(SPLITC x) 

NEGATE 

SWAPC 

is used to Jom two neighboring COND's together, 
e.g. (COND clausel clause2) followed by (COND clause3 clause4) 
becomes (COND clausel clause2 c1ause3 c1ause4)' JOINC does an 
(F COND T) first so tliat you don't have to be at the first COND. 

splits one COND into two. ! spccifies the last clause in thc first 
COND, e.g. (SPLITC 3) splits 
(COND clausel c1ause2 clausc3 clause4) into (COND clausel clause2) 
(COND clausc3 clausc4)' Uses gencralized NTH command, so that! 
docs not have to be a number, e.g., the user can say 
(SPLITC RETURN), meaning split after the clause containing 
RETURN. SPLITC also does an (F COND T) first. 

ncgates current expression, i.e. pcrfonns (MBD NOT), except is + 
smart about simplifying. For examplc, if currcnt expression is: + 
(OR (NULL X) (LISTP X», NEGATE would change it to + 
(AND X (NLISTP X». NEGATE is implemented via the function + 
ncgare. + 

takes a conditional expression of the fonn (COND (A B) (T C» + 

92 Note that this could also have been accomplished by (R $GN$ $NG$) or simply (RC GN NG). 

9.51 



+ 
+ 
+ 

+ 
+ 
+ 

Section 9: The lnterlisp Editor 

and rearranges it to an equivalent (COND «NOT A) C)(T B», 
or (COND (A B) (C 0» to 
{COND «NOT A) (COND (C 0») (T B». 

SWAPC is smart about negations (uses NEGATE) and simplifying 
conQs. It always produces an equivalent expression. It is useful for 
those cases where one wants to insert extra clauses or tests. 

9.9.5 HISTORY COMMANDS IN THE EDITOR 

As described in Section 22, all of the user's inputs to the editor are stored on edithistory, the 
editor's history list, and all of the programmer's assistant commands for manipulating the history 
list, e.g. REDO, USE, FIX, NAME, etc., are available for use on events on edithistory. In 
addition, the following four history commands are recognized specially by the editor. They always 
operate on the last, ie. most recent, event. 

DO com allows the user to supply the command name when it was 
omitted.93 

For .example, suppose the user wants to perform (-2 (SETQ X (LIST Y Z») but instead 
types just (SETQ X (LIST Y Z». The editor will type SETQ 1, whereupon the user can type 
DO - 2. The effect is the same as though the user had typed F I X, followed by (L I 1). (-1 -
2). and 0 K, I.e., the command (- 2 (S E T Q X (L IS T Y Z») is executed. DO also works if the 
command is a line command. . 

IF same as DO F. 

In' the case of IF, the previous command is always treated as though it were a line command, e.g .• 
if the user types (S ET Q X &) and then 1 F, the effect is the same as though he had typed 
F (S ET Q X &). not (F (S E T Q X &». 

IE 

IN 

9.9.6 MISCELLANEOUS 

NIL 

CL 

same as DO E. 

same as DO N. 

unless preceded by F or B F, is always a no-op. Thus extra right 
parentheses or square brackets at the ends of commands are 
ignored. 

Clispifies current expression. Sec Section 23. 

93 USE is useful when a command name is Incorrect. 

9.52 



ow 

Miscellaneous Commands 

Dwimifies current expression. See Section 17 and 23. 

If the current expression is a comment pointer (see Section 14), 
reads in the full text of the comment, and replaces Ule current 
expression by it. 

(* . x) ! is the text of a comment. * ascends the edit chain looking for a 
"safe" place to insert Ule comment, e.g., in a cond clause, after a 
m:Qg statement, etc., and inserts (* . x) after that point, if possible, 
otherwise before. For example, if the current expression is 
(FACT (SUB1 N» in 
[COND «ZEROP N) 1) 

(T (ITIMES N (FACT (SUB1 N] 

( ... CALL FACT RECURSIVELY) would insert 
( ... CALL FACT RECURSIVELY) before the itimes expression.94 

* does not change the edit chain, but unfind is set to where the 
comment was actually inserted. 

GETD essentially "expands" the current expression in line: (1) if (fru: of) + 
the current expression is the name of a macro, expands the macro + 
in line; (2) if a clisp word, translates the current expression and + 
replaces it with the translation; (3) if car is the name of a + 
function,95 substitutes the argument expressions for the + 
corresponding argument names in the body of the definition and + 
replaces the current expression with the result; (4) if car of the + 
current expression is an open lambda, substitutes the arguments for + 
the corresponding argument names in the body of tile lambda, and + 
tilen removes tile lambda and argument list. + 

(MAKEFN (fn . actualargs) arglist n1 n2) + 
tile inverse of GETD: makes the current expression into a function. + 
fn is the function name, arglist its arguments. The argument names + 
are substituted for the corresponding argument values in actualargs. + 
and tile result becomes the body of tile function definition for. fn. + 
The current expression is then replaced with (fu . actualargs). + 

For example, if the current expression is (COND «CAR X)(PRINT Y T»(T (HELP»). then + 
(MAKEFN (FOO (CAR X) Y) (A B». will define FOO as + 

94 

95 

If inserted after the llimes. the comment would then be (incorrectly) returned as the value of the condo However. if 
the ~md was itself a n!QS statement. and hence its value was not being used. the comment could be (and would be) 

inserted a fter the llimes expression. 

for which the editor can obtain a symbolic definition. either in-core or from a file. 

9.53 

+ 



Section 9: The Interlisp Editor 

+ (LAMBDA (A B) (COND (A (PRINT B T» (T (HELP»» and then replace the current 
+ expression with (FOO (CAR X) V). 

+ 
+ 

+ 
+ 
+ 
+ 

If nl and n2 are supplied, (N 1 THRU N2) is used rather than the 
current expression; if just nl is supplied, (N 1 THRU -1) is used. 

If arglist is omitted, MAKEFN will make up some arguments, using 
elements of actualargs. if they are literal atoms. otherwise arguments 
selected from (X Y 'Z ABC ••• ), avoiding duplicate argument 
names. 

+ (MAKE argname exp) 
+ 

makes the value of argname be exp in the call which is the current 
expression. i.e. a 1= command following a MAKE will always print 
argname = expo For example: + 

+ 
+ 
+ 
+ 
+ 
+ 
;f
+ 

*p 
(JSYS) 
*1= 
JSYS[N;AC1.AC2.AC3,RESULTAC] 
*(MAKE N 10) 
*(MAKE RESULTAC 3) 
*p 
(JSYS 10 NIL NIL NIL 3) 

+ Q quotes current expression, i.e. MBD QUOTE. 

+ 0 
+ 

deletes current expression, then prints new current expression, i.e. 
(:> I P. 

9.10 UNDO 

Each command that causes structure modification automatically adds an entry to the front of 
undolst that contains the information required to restore all pointers that were changed by that 
command. 

UNDO undoes the last. i.e .• most recent96structure modification command 
that has not yet been undone. and prints the name of that 
command. e.g., MBD UNDONE. The edit chain is then exactly what 

96 Since UNDO and I UNDO cause structure modification. they also add an entry to !!.!ljlQ.l~l Ilowever. UNDO and I UNDO 
entries are skipped by UNDO. e.g .. if the user perfonns an INSERT. and then an MBD. the first UNDO will undo the 
MBO. and the second will undo the INSERT. However. the user can also specify preciscly which commands he wants 
undone by identifying the correspollding entry on the history list as described in Section 22. In this case, he can 
undo an UNDO command. e.g .. by typing UNDO UNDO, or undo a I UNDO command. or undo a command other than 
that most reccntly performed. 

954 



Undo 

it was beforc the "undonc" command had becn pcrformed.97 If 
there are no commands to undo, UNDO types NOTHING SAVED. 

IUNDO undoes all modifications performed during this editing session, i.e. 
this call to the editor. As each command is undone, its name is 
printed a la UNDO. If there is nothing to be undone, I UNDO prints 
NOTHING SAVED. 

Whenever the user continues an editing session as described on page 9.47-49, the undo information 
of the previous session is protected by inserting a special blip, called an undo-block, on the front of 
undolst. This undo-block will tcrminate the operation of a I UNDO, thereby confining its effect to 
the current session, and will similarly prevent an UNDO command from operating on commands 
executed in the previous session. 

Thus, if the user enters the editor continuing a session, and immediately executes an UNDO or 
IUNDO, the editor will type BLOCKED instead of NOTHING SAVED. Similarly, if the user executes 
several commands and then undoes them all, another UNDO or I UNDO will also cause BLOCKED to 
be typed. 

UNBLOCK removes an undo-block. If executed at a non-blocked state, i.e., if 
UNDO or I UNDO could operate, types NOT BLOCKED. 

TEST adds an undo-block at the front of undolst. 

Note that TEST together with I UNDO provide a "tentative" mode for editing, i.e., the user can 
perform a number of changes, and then undo all of them with a single I UNDO command. 

UNDO ¢ ¢ is an event specification (Section 22). Undoes the indicated event 
on the history list. In this case, the event docs not have to be in the 
current editing session, even if the previous session has not been 
unblocked as described above. However, the user docs have to be 
editin~ the same expression as was being edited in the indicated 
event. 8 

97 

98 

Undoing an evcllt containing an I, E, or S command will also undo the side effects of the evaluation(s), e.g., 
undoing (I 3 (/NCONC FOO FIE)) will not only rcstore the 3rd element but also restore FOO. Similarly, undoing 
an S command will undo the set. See discussion of UNDO in Section 22. (Note that if the I command was typed 
directly to thc editor. INCONC would automatically be substituted for NCONC as dcscribed in Section 22.) 

If the expressions differ. thc editor types the warning message "different expression" , and docs not undo 
the evcllt.Tbe ,cditor enforccs this to avoid the uscr accidentally undoing a random command by giving the wrong 
event specification. 

9.55 



Section 9: The lnterlisp Editor 

9.11 EDITDEFAULT 

Whenever a command is not recognized, i.e., is not "built in" or defined as a macro, the editor 
caIls an internal function, editdefault, to determine what action to take.99 If a location specification 
is being executed, an internal flag informs editdefault to treat the command as though it had been. 
preceded by an F. 

If the command is a list, an attempt is made to perform spelling correction on car of the 
commandlOO using editcomsl, a list of all !ist edit commands.lOl If spelling correction is 
successful,102 the correct command name is rplacaed into the command, and the editor continues 
by executing the command. In other words, if the user types 
(LP F PRINT (MBBD AND (NULL FLG»). only one spelling correction will be necessary to 
change MBBD to MBD. If spelling correction is not successful, an error is generated. 

If the command is atomic, the procedure followed is a little more elaborate. 

1) 

99 

100 

101 

If the command is one of the list commands, i.e., a member of editcomsl, and there is 
additional input on the same terminal line, treat the entire line as a single list command.103 
Thus, the user may omit parentheses for any list command typed in at the top level (provided 
the command is not also an atomic command, e.g. NX. BK). For example, 

.p 
(COND (& &) (T &» 
·XTR 3 2] 
·MOVE TO AFTER LP 
• 

If the command is on the list cditcomsl but no additional input is on the terminal line, an 
error is generated, e.g . 

• p 
(COND (& &) (T &» 
·MOVE 

MOVE ? 
• 

Since editdefault is part of the edit block, the user cannot advise or redefine it as a means of augmenting or 
extending the editor. However, the user can accomplish this via edituserfn. If the value of the variable edituserfn is 
T. editdefau]!caUs the function edituserfn giving it the command as an argument. If edituserfn returns a non-NIL 
value, its value is· interpreted as a single command and executed. Otherwise, the error correction procedure described 
below is performed. 

unless dwimflg=NIL. See Section 17 for discussion of spelling correction. 

When a macro is defined via the M command. the command name is added to editcomsa or editcomsl, depending on 
whcther it is an atomic or list command. The prettydef command USERMACROS (Section 14), is aware of this. and 
provides for restoring editcomsa and editcomsl. 

102 Throughout this discussion, if the command was not typed in directly. the user will be asked to approve the spelling 
correction. Sce Section 17. 

103 The line is read using readlin~ (Section 14). Thus the line can be terminated by a square bracket, or by a carriage 
return not preceded by a space. 

,~-
~~y~~~,"~, 

9.56 



Edifdefoult 

If the command is on editcomsl, and not typed in directly, e.g., it appears as one of the 
commands in aLP command, the procedure is similar, with the rest of the command stream 
at that level being treated as "the terminal line", e.g. 

(LP F (COND (T &» XTR 2 2),lM 

2) If the command was typed in and the first character in the command is an 8, treat the 8 as a 
mistyped left parenthesis, and and the rest of the line as the arguments to the command, e.g., 

.p 
(COND (& &) (T &» 
·8-2 (Y (RETURN Z») 
=(-2 
.p 
(COND (Y &) (& &) (T &» 

3) If the command was typed in, is the name of a function, and is fo11owed by NIL or a list car 
of which is not an edit command, assume the user forgot to type E and means to apply the 
function to its arguments, type = E and the function name, and perform the indicated 
computation, e.g. 

·BREAK(FOO) 
=E BREAK 
(FOO) 
• 

4) If the last character in the command is P, and the first n-l characters comprise a number, 
assume that the user intended two commands, e.g., 

.p 
(COND (& &) (T &» 
·op 
=0 P 
(SETQ X (COND & &» 

5) Attempt spelling correction using editcomsa, and if successful,105 execute the corrected 
command. 

6) Otherwise, if there is additional input on the same line, or command stream, spelling correct 
using editcomsl as a spelling list, e.g., 

104 Note that if the command is being executed in location context, editdef.1ult does not get this far, e.g., (MOVE TO 

AFTER COND XTR 3) will search for XTR, not execute it. However. (MOVE TO AFTER COND (XTR 3)) will 

work. 

105 See footnote on page 9.57. 

9.57 



*MBBD SETQ X 
=MBD 
• 

Section 9: The Interlisp Editor 

7) Otherwise. generate an error. 

9.12 EDITOR FUNCTIONS 

editflname;coffil;coffi2;· .. ;comn] 
nlambda, nospread function for editing a function. name is the 
name of the function, coml' com2. .... comn (optional) edit 
commands. 

(1) 

The value of editf is name. 

In the most common case. name is an expr, and 
putd[name; edi te[getd[ name] ;1ist[coml ;com2 ; ... ;comn];name; FN S n. 
expr by virtue of its being broken or advised, and 

editf simply performs 
However, if name is an 

(la) the original definition is also an expr, then the broken/advised definition is given to 
edite to be edited (since any changes there will also affect the original definition 
because all changes are destructive). However, a warning message is printed to alert 
the user that he must first position himself correctly before he can begin typing 
commands such as (- 3 - - ), (N - - ), etc. 

(lb) the original definition is not an expr, and there is no EXPR property. and the file 
package "knows" which file name is contained in (sec discussion of editloadfns? below). 
then the expr definition of name is loaded onto its property list as described in (3) 
below, and proceeds to (Ic), otherwise a warning message is printed, and the edit 
proceeds, e.g .• the user may have called the editor to examine the advice on a subr. 

(lc) the original definition is not an expr. and there is an EXPR property. then the function 
is unbroken/unadvised (latter only with user's approval. since the user may really want 
to edit the advice) and proceed as in (2). 

(2) If name is not an expr, but has an EXPR property, editf prints PHOP, and performs 
cdite[getprop[name;EXPR];1ist[coml ;com2; ... ;comn];name;PROP]. In this case, if the edit 
completes and no changes have been made, edite prints NOT CHANGED, SO NOT UNSAVED. 
If changes were made, but the value of dnameflg is PROP, edite prints CHANGED. BUT NOT 
UNSAVED. Otherwise if changes were made. edite prints UNSAVED and docs an unsavedef. 

(3) if name is neither an expr nor has an EXPR property. and the file package (see Section 14) 
"knows" which file name is contained in (see discussion of edilloadfns? below), the expr 
definition of name is automatically loaded (using load names) onto its property list. and 

9.58 



r 

Editor Functions 

proceed to (2) above.106 In addition, if name is a member of a block (see Section 18), the user 
will be asked whether he· wishes the rest of the functions in the block to be loaded at the 
same time.107 

(4) If name is neither an expr nor has an EXPR property, but it does have a definition, editf 
generates an name NOT ED IT AB L E error. 

(5) If name is neither defined, nor has an EXPR property, but its top level value is a list, editf 
assumes the user meant to call editv, prints =EDITV, calls editv and returns. Similarly, if 
name has a non-NIL property list, editfprints =EDITP, calls editp and returns. 

(6) If name is neither a function, nor has an EXPR property, nor a top level value that is a list, 
nor a non-N I L property list, editf attempts spelling correction using the spelling list 
userwords,108 and if successful, goes back to (1). 

Otherwise, editf generates an name NOT EDITABLE error. 

In all cases, if a function was edited, and changes were made, the function is time-stamped (by + 
edite), which consists of inserting a comment of the form (* xxx date), where xxx are the user's + 
initials.109 If the function was already time-stamped, then only the date is changedllO + 

editfns[name;coml;com2; .. ·;comn] 
nlambda, nospread function, used to perform the same editing 
operations on several functions. ~ is evaluated to obtain a list 

106 

107 

108 

109 

110 

Because of the existence of the file map (see Section 14), this operation is extremely fast, essentially requiring only 
the time to perfonn the READ to obtain the actual definition. 

The editor's behaviour in case (3) is controlled by the value of editloadfnsflg, which is a dotted pair of two flags, the 
first of which (i.e., car of editloadfnsflg) controls the loading of the function. and the second the loading of the 
block. A value of NIL for either flag means "load but ask first," a value of T means "don't ask. just do it" and 
anything else means "don't ask, don't do it" The initial value of editloadfnsflg is (T), meaning load the function 
without asking, ask about loading the block. 

Unless dwimflg=NIL. Spelling correction is perfonned using the function misspelled? If~=NIL, misspelled? 
returns the last "word" referenced. e.g., t>y defineg. editf. prettyprint etc. Thus if the user defines foo and then types 
editf{], the editor will assume he meant foo, type -FDD. and then type EDIT. See Section 17. 

xxx is the value of the variable initials. After greeting. or following a sysin. the function setinitials is ca11ed. setinitials 
searches initialslst. a list of elements of the fonn (usemame . initials) or (usemame firstname initials). If the user's 
name is found, initial~ is set accordingly. If the user's name is not found on initial~J., initials is set to the value of 
defaultinitials. initially ad itad :. Thus. the default is to always time stamp. To suppress time stamping. the user 
must either include an entry of !he Conn (usemame) on initialslst, or set defaultinitials to NIL before greeting. i.e. in 
his user profile. or else, qfier greeting, explicitly set initials to NIL. 

The following three functions may be of use for specialized applications with respect to time-stamping: 
fixcditdate[expr] which. given a lambda exprcssion. inserts or smashe~ a time-stamp comment: editdate?[comment] 
which retuOis T if glmmcll! is a time stamp: and editdalc[oldate:iniUs) which rcturns a new timc-stamp comment If 
oldate is a time-stamp comment, it will be reused. 

9.59 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 



Section 9: The Imer/ispEditor. 

offunctions.111 com}, com2' ...• comn are (optional) edit commands. 
editfns maps down the list of functlons~ prints the name of each 
function, and calls the editor (via editO on that function. 112 

For example. EDITFNS(FOOFNS (R FIE FUM» will change every FIE to FUM in each of the 
functions on foofns. 

The call to the editor is errorset protected. so that if the editing of 
one function causes an error, editfns will proceed to the next 
function.Il3 . 

Thus in the above example, if one of the functions did not contain a FIE. theR command would 
cause an error, but editing would continue with the next· function: . 

The value of editfns is NIl. 

+ The function editcallers provides a way of rapidly searching a file or entire set of files, even files 
+ not loaded into Interlisp or "noticed" by the file package, for the appearance of one or more key 
+ words (atoms) anywhere in the file.114 

+ editcallers[atoms;files;coms] 
+ 

uses ffilepos to search the file(s) files for occurrences of the atom(s) 
atoms. It then calls erute on each of those objects,1l5 perfonning 
the edit commands coms. If coms=NIl,then (EXAM • ATOMS) is 
used. Both atoms and files may be single atoms. If files is NIL. 
filelst is used. Elements on atoms may· contain < esc > s. . 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

editcallers prints the name of each file as it searches it, and when it 
finds an occurrence of one of ato~ it prints out either the name 
of the containing function or, if the atom occurred outside a 
function definition, it prints out the byte pOSition that the atom was 
found. 

editcallers will read in and use the filemap of the file. In the case 
that the editor is actually called, editca11ers will loadfrom the file if 
the file has not previously been noticed. 

111 If ~ is atomic. and its value is not a: list, and it is the name of a file, filefnslst[name1 will be used as the list of 
functions to be edited. 

112 ie., thl! definition of editfns might be: 
[MAPC (EVAL (CAR X» (FUNCTION (LAMBDA{Y) 

(APPLY (QUOTE EDITF) 
(CONS (PRINT Y T) (CDR Xl 

113 In particular, if an error occurred while editing a function via its EXPR property, the function would not be unsaved. 
In other words, in the above example, only those functions which contained a F IE, i.e., only those actually cbanged, 
would be unsaved. 

+ 114 

+ 115 

+ 

editcallers was written by L. M. Masinter. 

editcallers uses &£!!!cl' (Section 14) to obtain the "definition" for each object When editcreturns, if a change was 
made, putde[ is called to store the changed object 

9.60 



findcallers[atoms;filesJ 

Editor Functions 

like editcallers, except does not call the editor, but instead simply + 
returns the list of files that contain one of atoms. + 

editv[name;coml ;com2 ; ... ;comn] 
nlambda, nospread function, similar toeditf, for editing yalues. 

If name is a list, it is evaluated and its value given to edite, e.g., 
EDITV«CDR (ASSOC (QUOTE FOO) DICTIONARY»». In this case, the value of edit v isT. 

However, for most applications, name is a variable name, i.e., atomic, as in ED ITV ( FOO}. If the 
value of this variable is NOB I ND, editv checks to see if it is the name of a function, and if so, 
assumes the user meant to call editf, prints ==EDITF. calls editf and returns. Otherwise, editv 
attempts spelling correction using the list tiserwords.1l6 Then editv will call edite on the value of 
car[editvx] (or the corrected spelling thereof), and ~=VARS. Thus, if the value of foo is NIL, 
and the user performs (EDITV FOO), no spelling correction will occur, since foo is the name of a 
variable in the user's system, i.e., it has a value. However, edite will generate an error, since foo's 
value is not a list, and hence not editable. If the user performs (EDITV FOOO) , where the value 
of fooo is NOBIND, and foo is on the user's spelling list, the spelling corrector will correct FOOO to 
FOO. lnen edite will be called on the value of foo. Note that this may still result in an error if 
the value of foo is not a list. 

The value of editv is the name of the variable whose value was edited. 

editp[name;coml ;com2; ... ;comn] 
nlambda, nospread function, similar to editf for editing Qroperty 
lists. If the property list of name is NIL. editQ attempts spelling 
correction using userwords. Then editQ calls edite on the property 
list of name. (or the corrected spelling thereof), with 
~= PROPLST. When (if) edite returns, editQ calls setproplist on 
name with the value returned. 

The value of editQ is the atom whose property list was edited. 

edite[expr;coms;atm;type;ifchangedfnJ 
edits the expression, eXQr, by calling edit! on list[expr] and * 
returning the last element of the value returned by edit1. Generates * 
an error if eXQr is not a list. 

atm and ~ are for use in conjunction with the file package. If + 
supplied, atm is the name of the object that expr is associated with. + 
and ~ describes the association. (i.e., ~ corresponds to the + 
lY.P£ argument of newfile?) For example, if expr is the definition of + 
too, alm= FOO and lY.P£= FNS. When edite is called from editp, + 
expr is the property list of atm, and!l,Q£= PROPLST. etc.. + 

edite calls editl to do the editing (described below). Upon return. if + 

116 Unless dwimflg=NIl. Misspelled? is also catted ifcar[editvx] is NIL. so that EOITVO will edit lastword. 

9.61 



,"IT .-

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

Section 9: The lnterlisp Editor 

both atm and ~. are non~N I L, addspell is called to add atm to 
the appropriate spelling list. 1ben, if expr was changed, 117 and the 
value of ifchangedfn is not NIL, the value of ifchangedfn is applied 
to the arguments atm, expr,~, and a flag which is T for normal 
edits from editor, NIL tor calls that were aborted via control-D or 
STOP. Otherwise, if expr was changed, and the value of 
ifchangedfn is NIL, and ~ is not NIL, newfile? (see Section 14) 
is called on, atrn and~. cdite uses resetsave to insure that 
ifchangedfn/newfilc? are called if any change was made even if 
cditing is subsequently aborted via control-D. (In this case, the 
fourth argument to ifchangedfu wit be NIL.) 

editl[l;coms;atm;mess;editchanges] . 
editl118 is the editor. Its first argument is the, edit chain, and its 
value is an edit chain, namely the value of J at the time editl is 
exited.119 

corns is an optional list of commands. For interactive editing, coms 
is NIL. In this case, editl types EDIT and then waits for input 
from termina1.120 All input is done with editrdtbl as a readtable. 
Exit occurs only via an OK, STOP, or SAVE command. 

If corns is not NIL, no message is typed, and each member of 
corns is treated as a command and executed. If an error occurs in 
the execution of one of the commands, no error message· is printed, 
the rest of the commands are ignored, and editl exits with an error, 
i.e., the effect is the same as though a STOP command had been 
executed. If all commands execute successfully, editl returns the 
current value of I. 

atm is optional. On calls from editf. it is the name of the function 
being edited; on calls from editv, the name of the variable, and 
calls from editp, the atom whose property list is being edited. The 
property list of atrn is used by the SAVE command for saving the 
state of the edit. Thus SAVE will not save anything if atm=NIL, 
i.e., when editing arbitrary expressions via edite or editl directly. 

editchanges is used for communicating with edite. 

+ 117 

+ 
For type=FNS or type=PROP. i.e. calls from editf. edite perfonns some additional operations as described earlier 
under editf. 

118 edit-ell. not edit-one. 

119 ! is a specvar. and so can be examined or set by edit commands. For example. t is' equivalent to 
(E (SETQ L (LAST L» T). However. the user should only manipulate or examine! directly as a last resort, 
and then with caution. 

120 If mcs~ is not NIL. editl types it instead of EDIT. For example. the TTY: command is essentially (SETQ L 
(EDITL L NIL NIL (QUOTE TTY:»). 

9.62 

-~----

,~ 



editlO[I;coms;mess;-] 

edit4e[pat;x;-] 

&Iitor Functions 

like editl except docs not rebind or initialize the editor's various 
stale variables, such as lastail, un find, undolst, marklst, etc. Should 
only be called when already under a call to editl. 

is the pattern match routine. Its value is T, if Jml matches!. See 
page 9.14-16 for definition of "match". 

Note: before each search operation in the editor begins, the entire pattern is scanned for atoms or 
strings containing < esc > s. These, are replaced by patterns of the form 
(CONS (QUOTE $) (UNPACK atom/string» for 6a, and 
(CONS (QUOTE $$) (CONS (NCHARS atom/string) (UNPACK atom/string»). for 6b.121 Thus 
from the standpoint of cdit4e, pattern type 6a is indicated by car[pat] being the atom $ ($ is 
< esc > ) and pattern type 6b by car[pat] being the atom $$ ( < esc > < esc > ). 

Therefore, if the user wishes to caU edit4e directly, he must first convert any patterns which contain 
atoms or strings ending in < esc > s . to the form recognized by edit4e. This is done with the 
function editfpat. 

editfpat[pat;-] 

editfindp[ x ;pat; fig] 

makes a copy of Jml with all patterns of type 6 converted to the 
form expected by edit4e. 

allows a program to use the edit find command as a pure predicate 
from outside the editor. ! is an expression, Jml a pattern. The 
value of editfindp is T if the command F pat would succeed, NIL 
otherwise. . editfindp calls editfpat to convert om to the form 
expected by edit4e, unless !1& = T. l1lUS, if the program is applying 
editfindp to several different expressions using the same pattern, it 
will be more efficient to call editfpat once, and then call editfindp 
with the converted pattern and!l&= T • 

esubst[old;new;expr;errorfig;charfig) 
equivalent to performing (R y x)122 with ~ as the current expression, 
i.e., the order of arguments is the same as for subst. Note that I 
and/or! can employ < esc > s. The value of esubst is the modified 
.?;. Generates an error if I not found in.?;. If errorfig = T. also 
prints an error message of the form y 1. 

esubst is always undoable. 

121 In latter case, atom/string corresponds to the atom or string up to but not including the final two- < esc) s. In both 
cases, dunpack is used wherever possible, 

122 unless ~lmtlJg.T and no < esc> s are specified in !!<;~ or Q.Ig, in which case it is equivalent to (RC y x). See page 
9.39. In other words, if charfig= T, and no < esc > s appear, esubst will supply them. 

9.63 

* 
* 



Section 9: The Interlisp Editor 

+ editloadfns?[fn;str;askflg;files] fn is the name of a function. Value is name of file fn is co~tained 
+ in, or NIL. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

changename[fn;from;to] 

editloadfns? performs wheris(fn;FNS;files] to obtain the name of the 
file(s) containing fn, if any.123 It then checks the FILEDATES 
property for each file to see if the version that was originally loaded 
still exists.124 If the file that was originally loaded no longer exists, 
but there is a different version of the file on that directory, 
editloadfns? prints " ........ can't fin d" followed by the file name, 
and tl1Cn uses the version that it could find. Similarly, if the 
original version is found, but a newer version is also found, 
editloadfns? prints ""'**"'Note: <filename> is not the 
newest version" and then uses the newest version. 

Having decided which file the function is on, if askflg = NIL, 
editloadfns? prints the value of str followed by the name of the file. 
and returns the name of the file. If askflg = T, editloadfns? calls 
askuser giving list[fn;str;filename] as mess, the message to be 
printed. If askuser returns Y, editloadfns? returns the filename. If 
str=NIL, "loading from" is used. 

editloadfns? is used by the editor, loadfns (when file name is not 
supplied), by prettYprint, and by dwim. 

replaces all occurrences of from by to in the definition of fn. If fn 
is an expr,changename performs nlsetq[esubst[to;from;getd[fnJ]]. If 
fn is compiled. changename searches the literals of fn (and all of its 
compiler generated sub func tions), replacing each occurrence of from 
with toPS 

The value of changename is fn if at least one instance of from was 
found, otherwise NIL. 

changename is used by break and advise for changing calls to fnl to calls to fnl- IN-fn2. 

editracefn[com] is available to help the user debug complex edit macros, or 
subroutine calls to the editor. If editracefn is set to T. the function 
editracefn is called whenever a command that was not typed in by 
the user is about to be executed, giving it that command as its 
argument. However, the TRACE and BREAK options described 
below are probably sufficient for most applications. 

+ 123 If there is more than one file, editloadfns? asks the user to indicate which file. 

+ 124 

+ 
+ 

In the case that !l~ == T and the whereis package (Section 24) has been loaded. files(s) may be found that have not 
been loaded or otherwise noticed, and thus will not have FILEDATES property. In this case, editloadfns7 does not 
do any version checks. but Simply uses the latest version. 

125 Will succeed even if fro!!.! is called from m via a linked call. In this case, the call will also be relinked to call,!9 
instead. 

9.64 



Editor Functions 

If editracefn is set to TRACE, the name of the command and the 
current expression are printed. If editracefn=BREAK, the same 
information is printed, and the editor goes into a break. The user 
can then examine the state of the editor. 

editracefn is initially NIl. 

9.65 





Index for Section 9 

(A e1 em) (edit command) ................... . 
AFTER (in INSERT command) (in editor) ...•....... 
AFTER (in MOVE command) (in editor) .......•...•. 
(B e1 em) (edit command) ................... . 
BEFORE (in MOVE command) (in editor) ........... . 
(BELOW com x) (edit command) .....•.........•.... 
(BELOW com) (edit command) •.................•... 
(BF pattern T) (edit command) ......•......•..... 
BF (edit command) .•..••.•........•.............. 
(BI n m) (edit command) ......•........••........ 
(BI n) (edit command) ....•.........•...•........ 
(BIND. coms) (edit command) ••.•.....••.•......• 
(BK n) (n a number, edit command) ............. .. 
BK (edit command) .......•......•....••.......... 
BLOCKED (printed by editor) ........•.•.......... 
(BO n) (edit command) ....••.•...•••.......•..... 
BY (in REPLACE command) (in editor) •.•••••••.••. 
CAN'T ~ AT TOP (printed by editor) •••..•........ 
CAP (edit command) .............•..••....•.••.... 
(CHANGE @ TO ... ) (edit command) ............... . 
CHANGECHAR (prettyprint variable/parameter) 
CHANGENAME[FN;FROM;TO] ...•......••••.••••••.•••. 
CHANGESARRAY (system variable/parameter) ....••.• 
CL (edit command) .•.....•..•.•...•.....••..•..•. 
commands that move parentheses (in editor) 
comment pointers ......•..•.....••..••.....•..... 
(COMS xl ... xn) (edit command) ................ . 
(COMSQ . coms) (edit command) .................. . 
continuing an edit session ..............••.•.•.. 
control-A (TOPS-20) (edit command) .•..•..•..•... 
control-D ...................................... . 
control-E ...................................... . 
control-L (TOPS-20) (edit command) .••••.•..•.... 
control-X (edit command) ...................... .. 
control-Z (edit command) ...................... .. 
current expression (in editor) •.•••.••.••....... 
o (edit command) .••.....•...•.....•••••••..•.•.. 
DEFAULTINITIALS (editor variable/parameter) 
DELETE (edit command) ..••.•.•.••..••.•.••.•..... 
(DELETE. @) (edit command) ..•...•....••••...... 
DESTINATION IS INSIDE EXPRESSION BEING MOVED 

(printed by editor) ...................... .. 
DIFFERENT EXPRESSION (printed by editor) •.••••.. 
DO (edit command) ....•......•.•..•.•...••....•.. 
OW (edit command) ....•.....•.•.••.•....•••.•.... 
DWIMFLG (dwim variable/parameter) ••••...•....... 
(E x T) (edit command) .....•....•............... 
(E x) (edit command) ...•....•••.•....••.••..•... 
E (edit command) ...•..••.•.•.•.••..•............ 
edit chain ...................... , .............. . 
edit commands that search •••...•••••....•....... 
edit commands that test ...••....•......••..••... 
ed i t macros ..........•••...•••.................. 
EDIT (printed by editor) ••..••....•....•.••••... 
EDITCALLERS[ATOMS: FILES: COMS] ..••......•.•...•.. 
EDITCOMSA (editor variable/parameter) .•••••••... 

INDEX.9.t 

Page 
Numbers 

9.26.9 
9.27 
9.31 
9.26,9 
9.31 
9.20 
9.U 
9.18 
9.18.8 
9.34.6 
9.34 
9.46 
9.13 
9.12.7,13 
9.55 
9.34.6 
9.27 
9.12.3 
9.50 
9.%7 
9.25 
9.64 
9.U 
9.52 
9.33-35 
9.53 
9.43 
9.43 
9.48-49 
9.14 
9.47 
9.2 
9.14 
9.14 
9.14 
9.2.3,6,8-14,16-23 
9.54 
9.59 
9.26.9.Z4 
9.28 

9.31 
9.55 
9.52 
9.53 
9.56,59.61 
9.42 
9.42 
9.41.7,42 
9.3.5,8-14,16-23 
9.14-22 
9.43 
9.45-46 
9.62 
9.60 
9.66.57 



EDITCOMSL (editor variable/parameter) •..•.•.•... 
EDITOATE[OLDATE: fNIlLS] .•.•..•..•..••...••••..•• 
EOITDATE?{COMMENT] ............................. . 
EDITDEFAULT ••...........•.•..•.....•....•...•..... 
EDITE[EXPR;COMS:ATM:TYPE:IFCHANGEDFN] ••......... 
EDITF[NAME:COMl:COM2: ... :COMn] NL- ............. . 
EDITFINDP[X~PAT:FLG] ......•.•••..••....•........ 
EDITFNS[NAME:COMl:COM2: ... :COMn] NL- ...•.•..•... 
EDITFPAT{PAT; FLG] ...•.•.•..••....•.....••.•..•.. 
editing compiled code .....•••.••..••..•.•••.•••• 
EDITL[L:COMS:ATM:MESS;EDITCHANGES] ......••..•••• 
EDITLOADFNSfLG (editor variable/parameter) 
EDITLOADFNS?[FN:STR;ASKfLG:FILES] ....•••..•....• 
EDITLO[L;COMS:MESS:EDITLFLG] ••.•.•.•...•••••.•.. 
EDITP{NAME:COM1:COM2: ... :COMn] NL- •••••••••••... 
EDITQUIETFlG (editor variable/parameter) ..•.•.•. 
EDITRACEfN ...................................... . 
EDITUSERFN[COM] •••.•..•••.••••••••.•••••..•..... 
EDITV[NAME:COM1:COM2: ... :COMn] NL- ....••••.•.... 
EDIT-SAVE (property name) .••••.•.••••....••••... 
EDIT4E[PAT;X;CHANGEFLG] .•....•••••••••••..••.••• 
EF (edit command) .•••.•.•••••••••••••••••• , ••••• 
(EMBED 8 IN ... ) (edit command) ................ . 
EP (-edit command) •••••..••••••••.••.•••.•••••..• 
errors (iit editor) •..........••••••••.••••..•••• 
ESUBST[NEW;OLD:EXPR:ERRORFlG:CHARFlG] ••••••••••. 
EV (ed;t command) .......••...•..•......•..•..... 
EVAL (edit command) •.•.••.•••••••••••.•.••••..•• 
(EXAM. x) (edit command) ..................... .. 
EXPR (property name) ••.••••••••••••••••••••••••• 
(EXTRACT 81 from. @2) (edit command) •••.••••••• 
(F pattern N) (edit command) .•••••••.••••••••..• 
(F pattern n) (n a number, edit command) •.•••... 
(F pattern T) (edit command) .................. .. 
(F pattern) (edit command) .••••••• , •.•••..•••••. 
f pattern (edit command) ••••••••••. " ••••••••••• 
F (edit command) ... " .•...•..••............•..•... 
FINDCALlERS[ATOMS: FILES] ....................... . 
FIXEDITDATE[EXPR] ••••••••••••••••••••••••..• , •.. 
FOR (in INSERT command) (in editor) •••.••••.•••. 
FROM (in EXTRACT command) (in editor) ••••••.•••• 
(FS . patterns) (edit command) .•.••••.•••....••• 
(F= expression flg) (edit command) •.••••••..••.. 
generalized NTH command (in editor) .••..•.••.••. 
GETD (edit command) ..••.•..••••.•••••••••.•••..• 
GETVAL (edit command) .......................... . 
GET- (edit command) •....•..•.•.••••••••••••.•••• 
(GO label) (edit command) ...................... . 
HERE (in edit command) ..•.......•.•....•........ 
history 1 ist ..............• , ....•.•...•...•..•.. 
(I c xl ..• xn) (edit command) ................. . 
(IF x comsl coms2) (edit command) •••.•••••..•••• 
(IF x comsl) (edit command) •.•.••••••••••..••.•• 
(IF x) (edit command) ......................... .. 
implementation of structure modification comm.ands 

(in editor) ............................... . 
IN (in EMBED command) (in editor) .............. . 

INDEX.9,2 

Page 
Numbers 

9.66.57 
9.59 
9.59 
9.66.57-58 
9.61,1,61 
9.58.1,59,61 
9.63 
9.69,60 
9.63 
9.64 
9.62 
9.59 
9.64 
9,63 
9.61,1 
9.15 
9.64,65 
9.56 
9.61,1 
9.47-48 
9.63 
9.50 
9.31 
9.50 
9.2 
9.63 
9.50 
9.42 
9.44 
9.58-60 
9.30 
9.17 
9.17 
9.17 
9.18 
9.17 
9.11.4-5 
9.61 
9.59 
9.27 
9.30 
9.18 
9.18 
9.21.33.40 
9.53 
9.42 
9.53 
9.19 
9.28 
9.48,54 
9.42 
9.43 
9.44 
9.43 

9.25-26 
9,31 



INITIALS (editor variable/parameter) ........... . 
INITIALSLST (editor variable/parameter) ........ . 
(INSERT '" AFTER. @) (edit command) .......... . 
(INSERT .,. FOR. @) (edit command) ............ . 
JOINC (edit command) ........................... . 
LASTAIL (editor variable/parameter) ............ . 
LASTVALUE (property name) ...................... . 
LASTWORD (dwim variable/parameter) ............. . 
(LC . @) (edit command) ........................ . 
(LCL . @) (edit command) ...................... .. 
(LI n) (edit command) .......................... . 
line-feed (edit command) ....................... . 
LISPX[LISPXX;LISPXID;LISPXXMACROS;LISPXXUSERFN; 

LISPXFLG] ................................. . 
(LO n) (edit command) ......................... .. 
location specification (in editor) ............. . 
LOCATION UNCERTAIN (printed by editor) ......... . 
(LOWER x) (edit command) ........•............... 
LOWER (edit command) ........................... . 
(LP . coms) (edit command) ..................... . 
(LPQ . coms) (edit command) .................... . 
L-CASE[X; FLG] .................................. . 
M (edit command) ............................... . 
macros (in editor) ............................. . 
(MAKE argname exp) (edit command) .....•.•..•.... 
(MAKEFN (fn . actualargs) arglist n1 n2) 

(edit command) ............................ . 
(MARK atom) (edit command) ..................... . 
MARK (ed it command) ............••..•............ 
MARKLST (editor variable/parameter) .....•....... 
MAXLEVEL (editor variable/parameter) ........... . 
MAXLOOP EXCEEDED (printed by editor) ........... . 
MAX LOOP (editor variable/parameter) .....•....... 
(MBD e1 ... em) (edit command) ....•............. 
(MOVE @1 TO com. @2) (edit command) ........... . 
(N e1 ... em) (edit command) .................. .. 
(n e1 ... em) (n a number, edit command) ...... .. 
(n) (n a number. edit command) .•................ 
n (n a number. edit command) ................... . 
NEGATE (edit command) .......................•.•. 
(NEX x) (edit command) ......................... . 
NEX (edit command) ............................. . 
NIL (edit command) ............................. . 
NOBIND ..................•..•.................... 
NOT BLOCKED (printed by editor) ................ . 
NOT EDITABLE (error message) ................... . 
NOTHING SAVED (printed by editor) .............. . 
(NTH n) (n a number. edit command) ............. . 
(NTH x) (edit command) ......................... . 
(NX n) (n a number. edit command) .............. . 
NX (edi t command) .............................. . 
OCCURRENCES (printed by editor) .•............... 
OK (edit command) ............................... . 
(ORF . patterns) (edit command) ...•............. 
(ORIGINAL. coms) (edit command) •..•....•....... 
(ORR comsl ... comsn) (edit command) ....•.....•. 
(P m n) (edit command) •............•..•.••...... 

INOEX.9.3 

Page 
Numbers 

9.59 
9.59 
9.27 
9.27 
9.51 
9.11,17.63 
9.48 
9.61 
9.19 
9.19 
9.34,6 
9.14 

9.41.48 
9.34,6 
9.19,43 
9.11 
9.50 
9.50 
9.44 
9.44 
9.50 
9.45 
9.45-46 
9.54 

9.53 
9.22 
9.22 
9.22,63 
9.16,18 
9.44 
9.44 
9.30 
9.31-33 
9.24 
9.24,4 
9.24,4 
9.11.2 
9.51 
9.21 
9.21 
9.62.43 
9.61 
9.55 
9.59,61 
9.55 
9.14 
9.21 
9.12 
9.12,6 
9.44 
9.47.51.62 
9.18 
9.45-46 
9.44 
9.40 



(P m) (edit command) .......................... .. 
P (edit command) •••••••••••••••••••••••••••••.•. 
pattern match (in editor) ••••••••••••••••••••••• 
(pattern •• @) (edit command) ••••••••••••.•••••• 
PP (edit command) ••••••••••••••••••••••••••••••• 
PPT (ed i t command) •••••••••••••••••••••••••••••• 
PPV (ed it comman d) •••••••••••••••••••••••••••••• 
PP* (edit command) ••••••••.••••••••••••••••••••• 
prompt character •••••••••••••••••••••••••••••••• 
PROP (printed by editor) •••••••••••••••••••••••• 
Q (edit command) ••••••••••••••• ' •••••••••••••••• 
R (edit command) •••••••••••••••••••••••••••••••• 
(RAISE X) (edit command) •••••••••••••••••••••••• 
RAISE (edit command) .......................... .. 
(RC x y) (edit command) ••••••••••••••••••••••••• 
(ReI x y) (edit command) •••••••••••••••••••••••• 
READLINE(RDTBL:LINE:LISPXFLG] ••••••••••••••••••• 
REPACK (edit command) ••••••••••••••••••••.•••••• 
(REPACK @) (edit command) ••••••••••••••••••••••• 
(REPLACE @WITH ••. ) (edit command) ••••••••••••• 
(RI n m) (edit command) ........................ . 
(RO n) (edit command) ••••••••••••••••••••••••••• 
(Rl x y) (edit command) ........................ . 
(S var . @) (edit command) •••••••••••••••••••••• 
SAVE (ed it command) ••••••••••••••••••••••••••••• 
search algorithm (in editor) •••••••••••••••••••• 
SETTERMCHARS(NEXTCHAR:BKCHAR:LASTCHAR; 

UNQUOTECHAR;2CHAR;PPCHAR] ••••••••••• 
(SHOW. x) (edit command) ••••••••••••••••••••••• 
Single-stepping a program ••••••••••••••••••••••• 
spelling correction ••••••••••••••••••••••••••••• 
spell ing 1 ists •••••••••••••••••••••••••••••••••• 
(SPLITC x) (edit command) ••••••••••••••••••••••• 
STOP (ed i t command) ••••••••••••••••••••••••••••• 
structure modification commands (in editor) 
(SURROUND @ IN .•• ) (edit command) •••••••••••••• 
(SW n m) (edit command) ••••••••••••••••••••••••• 
(SWAP @1 @2) (edit command) ••••••••••••••••••••• 
SWAPC (ed i t command) •••••••••••••••••••••••••••• 
termina 1 •••••••••••••••••••••••••••••••••••••••• 
TEST {edit command} ••••••••••••••••••••••••••••• 
THRU (ed it command) ••••••••••••••••••••••••••••• 
time stamp package •••••••••••••••••••••••••••••• 
TO (edit command) ••••••••••••••••••••••••••••••• 
TTY: (edit command) ••••••••••••••••••••••••••••• 
TTY: (printed by editor) •••••••••••••••••••••••• 
UNB LOCK (ed it comman d) •••••••••••••••••••••••••• 
UNDO (edit command) •••••••••••••••••••••••••••.• 
undoing (in editor) •••••••.••••••••••••••••••••• 
UNDOLST (editor variable/parameter) ••••••••••..• 
UNDONE (printed by editor) •••••••••••••••••••••• 
UNFIND (editor variable/parameter) •••••••••••••• 

UP (edit command) ••••••••••••••••••••••••••.•••• 
UPFINDFLG (editor variable/parameter) ••••••••••• 
USERMACROS (editor variable/parameter) •••••••••• 
USERMACROS (file package command) ••••••••••••••• 

INDEX.9.4 

Page 
Numbers 

9.40 
9.40.2 
9.14.15-16.63 
9.21 
9.40.2 
9.41 
9.41 
9.41 
9.1 
9.58 
9.54 
9.38.5 
9.50 
9.50 
9.39 
9.39 
9.56 
9.51 
9.51 
9.27 
9.34.6 
9.34.6 
9.39 
9.23 
9.47,49.62 
9.16-17 

9.14 
9.44 
9.42 
9.56-57.59,61 
9.56-57.59 
9.51 
9.47.51.62 
9.24-40 
9.31 
9.39-40 
9.40 
9.51 
9.41 
9.55 
9.35-38 
9.59 
9.35-38 
9.49.44,47 
9.49 
9.55 
9.64,7 
9.64.7.24.55 
9.64,47.55,63 
9.54 
9.23,17,27-28,30-33, 

47-48,53,63 
9.10.9.11,17,28 
9.29.17-18 
9.46 
9.46,56 



USERWORDS (dwim variable/parameter) .•........... 
U-CASE[X] ••..•...........••........•.....•..•... 
whereis package ..........••.......•.•...••.•.... 
WITH (in REPLACE command) (in editor) ........••. 
WITH (in SURROUND command) (in editor) •.....••.. 
(XTR . @) (edit command) ......•..••..•....••••.. 
~ (change character) .....•.....•............•... 
IE (edit command) .........•..................... 
IF (,edit command) ..........•..•••.•.....•...•... 
IN (edit command) .......•...•.•........•.•.•..•. 
INX (edit command) ..........••.•••.••....•..•••. 
I UNDO (ed it comman d) .••••....••.•.••••.••.•••••. 
10 (edit command) •••.•.••....•.......•..•••...•. 
##[COMS] NL* .•.....•.•......•..•.•.••.•..••••••. 
## (in INSERT. REPLACE. and CHANGE commands) 
$ «esc» (in edit pattern) ......•.....••.•..•.. 
$ «esc» (in R command) (in editor) ..••.•.••... 
$ «esc>. in R command) (in editor) •••••...••••• 
$BUFS «esc>BUFS) (prog. asst. command) .••...••. 
$$ (two <esc>s) (in edit pattern) .•.•.••.••••.•• 
& (in edit pattern) •..•.•.•..••......••..•.•.•.. 
& (printed by editor) ••...••••••••••••••.••••••• 
* (in MBD command) (in editor) ....••........•... 
* (printed by editor) •....•....••...••.•.•••••.• 
(* . x) (edit command) .••.•••••..•••....•..••••. 
*ANY* (in edit pattern) .•••.••.•••••••.•.••••••. 
**COMMENT** (printed by editor) •..•.•••.•.•••..• 
**COMMENT**FLG (prettyprint variable/parameter) 
(-n el ... em) (n a number. edit command) ...... . 
-n (na number. edit command) ••...•......•••.... 

(in edit pattern) ..••••...••..•..•....••.••.• 
(printed by editor) ......................... . 

-> (printed by editor) ..•••••...••••.•••••..•••. 
(edit command) •••.••••.•.•••..••..•...•••..•. 
(in edit pattern) •••.•....•••.•.••..••.••.••. 

... (in edit pattern) ••••. ' •••••.•••••.••••.•.... 

... (printed by editor) ........................ . 
o (edit command) ............................... . 
(2ND . @) (edit command) ...................... .. 
(3RD . @) (edit command) .••..•..•••...•.•..••..• 
8 (instead of left parenthesis) •.••••••...••••.. 
(: el ... em) (edit command) ......••••.•..•.•... 
= (printed by editor) .......................... . 
=E (printed by editor) ......................... . 
=EDITF (printed by editor) ••....•...••....•••... 
=EDITP (printed by editor) ••••..••••.•.••.....•. 
=EDITV (printed by editor) ••••••••••••••.•.•.••. 
== (in edit pattern) .•••..•.•.•••••....•••..•••. 
7 (edit command) •.••.••••.•..••••..•.••.•.•..•.. 
7 (printed by editor) .......................... . 
7= (edit command) ..•..•.••••..••..••••.••.••••.. 
@ (location specification) (in editor) ..••.....• 
(@1 THRU) (edit command) ...................... .. 
(@1 THRU (2) (edit command) .................... . 
(@1 TO) (edit command) ........................ .. 
(IH TO (2) (edit command) ...................... . 
(\ atom) (edit command) ........................ . 

INDEX.9.6 

Page 
Numbers 

9.59.61 
9.50 
9.64 
9.27 
9.31 
9.29 
9.25 
9.52 
9.52 
9.52 
9.13 
9.55 
9.12 
9.42.19 
9.28 
9.8.15 
9.38 
9.39 
9.5 
9.15 
9.8.14 
9.2 
9.30 
9.1 
9.53 
9.14 
9.40 
9.41 
9.24.4 
9.11.2 
9.8.15 
9.2 
9.39 
9.21 
9.15 
9.15-16 
9.9-10 
9.12.3 
9.20 
9.20 
9.57 
9.26.9 
9.8 
9.57 
9.61 
9.59 
9.59 
9.15 
9.40.2 
9.2 
9.41 
9.19 
9.37 
9.35 
9.37 
9.35 
9.22 



\ (edit command) 
\P (edit command) 
t (edit command) 
(~ pattern) (edit 
~ (edit command) 
.~~ (ed it command) 

command) 

INDEX.9.6 

Page 
Numbers 

9.23,8,27 
9.23,8,41 
9.12,3 
9.20 
9.22 
9.22 



SECTION 10 

ATOM, STRING, ARRAY, AND STORAGE MANIPULATION 

10.1 PNAMES AND ATOM MANIPULATION 

The term "print name" (of an atom) in LISP 1.S referred to the characters that were output 
whenever the atom was printed. Since these characters were. stored on the atom's property list 
under the property PNAME, pname was used interchangeably with "print name .... In Interlisp, all 
pointers have pnames, although only literal atoms and strings have their pname exp1icit1y.:~tored. 

The ~name of a pointer are those characters that are output when the pointer is printed using 
prinl. 

e.g., the pname of the atom ABC%{D2 consists of the five characters ABC(D. Thepname of the list 
(A B C) consists of the seven characters (A B C) (two of the characters are spaces).· . 

Sometimes we will have occasion to refer to the prin2-pname. 

The prin2-pname are those characters output when the co"espontiing pointer is printed using prin2. 

Thus the prin2-pname of the atom ABC%(D is the six charactersABC%(D.3 

1 

2 

3 

except that for the putposes of the functions described in this chapter, ie., unpack, nchars, etc. the prinl-pname of 
an integer is defined as though radix = 10. Note that integers will stilt be printed by prinl using the current radix, as 
described in Section 14. However, we want pack(unpack(X911 to always be X9 (and not sometimes XU) regardless 
of the setting of the radix. The user can force the prinl-pname of an integer to use current radix by setting the + 
variable prxtlg to T (initially NIL). e.g. with radix 8 and prxflg=NIL. nchars(9J=1. but with prxflg=T, nchars[9]=2. + 
(since 9 would now be printed by prinl as 11). Note that with radix[8J and either setting of ptxflg. nchars[9 TL + 
meaning use prin2-pname. would return 3. since 9 would print as UQ. + 
% is the escape character. See Sections 2 and 14. 

Note that the p'rin2-pname also depends on what readtable is being used (see Section 14), since this detennines 
where %'s will be inserted. Note also that the prin2-pname of an integer depends on the setting of radix. 

10.1 



* 
* 

pack[x] 

Section 10: Atom. String. Array, and Storage Manipulation 

If ! is a list of atoms, the value of pack is a single atom whose 
pname is the concatenation of the pnames of the atoms in ,!, e.g., 
pack[(A BC OEF G)]=ABCOEFG. If the pname of the value of 
pack[x] is the same as that of a number, pack[x] will be that 
number, e.g., pack[ (1 3.4)]= 13.4. pack[ (1 E -2)]=.01. 

Although ! is usually a list of atoms, it can be a list of arbitrary 
Interlisp pointers. The value of pack is still a single atom whose 
pname is the same as the concatenation of the pnames of all the 
pointers in !, e.g., 
pack[(A B)"CO")] = %{A% B%)CO. 

In other words, mapc[x;prinl] and prinl[pack[xll always produce the 
same output.4 In fact, pack actually operates by calling print to 
convert the pointers to a stream of characters (without printing) and 
then makes an atom out of the result. If! is not a list or NIL, 
pack generates an error, ILLEGAL ARG. 

Note: In lnterlisp-/O, atoms are restricted to < 127 characters. Attempting to create a larger 
atom either via pack or by typing one in (or reading from a file) will cause an error, ATOM TOO 
LONG. 

+ pack*[x] 
+ 

lambda, nospread version of pack. e.g. (PACK*' < OIR • » is 
equivalent to (PACK (LIST' < OIR '>)) but avoids the conses. 

* 
* 

unpack[x ;flg;rdtbl] The valfe of unpack is the pname of .! as a list of characters 
(atoms), e.g., 

unpack[ABC] = (A B C) 
unpack["ABC(O"] = (A 8 C %( D) 

In other words prinl[x) and mapc[unpack[x];prin1] produce the 
same output. 

If .f!g = T, the prin2-pname of ! is used, (and computed with 
respect to rdtbl) e.g., unpack[ II AB C ( 0 II : T] .. 

(%" ABC %( 0 %"). 

Note: unpack/x} per/orms .!l conses, where.!l is the number of characters in the pname of ~ 

4 

5 

Except for integers when radix is other than 10, e.g., mapc[(X 9):PRIN1] produces Xll when radix is 8. but 
pack[(X llQ)]-X9. (See footnote 1.) Also. mapc[(051);PRIN1} and PRIN1(pack[(051)D produce different 
results because pack[(O 5 1)] is 51. 

There are no special "character-atoms" in Interlisp, i.e .• an atom consisting of a single character is the same as any 
other atom. 

10.2 



Pnames and Atom Manipulation 

dunpack[x;scratchlist:flg;rdtbl) a destructive version of unpack that does not perform any conses 
but instead uses scratchlist to make a list equal to unpack:[x ;flg). If 
the p-name is too long to fit in scratchlist, dunpack calls unpack 
and returns unpack[x;flg). Gives an error if scratchlist is not a list. 

nchars[x;flg;rdtbl] 

nthchar[x;n;flg;rdtbl) 

packc[x] 

chcon[x; flg;rdtbl) 

chcon1[x] 

dchcon[x ; scratchlist;flg; rdtbl] 

character[n] 

fcharacter[ nJ 

gensym[char] 

number of characters in pname of !.6 If fig = T. the prin2-pname is 
used. E.g. nchars["ABC"]=3. nchats["ABC";T]=5. 

Value is nth character of pname of!. Equivalent to 
car[nth[unpack[x;flg);n]] but faster and does no conses. n can be 
negative, in which case counts from end of pname, e.g" -1 refers· to 
the last character, -2 next to last, etc. If n is greater than the 
number of characters in the pname, or less than minus that 
number, or 0, the value of nthchar is NIL. 

like pack except ! is a list of character codes, 7 e.g.. ~ 
packc[(70 79 79)]=FOO. 

like unpack, except returns the pname of ! . as a list of character 
codes, e.g., chcon[FOO] = (7079 79). If !Jg=T, the prin2-
pname is used. 

returns character code of first character of pname of !, e.g., 
chcon1[FOO] ;: 70. Thuschcon[x) could be written as 
mapcar[unpack[x];chcon1]. 

similar to dunpack 

n is a character code . . Value is the atom having the corresponding 
single character as its pname,8 e.g., character(70] = F. Thus, 
unpack[x] could be written as mapcar[chcon[x);characterJ. 

fast version of character that compiles open. 

Generates a new atom of the form xnnnn, where !=char (or A if 

6 Both nthchar and nebars work much faster on objects that actually have an internal representation of their pname, 
i.e., literal atoms and strings. than they do on numbers and lists. as they do not have to simulate printing. 

7 Interlisp-lO uses ASCII code. 

8 See footnote 2. 

10.3 

nt t-.-{"'T--r."""~"":;';:\;-·~..; ,h.,... "",j',,;-i~'l .f;:-.'i"-,1-~:;',¥"~- -

, 



* 
* 
* 

+ 
+ 
+ 

Section 10: Atom, String. Array, and Storage Manipulation 

char is NIL) in which each of the !l'S is a digit. 111US, the first one 
generated is A0001, the second A0002, etc. gensym provides a 
way of generating new atoms for various uses within the system. 
The value of gennum, initially 10 0 0 0 , determines the next 
gensym, e.g., ifgennum is set to 10023, gensymU=A0024. 

The term gensym is used to indicate an atom that was produced by the function gensym. Atoms 
generated by gensym are· the same as any other literal atoms: they have property lists, and can be 
given function definitions. Note that the atoms are not guar~nteed to be new. 

For example, if the user has previously created AP012, either by typing it in, or via pack or 
gensym itself, when gennum gets to 10011, the next value returned by gensym will be the A0012 
already in existence. 

mapatoms[fnl 

l-case[x;tlg] 

u-case[x} 

u-casep[xJ 

Applies fn to every literal atom in the system, e.g., 
mapatoms[(LAMBDA{X) {AND (SUBRP X) (PRINT X»)] will 
print every subr. Value of mapatoms is NIL. 

value is lower case version of!. If f!g is T. the first letter is 
capitalized, e.g.,l-ease[FOO;T] ;: Foo, I-ease[FOO] = foo. If! 
is a string, the value of I-case is also a string, e.g., I-ease[" FI LE 
NOT FOUND";T] = "File not found". If! is a list, result is 
a new list in which I-case is computed for each corresponding 
element and non-NI L tail of the original list. 

Similar to l-case 

Value . is T, if ! contains no lower case letters, e.g. u
casep[$FOO)= T, u-casep[Foo) = NIl. u-casep is handcoded and 
very efficient. 

10.2 STRING FUNCTIONS 

stringp{x} 

strcqual(x;y] 

mkstring[xJ 

rstring(-;-J 

Is ! if! a string, NI L otherwise. Note: if! is a string, nlistp{x] is 
T, but atom[x] is NIL. 

Is ! if ! and y. are both strings and equal, i.e., print the same, 
otherwise NI L. Equal uses strequal. Note that strings may be 
equal without being £g. 

Value is string corresponding to prinl-pname of!. 

Reads a string - see Section 14. 

10.4 



substring[x;n;m;oldptr] 

gnc[x] 

gte[x] 

rplstring[x;n;y] 

mkatom[x] 

String Functions 

Value is the substring of .?f consisting of the nth through mth 
characters of!. If m is NIL. the substring is the nth character of 
! thru the end of!. !! and !!! can be negative numbers. as with 
nthchar. Returns NIL if the substring is not well defined, e.g., .nor 
m > nchars[x] or < minus[nchars[x]] or n corresponds to a 
character in ! to the right of the character .indicated by .!n. 

If! is not a string, equivalent to substring[mkstring[x];n;m), except 
substring does not have to actually· make the string if! is a literal 
atomY For example, substring[ (A B C); 4 : 6] = "B C , •. If oldptr + 
isa string pointer, it is reused, otherwise substring makes a new + 
string pointer. + 

get next £haracter of string!. Returns the next character of the 
string, (as an atom), and remOves the character from the string. 
Returns NIL if! is the null string. If! isn't a string, a string is 
made. Used for sequential access to characters of a string. 

Note that if ! is a substring of I, gnc[x] does not remove the 
character from I, i.e .• gn£docsn't physically change the string of 
characters, just the pointer and the byte count 10 

gets !ast £haracter. of string!. Above remarks about gnc also 
supply to &1£. 

lambda nospread function. Concatenates (copies of) any n!Jmber of 
strings. The arguments are transformed to strings if they aren't 
strings. Value is the new string, e.g., 
concat["ABC" ;OEF; "GHI"] = "ABCOEFGHI". The value of 
concat[] is the null string, "". 

Rep!ace characters of string ! beginning at character .!! with string 
I. !! may be positive or negative. ! and I are converted to strings 
if they aren't already. Characters are smashed into (converted) !. 
Returns new!. Error if there is not enough room in ! for !. i.e., 
the new string would be longer than the original,u Note that if! is 
a substring of!;. !; will also be modified by the action of rplstrin.g. 

Creates an atom whose pname is the same as that of the string! or 

9 See string storage section that follows. 

10 

11 

See string storage section that follows. 

If X was not a string. ! will already have been partially modified since rplstring docs not know whether :i will "fit" 
without actually attempting the transfer. 

10.5 



. + subatom[x;n;mJ 
+ 

SEARCHING STRINGS 

Section 10: Atom, String, Array, and Storage Manipulation 

if !. isn't a string, the same as that of mkslring(xJ. e.g., 
mkatom[(A B C)] is the atom %(A% B% C%). In Interlisp-lO, if 
the atom would have > 126 characters, causes an error, ATOM TOO 
LONG. 

equivalent to mkatom{substring(x;n;m)), but does not make a. string 
pointer. 

strpos is a function for searching one string loo~ng for another. Roughly it corresponds to 
member, except that it returns a character position number instead of a taiL This number can then 
be given to substring or utilized in other· calls to ~. 

strposfpat;string;start;skip ;anchor;tail) 

EXAMPLE PROBLEM 

~ and string are both strings (or else they are converted 
automatically). Searches string beginning at character number start. 
(or else 1 if start isN I L) and looks for a sequence of characters 
equal to~. If a match is found, the corresponding· character 
position is returned, otherwise NIL, e.g., 
strpos["ABC" ,"XYZABCDEF"]=4 
strpos[ "ABC" , "XYZABCDEF"; 5]=NIl 
strpos[tlABC". "XYZA8COEFABC" ;5]=10 

skip can be used to specify a character in ~ that matches any 
character in string. e.g .. 
strpos["A&C&"; "XYZABCDEF" ;NIl;&]=4 

If anchor is T, ~ compares ~ with the·characters.·beginnillg 
at position start. or 1. If that comparison fails, ~ returns NIL 
without searching any further down string. Thus it can be used to 
compare one string with. some portion of another String, e;g., 
strpos[" ABC"; "XYZABCDEF"; NIL; NIL; T]=NIL 
strpos["ABC"; "XYZABCOEF"; 4; NIL t T]=4 

Finally. if tail is T, the value returned by ~ if successful is not 
the starting position of the sequence of characters corresponding to 
g but the position of the first character after that. i.e.. starting 
point plus nchars[pat) e.g .. 
strpos["ABC"; "XYZABCDEFABC"; NIL; NIL;Nll; T]=7. Note 
that strpos[ " A" ; .. A" ; NIL; NIL; NIL; T 1= 2 , even though "A It 
has only one character. 

Given the strings .!.. I. and ~. write· a funclion foo that will make a string corresponding to that 
portion of !. between I and ~ e.g., 
fOO["NOW IS THE TIME FOR All GOOD MEN"; "IS"; "FOR"] is It THE TIME " 

Solution: 
10.6 



String FunctiOllS 

(FOO 
[LAMBDA (X Y Z) 

(AND (SETQ Y (STRPOS Y X NIL NIL NIL T» 
(SETQ Z (STRPOS Z X V»~ 
(SUBSTRING X Y (SUBt Z]) 

strposl[a;str;start;neg] str is a string (or else it is converted automatically to a string), ~ is 
a list of characters or character codes.12 strposl searches str 
beginning at character number start (or else 1 ifstart=NIL) for one 
of the characters in~: If one is found. strposl returns as its value 
the corresponding character position, otherwise NIL. Rg., 
strposl[(A B C) ;"XYZBCD"]=4. If~=T, strposl searches for·a 
character' not on ~ e.g., 
strposl[(A B C); "ABCDEF";NIL;T]=4. 

If ~ is an array, it is treated as a bit table (see discussion of ... 
makebittable below) ... 

If ~ is not a bit table (array), strposl first converts it to a bit table using makebittable described 
below. If strposl is to be called frequently with the same list of characters, a considerable savings 
can be achieved by converting the list to a bit table once, and then passing the bit table to strposl 
as its first argument. 

makebittable[1;neg;a] makes a bit table suitable for use by strposl. ! isa list of characters 
or character codes, neg is the same as described for strposl. If ~ is 
not a suitable array, makebittable will create an array and return 
that as its value. Otherwise it uses (and changes) ~. . 

Note: if neg = T, strposl must call makebittable whether ~ is a list or an array. To obtain bit table 
efficiency with neg = T, makebittable should be called with neg = T, to construct the "inverted" 
table, and the resulting table (array) should be given to strposl with neg = Nt L • 

STRING STORAGE 

A string is stored in 2 parts: the characters of the string, and a pointer to the characters. The 
pointer, or "string pointer", indicates the byte at which the string begins and the length of the 
string. It occupies one word of storage. In Interlisp-10, the characters of the string are stored five 
characters to a word in a portion of the address space devoted exclusively to storing characters. 

Since the internal pname of literal atoms also consists of a pointer to the beginning of a string of 
characters and a byte count, conversion between literal atoms and strings does not require any 
additional storage for the characters of the pname, although one cell is required for the string 

12 If any clement of ~ is a number, it is assumed to be a character code. Otherwise, it is converted to a character code 
via chconl. Therefore. it is more efficient to call sLrposl with J a list of character codes. 

10.7 

... 

... 



Section 10: Atom, String, Array, and Storage Manipulation 

pointer.a 

Whcnthc conversion is done internally, e.g., as in substring, !!!PQ..s,or strposl, no additional storage 
is required for using literal atoms instead of strings. 

The use of storage by the basic string functions is given below: 

mkstring(xl 

substring(x;n;m] 

gnc(x] and. glc[x] 

concat[x 1;X 2 ~"-Xnl 

rplstring(x;n;y] 

x string 
x literal atom 
ether 

x string 
x literal atom 
other 

x string 
other 

args any type 

x string 

x other 
yany type 

no space 
new pointer 
new characters and pointer 

new pointer14 
new pointer 
new characters and pointer 

no space, pointer is modified 
like mkstring, but doesn't make much sense 

new characters for whole new string. one new 
pointer 

no new space unless characters are in. pname 
space (as result of mkstring(atom» in which case 
! is quietly copied to string space 
new pointer and characters 
type of y doesn't matter· 

10.3 ARRAY FUNCTIONS 

Space for arrays and compiled code are both allocated out of a common array space. Arrays of 
pointers and unboxed numbers may be manipulated by the following functions: 

array(n;p;vJ This function allocates a block of n + 2 words, of which the first two 
are header information. In Interlisp-10, the next p ..s.. n are cells 
which will contain unboxed numbers. and are initialized to unboxed 
O. The last n-p 2. 0 cells will contain pointers initialized with X. 
i.e .. both car and cdr are available for storing information, and each 
initially contain y. If t!. is HI L. 0 is used· (Le., an array containing 
all Interlisp pointers). The value of array is the array, also called an 
array pointer. If sufficient space is not available for the array, a 
garbage collection of array space is initiated. If this is unsuccessful 
in obtaining sufficient space, an error is generated, ARRAYS FUll. 

11 

14 

Exa!pt when the string is to be smashed by rplstring. ·In this case, its characters must be copied to avoid smashing 
the pname of the atom. ~ automatically perfonns this operation. 

except when substring is given a string pointer to reuse as its fourth argument Note that substring(string;l;-l} copies 
just the string poi Iller without copying the cbarack:rS. 

10.8 



_I -rl" E 

Array Functions 

Array-pointers print as #Il, where 11 is the octal representation of the pointer. Note that #nwill 
be read as a literal atom, and not an array pointer. 

arraysizc[a] 

arraytyp[a] 

arrayp[x] 

arraybeg[a] 

harray[n] 

harraysize[a) 

harrayp[x) 

swparrayp[x] 

elt[a;n] 

seta[a;n;v) 

Value is the size of array~. Generates an error, ARG NOT 
ARRAY t if ~ is not an array. 

Returns a value corresponding to second argument to array. In + 
Interlisp-lO, this is the number of unboxed array words of array ~. + 

Value is ! if! is an array pointer otherwise NIL. No check is 
made to ensure that! actually addresses the beginning of an array. 

if ~ is a pointer into the middle of an array, returns the pointer to + 
its beginning. Otherwise returns NIL. + 

Creates hash array of size n (see Section 7). + 

Value is the size of hash array ~. + 

Value is ! if! is a hash array (see Section 7). + 

Value is! if! is a swapp able array, NIL otherwise. 

Value is nth element of the array ~.15 elt generates an error, ARG 
NOT ARRAY, if ~ is not the beginning of an array.16 If n 
corresponds to the unboxed region of ~, the value of cIt is the full 
36 bit word, as a boxed integer. If n corresponds to the pointer 
region of ~, the value of eIt is the car half of the corresponding 
element. 

sets the nth element of the array~. Generates an error, ARG NOT 
AR RA Y t if ~ is not the beginning of an array. If!! corresponds to 
the unboxed region of ~, y must be a number, and is unboxed and 
stored as a full 36 bit word into the nth element of ~ If n 
corresponds to the pointer region of ~, y replaces the gr. half of the 
nth element. The value of seta is y. 

15 elt[a;l) is the first element of the array (actually corresponds to the 3rd cell because of the 2 word header). 

16 arrayp is true for pointers into the middle of arra~, but cit and seta must be given a pointer to the beginning of an 
array, i.e., a value of array. 

10.9 



Section 10: Atom, String, Array, and Storage Manipulation 

Note that seta and elt are always inverse operations. 

eltd{a;nJ 

setd[a;n;vl 

same as elt for unboxed region of i!, but returns cdr half of nth 
element, if!! corresponds to the pointer region of ~ 

same as seta for unboxed region of i!, but sets cdr half of nth 
clement, if !! corresponds to the pointer region of~. The value of 
seld is y. 

In other words, eltd and seld are always inverse operations. 

+ copyarray[ar] 
+ 

Creatt!s a new array of same size and. type as ar, i.e. same 
distribution of pointers and unboxed numbers, and with the same 
contents as ar. Value is new array. Generates an 
ARG NOT ARRAY error, if ar is not an array. 

+ 
+ 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

10.4 STORAGE FUNCTIONS 

The table below contains the built in Interlisp data types and their corresponding type number and 
type name. User data types are assigned type numbers beginning with 31. 

~number 
1 
2 
4 
5 
6 
7 
8 
9 

12 
16 
18 
20 
24 
28 
30 

~name 
ARRAYP 
STACK 
SWPARRAYP 
STACKP 
GC.BTAB 
ATOM. HASH 
LISTP 
VCELlP 
ATOM 
FLOATP 
FIXP 
SMALLP 
STRINGP 
ATOM. CHARS 
STRING.CHARS 

description 
arrays; compiled code 
machine code 
swapped' array handles 
stack pointers 
bit tables 
atom hash table 17 
list words 
value cells 
atoms 
floating point numbers . 
large integers 
small integers 
string pointers 
pname storage 
string storage 

+ typename[datum] 
+ 

Value is type name for the data type of datum. For user data types 
(Section 3), the type name is specified by the call to 
declaredatatype. For built in data types, lypename is one of the 
atums, LISTP, FLOATP, FIXP, STRINGP, LITATOM, 

+ 
+ 

+ 17 The atom hash table autonmtically expands by a specified number of pages each time it fills up. The number of 
+ pages is set via the function minhash. 'Inc initial setting is minhash[2) (room for 1024 new atoms). 

10.10 



'&'iI >y'" '$ 

SlorageFunctions 

STACKP, ARRAVP,18 SWPARRAVP ,SMAllP. + 

typenamep[datum;typename] True if the typename of datum is equal to typename. Compiles + 

typenamefromnumber[n) 

,open. + 

value is type name for type number !!, or NIL if!! is not a valid + 
type number, e.g. typenamefromnumber[30] = STRING . CHARS. + 

typenumberfromname[name) value is corresponding type number for ~, or NIL if name is + 

ntyp[datum] 

not a type . name, . e.g. + 
typenumberfromname(STRING. CHARS1=30.19 + 

Value is type number for the data type of datum, e.g., * 
ntyp[ ( A .B )] is 8, the type number for lists. * 

typep[datum;n] value is T, if the type nutnber of datum. is equal to !!. .'. * 

reclaim[type] Initiates a garbage collection of type !.Yru!, where ~ is either a * 
type name or type number. Value of reclaim is number of words * 
available (for that type) after the collection. 

Garbage collections. whether invoked directly by the user or indirectly by need for storage, do. not 
confine their activity solely to the data type for which they were called. but automatically collect 
some or all of the other types (see Section 3). 

gcgag[message] affects messages printed by garbage collector. If message = T , 
whenever a garbage collection is begun. "collecting" is printed, 
fo11owed by the type description of the type that initiated the 
collection.20 When the garbage collection is complete, two numbers 

18 

19 

20 

are printed: the number of words collected for that type, and the 
total number of words available for that type, i.e., allocated but not 
necessarily currently in use. Note that other types may also have * 
been collected, and had mOre storage assigned, as explained in * 
Section 3. * 

~.llilm~ distinguishes the five logical data types, REAOTABlEP. TERMTABlEP. CCOOEP. ARRAYP and + 
POINTER. INTO. ARRAY. SPACE, though they all have the same type number and share the same data space, + 

typenumberfroml!l!.me wilt accept REAOTABlEP. TERMTABlEP. CCOOEP, and ARRAYP. and return the same value + 
for each, which for Intcrlisp-10 is 1. Note however that typcnamefromnumber[1]=ARRAYP. + 

Note that this type description can be set via the function scttypedescription described below. + 

10.11 



+ gcmess(message# ;string] 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 

Section 10: Atom, String, Array, and Storage Manipulation 

Example: 

+-RECLAIM(18) 

collecting large numbers 
511, 3071 free cells 
3071 
+-RECLAIM(LITATOM) 

collecting atoms 
1020, 1020 free cells' 
1020 

If message = NIL, no garbage collection message is printed, either 
on entering or leaving the garbage collector. 

If message is a list, car of message is printed (using prinl) when the 
garbage collection is begun, and cdr is printed (using prinl) when 
the col1ection is finished. If message is a literal atom or string, 
message is printed when the garbage collection is begun, and 
nothing is printed when the collection finishes. 

If message is a number, the message is the same as for gcgag[TJ. 
except if the total number of free pages left after the collection is 
less than message, the number of free pages is printed, e.g., 

+-GCGAG(100) 
T 
+-RECLAIM() 

collecting lists 
10369, 10369 free cells. 87 pages left. 

The initial setting for gg@g is 40. 

The value of gg@g is its previous setting. 

ggmg is implemented in terms of the primitive gcmess which can 
be used to further refine garbage collection messages for specialized 
applications. The garbage collection message is actually composed 
of seven separate messages: 

1 2 
collecting l~rge numbers 

3 456 7 
511, 3071 free cells, 87 pages left 

message#l is the "collecting" string. If NIL, then neither it, nor 
the type dependent field (which is settable via settypedescription 
described below) is printed. 

message#2 is the carriage-return after the type-dependent field. 
l1lUS to simply print a string at ,the beginning of a garbage 
collection, perform gcmess[l] and gcmess(2;sLring). 

10.12 



Storage Functions 

message#3 is the .. , .. which comes after the number of cells + 
actually collected. If NI L, then neither it nor that number are + 
printed. + 

message#4 is the "free cells" which comes after the number of + 
cells that are now allocated. If NIL, neither it nor that number are + 
prin~d + 

message # 5 is the number of pages left below which the system + 
prints message#6. + 

message # 6 is the "pages left .. message. If NIL, neither it nor the + 
number of pages left are printed. + 

message#7 is the terminating carriage return. + 

gettypedescription[type] returns the type description string for ~, a type name or type + 
number. + 

seUypedescription[type;string] sets the type description string for ~ to be string. The type +. 
description is used in garbage collection messages and by storage + 
(described below). + 

minfs[n;type] Sets the minimum amount of free storage which will be maintained 
by the garbage collector for data types of type number or type 
name~. If, after any garbage collection for that type, fewer than 
g free words are present, sufficient storage will be added (in 512 
word chunks) to raise the level to g. 

If 1m = NIL. LIS T P is used, i.e., the minfs refers to list words. 

If g = NIL. minfs returns the current minfs setting for the 
corresponding type. 

A minfs setting can also be changed dynamically. even during a garbage collection, by typing 
control-S21 followed by a number, followed by a period.22 If the control-S was typed during a 
garbage collection, the number is the new minfs setting for the type being collected, otherwise for 
type 8, i.e .• list words. 

Note: A garbage collection of a "related" type may also cause more storage to be assigned to that 
type. See discussion of garbage collector algorithm, Section 3. 

21 

22 

control-X for Interlisp-10 on TOPS-20. 

When the control-S is typed. Interlisp immediately clears and saves the input buffer. rings the bell, and waits for 
input, which is terminatcd by any lion-number. 'Ine input buffcr is then rcstored, and the program continues. If the 
input was lenninatcd by other than a period, it is ignored. 

10.13 

* 



+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

storage[ flg;gcflg] 

t:STORAGE() 
TYPE 
ARRAYP 
STACK 
SWPARRAY 
STACKP 
GC.BTAB 
LISTP 
VCELLP 
LITATOM 
FLOATP 
FIXP 
STRINGP 
ATOM.CHARS 
STRING.CHARS 

SUM 

gctrp[n] 

gctrp[-1] 

conscount[n] 

Section 10: Atom, String, Array, and Storage Manipulation 

Prints amount of storage used by and assigned to the user, e.g., 

arrays 
stack, swap buffer 
swap array handles 
stack pointers 
gc bittable 
lists 
value cells 
atoms 
float numbers 
large numbers 
string pointers 
atoms have characters 
string characters 
(137 pages left) 

USED 
12754 
14336 
29 
o 
2048 
5016 
194 
2028 
1 
70 
173 
1594 
421 
38664 

ASSIGNED 
12800 
14336 
512 
512 
2048 
11776 
1024 
3072 
512 
2048 
512 
2048 
1024 
52224 

Note that the storage used by a particular type is only accurate 
immediately following a garbage collection of a related type. If 
~ = T, storage will perform the necessary garbage collections 
before printing its results. If !lg= T, includes storage used by and 
assigned to the system. Value is NIL. 

garbage £o11ection !!:aR. Causes a (simulated) control-H interrupt 
when the number of free list words remaining equals g, i.e., when a 
garbage collection would occur in g more conses. lne message 
GCTRP is printed, the function interrupt (Section 16) is called, and 
a break occurs. Note that by advising (Section 19) interruRt the 
user can program the handling of a &£!!:.Q instead of going into a 
break.23 

Value of &£!!:.Q is its last setting. 

will "disable" a previous &£!ill since there are never -1 free list 
words. &£!ill is initialized this way. 

gctrpO returns number of list words left, i.e., number of conses until 
next type LISTP garbage collection, see Section 21. 

conscount[] returns number of conses since Interlisp started up. If 
g is not NIL, resets conscount to g. 

23 For g(:\m interrupts, !!lEJI!ll2! is called with in!Yp~ (its third argument) equal to 3. If the user does not want to go 
into a break, the advice should still allow i!ttcrru.-PJ to be entered, but first set if!IYl2c. to ,1. This will cause interrupt 
to "quietly" go away by calling the function that was interrupted. The advice should not exit i!~terf\.lm via !!!turn. as 
in this case the function that was about to be called when the interrupt occurred would not be called. 

10.14 



Storage Functions 

c1oser[a;x] Stores! into memory location~. Both! and ~ must be numbers. + 

openr[a] Value is the number in memory location ~, i.e., boxed. + 

10.15 



--------
_-'"-.<~..,..;....:;.;A"~_ ~- ,.~ ,."'-~~-;'<".<_--i;:"',,".i$-



Index for Section 10 

ARG NOT ARRAY (error message) ••.•••••••••••.•••• 
ARRAY[N;P;V] SUBR •••••••••••••••••••.•..••••.••. 
array functions ••..••.••••.••••••••.••...•.••..• 
array header •••.••....••..•.•.•..••.••..•••...•. 
ARRAYBEG[A] SUBR •..•...•••.••••••.•••••••••••••• 
ARRAYP[X] SUBR ..•..•.•..•••..•..••••.••.•.••.•.• 
ARRAYS FULL (error message) •••••••.••••.•••••.•• 
ARRAYSIZE[A] ....••••..••••••••••.••••.•••••.•.•• 
ARRAYTYP[ARRAY] ••••..••...•.••••••.•••.••.•••••• 
atom hash table •••••••••••••••.•••••••••.••.•••• 
ATOM TOO LONG (error message) .•.•••••••••••••••• 
AOOOn (gensym) ••••••••••••••••••••••.••...•••.•• 
bell (printed by system) ••••••.••••..•••.••.•.•• 
CHARACTER[N] SUBR ••.••••...••.•••••.•..••••••••• 
character atoms ••••••..•••.••.•••••••••••••.••.• 
character codes ..•.•••.••••••..•••••.••••••.•••• 
CHCON[X;FLG;RDTBL] SUBR ••.•••••••••.•.•••••••••• 
CHCONl[X] SUBR •••••••••••••••••••••••••••••••••• 
CLOSER[A; X] SUBR .•••••••••••••.•••.••••••••...•• 
collecting (printed by system) .••••••••.••.•.••• 
compiled code ...•.•••••.••.•••••••••.•••.••••••• 
CONCAT[Xl;X2; •.• ;Xn] SUBR* •.•••.•••••••••••••••• 
CONSCOUNT[N] SUBR •••••••••••••••••..••••..•••..• 
control-H •.•.••••••••••••••••••••••••••••.•.•••• 
contro1-S .•••••••••••••••••••••••..•••.•••••.••. 
contro1-X (TOPS-20) •••.••••.••.•••••••.••••.•••• 
COPYARRAY[AR] ..••.••.••••••••••••••••••••.•••••• 
DCHCON[X;SCRATCHLIST;FLG;RDTBL] •••••••••••.••••• 
DUNPACK[X;SCRATCHLIST;FLG;RDTBL] •••••••••••••••• 
ELT[A;N] SUBR ••.•.••••••••••••.•••..•••••..•.•.• 
ELTD[A;N] SUBR .••••••••••••••••••••..••.••••..•• 
FCHARACTER[N] SUBR ••.•.•••••••.•.•.••••••••..••. 
garbage co 11 ect ion •.•••••••••••••••.••.•••.•.•.• 
garbage collection message •••••••••••...•••••... 
GCGAG[MESSAGE] .••..•.•••••••••••••.•••.•••.••••• 
GCMESS[MESSAGE#;STRING] SUBR •••.••..••..••.•...• 
GCTRP[N] SUBR .•••.••.•••••.••••••••••.••.••••..• 
GCTRP (printed by system) •••••••••••••••.•..•..• 
GENNUM (system variable/parameter) •.••...•.••..• 
GENSYM[CHAR] .••.•.•••...•.••••••.••••..•.•.••.•• 
GETTYPEDESCRIPTION[TYPE] •••••••..••••••••.••.••• 
GLC[X] SUBR •.•..•....•.••••••.•..••••••..•.••••• 
GNC[X] SUBR ••••••.••••.•••••••••••.•..•..••.•..• 
HARRAY[N] SUBR •••.•••••••••.••.•.•.•...•.•..•..• 
HARRAYP[X] ••...••••••••••••••••••••.••••.•.••.•• 
HARRAYSIZE[HARRAY] .••..•.•••••••.•••.•••.••••••• 
ILLEGAL ARG (error message) •••.•.•.•..••.•...•.• 
input buffer ......•.........•.•..•••••••••.••..• 
INTERRUPT[INTFN;INTARGS;INTYPE] •••••••••••••••.• 
1 itera1 atoms •••••••••••••••••••••••••••••.••••• 
lower case ••••••••.•••••••••••••••..••.•.•••..•• 
L-CASE[X;FLG] ••••.••••••••••••••••••••••.•••..•• 
MAKEBITTABLE[L; NEG ;A] ••.••••••••.••••••••••.•.•• 
MAPATOMS[FN] SUBR •.••...•••..•••••.••••••••••••• 
MINFS[N; TYPE] •••••••••••••••••••••••••••••.•..•• 
MKATOM[X] SUBR •••••••••••••••••••••••••••••••••• 

INDEX.I0.1 

------- -----:::..~~-:--

Page 
Numbers 

10.9-10 
10.8 
10.8-10 
10.8 
10.9 
10.9 
10.8 
10.9 
10.9 
10.10 
10.2.6 
10.4 
10.13 
10.3 
10.2 
10.3 
·10.3 
10.3 
10.15 
10.11 
10.8 
10.6,8 
10.14 
10.14 
10.13 
10.13 
10.10 
10.3 
10.3 
10.9 
10.10 
10.3 
10.8,11,13-14 
10.11-12 
10.11 
10.12 
10.14 
10.14 
10.4 
10.3,4 
10.13 
10.6,8 
10.6,8 
10.9 
10.9 
10.9 
10.2 
10.13 
10.14 
10.7 
10.4 
10.4 
10.7 
10.4 
10.13 
10.5 



MKSTRING[X] SUBR ..••••••••••.•.•••...••.....•... 
NCHARS[X;FLG;RDTBL] SUBR •••••.•••.•••..••.•..••• 
NTHCHAR[X;N;FLG;RDTBL] SUBR ••.••••.••••.•.•••••• 
NTYP[DATUM] SUBR •....•.••••••..••..•.•••••.•••.• 
null string ••.•••.•••....••••••••••••••••.•.••.• 
OPENR[A] SUBR ••.••••••••••••••••••.••.•.•.••.•.• 
PACK[X] SUBR ••••••••••••••••.•.•••••.••••.••••.• 
PACKC[X] SUBR ••••••.••••••••••••••••.••••••••.•• 
PACK"'[X] SUBR* •.••••••••• 0 •••••••••••••••••••••• 

pnames •.•.•....•.••.••.••••••.•••••••••••••••..• 
print name •..•.•••••••••••••••••••••••••.••••.•• 
prin2-pnames •••••••••••••••••••••••••••••••••••• 
PRXFLG (system variable/parameter) •••••••••••••• 
radix .••••.•••.••••.•••••••••••••••••••••••••••• 
RECLAIM[TYPE] .••.•.•••••••••••••••••••.••..•••.• 
RPLSTRING[X;N;Y] SUBR ••••••••••••••••••••••••••• 
searching strings •••••••••••••••••••••••.••••••• 
SETA[A;N;V] ••••.••••••••••••••••••••••••.•.•••.• 
SETD[A;N;V] ••••••••••••••••••••••••••••••••••••• 
SETTYPEDESCRIPTION[TYPE;STRING] ••••••••••••••••• 
STORAGE[FLG;GCFLG] •••••••••••••••••••••••••••••• 
STREQUAL[X;Y] SUBR •.•••••••••••••••••••••.•••••• 
string characters ••••••••••••••••••••••••••••••• 
string functions •••••••••••••••••••••••••.•••••. 
string pointers ••••••••••••••••••••••••••••••••• 
string storage •••••••••••••••••••••••••••••.•••• 
STRINGP[X] SUBR .•••••••••••••••••••••••••••••••• 
STRPOS[PAT;STRING;START;SKIP;ANCHOR;TAIL] ••••••• 
STRPOSL[A;STR;START;NEG] ••••.••••••••••••••••••• 
SUBATOM[X;N;M] •••••••••••••••••••••••••••••••••• 
SUBSTRING[X;N;M;OLDPTR] SUBR .••••••••••••••••••.• 
SWPARRAYP[X] SUBR ••••••••••••••••••••••••••••••• 
type description •••••••••••••••••••••••••••••••• 
type names •••••••••••••••••••••••••••••••••••• '.' 
type numbers •••••••••••••••••••••••••••••••••••• 
TYPENAME[DATUM] SUBR ••••••••••••••••.••••••••••• 
TYPENAMEFROMNUMBER[N] ••••••••••••••••••••••••••• 
TYPENAMEP[DATUM;TYPENAME] ••••••••••••••••••••••• 
TYPENUMBERFROMNAME[NAME] •••••••••••••••••••••••• 
TYPEP[OATUM;N] •••••••••••••••••••••••••••••••••• 
unboxed numbers (in arrays) ••••••••••••••••••••• 
UNPACK[X;FLG;RDTBL] SUBR •••••••••••••••••••••••• 
U-CASE[X] ••••••••••••••••••••••••••••••••••••••• 
U-CASEP[X] •••••••••••••••••••••••••••••••••••••• 
# (followed by a number) •••••••••••••••••••••••• 

INDEX.IO.2 

Page 
Numbers 

10.4,8 
10.3 
10.3 
10.11 
10.5 
10.15 
10.2 
10.3 
10.2 
10.1-3,7 
10.1 
10.1-3 
10.1 
10.1-2 
10.11 
10.6,8 
10.6-7 
'10.9 
10.10 
10.13 
10.14 
10.4 
10.7 
10.4-7 
10.5,7-8 
10.7-8 
10.4 
10.,6 
10.7 
10.6 
10.6.8 
10.9 
10.13 
10.10-11 
10.10-11 
10.10 
10.11 
10.11 
10.11 
10.11 
10.8 
10.2 
10.4 
10.4 
10.9 



SECTION 11 

FUNCTIONS WITH FUNCTIONAL ARGUMENTS 

As in all LISP 1.5 systems, arguments can be passed which can then be used as functions. 
However, sirice car of a form is never evaluated, mmh . or mmh* must be used to call the function 
specified by the value of the functional argument 

Functions which use functional arguments Should use variables with obscure names:to avoid 
possible conflict with variables that are used by the functional argument. For example, all system 
functions standardly use variable· names consisting of the function name concatenated with ~ or m. 
e.g., mapx. Note that by specifying the free variables used in a functional argument as the second 
argument to function, thereby using the Interlisp FUNARO feature, the user can be sure of no 
clash. 

function[fn;env] is an nlambda function. If env = NIL, the value of function is 
identical to quote, for example~ 
(MAPC LST (FUNCTION PRINT» will cause mapc to be called 
with two arguments, the value onst and PRINT. Similarly, 
[MAPCAR LST (FUNCTION (LAMBDA(Z) (LIST (CAR Z] 
will cause mapcar to be called with the value of 1st and 
(LAMBDA (Z) (LIST (CAR Z»). When compiled, function 
will cause code to be compiled for fn; quote will not. Thus, 

(MAPCAR LST (QUOTE (LAMBDA --») will cause 
mapcar to be called with the value of 1st and the expression 
(LAMBDA - - ). The functional argument will. therefore still be 
interpreted. The corresponding expression using function wilt cause 
a dummy function to be created with definition (LAMBDA ... -) • 
and then compiled. mapcar would then be cailed with the value of 
1st and the name of the dummy function. See Section 18. 

If cnv is not NIL, it can be a list of variables that are (presumably) 
used freely by fn. In this case, the value of function is an 
expression of the form (FUNARG fn pos), where ~ is a stack 
pointer to a frame that contains the variable bindings for those 
variables on £!!Y. env can also be a stack pointer itself, in which 
case the value of function is (FUNARG fn any). Finally. env can 
be an atom, in which case it is evaluated, and the value interpreted 
as described above. Funarg is described on page 11;3-5. 

11.1 



Section 11: Functions with Functional Arguments 

map[mapx;mapfnl;mapfn2) If mapfn2 is NIL, map applies the function mapfnl to successive 
tails of the list mapx. That is, first it computes mapthl[mapxt and 
then mapfnl[cdr[mapxJ1, etc., until mapx is exhausted.l If mapfn2 is 
provided. mapfn2[mapx) is used instead of cdr[mapx] for the next 
call for mapfnl, e.g., if mapfn2 were cddr, alternate elements of the 
list would be skipped. 

The value of map is NIL. map compiles open. 

mapc[mapx;mapfnl;mapfn2] Identical to map, except that mapfril[car[mapx]] is computed at 
each iteration instead of mapfnl[mapx], i.e.,mapc works on 
elements, map on tails. The value ofmapc isN I L. mapc compiles 
open. 

maplist[mapx;mapfnl;mapfn2] successively computes the same values that map would compute. 
and returns a list conSisting of those values. maplist compiles open. 

mapcar[mapx;mapfnl;mapfn2] computes the same values that mapc would compute, and returns a 
list consisting of those values, e.g., mapcar[x;FNTYP] is a list of 
fntrns for each element on~. mapcar compiles open. 

mapcon[mapx;mapfnl;mapfn21 computes the same values as map and maplist but .D&Q!!g these 
values to form a list which it returns. mapcon compiles open. 

mapconc[mapx;mapfnl;mapfn2] 
Computes the same values as ~ and mapcar, but ~ the 
values to· form a list which it returns. mapconc compiles open. 

Note that mapcar creates a new list which is a mapping of the old list in that each element of the 
new list is the result of applying a function to the corresponding element on the original list. 
mapconc is used when there are a variable number of elements (including none) to be inserted at 
each iteration, e.g. mapconc[x;(LAMBDA (Y) (AND Y (LIST Y»)] will make a list consisting 
of ! with all NILs removed, mapconc[x;(LAMBDA (Y) (AND (LISTP Y) Y)}l Will make a 
linear list consisting of all the lists on !, e.g., if applied to « A B) C (0 E F) ( G ) HI) will 
yield (A B 0 E F G). 2 

subset[mapx;mapfnl;mapfn21 applies mapfnl to elements of mapx and returns a list of those 
elements for which this application is non-N I L. e.g., 

1 

2 

i.e .• becomes a non-list. 

Note that since mapconc uses ~ to string the corresponding lists together. in this example. the original list will be 
clobbered. i.e.. it would now be ({ A B D E F G) C (D E F G) ( G) HI). If this is an undesirable side 
effect. the functional argument to mapconc should return instead a top level copy. e.g.. in this case. use 
{AND (lISTP Y) (APPEND V»~. 

11.2 



Section 11: Functions with Functional Arguments 

subsct[(A B 3 C 4);NUMBERP] :;:: (3 4). 
mapfn2 plays the same role as with map, mapc. et al. subset 
compiles open. 

map2c[mapx;mapy;mapfnl;mapfn2) 
Identical to mapc except mapfnl is a function of two arguments, 
and mapfnl[car[mapx];car[mapy]] is computed at each iteration.3 

Terminates when either mapx or mapy are exhausted. 

map2car[mapx;mapy;mapfnl;mapfn2] 
Identical to mapcar except mapfnl is a function of two arguments 
and mapfnl[car[mapx];car[mapy]] is used to assemble the new list. 
Terminates when either mapx or mapy is exhausted. 

Note: CLISP (Section 23) provides a more general and complete facility for expressing iterative 
statements, e.g., (FOR X IN Y COLLECT (CADR X) WHEN (NUMBERP (CAR X» UNTIL 
(NULL X». 

maprint[lst;fi1e;left;right;sep;pfn;1ispxprintflg) 

mapdl,searchpdl 

mapatoms 

is a general printing function. It cycles through 1st applying Qfu (or 
prinl if Qfu not given) to each element of 1st. Between each 
application. maprint performs prinl of~, or .. .. if ~ = NIL. If 
left is given, it is printed (using prinl) initially; if right is given it is 
printed (using prinl) at the end. 

For example, maprint[x;NIL;%(;%)] is equivalent to prinl for lists. 
To print a list with commas between each element and a final "." 
one could use maprint[x;T; NI L;%.;%,). 

If lispxprintflg = T. lispxprin1 is used forprin1 (see Section 22). 

See Section 12. 

See Section 5. 

every, some, notevery, notany See Section 5. 

FUNARG 

function is a function of two arguments, fn, a function, and env is either NIL. a list of variables 

3 !f1;iulhZ is still a function of one argument. and is applied twice on each iteration: mapfn2[mapx] gives the new 
!!l:!p_X. mapfn2[mapyj Ule new m;my. fill: is used if manfu2 is not supplied. i.c., is NIL. 

11.3 



Section/I: Futlctiotlswith FutlctionalArguments 

used freely by fn,astackpointer. ,or an atom. If.env isa list of variables, the value of function is 
an ,expression ,of the form (FUNARG fn pas). where ~ is a stack pointer to a frame that 
contains the bindings of the variables on env at the time the call to function was evaluated. lfenv 
is a stack pointer, the Nalueoffunction is( FUNARGfR envJ.4 

funarg is not a function itself., Like LAMBDA and NLAMBDA t it has meaning and is specially 
recognized by lntcrlisp only in the context of applying a function to arguments. In other words, 
the ·expression (FUNARG fn:pos) is used exactly like a function.5 When a funarg is applied or is 
_carofa form being ,eval'ed,the 'illm!! or eval takes place in the access environment specified by 
env(see Section 12). 

For example, suppose a program wished to compute (FOO X (FUNCTION FIE» ,andfie used 
Y.. and ~ as free variables. If foo rebound Y.. and z, fie would obtain ,the rebound values when it was 
applied from, inside of Coo. By evaluating instead (fOO .x (FUNCTION FIE(Y Z») t foo 
would be called with '(HINARG FIE pos) as its second argument, where pos contained the 
bindings ofy' and ~ (at the time foo was called). Thus when fie was applied from inside of foot it 
wotild"see"the original values of y. and b 

However, funarg is more than just a way of circumventing the clashing of variables. For example, 
a funargexpressioncan be returned as the value of a computation. and then used "higher up". 
Furthermore, if the function in a funarg expression sets any of the variables contained in the 
frame, only the frame would be changed. For example, suppose foo is defined as 
(LAMBDA (LST FN) (PROG (Y Z) (SETQ Y &) (SETQ Z &) 
.•. (MAPC LIST FN) ••• » 
and (FOO X {FUNCTION FIE (Y Z») is evaluated; If one application of fie (by the mapc in 
fool changes yand ~ then the next application of fie will obtain the changed values of y. and ~ 
resulting from the previous application of fie, since both applications of fie come from the exact 
same funarg object. and hence use the exact same frame. The bindings of y. and ~ bound inside of 
foo, and the bindings of y. and ~ above foo would not be affected. In other words, the variable 
bindings contained in posare apart of the function object, i.e., the funarg carries its environment 
with it 

TIlUs by creating a funarg expression with function, a program can create a function object which 
has updateable hinding(s) associated with the object which last between calls to it, but are only 
accessible through that instance of the function. For example, using thefunarg device, a program 
could maintain two different instances of the same random number generator in different states, 
.and run them independently. 

EXAMPLe 

If foo is defined as (LAMBDA (X) (COND ({ ZE ROP A) X) (T eMI NUS X»» and fie as 
{LAMBDA NIL (PROG(A) (SETQ A 2) {RETURN (FUNCTION fOO»». then if we 
;pcrform (SETQA 0),( SETQ FUM (FI E», the value of fum is FOO, and the value of 
(APPL V· FUM .3) is 3, because the value of A at the time foo is called is '0. 

4 

5 

Ifenv is NIL, the value of function is simply ill, i.e., not a funarg expression. If env is an atom, it is evaluated and 
its value interpreted as described above. 

LAMBDA .NLAMBOA. and FUNARG expressions are sometimes called "function objects" to distinguish them from 
functions. i.e., literal atoms which have fUllction defmitions, 

11.4 



t 
1 

I 
.1 

Section 11: Functions with Functional Arguments 

However if fie were defined instead as 
(LAMBDA NIL {PROG (A) (SETQ A 2) (RETURN (FUNCTION FOO (A»»)). the value of 
fum would be (FUNARG FOO pos) and so the value of (APPLY· FUM 3) would be -3, because 
the value of A seen by foo is the value A had when the funarg was created inside of fie, Le., 2. 

11.5 





Index for Section 11 

APPLY[FN; ARGS] SUBR ............................ . 
APPLY*[FN;ARGl;ARG2; ... ;ARGn] SUBR* ............ . 
CLISP .......................................... . 
FUNARG ......................................... . 
FUNCTION[ FN; ENV] NL ............................ . 
function objects .............................. . 
funct iona 1 arguments .. . . . . . . . . .. . ............. . 
MAP[MAPX;MAPFNl;MAPFN2] ....................... . 
MAPC[MAPX;MAPFNl;MAPFN2] ...................... . 
MAPCAR[MAPX;MAPFNl;MAPFN2] ..................... . 
MAPCON[MAPX;MAPFNl;MAPFN2] ..................... . 
MAPCONC[MAPX;MAPFNl;MAPFN2] .................... . 
MAPLIST[MAPX;MAPFNl;MAPFN2] .................... . 
MAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFLG] .. 
MAP2C[MAPX ;MAPY;MAPFNI ;MAPFN2] ................. . 
MAP2CAR[MAPX ; MAPY; MAP FN 1; MAPFN2] ............... . 
SUBSET[MAPX;MAPFNl;MAPFN2] ..................... . 
variable bindings .............................. . 

INDEX.l1.1 

Page 
Numbers 

11.1 
11.1 
11.3 
11.3-4,1,5 
11.1,3-4 
11. 4 
11.1 
11.2 
11.2 
11.2 
11.2 
11.2 
11.2 
11.3 
11.3 
11.3 
11.2 
11. 3-4 





SECTION 12 

VARIABLE BINDINGS, PUSH DOWN LIST FUNCTIONS, 
AND THE SPAGHETTI STACK 

A number of schemes have been used in different implementations of LISP for storing the values 
of variables. These include: 

1. Storing values on an association list paired with the variable names. 

2. Storing values on the property list of the atom which is the name of the variable. 

3. Storing values in a special value cell associated with the atom name, putting old values 
on a pushdown list, and restoring these values when exiting from a function. 

4. Storing values on a pushdown list. 

In Interlisp, we currently use the third scheme, so called "shallow binding". When a function is * 
entered, the value of each variable bound by the function (function argument) is stored in a value * 
cell associated with that variable name. The value that was in the value cell is stored in a block of * 
storage called the basic frame for this function call. In addition, on exit from the function each * 
variable must be individually unbound; that is. the old value saved in the basic frame must be * 
restored to the value cell. Thus there is a higher cost for binding and unbinding a variable than in * 
the fourth scheme, "deep binding". However, to find tlle current value of any variable, it is only * 
necessary to access the variable's value cell. thus making variable reference considerably cheaper * 
under shallow binding than under deep binding, especially for free variables. Our measurements * 
have indicated that typically more time is spent in variable reference under the deep binding * 
scheme than is lost in binding and unbinding under shallow binding. However, the shallow binding * 
scheme used does require an additional overhead in switching contexts when doing "spaghetti * 
stack" operations; this is described in more detail on page 12.6. * 

The basic frames are allocated on a stack or pushdown list; for most user purposes, these frames * 
should be thought of as containing the variable names associated with the function call, and the * 
current values for that frame. lne descriptions of the stack functions in Sections 12.3 and 12.4 are * 
presented from this viewpoint. Both interpreted and compiled functions store both the names and * 
values of variables so that interpreted and compiled functions are compatible and can be freely 
intermixed, i.e., free variables can be used WiUl no special declarations necessary.l The names are 

1 However, it is possible to suppress storing of names in compiled fUllctions, either for efficiency or to avoid a clash, + 
via a LOCALVAR declaration (see Section 18). + 

12.1 



Section 12: Variable Bindings and Push Down List Functions 

also very useful in debugging, for they make possible a complete symbolic back trace in case of 
error. 

In addition to the binding information, additional information is associated with each function call: 
control information indicating the calling function. access information indicating the path to search 
the basic frames, and temporary results arc also stored on the stack in a block called the frame 
extension. The interpreter also stores information about partially evaluated expressions as 
described below. 

12.1 THE PUSH-DQWN LIST AND THE INTERPRETER 

In addition to the names and values of arguments for functions. information regarding partially
evaluated expressions is kept on the push-down list. For example. consider the following definition 
of the function fact (intentionally faulty): 

(FACT 
[LAMBDA (N) 

{COND 
«ZEROP N) 

L) 
(T (ITIMES N (FACT (SUB1 N]) 

In evaluating the form (FACT 1), as soon as fact is entered. the interpreter begins evaluating the 
implicit progn following the LAMBDA (sec Section 4). The first function entered in this process is 
condo cond begins to process its list of clauses. After calling zerop and getting a NIL value, cond 
proceeds to the next clause and evaluates T. Since T is true, the evaluation of the implicit progn 
that is the consequent of the T clause is begun (sec Section 4). This requires calling the function 
itimes. However before itimes can be called. its arguments must be evaluated. The first argument 
is evaluated by retrieving the current binding of 1J. from its value cell; the second involves a 
recursive call to fact, and another implicit progn, etc. 

Note that at each stage of this process. some portion of an expression has been evaluated, and 
another is awaiting evaluation.. The output below illustrates this by showing the state of the push
down list at the point in the computation of (FACT 1) when the unbound atom L is reached. 

12.2 



ThePush-DolI'n List and the Interpreter 

rFACT(1) 
u.b.a. L {in FACT} in «ZEROP N) L) 
(L BROKEN) 
:BTVI 

"'TAIL* (L) 

"'ARG1 «(ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
COND 

"'FORM* (COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
"'TAIL* «COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»»» 

N 0 
FACT 

"'FORM* (FACT (SUB1 N» 
*FN'" ITIMES 
*TAIL'" «FACT (SUB1 N») 
"'ARGVAL* 1 
*FORM* (ITIMES N {FACT (SUB1 N») 
*TAIL* «ITIMES N (FACT (SUB1N»» 

"'ARG1 «(ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
COND 

"'FORM* (COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»») 
*TAIL'" «COND «ZEROP N) L) (T (ITIMES N (FACT (SUB1 N»»» 

N 1 
FACT 

... ·TOp·· 

Intemal calls to eval. e.g., from cond and the interpreter, arc marked on the push-down list by a 
special mark or blip which the backtrace prints as "'FORM",.2 The genealogy of "'FORM""s is thus a 
history of the computation. Other. temporary infixmation stored on the stack by the interpreter 
includes the tail of a partially evaluated implicit Qrogn (e.g., a cond clause or lambda expression) 
and the tail of a partially evaluated fonn (i.e., those arguments not yet evaluated), both indicated 
on the backtrace by "'TAl L "', the values of arguments that have already been evaluated, indicated 
by * ARGVAL *, and the names of functions waiting to be called, indicated by * FN *. _ ... ARG 1, .•• 
*ARGn arc used by the backtrace to indicate the (unnamed) arguments to subrs. 

Note that a function is not actually entered and does not appear on the stack, until its arguments 
have been evaluated.3 Also note that the *ARG1, *FORM*, *TAIL*, etc. "bindings" comprise 

2 

3 

Note that '"FORM'", '"TAIL", '"A\lGVAL'", etc .• do not actually appear on the backtrace. i.e .. evaluating '"FORM" 
or calling lilks!1Ill to search for it will not work. However. the functions blipv.1!,l.setblipval. and blipscan described 
below are available for accessing these internal blips. 

except for functions which do not have their arguments evaluated (although they themselves may call ev'!!, e.g., 
cond). 

12.3 



Section 12: Variable Bindings and Push Down List Functions 

the actual working storage. In other words, in the above example, if a (lower) function changed 
the value of the *ARGl binding, the cond would continue interpreting the new binding as a list of 
cond clauses. Similarly, if the "'ARGVAL'" binding were changed, the new value would be given to 
itimes as its first argument after its second argument had been evaluated, and itimes was actually 
called. 

BLIP FUNCTIONS 

The temporaries of the interpreter, or blips, can be accessed by the following three functions, which 
currently know about four different types of blips: 

*FN· 
*ARGVAL· 
·FORM· 
"'TAIL· 

the name of a function about to be called 
an argument for a function about to be called 
a form in the process of evaluation 
the tail of a cond clause, implicit progn, Pffig, etc. 

blipval[bliptyp;ipos;flg] Returns the value of the specified blip of type bliptyp. If f!g is a 
number, finds the nth blip of the desired type, searching the 
control chain beginning at the frame specified by the stack 
descriptor ipos. If f!g is NIL, 1 is used. If f!g is T, returns the 
number of blips of the specified type at ipos. 

setblipva1(bliptyp;ipos;n;val] 

blipscan[bliptyp;ipos] 

Sets the value of the specified blip of type bliptyp. Searches for 
the nth blip of the desired type, beginning with the frame specified 
by the stack descriptor ipos, and following the control chain. 

Returns a stack pointer to the frame in which a blip of type bliptyp 
is located. Search begins at the frame specified by the stack 
descriptor ipos and follows the control chain. 

12.2 THE SPAGHETTI STACK 

The Bobrow/Wegbreit paper, "A Model and Stack Implementation for Multiple Environments" 
[Bob3]. describes an access and control mechanism more general than the simple pushdown stack. 
The access and control mechanism used by lnterlisp is a slightly modified version of the one 
proposed by Bobrow and Wegbreil. 'fllis mechanism is called the "spagheui stack." 

The spaghetti system presents the access and control stack as a data structure composed of 
"frames." The functions described below operate on this structure. lbese primitives allow user 
functions to manipulate the stack in a machine independent way. Backtracking, coroutines, and 
more sophisticated control schemes can be easily implemented with these primitives. 

OVERVIEW OF SPAGHETTI STACK 

The evaluation of a function requires the allocation of storage to hold the values of its local 
variables during the computation. In addition to variable bindings, an activation of a function 

12.4 



The Spaghetti Stack 

requires a return link (indicating where control is to go after the completion of the computation) 
and room for temporaries needed during the computation. In the spaghetti system, one "stack" is 
used for storing all this information, but it is best to view this stack as a tree of linked objects 
called frame extensions (or simply frames). 

A frame extension is a variable sized block of storage containing a frame name, a pointer to some 
variable bindings (the blink), and two pointers to other frame extensions (the a1ink and clink). In 
addition to these components, a frame extension contains other information (such as temporaries 
and reference counts) that does not interest us here. 

The block of storage holding the variable bindings is called a basic frame. A basic frame is 
essentially an array of pairs, each of which contains a variable name and its value. 111e reason 
frame extensions point to basic frames (rather than just having them "built in") is so that two 
frame extensions can share a common basic frame. This allows two processes to communicate via 
shared variable bindings. 

The chain of frame extensions which can be reached via the successive aUnks from a given frame is 
called the access chain of the frame. 111e first frame in the access chain is the starting frame. The 
chain through successive clinks is called the control chain. 

A frame extension completely specifies the variable bindings and control information necessary for 
the evaluation of a function. Whenever a function (or in fact, any form which generally binds local 
variables) is evaluated, it is associated with some frame extension. 

In the beginning there is precisely one frame extension in existence. This is the frame in which 
the top-level call to the interpreter is being run. This frame is called the "top-level" frame. 

Since precisely one function is being executed at any instant, exactly one frame is distinguished as 
having the "control bubble" in it. This frame is called the active frame. Initially, the top-level 
frame is the active frame. If the computation in the active frame invokes another function, a new 
basic frame and frame extension are built. The frame name of this basic frame will be the name 
of the function being called. 'The Q-, ~-, and clinks of the new frame all depend on precisely how 
the function is invoked. The new function is then run in this new frame by passing control to that 
frame, i.e., it is made the active frame. 

Once the active computation has been completed, control normally returns to the frame pointed to 
by the clink of the active frame. 111at is, the frame in the clink becomes the active frame. 

In most cases, the storage associated with the basic frame and frame extension just abandoned can 
be reclaimed. However, it is possible to obtain a pointer to a frame extension and to "hold on" to 
this frame even after it has been exited. This pointer can be used later to run another computation 
in that environment, or even "continue" the exited computation. 

A separate data type, called a stack pointer, is used for this purpose. A stack pointer is just a cell 
that literally points to a frame extension. Stack pointers print as #adr/framename, e.g., 
Hll7753/COND. Stack pointers are returned by many of the stack manipulating functions 
described below. Except for certain abbreviations (such as "the frame with such-and-such a 
name"), stack pointers are the only way the user can reference a frame extension. As long as the 
user has a stack pointer which references a frame extension, that frame extension (and all those 
that can be reached from it) may not (will not) be garbage collected. 

Note that two stack pointers referencing the same frame extension arc not necessarily ~, i.e., (EQ 
(STKPOS 'FOO) {STKPOS 'FOO»=NIL. However,.£9Q can be used to test if two different 
stack pointers reference the same frame extension. 

12.5 



Section 12: Variable Bindings and Push Down List Functions 

+ It is possible to evaluate a fonn with respect to an access chain other than the current one by using 
+ a stack pointer to refer to the head of the access chain desired. When evaluating the fonn, since 
+ all references to variables under the shallow binding scheme go through the variable'S value cell, 
+ the values in the value cells must be adjusted to reflect the values appropriate to the desired access 
+ chain, This is done by changing all the bindings on the current access chain (all the name-value 
+ pairs) so that they contain the value current at the time of the call. Then along the new access 
+ path, all bindings are made to contain the previous value of the variable, and the current value is 
+ placed in the value cell. For that part of the access path which is shared by the old and new 
+ chain, no work has to be done. lbe context switching time, i.e. the overhead in switching from the 
+ current, active, access chain to another one, is directly proportional to the size of the two branches 
+ that are not shared between the access contexts. This cost Should be remembered in using 
+' coroutihes and generators, as described below. 

12.3 STACK FUNCTIONS 

In the descriptions of the stack functions below, when we refer to an argument as a stack 
descriptor, we mean that it is either a stack pointer or one of the following abbreviations: 

1. NIL means the active frame; that is, the frame of the stack function itself. 

2. T means the top-level frame. 

3. Any other literal atom is equivalent to (STKPOS ATOM -1). 

4. A number is equivalent to (STKNTH number). 

In the stack functions described below, the following errors can occur. 

ILLEGAL STACK ARG 

STACK POINTER 
HAS BEEN RELEASED 

FUNCTIONS 

Occurs when a stack descriptor is expected and the supplied 
argument is either not a legal stack descriptor (Le., not a stack 
pointer, litatom, or number), or is a litatom or number for which 
there is no corresponding stack frame (e.g., (STKNTH -1 (QUOTE 
FOO» where there is no frame named FOO in the active control 
chain or (STKNTH -10 (QUOTE EVALQT)). 

Occurs whenever a released stack pointer is supplied as a stack 
descriptor argument for any purpose other than as a stack pointer 
to re-use. 

stkposlframename;n;ipos;opos) Search for the !!th frame with name framename. The search begins 
with (and includes) the frame specified by the stack descriptor ipos 
(initial position). l11e search proceeds along the control chain from 
ipos if !! i') negative, or along the access chain if !! is positive. If 1! 
is NIL, -1 is used. Returns a stack pointer to the frame if such a 
frame exists, otherwise returns NI L. Jf opos is supplied and is a 

12.6 

----- ._----------
.-~.~~-~._1!>~~ .• ~>_:,<_. 



stknth[n;ipos;opos] 

stkname[pos] 

setstkname[pos;name] 

stknthname[n;ipos) 

Stack Functions 

stack pointer, it is reused. If opos is not a stack pointer it is 
ignored. (Note that (STKPOS (QUOTE STKPOS» causes an error, 
ILLEGAL STACK ARG; it is not pennissible to create a stack 
pointer to the active frame.) 

Returns a stack pointer to the nth frame back from the frame 
specified by the stack descriptor ipos. If n is negative, the control 
chain from ipos is followed. If!l is positive the access chain is 
followed. If!l equals O. returns a stack pointer to ipos, i.e., this 
provides a way to copy a stack pointer. Returns NIL if there are 
fewer than !l frames in the appropriate chain. If opos is supplied 
and is a stack pointer, it is reused .. If opos is not a stack pointer it 
is ignored. (Note that (STKNTH 0) causes an error, ILLEGAL 
STACK ARG; it is not possible to create a: stack pointer to the active 
frame.) 

Returns the frame name of the frame specified by the· stack 
descriptor PQli. 

changes the frame name of the frame specified by ~ to be~. + 
Value is name. + 

Returns the frame name of the nth frame back from ipo~ 
Equivalent to (STKNAME (STKNTH n ipos» but avoids creation 
of a stack pointer. 

In summary, stkpos converts function names to stack pointers, stknth converts numbers to stack 
pointers, stkname converts stack pointers to function names, and stknthname converts numbers to 
function names. 

dummyframep[pos] 

realframep(pos;interpflg] 

T if the user never wrote write a call to the function at ~, e.g. in + 
Interlisp-10, dummyframep is T for • P R OG· LAM. • E NV·. and + 
FOOBLOCK frames (sec block compiler, Section 18).4 + 

is ~, if PQli is a "real" frame, i.e. if~ is not a dummy frame, + 
and, either ~ is a frame that does not disappear when compiled, + 
or interpflg=T, otherwise NIL. For example, if + 
stknamc[pos] = COND, realframep[pos T] is T but + 
rcalframep[pos] = NIL. + 

4 dummyfmmcp is used by the break package for matching against baktracelst. 

12.7 

-~-~~----

·_,~· .. <~'.5"""'··-'-~'.''<''---'''''';'·:~ '~ .. ";'_ ~~....-_. 



Section 12: Variable Bindings and Push Down List Functions 

+ realstknth[n;pos;interpflg;oldpos) 
+ skips back n (or on) frames for which realframep[pos;interpflg] = T. 

+ Thus realframep and realstknth can be used to write functions which manipulate the stack and 
+ work on either interpreted or compiled code. 

The following functions are used ror 'accessing and changing bindings. Some of functions take an 
argument, n. which specifics a particul~r binding in the basic frame. If n is a literal atom. it is 
assumed to be the name of a variable bound in the basic frame. If n is a number. it is assumed to 
reference the nth binding in the basi<; frame. The first binding is I.-If the basic frame contains no 
binding with the given name or if the number is too large or tOO small. the error ILLEGAL ARG 
results. 

stkscan[var;ipos;opos} 

framescan[atom;pos} 

stkarg(n;pos) . 

stkargname(n;pos1 

setstkarg(n;pos; value] 

setstkargname[n;pos;name] 

stknargs[pos] 

Searches beginning at ipos for a frame in which a variable named 
var is bound. The search follows the access chain. Returns a stack 
pointer to the frame if found. otherwise returns NIl. If opos is a 
stack pointer it is reused, otherwise it is ignored. 

Returns. the relative position of the binding of atom in the basic 
frameof~. 

Returns the value of the binding specified by 11 in the basic frame 
of the frame specified by the stack •. descriptor~. n can be a 
literal atom or number. 

. Returns the name of the binding specified by 11. in the basic frame 
of the frame specified by the stack descriptor~. n can be a 
literal atom or number. 

Sets the value of the binding specified by 11 in the basic frame of 
the frame specified by the stack descriptor~. n can be a literal 
atom or a number. Returns value. 

Sets the name of the binding specified by 11 in the basic frame of 
the .frame specified by the stack descriptor~. n can be a literal 
atom or a number. Returns name. 

Returns the number of arguments bound in the basic frame of the 
frame specified by the stack descriptor ~. 

As an example of the use of stknargs and stkargname: 

variables[pos] returns list of variables bound at ~. 
12.8 



can be defined by: 

(VARIABLES 
[LAMBDA (PaS) 

(PROG (N L) 

Sldck Functions 

(SETQ N (STKNARGS paS» 
LP (COND 

«ZEROP N) 
(RETURN L») 

(SETQ L (CONS (STKARGNAME N paS) 
L» 

(SETQ N (SUB1 N» 
(GO LP]) 

The dual of variables is also available: 

stkargs[pos;-] Returns list of values of variables bound at ~. 

The following functions are used to evaluate an expression in a different environment, andlor to 
alter the flow of control. 

enveval[form;apos;cpos;aflg;cflg] 
evaluates form in the environment specified by apos and ~. 
loat is, a new active frame is created with the frame specified by 
the stack descriptor apos as its alink, and the frame specified by the 
stack descriptor ~ as its clink. 111en form is evaluated. If aflg is 
not NIL, and apos is a stack pointer, then apos will be released. 
Similarly, if cflg is not NIL, and cpos is a stack pointer, then ~ 
will be released. 

envapply[fn;args;apos;cpos;aflg;cflrd 

stkeval[pos;form;flg;-] 

stkapply[pos:fn;args;flg;-] 

reteval[pos; form; flg;-] 

~s fn to args in the environment specified by apos and cpos. 
aflg and cflg have the same interpretation as with enveval. 

Evaluates form in the access environment of the frame specified by 
the stack descriptor~. If flg is not NIL and ~ is a stack 
pointer. releases ~. The definition of stkeval is 
(ENVEVAL FORM pas NIL FLG). 

Similar to stkeval but applies fn to args. 

Evaluates form in the access environment of the frame specified by 
the stack descriplor ~. and then returns from ~ wilh that value. 
If flg is not NIL and ~ is a stack pointer, then ~ is released. 
10e definition of ~Jeval is equivalent to 

(ENVEVAL FORM POS (STKNTH -1 POS) FLG T). except 
that releval docs not create a stack pointer. 

12.9 



Section 12: Variable Bindings and Push Down List Functions 

retapply[pos;fn;args;flg;-] Similar to reteva1 except applies fn to args. 

retfrom[pos; val;flg} Return from the frame specified by the stack descriptor 12m!. with 
the value val. lfflg is not NIL, and 12m! is a stack:pointer, then 12m! 
is J;eleased. An attempt to retfrom the top level (e.g., (RETFROM 
T» causes an error, ILLEGAL STACK ARG. Retfrom can be 
written in terms of enveval as follows: 

(RETFROM 
(LAMBDA (POS VALFLG) 

(ENVEVAl (LIST (QUOTE QUOTE) VAl) 
NIL 
(COND 

«STKNTH -1 POS (CONO (FLG POS»» 
(1 {ERRORX (LIST 19 POS)}) 

NIL 1)) 

retto[pos; val;fl8J like retfrom, except returns 10 frame specified by ~. 

evalv[x;pos] Evaluates !. where ! is assumed to be alitatom, in the access 
environment specifed by the stack descriptor ~. If ! is unbound, 
evalv returns NOBI NO and does not generate an error. While evalv 
could be defined as (ENVEVAL X POS) it is in fact a subr which is 
somewhat faster. evalv-compiles open when ~=NIL 

function[fn;env] If cnv is NIL, function is equivalent to quote when interpreted and 
is also a signal to the compiler that fn should be compiled. If !mY 
is a stack pointer, then the value of function is the expression 
(FUNARG fn env). When a funarg expression is ~'d or is car 
of a form being eval'd, the rum!Y or eval takes place in the access 
environment specified by env. For example, if Faa is a funarg 
expression, then (APPLY FOO FIE) is equivalent to 
(ENVAPPLY (CADR FOO) FIE (CADDR FOO». Env can also be 
a list of variable names. In this case, a new frame is created with 
the values of the specified variables in the basic frame. The 
variables are evaluated in the active access environment (the 
environment of function). The alink of the new frame is the active 
access environment, and clink is the top level. The value of 
function is (FUNARG fn pos), where ~ is a stack pointer to the 
new frame.5 -

The following functions and variables are used to manipulate stack pointers. 

5 Note that the effect of funa.!g in the spaghetti system is somewhat different from what it was previously in non' 
spaghetti system. Now when the W..rurr& is mmIy'd or ~.!.Ird we see in the access environment first the variables given 
in the list. and tllCn the access ellvironlllent at the time the fu.!I<.1!'E was created. Formerly we saw the variables in the 
list (the "own" variables) and then the access environment at the time the funarg was used. 

12.10 



stackp[x] 

rc1stk(pos) 

relstkp[x] 

clearstk[flg) 

clearstklst 

noclearstlclst 

Stack Functions 

Returns! if! is a stack pointer, otherwise returns NIl. 

Release the stack pointer ru!§. If pos is not a stack pointer,· does 
nothing. The value is ~. 

returns! is ! is a released stack pointer, NIL otherwise. 

If!lg is NIL, releases' all active stack pointers, and returns NIL. If 
!lg is T, returns a list of all the active (unreleased) stack pointers. 

Is a (global) variable used by top-level evalqt. Every time evalqt is 
re-entered (e.g., following errors, or control-D), clearstlclst is 
checked. If its value is T, all active stack pointers are released 
using clearstk. If its value is a list, then all stack pointers on that 
list are released. If its value is NIL, nothing is released. clearstklst 
is initially T. 

is a global variable used by top-level evalqt. If clearstklst is T· (see 
above) all active stack pointers except those on noclearstlclst are 
released. noclearstklst is initially NI l. 

Thus if one wishes to use multiple environments that survive through control-D,either clearstlclst 
should be set to T, or else those stack pointers to be retained should be explicitly added to 
noclearstklst. 

copystlc[pos1;pos2] Copies the stack, including basic frames, from the frame specified 
by the stack descriptor pos1 to the frame specified by the stack 
descriptor pos2. That is, copies the frame extensions and basic 
frames in the access chain from pos2 to pos1 (inclusive). Pos1 must 
be in the access chain of pos2, i.e., "above" pos2. Returns the new 
pos2. This provides a way to save an entire environment including 
variable bindings. 

backtrace[ipos;epos;flags;file;printfn) 
Performs a back trace beginning at the frame specified by the stack 
descriptor ipos. and ending with the frame specified by the stack 
descriptor cpos. flags is a number in which the options of the 
baclctrace arc encoded. If a bit is set, the corresponding 
information is included in the backtrace. 

bit 0 - print arguments of non-subrs 
bit 1 - print temporaries of the interpreter 
bit 2 - print subr arguments and localvars 
bit 3 - omit printing of UNTRACE: and function names 
bit 4 - fonow access chain instead of control chain. 
bit 5 - print temporaries, i.e. the blips. 

12.11 

+ 

+ 



+ 
+ 
+ 

Section 12: Variable Bindings and Push Down List Functions 

For example: if flags=7. everything is printed; if flags=21Q. follows the access chain. prints 
arguments. 

mapdl[mapdlfn;mapdlpos] 

file is the file that the backtrace is printed to. file must be open. 
printfn is used when printing the values of variables. temporaries, 
blips. etc. printfn = NIL defaults to PR I NT. 

starts at mapdlpos and applies mapdlfn. a function of two 
arguments, to the function ~ at each frame, and the frame 
(stack pointer) itself. until the' top of the stack is reached. Value is 
NIL. 

For example, mapdl[( LAMBDA (X) (AND (EXPRP X) (PRINT X»)] will print aU exprs on 
the push-down list 

mapdl[(LAMBDA (X POS) {COND «IGREATERP (STKNARGS POS) 2) (PRINT X»») 
will print all functions of more than two arguments. 

searehpdl[srchfn;srchpos] similar to mapdl. except searches the pushdown list starting at 
position srchpos until it finds a frame for which srehfn, a function 
of two arguments, applied· to the name of the function and the 
frame itself is not NIL. Value is (name . frame) if such a frame is 
found, otherwise NIL. 

12.4 RELEASING AND REUSING STACK POINTERS 

The creation of a single stack pointer can result in the retention of a large amount of stack· space. 
Furthermore, this space will not be freed until the next garbage collection. even if ihe stack pointer 
is no longer being used. unless the stack pointer is explicitly released or reused. If there is 
sufficient amount of stack space tied up in this fashion, a STACK OVERFLOW condition can occur. 
even in the simplest of computations. For this reason, the user should consider releasing a stack 
pointer when the environment referenced by the stack pointer is no longer needed. 

The effects of releasing a stack pointer are: 

. 1. The link between the stack pointer and the stack is broken by setting the contents· of 
the stack pOinter to the "released mark" (currently unboxed 0). A released stack 
pointer prints as #adr/#O. 

2. If this stack pointer was the last remaining reference to a frame extension; that is. if no 
other stack pointer references the frame extension and the extension is not contained in 
the active control or access chain. then the extension may be reclaimed. and is 
reclaimed immediately. The process repeats for the access and control chains of the 
reclaimed extension so that all stack space that was reachable only· from the released 
stack pointer is reclaimed. 

A stack pointer may be released using the function rc1stk, but there are some cases for which relstk 
is not sufficient. For example. if a function contains a caU to retfrom in which a stack pointer was 
used to specify where to return LOt it would not be possible to simultaneously release the stack 
pointer. (A rc1stk appearing in the function following the call to retfrom would not be executedf) 

12.12 

~---~.-~- ----~~~-~-~ 



Releasing and Reusing Stack Pointers 

To pennit release of a stack pointer in this situation, the stack functions that relinquish control 
have optional flag arguments to denote whether or not a stack pointer is to be released. Note that 
in this case releasing the stack pointer will not cause the stack space to be reclaimed immediately 
because the frame referenced by the stack pointer will have become part of the active environment. 

REUSING STACK POINTERS 

Another way of avoiding creating new stack pointers is to reuse stack pointers that are no longer 
needed. The stack functions that create stack pointers (i>tkQos, stknth, and stkscan) have an 
optional argument which is a stack pointer to reuse. When a stack pointer is reused, two things 
happen. First the stack pointer is released (see above). Then the pointer to the new frame 
extension is deposited in the stack pointer. The old stack pointer (with its new contents) is the 
value of the function. Note that the reused stack pointer will be released even if the function does 
not find the specified frame. 

Note that even if stack pointers are explicitly being released, creation of many stack pointers can 
cause a garbage collection of stack pointer space. Thus, if the user's application requires creating 
many stack pointers, he definitely should take advantage of reusing stack pointers. 

12.5 COROUTINES AND GENERATORS6 

This section describes an application of the spaghetti stack facility to provide mechanisms for 
creating and using simple generators (with and without CLISP, Section 23), generalized coroutines, 
and Conniver style possibility lists. 

A generator is like a subroutine except that it retains infonnation about previous times it has been 
called. Some of this state may be data (for example, the seed in a random number generator), and 
some may be in program state (as in a recursive generator which finds all the atoms in a list 
structure). For example, if listgen is defined using defineg as: 

(LISTGEN (L) 
(IF L THEN (PRODUCE L:l) (LISTGEN L::l») 

we can use the function generator (described below) to create a generator that uses listgen to 
produce the elements of a list one at a time, e.g., 

GR~(GENERATOR (LISTGEN '(A B C» 

creates a generator, which can be called by 

(GENERATE GR) 

to produce as values on successive calls, A. B, C. When generate (not generator) is called the first 
time, it simply starts evaluating (LISTGEN '( ABC». produce gets called from listgen. and 
pops back up to generate with the indicated value after saving the state. When generate gets called 

6 Designed and implemented by D.G. Bobrow. who also did the documentation. Early versions of the Conniver 
possibililes-Iist package were written by Henry Thompson. Daryle Lewis found and corrected a number of bugs. and 
wrote the compiler macros that go with the package. 

12.13 



Section 12: Variable Bindings and Push Down List Functions 

again, it continues from where the last produce left off. This process continues until finally listgen 
completes and returns a value (it doesn't matter what it is). generate then returns gr itself as its 
value, so that the program that called generate can tell that it is finished, i.e., there arc no more 
values to be generated. 

generator[form# #;comvar# #] 

produce[val] 

is an nlambda function that creates a generator which uses 
form # # to compute values. The value of generator is a generator 
handle which is represented by a dotted pair of stack pointers. 

comvar # # is optional. If its value (eval ot) is a generator handle, 
the list structure and stack pointers will be reused. Otherwise, a 
new generator handle will be constructed. 

generator compiles open. 

is used from within (below) a generator to return val as the value of 
the corresponding call to generate. 

generate[handle;val] restarts the generator represented by handle. val will be returned 
as the value of the produce which last suspended the operation of 
the generator. When the generator runs out of values, generate 
returns handle itself. 

EXAMPLES 

The following function will go down recursively through a list structure and produce the atoms in 
the list structure one at a time. 

[lEAVESG (l) 
(if (ATOM l) 

then (PRODUCE l) 
else (LEAVESG L:1) 

(if L::1 
then (lEAVESG l::l] 

The following function prints each of these atoms as it appears. It illustrates how a loop can be set 
up to use a generator. 

(PlEAVESG1 (L) 
(PROG (X LHANDlE) 

(lHANDlE~(GENERATOR (lEAVESG l») 
lP (X~(GENERATE lHANDlE» 

(if X=lHANDLE 
than (RETURN NIL» 

(PRINT X) 
(GO LP») 

Note that the loop terminates when the value of the generator is ~ to the dotted pair which is the 
value produced by the call Lo generator. A CLISP iterative operator, OUTOF, is provided which 

12.14 



Coroutines and Generators 

makes it much easier to write the loop in PlEAVESGl. OUTOF (or outof) can precede a form 
which is to be used as a generator. On each iteration, the iteration variable will be set to 
successive values returned by the generator; the loop will be terminated automatically when the 
generator runs out. Thus we can write 

(PlEAVESG2 (l) 
(for X outof (lEAVESG l) do (PRINT x» 

as equivalent to the above program PLEAVESG1. 

Here is another example: 

(for X outof {MAPATOMS (FUNCTION PRODUCE}) 
as I from 1 to N do (PRINT X» 

will print the first n atoms. 

COROUTINES 

This package provides facilities for the creation and use of fully general coroutine structures. It 
uses a stack pointer to preserve the state of a coroutine, and allows arbitrary switching between n 
different coroutines, rather than just a call to a generator and return. This package is slightly more 
efficient than the generator package described above, and allows more flexibility on specification of 
what to do when a coroutine terminates. 

coroutine[callptr # # ;coroutptr # # ;coroutform # # ;endform # #] 

resume[fromptr;toptr;val] 

EXAMPLES 

This nlambda is used to create a coroutine and initialize the 
linkage. callptr # # and coroutptr # # are the names of two 
variables, which will be set to appropriate stack pointers. If the 
values of callptr# # or coroutptr# # are already stack pointers, the 
stack pointers will be reused. coroutform# # is the form which is 
evaluated to start the coroutine; end form # # is a form to be 
evaluated if coroutform# # actually returns when it runs out of 
values. 

coroutine compiles open. 

is used to transfer control from one coroutine to another. fromptr 
should be the stack pointer for the current coroutine, which will be 
smashed to preserve the current state. toptr should be the stack 
pointer which has preserved the state of the coroutine to be 
transferred to, and val is the value that is to be returned to <the 
latter coroutine as the value of the resume which suspended the 
operation of that coroutine. 

'Ibc following is the way one might wtite the LEAVES program using the coroutine package: 

(lEAVESC (l COROUTPTR CAllPTR) 
12.15 



Section 12: Variable Bindings and Push Down List Functions 

(if (ATOM L) then (RESUME COROUTPTR CALLPTR L) 
else (LEAVESC L:l COROUTPTR CALLPTR) 

(if L::l then (LEAVESC L::l COROUTPTR CALLPTR»» 

A function PLEAVESC which uses LEAVESC can be defined as follows: 

(PLEAVESC (L) 
(bind PLHANDLE LHANDLE first (COROUTINE PLHANDLE lHANDLE 

do (PRINT (RESUME PLHANDLE LHANDLE»» 

(LEAVESC L LHANDLE PLHANDLE) 
(RETFROM 'PLEAVESC» 

By RESUMEing leavesc repeatedly, this function will print all the leaves of list L and then return 
out of pleavesc via the retfrom. The retfrom isnccessary to break out of the non-terminating do
loop. This was done to illustrate the additional flexibility allowed through the use of endform# #. 

We use two coroutines working on two trees in the example egleaves, defined below. egleaves tests 
to see whether two trees have the same leaf set in the same order, e.g., 
EQLEAVES( (A B C}(A B (C») is true. 

(EQLEAVES (Ll L2) 
(bind LHANDLEI LHANDLE2 PE ELI EL2 

first (COROUTINE PE LHANDLEI (LEAVESC Ll LHANDLEI PEl 'NO-MORE) 
{COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PEl 'NO-MORE) 

do (EL1~(RESUME PE LHANDLE1» 
(EL2~(RESUME PE LHANDLE2» 
(if ELI-=EL2 

then (RETURN NIL» 
repeatuntil EL1=tNO~MORE finally (RETURN T») 

POSSIBILITIES lISTS7 

A -possibilities list is the interface between a generator and a consumer. The possibilities list is 
initialized by a call to possibilities, -and elementS are obtained from it by using trynext. By using 
the spaghetti stack to maintain separate environments, this package allows a regime in which a 
generator can put a few items in a possibilities list, suspend itself until they have been consumed, 
and be subsequently aroused and generate some more. 

possibilities[form# #] This nlambda is used for the initial creation of a possibilities list. 
form # # will be evaluated to create the list. It should use the 
functions note and au-revoir described below to generate 
possibilities. Normally. one would set some variable to the 
possibilities list which is returned, so it can be used later, e.g.,: 

(SETQ PLIST (POSSIBILITIES (GENERFN VI V2»). 

possibilities _ compiles open. 

7 lbese functions are based on the CONNIVER system possibilities list package. 

12.16 

----~ -------------
-~~w"4li __ ·~;o;:Ml::_'J$<~· ___ ,,~ i _ ,.:';,.. ___ " 



note[val;lstflg] 

au-revoir[val# #) 

adieu[ val # #] 

Corout;nes and Generators 

is used within a generator to put items on the possibilities list being 
generated. If lstflg is equal to NIL, val is treated as a single item. 
If Istflg is non-N I L, then the list val is nconced on the end of the 
possibilities list. Note that it is perfectly reasonable to create a 
possibilities list using a second generator, and note that list as 
possibilities for the current generator with lstflg equal to T. The 
lower generator will be resumed at the appropriate point 

puts val # # on the possibilities list if it is given.S and then 
suspends the generator and returns to the consumer in such a 
fashion that control will return to the generator at the au-revoir if 
the consumer exhausts the possibilities list 

like au-revoir except releases the generator instead of suspending it. 

trynext[plst# #;endform# #;val# #] 
This nlambda allows a consumer to use a possibilities list It 
removes the first item from the possibilities list named by plst# # 
(i.e. plst# # must be an atom whose value is a possiblities list), and 
returns that item, provided it is not a generator handle. If a 
generator handle is encountered, the generator is reawakened. 
When it returns a possibilities list, this list is added to the front of 
the current list. When a call to trynext causes a generator to be 
awakened, val # # is returned as the value· of the au-revoir which 
put that generator to sleep. If plst# # is empty, it evaluates 
endform# # in the caller's environment. 

trynext compiles open. 

c1eanposlst[plst] This function is provided to release any stack pointers which may 
be left in the plst which was not used to exhaustion. 

EXAMPLE 

fib is a generator for fibonnaci numbers. It starts out by noteing its two arguments, then suspends 
itself. lbereafter, on being re-awakened, it will note two more terms in the series and suspends 
again. printfib uses fib to print the first N fibonacci numbers. 

8 NIL is not put on the possibilities list unless it is explicitly given as an argument to l!u-revoir, i.e., au-revoir[) ·and 
au-rcvoir[NIL] are not the same. au-revoir and l!.<!ieu are lambda spreads to enable them to distinguish these two 
cases. 

12.17 

• 



Section 12: Variable Bindings and Push Down List Functions 

[fIB (F1 F2) 
(do (NOTE F1) 

(NOTE F2) 
(F l+-Fl +F2) 
(F2+-F1+F2) 
(AU-REVOIR)]9 

[PRINTFIB (N) 
(PROG «FL (POSSIBILITIES (FIB 0 1»» 

(RPTQ N (PRINT (TRYNEXT FL») 
(CLEANPOSLST FL) ] 

Note that fib itself will never tenninate. 

9 Note that this au-revoir just suspends the generator and adds nothing to the possibilities list except the generator. 

12.18 



Index for Section 12 

access chain ................................... . 
act ive frame ................................... . 
ADIEU[VAL##]· ................................. . 
alink .......................................... . 
association~ list ............................... . 
AU-REVOIR[VAL##]· ............................. . 
BACKTRACE[IPOS;EPOS;FLAGS;FILE;PRINTFN] SUBR 
back trace ...................................... . 
backtracking ................................... . 
basic frame .................................... . 
bindings in a basic frame ................ , .... .. 
b 1 ink .......•................................... 
bl ip functions ................................. . 
bl ips .......................................... . 
BLIPSCAN[BLIPTYP;IPOS] SUBR .................... . 
BLIPVAL[BLIPTYP;IPOS;FLG] SUBR ................. . 
CLEANPOSLST[PLST] ................. '.' ........... . 
CLEARSTK[FLG] SUBR ............................. . 
CLEARSTKLST (system variable/parameter) ........ . 
clink .......................................... . 
context switching .............................. . 
control chain .................................. . 
COPYSTK[POS1;POS2] SUBR ........................ . 
COROUTINE[CALLPTR##;COROUTPTR##;COROUTFORM##; 

ENDFORM##] NL ......................... . 
coroutines ..................................... . 
debugging ...................................... . 
DUMMYFRAMEP[POS] ............................... . 
ENVAPPLY[FN;ARGS;APOS;CPOS;AFLG;CFLG] SUBR 
ENVEVAL[FORM;APOS;CPOS;AFLG;CFLG] SUBR ......... . 
EVALV[X; POS] SUBR .............................. . 
frame extension ................................ . 
frame name ..................................... . 
frames ......................................... . 
FRAMESCAN[ATOM;POS] SUBR ....................... . 
FUNCTION[FN: ENV] NL ............................ . 
GENERATE[HANDLE: VAL] ........................... . 
GENERATOR[FORM##;COMVAR##] NL .................. . 
generator handl e ............................... . 
generators ..................................... . 
ILLEGAL ARG (error message) .........•........... 
ILLEGAL STACK ARG (error message) .............. . 
implicit progn ................................. . 
MAPDL[MAPDLFN;MAPDlPOS] ........................ . 
NOBIND ........................•................. 
NOCLEARSTKLST (system variable/parameter) ...... . 
NOTE[VAL;LSTFLG] ............................... . 
OUTOF (clisp iterative statement operator) 
POSSIBILITIES[FORM##] NL ....................... . 
possibilities lists .....................•....... 
PRODUCE[VAL] ................................... . 
pushdown 1 ist .................................. . 
REALFRAMEP[POS;INTERPFLG] ...................... . 
REALSTKNTH[N;POS;INTERPFLG;OlDPOS] ............. . 
releasing stack pointers ................•....... 
RELSTK[POS] SUBR ...........•.................... 

INDEX.12.1 

Page 
Numbers 

12.5 
12.5 
12.17 
U.5 
12.1 
12.17 
12.11 
12.2-3 
12.4 
12.6,1.8 
12.B 
12.5 
12.4 
12.4 
12.4 
12.4 

. 12.17 
12.11 
12.11 
12.5 
12.6 
12.5 
12.11 

12.15 
12.16,4,13 
12.2 
12.7 
12.9 
12.9 
12.10 
12.5 
12.5 
12.5 
12.8 
12.10 
12.14 
12.14 
12.14 
12.13 
12.8 
12.6 
12.2-3 
12.12 
12.10 
12.11 
12.17 
12.15 
12.16 
12.16 
12.14 
12.2,1,3-4 
12.7 
12.8 
12.12 
12.11,12 



RELSTKP[X] ...........................•........... 
RESUME[ FROMPTR; TOPTR; VAL] SUSR ............•..•.. 
RETAPPLV[POS;FN;ARGS;FLG;INTERNALFLG] .......... . 
RETEVAL[POS;FORM;FLG;INTERNALFLG] .............. . 
RETFROM[POS;VAL;FLG] SUSR ...................... . 
RETTO[POS;VAL;FLG] SUSR ...•..................... 
reusing stack pointers ................•......... 
SEARCHPDL[SRCHFN;SRCHPOS] ...................... . 
SETBLIPVAL[BLIPTVP;IPOS;N;VAL] SUSR ..........•.. 
SETSTKARG[N;POS;VALUE] SUSR .................... . 
SETSTKARGNAME[N;POS;NAME] SUSR ................. . 
SETSTKNAME[POS;NAME] SUSR ...................... . 
s hallow bin din g .•....•.....•...............•...• 
spaghetti stacks ............................... . 
stack descriptor .•................•............. 
stack functions ................................ . 
STACK OVERFLOW (error message) ..............•... 
stack pointer ..............•.................... 
STACK POINTER HAS SEEN RELEASED (error message) 
STACKP[X] SUSR .................••..•............ 
STKAPPLV[POS;FN;ARGS;FLG;INTERNALFLG] .....•..... 
STKARG[N;POS] SUSR ............................. . 
STKARGNAME[N;POS] SUSR .•........................ 
STKARGS[POS; NARGS] .........•.............•..•... 
STKEVAL[POS;FORM;FLG;INTERNALFLG] ........•...... 
STKNAME[POS] SUSR ..............•....•.....•..... 
STKNARGS[POS] SUSR ........••.............•.....• 
STKNTH[N;IPOS;OPOS] SUSR •...•................... 
STKNTHNAME[N;POS] SUSR ...........•....•......... 
STKPOS[FRAMENAME;N;IPOS;OPOS] SUBR ...........•.• 
STKSCAN[VAR;IPOS;OPOS] SUBR ...•..•..........•... 
TRVNEXT[PLST##;ENDFORM##;VAL##] NL ............. . 
val ue cell .......................•.............. 
variable bindings .......•...•...•.........•..... 
VARIASLES[POS] .................••.•..•.........• 
#0 .•.•.......•••.•.........•••.••..•••..•...••.• 
*ARGVAL* (as a blip on the stack) •.•..•..•.••••• 
*ARGI (as a blip on the stack) ..•.•..•...••.••.• 
*FN* (as a blip on the stack) .......•..•••••.•.. 
*FORM· (as a blip on the stack) ......•........•. 
*TAIL* (as a blip on the stack) ................ . 

INDEX. 12 .2 

Page 
Numbers 

12.11 
12.15 
12.10 
12.9 
12.10 
12.10 
12.13 
12.12 
12.4 
12.8 
12.8 
12.7 
12.1 
12.4-13 
12.6 
12.6-12 
12.12 

>12.5 
12.6 
12.11 
12.9 
12.8 
12.8 
12.9 
12.9 
12.7 
12.8 
12.7 
12.7 
12.6 
12.8 
12.17 
12.1 
12.1.2-4 
12.8 
12.12 
12.4 
12.3 
12.4 
12.4 
12.4 



SECTION 13 

NUMBERS AND ARITHMETIC FUNCTIONS 

There are three different types of numbers in Interlisp: small integers, large integers, and floating 
point numbers. l Since a large integer or floating point number can be (in value) any full word 
quantity (and vice versa), it is necessary to distinguish between those full word quantities that 
represent large integers or floating point numbers, and other Interlisp pointers. We do this by 
"boxing" the number, which is sort of like a special "cons": when a large integer or floating point 
number is created (via an arithmetic operation or by read), lnterlisp gets a new word from 
"number storage" and puts the large integer or floating point number into that word. Interlisp 
then passes around the pointer to that word, i.e., the "boxed number", rather than the actual 
quantity itself. Then when a numeric function needs the actual numeric quantity, it performs the 
extra level of addressing to obtain the "value" of the number. This latter process is called 
"unboxing". Note that unboxing does not use any storage, but that each boxing operation uses 
one new word of number storage. Thus, if a computation creates many large integers or floating 
point numbers, i.e., does lots of boxes, it may cause a garbage collection of large integer space, or 
of floating point number space.2 

13.1 INTEGER ARITHMETIC 

SMALL INTEGERS 

Small integers are those integers for which smallp is true. In Interlisp-lO, these are integers whose 
absolute value is less than 1536. Small integers are boxed by offsetting them by a constant so that 
they overlay an area of lnlerlisp's address space that does not correspond to any Interlisp data type. 
'OlUS boxing small numbers does not use any storage, and furthermore, each small number has a 
unique representation, so that ~ may be used to check equality. Note that Q9 should not be used 
for large integers or floating point numbers, e.g., in Interlisp-10, eq[2000;add1[1999]] is NIL! Q9P,. 
i£gQ, or equal must be used instead. 

1 

2 

Boating point numbers are created by the read program when a . or an E appears in a number. e.g.. lOOO is an 
integer, 1000. a floating point number, as are 1E3 and 1. E3, Note that 1000D. 1000F. and 1E3D are perfectly 
legallitcral atoms. 

Different implementations of Inlerlisp-lO may use different bOKing strategies. Thus, while lots of arithmetic 
operations may lead to garbage collections. Ulis is not necessarily always the case. 

13.1 



Section J 3: Numbers and Arithmetic Functions 

INTEGER FUNCTIONS 

All of the functions described below work on integers. Unless specified otherwise, if given a 
floating point number, they first convert the number to an integer by truncating the fractional bits, 
e.g., iplus[2.3;3.8] = 5; if given a non-numeric argument, they generate an error, NON-NUMERIC 
ARG. 

It is important to use the integer arithmetic functions, whenever possible, in place of the more 
general arithmetic functions which anow mixed floating point and integer arithmetic, e.g., iplus vs 
plus, igreaterp vs greaterp, because the integer functions compile open, and therefore run faster 
than the general arithmetic functiol's, and because the compiler is "smart" about eliminating 

+ unnecessary boxing and unboxing. In other words, if the value of an integer arithmetic function is 
+ being used in arithmetic context, i.e. as an argument to another arithmetic function, no boxing or 
+ unboxing will be performed. Thus, the expression 

(IPlUS (IQUOTIENT (HIMES N 100) M) (HIMES X V»~ will compile to perform only 
one box, the outer one, and the expression 

+ (IGREATERP (IPLUS X Y) (IDIFFERENCE A B» will compile to do no boxing at all. 'The 
+ compiler also treats a conditional expression all of whose values are integer functions the same as 
+ an arithmetic function, e.g. (IPLUS X (COND (FOO (HIMES A 8» (T (HIMES CO»» 
+ will produce only one box, the outer one. 

Note that the PDP-IO is a 36 bit machine, so that in Interlisp-lO all integers are between -2t35 and 
21'35-l.3 Adding two integers which produce a result outside this range causes overflow, e.g., 2t34 
+ 2t34. 

The procedure on overflow is to return the largest possible integer, i.e., in Interlisp-lO 2135 - 1.4 

iminus[x] - x 

idifference(x;y] x-y 

addl[x] x + 1 

subl(x} x-I 

3 Approximately 34 billion 

4 If the overflow occurs by trying to create a negative number of too large a magnitude •. 2t 35 + 1 is used instead of 
2t35-1. 

13.2 



iquotient[x;y) 

iwmainder[x;y) 

igrcatcrp[x ;y] 

ilessp[x;y) 

igeq{x;y] 

i1cq[x;y] 

ieqp[n;m] 

zerop(x) 

Integer Arithmetic 

x/y truncated, e.g., iquoticnt[3;2) = 1, 
iquoticnt[ -3,2) =-1 

the remainder when! is divided by y, e.g., iremaindcr [3;2] = 1 

T. if! > y; NIL otherwise. 

T. if! < y; N I Lotherwise. 

T,-if! 2. y; NIL otherwise. + 

T, if!.i. y; NIL_otherwise. + 

value is -minimum of !1' !2' ... , !n' iminn returns the smallest + 
possible integer, the value of min.integer.5 Does not compile open. + 

value is maximum of !1' !2' ... , !n' imax[) returns the largest + 
possible integer, the value of max.integer. Does not compile open. + 

T, if!! and m are ~, or equal integers, NIL otherwise. Note that ~ 
may be used if .!! and m arc known to be small integers. !£gQ 
converts !! and m to integers, e.g., icqp[2000;2000.3) = T, causes 
NON-NUMERIC ARG error if either.!! or m are not numbers. kgQ 
compiles open. 

defined as eq[x;O]. 

Note that zerop should not be used for floating point numbers because it uses !lSI. Use eqp[x;Oj 
instead. 

minusp[x] 

eqp[n;m] 

T if! is negative; NIL otherwise. Does not convert! to an integer, 
but simply checks sign bit. 

T, if!! and m arc ~, or equal numbers, NIL otherwise.6 Note that 
~ may be used if .!! and m arc known to be small integers. £g.Q 

5 In other words. if! is an integer. then! 2. min.intem. + 
6 £!ill is also T if!! and!!! are both stack descriptors that refer to the same frame extcnsion (see Scction 12). 

13.3 



smallp[n] 

fixp[x] 

, 

f!X[x] 

logand[x 1 ;x2 ; ... ;xn] 

10gor[xl;X2;"';xn] 

Ish[n;mJ 

rsh[n;m] 

ltsh[n;mJ 

lrsh[n;mJ 

Section /3: Numbers and Arithmetic Functions 

does not convert nand m to integers, e.g., cqp[2000;2000J]=NIL, 
but it can be used to compare an integer and a floating point 
number. e.g., eqp[2000;2000.0] = T. ~ does not generate an error 
if n or m are not numbers. 

n, if n is a small integer, else NIL. smallp does not generate an 
error if n is not a number. 

!, if! is an integer, else NIL. Does not generate an error if! is 
not a number. 

Converts ! to an integer by truncating fractional bits, e.g., 
fix{2J] = 2, fix[-1.7] = -1. If! is already an integer, fix[x]=x and 
doesn't use any storage? 

lambda no-spread. value is logical and of all its arguments, as an 
integer, e.g .• logand[7;5;6]=4. 

lambda no-spread, value is the logical or of all its arguments, as an 
integer, e.g .• logor[1;3;9] = 11. 

lambda no-spread, value is the logical exclusive or of its arguments, 
as an integer, e.g., logxor[l1;5] = 14, 
logxor[1l;5;9] = logxor[14;9] = 7. 

(arithmetic) left shift, value is n*2tm,i.e., !! is shifted left m places. 
!! can be positive or negative. If m is negative, !! is shifted right -m 
places. 

(arithmetic) right shift, value is n*2t-m, i.e .. !! is shifted rightm 
places. n can be positive or negative. If m- is negative, !! is left -m 
places. 

logical left ~hift. On PDP-lO, Ush is equivalent to Ish. 

logical right ,!!hift. 

7 Since F I X is also a !h~ command (Section 22), typing F I X directly to Iispx will not cause the function fix to be 
called. 

13.4 



Illteger Arithmetic 

The difference between a logical and arithmetic right shift lies in the treatment of the sign bit for 
negative numbers. For arithmetic right shifting of negalive numbers, the sign bit is propagated, 
i.e., the value is a negative number. For logical right shift, zeroes are propagated. Note that 
shifting (arithmetic) a negative number "all the way" to the right yields -I, not O. 

gcd[x;y] value is the greatest common divisor of! and 1, e.g., gcd[72;64] = S. 

13.2 FLOATING POINT ARITHMETIC 

All of the functions described below work on floating point numbers. Unless specified otherwise, if 
given an integer, they first convert the number to a floating point number, e.g., 
fplus[1;2.3] = fplus[l.O;2.3] = 3.3; if given a non-numeric argument, they generate an error, NON
NUMERIC ARG. 

The largest floating point number (in Interlisp-lO) is 1.701411SE3S, the smallest positive (non-zero) 
floating point number is 1.4693679E-39. The procedure on overflow is the same as for integer 
arithmetic. For underflow, i.e., trying to create a number of too small a magnitude, the value will 
beO. 

fminus[x] - x 

fdifference[x;y] x-y 

fquotient[x;y] x/y 

fremainder[x;y] the remainder when ! is divided by 1. i.e. * 
fdifference[x ;ftimes[y;fix[fquotient[x;y ]m, e.g. fremainder(7.5 ;2.3] = .6. * 

minusp[x] 

eqp[x;y] 

fgreaterp[x;y] 

flessp[x;y] 

T. if ! is negative; NIL otherwise. Works for both integers and 
floating point numbers. 

T. if!. and Y.. are £,9, or equal numbers. See discussion page 13.3. 

T. if!. > Y... NIL otherwise. 

T. if!. < Y... NIL otherwise. 

13.5 

+ 



+ fmin[xl;x2;"';xn] 
+ 

+ fmax(xl;x2;''';xn] 
+ 

floatp[x1 

Section 13: Numbers and Arithmetic Functions 

value is minimum of !l' !2' ... , !n' fininO returns the smallest 
possible floating point number, the value of min. float. 

value is maximum of !1' !2' ... , !u. finaxO returns the largest 
possible floating point number, the value of max.float. 

is ! if! is a floating point number; NIL otherwise. Does not give 
an error if! is not a number. 

Note that if numberp[x] is true, then either fixp[x] or jloatPlx] is true. 

float[x1 Converts! to a floating point number, e.g., float[O] = 0.0. 

13.3 MIXED ARITHMETIC 

The functions in this section are "contagious floating point arithmetic" functions, i.e., if any of the 
arguments are floating point numbers, they act exactly like floating point functions, and float all 
arguments, and return a floating point number as their value. Otherwise. they act like the integer 
functions. If given a non-numeric argument, they generate an error, NON-NUMERIC ARG. 

minus[x] 

difference[x;y] 

quotient[x:y] 

remainder[x ;y] 

greaterp[x;y] 

lessp[x;y] 

+ geq{x;y] 

- x 

x-y 

if ! and 1. are both integers. value is iquotient[x;y]. otherwise 
fquotient[x;y]. 

if ! and 1. are both integers, value is iremainder[x;y], otherwise 
fremainder[x;y 1. 

T, if! > 1.. NIL otherwise. 

T if! < 'i. NIL otherwise. 

T. if ~ 2. 1.. NIL otherwise. 

13.6 



leq[x;y] 

abs[x] 

Mixed Arithmetic 

T, if! ~ y, NIL otherwise. + 

value is mlDlmum of !l, !2, ... , !n' minD returns the value of + 
min.integer. + 

value is maximum of !l' !2' ... , !n' maxD returns the value of + 
max.integer. + 

! if x > 0, otherwise -x. abs uses greaterp and minus, (not 
igreaterp and iminus). 

13.4 SPECIAL FUNCTIONS8 

They utilize a power series expansion and their values are (supposed to be) 27 bits accurate, e.g., 
sin[30] =.5 exactly. 

expt[m;n] 

sqrt[n] 

log[x] 

antilog[x1 

sin[x ;radiansflg] 

cos[x; radiansflg1 

value is mtn. If m is an integer and!! is a positive integer, value is 
an integer, e.g, expt[3;4] = 81, otherwise the value is a floating point 
number. If m is negative and !! fractional, an error is generated, 
ILLEGAL EXPONENTIATION. If!! is floating and either too large + 
or too small, an error is generated, VALUE OUT OF RANGE EXPT. + 

value is a square root of !! as a floating point number. !! may be 
fixed or floating point. Generates an error if.!! is negative. sqrt[n] 
is about twice as fast as expt[n;.5] 

value is natural logarithm of ! as a floating point number. ! can 
be integer or floating point. 

value is floating point number whose logarithm is!. ! can be 
integer or floating point. e.g., antilog[l] = e = 2.71828 ... 

! in degrees unless radiansflg = T. Value is sine of ! as a floating 
point number. 

Similar to sin. 

8 In Interlisp·l0. these functions were implemented by J. W. Goodwin by "borrowing" the corresponding routines 
from the FORTRAN library. and hand coding them in Interlisp'lO via ASSEMBLE. 

13.7 

- --------
--'~~--.. 



tan[x ;radiansflg] 

arcsin[ x ;radiansflgJ 

arccos[ x ;radiansflg] 

arctan[ x ;radiansflg] 

Section 13: Numbers and Arithmetic Functions 

Similar to sin. 

! is a number between -1 and 1 (or an error is generated). The 
value of arcsin is a floating point number, and is in degrees unless 
radiansflg=T. In other words, if arcsin[x;radiansflg]=~ then 
sin[z;radiansflgJ=!.The range of the value of arcsin is -90 to +90 
for degrees, -'IT 12 to 'IT 12 for radians. 

Similar to arcsin. Range is 0 to 180, 0 to 'IT. 

Similar to arcsin. Range is 0 to 180, 0 to 'IT. 

+ arctan2[x;y;radiansflgJ 
+ 

computes arctan[[fquotient[x;y);radiansflgJ, and returns a 
corresponding value in the range -180 to 180 (or -pi to pi), i.e. the 
result is in the proper quadrant as detennined by the signs of! and 
'1... 

+ 
+ 

rand[lower;upper) 

randset[x] 

Value is a pseudo-random number between lower and upper 
inclusive, i.e., rand can be used to generate a sequence of random 
numbers. If both limits are integers, the value of rand is an 
integer, otherwise it is a floating point number. The algorithm is 
completely detenninistic, i.e., given the same initial state, rand 
produces the same sequence of values. The internal state of rand is 
initialized using the function randset described below. 

Value is internal state of rand after randset has finished operating. 
If x = NIL, value is current state. If x = T t randstate is initialized 
using the clocks. Otherwise,! is interpreted as a previous internal 
state, i.e., a value of randset, and is used to reset randstate. For 
example, 
1. (SETQ OLDSTATE (RANDSET» 
2. Usc rand to generate some random numbers. 
3. (RANDSET OLDSTATE) 
4. rand will generate same sequence as in 2. 

13.5 REUSING BOXED NUMBERS IN INTERLlSP-10 - SETN 

rplaca and rplacd provide a way of cannibalizing list structure for reuse in order to avoid making 
new structure and causing garbage collections.9 This section describes an analogous function in 

+ 9 The nobox package (Section 24) provides a more aesthetic way of reusing cons cells as well as number boxes. 
+ However. it is still the case that techniques involving reusing static storage should be used with extreme caution, and 
+ be reserved for those cases where the normal method of storage allocation and garbage collection is not workable or 
+ practical. The dec! package (Section 24) takes a different approach to the same problem by avoiding creating number 
+ boxes in the first place via lype declarations in the body of the fUliction definition. 

13.8 



Reusing Boxed Numbers in Interlisp-lO - SE'TN 

InterJisp-lO for reusing large integers and floating point numbers, setn. §etn is used like setq, i.e., 
its first argument is considered as quoted, its second is evaluated_ If the current value of the 
variable being set is a large integer or floating point number, the new value is deposited into that 
word in number storage, i.e., no new -storage is used.lO If the current value is not a large integer or 
floating point number, e.g., it can be NIL, setn operates exactly like setg, i.e., the large integer or 
floating point number is boxed, and the variable is set. This eliminates initialization of the 
variable. 

setn will work interpretively, i.e., reuse a word in number storage, but will not yield any savings of 
storage because the boxing of the second argument will still take place, when it is evaluated. The 
elimination of a box is achieved only when the call to setn is compiled, since setn compiles open, 
and docs not perform the box if the old value of the variable can be reused. 

CAVEATS CONCERNING USE OF SETN 

There are three situations to watch out for when using setn. The first occurs when the same 
variable isbcing used for floating point numbers and large integers. If the current value of the 
variable is a floating point number, and it is reset to a large integer, via setn, the large integer is 
simply deposited into a word in floating point number storage, and hence will be interpreted as a 
floating point number. Thus, 

"'(SETQ FOO 2.3} 
2.3 
"'(SETN FOO 10000) 
2.189529E-43 

Similarly, if the current value is a large integer, and the new value is a floating point number, 
equally strange results occur. 

lbe second situation occurs when a setn variable is reset from a large integer to a small integer. In 
this case, the small integer is simply deposited into large integer storage. It will then print 
correctly, and function arithmetically correctly, but it is not a small integer, and hence will not be 
~ to another integer of the same value, e.g., -

"'(SETQ FOO 10000) 
10000 
"'(SETN FOO 1) 
1 
"'(IPLUS FOO 5) 
6 
"'(EQ FOO 1) 
NIL 
"'(SMALLP FOO) 
NIL 

In particular, note that zerop will return NIL even if the variable is equal to O. Thus a program 
which begins with foo set to a large integer and counts it down by 
(SETN FOO (SUB1 FOO» must tenninate with (EQP FOO 0). not (ZEROP FOO). 

10 The secolld argumenllo ~cln musl always be a number or a NON-NUMERIC ARG error is generated. 

13.9 



Section 13: Numbers and Arithmetic Functions 

Finally, the third situation to watch out for occurs when you want to save the current value of a 
setn variable for later usc. For example, if faa is being used by setn. and the user wants to save its 
current value on fie. (SETQ roo FI E) is not sufficent, since the next §£ill on foo will also change 
fie. because its changes the word in number storage pointed to by foot and hence pointed to by fie. 
Ine number must be copied, e.g., (SETQ FIE (IPLUS FOO». which sets fie to a new word in 
number storage. 

setn[var;x] nlambda function like setg. var is quoted, ! is evaluated, and its 
value must be a number. var will be set to this number. If the 
current value of Y.2! is a large integer or floating point number, that 
word in number storage is cannibalized. The value of setn is the 
(new) value of var. 

13.6 BOX AND UNBOX IN INTERLlSP-10 

Some applications may require that a user program explicitly perform the boxing and unboxing 
operations that are usually implicit (and invisible) to most programs. The functions that perform 
these operations are loc and YM respectively. For example, if a user program executes a TENEX 
JSYS using the ASSEMBLE directive, the value of the ASSEMBLE expression will have to be boxed 
to be used arithmetically, e.g., (IPLUS X (LOC (ASSEMBLE --»). It must be emphasized 
that 

Arbitrary unboxed numbers should not be passed around as ordinary values because they can cause 
trouble for the garbage collector. 

For example, suppose the value of ! were 150000, and you created (VAG X), and this just 
happened to be an address on the free storage list. The next garbage collection could be disastrous. 
For this reason, the function YM must be used with extreme caution when its argument's range is 
not known. 

loc is the inverse of YM. It takes. an address, i.e., a 36 bit quantity, and treats it as a number and 
boxes it. For example, loc of an atom, e.g., (LOC (QUOTE FOO». treats the atom as a 36 bit 
quantity, and makes a number out of it. If the address of the atom roo were 125000, 
(LOC (QUOTE FOO» would be 125000, i.e., the location of FOO. It is for this reason that the 
box operation is called loc. which is short for location.ll 

Note that FOO does not print as #364110 (125000 in octal) because the print routine recognizes 
that it is an atom. and therefore prints it in a special way. i.e .. by printing the individual characters 
that comprise it. Thus (VAG 125000) would print as FOO, and would in fact be FOO. 

loclx] Makes a number out of!. i.e., returns the location of !. 

11 Y!!.s is an abbreviation of value get 

13.10 

- - .. -~-~-------~-
'~"~"~~~~~_"7,-"-,,",,,_ ,,"" ""~ ~~ ,~_<'-::'-;'_~-. , ___ ~, 



vag[x] 

Box and Unbox in Interlisp-lO 

The inverse of loc. ! must be a number; the value of m is the 
unbox of!. 

The compiler eliminates extra m's and loc's for example (IPLUS X (LOC (ASSEMBLE --») 
will not box the value of the ASS EMB L E. and then unbox it for the addition. 

13.11 

~~-----::::::--- -





Index for Section 13 

ABS[X] ......................................... . 
ADD1[X] ........................................ . 
ANTILOG[X] ........................•............. 
ARCCOS[X;RADIANSFLG] ........................... . 
ARCCOS: ARGNOT IN RANGE (error message) ....... . 
ARCSIN[X;RADIANSFLG] ........................... . 
ARCSIN: ARG NOT IN RANGE (error message) ....... . 
ARCTAN[X;RADIANSFLG] ........................... . 
ARCTAN2[X; Y; RADIANSFLG] ........................ . 
arithmet ic functions ........................... . 
ASSEMBLE ......•................................. 
box ................•...•..•...•.••.••..••..•.... 
boxed numbers .................................. . 
boxing ............................ ~ ............ . 
COS[X; RADIANSFLG] ............................•.. 
DIFFERENCE[X :Y] ....•............ ,', ...•.......... 
EQP[X ;Y] SUBR .................................. . 
EQUAL[X; Y] SUBR ................................ . 
EXPT[M; N] ...................................... . 
FDIFFERENCE[X;Y] ....•........................... 
FGREATERP[X;Y] SUBR ............................ . 
FIX[X] ..................•.......••.•...•........ 
FIXP[X] .•................•............•......... 
FLESSP[X; Y] .................................... . 
FLOAT[X] ...............•••..•............•.....• 
floating point arithmetic .....•................. 
floating point numbers ......................... . 
FLOATP[X] SUBR ..........•....••..•.............. 
FMAX[Xl;X2; ... ;Xn] ..••................•.•....... 
FMIN[Xl;X2; ... ;Xn] ........................•....• 
FMINUS[X] .............................•......... 
FPLUS[Xl;X2; ... ;Xn] SUBR· .........•............. 
FQUOTIENT[X;Y] SUBR .............•............... 
FREMAINDER[X;Y] SUBR ..................•......... 
FTIMES[Xl;X2; ... ;Xn] SUBR· ..................... . 
GCD[X;Y] .............................•.......... 
GEQ[X ;Y] .......................................• 
GREATERP[X;Y] SUBR •......•.•.........••......••• 
IDIFFERENCE[X;Y] ............................... . 
IEQP[N;M] SUBR ................................. . 
IGEQ[X;Y] ............................•.........• 
IGREATERP[X;Y] SUBR .........•..................• 
ILEQ[X;Y] ...............•..•..........•........• 
ILESSP[X;Y] .................................... . 
ILLEGAL EXPONENTIATION (error message) ......... . 
IMAX[Xl;X2; ... ;Xn]· .....................•...... 
IMIN[Xl; X2; ... :Xn]· ........................... . 
IMINUS[X] .................. , ................... . 
integer arithmetic ............................. . 
IPLUS[Xl;X2; ... ;Xn] SUBR· ...•....••............. 
IQUOTIENT[X;Y] SUBR ......•.•.................... 
IREMAINDER[X;Y] SUBR .........•.................. 
ITIMES[Xl;X2; ... ;Xn] SUBR· .... , ................ . 
1 arge ; ntegers ................................. . 
LEQ[X:Y] ........•.......•...•..•....••.......... 
lESSP[X: Y] ................ t ..................... . 

INDEX.13.1 

Page 
Numbers 

13.7 
13.2 
13.7 
13.8 
13.8 
13.8 
13.8 
13.8 
13.8 
13.2-8 
13.10 
13.10 
13.1 
13.1,2.8-10 
13.7 
13.6 
'13.3,6,1.4 
13.1 
13.7 
13.5 
13.5 
13.4 
13.4 
13.5 
13.6 
13.5-6 
13.1.3.9 
13.6 
13.6 
13.6 
13.5 
13.5 
13.5 
13.5 
13.5 
13.5 
13.6 
13.6 
13.2 
13.3 
13.3 
13.3 
13.3 
13.3 
13.7 
13.3 
13.3 
13.2 
13.2-5 
13.2 
13.3 
13.3 
13.2 
13.1.9 
13.7 
13.6 



LLSH[N:M] SUBR •••••••••••••••••••••••••••••••••• 
LOC[X] SUBR •••••••••••••••••••••••••••••••.••••• 
LOG[X] ••••.••••••••••••••••••••••••••••••••••••• 
LOGAND[Xl;X2: ••• :Xn] SUBR- •••••••••••••••••••••• 
LOGOR[X1:X2; .•• :Xn] SUBR· ••••••••••••••••••••••• 
LOGXOR[X1;X2: •.. ;Xn] SUBR- ••••.••••••••••••••••• 
LRSH[N;M] .•••••••••••••••••••••••••••••••••••••• 
LSH[N :M] SUBR ••••••.•••••••••••••••••••••••••••• 
MAX[Xl;X2; •.. ;Xn]· .•••••••••••••••••••••••••••• 
MAX.FLOAT (system variable/parameter) ••••••••••• 
MAX.INTEGER (system variable/parameter) ••••••••• 
MIN[Xl:X2: ••• :Xn]· •.••••••••••••••••••••••••••• 
MINUS[X] SUBR ••••••••••••••••••••••••••••••••••• 
MINUSP[X] SUBR •.•••••• '" ••••••••••••••••••••••••• 
MIN.FLOAT (system variabl~/parameter) ••••••••••• 
MIN.INTEGER (system variable/parameter) ••••••••• 
mixed arithmetic •••••••••••••••••••••••••••••••• 
NON-NUMERIC ARG (error message) ••••••••••••••••• 
numbers •••.••••••••••••••••••••••••••••••••••••• 
overflow ...................................... -. . 
PLUS[X1:X2; ••• :Xn] SUBR· •••••••••••••••••••••••• 
QUOTIENT[X;Y] SUBR •••••••••••••••••••••••••••••• 
RAND[LOWER;UPPER] ••••••••••••••••••••••••••••••• 
random numbers •••••••••••••••••••••••••••••••••• 
RANDSET[X] •••••••••••••••••••••••••••••••••••••• 
REMAINDER[X:Y] SUBR ........................... .. 
RSH[N ;M] •••••••••••••••••••••••••••••••••••••••• 
SETN[VAR; X] FSUBR ••••••••••••••••••••••••••••••• 
SIN[X ;RADIANSFLG] ••••••••••••••••••••••••••••••• 
small integers •••••••••••••••••••••••••••••••••• 
SMAllP[N] ........................................ . 
SQRT[N] ••••••••••••••••••••••••••••••••••••••••• 
SQRT OF NEGATIVE VALUE (error message) •••••••••• 
SU81[X] .... '" .....•.•............................. 
TAN[X ;RADIANSFLG] ••••••••••••••••••••••••••••••• 
TENEX ••••••••••••••••••••••••••••••••••••••••••• 
TIMES(Xl; X2; ... ; Xn) SUBR· ...................... . 
unbolted numbers ................................. . 
unhox i n9 •••••••••••••••••••••••••••••••••••••••• 
VAG[X] SUBR ••••••••••••••••••••••••••••••••••••• 
VALUE OUT OF RANGE EXPT (error message) ........ . 
ZEROP[X] .......................................... . 

INDEX.n.! 

Page 
Numbers 

13.4 
13.10,10 
13.7 
13.4 
13.4 
13.4 
13.4 
13.4 
13.7 
13.6 
13.3 
13.7 
13.6 
13.3,5 
13.6 
13.3 
13.6-7 
13.2,5-6 
13.1,2-11 
13.2.5 
13.6 
13.6 
13.8 
13.8 
13.8 
13.6 
13.4 
13.10,8-9 
13.7 
13.1 
13.4.1 
13.7 
13.7 
13.2 
13.8 
13.10 
13.6 
13.10 
13.1,2.10 
13.11,10 
13.7 
13.3 



14.1 FILES 

SECTION 14 

INPUT/OUTPUT FUNCTIONS 

All input/output functions in Interlisp can specify their source/destination file with an optional 
extra argument which is the name of the file. This file must be opened as specified below. If the 
extra argument is not given (has value NI L), the file specified as "primary" for input (output) is 
used. Normally these are both T, for terminal input and output. However, the primary 
input/output file may be changed by 

input[file]l Sets file as the primary input file. Its value is the name of the old 
primary input file. 

inpulO returns current primary input file, which is not changed. 

output[file] Same as input except operates on primary output file. 

Any file which is made primary must have been previously opened for input/output, except for the 
file T, which is always open. 

infile[file] Opens file for input, and sets it as the primary input file. 2 The 
value of infile is the previous primary input file. If file is already 
open, same as input[file]. Generales a FI LE WON'T OPEN error if 
file won't open, e.g., file is already open for output. 

1 

2 

The argument name lli~ is used for tutorial purposes only. Subrs do not have argument "names", per se, as 

described in Section H.O Both !t:l1211! and ir!m~ can also be given a string as their argument. meaning that subsequent + 
input operations referring to the primary input liIe will obtain characters from that string. + 

To open .m~ without changing the primary input file, perform openfi1c[file;INPUT]. 

14.1 



outfile[file] 

Section 14: Input/Output 

Opens file for output, and sets it as the primary output file.3 'The 
vallie of outfile is the previous primary output file. If file is already 
open, same as output[filc]. Generates a FILE WON'T OPEN error 
if file won't open, e.g., if file is already open for input. 

In Interlisp-10, for all input/output functions, file follows the TENEX4 conventions for file names, 
i.e., fil£ can be prefixed by a directory name enclosed in angle brackets, can contain < esc) s or 
control-F's, and can include suffixes and/or version numbers. When a file is opened for input and 
no version number is given, the highest version number is used. Similarly, when a file is opened 
for output and no version number is given, a new file is created with a version number one higher 
than the highest one currently in use with that file name. 

In Interlisp-10, regardless of the file name given to the Interlisp function that opened the file, 
Interlisp maintains only full file names5 ill. its internal table of open files and any function whose 
value is a file name always returns a fun file name, e.g., openp[FOO]=<TEITELMAN)FOO. ;3. 
Whenever a file argument is given to an i/o function, Interlisp first checks to see if the file is in its 
internal table. If not, Interlisp executes the appropriate JSYS to "recognize" the file. If the 
operating system does not successfully recognize the file, a FILE NOT FOUND error is generated.6 

7 If it docs recognize the file, it returns to Interlisp the full file name. Then, Interlisp can continue 
with the indicated operation. If the file is being opened, Interlisp opens the file and stores its (full) 
name in the file table. If it is being closed, or wlltten to or read from, Interlisp checks its internal 
table to make sure the file is open, and then executes the corresponding operation. 

Note that each time a full file name isnol used, Interlisp-lO must can the operating system to 
recognize the name. Thus if repeated operations are to be performed, it is considerably more 
efficient to obtain the full file name once, e.g., via infi1cp or outfilep. Also, note that recognition is 
performed on the user's entire directory. Thus, even if only one file is open, say FOO. ; 1, F$ 
(F altmode) will not be recognized if the user's directory also contains the file FIE. ; 1. Similarly, 
it is possible for a file name that was previously recognized to become ambiguous. For example, a 
program performs infile[FOO], opening FOO. ; I, and reads several expressions from FOO. Then 
the user types control-C, creates a FOO. ; 2 and reenters his program. Now a call to read giving it 
FOO as its file argument will generate a FILE NOT OPEN error, because FOO will be recognized as 
FDD. ;2. 

infilep[ file] Returns full file name of file if file is recognized as specifying the 
name of a file that can be opened for input, NIL otherwise. 
Recognition is in input context, Le., in Interlisp-lO, if no version 
number is given, the highest version number is returned. 

3 To open ID~ without changing the primary output file, perronn openfile[file;OUTPUT). 

+ 4 

+ 
As mentioned in chapter 2, Interlisp-lO also runs under the TOPS-20 operating system. In this case, file foIlows the 
TOps· 20 conventions. 

5 

6 

+ 7 

+ 
+ 

i.e .. directory name, extension, and version. 

except ror infilep, Qutfil£p and openp, which in this case return NIL. 

As described in Section 16. before the actual error occurs, it is intercepted via an entry on £!!.Q!1y~~t, which causes 
li~!I.[ili: (Section 17) to be mllee!. mellfile will search alternate din~ctories and possibly attempt spelling correction On 

the liIe Ilame. Only if ~llilC; is ullsuccessful will the error actuaIly occur .. 

14.2 



Files 

infilep and outfilep do not open any files. or change the primary files: they are pure predicates. 

outfilep[file] Similar to infilep, except recognition is in output context, ie., in 
Interlisp-lO, if no version number is given, a version number one 
higher than the highest version number is returned. 

A more general version of infilep and outfilep is provided by the function fullname: + 

. fullname[x;recog] If ~ is recognized in. the recognition mode specified by recog as an + 
abbreviation for some file, value is the file's full name,otherwise + 
NIL. recog can be OLD, NEW, OLDEST, or OLD/NEW. 8 + 
recog= NI L defaults to OLD. For all other values, generates an + 
error ILLEGAL ARG. If~ is not a literal atom, generates an error, + 
ARG NOT LITATOM. + 

For example, infilep[file] could be written as fullname[file;OLD) and + 
outfilep[file] as fuUname[file;NEW). + 

A more general way of opening files is provided by the function openfile: + 

openfile[file;access;recog;bytesize;machine.dependent.parameters) + 

8 

9 

77 

Opens file with access rights as specified by access; one of· INPUT. + 
OUTPUT, BOTH, or APPEND. file is first recognized (in the +. 
fullname sense) using recognition mode recog. If recog=NIl, it + 
defaults according to the value of access: for access = INPUT, + 
recog=OLD is used; for access=OUTPUT, recog=NEW is used; for + 
the other values of access, recog=OlD/NEW is used. If file cannot + 
be recognized generates a FILE NOT FOUND error.9 Does not + 
affect primary input or output files. + 

For example, infile[file] is 
input[openfile[file; I N PUT;OLD)); outfile[file) 
outpul[openfile[file;OUTPUT;NEW]]. 

equivalent 
is equivalent 

to + 
to + 

+ 
bytesize, if supplied, is the byte size in which to open the file (if + 
bylesize = NIL, 7 is used). machine.dependent.parameters is a list of + 
additional opening parameters. Inlerlisp-lO currently recognizes the + 
following values: + 

WAIT 
DON'T.CHANGE.DATE 

wait if file is busy. 
don't change the access dates. 

OLD/NEW means if recognition fails using OLD, then use NEW (useful only for writing a file). 

Various other errors may be generated in Interlisp'10 if the file cannot be opened. e.g. FILE WONT OPEN if the file 
is already opened by someone else. FILE SYSTEM RESOURCES EXCEEDED if there is no more room in the file 
system. See Section 16 for further discussion. 

14.3 

+ 
+ 



+ 

iofile[file] 

openp[file;access] 

Section 14: Input/Output 

THAWED open file in "thawed" mode. 

openfile[file;BOTH;OLD], i.e. opens file for both input and output. 

If access = NI L, value is file (full name) if file is open either for 
input or for output. Otherwise value is NIL. 

If access is INPUT, OUTPUT or BOTH, value is file if open that 
access mode, otherwise NIL. 

Note: the value of openp is NIL if file is not recognized, i.e., openp 
does not generate an error. 

openpU returns a list of all files open for input or output, excluding 
T and the current typescript (dribble) file, if any. 

+ The function getfilcinfo and setfileinfo allow the user to conveniently access such attributes of files 
+ as dates, protection and bytesize.1O 

+ getfileinfo[ file;attrib] 
+ 

returns the current setting of the attrib attribute of file.11 getfileinfo 
currently recognizes the following values for attrib: 

+ WRITEDATE, READDATE, CREATIONDATE 
+ the date (and time) as a string that file was respectively last written, 
+ last read, and originally created. 

+ IWRITEDATE, IREADDATE, ICREATIONDATE 
+ the respective date in integer form, e.g. 
+ getfileinfo[file; IWRI TEDA TE] = idate[getfileinfo(file;WR ITEOA TE)). 

+ 

+ 

+ 
+ 

BYTESIZE 

LENGTH 

ACCESS 

the byte size of the file.12 

the byte position of the end-of-file.13 

the current access mode of file (e.g. INPUT, OUTPUT I BOTH, 
APPEND) or NIL if file is not open. 

+ 10 getfileinfo and setfileinfo were written by R. M. Kaplan and J. J. Vittal. 

+ 11 In Interlisp-lO. file may also be a JFN as returned by gtifu. 

+ 12 Note that in Interlisp-10. it is possible that the byte size for the "opening" of a file might differ from the 
+ "permanent" bytesize. i.e. a 7-bit text file can be opened in 36-bit mode. To obtain the. "open" bytesize, use 
+ attribute OPENBYTES IZE. 

+ 13 Like geteofptr[filcl. but file does not have to be open. 

14.4 



Files 

The following attributes are available in Interlisp-10: + 

SIZE the size of file in pages. + 

PROTECTION the "protection code" file as an integer. + 

DELETED T, if file is the name of a deleted file, NIL otherwise. + 

Additional attributes which are available on TOPS-20 systems are: + 

INVISIBLE 

ARCHIVED 

OFF-LINE 

setfileinfo[ file;attrib ; value] 

closef[file] 

closef?[file] 

closea1l[-] 

delfile[ file] 

renamefilc[ old; new] 

T, if file has the invisible attribute, NIL otherwise. + 

T, if file has been archived, NIL otherwise. + 

T, if the contents of file are off-line (i.e. file has been archived and + 
its contents flushed), NIL otherwise. + 

Sets the attribute attrib of file to be value. setfileinfo returns T if it + 
is able to change the attribute attrib, and NIL if unsuccessful (some + 
attributes cannot be changed, e.g. it doesn't make sense to change + 
the S I Z E of a file without writing something on it). + 

Closes file.14 Generates an error, FILE NOT OPEN, if file not 
open. If file is NIL, it attempts to close the primary input file if 
other than terminal. Failing that, it attempts to close the primary 
output file if other than terminal. Failing both, it returns NIL. If 
it closes any file. it returns the name of that file. If it closes either 
of the primary files, it resets that primary file to terminal. 

closes file if it is open, otherwise is a no-op. Value is file. + 

Ooses all open files, except T and the current typescript file, if * 
any.1S Value is a list of the files closed. * 

deletes file if possible. Value is file if deleted, else NIL. 

renames old to be new. Value is new if successful, else NIL. 

14 The whenclose package described on page 14.9 pennits the user to "advise" closef to perfonn various operations + 
when a file is closed + 

15 Note: the whenclose package (page 14.9) allows certain files to be "protected" from c1osc'l.!J. closeal1[T] will + 
override this protection. + 

14.5 



Section 14: Input/Output 

+ MANIPULATING FILE NAMES 

+ Different operating systems have different conventions for naming files. However, it is desireable 
+ for Interlisp to be as implementation independent as possible. Therefore, all operations that need 
+ to reference parts of a filename, or construct new file names from existing ones, use the functions 
+ filename field, packfilcname, and unpackfilename, described below. The implementation of these 
+ functions obviously is dependent on the operating system they will run under, but as far as the 
+ programs· that use them are concerned, they permit expressing operations that are implementation 
+ independent.16 

+ Every file name is composed of a col1ection of fields which have different semantic interpretations. 
+ A field. name is a literal atom which is the name of a file-name field. Interlisp assumes that NAME 
+ and EXTENSION are valid field names; the implementor is free to allow other fields. In 
+ Interlisp-lO, allowable field names are: DEVICE. DIRECTORY. NAME. EXTENSION. 
+ VERSION. PROTECTION. ACCOUNT, and TEMPORARY. 

+ unpackfilename[ filename] returns a list of alternating fieldnames and field contents. 

+ Examples for Interlisp-10 on Teriex: 

+ 

+ 
+ 
+ 

filename 

<LISP)MAC.COMi3 
DSK:MYFILE 
WORK. iT 

+ filenamefield[filename;fieldname] 

unpackfilename[filename] 

(DIRECTORY LISP NAME MAC EXTENSION COM) 
(DEVICE DSK: NAME MYFILE)U 
(NAME WORK EXTENSION NIL TEMPORARY T) 

+ returns the contents of the field fieldname of filename. i.e. 
+ equivalent to listget[unpackfilename[filename];fieldname]. For 
+ example. filenamefield[<MASINTER>TEST DIRECTORY] will return 
+ MASINTER. 

+ packfilcname[ficldname1 ;fieldcontents1 ; ... ficldnamcn:,fieldcon~entsJl] . 
+ lambda, nospread. ·takes a hst or altematl11g fieldnanies and field 
+ contents (atoms or strings), and returns the corresponding file name. 
+ For example, packfilename[DIRECTORY LISP NAME NET] will 
+ return <LISP)NET. 

+ If the first argument to pack filename is a list, pack filename is called 
+ on that argument. 'Thus pack filename and unpackfilenamc operate 
+ as inverses. 

+ 16 In particular. the Interlisp-lO implementation recognizes file names in both Tenex and TOPS-20 format. and builds 
+ new names as appropriate. 

+ 17 In Interlisp·lO. ullpacklilellame[DSK: FOO] returns (DEVICE DSK: NAME FOO). i.e. the : is left in. This is so 
+ (DEVICE NIL:)may be distinguished from (DEVICE NIL). 

14.6 



Files 

Comments: + 

(1) If same field name is given twice, the first occurrence is used. + 

(2) packfilename recognizes the atom BODY as a fieldname meaning effectively splice into the + 
argument list at that point all of the field names and contents specified in the operand to + 
BODY. + 

For example. to take a file name and change a particular field. e.g. DIRECTORY, perform + 
(PACKFILENAME 'DIRECTORY newdirectory BODY file). Alternatively. to provide a default for a + 
field, e.g. the extension. perfonn (PACKFILENAME 'BODY file 'EXTENSION default). 'Ibis will + 
usc default as the extension unless one is already specified in file. 18 + 

ADDRESSABLE FILES 

For most applications, files are read starting at their beginning and proceeding sequentially, i.e., the 
next character read is the one immediately following the last character read. Similarly, files are 
written sequentially. A program need not be aware of the fact that there is a file pointer associated 
with each file that points to the location where the next character is to be read from or written to, 
and that this file pointer is automatically advanced after each input or output operation. 'This 
section describes a function which can be used to reposition the file pointer on those files that can 
be randomly accessed. thereby allowing a program to treat a file as a large block of auxiliary 
storage.19 For example, one application might involve writing an expression at the beginning of the 
file, and then reading an expression from a specified point in its middle.20 

A file used in this fashion is much like an array in that it has a certain number of addressable 
locations that characters can be put into or taken from. However, unlike arrays, files can be 
enlarged. For example. if the tile pointer is positioned at the end of a file and anylhing is written, 
the tile "grows." It is also possible to position the file pointer beyond the end of file and then to 
write?1 In this case, the tile is enlarged, and a "hole" is created, which can later be written into. 
Note that this enlargement only takes place at the end of a file; it is not possible to make more 
room in the middle of a file. In other words, if expression A begins at positon 1000, and 
expression B at noo, and the program attempts to overwrite A with expression C, which is 200 
characters long, part of B will be clobbered. 

getfileptr[file] returns current value of tile pointer for file. i.e., the byte address at 
which the next input/output operation will commence. getfileptr + 
compiles open. + 

18 

19 

20 

21 

Note that a nul! field is a field that has been specified. e.g. if file = FDD;1 in the above example, the default extension + 
wil! be used, but if file = FDD.;1. it will not. because a nul! extension has been specified. + 

The pmap facility (Section 21) provides for paged access to binary files in Interlisp-lO. 

This particular example requires the file be open for both input and output. This can be achieved via the function 
iofik However, random file input or output can be performed on files that have been opened in the usual way by 
infile or outfile. 

If the program attempts to rcad beyond the end of file, an END DF FILE error occurs, 

14.7 



setfileptr[file;adr1 

geteofptr[file) 

Section 14: Input/Output 

sets file Qointer for file to adr.22 Value is adr. adr= -1 corresponds 
to the end of file.23 - - -

Value is byte address of end of file, i.e., the number of bytes in the 
file. Equivalent to performing setfileptr[file;-11 and returning 
getfileptr[file] except does not change the current file pointer. 

+ randaccessp[file1 
+ 

value is file if file is randomly accessible, NIL otherwise, e.g. T. 
LPT:. NI L:, etc. are examples of files not randomly accessable. 
file must be open or an error is generated, FILE NOT OPEN. + 

+ 
+ 
+ 
+ 
+ 

filepos[pattern;filename;filcstart;fileend;skip;tai1;casearray1 
Searches file for Qattern a la strpos (Section 10). Search begins at 
filestart (or if filestart = NIL, the current position of the file 
pointer), and goes to fileend (or if fileend = NIL, to the end of file). 
Value is address of start of match, or NIL if not found. skiQ can be 
used to specify a character which matches any character in the file. 
If tail is T. and the search is successful, the value is the address of 
the first character after the sequence of characters corresponding to 
Qattern, instead of the starting address of the sequence. In either 
case, the file is left so that the next i/o operation begins at the 
address returned as the value of filepos. 

casearray, if supplied. should be an array of 128 integers (as created 
by array[128;128]). Each character in the file is mapped "thru" 
casearray in the sense that character code j is turned into 
elt[casearray;i + 1] before matching. casearray= NI L means no 
transformation will be performed. 

+ For example. to search without regard to upper and lower case differences, casearray would be an 
+ array where clt[casearray;i] = i. except for lower case characters whose corresponding elements 
+ would be the upper case characters. To search for a delimited atom, one could use " atom .. as the 
+ pattern. and specify a casearray in which all of the break and separator characters mapped into a 
+ space. 

22 

23 

The address of a character (byte) is the number of characters (bytes) that precede it in the file, i.e., 0 is the address 
of the beginning of the fife. However, the user should be careful about computing the space needed for an 
expression, since end-of'line in Interlisp-lO is represented as two characters in a file, but nchars only counts it as one. 

Note: in Interli~"p'lO, if a file is opened for output only, either by outfile. or openlile[liIe:OUTPUT). TENEX assumes 
that one intends to wrile a new or different file, even if a version number was specified and the corresponding file 
already exists. lbus. sctlileplr(file:-l] will set the file pointer to O. If a file is opened for both reading and writing, 
either by Lofil(! or opcnfilc[fiIe:BOTH), TENEX assumes that there might be material on the file that the user intends 
to rcad. Thus. the initial file pointer is the beginning of the file, but setfilcptr(liIe:-l] will set it to the end of the file. 
Note that one can also opcn a liIe for appcnding by opcnfilc[filc:APPEND]. In this case. the file pointer right after 
opcning is set to the end of the existing file. lbus. a write will llUtomatically add material at the end of the file, and 
an selfilepl! is unnecessary. 

14.8 

,--------~~--------------~--------

-.,*~~.~~"c .. ;___~'.;."..;>~ __ .~. ,'. J .-.: ___ ~ -:.,< __ ._~~;;.~"_ , 



seprcase[clispflg] 

Filel 

returns a casearray suitable for use by filepos (or ffilepos described + 
below) in which all of the break/separators of filerdtbl are mapped + 
into the same character. If clispflg is non-N I L, then all clisp + 
characters will be mapped into this character as well. Useful for + 
finding a delimited atom in a file. For example, if pattern is + 
fI FOO fI, and seprcase[T) is used for casearraY,then filepos will + 
find fI ( FOO ... fI • + 

For applications calling for extensive file searches, the function ffilepos will generally be 10 to 50 
times faster than filepos. 

ffilepos[pattern;filename;filestart;fileend;skip;tai1;casearray) 
Like filepos, except much faster in most applications. ffilepos is an 
implementation of the Boyer-Moore fast string searching algorithm 
[Boy]. This algorithm preprocesses the string being searched for 
and then scans through the file in steps usually equal to the length 
of the string. 'Thus, ffilepos speeds up roughly in proportion to the 
length of the string, e.g., a string of length 10 will be found twice 
as fast as a string of length 5 in the same position. 

Because of certain fixed overheads, it is generally better to use 
filepos for searches through fewer than 100 characters of the file. 
For longer searches, ffilepos will generally be marginally faster for 
short strings (length 3 or less) and significantly faster for longer 
strings. 

copybytes[srcfil;dstfil;start;end] copies bytes, i.e., characters, from srcfil to dstfil starting from 
position start and up to but not including position end. Both srcfil 
and dstfil must be open. Value is T. If end = NIL, start is + 
interpreted as the number of bytes to copy (starting at the current + 
position). If start is also NI L, bytes are copied until end-of-file is + 
reached. + 

CLOSING AND REOPENING FILES· THE WHENCLOSE PACKAGE24 + 
This package permits the user to associate with open files certain operations that govern how and + 
when the file will be closed, and how the file's status will be restored when a Sysout is started up. + 

·lne user can specify that certain functions will be executed before closef closes the file and/or after + 
closef closes the file. 'The user can make a particular file be invisible to closeaU, so that it will + 
remain open across user invocations of closeall. Finally, the user can associate a status-saving + 
function with a file which will be called before Sysout and which can specify what to do when a + 
Sysout is restarted. + 

lne basic user entry to these capabilities is the function whenc1ose. + 

24 The whenc10sc package was written by R. M. Kaplan and L. M. Masinter. + 

14.9 

-p 



Section 14: Input/Output 

+ whenclose[file;proPl ;va1l ; ... ;proPn;vaInl ' 
+. lambda no-spread. The first argument of whenclose must specify 
+ the name of an open file other than T (N I L defaults to the non-T 
+ primary input file or non-T primary output file). The remaining 
+ arguments specify properties to be associated with the full name of 
+. fil£. whenclose returns the full name of file as its value. The 
+ property names are drawn from the following set: 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 

+ 25 

+ 
+ 
+ 26 

+ 
+ 21 

+28 

BEFORE 

AFTER 

STATUS 

CLOSEALL 

EOF 

val is a function that closef will apply to the full name of file just 
before it is closed. This might be used, for example, to copy 
information about the file from an in-core data structure to the file 
just before it is closed. 

val is a function that closef will apply to the full name of file just 
after it is closed. Ibis capability permits in-core data structures that 
know about the file to be cleaned up when the file is closed.25 

For example, the pmap package (Scction 21) keeps track of the 
pages from an open file that have been page-mapped into in-core 
buffers. Those buffers must be cleared when a file is closed, or the 
file's JFN will not get released. Thus, when a file is first "mapped" 
in, whenclose[file;AFTER;PMAPAFTERClOSE] is performed, where 
pmapafterclose is a function which clears the buffer of any pages 
into which its argument is mapped. 

This property provides a way of restoring the status of files when a 
sysout is resumed. val is a function that will be applied to the full 
name of file just before a sysout. val is expected to return a list, 
car of which is a function which will be rumlY.'d to the cdr when 
the sysout is started up and which will restore the status of file. If 
the value of the IDm!Y is NIL, it is assumed the file could not be 
successfully restored, a warning message is printed, and then any 
A F TE R functions associated with the file are executed.26 

val is either YES or NO and determines whether file will be closed 
by closeall (YES) or whether closeall will ignore it( NO) .27 

val is a function that will be applied to the full name of file when. 
an end-of-file error occurs.28 'The function can examine the context 
of the error, and can decide whether to close the file, retfrom some 

BEFORE and AFTER also differ in their the behaviour with respect to sysout: The AFTER function will also be 
executed when a sysout is started up, unless a S TA TUS function is also associated with the file and it causes the file 
to be successfully restored. 

R£nnst!.ty~ (Section 24) produces an expression for re-opening a file after sysout and restoring as many of its 
attributes as possible. 

closeall uses closef. so that any AFTER functions will be executed if the file is in fact closed. 

and the errQ!l.1l!£1'>! entry for that error. if any, returns NIL. 

14.10 



Files 

function, or pcrfonn some other computation. If the function + 
supplied returns nonnally (Le. does not retfrom some function), the + 
normal error machinery will be invoked (but file will not be + 
automatically closed if the EOF function did not close it). + 

Note that multiple AFTER and BEFORE functions may be associated with a file; they arc executed + 
in sequence with the most recently associated function executed first. However, a second STATUS + 
specification will supercede an earlier one. The C LOS EA L Land EO F values will also override + 
earlier· values, so only the last value specified will have an effect. Files are initialized with + 
CLOSEALL - YES, EOF - CLOSEF. + 

14.2 INPUT FUNCTIONS 

Most of the functions described below have an (optional) argument 11k which specifies the name of 
the file on which the operation is to take place, and an (optional) argument rdtbl. which specifies 
the readtable to be used for input. If 11k is NIL. the primary input file will be used. If the file 
argument is a string. input will be taken from that string (and the string pointer reset accordingly). 
If rdtbl is NIL. the primary readtable will be used. readtables are described on page 14.23. 

Note: in all Interlisp-IO symbolic files. end-oJ-line is indicated by the characters carriage-return and 
line-feed in that order. Accordingly. on input from files. Interlisp-IO will skip all line-feeds which 
immediately follow carriage-returns. On input from tenninal. Interlisp will echo a line-feed 
whenever a carriage-return is input. 

For all input functions except readc and peekc. when reading from the tenninal. control-A erases 
the last character typed in, echoing a \ and the erased character. Control-A will not backup 
beyond the last carriage-return. Typing control-Q causes Interlisp to print # # and clear the 
input buffer. i.e .• erase the entire line back to the last carriage-return.29 When reading from a file, 
and an end of file is encountered, all input functions close the file and generate an error, END OF 
FI LE. 30 

read[file;rdtbl;flg] Reads one S-expression from file. Atoms are delimited by the 
break and separator characters as defined in rdtbl. To input an 
atom which contains a break or separator character, precede the 
character by the escape character %, e.g., AS%( c. is the atom 
AS (C. %% is the atom %, %tA (Le., %control-A) is the atom tAo 
For input from the tenninal, an atom containing an interrupt 
character can be input by typing instead the corresponding 
alphabetic character prcceded by control-V, e.g., tVC for control-C. 

29 

30 

Strings are delimited by double quotes. To input a string 
containing a double quote or a %, precede it by %, e.g., "AB%"C" 
is the string AB" C. Note that % can always be typed even if next 
character is not "special", c.g., %A%B%C is read as ABC. 

Note that the CHAR DELETE and LINEDElETE characters can be redefined or disabled via setsyntax. see page 14.25. 

unless the whenc10se package has been used to alter this behavior (see page 14.9). 

14.11 

-~ 

+ 



Section 14: 1nput/Output 

If an atom is interpretable as a number, read will create a number, 
e.g., 1E3 reads as a floating point number, 1D3 as a literal atom, 
1.0 as a number, 1,0 as a literal atom, etc. Note that an integer can 
be input in octal by terminating it with a Q, e.g., 17Q and 15 read 
in as the same integer. The setting of radix, page 14.34, 
determines how integers are printed, i.e., with or without Q's. 

When reading from the temlinal, all input is line-buffered to enable the action of control-Q.31 
Thus no characters are actually seen by the program until a carriage-return is typed. 32 However. 
for reading by read, when a matching right parenthesis is encountered, the effect is the same as 
though a carriage-return were typed, i.e., the characters are transmitted.33 To indicate this, Interlisp 
also prints a carriage-return line-feed on the terminaL 

&:T suppresses the carriage-return ·normally typed by read 
following a matching right parenthesis. (However, the characters 
are still given to read - i.e., the user does not have to type the 
carriage-return himself.) 

When reading a list, typing control-W erases the last expression 
read, echoing a \ \ and the erased expression, e.g., (NOW IS THE 
TIMEtW \ \ TIME) returns (NOW IS THE). Control-W can be 
used repeatedly, and can also back up and erase expressions on 
previous lines.34 

ratom[ file;rdtbl] Reads in one atom from file. Separation of atoms is defined by 
rdtbl. % is also an escape character for ratom, and the remarks 
concerning control-A, control-Q, control-V, and line-buffering also 
apply. 

If the characters compnsmg the atom would normally be 
interpreted as a number by read, that number is also returned by 
ratom. Note however that ratom takes no special action for " 
whether or not it is a break character, i.e., ratom never makes a 
string. 

rstring[ file;rdtbl] Reads in one string from file, terminated by next break or separator 

31 

32 

33 

34 

Unless control[T] has been performed (page 14.33). 

Actually. the line buffering is terminated by the character with terminal syntax class EOL (see page 14.30), which in 
most cases will be carriage-return. 

The line buffer is also transmitted to read whenever an IMMEDIATE read'macro character is typed (see page 14.27). 

However, since contro)'W is implemented as an IMMEDIATE read·macro character, (see page 14.27). once it is 
typed, characters typed before it C<tnnot be deleted by control'A or control·Q. since they will already have passed 
through the line buffer. 

14.12 



Input Functions 

characler.35 Control-A, control-Q, control-V, and % have the same 
effect as wilh ratom. 

Note that the break or separator character that tenninates a call to ratom or rstring is not read 
by that call, but remains in the buffer to become the first character seen by the next reading 
junc/ion that is called 

ratoms[a;file;rdtbl] Calls ralom repeatedly until the atom E is read. Returns a list of 
atoms read, not including ~. 

setsepr[lst; flg;rdtbl] Set ~a!ator characters for rdtbl. Value is NIL. 

setbrk[lst; flg ;rdtbl] Set brea! characters for rdtbl. Value is NIL. 

For both setsepr and setbrk, 1st is a list of character codes,36 fl.g determines the action of 
setsepr/sctbrk as follows: 

NIL clear out indicated readtable and reset break/separator characters to be those in 1st. 

o clear out only those characters in 1st - i.e., this provides an unsetsepr and unsetbrk. 

1 add characters in 1st. 

Characters specified by setbrk will delimit atoms, and be returned as separate atoms themselves by 
ratom. Characters specified by setsepr will serve only to delimit atoms, and arc otherwise ignored. 
For example, if $ was a break character and * a separator character, the input stream 
ABC**DEF$GH*$$ would be read by 6 calls to ratom returning respectively ABC, DEF, $, GH. 
$, $. 

'The clements of 1st may also be characters, e.g., setbrk[(. ,)] has the same effect in Interlisp-10 as 
setbrk[(46 44)]. Note however that the "characters" 1,2, ... ,9 will be interpreted as character codes 
because they arc numbers. 

Note: (. ), [. ], and" are normally break characters, i.e., will be returned as separate atoms when 
read by ratom. If any of these break characters are disabled by an appropriate setbrk (or by 
making it be a separator character), its special action for read will not be restored by simply 
making it be a break character again with setbrk.37 For more details, see discussion in section on 
readtables, page 14.23-26. 

35 

36 

37 

Note that if the next character is a break or separator, rslring will return the null string, ..... This is a common + 
source of program bugs. + 

If ~= T. the break/separator characters are reset to be those in the system's readtable for terminals. regardless of 
value of flg. i.e .. setbrk[TJ is equivalent to setbrk[gclbrk[T]]. If rdlbl Is T. then the characters are reset to those in the 
original system table. 

However. making these characters be break characters when they already arc will have no effect 

14.13 



Section 14: Input/Output 

Note that the action of % is not affected by setsepr or setbrk. To defeat the action of % use 
escape[}, as described below. 

getsepr[rdtbl] 

getbrk[rdtbl] 

escape[flg] 

ratest[x] 

readc[file] 

peekc[file;rdtbl] 

Value is a list of separator character codes. 

Value is a list of break character codes. 

If flg = NIL, makes % act like every other character for input. 
Normal setting is escape[T]. The value of escape is the previous 
setting. 

If . ! = T, ratest returns T if a separator was encountered 
immediately prior to the last atom read by ratom, NIL otherwise. 

If ! = NIL. ratest returns T if last atom read by ratom or read 
was a break character, NIL otherwise. 

If ! = 1. ratest returns T if last atom read (by read or ratom) 
contained a % (as an escape character, e.g., %[ or %A%B%C), NIL 
otherwise. 

Reads the next character, including %, ", etc, Le., is not affected by 
break, separator, or escape character. Value is the character. 
Action of readc is subject to line-buffering, i.e., readc will not 
return a value until the line has been terminated even if a character 
has been typed. Thus, control-A, control-Q, and control-V will 
have their usual effect. If control[T] has been executed (page 
14.33), defeating line-buffering, readc will return a value as soon as 
a character is typed. In addition, if control-A, control-Q, or 
control-V are typed, readc will return them as values. 

Value is the nex t character, but does not actually read it, i.e., 
remove it from tile buffer. If rdtbl = NI L. peekc is not subject to 
line-buffering,38 i.e., it returns a value as soon as a character has 
been typed. Otherwise, peekc waits until the line has been 
terminated before returning its value.39 This means that control-A, 
control-Q, and control-V will be able to perform their usual editing 
functions. 

+ 38 

+ 
If reading from the terminal. the character is echoed as soon as ~J: reads it. even though it is then "put back" 
into the system buffer, where a subsequent < del > (or < control-Z) on TOPS-20) before the character is read can 

clear it + 
39 W!h! is used to determine the escape character, parelltheses characters, etc., while the line is being buffered. 

14.14 



Input Functions 

laster file] Value is last ~haraetcr read from file. 

Note: read, ratom, ratoms, peekc. readc all wait for input if there is none. The only way to test 
whether or not there is input is to use readp. 

readp[file;flg] Value is T if there is anything in the input buffer of file. NI L 
otherwise.40 Note that because of tine-buffering. readp may return 
T. indicating there is input in the buffer. but read may still have to 
wait. 

waitforinput[file] waits until input is available from file or from the terminal, i.e. + 
from T. waitforinput is functionally equivalent to + 
(until (OR (READP T) (RfADP FILE» do NIL), except + 
that it does not use up machine cycles while waiting.41 Value is the + 
device for which input is now available, i.e. file or T. + 

file can also be an integer, in which case waitforinput will wait until + 
there is input available from the terminal, or until file milliseconds + 
have elapsed. Value is T if input is now available, NIL in the case + 
that waitforinput timed out. + 

readline[rdtbl;-;-] reads a line from the terminal, returning it as a list. If readp[T] is 
NIL, readline returns NIL. Otherwise it reads expressions, using 
read,42 until it encounters either: 

40 

41 

42 

43 

(1) a carriage-return (typed by the user) that is not preceded by 
any spaces, e.g., 

A B Col 
and readline returns (A B C) 43 

(2) a list terminating in a It]", in which case the list is included 
in the value of readline. e.g., A B ( CD] and readline 
returns (A B (C 0». 

(3) an unmatched right parentheses or right square bracket, 
which is not included in the value of readline, e.g., 

Frequently. the input buffer will contain a single EOl character left over from a previous input For most 
applications, this situation wants to be treated as though the buffer were empty. and so readp returns NIl. However, 
if !!g= T, rcadp will also return T in this case, i.e., will return T if there is any character in the input buffer. 

waitforinput operates by dismissing. checking for available input, and then. if there is none, dismissing again, each + 
time for an increasingly larger interval. lbe initial interval is the dismissini1 milliseconds (initially 5(0). and the + 
interval grows by 1116 for each dismissal. up to a maximum of dismissmax milliseconds (initially 10,000). + 

Actually, ~;Wlin.£ perfonns (APPLY" lISPXREADFN T), as described in Section 22. lispxreadfn is initially READ. 

Note that carriage-return, i.e .. the EOl character. can be redefined with .§.g~y!}t!!l\, page 14.25 . .IT.!!Q.li!!~ actually 
checks for the EOl character, whatever that may be. lbe same is true for right parenthesis and right bracket 

14.15 



Section 14: Input/Output 

ABC] 
and readline returns (A B C). 

In the case that one or more spaces prccede a carriage-return, or a list is terminated with a")", 
readline will type " ... " and continue reading on the next line,44 e.g., . 

ABC ~ 
•.. (O-E F) 
... (X Y Z] 

and readline returns (A B C (0 E F) (X Y Z». 

skread[ file;rereadstring]45 is a skip read function. It moves the file pointer for file ahead as if 
one call to read had been performed, without paying the storage 
and compute cost to really read in the structure. rereadstring is for 
the case where the user has already performed some reade's and 
ratom's before deciding to skip this expression.46 In this case, 
rereadstring should be the matetial already read (as a string), and 
skrea.Q operates as though it had seen that material first, thus 
getting its paren-count, double-quote count, etc. set up properly. 

44 

45 

The value of skread is %) if the first thing encountered was a 
closing paren; %) if the read terminated on an unbalanced %], i.e., 
one which also would have closed any extant open left parens; 
otherwise the value of skread is NIL. 

If the user then types another carriage-return, the line will tenninate. e.g., 

and rcadline returns (A 8 C). 

skrel!!! was written by J. W. Goodwin. It always uses filerdtbl for its readtable. 

* 46 skrel!!! may have difficulties if unusual read-macros have been added to filerdtbl. skread will not recognize read
macro characters in rCfl:adstring. nor SPLICE or INFIX read macros. This is only a problem if the read-macros are 
defined to parse subsequent input in the file which docs not follow the nonnal parenthesis and string-quote 
conventions in filerdtbl. 

* 
* 
* 

14.16 



Output Functions 

14.3 OUTPUT FUNCTIONS 

Most of the functions described below have an (optional) argument JJk which specifies the name of 
the file on which the operation is to take place. If.f1k is NIL. the primary output file will be 
used. Some of the functions have an (optional) argument rdtbl. which specifies the readtable to be 
used for output. If rdtbl is NIL. the primary readtable will be used. 

Note: in all Interlisp-1O symbolic flIes, end-oJ-line is indicated by the characters carriage-return and 
line-feed in that order. Unless otherwise stated. carriage-return appearing in the description of an 
output function means carriage-return and line-jeed. 

prinl[x;fi1e] 

prin2[x;fi1e;rdtbl] 

prints ! on file. 

prints ! on file with %'s and '!'s inserted where required for it to 
read back in properly by read, using rdtbl. 

Both prinl and prin2 print lists as well as atoms and strings; prinl is usually used only for 
explicitly printing fonnatting characters, e.g., (PRINl (QUOTE %[» might be used to print a left 
square bracket (the % would not be printed by prinl). prin2 is used for printing S-expressions 
which can then be read back into lntcrlisp with read i.e., break and separator characters in atoms· 
will be preceded by %'s, e.g., the atom "0" is printed as %(%) by prin2. If radix=8, prin2prints a 
Q after integers but prinl does not (but both print the integer in octal).47 

print[x;fi1e;rdtbl] Prints the S-expression ! using prin2; followed by a carriage-return 
line-feed. Its value is !. 

For all printing junctions, pointers other than lists, strings, atoms, or numbers, are printed as 
#N.48 where N is the octal representation of the address of the pointer (regardless of radix). 
Note that this will not read back in correctly, i.e.. it will read in as the atom "# N". 

spaces[n;fi1e] Prints!! spaces; its value is NIL. 

terpri[file] Prints a carriage-return; its valu~ is N I l.49 

tab[pos;minspaces;fi1e] pcrfonns appropriate number of spaces to move to position ~. 

47 

48 

49 

prin3 and mil!1 are the same as prinl and prin2 respectively. except that they do not increment the position counter + 
nor perform any Iinelength checks. They arc useful primarily for printing control characters. + 

unless defprinl (page 14.22) has been used to specify a printing function for this particular data type. + 

Note: a sequence of print. prin2. spaces. and terpri expressions can often be more conveniently coded with a single + 
P!i~().!!! st.1LcmcnL (Section 23). + 

14.17 



* 
* 
* 
* 

+ showprin2[;x;fi1e;rdlbI1 
+ 

+- showprint[;x;file;rdtbl] 
+ 

Section 14: Input/Output 

minspaces indicates how many spaces must be printed (if NIL, 1 is 
used). Thus, if position + minspaces is greater than ~, tab docs 
a terpri and then spaces[pos]. Note: if minspaces is T, and position 
is greater than .Pill!, tab docs nothing. 

like prin2 except if sysprettyflg = T, prettyprints ! instead. Value is 
!. 

like print except if syspreuyflg = T. prettyprints ! instead, followed 
by a carriage-return line-feed. Value is !. 

+ showprint and showprin2 are used by the programmer's assistant (Secton 22) for printing the values 
+ of expressions and for printing the history list, by various commands of the break package (Section 
+ 15), e.g. ? = and 6T commands, and various other system packages. The idea is that by simply 
+ settting or binding sysprettyflg to T (initially NIL), the user instructs the system when interacting 
+ with the user to prettyprint s-expressions (see page 14.43) instead of printing them. 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

* 
* 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

printbells[J 

dobe[J 

PRINTLEVEL 

used by DWIM (Section 17) to print a sequence of bells to alert the 
user to stop typing. Can be advised or redefined for special 
applications, e.g. to flash the screen on a display terminal. 

Qismiss until Qutput Quffer is £mpty, i.e. until all of the characters 
that have been printed by Interlisp functions have actually been 
printed on the user's terminal. For example, it is important to 
perform a dobe after printing an error message before clearing the 
input buffers to make sure that the user has actually seen the error 
message. 

The print functions print, prinl, and prin2 are all affected by a level parameter set by: 

printlevet[cam;cdm] Sets car print level to cam, cdr printlevel to cdm. Value is dotted 
pair of old settings. Initial value is (1000 . -1). 

In order that printlevel can be used with resetform or rcsetsave, 
prinllevet[x1 where ! is a dotted pair is equivalent to 
printlevc1[car[x];cdr[x]). 

printleve][n;NIL] changes car printlevel without affecting cdr 
print]evel. print]evcl[NI L;n) changes cdr printlevc1 with affecting 
car printlevel. printlevel[] gives current setting Witllout changing 
either. 

14.18 



Olltput Functions 

The car prinllevel controls the number of unpaired left parentheses which will be printed. Below 
that level, all lists wilt be printed as &. For example, if ~ = (A (B C (D (E F) G) H) K). 
Then if cam = 2, print[x] would print 
(A (B C & H) K), and if cam = 3, (A (B C (D & G) H) K), and if cam = 0, just &. 

If car printlevel is negative, the action is similar except that a carriage-return is inserted between all 
occurrences of right parenthesis immediately fol1owed by a left parenthesis. 

The cdr printlevel affects the number of clements of a list that will be printed before the printing + 
is terminated with --. For example, if cdrn = 2, (A BCD E) will print as (A B - - ). The + 
decision to terminate printing of a tail of a list is also affected by the depth of printing in the car + 
direction: whenever the sum of the number of cdrs at the current level and number of cars, i.e. + 
unmatched left parentheses, is greater than the cdr printlevel, printing stops. This gives a + 
"triangular" effect in that less is printed the farther one goes in either car or cdr direction. For + 
example, if cdr printlevel = 2, then (A (B C (D (E F) G) H) K L) wilt print as (A (B - - ) + 
- -) and if cdr printlevel = 3, as (A (B C - -) K - - ). + 

If cdr printlevel is negative, then the action of cdr printlevel is disabled, i.e. same as though cdr + 
prinllevel were infinite. + 

The printlevel setting can be changed dynamically, even while Interlisp is printing, by typin16 
control-P followed by a number, i.e., a string of digits, followed by a period or exclamation point. 
The car printlevel wilt immediately be set to this number.51 If the print routine is currently deeper 
than the new level, all unfinished lists above that level will be terminated by "--)". Thus, if a 
circular or long list of atoms, is being printed out, typing control-PO. will cause the list to be 
terminated. 

If the string of digits fottowing a control-P is terminated by a comma, another number may be + 
typed terminated by a period or exclamation point. The car prinllevcl will then be set to the first + 
number, the cdr printlevel to the second number. + 

In either case, if a period is used to terminate the printlevel setting, the printlevel will be returned 
to its previous setting after the current printout has finished. If an exclamation point is used, the 
change is permanent and the prinUevel is not restored (until it is changed again). 

* Note: nonnally print/evel only affects tenninal output. Output to all other files acts as though 
level is infinite. However, if p/v/{i1etlg is T (initially NIL), then printlevel will affect output to files. * 

50 

51 

As soon as control·P is typed. Interlisp clears and saves the input buffer, clears the output buffer, rings the bell 
indicating it has seen the control-P, and then waits for input which is tcnninated by any non-number. The input 
buffer is then restored and the program continues. If the input was tenninated by other than a period or an 
exclamation point, it is ignored and printing will continue, except that characters cleared from the output buffer will 
have been lost. 

Another way of "turning ofr' output is to type control-D. which simply clears the output buffer, thereby effectively 
skipping the next (up to) 64 characters. 

14.19 



Section 14: Input/Output 

+ PRINTING NUMBERS52 

+ Interlisp defines standard print-names for fixed and floating point numbers. These print-names are 
+ used whenever numbers are printed by the ordinary printing functions prin1, prin2, etc. The 
+ print-names of numbers normally can be affected in two ways: the print-name for integers is 
+ sensitive to the current setting of radix, and the print-name for floating numbers is sensitive to the 
+ current setting of fltfmt. The facilities described in this section permit greater controls on the 
+ printed appearance of numbers, allowing such things as left-justification, suppression of trailing 
+ decimals. etc. 

+ The basic function for printing numbers under format control is printnum: 

+ printnum[format;number;file] prints number on file according to the format format. format is a 
+ list structure of one of the following two forms:s:r-

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(FIX width radix pad leftflush) 

(FLOAT width decpart exppart pad round) 

For a F I X format, number will be rounded to the nearest integer, 
and then will be printed in a field width characters long with 
radix = radix (or 10 if radix = NIL). If pad and leftflush are both 
NIL. the number will be right-justified in the field. and the padding 
characters to the left of the leading digit will be spaces. If pad· is T, 
the character "0" will be used for padding. If leftflush is T, then 
the number will be left-justified in the field. with trailing spaces to 
fill out width characters. 

+ The following examples illustrate the effects of the F I X format options (the vertical bars indicate 
+ the field width): 

+ number 

+ (FIX 2) 3 1 31 

+ (FIX 2 NIL T) 

+ (FIX 12 -8 T) 

7 

14 

1071 

10000000000161 

12 + (FIX 5 NIL NIL T) 2 

+ 

+ 52 

+ 
+ 
+ 

53 

For a FLOAT format, number will be printed as a decimal number 

The printnum package was designed and implemented by R. M. Kaplan. Its utility is considerably enhanced when 
used in conjunction with the printout package (Section 23). which implements a compact language for specifying 
complicated sequences of elementary printing operations. and makes fancy output fonnats easy to design and simple 
to program. 

forml!! can also be a machine dependent format-code as returned by numformatcode. See discussion on page 14.22. 

14.20 

" 



. FLOAT format examples: 

format 

(FLOAT 7 2) 

(FLOAT 7 2 NIL T) 

(FLOAT 11 2 2) 

(FLOAT 7 2 NIL NIL 1) 

(FLOAT 7 2 NIL NIL 2) 

Output Functions 

in a field width characters wide. There will be decpart digits to the + 
right of the decimal point (decpart = NIL is equivalent to 0). If + 
exppart is not 0 (or NIL), the number will be printed in exponent + 
notation, with the exponent occupying exppart characters in the + 
field. exppart must allow for the character E and a sign that wilt + 
be printed before tile exponent digits. As wiili F I X format, + 
padding on ilie left will be with spaces, unless pad is T. If round is + 
given, it indicates ilic digit position at which rounding is to take + 
place, counting from ilic leading digit of ilie number. + 

+ 
number result + 

27.689 '1 27.691 + 

27.689 10027.69 1 + 

27.689 12768.90E-021 + 

27.689 30.001 + 
27.689 28.001 + 

If number is not a number and not NIL, a NON-NUMERIC ARG + 
error will be generated. If number is NI L, the effect depends on + 
ilie setting of ilie variable nilnumprintflg. If nilnumprinlflg is NIL, + 
ilien the error will occur. If it is non-NI L, then the value of + 
nilnumprintflg will be printed right-justified in ilie field described + 
by format. This option facilitates the printing of numbers in + 
aggregates with missing values coded as NIL. + 

The full print-name number will be printed if ilie value will not fit + 
in the field specified. Then a tab is executed so that ilie line + 
position of the file after printnum is always the position prior to + 
printing plus ilie indicated width. + 

Formatted printing of numbers usually receives assistance from the operating system, provided that + 
the format is specified in some sort of special code. printnum works by converting ilic machine- + 
independent format specifications described above into machine-dependent codes ilie exact form of + 
which may vary from implementation to implementation. lois conversion process takes place on + 
each call to printnum. For efficiency purposes, if ilie user is going to be performing a particular + 
call to printnum frequently, he may wish to separate the conversion from ilie actual printing, + 
performing the conversion process just once and saving the result. The function numformatcode is + 
available for this purpose: numf(Jrmatcode takes a fbrmat, performs the conversion and returns a + 
machine dependent format-code, which can be given to printnum in place of a list structure format + 
as described above. In this case, printnum will not have to perform the conversion, but can simply + 
use ilie machine-dependent format code directly. + 

14.21 

.-.-.-----~- ----- ------------~----

.- -.,-~,'-,. ... - ;,--- ,,: '-~.~~-~,;;~.,:i'-=-" -"," _J'c"' __ :' 0-._" ••• ~-." , 



Section 14: Input/Output 

+ numformatcode[ format;-] 
+ 

converts the FIX or FLOAT format to a machine-dependent 
forrriat~code. 54 

+ Note: in Interlisp-lO, the function fltfint (page 1435) will accept FLOAT formats as described 
+ above, in' addition to the bit specification required for the Tenex FLOUr JSYS. 

+. USER DEFINED PRINTING 

+ defprint(type;fu] 
+ 

. In Interlisp-10, ~ is either a type natne55 or type number. 
Whenever a printing function, print, prin1, prin2, etc. encounters an 
object of the indicated type, fu' is called with· the iten1 to be printed 
as its argument. If it returns NIL, the datum is printed as the 
system defaults, i.e. for user data types, it will be printed as 
#nnnnnn. If fu wishes to specify how the datum should be 
printed, it should return a list of the form (item1 . item2). item1 
will be printed using prin1 (unless it is NIL), and then item2 
printed using prin2 with 'no spaces between the two items. 
(Typically, item1 will be a read macro character.) 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ Note that defprint also affects internal calls to print from pack, concat, etc., i.e. any operation that 
+ involves obtaining a print name (see Section 10). 

DUMPING UNUSUAL DATA STRUCTURES 

Hprint56 is a package for printing and reading back in more general data structures that cannot 
normally be dumped and loaded easily, e.g., (possibly re-entrant or circular) structures containing 
user datatypes, arrays, hash tables, as well as list structures.57 Hprint will correctly print and read 
back in any structure containing any or all of the above, chasing all pointers down to the level of 
literal atoms, numbers or strings. 

Hprint operates by simulating the Interlisp print routine for normal list structures. When it 
encounters a user datatype (see Section 23), or an array or hash array, it prints the data contained 
therein, surrounded by special characters defined as read-macro characters (see page 14.26). 
While chasing the' pointers of a structure, it also keeps a hash table of those items it encounters, 
and if any item is encountered a second time, another read-macro character is inserted before . the 

+ 54 

+ 
In Interlisp-l0, numformatcode has a second argument. smashcode, If smashcode is recognized as a format-code 
d.1ta-structure, then the new format-code will be smashed into that structure instead of allocating new storage. 
t1umformatcodc[] will simply return an uninitialized datum that can be later smashed. + 

+ 55 

+ 
56 

57 

The user can specify different action for type names ARRAYP, HARRAYP, TERMTABLEP, READTABLEP, and 
CCODEP ,even though they all have the same type number. 

for !iorrible PRT~T. The hprint package was written by L. M. Masinter. 

IIpril!! currently cannot handle compiled code arrays. stack positions. or arbitrary unboxcd numbers. 

14.22 



Output Functions 

first occurrence,58 and all subsequent occurrences arc printed as a back reference using an 
appropriate macro character. Thus the inverse function, hread merely calls the Interlisp read 
routine with the appropriate readtable. 

hprint[x ;file;uncircular] prints! on file. 59 If uncircular = T, hprint does no checking for any 
circularities in ! (but is still useful for dumping arbitrary structures 
of arrays, hash arrays, lists, user data types, etc., that do not contain 
circularities), which results in a large. speed and internal-storage 
advantage. 

hread[file] reads an hprint-ed expression from file. 

hcopyall[x] copies data structure!. ! may contain circular pointers as well as + 
arbitrary structures. + 

Note: HORRIBLEVARS and UGLYVARS (page 14.59) are two file package commands for dumping 
and reloading circular and re-entrant data structures. They provide a convenient interface to hprint 
and hread. 

14.4 READTABLES AND TERMINAL TABLES60 

The Interlisp input and (to a certain extent) output routines are table driven by readtables and 
terminal tables. Read tables arc objects that. specify the syntactic properties of characters for input 
(and some output) routines. Since the input routines are concerned with parsing incoming 
character sequences into objects, the readtable in use at the time. determines which sequences are 
recognized as literal atoms, strings, list structures, etc. Terminal tables arc objects which supply the 
input/output routines with information specifically pertaining to the file T, and are described later. 

A read table is a datum61 that contains information about the syntax class of each character, e.g., 
break character, separator character, escape character, list or string delimiter, etc. The system 
packages use three rcadtables: T for input/output from terminals, (the value of) filerdtbl for 
input/output from files, and (the value of) editrdtbl, for input from terminals while in the editor. 
These three tables are initially equal but not £0.. Using the functions described below, the user 
may change, reset, or copy these tables. He can also create his own readtables, and either explicitly 
pass them to input/output functions as arguments, or install them as the primary readtable, via 
setrcadtable, and then not specify a rdtbl argument, i.e., use NIL. 

S8 

59 

60 

61 

by resetting the file pointer via setfileptr. 

Note: hprim, is intended primarily for output to disk files, since the algorithm depends on being able to reset the file 
pointer. If file is not a disk file (and uncircular = NIL), a temporary file. HPRINT .SCRATCH. is opened. ! is 
illtrinted on it. and then that file is copied to the final output file and the temporary file is deleted. 

Readtables and terminal tables were designed and implemented by D. C. Lewis. 

In Interlisp-10, readtablcs are representcd by 129 word arrays. However, typename distinguishes readtables from * 
other arrays, and whcn applied to a rcadtable rcturns READTABLEP. * 

14.23 



Section 14: Input/Output 

In the discussion below, most functions that accept readtab1e arguments will also accept NI L as 
indicating the primary readtable, or T as indicating the system's readtab1e for terminals. Where 
indicated, some will also accept ORIG (not the value of ORIG) as indicating the original system 
read table. 

READTABLE FUNCTIONS 

readtablep[rdtbl] 

getreadtable[ rdtbl] 

setreadtable[rdtbl;flg] 

copyreadtable[rdtbl] 

resetreadtable[rdtbl;from] 

SYNTAX CLASSES 

Value is rdtbl, if rdtbl is a real readtable, otherwise NIL. 

If rdtbl=NIL, value is primary read table. If rdtbl=T, value is 
system's read table for terminals. If rdtbl is a real readtable, value is 
rdtbl. Otherwise, generates an ILLEGAL READTABLE error. 

resets primary readtable to be rdtb1.62 Generates 
ILLEGAL READTABLE error if rdtbl is not NIL, T, or a real 
readtable. Value is previous setting of primary readtable, i.e., 
setreadtable is suitable for use with resetform (Section 5). 

value is a copy of rdtbl. rdtbl can be a real readtable, NIL, T, or 
OR I G, in which case value is a copy of original system readtable, 
otherwise generates an ILLEGAL READTABLE error. Note that 
copyreadtable is the only function that creates a readtable. 

copies (smashes) from into rdtbl. from and rdtbl can be NIL, T, or 
a real readtable. In addition, from can be OR I G, meaning use 
system's original readtilble. 

A syntax class is a group of characters which behave the same with respect to a particular 
input/output operation. 1nere arc nine basic syntax classes: LEFTPAREN, RIGHTPAREN. 
LEFTBRACKET, RIGHTBRACKET, STRINGDELIM, ESCAPE, BREAKCHAR, SEPRCHAR, and 
OTHER, each associated with a primitive syntactic property. In addition, there is an unlimited 
assortment of user-defined syntax classes Uointly referred to as read-macros but individually 
constituting unique syntax classes). For example, the characters which indicate the beginning of a 
list structure form a basic syntax class, LEFT PA R EN. Characters which indicate the beginning of a 
string belong to the class STRINGDELIM. Characters that are not otherwise special belong to the 
class OTHER. 

Note that a "syntax class" is an abstraction: there is no object referencing a collection of characters 
and called a syntax class. Instead, a readtable provides the association between a character and its 
syntax class, and the inpulloutput routines enforce the abstraction by using read tables to drive the 

62 If f!g == T. setreadtabl~ resets the system readtable for terminals. Note that the user can reset the other system 

readtab1cs with setg. c.g .. (SETQ FILERDTBL (GETREADTABLE». 

14.24 



Readtables and Terminal Tables 

parsing.63 

The functions below are used to obtain and (re)set the syntax class of a character. ch can either be 
a character code. or a character. i.e., if ch is a number. it is interpreted as a character code. For 
example, in Interlisp-lO, 1 indicates control-A. and 49 indicates the character 1. 

getsyntax[ch;table] 

setsyntax[ch;class; table] 

Value is syntax class of ch with respect to table. table can be NIL. 
T, ORIG, or a real readtable or terminal table. ch is either a 
character code. a character, or a syntax class. In the last case, the 
value of getsyntax is a list of the character codes in that class, e.g., 
getsyntax[B R EAK] = getbrkU. 

sets syntax class of ch, a character code, or a character. table can be 
either NIL, T, or a real readtable or terminal table. class is a 
syntax class, or in the case of read-macro characters (page 14.26), 
an expression of the form (type ... options ... fn). The value of 
setsyntax is the previous class of ch. 

setsyntax will also accept class = NIL, T, OR I G, or a real readtable 
or terminal table, as being equivalent to getsyntax[ch;class), i.e., 
means give ch the syntax class it has in the table indicated by class, 
e.g., setsyntax[%( ;OR I G). class can also be a character code or 
character, which is equivalent to getsyntax[class;table], i.e., means 
give ch the syntax class of the character indicated by class, e.g., 
setsyntax[{;%U. 

syntaxp[charcode;class;table) table is NIL, T, or a real readtable or terminal table. Value is T if 
charcode is a member of syntax class class, e.g., 
synta,,<p[40; LEFTPAREN)=T. class can also be a read macro type 
(described below), e.g. MACRO, SPLICE, INFIX. or a read
macro option, e.g. FI RS T, IMMED I ATE. etc. 

FORMAT CHARACTERS 

syntaxp compiles open when class is a quoted expression. Note 
that syntaxp will not accept a character as an argument, only a 
character code. 

A format character is a character which is recognized as special by read. There are six format 
characters in Interlisp namely [. ], (, ). ", and %. The six corresponding syntax classes are: 
LEFTBRACKET, RIGHTBRACKET, LEFTPAREN, RIGHTPAREN, STRINGOELIM, and ESCAPE. 
(Note that the class ESCAPE refers to the input escape character.) Making a character be a format 
character docs not disable the character currently filling that function, i.e., it is perfectly acceptable 
to have both { and [ function as left brackets. To disable a format character, assign it syntax class 
OTHER, e.g., setsyntax[%";OTHER). 

63 Special thanks to J. Strother Moore fOf this lucid explanation taken from [MOO]. 

14.25 



Section 14: Input/Output 

BREAKS, SEPARATORS, AND READTABLES 

The syntax classes BREAKCHAH and SEPRCHAR correspond to those characters that are treated as 
break or separator characters by ratom but have no other spccial function. For convenience, the 
syritax class BREAK is provided to refer to all break characters, i.e. it is the union of LEFTPAREN, 
RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELIM, and BREAKCHAR.64 Thus, 
gel<;yntax[BREAK;rdtbl) and getbrk[rdtbl) arc equivalent. 

Note that getsyntax will never return BREAK or SEPR as a 'Value although setsyntax and syntaxp 
will accept them as arguments. Instead, getsyntax will return one of the six disjoint basic syntax 
classes that comprise BREAK. In most cases, BREAK can be used interchangeably with 
BREAKCHAR .. However, note that setsynta.,<[%(;BREAK) is a nop (since %( is already a break 
character), but that setsyntaX[%(:BREAKCHAR) means make %( be just a break character,and 
therefore disables the LEFTPAREN function of %(. It is equivalent to setsyntax[%(:OTHER) followed 
by setsynlax[%(;BREAK). If the user does disable one of the format characters, e.g., by performing 
setsyntax[%(;OTHER), it is not sufficient for restoring the formatting function simply to make the 
character again into a break character, i.e., setsyntax[%(;BREAK] would not restore 0/0{ as 
LEFTPAREN. 

READ MACRO CHARACTERS 

The user can define various characters as read~macro characters by spccifying as a class an 
expression of the form (type [n), where ~is MACRO, SPLICE, or INFIX, and fn is the name of 
a function, or a lambda expression. Whenever read encounters a read-macro character, it calls the 
associated function, giving it as arguments the input file and readtable being used for that call to 
read. The interpretation of the value returned depends on the type of read-macro: 

(1) MACRO The result is inserted into the input as if that expression had been 
read, instead of the read-macro character. For example, ' could be 
defined by: 

[MACRO (LAMB-DA(FL RDTBL) (KWOTE (READ FL RDTBL].6S 

(2) SPLICE The result (which should be a list or NIL) is nconc'ed into the 
input list, e.g., if ! is defined by 
(SPLICE (LAMBDA NIL (APPEND FOO»), and the value of 
foo is (A B C), when the user inputs (X I Y ), the result will be 
(X ABC V). 

(3) INFIX The associated function is called with the list of what has been read 
(current level list only), in tconc format, as its third argument 66 

+ 64 

+ 
65 

66 

For purely symmetrical reasons, the syntax class SEPR corresponds to all separator characters. However, since the 
only separator characters are those that also appear in SEPRCHAR, SEPR and SEPRCHAR are equivalent 

, is standardly defined as a read-macro character in T and editrdtbl. The actual definition checks to see if the next 
character is a separator, right paren, or right bracket, and if so returns ' itself, e.g., (A ' B) is read as (A ' B), 

If an IN F I X read-macro character is encountered not in a list. the third argument to its associated function will be 
NIL. If the function returns NIL, the read-macro character is essentially ignored and reading continues. Otherwise, 
if the function returns a leone list of oneetcment, that clement is the value of the read. If it returns a leone list of 
more Ulan one clement. the list is the value of the read. 

14.26 



Readtables and Termilwl Tables 

The function's value is taken as a new teone list which replaces the 
old one. For example, + could be defined by: 

(INFIX (LAMBDA (FL RDTBL Z) 
(RPLACA (CDR Z) 

Z» 

(LIST (QUOTE IPLUS) 
(CADR Z) 
(READ FL RDTBL») 

'The specification for a read-macro character can be augmented to specify various options by giving 
. setsyntax a list of the form (type ... options ... fu), e.g., (MACRO FIRST IMMEDIATE fn), with the 
following interpretations: 

ALWAYS 

FIRST 

ALONE 

the read-macro character is a break character, i.e. a member of 
BREAKCHAR, and is always effective (except when preceded by the 
·escape character). 

the read-macro character is not a break character,67 and is 
interpreted as a read-macro character only when it is the first 

. character seen after a break or separator character, e'ig , is a 
FIRST read-macro character, so that A' B is read as A' B. 

the read-macro character is not a break character, and is interpreted 
as a read-macro character only when the character would have been 
read as a separate atom if it were not a read-macro character, i.e., 
when its immediate neighbors are both break or separator 
characters, e.g., * is an ALONE read-macro character in order to 
implement the comment pointer feature (see page 14.45). 

Note: ALWAYS is the default option for ALWAYS, FIRST, and ALONE. 

ESCQUOTE. ESC when printed with prin2, the read-macro character will be preceded 
by the escape character. 

NOESCQUOTE. NOESC the read-macro character will be printed without an escape, e.g., , is 
a NOESCQUOTE character. 

ESCQUOTE is the default option for ESCQUOTE and NOESCQUOTE. 

67 

68 

Making a FIRST or ALONE read·macro character be a break character disables the read-macro interpretation, i.e .• 
converts it to syntax class BREAKCHAR. Making an ALWAYS read-macro character be a break character is a no-op. 

< control-Y > is also slandardly defined as a FI RS T read macro which returns the result of evalliating the next + 
expression read as though it had been typed. + 

14.27 



· Section 14: Input/Output 

IMMEDIATE. IMMEO the read-macro character is immediately activated, i.e., the character 
is essentially seen by the line buffer, as an EOL, and the rest of the 
line is passed to the input function.69 70 I MMED I ATE read-macro 
characters enable the user to specify a character that will take effect 
immediately.71 For example, control-W is defined as an 
I MM I:D I A TE read -macro character. 

NONIMMEDIATE. NONIMMED character is a normal character with respect to the line buffering, 
and so will not be activated until a carriage-return or matching 
right parenthesis or bracket is seen. 

NONIMMEDIATE is the default option for IMMEDIATE and NON IMMEDIATE. 

Note that read-macro characters can be "nested". For example, if is defined by 
(MACRO (LAMBDA (FL RDTBL) (EVAL (READ FL RDTBL»» and ! by 
(SPLICE (LAMBDA (FL RDTBL) (READ FL RDTBL»). thenifthevalueoffoois (A B C), 
and (X ;: F 00 Y) is input, ( X ( ABC) Y) will be returned. If (X I = F 00 Y) is input, 
(X A B CY) will be returned. 

Note that if a read-macro's function calls read, and the read returns NIL, the function cannot 
distinguish the case where a RIGHTPAREN or RIGHTBRACKET followed the read-macro character, 
e.g., (A B '), from the case where the atom NIL (or "0") actually appeared. Thus the first case 
is disallowed, i.e., reading a single RIGHTPAREN or RIGHTBRACKET via a read inside of a 
read-macro function. If this occurs, the paren/bracket will be put back into the input buffer, and a 
READ-MACRO CONT~XT ERROR will be generated.12 

readmacros( flg} If flg = NIL, turns off action of readmacros. If flg = T, turns them 
on. Value is previous setting. 

inreadmacropn value is NI L if currently not under a read-macro function, otherwise 
the number of unmatched left parentheses or brackets. 

setreadmacroflg( flg] resets the "read-macro" flag, i.e., the internal system flag that 
informs read that it is under a read macro function, and causes it to 

69 

70 

71 

72 

Note that as a result. characters typed before an IMMEDIATE read·macro character cannot be erased by control-A or 
control·Q once the I MME D I A TE character has been typed. since they have already passed through the linebuffer. 

Making a read·macro character be both ALONE and IMMEDIATE is a contradiction. since ALONE requires that the 
next character be input in order to see if it is a break or separator character. Thus. ALONE read· macros are always 
NON IMMEDIATE. regardless of whether or not IMMEDIATE is specified. 

i.e .. as soon as it is rcad. not as soon as it is typed. Characters that cause action as soon as they are typed are 
interrupt characters (see Section 16). 

If a call to rea5i from within a rcadmacro encounters an unmatched RIGHTBRACKET within a list. the bracket is also 
put back into the buffer to be read (again) at the higher level. Thus. inputting an expression such as (A B • {C OJ 
will work correctly. 

14.28 



Readtables and Terminal Tables 

generate a READ-MACRO CONTEXT ERROR, if an unmatched) or ] 
is encountered. Value is previous value of the flag. 

setreadmacroflg is useful when debugging read-macro functions .to avoid spurious READ -MAC RO 
CONTEXT error messages when typing into breaks, e.g., the user can simply put 
(SETREADMACROFLG) on breakresetforms (see Section 15). 

TERMINAL TABLES 

A readtable contains input/output information that is media-independent. For example, the action 
of parentheses is the same regardless of the device from which the input is being performed. A 
terminal table is a datum73 that contains those syntax classes of characters that pertain to terminal 
input/output operations only, e.g., DELETECHAR (control-A), DELETELINE (control-Q), etc. In 
addition, terminal tables contain such information as how line-buffering is to be performed, how 
control characters are to be echoed/printed, whether lower case input is to be converted to upper 
case, etc. 

Using the functions below, the user may change, reset, or copy terminal tables. He can also create 
his own terminal tables and install them as the primary terminal table via settermtable. However, 
unlike readtables, terminal tables cannot be passed as arguments to input/output functions. 

TERMINAL TABLE FUNCTIONS 

termtab1cp[ttbIJ 

gettermtable[ttbl] 

settermtable[ttbl] 

copytermtab1c[ttbl] 

resettermtab1c[ttbl;from] 

value is UbI, if ttbl is a real terminal table, NI L otherwise. 

If ttbl = NIL, value is primary (Le., current) terminal table. If ttbI is 
a real terminal table, value is ttbl. Otherwise, generates an 
ILLEGAL TERMINAL TABLE error. 

resets primary terminal table to be ttbI. Value is. previous ttbt. 
Generates an ILLEGAL TERMINAL TABLE error if ttbl is not a 
real terminal table. 

value is a copy of ubI. ubI can be a real terminal table, NIL, or 
OR I G, in which case value is a copy of the original system terminal 
table. Note that copytermtable is the only function that creates a 
terminal table. 

sma.')hes from into ubI. from and ttbl can be NIL or a real terminal 
table. In addition, from can be ORIG, meaning use system's 
original terminal table. 

73 In Intcrlisp·10. tenninal tables are represented (currently) by 16 word arrays. 

14.29 



Section 14: 'Input/Output 

getsynta.'C, setsyntax, and syntaxp an work on terminal tables as well as readtables. When given 
NIL as a table argument, getsyntax and syntaxp use the primary readtable or primary terminal 
table depending on which table contains the indicated class argument, e.g., setsyntax[ch;BREAK] will 
refer to the primary readtable, setsyntax[ch;CHARDELETE] will refer to the primary terminal table. 
In the absence of such infonnation, all three functions default to the primary readtable, e.g., 
setsyntax[chl;ch2] refers to the primary read table. If given incompatible class and table 
arguments, all three functions generate errors, e.g., setsyntax[ch;BREAK;ttbl), 'where UbI is a 
terminal table, generates an ILLEGAL REAOTABLE error, geL<;yntax[CHARDELETE;rdtbIJ an 
ILLEGAL TERMINAL TABLE error. 

TERMINAL SYNTAX CLASSES 

There are currently six terminal syntax classes: CHARDELETE 10r DELETECHAR), LINEDELETE (or 
DELETELINE), RETYPE. CTRLV (or CNTRLV), and EOL.1 These classes correspond (initially) 
to the characters control-A, control-Q,75 control-R, control-V, and carriage-return/line-feed. All 
other characters belong to terminal syntax class NONE. The classesCHAROELETE, LINEOELETE, 
RETYPE, CTRLV, and EOL can contain at most one character. When a new character is 
assigned one of these syntax classes by setsyntax, the previous character is' disabled, i.e., reassigned 
the syntax class NONE, and the value of setsyntax will be the code for the previous character of that 
class, if any, otherwise NIL. 

TERMINAL CONTROL FUNCTIONS 

echocontrol[char;mode; UbI] Used to indicate how control characters are to be echoed or printed. 
char is a character or character code; If mode = IGNORE, char is 
never printed. If mode = REAL, char itself will be printed. If 
mode=SIMULATE, output will be simulated. If mode=UPARROW, 
char will be printed as t followed by the corresponding alphabetic 
character. The value of echocontrol is the previous output mode 
for char. If mode = NIL, the value is the current output mode 
without changing it. 

Note that echoing information can be independently specified for control characters' only. 
(However, the function echomode described below can be used to disable all echoing.) Therefore, if 
char is an alphabetic character (or code), it refers to the corresponding control character, e.g., 
echocontrol[Z; UPARROW] makes control-Z echo as tZ. All other values of char generate ILLEGAL 
ARG errors. 

echomode[flg;ttbl] If f!g = T, turns echoing for terminal table ubI on. If f!g = NIL, 
turns echoing off. Value is previous setting. 

74 On input from a tenninal, the EOL character signals to the line buffering routine to pass the input back to the calling 
function. It also is used to tenninate inputs to rcadline, page 14.15. In general, whenever the phrase carriage-return 
linefeed is used, what is meant is the character with tenninal syntax class EOL. 

+ 75 

+ 
for Interlisp-10 on TOPS-20. the chardelete character is < del>, and the line delete character is control-U. All 
remarks below referring to control-A or control-Q should be read as referring to < del> and control-U in the 
TOPS-20 context. + 

14.30 

- ----------~----------- - -_._---
.~ ' __ " '2 



Read{ables and Terminal Tables 

gelecho111ode[ttbl] value is current echo mode for ttbl. 

de1ctecontrol[type;message;ttbl]used for specifying the output protocol when a CHARDELETE or 
LI N ED EL E TE is typed according to the following interpretations of 
~: 

LINEDELETE 

lSTCHDEL 

NTHCHDEL 

POSTCHDEL 

EMPTYCHDEL 

ECHO 

NOECHO 

message is 
LINEDELETE 
"##,2". 

the message 
character is 

printed when 
typed. Initially 

message is the message printed the first time 
CHARDELETE is typed. Initially "\". 

glessage is the message printed on subsequent 
CHARDELETE's (without intervening characters). 
Initially "". 

message is the message printed when input is 
resumed following a sequence of one or more 
CHARDELETE's. Initially "\".16 

message is the message printed when a 
CHARDELETE is typed and there are no 
characters in the butler. Initially "# # ~". 

the characters deleted by CHARDELETE are 
echoed. 

the characters deleted by CHARDELETE arc not 
echoed. 

For LINEDELETE, lSTCHDEL, NTHCHDEL, POSTCHDEL, and 
EMPTYCHDEL, the message to be printed must be less than 5 
characters. 'I11e value of dc1etecontrol will be the previous message 
as a string. If message = NIL, the value will be the previous message 
without changing it. For ECHO and NOECHO, the value of 
dc1etecontrol is the previous echo mode, i.e., ECHO or NOECHO. 
message is ignored. 

Note: If the user's terminal is a scope terminal, dc1etecontrol and echocontrol can be used to make 
it really delete the last character by pcrfonning the following: echocontrol[8; REAL], (8 is code for 
control-H, which is backspace) delctecontrol[NOECHO], (eliminates echoing of deleted characters) 
dc1etecontrol[ lSTCHDEL ; "tH tH"], and de1eteconlrol[NTHCHDE L ; "tH tH"]. 

geldelelecontrol[type;tlbl] value is current dc1etecontrol mode for !YQ£ in ttbI. 

76 This selling of lSTCllDEL, NTHCHDEL, and POSTCHDEL makes it easy to detennine exactly what has been 

deleted. namely all of the characters bctwcen the \'s. 

14.31 

+ 

+ 



Section 14: Input/Output 

raise[ flg; UbI] If flg = T, input is echoed as typed, but lowercase letters are 
converted to upper case. If ~ == NI L, all characters arc passed as 
typed. Value is previous setting. 7 

+ getraisc[Ubl] value is current raise mode for ttbI. 

LINE-BUFFERING AND CONTROL 

In Interlisp's normal state, characters typed on the terminal (this section does not apply in any way 
to input from a file) are transferred to a line buffer. Characters are transmitted from the line 
buffer to whatever input function initiated the request (Le., read, ratom, rstriTig, or readc)78 when a 
carriage-return79 is typed.SO Until this time, the user can delete characters one at a time from the 
input buffer by typing control-A. lbe characters are echoed preceded by a \; Or, the user can 
delete the entire line buffer back to the last carriage-return by typing control-Q, in which case 
lnterlisp echoes # # .81 (If no characters are in the buffer and either control-A or control-Q is 
typed, Interlisp echoes # # .)82 

Note that this line editing is not performed by read or ratom, but by Interlisp, i.e., it does not 
matter (nor is it necessarily known) which function will ultimately process the characters, only that 
they are still in the lnterlisp input buffer. Note also that it is the function that is currently 
requesting input that determines whether parentheses counting is observed, e.g., if the user executes 
(PROGN (RATOM) (READ» and types inA (8 C D) he will have to type in the carriage-return 
following the right parenthesis before any aCtion is taken, whereas if he types 
(PROGN (READ) (READ» he would not. However, once a carriage-return has been typed, the 
entire line is "available" even if not all of it is processed by the function initiating the request for 
input, i.e., if any characters are "left over", they will be returned immediately on the next request 
for input. For example, (PROGN (RATOM) (R EADe» followed by A 8 carriage-return will 
perform both operations. 

77 

78 

79 

80 

81 

82 

In Interlisp-lO, both raiseO and raise[T] execute TENEX JSYS calls corresponding to the TENEX command 
NORAISE. Conversion of lowercase characters to uppercase be/ore echoing is also available via raise[O). which 
executes the JSYS calls corresponding to the TENEX command RAISE. The conversion is then performed at the 
TENEX level, i.e .• before Interlisp-l0 even sees the characters. The initial setting of raise in Interlisp-l0 is determined 
by the terminal mode at the time the user first starts up the system. Following a sysin, the raise mode is restored to 
whatever it was prior to the corresponding sysoul 

peete is an exception: it returns the character immediately when its second argument is NIL. 

i.e., the character with terminal syntax class EOL. 

As mentioned earlier, for calls from· read, the characters are also transmitted whenever the parentheses count reaches 
O.In this case, if the third argument to re~ is NIL, Interlisp also outputs a carriage-return line-feed. The 
characters are also. transmitted whenever an IMMEOIATEread-macro character is typed. 

Typing < del) (control-Z for Interlisp-lO on TOPS-20) clears the entire input buffer at the time it is typed, whereas 
the action of control-A and control-Q occur at the time they are read. < del> can thus be used to clear type-ahead. 

As dL'SCribcd earlier, the CHAROELETE, LINEDELETE, and EOL characters can all be redefined. Therefore, 
rcfcrencL'S to control-A; colltrol-Q, or carriage-rctum in the discussion actually refer to the currcnt CHARDELETE. 
lINEDELHE. or EOl characters. whatever they may be. . 

14.32 

.. ------------ --- -------



Readtables and Terminal Tables 

TURNING-OFF LINE-BUFFERING 

The function control is available to defeat this line-buffering. When operating with a terminal 
table in which control[T] has been performed, characters are returned to the calling function 
without line-buffering as described below. 111e function that initiates the request for input 
determines how the line is treated: 

1. read 
if the expression being typed is a list, the effect is the same as though control were NIL, i.e., 
line-buffering until carriage-return or matching parentheses. If the expression being typed is not a 
list, it is returned as soon as a break or separator character is encountered,83 e.g., (R EAO) followed 
by ABC space will immediately return ABC. Control-A and control-Q editing are available on those 
characters still in the buffer. Thus, if a program is performing several reads under control[T], and 
the user types NOW IS THE TIME followed by control-Q, he will delete only TIME since the rest 
of the line has already been transmitted to read and processed. 

2. ratom 
characters are returned as soon as a break or separator character is encountered. Before then, 
control-A and control-Q may be used as with read, e.g., (RATOM) followed by ABCcontrol-Aspace 
will return AB. (RATOM) followed by (control-A will return ( and type # # indicating that 
control-A was attempted with nothing in the buffer, since the ( is a break character and would 
therefore already have been read. 

3. readc/peekc 
the character is returned immediately; no line editing is possible. In particular, (READC) fonowed 
by control-A will read the control-A, (READC) followed by % will read the %. 

control[flg;ttbl] f!g=T 

f!g=NIL 

eliminates Interlisp's normal line-buffering for the 
terminal table ttbI. 

restores tine-buffering (normal). 

The value of control is its previous setting. 

getcontrol[ttbl] value is current control mode for UbI. 

83 An exception to the above occurs when the break or separator character is a (. ". or [. since returning at this point 

would leave the line buffer in a "funny" state. Thus if control is T and (READ) is followed by 'ABC ( , , the ABC 
will not be read until a carriage-return or matching parentheses is encountered. In this case the user could control-Q 

the entire line. since all of the characters are still ill the buffer. 

14.33 

+ 



Section 14: Input/Output 

14.5 MISCELLANEOUS INPUT/OUTPUT CONTROL FUNCTIONS 

clearbuflfile;flg] 

linbuf{tlg] 

sysbuf{flg] 

Clears the input buffer for file. If file is T and flg is T. contents of 
Intcrlisp's line buffer and the system buffer are saved (and can be 
obtained via linbuf and sysbuf describcd below). 
When cithcr control-D,control-E, control-H, control-P, or control-S 
is typcd, lnterlisp automatically does a clearbuf{T; T]. (For 
control-P and control-So Interlisp restores the buffer after the 
interaction. See Appendix 1.) 

if flg=T, value is Interlisp's line buffer (as a string) that was saved 
at last clearbuflT ; T]. If flg = NIL. clears this internal buffer. 

same as linbuf for system buffer. 

If both the systcm buffer and Intcrlisp's line buffer are empty. the internal buffers associated with 
linbuf and sysbuf are not changed by a clearbuflT ; T]. 

bklinbuflx] 

bksysbuflx] 

! is a string. bklinbuf sets Interlisp's line buffer to!. If greater 
than 160 characters, first 160 taken. Value is !. 

! is a string. bksysbuf sets system buffer to!. The effect is the 
same as though the user typed!. Value is !. 

bklinbuf, bksysbuf, linbuf, and sysbuf provide a way of "undoing" a c1earbuf. Thus if the user 
wants to "peck" at various charactcrs in the buffcr, he could perform c1earbuflT; T], examine the 

+ buffers via linbuf and sysbuf, and then put them back. The function resetbufs provides a 
+ convenient way of simply clearing the input buffer, performing an interaction with the user, and 
+ then restoring the input buffer. 

+ resetbufs[forml;form2; .. ·;formn] 
+ nlambda, nospread function. Oears any typeahead, evaluates forml' 
+ form2'"'' form, then restores the typeahead. Value is value of 
+ formn. Useful Por handling unexpected (from the user's standpoint) 
+ interactions, e.g. disambiguating an input when the user may 
+ already have begun to typeahead the next input. Compiles open. 

radix[n] Resets output radix84 to Inl with sign indicator the sign of n. For 
example, in Interlisp-l0, -9 will print as shown with the following 
radices: 

84 Currently. there is no input raGa. 

14.34 



fltfmt[formatbits] 

Miscellaneous Input/Output Control Functions 

radix 
10 

-10 

8 
-8 

printing 
-9 

68719476727 
i.e., (2t 36-9) 

-llQ 
777777777767Q 

Value of radix is its last setting. radix[] gives current setting 
without changing it. Initial setting is 10. 

In Interlisp-lO, sets floating fonnat control to fonnatbits (See 
TEN EX JSYS manual for interpretation of formatbits). fltfmt[T] 
specifics free format (see Section 3).85 Value of fltfmt is last setting. 
fltfmt[] returns current setting without changing it. Initial setting is 
T. ' 

Note: the printnum package. page 14.20. permit greater controls on the printed appearance of + 
numbers, allowing such things as left-justification, suppression of trailing decimals, etc. + 

linelength[n) 

setlinelength[ n I 

Sets the length of the print line for all files. Value is the former 
setting of the line length. Whenever printing an atom would go 
beyond the length of the line, a carriage-return is automatically 
inserted first. linc1ength[] returns current setting. Initial setting is 
72. 

if!! is NIL, interrogates operating system for the line length of the + 
tenninal device, and sets variable ttylinelength to this value. If!! is + 
not NIL, instructs operating system to set terminal line length to D. + 
and then sets ttylinelength to!!. Then, in either case, setlinc1ength + 
performs (and returns as its value) linc1ength[ttylinelength). + 

Both aftersysoutforms and resetforms (Section 22) contain a (SETLINELENGTH) so that when the + 
user first runs a Sysout, or types control-D, the system obtains the 'latest information about the + 
terminal. 'l11e various system functions that print to the terminal, e.g . .P.O, the editor, etc., all + 
perfonn linelength[ttylinc1ength] (rather that line1ength[72]). Thus if the user has a wider terminal + 
the "right" thing automatically happens + 

85 fonnatbilS can also be a FLOAT fonnat type. as described on page 14.20. + 

14.35 



Section 14: Input/Output 

+ settermchars[nextchar;bkchar;lastchar;unquotcchar;-;-] 
+ used to set up the immediate read macros used by the editor (see 
+ Section 9), as well as the < control-Y) read macro described 
+ earlier. nextchar corresponds to. the < line-feed) edit command, 
+ bkchar to < conlrol-X), lastchar to < control-Z >, and unquotechar 
+ to < control-Y >. For each non-NI L argument, settermchars makes 
+ the corresponding control character have the indicated function. 

+ Normally, settermchars will complain if the character is already an interrupt character. However,if 
+ settermchars is given a list as one of its a:rguments, it will use car even if the character is an 
+ interrupt. In this case, if cadr of the list is non-NIL, settermchars will reassign the interrupt 
+ function to cadr. For example, if < control-X> is an interrupt, settermchars[( X W» will make 
+ < control-W > have the effect < control-X) had, and make < control-X) be the nextchar 
+ operator. 

+ As part of the greeting operation, settermchars is applied to the value of editcharacters, which is 
+ initially (J X Z y).86 The user can reset editcharacters in his profile, or else explicitly call 
+ settermchars to specify some other characters to be used for the indicated function. 

position[file;n] Gives the column number the next character will be read from or 
printed to, e.g., after a carriage-return, position = O. If ~ is 
non-NI L, resets position to ~. 

Note that position[file] isnot the same as getfileptr[file] which gives the position in theftle, not on 
the line. 

14.6 SVSIN AND SVSOUT 

sysout[file] Saves the user's private memory on file. Also saves the stacks, so· 
that if a program performs a Sysout. the subsequent. sysin will 
continue from that point, e.g., . 
WROGN (SYSOUT (QUOTE FOO»(PRINT (QUOTE HEllO] 
will cause HELLO to be printed after (SYS IN (QUO T E FOO» The 
value of Sysout is file (full name). A value of NIL indicates the 
sysouL was unsuccessful, i.e., either disk or computer error, or user's 
directory was full 

Sysout does not save the state of any open files. 87 

Whenever the lnterlisp system is reassembled and/or reloaded. old sysout files are not compatible 
with the new system. 

+ 86 < control-Dis line-feed. The initial value of editcharacters for Interlisp on TOPS-20 is (J A L V). 

+ 87 However, the whcnc1~~ package. page 14.9. can be used to associate with open files certain operations to be 
+ pcrfonned when a sysoul is staltcd uP. including reopening the file and repOSitioning the file pointer. 

14.36 



Sysin and Sysout 

sysout is advised to evaluate the expressions on beforesysoutforms when executing the sysout, and 
to evaluate the expressions on aftersysoutforms when coming back from a sysin, i.e., when the 
value being retumed by sysout is a list. beforesysoutforms includes expressions to: 

(1) set the variable sysoutdate to (DA TE), i.e. the time and date that the sysout was performed; 

(2) if file is non-N I L, to set the variable sysoutfile to (the body of) file. If file is NIL, the value 
of ~soutfile is used instead. Thus. after an initial sysout. the user can simply perform sysout[] to 
save the current state on the next higher version of a file with the same name as the previous 
sysout; 

(3) if an extension and a version number are not specified, to use the value of sysout.ext as the + 
extension (initially . SAV for Tenex sites and . EXE for TOPS-20 sites.) + 

(4) to perform any necessary operations associated with open files specified by calls to whenc10se + 
(page 14.9). + 

Aftersysoutforms includes expressions to: 

(1) reset the terminallinelength appropriately (see discussion of setlinelength on previous page); + 

(2) reset the terminal control characters if the system type has changed, i.e. from TENEX to + 
TOPS-20 or vice versa. + 

(3a) if the value of sysoutgag is NIL (its initial value), and the sysout was made by the same user 
that is performing the sysin, to greet the user by printing the value of heraldstring followed by a 
greeting message. If the sysout was made by a different user, to warn the user that the user 
profiles may be different (see Section 22 oli Greeting and User Profiles), e.g. 

····ATTENTION USER LEWIS: 
THIS SYSOUT IS INITIALIZED FOR USER HARTLEY. 
TO REINITIALIZE, TYPE GREET(). 

(3b) if the value of sysoutgag is a list, to evaluate the list in lieu of printing a message. This 
permits the user to print his own message. 

(3c) for all other non-NIL values ofsysoutgag, no message is printed. 

(4) call setinitials to reset the initials used for time-stamping (Section 9). + 
(5) perform any necessary operations associated with previously opened files specified by calls to + 
whenclose (page 14.9). + 

sysin[file] restores the state of Interlisp from a sysout file.88 Value is + 

88 In Interlisp-lO. file is a runnable file, i.e .• it is not necessary to start up an Interlisp and call sysin in order to restore 
the stale of the user's program. Instead, the user can treat the sysout file the same as a SAV file, i.e .• use the 
operating system RUN command. or simply type the file name to the operating sysll .. m. and the effect will be exactly 
the same as having performed a SYsin. 

14.37 



+ 
+ 

Section 14: Input/Output 

cons[filc'makcsys], where makesys is the namc of the parent 
system.89 If sysin rcturns NIL. there was a problem in reading the 
file. If file is not found, generates a FI lE NOT FOUND error. 

Since sysin continues immediately where sysoul left off, the only way for a program to determine 
whether it is just coming back from a sysin or fro.m a sysoul is to .test the value of sysoul. 

For example, (COND «LISTP {SYSOUT (QUOTE FOO») {PRINT (QUOTE HEllO»» will 
cause HEllO to be printed following the sysin. but not when the sysout was performed. 

+ sysoutp(file) 
+ 
+ 

predicate for determining whether file is a· sysout file. Returns the 
name of the parent makesys (Section 3)· if the file is a sysout file, 
NI l otherwise.9O . 

+ 14.7 SYMBOLIC FILE INPUT 

+. load[file;ldflg;printflg] 
+ 

Reads successive S-expressions from file (with filerdtbl as readtable) 
. and evaluates each as it is read, until it reads either NIL, or the 
single atom STOP. Value is file (full name). + 

+ 
+. 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 89 

+ 90 

91 

If printflg = T. load prints the value of each S-expression; otherwise 
it does not. ldflg affects the operation of define, definCQ, ~. and 
~. While load is operating, dfnflg (Section 8) is rebound to 
ldflg. Thus, if ldflg = NIL, and a functiori is redefined, a message 
is printed and the old definition saved. . If ldflg = T. the old 
definition is· simply overwritten. If ldflg = PROP. the function 
definitions arc stored on the. property lists under. the property 
EXPR. If ldflg=AllPROP. not only function definitions but also 
variables set by ~ and .mgg are stored on property lists.91 

Another option is available for users who are loading systems for 
others to use, and wish to conserve space by suppressing during the 
load operation various user features designed to aid in development 
and debugging. If ldflg=SYSlOAD, load will (1) rebind dfnflg to 
T, (2) rebind lispxhist to NIL thereby making the load not be 
undoable and saving the cost of saving undo information (section 
22), (3) rebind addspellflg to NIL to suppress adding things to 
spelling lists, (4) rebind filepkgflg to NIL to prevent the FILE 
property from being saved and the file being "noticed" by the file 
package, (5) rebind buHdmapflg to NIL to prevent a file map from 
being constructed, (6) when the load has completed, set to NOBIND 

sysout only saves that portion of the user's environment which is private (see Section 3.4 on Shared Intertisp). 

In Interlisp-lO. file can also be a JFN. 

except when the variable has value NOBIND. in which c;ase it is set to the indicated value regardless of dfnOg. 

14.38 



Symbolic File Input 

the fileCOMS and filevars92 and (7) add the file name to sysfiles + 
rather than filelst. + 

Note: all functions that have ldflg as an argument, i.e. load. loadfns. loadvars, etc., perform spelling + 
correction using loadoptions as a spelling list when Idflg is not a member of loadoptions. + 
loadoptions is initially (NIL T PROP ALLPROP SYSLOAD). + 

load?[file;ldflg;printflg] like load except does not load file if it has already been loaded,93 in + 
which case its value is NIL. + 

loadfns[fns;file;ldflg;vars)94 permits selective loading of function definitions. fns is a list of 
function names, a single function name, or T, meaning all. 
functions.95 file can be either a· compiled or symbolic file, i.e., any 
file that can· be loaded by load. The interpretation of ldflg is the 
same as for load. 

92 

93 

94 

95 

vars specifies which non-D EF I N E Q expression are to be loaded (i.e., 
evaluated): T means all, NIL means none, VARS is same as 
(RPAQQ RPAQ), FNS/VARS is same as (fileCOMS fileBLOCKS), and 
any other atom is the same as list[atom). 

When vars is a list, each atom on vars is compared with both gr 
and cadr of non-DEFINEQ expressions, e.g., either RPAQQ or 
FOOCOMS can be used to indicate (RPAQQ FOOCOMS --) should 
be loaded. For more complicated specification, each list on vars is 
treatcdas an edit pattern and matched with the entire 
non-DEFINEQ expression. In other words, a non-DEFINEQ 
expression will be loaded if either its car or cadr is ~ to some 
member of vars, or it matches (using edit4e, Section 9) some list on 
vars, e.g., 
{FOOCOMS DECLARE: (DE FLIST & (QUOTE MACRO») would 
cause (RPAQQ FOOCOMS --). all DECLARE: I S, and all 
DE FLIST 's which set up MACRO's to be read and evaluated. 

The value of loadfns is a list of (the names ot) the functions that 
were found, plus a list of those functions not found (if any) headed 
by the atom NOT-FOUND: e.g., (FOO FIE (NOT-FOUND: FUM». 
If vars is non-N I L, the value will also include those expressions that 

i.e. any variable appearing in a file package command of the fonn (filecom • variable) (see page 14.60). e.g. in + 
(FNS • FOOFNS). FOOFNS is set to NOB IND. Note that if the user wants the value of such a variable to be + 
retained. even when the file is loaded with ldflg== SYSLOAD. then he should replace the variable with an equivalent. + 
non-atomic expression. e.g. (FNS • (PROGN FOOFNS». + 

The test is whether the root name of file has a FILEDATES property. + 

loadfns was originally wrilten by J. W. Goodwin. and subsequently modified by W. Teitelman. 

If a compiled definition is loaded. so are all compiler generated subfunctions. 

14.39 



loadv ars[ vars; file;ldflg] 

loadfrom[file;fns;ldflg] 

Section 14: Input/Output 

were loaded, plus a list of those members of vars for which no 
corresponding expressions were found (if any), again headed by the 
atom NOT-FOUND:. 

If file = NIL, loadfns will use whereis (page 14.67) to determine 
where the first function in fns resides, and load from that file. 
Note that the file must previously have been "noticed". (For more 
discussion, see page 14.63).96 

same as 10adfns[N I L,file;ldflg;vars). 

same as 10adfns[fns;file;ldflg;T]. 

As mentioned in Section 9, once the file package knows about the contents of a file, the user can 
edit functions contained in the file without explicitly loading them. Similarly, those functions 
which have not been modified do not have to be loaded in order to write out an updated version 
of the file. Files are normally noticed, i.e., their contents become known to the file package (page 
14.54), when either the symbolic or compiled versions of the file are loaded. If the file is not 
going to be loaded, the preferred way to notice it is with loadfrom. For example, if the user wants 
to update the file FOO by editing the function FOOl contained in it, he need only perform 
10adfromIFOO], editf{F001], and makefile[FOO]. Note that the user can also load some functions at 
the same time by giving 10adfrom a second argument, e.g., 10adfrom[FOO; FOOl], but its raison 
d'etre is to inform the file package about the existence and contents of a particular file. 

loadblock[fn;file;ldflg] 

loadefs[ fns;fi1e] 

calls loadfns on those functions contained in the block declaration 
containing fn.97 

like 10adfns except returns a list of functions and their symbolic 
definitions, plus a list of those functions not found, if any, headed 
by the atom NOT - FOUND:, e.g., 
10adfns(FOO FIE FUM);FOO] = ({FOO (LAMBDA ..• » 
(FIE (LAMBDA ... » (NOT-FOUND: FUM». 

+ 10adcomp(fi1e;ldflg] 
+ 

performs all operations on file associated with compilation, i.e. 
evaluates all expressions under a DECLARE: EVAL@COMPIlE, and 
"notices" the function and variable names by adding them to 
nofixfns1st and nofixvarslst (see Section 23). 

+ 
+ 

+ 96 

+ 

97 

If whereis[fn] returns NIL, and the whereis package (Section 24) has been loaded, loadfns will perfonn 
whereis[fn:fNS; Tj, which will use the whereis data base to find the file containing.fu. 

loa~dbIQ<:.1i is designed primarily for use with symbolic files. i.e., to load the exprs for agivcn block. It will not load a 
function which already has an in~core cxpr definition, and it will not load the block name, unless it is also one of the 
block. functions. 

14.40 



Symbolic File Input 

Thus, if building a system composed of many files, and compilation information is scattered + 
throughout these files. to compile one file, all that is required is to loadcomp the others. + 

loadcomp?[file;ldflg] like loadcomp, except does not load if file has already been loaded, + 
in which case its value is NIL. + 

FILE MAPS 

. A file map is a data structure which cOf\tains a symbolic 'map' of the contents of a file. Currently, 
this consists of the begin and end addl~. ,;s<}R for each. dcfineg expression in the. file, the begin and 
end address for each function definition within the defineg, and the begin and end address for 
each compiled function.99 

makefile. prettydef, loadfns, recompile, and numerous other system functions depend heavily on 
the file map for efficient operation. For example. the file map enables loadfns to load selected 
function definitions simply by setting the file pointer to the corresponding address using setfileptr, 
and then performing a single read. Similarly. the file map is heavily used by the "remake" option 
of makefile (page 14.77): those function definitions that have been changed since the previous 
version are prettyprinted; the rest are simply copied from the old file to the new one, resulting in a 
considerable speedup. 

Whenever a file is read by load or loadfns. a file map is automatically builtlOO and stored on the 
property list of the root name101 of the file, under the property FI LEMAP. Whenever a file is 
written by make file. a file map for the new file is also built and stored on the FILEMAP 
property.102 In addition, the file map is written on the file itself.103 Thus, in most cases, load and 
loadfns do not have to build the file map at all, since a file map will usually appear in the 
corresponding file.104 

The procedure followed whenever a system package. that uses file maps accesses a file is embodied 
in the function getfilemap. getfilemap first checks the FILEMAP property to see if a file map for 

98 

99 

byte address, see getfiteptr. page 14.8. 

The internal representation of the file map is not documented since it may change when the map is extended to 
include information about other than just function definitions. 

100 unless buildmapflg=NIL. buildmapflg.s initially T. 

101 the file name with directory and version number stripped off. 

102 Building the map in this case essentially comes for free. since it requires only reading the current file pointer before 
and after each definition is written or copied. However. building the map does require that prettYPrint !mow that it is 
printing a DEF INEQ ex.pression. For this reason. the user should never print a DEF INEQ expression onto a file 
himself. but should instead always use the FNS command. page 14.56. 

103 For cosmetic reasons. the file map is written as the last expression in the file. However. the address of the file map 
in the file is (over)writtcn into the F ILECREA TED expression that appears at the beginning of the file so that the file 
map can be rapidly accessed without having to scan the entire file. 

104 unless the file was wriLten with buildmapflg = NIL. or was written outside of lnterlisp. 

14.41 



Section 14: Input/Output 

this file was previollsly obtained or built.105 If there is none, getfilemap next checks the first 
expression on the file to see if it is a FILECREATED expression that also contains the address of a 
FILEMAP.106 If neither are successful getfilcmap returns NIL,107, and a file map will be built108 

READFllE AND WRITEFllE 

For those applications where the user simply wants to simply read all of the s-cxprcssions on a file, 
and not evaluate them, the function readfile is available: 

readfilc[file] Reads successive S-expressions from file using read (with filerdtbl as 
readtable) until the single atom STOP is read, or an end of file 
encountered. Value is a list of these S-expressions. 

writefile[x;file] Inverse of readfile. Writes a date expression onto file, followed by 
successive S-expressions from !, using filerdtbl as a readtable. If! 
is atomic, its value is used. If file is not open, it is opened. If file 
is a list, car[file] is used and the file is left opened. Otherwise, 
when! is finished, a STOP is printed on file and it is closed. Value 
is file. 

endfilc[file) Prints STOP on file and closes it 

105 

106 

107 

108 

The full name of the file is also stored on the F I L E MAP property along with its map. 

currently. file maps for compiled files are not written onto the files themselves. However. load and loadfns will build 
maps for a compiled file when it is loaded. and store it on the property FILEMAP. Similary. loadfns will obtain and 
use the file map for a compiled file. when available. 

gg,tii1eman also returns NIL. if usemapflg - NIL. initially T. lIsemapflg is available primarily to enable the user to 
recover in those cases where the file and its map for some reason do not agree. For example. if the user edits a 
symbolic file that contains a map using a text editor such as TECO. inserting or deleting just one character will 
throw that map off. The functions which use file maps contain various integrity checks to enable them to detect that 
something is wrong. and to generate the error FILEMAP DOES NOT AGREE WITH CONTENTS OF file-name. In 
such cases. the user can set illiema.pi!g to NIL. caUSing the map contained in the file to be ignored. and then 
reexecute the operation. A new map will then be built (unless buildmapflg is also NIL). 

While building the map will not help this operation. it will help in future references to this file. For example. if the 
user perfomls 10adfromlFOO] where FDa docs not contain a file map. the 10a<!f!.QITI will be (Slightly) slower than if 
FOO did contain a file map. but subsequent calls to ill!.lQf!l!l for this version of FOO will be able to use the map that 
was built as the result of the jQadfrom. since it will be stored on FOO's FILEMAP property. 

14.42 



14.8 PRETTYPRINT 

prettyprint[lst;_]109 110 

(FACTORIAL 
[LAMBDA (N) 

(COND 
«ZEROP N) 

1) 

Pretty print 

1st is a list of functions (if atomic, its value is used). The 
definitions of the functions are printed in a pretty format on the 
primary output file using the primary readtable. For example, 

(T (ITIMES N (FACTORIAL (SUBI N]) ill 

A more complete example isshown on page 14.47. 

Note: prettyprint will operate correctly on functions that are .broken, broken-in, advised, or have 
been compiled with their definitions saved on their property lists: it prints the original. pristine 
definition, but does not change the current state of the function. If prettyprint is given an atom 
which is not the name of a function, but has a value, it will prettyprint the value. If the function is + 
not defined but is known to be on one of the files noticed by the file package, prettyprint wi1110ad + 
in the definition (using loadfns) and print it.112 Otherwise, prettyprint will perform spelling + 
correction. If all fails, prettyprint returns (atom NOT PRINTABLE). 

pp[x) nlambda, nospread function that performs output[T], setreadtable[T), 
linelength[ttylinelength], and then calls pretlyprint: PP FOO is 
equivalent to PRETTYPRINT{( FOO» ; PP( FOO FIE) or 
(PP FOO FIE) is equivalent to PRETTYPRINT( (FOO FIE». 
Primary output file and primary readtable are restored· after 
printing. 

As described earlier, when prettyprint, and hence 1m. is called with the name of a function that is + 
not defined, but whose definition is on a file known to the file package, the definition is + 
automatically read in and then prettyprinted; However, if the user does not intend on editing or + 
running the definition, i.e. he simply wants to see the definition, the function .PI described below + 
can be used to simply copy the corresponding bytes from the file to the terminal. This results ina + 
savings in both space and time, since it is not necessary to allocate storage.to actually read in the + 
definition, and since the function is already in prettyprint format on the file, it is not necessary to + 
re-prettyprint it. + 

109 The prettyprint package was written by W. Teite1man. 

110 prettyprint has a second argument that is T when called from prettydef. In this case. whenever prettyprint starts a 
new function. it prints (on the tenninal) the name of that function if more than 30 seconds (real time) have elapsed 
since the last time it printed the name of a function. 

ill In order to save space on files. tabs are used instead of spaces for the inital spaces on each line. assuming that each 
tab corresponds to 8 spaces. lbis results in a reduction of file size by about 30%.. Tabs will not be used if 
prettyt.1g.!1g is set to NIL (initially T). 

112 cxcept when called fromprcttydef. 

14.43 



Section 14: Input/Output 

+ pflfn; fromfiles; to file] 
+ 

nlambda, nospread function. Copies the definition of fn found on 
each of the files in from files to tofile. If tofile = NIL, defaults to T. 
If fromfiles= NI L, defaults to whereislfn;NI L; T]. Note that the 
typical useage of Qf is to simply type PF fn. 

+ 
+ 

+ When printing to the terminal, ill performs several transformations on the characters in the file that 
+ comprise the definition for fn: (1) font information (page 14.49) is stripped out; (2) changechar 
+ (page 14.49) is also not printed; (3) since functions typically tend to be printed to a file with a 
+ larger linc1ength than when printing to a temlinal, the left margin on each line, i.e. the number of 
+ leading spaces, is cut in half; and (4) comments are printed as described below. 

C_OMMENT FEA TU RE 

A facility for annotating Interlisp functions is provided in prettyprint. Any S-expression beginning 
with * is interpreted as a comment113 and printed in the right margin .. Example: 

(FACTORIAL 
(LAMBDA (N) 

(COND 
«ZEROP N) 

1) 
(T 

(III COMPUTES NI) 

(III 01=1) 

(III RECURSIVE DEFINITION: 
NI=NIIIN-11) 

(ITIMES N (FACTORIAL (SUB1 N) 

These comments actually form a part of the function definition. Accordingly, * is defined as an 
NLAMBDA NOSPREAD function that returns its argument, i.e., it is equivalent to quote. When 
running an interpreted function, * is entered the same as any other Interlisp function. Therefore, 
comments should only be placed where they will not harm the computation, i.e., where a quoted 
expression could be placed. For example, writing 
(ITIMES N (FACTORIAL (SUB1 N» (III RECURSIVE DEFINITION» in the above function 

+ would cause an error when ITIMES attempted to multiply N, N-1!, and RECURSIVE. The 
+ compiler (Section 18) will also detect places where a comment has been used for value, and print 
+ an appropriate error message. 

For compilation purposes, * is defined as a macro which compiles into no instructions. Thus. if 
the user compiles a function with comments, and load the compiled definition into another system, 
the extra atom and list structures storage required by the comments will be eliminated. This is the 
way the comment feature is intended to be used. For more options, see end of this section. 

Note: comments are designed mainly for documenting listings. Thus when Brettyprinting to the 
terminal, comments are suppressed and printed as the string """COMMENT ....... 1 4 

+ 113 

+ 
Actually. any expression car of which is equal to the value of the variable commcntflg is treated as a comment 
comrTls!!!1Jg is initially·, but the user can set it to some other value, e.g. :, and use this to indicate comments. For 
more details, see page 14.48. + 

114 The value of ucommentuf1g detemlines the action. If "commcntu f1g is NIL, the comment is printed. Otherwise, 
the valuc of "cOn!!lli'!ltu f1g is printed. Ucommclltu[1g is initially set to .. "COMMENT·· ". The function ~ is 
providcd to prcllyprillt functions. including thcir commcnts, to the temlinal. ~ opcrates cxactly like 12P except it 

+ first sets "'COITUllCllt·"llg to NIL. Thc function ~ plays an allalagous role for l!f. 

14.44 

--------
-->@ 



Prettyprint 

COMMENT POINTERS 

For a well-commented collection of programs, the list structure, atom, and pname storage required 
to represent the comments in core can be significant. If the comments already appear on a file and 
arc not needed for editing, a significant savings in storage can be achieved by simply leaving the 
text of the comment on the file when the file is loaded, and instead retaining in core only a pointer 
to the comment. This feature has been implemented by defining * as a read-macro in FILERTBl 
which, instead of reading in the entire text of the comment, constructs an expression containing [1) 
the name of the file in which the text of the comment is contained, [2] the address of the first byte 
of the comment, and [3] the number of bytes.11s For output purposes, * is defined as a 
prettyprintmacro (page 14.49) that prints the comments represented by such pointers by simply 

_copying the corresponding bytes from one file to another, or to the terminal.1l6 Normal comments 
are processed the same as before, and can be intermixed freely with comment pointers. 

11le comment pointer feature is enabled by setting norma1commentsflg to NIl. 
norma1commentsflg is initially T. Note that norma1commentsflg can be changed as often as 
desired, i.e., some files can be loaded normally, and others using comment pointers. 

For convenience of editing selected comments, an edit macro, get*, is included which loads in the 
text of the corresponding comment.1l7 get* is defined in terms of getcomment: 

getcomment[x;-;-] If ! is a comment pointer, value is the comment, which it reads + 
from the file. Otherwise, value is !. + 

CONVERTING COMMENTS TO LOWER CASE 

This section is for users operating on terminals without lower case, e.g_ model 33 teletypes, who 
nevertheless would like their comments to be converted to lower case for more readable line-printer 
listings. Users with lower-case terminals can skip to the File Package sections (as they can type 
comments directly in lower case). 

%% If the second atom in a comment is %%, the text of the comment is 
converted to lower case so that it looks like English instead of LISP 
(see next page). 

The output on the next page illustrates the result of a lower casing operation. Before this function 
was prettyprinted, all comments consisted of upper case atoms, e.g., the first comment was (. %% 
INTERPRETS A SINGLE COMMAND). Note that comments are converted only when they are 
actually written to a file by prettyprint. 

115 Plus a flag to indicate whether the comment appeared at the right band margin or centered on the page. 

116 If the user changes the value of commentllg but still wishes to use the comment pointer feature. be should make + 
sure to give the new commentl]g the same read-macro definition in filerdtbl as • has. e.g. if he resets commenlflg to . + 
be :. he should perform (SETSYNTAX '; '. FILERDTBL). + 

117 lW~ prints the comment without reading it by simply copying the corresponding bytes to the terminal. 

14.45 

_ t. 



Section /4: Input/Output 

'Ibe algorithm for conversion to lower case is the following: If the first character in an atom is t, 
do not change the atom (but remove the t). If the first character is %, convert the atom to lower 
case.llR If the atom119 is an Interlisp word,12° do not change it. Otherwise, convert the atom to 
lower case. Conversion only affects the upper case alphabet, i.e., atoms already converted to lower 
case arc not changed if the comment is converted again. When converting. the first character in 
the comment and the first character following each period are left capitalized. After conversion, 
the comment is physically modified to be the lower case text minus the %% flag, so that conversion 
is thus only performed once (unless the user edits the comment inserting additional upper case text 
and another %% flag). 

lcaselst 

.ucaselst 

abbrevlst 

Words on 1casc1st will always be converted to lower case. lcaselst is 
initialized to contain words which are Interlisp functions but also 
appear frequently in comments as English words. e.g., AND, 
EVERY. GET, GO, LAST, LENGTH, LIST, etc. 'Thus, in the 
example on the previous page, not was written as tNOT, and GO as 
tGO in order that they might be left in upper ease. 

words on ucaselst (that do not appear on leaselst> will be left in 
upper case. ucasclst is initialized to NIL. 

abbrevlst is used to distinguish between abbreviations and words 
that end in periods. Normally, words that end in periods and occur 
more than halfway to the right margin cause carriage-returns. 
Furthermore, during conversion to lowercase, words ending in 
periods, except for those on abbrevlst, cause the first character in 
the next word to be capitalized .. abbrevlst is initialized to the upper 
and lower case forms of ETC. I.E. and E.O. 

118 User must type %% as % is the escape character. 

119 minus any trailing punctuation marks. 

120 i.e .. is a bound or free variable for the function containing the comment, or has a top level value. or is a defmed 
fUllction. or has a nOIl-NI L property list 

14.46 

.-~------~----------

J • -~. __ ~ 



Pretty print 

(BREAKCOM 

") 

[LAMBDA (BRKCOM BRKFLG) 

(PROG (BRKZ) 
TOP (SELECTQ 

BRKCOM 
[t (RETEVAL (QUOTE BREAK1) 

(QUOTE (ERROR]] 
(GO 

(* Interprets a 
single command.) 

(* Evaluate BRKEXP 
unless already evaluated, 
print value, and exit.) 

(BREAKCOMl BRKEXP 
(BREAKEXIT» 

BRKCOM NIL BRKVALUE) 

(OK 

(BREAKCOMl BRKEXP BRKCOM 
(BREAKEXIT T» 

(* Evaluate BRKEXP, 
unless already evaluated, 
do NOT print value, 
and exit.) 

BRKVALUE BRKVALUE) 

(tWGO (* Same as GO except 
never saves evaluation 
on history.) 

(BREAKCOMl BRKEXP 
(BREAKEXIT) ) 

BRKCOM T BRKVALUE) 

( RETURN 

(* User will type in expression to be evaluated and 
returned as value of BREAK. Otherwise same as GO.) 

(BREAKCOMl [SETQ BRKZ (COND 
(BRKCOMS (CAR BRKCOMS» 
(T (LISPXREAD T] 

(QUOTE RETURN) 
NIL NIL (LIST (QUOTE RETURN) 

BRKZ» 
(BREAKEXIT) ) 

(EVAL (* Evaluate BRKEXP but 
do not exit from BREAK.) 

(BREAKCOMl BRKEXP BRKCOM) 
(COND 

(BRKFLG (BREAK2) 
(PRINl BRKFN T) 
(PRINl (QUOTE " EVALUATED 

T») 
(SETQ IVALUE (CAR BRKVALUE» 

(* For user's benefit.) 
) 

14.47 



Section 14: Input/OlltPllt 

SPECIAL PRETTYPRINT CONTROLS 

#rpars 

linc1ength[n] 

firstcol 

pretty1com 

#carefu1columns 

widepaper[ fig] 

commentfig 

controls the number of right parentheses necessary for square 
bracketing to occur. If # rpars = NIL. no brackets are used. 
#rpars is initialized to 4. 

determines the position of the right margin for prettyprint.121 

is the starting column for comments. Initial setting is 48. 
Comments run between firstcol and linelength. If a word in a 
comment ends with a "." and is not on the list abbrevlst, and the 
position is greater than halfway between firstcol and linc1ength, the 
next word in the comment begins on a new line. Also, if a list is 
encountered in a comment, and the position is greater than halfway. 
the list begins on a new line. 

If a comment is bigger (using count) than prettylwr in size, it is 
printed starting at column 10, instead of firstco1.pretty1com is 
initialized to 14 (arrived at empirically). 

in the interests of efficiency, prettyprint approximates the number 
of characters in each atom, rather than calling nchars, when 
computing how much will fit on a line. This procedure works 
satisfactorily in most cases. However, users with unusually long 
atoms in their programs, e.g., such as produced by c1ispify. may 
occasionlly encounter some glitches in the output produced by 
prettyprint. The value of #carefulcolumns tells prettyprint how 
many columns (counting from the right hand margin) in which to 
actually compute nchars instead of approximating. Setting 
#carefulcolumns to 20 or 30 will eliminate the above glitches. 
although it will slow down prettyprint slightly. # carefu1columns is 
initially 0. 

widepaper[T] sets filelinelength to 120, firstcol to 80, and pretty1com 
to 28. These are useful settings for prettyprinting files to be listed 
on wide paper. widepapern restores these parameters to their initial 
values. The value of widepaper is its previous setting. 

If car of an expression is £9. to commentflg, the expression is 
treated as a comment. commentflg is initialized to *. 

121 Note that makefik. page 14.64. resets linelength to the value of filelinelength, before calling prettydef. filelinelength 
is initially 72. 

122 Comments are also printed starting at column 10. if their second element is also a *, i.e .. comments of the fonn 
(* * "). 

14.48 



prettyflg 

clispifyprettyflg 

prettyprintmacros 

prettyprintypemacros 

prettyequivlst 

changechar 

FONT PACKAGE 

Pretty print 

If pretty flg is NIL, printdef uses :P..dn2 instead of prettyprinting. 
This is useful for producing a fast symbolic dump (see FAST option 
of make file, page 14.64). Note that the file loads the same as if it 
were prettyprinted. prettyflg is initially set to T . 

used to inform prettyprint to call c1ispify on selected function 
definitions before printing them. Sec Section 23. 

is an assoc-list that enables the user to format selected expressions 
himself. car of each expression being prettyprinted is looked up on 
prettyprintmacros, and if found, cdr of the corresponding entry is 
applied to the expression. If the result of this application is NIL, 
prcttyprint will ignore the expression.This gives the user the option 
of printing the expression himsClf in whatever format he pleases. If 
the result is non-N I L, it is prettyprinted in the normal fashion. This 
gives the user the option of computing some other expression to be 
prettyprinted in its place. prettyprintmacros is initially NIL. 

is a list of clements of the form (typename . fn). For types other * 
than lists and atoms, the type name of each datum to be * 
prettyprinted is looked up on prettyprintypemacros, and if found, * 
the corresponding function is applied to the datum about to be 
printed, instead of simply printing it with prin2. 
prettyprintypemacros is initially NIl. 

is an assoc-list that enables user to tell prettyprint to treat a + 
car-of-form the same as some other car-of-form, e.g. if + 
(QLAMBDA . LAMBDA) appears on prettyequivlst, then QLAMBDA + 
expressions will be prettyprinted the same as LAMBDA's. + 
prettyequivlst is initially NIL. + 

if non-N I L, and prettyprint is printing to a file or display terminal, 
prettyprint prints changechar in the right hand margin while 
printing those expressions marked by the editor as having been 
changed (see Section 9). changechar is initially I. 

A comment of this form causes ! to be evaluated at prettyprint 
time, e.g., (* E (RAD I X 8» as a comment in a function 
containing octal numbers can be used to change the radix to 
produce more readable printout. The comment is also printed. 

Prettyprint contains a facility for printing clements of various classes, e.g user functions, system + 
functions, c1isp words, comments, etc., in different fonts to emphasize (or deemphasize) their + 

14.49 



Section 14: Input/Output 

+ importance, and in general to provide for more pleasing printout when printing to a file.123 Of 
+ course, in order to be useful, this facility requires that the user has access to a printer which 
+ supports multiple fonts, such as an XGP. 

+ Prettyprint signals font changes by inserting a user-defined escape sequence, e.g. tFtC meaning 
+ change to font 3, t Ft A change back to font 1, etc. It is convenient if these sequences can consist 
+ of control characters, because by making these characters be separator charactors in filerdtbl, a file 
+ with font changes in it can also be loaded back in. Otherwise, the user would have to dump two 
+ files, one for listing, and one for loading. 

+ Currently, the user can specify fonts for each of the following eight c1asses:124 

+ lambdafont 
+ 

+ c1ispfont 
+ 

+ commentfont 

+ userfont 
+ 

+ systemfont 

+ changefont 
+ 

+ prettycomfont 

+ defaultfont 
+ 

the font for printing the name of the function being prettyprinted, 
before the actual definition (usually a large font). 

if c1ispflg is on, the font for printing any clisp words, i.e. atoms 
with property CLISPWORD. 

the font for everything inside of a comment. 

the font for the name of any function in the file, or any member of 
the list fontfns. 

the font for any other (defined) function. 

the font for anything in an expression marked by the editor as 
having been changed. 

the font used in printing the operand of a file package command. 

the font for everything else, or any of the above classes for which a 
font is not specified. 

+ 123 None of this section pertains to prettyprinting to the tenninal. 

+ 124 

+ 
+ 
+ 
+ 

- - ------
_-<'0"""-£; .... "'-... '- ~-~;...- _~~-~ 

each different, or the same for several classes. Note: the output primitives print, prin1, etc., currently do not know 
about variable width fonts, so the user may have to experiment to find a compatible (pleasing) set of fonts. Note also 

that the user does not set laml?!I.a.f91!1. cli~n.[QrI!. et al. but indicates what font to be used by including an appropriate 

entry in the for!!Pfi~f!k. page 14.51. fonts!;!, described below. will then set lambda font, clisfonl, et al. to a data 
structure that contains the necessary information for performing the font change. 

14.50 



Prettyprint 

For example, the function on page 14.47 is shown on page 14.53 with lambdafont corresponding + 
to HELVETICA12 BOLD, commentfont to TIMESROMAN6 ITALIC, userfont to HELVETICAIO + 
BOLD, and defaultfont to GACHAI0. + 

'The operation of the font package is affected by a large· number of parameters, e.g. filelineiength, + . 
listfilestr, etc. plus the various fontnamcs themselves. To facilitate switching back and forth + 
betwecn various configurations, the font package allows thc user to set the various paramctcrs to + 
their desircd values, and then use the function fontnamc to package up and save this configuration. + 
Subscquently, the user invokes this configuration by pcrforming fontset[name]. + 

fontescapechar 

fontprofile 

fontchangeflg 

listfilestr 

commentlinelength 

the character or string used to signal the start of a font escape + 
scquence. + 

list of elements of the form (fontclass NIL font#),l25 where' + 
fontclass is one of the eight font classcs and font is the font number + 
for that class.126 For each fontclass, the escape sequence consisting + 
of fontcscapechar followed by the character code for the font + 
number, i.e. for font number 1. tA, for font number 2, tB, etc. + 

If font is NIL for any fontclass, the defaultfont is used. Note that + 
the defaultfontmust be specified or an error is generated. + 

if T, enables fonts, if NIL, disables fonts; i.e. no font changes are + 
performed when prettyprinting. . + 

passed to the operating system by listfiles. Can be used to specify + 
subcommands to the LIST command, e.g. to establish + 
correspondance between font number and font name. + 

since comments are usually printed in a smaller font, + 
commentlinclength is provided to offsct the fact that lnterlisp does + 
not know about font widths. Its value is a dotted pair of numbers. + 
When fontchangeflg = T, car of commcntlinclength is the linelength + 
used to print short comments, i.e. those printed in the right margin, ,+ 
and cdr is the linelength used when printing full width comments. + 

Note that the user may also want to reset filelinelength, pretty1com and firstcol (all described + 
earlier) as a part of various font configurations. + 

125 The NIL is a place marker. fontname replaces (rplaca) cadr when the font configuration is defined. + 

126 it is assumed that the user has some way of communicating to the printing device the correspondence between font + 
numbers and fonts. + 

14.S1 



+ fontdefsvars 
+ 
+ 

+ fontname[namc] 
+ 

+ fontset[name) 
+ 

+ changefont[fontclass] 
+ 
+ 

+ fontdefs 
+ 
+ 
+ 
+ 

Section 14: Input/Outpul 

the list of variables to be packaged by a fontname. initially 
fontchangeflg, file1inclcngth, comment1inclcngth. firstcol, prettylcom, 
listfilcstr, and fontprofile. 

performs some processing on fontprofile. and then collects names 
and values of variables on fontdefsvars, and saves them on foutders. 

restores font configuration for name. Generates an error if name 
not previously defined. 

C.g. (CHANGEFONT LAMBDA FONT), (not t LAMBDA FONT). prints the 
. font escape sequence to change t~ fontclass. For use in 
prettyprintmacros. 

the dictionary of font_configurations. fontdefs is a list of elements 
of form (name. parameter-pairs). To save a configuration on a file 
after performing a fontname to define it, the user could either save 
the entire value of fbntdefs, or simply use anALISTS file package 
command to dump out just the one configuration. 

14.52 



Pretty print 

(BREAKCOM 
[LAMBDA (BRKCOM BRKFLG) (* Interprets a 

single command) 

tI) 

(PROG (BRKl) 
TOP (SELECTQ 

BRKCOM 
[t (RETEVAL (QUOTE BREAK1) 

(QUOTE (ERROR]] 
( GO (* Evaluate BRKEXP 

unless already evaluated, 
print vallie, and exit.) 

(BREAKCOM1 BRKEXP BRKCOM NIL BRKVALUE) 
(BREAKEXIT) ) 

(OK (* Evalliate BRKEXp, 
unless already evalliated, 
do NOT print value, 
and exil.) 

(BREAKCOM1 BRKEXP BRKCOM BRKVALUE BRKVALUE) 
(BREAKEXIT T» 

( tWGO (* Same as GO except 
never saves evaluation 
on history.) 

(BREAKCOM1 BRKEXP BRKCOM T BRKVALUE) 
( BREAKEXIT» 

(RETURN 

(* User will type in expression to be evaluated and 
returned as value of BREAK. Otherwise same as GO.) 

(EVAL 

(BREAKCOM1 [SETQ BRKl (COND 
(BRKCOMS (CAR BRKCOMS» 
(T (LISPXREAD T] 

(QUOTE RETURN) 
NIL NIL (LIST (QUOTE RETURN) 

BRKl» 
(BREAKEXIT) ) 

(* Evalliate BRKEXP but 
do not exit from BREAK.) 

(BREAKCOM1 BRKEXP BRKCOM) 
(COND 

(BRKFLG (BREAK2) 
(PRINt BRKFN T) 
(PRINt (QUOTE tI EVALUATED 

T) » 
(SETQ IVALUE (CAR BRKVALUE» 

(* For user's benefit.) 

) 

14.53 

-- --------"'·c"'e .• t:"_: .. '_",_ 



Section 14: .Input/Ou/Put 

14.9 FILE PACKAGE121128 

This section describes the file package: a set of functions, conventions, and interfaces with other 
system packages for facilitating the bookkeeping involved with working in a large system consisting 
of many symbolic files and their compiled counterparts. Essentially, the file package removes from 
the user the burden of keeping track of where things are and what things have changed. For 
example, the file package keeps track of which file contains a particular datum, e.g. a function 
definition, record declaration. etc., and, in many cases, will automatically retrieve the datum when 
necessary if it is not already in the user's working environment. The file package also keeps track 
of which files have been in some way modified and need to be dumped, which files have been 
dumped, but still need to be listed and/or recompiled 

The file package requires that for each file, the value of the atom fileCOMS, be a list of file package 
commands which describe how to write out the file, e.g. for the file FOO, the command list would 
be the value of the variable FOOCOMS. Inus, if the file FOO is to contain functiondefinilions for 
the functions A and B and values for the variables C and 0, its command list would be 
« FNS A B) (VARS C 0». FNS and VARS are the names of the file package commands for 
the function and variable file package types, and the remainder of the command specifies the 
elements whose "definitions" of the respective type are to be written on the file. With FOOCOMS 
set as above, makefile[FOO]129 will actually place on the file FOO expressions which, when evaluated 
as FOO is loaded, will restore the various definitions. Such a command list can be constructed by 
simply setting and editing the fileCOMS variable. However, the file package contains facilities 
which make constructing and updating command lists easier, and in some cases automatic. These 
are described in detail below. 

All the system functions that perform global 'file operations,n° e.g., load, loadfns, prettydef, tcompl. 
recompile, et aI, as well as those functions that define or change data, e.g., editf, editv, editp. 
DWIM corrections to user functions, typed-inB1 assignment of variables or property values etc., 
interact with the file package. Some of these interactions are quite complex. For example, the same 
function may appear in several different files, or the symbolic or compiled files may reside in other 
directories, or were originally made under a different name, etc. Inerefore, this section will not 
attempt to document how the file package works in each and every situation, but instead make the 
deliberately vague statement that it does the "right" thing with respect to keeping track of what has 
been changed, and what file operations need to be performed in accordance with those changes. 

+ 127 

+ 
The file package was written by W. Teitelman.and extended by L. M. Masinter and R. M. Kaplan. The notion of a 
typed definition. and the designing and implementing of type-indepedent ways of manipulating the 
name-definition-type-file associations. belong to L. M. Masintet + 

128 The file package can be disabled by setting filepkgflg to NIL. 

129 All file operations in the file package are ba~ed on the root name of the file. i.e .• the filename with version number 
and/or directory field removed, but extension, if any. included. In other words. the user could also have said 
makefile«KAPlAN)FOO. ;27]. 

130 as opposed to "local" file operations such as those performed by 'print, read. setfileptr, etc. 

131 i.e. if the user types in (PUTPROP 'FOO prop expression). this is noticed by the file package. If a program executes 
the above. it is not 

14.54 



/ 

File Package 

TYPED DEFINITIONS + 

In addition to the definitions of functions and values of variables, source files in Interlisp can + 
contain a variety of other infomlation, e.g. property lists, record declarations, definiLion of edit + 
macros, hash arrays, etc. In order to treat uniformly from the standpoint of file operations such a + 
diverse assortment of data, we introduce the concept of a typed definition, of which a function + 
definition is just one example. We say that a definition associates with a name (usually a literal + 
atom), a datum, the definition, of a given type (called the file package type). Since the same name + 
may have several definitions, (e.g. a given atom may have both a function definition and a + 
variable-value definition), it is important to think of a typed definition as a relation between three + 
elements: the name, the definition, and the type. . + 

The file package includes mechanisms for ~reating, destroying, and editing typed definitions, and + 
for moving definitions from one file to another, or from one name to another. For example, the + 
primitive functions for creating and destroying function and v;,triable definitions are putd and setg, + 
and they are edited with editf and editv respectively. rThere is also a need to move definitions + 
from the user's current core image to a symbolic file, or vice versa. This adds a fourth element to + 
the notion of a definition, namely the file where the typed definition of a particular name resides. + 

Whenever the user defines, edits, or otherwise changes a datum of a particular file package type, + 
the corresponding system functions infonn the file package that such new items have been defined + 
or old definitions modified. The file package maintains a "database" of this information, so that it + 
can tell the user (via the function files?) what files need to be rewritten, listed, or recompiled, and + 
ask him where new definitions should be stored in the case that they do not appear on the + 
fileCOMS of any file (by calling addtofiles?). The function cleanup will execute aU the operations + 
necessary to make the user's pennanent files consistent with the definitions in his current + 
core-image. + 

In addition, the file package provides: + 
(1) A uniform way of augmenting a file's command list to include new items of a given file + 
package type, the function add to file. The function addtofile will either construct a new command + 
appropriate for the given file package type, or add the new name to an already existing command + 
for dumping items of that type, taking into account special information about the uses and fOffilats + 
of the different commands. + 

(2) A unifonn way of deleting items from a file's command list, the function delfromfile. + 
(3) A simple way of detennining whether an item of a given type resides on a particular file or + 
whether any items of that type reside on the file, the function infilecoms? + 

(4) A way of determing what files contain definitions of a given type for a particular name, the + 
function whereis.- + 

(5) A way of comparing alternative definitions of the same name, or definitions of different names, + 
the functions compare and comparedefs. + 

(6) Type-independent ways of manipulating the name-definition-type-file associations, via the .+ 
functions getdef, putdcf, copydcf, editdef, etc. + 

To provide these facilities, the file package must have considerable infonnation about each of the + 
various file package commands and me package types. For the tile package types and commands + 
described below, this information has already been provided, and the user can simply invoke the + 

14.55 



Section 14: Input/Output 

+ appropriate defining and editing functions, and then specify the appropriate file package 
+ commands, or allow the file package to construct the commands automatically. The user may also 
+ define new file package types by specifying how the system should operate with respect to 
+ definitions of that type via the function filepkgtype. Similarly, the user may define new file package 
+ commands by specifying the relationship between that command and the various file package types 
+ via the function filepkgcom. 11le methods for defining new file package types and commands will 
+ be discussed later (page 14.72). First, the built-in file package types and their associated 
+ commands will be described. 

FILE PACKAGE COMMANDS 

The basic mechanism for creating symbolic files is the function makefile, described in detail on 
page 14.64. makefile takes as its first argument a file name. It extracts the name field of the file, 
packs COMS onto the end of it, and treats the value of the resulting atom as the file command list, 
i.e. aUst of file package commands. E.g. makefile[FOO. ; 27] will use the value of FOOCOMS as file 
command list. 

File package commands can be used to save on the output file definitions of functions, values of 
variables, property lists of atoms, arrays, advised functions, edit macros, record declarations, etc. 
The interpretation of each file package command is as follows: 

1. 

2. 

3. 

+ 4. 

(FNS fn1 ... fnm), a defineg is written with the definitions of fnl ... fum.132 

(VARS varl ... varn), for each vari' an expression will be written which will set its top level 
value when the file is loaded. If vari is atomic, vari will be set to the top-level value it had at 
the time the file was written, i.e., (RPAQQ vari top-level-value) is written.133 134 If vari is 
non-atomic, it is interpreted as (var form). . e.g., 
(FOO (APPEND FIE FUM» or (FOO (QUOTE (FOOl F002 F003»). In this case, the 
expression (RPAQ var form) is written. 

(ADDVARS (varl . 1st1) ... (varn . lslu», for each (val). Is~), writes an addtovar expression 
such that each element of ls~ that is not a member ot the value of var' at the time the file is 
loaded is added to vari' i.e.. the new value of var:i will be the union ot its old value and Is~. 
e.g. (ADDVARS (DIRECTORIES LISP LISPUSERS» will add LISP and LISPUSERS to 
the value of directories. vari can initially be NOBIND, in which case it is first set to NIL, i.e. 
(ADDVARS (var» can be used to initialize var to NIL if var has not previously been set. 

(ALISTS (alistname1 atom1 atom2 ... ) ... (alistnamen atom3 atom4 ... », alistnam~ is the name 

132 The user should never print a DEFINEQ expression directly onto a file himself. but should instead always use the 
FNS command for dumping functions. For more details. see footnote on page 14.4l 

133 .!l2!!9.Q. and !J!l!.q are like setgg and ~, except that they also perform some special operations with respect to the file 
package. 

134 The HORRIBLEVARS file package command described below provides a way of saving and reloading variables whose 
values. contain re'entrant or circular list structure. user data types, arrays, or hash arrays. 

14.56 



File Package 

of an alist, i.e. a variable whose value is an association list, e.g. cditmacros, baktracelst, etc. + 
For each alistnamei' writes out expressions which will restore the corresponding entries, e.g. + 
(ALISTS (BREAKMACROS BT BTV» will dump the definition for the BT and BTV + 
commands.135 + 

5. 

6. 

7. 

(PROP propname atom! ... atomo.) an appropriate ~roQ§ will be written which will restore 
the value of propname for each ~tomi when the file is loaded.136 If propname is a list, 
expressions will be written for each property on that list. If pr~~name= AL L, the values of 
all user properties (on the property list of each atomi) are saved.B 

(IF PROP propname atom! ... atom ). same as PROP command, except that only saves the 
properties that actually appear on tRe property list of the corresponding atom. For example, 
if FOOl has property PROPI and PROP2, F002 has PROP3. and F003 has property PROP1 
and PROP3, (IFPROP (PROPI PROP2 PROP3) FOOl 'F002 F003) will save only those 5 
property values. 

(PROPS (atom! propname!) ... (at0tI1n propnamen», similar to PROP command. An 
appropriate putprops will be written wnich will restore the value of propnamei for each atomi 
when the file is loaded.138 

8. (P. expressions), each S-expression following P will be printed on the output file, and 
consequently evaluated when the file is loaded. 

9. (E. forms), each form following E will be evaluated at output time, i.e., when make file 
rcaches this command. 

10. (COMS com! ... comn), each of the commands com! ... comn will be interpreted as a file 
package command. 

11. (*. text), used for inserting a comment in a file. First a form-feed is printed, then the 
comment. 

135 

136 

137 

138 

Some alists are handled specially. e.g. usermacros. lispxmacros. etc. all of which have their own file package 
commands. 

If £Iton:!i does not have the property propname (as opposed to having the property with NIL value), a warning 
message "NO propname PROPERTY FOR atom 1" is printed. The command IFPROP can be used if it is not 
known whether or not an atom will have the corresponding property. 

sysprop.1! is a list of properties used by system functions. Only properties not on that list are dumped when the ALL 

option is used 

As with UIC PROP command. if !!lomi docs not have the property illllllil.a.rn_1; (as opposed to having the property with 
NIL value). a warning message "NO propname PROPERTY fOR atom1" is printed. 

14.57 

+ 
+ 
+ 

+ 
+ 



Section 14: Input/Output 

12. (ADVISE fn1 ... fnm)' for each full' appropriate expressions will be written which will reinstate 
the function to its aavised state wIlcn thc file is loaded. See Section 19. 

13. (ADVICE fn1 ... fn"..,,), for each fn·, will write a putprops which will put the advice back on 
the property list ortbe function. rlbe user can then use readvise to reactivate the advice. 

14. (USERMACROS atom 1 .. , at0II1n), each atomi is the name of a user edit macro. Writes 
expressions for adding the edit macro definitions of atomi to usermacro~ and adding the 
names of the commands to the appropriate spelling lists)Jr 

+ 15. (FILEPKGCOMS atom1 ... atom ), each atomr is either the name of a user-defined file 
+ package command (see page f4.73) or a user-defined file package type (or both) Writes 
+ expressions which will restore each commandltype.l40 . 

+ 16. 
+ 

(LISPXMACROS atoml ... atomn), Each atomi is a lispxmacro or lispxhistorymacro 
(Section 22). Writes expressions which will save and restore the definition for each macro, as 
well as making the necessary additions to lispxcoms + 

17. (RECORDS recl ... recn), where recl ... recn are the names of records (Section 23), writes 
expressions whtch will redeclare the records wnen the file is loaded. 141 

18. (I. S: OPRS oP.r1 ... oprn), whe~e Ql¥l ... Qrun ar~ the names of use~-defined i.s.oprs 
(SectIon 23), wntes expressIons WhIch wllf redefine the I.S.Oprs when the file IS loaded. 

+ 19. (TEMPLATES atom1 ... atomn),where atom 1 ... ato~ have Masterscope templates 
+ (Section 20), writes expressions which will restore the templates when the file is loaded. 

* 

20. (BLOCKS block I ... blockn), for each blocki. a declare expression will be written which the 
block compile functions interpret as block declarations. See Section 18. 

21. (DECLARE:. filepkgcoms/flags), Normally expressions written onto a symbolic file are (1) 
evaluated when loaded; (2) copied to the compiled file when the symbolic file is compned 

B9 If ato!!!j is not a user macro. a warning message "no EDIT MACRO for atom;" is printed 

+ 140 

+ 
If atomi is not a file package command or type. a warning message "no FILE PACKAGE COMMAND for atomi " 
is printed 

+ 141 

+ 
+ 
+ 
+ 

The file package command INITRECORDS can be used to write expressions on a file that will. when loaded, perform 
whatever initialization/allocation is nccessary for the indicated records. but not to write out, and hence C.1use to be 
read back in. the record declarations themselves. This facility is useful for building systcms on top of Interlisp. in 
which the implementor may want to eliminate the record declarations from a production vcrsion of the system. but 
the allocation for these rccords must still be done. 

14.58 



File Package 

(see Section 18); and (3) not evaluated at compile time. DECLARE: allows the user to 
override these defaults. lbe output of those file package commands appearing within the 
DECLARE: command is embedded in a DECLARE: expression, along with any tags that are 
specified, e.g., (DECLARE: EVAL@COMPILE DONTCOPY (FNS --) (PROP --» would 
produce (DECLARE: EVAL@COMPILE DONTCOPY (DEFINEQ --) (PUTPROPS --». 
DECLARE: is defined as an nlambda nospread function. When declare: is caUed, it processes 
its arguments by evaluating or not evaluating each list depending on the setting of an internal 
state variable. lbe tags EVAL@LOAD, or DOEVAL@LOAD, and DONTEVAL@LOAD can be used 
to reset this state variable. lbe initial setting is to evaluate. lbe tag EVAL@LOADWHEN can be 
used to provide conditional evaluation. '!be value of the expression immediately following 
the tag determines whether or not to evaluate -subsequent expressions when loading, i.e. 
EVAL@LOADWHEN T ... is equivalent to ... EVAL@LOAD • ..l42 

22. (MACROS atom 1 ... atomn) writes out the MACRO properties for each atomi, embedded in a 
DECLARE: EVAL@CuMPILE. Equivalent to· (DECLARE: EVAL@COMPILE 
(PROP MACRO atom1 ... atomn). See Section 18. 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

23. (SPECVARS. vars) (LOCALVARS. vars) (GLOBALVARS. vars), outputs corresponding + 
compiler declaration embedded in a DECLARE: DOEVAL@COMPILE DONTCOPY. See + 
Section 18. + 

24. (UGL YVARS varl ... varv.)' like VARS, exeept that the value of each vari may contain 
structures for wh1ch read 1S not an inverse of print, e.g. arrays, readtables, user data types, etc. 
Uses hprint package (page 14.59). 

25. (HORRIBLEVARS var1 .,. varn), like UGL YVARS except structures may also contain circular 
pointers. Uses hprint package (page 14.59).143 The values of var1 ... varn are printed in the 
same operation, so that they may contain pointers to common substructures. 

26. (ARRAY var1 ... varll), each vari following ARRAY should have an array as its value. An 
appropriate expreSSlOn will be written which will set the variable to an array of exactly the 
same size, type, and contents upon loading.l44 

142 As indicated in Section 18. DECLARE: expressions are specially processed by the compiler. In this case, the relevant '" 

143 

tags are COPY, DOCOPY, COPYWUEN, DONTCOPY, EVAL@COMPlLE, DOEVAL@COMPILE. '" 
EVAL@COMPILEWHEN, DONTEVAL@COMPlLE. FI RST. and NOH I RST. The value of decJaretagslst is a list of '" 
all the tags used in DECLARE: expressions. If a tag not on this list appears in a DECLARE: file package command. '" 
performs spelling correction using decJaretagslst as a spelling list 

UGLYVARS docs not do any checking for circularities, which results in a large speed and internal· storage advantage 
over HORRIBLEVARS. Thus, if it is known that the data structures do not contain circular pointers. UGL YVARS 
should be used instcad of liORR IBLEVARS. 

+ 
+ 
+ 

144 assuming Ulat the elmements of the array are objects for which read is an inverse of print. Otherwise, UGL YVARS or 
UORRIBLEVARS should be used. 

14.59 



Section 14: Input/Oulput 

+ 27. (ORIGINAL coml ... comn). each of the commands will be interpreted as a file package 
+ command without regard to any file package macros (see below). Useful for redefining a 
+ built-in file package command in terms of itself. 

In each of the commands described above, if the atom * follows the command type,145 the form 
following the ., i.e., caddr of the command, is evaluated and its value used in executing the 

+ command, e.g., (FNS ... (APPEND FNSl FNS2». When this form is atomic, i.e. a variable, e.g. 
+ (FNS ... FOOFNS), we say that the variable is a filevar. Note that (COMS * form) provides a way 

of computing what should be done by make file. 

• 
• 
* 
• 

New file package commands can be defined or built in commands redefined via the function 
filepkgcom (page 14.73). New file package types can be defined or built in types redefined via the 
function filepkgtype (page 14.72). Both file package commands and file package types can be 
dumped via the FILEPKGCOMS command. If a file Eackage function is given a command or type 
that is not defined, it attempts spelling correctionl ' 6 using filepkgcomsplst as a spelling list. If 
successful, the corrected version of the list of file package commands is written (again) on the 
output file. l47 If unsuccessful, generates an error, BAD FI LE PACKAGE COMMAND. 

Example: 

~SET{FOOFNS (FOOl F002 F003» 
~SET(FOOCOMS«FNS ... FOOFNS) (VARS FIE) 
(PROP MACRO FOOl F002) (P (MOVD (QUOTE FOOl) (QUOTE FIEt] 
~MAKEFI LE (FOO) 

would create a file F 00 containing: 

1. (FILECREATED "time and date the file was made" . "other information") 

2. (PRETTYCOMPRINT FOOCOMS) 

3. (RPAQQ FOOCOMS «FNS ... FOOFNS) ••• ) 

~ (RPAQQ FOOFNS (FOOt F003 F003» 

5. (DEFINEQ "definitions of FOOt. F002 t and F003") 

6. (RPAQQ FIE "value of FIE") 

7. (PUTPROPS FOOl MACRO propvalue) 

8. (PUTPROPS F002 MACRO prop value) 

145 Except for the PROP and IFPROP commands, in which case the • follows the property name, e.g.. 
(PROP MACRO • FOOMACROS). 

146 unless dwimflg or nospellflg == NIL. See Section 17. 

141 since at this point. the uncorrected list of file package commands would already have been printed on the output file. 
When the file is loaded. this will result in fileCOMS being reset, and may cause a message to be printed, e,g., 
(FOOCOMS RESET). 'Ibe value of FOOCOMS would then be the corrected version. 

14.60 



File Package 

9. (MOVD (QUOTE FOOl) (QUOTE FIE1» 

10. STOP 

This completes the description of file package commands. 

FILE PACKAGE TYPES 

A file package command is an instruction to makefile to perform an explicit. well-defined + 
operation, usually printing some expression(s). A file package type is an abstract notion of a class of + 
objects which share the property that every object of the same file package type is stored. retrieved, + 
edited, copied etc .• by the file package in the same way. Usually there is a one to one + 
correspondence between file package types and file package commands, i.e. for each file package + 
type, there is a file package command which is used for writing objects of that type to a file, and + 
each file package command is used to write objects of a particular type. However, in some cases. + 
the same file package type can be dumped by several different file package commands. For + 
example, the file package commands PROP, I FPROP, and PROPS all dump out the file package + 
type PROPS.148 It is also permissible for the same file package command to dump several different + 
file package types. For example. the user can define a file package command which dumps both a + 
function definition and its macro. Conversely, some file package comands do not dump any file + 
package types at all. e.g. the E command.' + 

Thus, for each file package command. the file package must be able to determine what typed + 
definitions the command will cause to be printed so that the file package can determine on what + 
file (if any) an object of a given type is contained. Similarly. for each file package type, the file + 
package must be able to construct a command that will print out an object of that type. In other + 
words, the file package must be able to map file package commands into file package types, and + 
vice versa. Information can be provided to the file package about a particular file package + 
command via the functionfilepkgcom, page 14.73, and information about a particular file package + 
type via the function filepkgtype. page 14.72.149 + 

The file package currently implements the following file package types:1SO FNS (functions). VARS + 

148 This means if the user changes an object of file package type PROPS, e.g. via editp or a typed in call to ~ or 
via an explicit call to markaschanged (page 14.67), this object can be written out with any of the above three 
commands. Thus, when the file package attempts to determine whether this typed object is contained on a particular 
file. it must look at instances of all three commands PROP, I FPROP, and PROPS. to see if the corresponding atom 
and property are specified. 

149 In the absence of other information, the default is simply that a file package command of the form (FOO name) + 
prints out the definition of name as a type FOO, and. conversely, if name is an object of type FOO, then ~ can be + 
written out by a command of the form (FOO name). + 

150 The value of filepkgtypes is a list of all file package types, including any that may have been defined by the user. + 

14.61 



Section 14: Input/Output 

+ (variables), ALISTS (alist entries),151 FILEVARS (filevars, page 14.60), PROPS (property 
+ name-value pairs),152 EXPRESSIONS (expressions),153 MACROS (compiler macros, Section 18), 
+ USERMACROS (user edit macros, Section 9), LISPXMACROS (lispxmacros and lispxhistorymacros, 
+ Section 22), ADVICE (advice, Section 19), FILEPKGCOMS (file package commands/types), 
+ RECORDS (records, Section 23), FIELDS (fields of records, Section 23), I.S.OPRS (iterative 
+ statement operators, Section 23), TEMPLATES (Masterscope templates, Section 20). 

* 
* 
* 
* 
* 
* 
* 
* 

MARKING CHANGES 

Operations in the file package can be broken down roughly into three categories: (1) marking 
changes, (2) noticing files, and (3) updating files. The various system functions which create or 
modify objects of the corres~onding type call markaschanged (page 14.67) to mark the 
corresponding object as changed.154 For example, when a function is defined via define or defineq, 
or modified either explicitly via editf, or implicitly, via a DWIM correction, the function is marked 
as being a changed object of type FNS. Similarly, whenever a new record is declared, or an 
existing record redeclared or edited, it is marked as being a changed object of type RECORDS, and 
so on for all of the other file package types. 

+ Note that in some cases the marking procedure can be subtle, e.g. if the user edits a property list 
+ using editp, only those properties whose values are actually changed (or added) are marked. As 
+ mentioned earlier, some properties implement other file package types, e.g. EX P R , ADVI C E • 
+ MACRO, I. S. OPR, etc. For example, if the user changes the value of the property I. S. OPR, he 
+ is really changing an object of type I. S. OPR, and the effect is the same as though he had 
+ redefined the Ls.opr via a direct call to the function j.s.opr. If a property whose value has been 
+ changed or added does not correspond to a specific file package ty~e. then it is marked as a 
+ changed object of type PROPS whose name is (variablename propname).155 

+ 151 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 152 

+ 
+ 
+ 
+ 
+ 
+ 

+ 153 

+ 

+ 154 

155 

A variable is declared to have a value which is an association list, i.e. a list of dotted pairs accessed via ~ and 
putassoc, by putting on its propertY list the property VARTYPE with value ALIST. In this case, each dotted pair On 
the list is an object of type ALISTS. When the value of such a variable is changed, only those entries in the a-list 
that are actually changed or added are mark.ed as changed (objects of type ALISTS). Objects of type ALISTS are 
dumped via the ALISTS or ADDVARS file package commands. Note that some a-lists "implement" other file package 
types. e.g. the value of usermacros implements the file package type USERMACROS, the value of lispxmacros and 
lispxhistOIymacros implements the file package type LISPXMACROS. This is indicated by having the value of the 
property VARTYPE be a list of the form (ALIST filepkgtype), e.g. getprop[LISPXHISTORYMACROSiVARTYPE) = 
(ALIST LISPXMACROS). 

Note that some properties implement another file package type. e.g. the property MACRO implements the file package 
type MACROS, the property ADVICE implements ADVICE, etc. This is indicated by the appearallce of the property 
PROPTYPE on the property list of the property name, i.e. getprop[MACRO i PROPTYPE]=MACROS. Whell such a 
property is changed or added, an object of the corresponding file package type is marked. If 
getprop[propertyname:PROPTYPE]= IGNORE, the challge is ignored (i.e. IGNORE cannot be the name of a file 
package type). FILE, FILEMAP. FILEDATES, etc. are all handled this way. Otherwise, when a property is 
changed or added, an object of typr. PROPS, with "name" (atom propertyname) is marked as being changed. 

Objects of type expressions are written out via tbe P file package command, and marked as being changed via the 
REMEMBER programmer assistant command. Section 21 

1be user can also call markaschanged directly to mark objects of a particular file package type as changed. 

except if the property name has a property PROPTYPE with value IGNORE as described earlier. 

14.62 



File Package 

Similarly, if the user changes a variable which implements the file package type ALISTS (as + 
indicated by the appearance of the property VARTYPE with value ALIST on the variable's property + 
list), only those entries that are actually changed are marked as being changed objects of type + 
ALISTS, and the "name" of the object will be (variablename key) where ill is car of the entry on + 
the alist that is being marked. If the variable corresponds to a specific file package type other than + 
ALISTS, e.g. USERMACROS, LISPXMACROS, etc., then an object of that type is marked. In this + 
case, the name of the object will be car of the corresponding entry on the a-list, C.g. if the user + 
edits lispxmacros and changes a definition for the lispxmacro PL, then the object PL of type + 
LISPXMACROS is marked as being changed, + 

The section on Defining New File Package Comma,nds/Types, page 14.73, tells how the user can + 
change or extend the marking algorithm for particular file package commands or types. + 

NOTICING FILES 

Files are "noticed" by load and loadfns (or loadfrom, loadvars, etc.) or by makefile. Noticing a file 
consists of adding its root name to the list filelst, and adding the property F I lEt value 
«fileCOMS . type», to the property list of its root name,156 157 where ~ indicates how the file was 
loaded, e.g., completely loaded, only partially loaded as with loadfns, loaded as a compiled file, etc. 
For example, if the user performs load[<TEITELMAN)FOO ,lSP; 2], FOO .lSP is added to filelst, 
and « FOOCOMS . T» is put on the property list of FOa. LSP. 

The property F I LEis used to determine whether or not the corresponding file has been modified 
since the last time it was loaded or dumped as described below. In addition, the property 
FIlECHANGES contains the union of the names of all changed items, undifferentiated by type, 
since the file was loaded (Le., there may have been several sequences of editing and rewriting the 
file), and the property F I l EDA TES a list of version numbers and the corresponding file dates. The 
use and maintenance of these properties is explained below. 

UPDATING FILES 

Periodically, the function updatefiles is called to find which file(s) contain the elements that have 
been changed.158 updatefiles operates by scanning filelst and interrogating the file package 

156 

157 

158 

The computation of the root name is actually based on the name of the file as indicated in the FILECREATED 
expression appearing at the front of the file, since this name corresponds to the name the file was originally made 
under. Similarly, the file package can detect that the file being noticed is a compiled file (regardless of its name), by 
the appearance of more than one FILECREATED expressions. In this case, each of the files mentioned in the 
F lLECREATED expressions are noticed. For example, if the user performs BCOMPL( (FOO FI E». and subsequently 
loads FOO,COM, both FOO and FIE will be noticed. 

The variable loadedfilelst contains a list of the actual names of the files as loaded by load or loadfns. For example, if 
the user performs LOAD[<NEWLISP>EDITA.COM;3], EDITA will be added to filelS!, but 
<NEWLISP>EDITA, COM; 3 is added to loadedfilelst loadedfilelst is not used by the file package, it is mantained for 
the user's benefit 

!!I!4atefile~ is called by llt~?, c1ea!~I2, and m'!~!iili!~, i.e., any procedure that requires the FILE property to be up to 
date. (lbe user can also invoke ul2datefile~ directly.) This procedure is followed rather than update the FILE 
property after each change because scanning file~~ and examining each Iile package command can be a 
time·consuming process, and is not so noticeable when performed in conjunction with a large operation like loading 
or writing a file. 

14.63 



Section 14: Input/Output 

commands for each file. When (it) any files are found that contain the corresponding typed 
definition, Ole name of the clement is added to the value of the propelty F I LEfor the 
corresponding file. 11lUS, after updatefiles has completed operating, the files that need to be 
dumped are simply those files on tilelst for which cdr of Oleir F I L E property is non-N I l. For 
example, if Ole user loads Ole file FOO containing definitions for FOOl, F002, and F003, edits 
F002, and then calls updatefi1cs, getprop[FOO; FI LE] will be « FOOCOMS . T) F002). If any 
objects marked as changed have not been transferred to the FILE property for some file, e.g., the 
user defines a new function but forgets (or declines) to add it to Ole file package commands for the 
corresponding file, then. both files? and cleanup will print warning messages, and Olen call 
addtofiles to permit the user to specify on which files these items belong. 

Whenever a file is written using makefile, the elements Olat have been changed, Le., cdr of the 
FILE property, are moved to the property FILECHANGES, and cdr of the FILE property is reset 
(rplacd) to N I L.159 In addition, the file is added _ to Ole list notlistedfiles and notcompiledfiles. 
Whenever Ole user lists a file using list files, it is removed from notlistcdfiles. Similarly, whenever a 
tile is compiled by tcompl, recompile, bcompl, or brecompile, the file is removed from 
notcompiledfiles. l1lUS at each point, the state of all files can be determined. 111is information is 
available to Ole user via Ole function files? Similarly, Ole user can see whether and how each 
particular file has been modified (by examining Ole appropriate property values), dump all files 
that have been modified, list all files Olat have been dumped but not listed, recompile all files that 
have been dumped but not recompiled, or any combination of any or all of the above by using one 
of Ole function described below. 

FILE PACKAGE FUNCTIONS 

makefile[file;options;reprintfns;sourcefile] 
notices file if not previously noticed. Performs 
line1engOl[filelinelength], and calls prettydef giving it NI l, file, 
fileCOMS, rejrintfns, source file, and the list of changes as its 
arguments,16 restores original linelength, and then adds file to 
notlistedfiles161 and notcompiledfiles.16L options is a list of options 
or a single option interpreted as follows: 

FAST perform prettydef with prettyflg=NIL 

159 If the file was not on filelst, e.g., the user defined some functions and initialized the corresponding fileCOMS 
without loading a file, then the file will be "noticed" when it is written by !Ilakefile, i.e. it will be added to filel~ 
and given appropriate FILE, FILEDATES and FILECHANGES properties. 

160 fileCOMS are constructed from the name field only, e.g., makefile[ FOO. TEM] will work. The list of changes is simply 
gir of the FI LE property, as described earlier, i.e., those items that have been changed since the last make file. 
makef!k merges those changes (using union) with those handled in previous calls to make file, and stores the result 
on the property FlLECHANGES. 1bis list of changes is included in the FlLECREATED expression printed at the 
beginning of the file by printdate. along with the date and version number of the file that was originally noticed, and 
the date and version number of the current file, i.e .. this one. (these two version numbers and dates are also kept on 
the property FILEDATE for various integrity checks in connection with rtmaking a file as described below.) 

+ 161 

+ 
except if the file has on its property list the property FILETYPE with value DON' TLIST, or a list containing 
DON' TLIST. 

162 

* 
Files that do not contain any function definitions, or those that have on their property list the property FILETYPE 
with value DON'TCOMPILE or a list containing DON'TCOMPlLE, are not added to notcompiledfiles, nor are they 
compiled even when Ql?tions specifics C or R C. 

14.64 



File Package 

RC call recompile aft~r prettydef, or brecompile, if there 
are any block declarations specified in fileCOMS. 

C calls tcompl after prcttydcf, or bcompl, if there are any 
block declarations specified in fileCOMS. 

C LI S P I F Y perform prettydef. with c1ispifyprettyflg = T, causing 
clispify (see Section 23) to bc called on each function 
defined as an expr before it is prettyprinted.163 

NOCLISP performs prettydef with prettytranflg=T, causing the 
CLlSP translations to be printed, if any, in place of 
the corresponding CLlSP expressions, e.g., iterative 

-statements, record expressions, printout forms, etc .. 

LIST calls listfiles on file. 

REMAKE 'remakes' file, i.e. copies the prettyprinted definitions 
of those functions that have not changed from an 
earlier version of the symbolic file, and only 
prettyprints those functions that have changed. See 
discussion, page 14.77. 

NEW does not remake file.164 

Any other option is spelling corrected using the list makefileoptions. + 
If spelling correction fails, make file generates an error. + 

If a remake is not being performed,165 make file checks the state of file to make sure that the entire 
symbolic file was actually loaded. If file was loaded as a compiled file, make file prints the message 
"CAN'T DUMP; ONLY THE COMPILED FILE HAS BEEN LOADED." Similarly, if only some of 
the symbolics were load via loadfns or loadfrom, make file prints "CAN'T DUMP; ONLY SOME OF 
ITS SYMBOLICS HAVE BEEN LOADED." In both cases, makefile will then ask the user if it 
should dump anyway, and if the user declines, makefile does not call prettydef, but simply returns 
(file NOT DUMP ED) as its value. 

If F, ST, STF, or S is the next item on options following C or RC, given to the compiler as the 
answer to the compiler's question LISTING?, e.g., makefile[FOO; (C F LIST)] will dump FOO, 
then tcompl or bcompl it specifying that functions are not to be redefined, and finally list the file. 

The user can indicate that file must be block compiled together with other files as a unit by 

163 Alternatively, if file has the property FILETYPE with value CLISP or a list containing CLISP, prettydef is called ... 
with c1ispifyprettyOg reset to CHANGES, which will cause c1ispify to be called on all functions marked as having been 
changed. For more details, see discussion of c1ispifyprettyOg in Section 23. Note that if filenas property FILETYPE 
with value CLISP, the compiler will know to dwim!fy its functions before compiling them, as described in Sections 
u~n . 

164 If makefileremakeOg is T (its initial setting), the default for all calls to make file is to remake. The NEW option is 
provided in order to override this default 

165 i.e., makefileremakeOg is NIL. or the option NPW was specified. . 

14.65 



Section 14: Input/Output 

putting a list of those files on the property list of each file under the property FILEGROUP. For 
example, EDIT and WED IT are one such group, DWIM, WTFIX, CLISP, and DWIMIFY another. 
If file has a FILEGROUP property, the compiler will not be called until all files on this property 
have been dumped that need to be. 

+ makefile operates by rebinding prcttyilg, prettytranflg, c1ispifyprettyflg, and then under a resetlst, 
+ evaluating each expression on makefi1cforms (under errorset protection), and then calling prettydef. 
+ 111e FAST, CLISPIFY, NOCLISP are all implemented via expressions on makefileforms, e.g. 
+ (AND (MEMB 'FAST OPTIONS) (SETQ PRETTYFLG NIL». The user can add expressions to 
+ makefileforms to implement his own options. 

makefifes[options;files] 

listfiles[files] 

compilefiles[files] 

cleanup[files] 

For each file on files that has been changed, perfonns 
makefi1c[file;options); If files = NIL, file1st is used, e.g., 
makefiles[LIST] will make and list all files that have been changed. 
In this case, if any typed definitions' for any items have . been 
defined or changed and they are not contained in one of the files 
on filclst, make files calls add to files? to allow the user to specify 
where these go. The value of makefiles is a list of all files that are 
made. 

nlambda, nospread function. Uses the function tenex (Section 21) 
to tell the operatin~ system to list each file in files (if NI L , 
notlisledfiles is used). 66 

Each file listed is removed fromnotlistedfiles if the listing is 
completed, e.g., if the user control-COs to stop the listing and 
QUITs. For each file not found, listfiles prints the message 
"file-name NOT FOUND" and proceeds to the next file on files. 

nlambda, nospread function. Executes the RC option of make file 
for each member of files. (If files = NIL, notcompiledfiles is 
used.)167 -

nlambda, nospread. Dumps, lists, and recompiles (or brecompiles) 
any and all files on files requiring the corresponding operation. If 
files = NIL, tilclst is used. Value is NIL. 16 

166 listfiles calls the function listfilesl on each file to be listed. Iistfilesl calls tenex with concat[L1ST$;fiIename;!istfilestr), 
where listfilestr is initially" ;]". The user can reset listfilestr to specify subcommands for the list command. or advise 
or redefine listfilesl for more specialized applications. 

167 If car of files is a list. it is interpreted as the options argmument to makefiles. This feature can be used to supply an 
answer to the compiler's L1STlNG7 question. e.g .. compilcfiles[ (STF)] will compile each file on notcompiledfiles 
so that the functions are redefined without the exprs being saved. 

168 The user can affect the operation of cleanup by resetting the variable c1eanupoptions, initially (LIST RC). For 
example. if cje:lIlupQll.ti(!!lJi is (RC F). no listing will be perfomled. and no functions will be redefined as the result 
of compiling. Alternatively. if car of files is a list. it will be interpreted as the list of options regardless of the value 
of c1eanupoptions. 

14.66 



files?[] 

whercis[name;type;files) 

File Package 

Prints on tenninal the names of those files that have been modified 
but not dumped, dumped but not listed, dumped but not compiled, 
plus the names of those functions and other prettytypes (if any) 
that are not contained in any file. If there are any, files? then calls 
addtofilcs? to allow the user to specify where these go. 

~ is a file package type. whereis sweeps through all the files on 
files and returns a list of all files containing name as a!m£. whereis 
knows about and expands all file package commands and 
filepkgmacros. !YQ£=NIL defaults to FNS. If files is not a list, the 
value of filelst is used.169• 

* 
* 

markaschanged[name;type;newflg) + 
marks ~ of type ~ as being changed. newflg is T for calls to + 
markaschanged corresponding to the creation of name, e.g. from + 
define, as opposed to calls corresponding to a change to name, e.g. + 
from the editor. Value of markaschanged is name. markaschanged + 
is undoable. + 

unmarkaschanged[name:type) unmarks (undoably) name of type ~ as being changed.170 Value + 
is name if name was marked as changed and is now unmarked, + 
NIL otherwise. + 

REMEMBER ¢ 

filepkgchanges[type;lst] 

addtofiles?[ -] 

programmer assistant command (Section 22). Marks· the events + 
indicated by ¢ as changed objects of type EXPRESSIONS. . + 

lambda nospread. IfIst is not specified (as opposed to being NIL), + 
value is a list of those objects of type ~ that have been marked + 
as changed but not yet associated with their corresponding files. If + 
1st is specified, filepkgchanges sets the corresponding list + 
filepkgchanges[] returns a list of all objects marked as changed as a + 
list of elements of the fonn (typename . changedobjects). + 

called from makefiles, cleanup, and files? when, after update files has 
finished operating, some objects remain that have been marked as 
changed for which no file containing them could be found. 
addtofiles? asks the user if he wants to say where the various 
changed items that do not belong to any file should be placed. If 

169 If the whereis package (Section 24) has been loaded. wherej§ is redefined so that files = T means use the whereis data + 
base. i.e. whereis will find where! is even if the file has not been loaded or noticed. fites:;::NIL always means"use + 
filelst + 

170 Provided that l:!pdateliles has not been called since name was marked. thereby moving name to the property list of + 
the filc(s) that contain it See discussion page 14.63. + 

14.67 



+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 171 

+ 
+ 

Section 14: Input/Output 

user answers N(o), returns NIL without taking any action. If the 
user answers ], this is taken to be an answer to each question that 
would be asked, and interpreted as described in (4) below, i.e. all 
changed items are marked as dummy items by adding them to 
NILCOMS. Otherwise, addtofiles? maps through all the changedlst's, 
prints each element, and accepts one of the following responses: 

(1) a file name or name of a list, e.g., FOO or FOOFNS.l71 Adds 
the item to the corresponding file or list, using addtofile. 

(2) line-feed - means same as the user's previous response 

(3) space or carriage return - take no action 

(4) ] - item is marked as a dummy item by adding it to 
NILCOMS, i.e., tell file package not to worry about what to 
do with this item. 

(5) [ - the "definition" of the items in question are prettyprinted 
to the terminal, and then the user is asked again about their 
disposition. 

(6) ( - addtofiles? prompts with "LISTNAME: (", the user types 
in the name of a list, i.e. a variable whose value is a list, 
terminated by a ).172 item will then only be added to (under) 
a command in which the named list appears as a filevar. If 
none are found, a message is printed, and the user is asked 
again. For example, the user defines a new function F003, 
and when asked where it goes, types (FOOFNS). If the 
command (FNS ... FOOFNS) is found, F003 will be added 
to the value of FOOFNS. If instead the user types 
( FOOCOMS), and the command (COMS ... FOOCOMS) is 
found, then F003 will be added to a command for dumping 
functions that is contained in foocoms. 

(6) @ - addtofiles? prompts with "NEAR: (", the user types in 
the name of an object, and item is then inserted in a 
command for dumping objects (of its type) that contains the 
indicated name. item is inserted immediately after the 
indicated name. 

If the item is not the name of a file on filelst. the user will be asked whether it is a new file. If he says no. then 
addtofiles? will check whether the item is the name of a list, i.e. whether its value is alisl If not, the user wiD be 
asked whether it is a new list 

172 If the named list is not also the name of a file. the user can Simply type it in without parenthesis as described under 
(1) above. 

14.68 



File Package 

FUNCTIONS FOR MANIPULATING TYPED DEFINITIONS + 

Note: all functions described below adhere to the following conventions: + 

(1) if a list argument is called for, e.g. files meaning a list of files, and an atom is + 
given, the function will operate as though list of that atom was given; + 

(2) !YQ£ is a file package type. The singular form of the name of a type is also + 
recognized, e.g. !YQ£=VAR is equivalent to !m£=VARS. !YQ£=NIL is equivalent to + 
!YQ£= FNS; + 

(3) files = NIL is equivalent to files = filelst; + 

(4) source can be one of: + 

NIL means the definition currently "in effect if there is one, the saved + 
definition, or the definition from a file determined bywhereisP3 + 

o means the definition currently in effect. + 

T means the "saved" definition, as stored by savedef. + 

FILE means the definition contained on the (first) file determined by + 
whcreis. + 

a file name means the definition contained on the indicated file. + 

All functions which make destructive .changes are undoable. + 

Note: the operation of most of the functions described below can be changed or extended by + 
modifying the appropriate properties for the corresponding file package type using the function + 
filepkgtype, described on page 14.12. + 

getdeflname;type;source;options)· + 
Returns the s-expression definition of name, of type ~, from + 
sourceP4 ~ is a file package type, e.g. FNS, VARS, RECORDS. + 
For example, for !YQ£= FNS, a lambda expression is returned,115 for + 
1YQ2=VARS, the value of name is returned, etc. getdef also + 
recognizes ~= FIELDS, in which case the list of record + 
declarations which contain name is returned, and ~ = FI L E S, in + 

173 called with files = T. so that if the whereis package (Section 24) is loaded, this will use the whereis data base to find + 
the file containing the definition. + 

174 copying the definition unless options is or contains NOCOPY. + 

175 The definition will be dwimified if it is deemed likely to contain CLISP unless .!lptions is or contains NODWIM. + 

14.69 



+ 
+ 
+ 

+ 
+ 

+ 
+ 

+ putdef{name;type;definition] 
+ 
+ 

+ copydef{old;new;type;source] 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ deldef{name;type] 

+ showdef{name;type;file] 
+ 
+ 

Section 14: Input/Olltput 

which case the command list for the file is returned.176 For all 
other types, getdef returns the s-expression which would be 
prettyprinted when dumping name as ~. 

source is as described above. When source is a file name, getdef 
actually obtains the definition from the file. 

getdef causes an error if an appropriate definition cannot be found, 
unless options is or contains NOERROR. 

defines name of type ~ with definition. For ~= FNS, does a 
define; for ~=VARS, does a saveset; for ~=FILES, 
establishes the command list, and notices name, etc. 

defines new to have a copy of the definition of old, i.e. essentially 
performs putdcf{new;subst[new;old;getdef{old;type;source]];type]. 
For ~ = FILES, copydcf not only establishes the commands and 
notices new, as describe above, but also calls make file to actually 
dump the file new. E.g. COPYDEF (PDQ RXT FILE) sets up 
RXTCOMS to be a copy of PDQCOMS, changes things like 
(VARS '" PDQVARS) to be (VARS '" RXTVARS) in RXTCOMS, 
and performs a makefile on RX T such that the appropriate 
definitions get copied from PDQ. 

Removcs the definition of name as a ~ that is currently in effect 

prettyprints the definition of name as a .!Yru? to file, i.e. shows the 
user how name would be written to a file. used by addtofiles? (page 
14.67). 

+ editdcf{name;type;source;coms]edits the definition of name with type ~, i.e. esscntially performs 
+ putdef{name;type;editc[getdef{;namc;type;source];coms]]. 

+ savedef{name;type;definition] 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 176 i.e. gClatomval[filecoms[nameD. 

Makes definition (or if definition = NIL, the definition of name as a 
~ that is currently in effect) bc the "saved" definition for name 
as a~. If ~=FNS (or ~=NIL), this consists of storing 
dcfinition on namc's propcrty list undcr property EXPR. CODE. or 
SUBR. For ~=VARS, dcfinition is stored as thc value of the 
VALUE property. For othcr types, definition is stored in an internal 
data structure, from where it can be retrieved by getdef or 
unsavcdef. 

14.70 



unsavedet{ name; type] 

loaddef{name;type;source] 

File Package 

Makes the "saved" definition of name as a .!m£ be the definition + 
currently in effect. As described in Section 8, when !YJ2£ = NIL, + 
unsavedef will unsave the EXPR property if any, else CODE or + 
SUBR. unsavedef also recognizes ~= EXPR, CODE, or SUBR, + 
meaning to unsave the corresponding definition only. + 

equivalent to putdet{name;type;getdet{name;type;source]]. 10addef is + 
essentially a generalization of loadfns, e.g. it enables loading a single + 
record declaration from a file. Note that loaddet{fn] will give fn an + 
expr definition, either obtained from its property list or a file, + 
unless it already has one. + 

changecallers[old;new;types;files;method] + 
Finds all of the places where bId is used as any of the types in + 
~ and changes those places to use new. For example, + 
changecallers[NLSETQ; ERSETQ] will change all calls to nlsetg to be + 
calls to ersetg. Also changes occurrences of old to new inside the + 
corns of any file, inside record declarations. properties, etc. + 

changecallers attempts to determine if old might be used as more + 
than one type; e.g. if it is both a function and a record field. If so, + 
rather than performing the transformation of old- > new + 
automatically, the user is allowed to edit all of the places where old + 
occu~. + 

Currently there are two different methods for determining which + 
functions are to be examined. If method = EDITCALLERS, + 
editcallers (Section 9) is used to search files. If + 
method=MASTERSCOPE, then the Masterscope data base is used + 
insteadP7 method = NIL defaults to the value of + 
defaultrenamemethod (initially EDITCALLERS). + 

rename[old;new;types;files;method] + 
First performs copydet{old;new;type] for aU ~ inside ~. It + 
then calls changecallers to change all occurrences of old to new, and + 
then "deletes" old with de1def. For example, if the user has a + 
function fool which he now wishes to call fie, he simply performs + 
rename[F001; FIE]. and fie will be given fool's definition, and all + 
places that fool are called will be changed to call fie instead. + 

compare[namel;name2;type;sourcel;source2] + 
Compares definiton of name 1 with that of name2. i.e. performs + 
comparelists[getdet{namel;type;source);getdcflname2;type;source)) + 
(sec Section 5). + 

177 The latter method is more efficient if a Masterscope data base already exists, otherwise the functions on files will 
have to be analyzed. 

14.71 



Section 14: I1lput/Output 

+ comp.aredefs[name;type;sources1 
+ Calls comparelists on all pairs of definitions of name as a ~ 
+ obtained from the various sources. 

+ hasdetIname;type] returns T if name· is the name of something of type ~. 

+ typesotIname;-;-] Returns a list of the types for which ~ has a definition. 

+ DEFINING NEW FILE PACKAGE TYPES 

+ The functions in the previous discussion provide type-independent ways of manipulating typed 
+ definitions, e.g. getdetIname;type] will obtain the definition of name regardless of which particular 
+ file package type is specified by ~. This section describes how these operations are specified for 
+ new file package types.l18 

+ filepkgtype[type;proPl ; vall ; ... ;propp ;valul 
+ lambda, nospread function for defining new file package types, or 
+ changing attributes of existing file package types. Jmm is one of: 

+ 
+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 178 

+ 179 

+ 

+ 180 

+ 
+ 

GETDEF 

PUTDEF 

DElDEF 

NEWCOM 

val is a function of two arguments, name and ~,l19 which returns 
the current definition of name as a type ~.l Used by getdef. 

val is a function of three arguments, ~, ~, and definition 
which stores definition. Used by putdef. 

val is a function of two arguments, name, and ~, which removes 
the definition of of name as a !Ylli; that is currently in effect Used 
by deldef. 

val is a function of four arguments, name, ~, listnamc, and file. 
Specifies how to make a new (instance of a) file package command 
to dump name, an object of type !Ylli;. Used by addtofile and 
showdef. 'Ine function should return the new command. listname is 
non-NIL, means the user specified listname as the filevar in his 
interaction with addtofiles? If no NEWCOM is specified, the default 
is to use defaultmakenewcom. defaultmakenewcom will construct 
and return a command of the form (type * filevar), where filevar is 
listname if listname is non-NIL, otherwise filevar is the value of 

or respecified for existing file package types. 

The type argument is provided here and for the other properties so that the user may have the same function for 
more. than one type. 

If there is no GETOEF property. a file package command for dumping name is created (by makenewcom). This 
command is then used to write the definition of .!I~I!!!; as a type ~ onto the file FIlEPKG.SCRATCH, and this 
S-expression is then read back in and returned as the current definition. 

14.72 



File Package 

filccoms[file;type]. In either case, filevar will be set to list[name]. + 
defaultmakenewcom tan be advised or redefined by the user. + 

WHENCHANGED val is a list of functions to be applied to name, !.YQg, and newflg + 
(see discussion of markaschanged, page 14.67) when name, an + 
instance of type ~, is changed or defined. Used for various + 
applications, e.g. when an object of type I. S. OPRS changes, it is + 
necessary to clear the corresponding translatons from clisparray.181 + 

WHENFILED val is a list of functions to be applied to ~, ~, and file when + 
name, an instance of t.ype ~, is added to file. + 

DESCRIPTION val is a string which describes what instances of this type are, e.g. + 
for type RECORDS, description is "record declarations". + 

DEFINING NEW FILE PACKAGE COMMANDS + 
This section describes how the user can specify the various attributes of a file package command 
for a new command.182 

+ 
+ 

filepkgcom[commandname;proPI ;vall ; ... ;proPn ;vaInl 
lambda, nosprcad fUnction for defining new file package commands, 
or changing attributes of existing file package commands. .P!QP is 
one of: 

+ 
+ 
+ 
+ 

MACRO 

ADD 

defines how to dump the file package command commandname. + 
Used by makefile. val is a pair (args . corns). The "arguments" to + 
commandname are substituted for args throughout corns, and the + 
result treated as a list of file package commands.18) For example, + 
following filepkgcom[FOO; MACRO; ( (X Y) . corns)], then the file + 
package command (F 00 A B) will cause A to be substituted for X + 
and B for Y throughout corns, and then corns treated as a list of + 
commands184 -- -- + 

Specifies how (if possible) to add an instance of an object of a + 
particular type to a given file package command. Used by addtofile. + 
val is fn, a function of three arguments, com, a file package + 
command car of which is ~ to commandname, name, a typed + 

181 Note: the WHENCHANGED function is called before the object is marked as changed, so that it can, in fact, decide + 
that the object is not to be marked as changed, and retfrom[MARKASCHANGED). + 

182 or respecify for an existing command + 

183 filevars are evaluated before substitution, i.e. If the atom • follows Mm!! in the command, caddr of the command is + 
evaluated substituting in coms. + 

184 The substitution is carried out by subpair (Section 6), so that the "argument list" for the macro can also be atomic. 
For example, if (X . corns) was used instead of « X Y) . corns), then the command (FOO A B) would cause 
(A B) to be substituted for X throughout corns. 

14.73 



+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

DELETE 

CONTAIN 

Section 14: Input/Output 

object. and !Yill:. its type.18S fn should return T if it (undoably) 
adds name to com. NIL if not. If no ADD property is specified. then 
the default is (1) if car[com]=~ and cadr[comJ=*, and 
caddr[com] is a filevar (Le. a literal atom). add name to the value of 
the filevar. or (2) if car[com]=!.m£ andcadr[com] is not *, add 
name to cdr[com]. 

Specifies how (if possible) to delete an instance of an object of a 
particular type from a given file package command. Used by 
delfromfile. val is fn, a function of three arguments, com, ~, 
and !m£,same as for ADD., fn should return T if it (undoably) 
deletes name from com,186 NIL if not. If no 0 EL E T E property is 
specified, then the default is (1) if car[com] = tyPe and cadr[com)::: *, 
and caddr[com) is a filevar (i.e. a literal atom), and name is 
contained in the value of the filevar, then remove name from the 
filevar, or (2) if car[com)=~ and cadr[com] is not*, and name is 
contained in cdr[com), then remove name from cdr[com]. 

Specifies whether an instance of an object of a given type is 
contained in a given file package command. Used by whereis and 
infilecoms? val is a. function of three arguments. com, a file 
package command car of which is ~ to commandname. name. ·and 
!m£. The interpretation of name is as follows: if name is NIL, fn 
should return· a list of elements of type !Yill: contained in com. If 
name is T, fn should return T if there are any elements of type !m 
in com. If name is an atom other than T or NIL, return T if name 
of type type is contained in£Q!!!. Finally, if ~ is a list,retUma 
list of those elements of type ~ contained in com that are also 
contained in .!ill!lli:.187 If the CONTAIN property is not provided, the 
command is simply expanded according to its MACRO definition, 
and each command on the resulting command list is then 

185 Actually. the function is given a fourth argument, MY. which ifnon-NIL, means the function should tJy to add the 
item after near. See (6) in discussion of addtofiles? page 14.67. 

186 If the function returns the value of ALL. it means that the command is now "empty", and can be deleted entirely 
from the command list 

+ 187 

+ 
Note that it is sufficient for the CONTAIN functioh to simply return the list of items of type ~ in command 00m, .. 

i.e. it can in fact ignore the ~ argument The name argument is supplied mainly for those situations where 
producing the entire list of items involves Significantly more computation or creates more storage than simply 
determining whether a particular item (or any item) of type ~ is contained·in the command 

+ 
+ 

14.74 

------.--------~------------- ----- ----------
;.-~,_~1S__'il__"'''_'iP",:...~{~',,;h'''_ ... >,, ___ ,~<__'_ , 



File Package 

interrogated.lS8 189 + 

FUNCTIONS FOR MANIPULATING FILE COMMAND LISTS + 
infilecoms?[name;coms;type;-] corns is a list of file package commands, or a variable whose value + 

is a list of file package commands. ~ is a file package type. If + 
name = NIL, infilecoms? returns a list of all elements of type + 
type.19O If name = T. infilecoms? returns T if there are any + 
elements of type ~.191 Otherwise, infilecoms? returns T if name + 
is "contained" in coms:192 + 

addtofile[ name; file; type] adds name of type ~ to the file package commands for file. Uses 
addtocoms and makenewcom. Value is file. addtofile is undoable. 

delfromfiles[name; files; type] deletes all instances of ~ of type ~ from the file package + 
commands for each of the files on files. If files is a non-NIL atom, + 
list[files] is used. files = NIL defaults to filelst, ie. delfromfiles[fn] + 

--will delete the function fn from all files that it appear on the user's + 
current working environment.193 Value is a list of files from which + 
name was actually removed. Uses delfromcoms. delfromfiles is + 
undoable. + 

addtocoms[coms;name;type;-;-] adds name as a ~ to corns, a list of file package commands or a + 

188 

189 

190 

191 

192 

193 

Note that if commandname is a file package command that is used frequently. its expansion by the various parts of 
the system that need to interrogate files can result in a large number of ~ and garbage collections. By informing 
the file package as to what this command actually does and does not produce via the CONTAIN property, this 
expansion is avoided. For example, suppose the user has a file package command called GRAMMARS which dumps 
various property lists but no functions. Thus, the file package could ignore this command when seeking information 
about FNS, 

If a CONTAIN property is specified and the corresponding function application returns NIL and car(com)=~, then 
the operation indicated by ~ is performed (1) on the value of caddr(com), if cadr[com) =., otherwise (2) on 
cdr(com). In other words, by specifying a CONTAIN property that returns NIL, e.g. the function nill,the user 
specifies that a file package command of name FOO produces objects of file package type FOO and only objects of 
type FOO. 

e.g. jjlefnslst and bcompl and brecompile use this option. 

makefile uses this option to determine whether the file contains any FNS. and therefore should be compiled, and if 
so, whether it contains any BLOCKS, to determine whether to call bcompllbrecompile or tcompllrecompile. 

whereis uses infilecoms7 in this way. 

Deleting a function will also remove the function from any BLOCKS declarations in the fileCOMS. 

14.75 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 



+ 
+ 
+ 

Section 14: Input/Output 

variable whose value is a list of file package commands.194 Value is 
NIL if addtocoms was unable to find a command appropriate for 
adding nam~ to.195 addtocoms is undoable. 

+ dclfromcoms[coms; name: type] deletes name as a !Yill: from corns. Value is NIL if dc1fromcoms 
+ was unable to modify corns to delete name.196 delfromcoms is 
+ undoable. 

+ makenewcom[name;type] 
+ 

value is a file package command for dumping name of type ~. 
Uses the procedure described in the discussion of NEWCOM, page 
14.72. + 

+ moveitem[name; type; from file; tofile] 
+ Moves the definition of name as a ~ from fromfile to to file by 
+ modifying the file commands in the appropriate way (with 
+ delfromfile and addtofile). 

* 
* 
* 
* 

+ 

+ 
+ 

+ 
+ 
+ 
+ 

filecomslst[file;type;-] 

filefnslst[file) 

filecoms[file;type) 

smashfilecoms[ file] 

returns a list of items of type ~ in file, e.g. 
filecomslst[FOO; MACROS], filecomslst[FOO; RECORDS],- etc.197 
filecomslst knows about expanding user defined file package 
commands. 

same as filecomslst[file; FNS). 

same aspack*[file;or[type;COMS]]. e.g. filecoms[FOO] is the atom 
FOOCOMS, not the value of FOOCOMS. 

maps down filecomslst[file;FILEVARS] and sets to NOBIND all 
filevars, i.e. any variable used in a command of the form 
(command * variable). Also sets filecoms[file] to NOBIND. Value is 
file. 

+ 194 

+ 
Note that coms does not have to correspond to a file command list. i.e. the value of fileCOMS for some file. For 
example. coms can be the list of commands generated as a result of expanding a user defined file package command. 
Note also that the exact algorithm for adding commands depends the particular command itself. See discussion of 
the ADD property. in description of filepkgcom. page 14.73. 

+ 
+ 

195 Note: addlocoms will not attempt to add an item to any command which is inside of a DECLARE: unless the user 
specified a specific name via the LISTNAME or NEAR option of !!...ddtofiles? 

196 See previous footnote. 

+ 197 

+ 
!YP.£ can also be the name of a file package command. e.g. filecomslst[fiIe;BLOCKS} will rcturn the list of all BLOCKS 
declaration in file. 

14.76 



File Package 

REMAKING A SYMBOLIC FILE 

Most of the time that a symbolic file is written using makefile, only some, usually a few, of the 
functions that it contains have been changed since the last time the file was written. A considerable 
savings in time is afforded by copying the prettprinted definitions of those functions that have not 
changed from an earlier version of the symbolic file, and prettyprinting only those functions that 
have been changed.198 makefile will o~erate in this way, and remake the symbolic file, when 
makefileremakeflg = T (its initial value).! 9 When makefile is remaking a symbolic file, the user can 
either explicitly indicate those functions which arc to be prettyprinted via the third argument to 
make file, rcprintfns, and indicate the file to be used for copying the rest of the function definitions 
from via the fourth argument to makefile, sourcefile .. The more typical useage however is to default 
both of these arguments to NIL. In this casc, reprintfns will be set to those functions that have 
been changed since the last version of the file was written. For source file, make file obtains the full 
name of the most recent version of the file (that it knows about) from the FILEOATES property, 
and checks to make sure that the file still exists, and has the same file date as that stored on the 
FILEOATES property. If it docs, make file uses that file as·sourcefile.200 In the case where the 
most recent version of the file cannot be found, make file will attempt to remake using the original 
version of the file, i.e., the one first loaded, and specifying as reprintfns the union of all changes 
that have been made since the file was first loaded, which it obtains from the FILECHANGES 
property. If both of these fail, make file prints the message "CAN'T FINO EITHER THE 
PREVIOUS VERSION OR THE ORIGINAL VERSION OF file, SO IT WILL HAVE TO BE 
WRITTEN ANEW", and does not remake the file, i.e. will prettyprint all of the functions. 

When a remake is specified, makefile also checks the state of the file (cdar of the FILE property) 
to see how the file was originally loaded (page 14.63). If the file was originally loaded as a 
compiled file, makefile will automatically call1oadvars to obtain those DECLARE: expressions that 
are contained on the symbolic file, but not the compiled file, and hence have not been loaded. If 
the file was loaded by loadfns (but not loadfrom), then loadvars will automatically be called to 
obtain any non-DEFINEQ expressions.201 

198 

199 

200 

201 

Remaking a symbolic file does not depend on the earlier version having a file map, although it is considerably faster 
if one does exist. In the case of a remake where no file map is available. make file scans the file looking for the 
corresponding definition whenever it is about to copy the definition to the new file. The scan utilizes skread (page 
14.16), and makefile does not begin scanning from the beginning of the file each time, but instead "walks through" 
the original file as it is writing the new file. Since the functions are for the most part in the same order. makefile 
never has to scan very far. However, make file also builds a map of the functions it has skipped over so that if the 
order of functions is reversed in the ne;v file. make file is able to back up and pick up a function previously skipped 
The net result is still a significant savings over (re)prettyprinting the entire file, although not as great a savings as 
occurs when a map is available. 

The user can override this default for particular files by specifying the NEW option in the call to make file (page 
14.64). Or, the user can set makefileremakefig to NIL and explicitly indicate those files which he wants to be remade 
via the REMAKE option. 

This procedure permits the user to load or load from a file in a different directory. and still be able to 
makefile-remake. 

If the file has never been loaded or dumped, e.g .. the user Simply set up the fileCOMS himself, then maltefite will 
never attempt to remake the file, regardless of tile setting of makefilcremakeflg. or whether tile REMAKE option was 
specified 

14.77 

~-~~---~ 

'=i::~".>~ 



* 
* 

Section 14: Input/Output 

PRETTYDEF FUNCTIONS 

prettydef!prttyfns;prttyfile;prltycoms;reprintfns;sourcefile;changes] 
Writes a symbolic file in prettyprint format for loading. prettydef 
uses filerdtbl as its rea~table. The value of p[eUydef is the name of 
the symbolic file that . was created. pretlydef operates under a 
resetlst (see Section 5). If an error occurs, or a control-D is typed, 
all files that preltydef has opened will be closed, the (partially 
complete) file being written will be deleted, and any undoable 
operations executed will be undone.202 

202 

203 

204 

205 

prttyfns is an optionallist of function names.203 

prttyfile is the name of the file on which the output is to be 
written. If prttyfile= NIL, the primary output file is used. If 
prttyfile is atomic the file is opened ·if not already open, and it 
becomes the primary output file. prttyfile is closed at end of 
prettydef, and the primary output file is restored. Finally. if 
prttyfile is a list, car of prttyfile is assumed to be the file name, and 
is opened if not already open. In this case, the file is left open at 
end of prettydef. 

prttycoms is a list of file package commands interpreted as 
described previously. If prttycoms is atomic, its top level value is 
used and an £lli!gg is written which will set that atom to the list of 
commands when the file is subsequently loaded. A prettycomprint 
expression (see below) will also be written which informs the user 
of the named atom or list of commands when the file is 
subsequently loaded.204 

reprintfns and sourcefile are for use in conjunction with remaking a 
file (see page 14.77). reprintfns can be a list of functions to be 
prettyprinted, or EXPRS, meaning prettyprint all functions with 
EX P R definitions, or ALL meaning prcttYYcrint all functions either 
defined as exprs, or with EXPR properties. 05 sourcefile is the name 
of the file from which to copy the definitions for those functions 
that are not going to be prettyprinted, i.e., those not specified by 
reprintfns. sourcefile = T means use most recent version (Le., 

Since prettydef operates under a resetlst. any resetsaves executed in the file package commands will also be 
protected. i.e.. restored. For example, if one of the file package commands executes a (RESETSAVE 
(lINELENGTH 100». the Iinelenm!! will atomatically be restored 

rultW!l! is an anachronism from when prettY!k[ did not take as its third argument a list of file package commands. It 
is equivalent to including (FNS .. prttyfns) in the file package commands. and is rarely used now. 

In addition. if any of the functions in the file are nlambdas. preuy~<rt" will automatically print a DECLARE: 
expression suitable for informing the compiler about these functions. in case the user recompiles the file without 
having first loaded the nlambda functions. For more discussion, see Section 18. 

Note that doing a remake with reprir!!f.n~=NIL makes sense if there have been changes in the file, but not to any of 
the functions. e.g .. changes to }lars or property lists. . 

14.78 



printfns[x;-] 

printdate[file;changes] 

filecreated[x] 

prettyheader 

filedate[file] 

prettycomprint[x] 

File Package 

highest number) of prttyfile, the second argument to prettydef. If 
sourcefile cannot be found, prettydef prints the message "f i 1 e 
NOT FOUND, SO IT WILL BE WRITTEN ANEW", and proceeds 
as it docs when reprintfns and sourcefile are both NIL. 

! is a list of functions. printfns prints defineg and prettyprints the 
functions to primary output file using primary read table. Used by 
prettydef, i.e., command (FNS '" FOO) is equivalent to command 
(E (PRINTFNS FOO». 

prints the filecreated expression at beginning of prettydef files. 
changes is for use by the file package. 

Nlambda function. Prints a message (using lispxprint) followed by 
the time and date the file was made, which is car[x). The message 
is the value of prettyheader, initially "FI LE C R EA TED" . If 
prettyheader = NIL, nothing is printed. cdr[x] contains infonnation 

. about the file, e.g., full name, address of file map, list of changed 
items, etc. filecreated also stores the time and date the file was 
made on the property list of the file under the property 
FILEDATES and performs other initialization for the file package. 

value is message printed by filecreated. prettyheader is initially 
"FILE CREATED". If prettyheader=NIL, neither filecreated nor 
preltycomprint will print anything. Thus, settingprettyheader· to 
NIL will result in "silent loads". For example, prettyheader is reset 
to NIL during greeting (Section 22). 

returns· the file date of file, i.e. the date contained in the + 
FILECREATED expression. + 

prints! using lispxprint. unless value ofprettyheader=NIL. 

printdef{expr;lcft;def;tailflg;-] prints the expression expr in a pretty format on the primary output 
file using the primary readtable. left is the left hand margin 
(linclength determines the right hand margin.)206 

def = T means expr is a function definition, or a piece of one, i.e., 
pretlyprint is essentially prinldeijgeld[fn);N IL ; T). If def = NIL, no 
special action will be taken for LAMBDA's, PROG's, CONO's, 
commenls, CLlSP, cle. def is NIL when preltydef calls prettyprint 

206 print.licf initially perfonns (TAB LEFT T). which means to space to position left, unless already beyond this position. + 
in which case do nothing. + 

14.79 



• 

comment1[I;-] 

Section 14: Input/Output 

to print variables and property lists, and when printdef is called 
from the editor via the command PPV. 

tailflg = T means expr is a tail of a list, and is printed without 
parentheses. 

prints the comment 1. comment1 is a separate function to permit 
the user to intercept the printing of comments, perform some 
operation, e.g., reset the line length, print the comment himself, and 
then restore the line length. For example, this could be 
accomplished by adding (* LAMBDA (X) (RESETFORM 
(LIN£LENGTH 100) (COMMENTl X») to prettyprintmacros 
(page 14.49).207 

207 commentl is an entry to the ~mrrim block. However. it is called internally by I>~ so that advising or 
redefining it will not affect the action of prettYPrinl comment! should not be called when not under a printdef. 

14.80 



i'OI 

Index for Section 14 

ABBREVLST (prettyprint variable/parameter) 
addressable files .......•....................... 
ADDTOCOMS[COMS;NAME;TYPE] ......•................ 
ADDTOFILE[NAME; TYPE; FILE; NEAR] ................. . 
ADDTOFILES?[NOASKSTR] .......................... . 
ADDVARS (fil e pack.age command) ................. . 
ADVICE (file pack.age command) .....•............. 
ADVISE (file package command) .................. . 
AFTERSYSOUTFORMS (system variable/parameter) 
ALISTS (file package command) ................. .. 
ALL (use in file pack.age PROP command) ......... . 
ALLPROP (as value of DFNFLG) ...................• 
ALONE (type of read-macro) ...•....•............. 
ALWAYS (type of read~macro) ........ -............ . 
ARG NOT LITATOM (error message) ................ . 
ARRAY (file pack.age command) ...........•........ 
BAD FILE PACKAGE COMMAND (error message) ....... . 
BCOMPL[ FILES; CFI LE; NOBLOCKSFLG] ..•.............. 
BEFORESYSOUTFORMS (system variable/parame~er) 
bell (printed by system) ....................... . 
BKLINBUF[X] SUBR ..•.. ' ........•..............•... 
BKSYSBUF[X] SUBR ........•.................•..... 
block. declarations .............•................ 
BLOCKS (file pack.age command) ..•................ 
Boyer-Moore fast string searching algorithm 
break. characters ............................... . 
BREAKRESETFORMS (break. variable/parameter) 
BRECOMPILE[FILES;CFILE;FNS;NOBLOCKSFLG] ........ . 
BUILDMAPFLG (system variable/parameter) ........ . 
C (mak.efile option) ............................ . 
carr; age-return ................................ . 
CHANGECALLERS[OLD;NEW;TYPES;FILES;METHOD] ...... . 
CHANGECHAR (prettyprint variable/parameter) 
CHANGEFONT[FONTCLASS] ......•.................... 
CHARDELETE (syntax class) ........•...•...••..... 
CLEANUP[FILES] NL* ... " ........................ . 
CLEANUPOPTIONS (file pack.age variable/parameter) .• 
CLEARBUF[FILE;FLG] SUBR ...•..................... 
cl earing input buffer .......................... . 
clearing output buffer ........•................. 
CLISPFONT .•....•................................ 
CLISPIFY[X;L] ...........................•....... 
CLISPIFY (mak.efile option) .................. i ••• 
CLISPIFYPRETTYFLG (prettyprint variable/parameter) 
CLOSEALL[] ...................••.........•....... 
CLOSEF[FILE] .....•....•....•............•....... 
CLOSEF?[FILE] .................................•. 
closing and reopening files .••...•.............. 
CNTRLV (syntax class) .......................... . 
comment pointers ............................... . 
COMMENTFLG (prettyprint variable/parameter) 
COMMENT FONT .................................... . 
COMMENTLINELENGTH (prettyprint variable/parameter) 
comments (in listings) ......................... . 
COMMENT1[L; INBLOCKFLG] ......................... . 
COMPARE[NAME1;NAME2;TYPE;SOURCE1;SOURCE2] ...... . 

INDEX.14.1 

Page 
Numbers 

14.46,48 
14.7-9 
14.75 
14.75 
14.67 
14.56 
14.58 
14.58 
14.37,35 
14.56 
14.57 
14.38 
14.27 
14.27 
14.3 
14.59 
14.60 
14.65 
14.37 
14.19 
14.34 
14.34 
14.58 
14.58 
14.9 
14.26,13-15.33 
14.29 
14.65-66 
14.41 
14.65 
14.11-12,15-17,30 
14.71 
14.49 
14.62,50 
14.30-31 
14.66 
14.66 
14.34 
14.19.32 
14.19 
14.50 
14.65 
14.65 
14.49.65 
14.6,10 
14.5 
14.5 
14.9-11 
14.30 
14.45 
14.48,44-45 
14.50 
14.51 
14.44-46 
14.80 
14.71 



-------------
-,"~ -.'''-~-,-

COMPAREDEFS[NAME;TYPE;SOURCES] ...........•...... 
COMPILEFILES[FILES] NL· ........................ . 
COMS (file package command) ................... .. 
CONTROL[FLG;RDTBL] SUBR ........................ . 
control character echoing ...................... . 
control-A ........•.............................. 
control-D ...................................... . 
control-E ...................................... . 
control-F (in file name) ......•.............•... 
control-H . " ................................... . 
control-O ...................................•... 
control-P ......................•................ 
control-Q ...................................... . 
control-R ...•....•.............................. 
control-S ••........................ _ ............ . 
control-U (TOPS-20) .......•.....•............... 
control-V ........................•............... 
control-1!f ...................................... . 
control-X (edit command) ..•........•....•....... 
control-Y (as a read-macro) .................... . 
control-Z (edit command) ....................... . 
control-Z (TOPS-20) ........•.................... 
COPY (DECLARE: option) ..........•..•.........•.. 
COPVBYTES[SRCFIL;DSTFIL;START;END] ............. . 
COPYDEF[OLD;NEW;TVPE;SOURCE;OPTIONS] ........... . 
COPYREADTABLE[RDTBL] SUBR ...................... . 
COPYTERMTABLE[TTBL] SUBR •....................... 
COPVWHEN (DECLARE: option) ........•............. 
CTRLV (syntax class) .......................... .. 
DECLARE •........................................ 
DECLARETAGSLST (prettyprint variable/parameter) 
DECLARE: [X] Nl· ................................ . 
DECLARE: (file package command) ................ . 
OEFAULTFONT ..........•.•........................ 
DEFAULTMAKENEWCOM[NAME;TYPE;lISTNAME;FIlE] 
defining file package commands ................•. 
defining file package types .................... . 
DEFPRINT[TYPE; FN] .............................. . 
DELDEF[NAME; TYPE] .......•....................... 
OELETECHAR (syntax class) ..•.................... 
DELETECONTROL[TYPE;MESSAGE;TTBl] ............... . 
DElETELINE (syntax class) ...................... . 
DELFILE[FIlE] .................................. . 
DElFROMCOMS[COMS ;NAME ;TYPE] ...............•..... 
DElFROMFILES[NAME;TYPE;FILES] .................. . 
DFNFlG (system variable/parameter) ............. . 
DOBE[] ......................................... . 
OOCOPY (DECLARE: option) ....................... . 
DOEVAL@COMPILE (DECLARE: option) ............... . 
DOEVAL@LOAD {DECLARE: option} .................. . 
DONTCOPY (DECLARE: option) ..................... . 
OONTEVAl@COMPIlE (DECLARE: option) ............. . 
OONTEVAL@LOAD (DECLARE: option) ............•.... 
dumping circular lists ......................... . 
dumping unusual data structures .........•..•.... 
E (file package command) ....................... . 
E (in a floating point number) .............•.... 

INDEX.14.2 

Page 
Numbers 

14.72 
14.66 
14.57 
14.33,12,14,32 
14.30 
14.32,11-14,29-31,33 
14.34-35 
14.34 
14.2 
14.34 
14.19 
14.19,34 
14.32,11-14,29-31,33 
14.30 
14.34 
14.30 
14.11,13-14,30 
14.12 
14.36 
14.27,36 
14.36 
14.14,32 
14.59 
14.9 
14.70 
14.24 
14.29 
14.59 
14.30 
14.58 
14.59 
14.59 
14.68,59 
14.50 
14.72 
14.73-75 
14.72-73 
14.22 
14.70 
14.30,29 
14.31 
14.30,29 
14.5 
14.76 
14.75 
14.38 
14.18 
14.59 
14.59 
14.59 
14.59 
14.59 
14.59 
14.22 
14.22 
14.57 
14.12 



E (use in comments) ............................ . 
ECHOCONTROL[CHAR;MODE;TTBL] .................... . 
echoi ng ........................................ . 
ECHOMODE[FLG;TTBL] SUBR ., ...................... . 
EDITCHARACTERS (system variable/parameter) 
EDITDEF[NAME;TYPE;SOURCE;EDITCOMS] ............. . 
EDITRDTBL (system variable/parameter) .......... . 
END OF FILE (error message) .................... . 
ENDFILE[FILE] .................................. . 
end-of-line .................................... . 
EOL (syntax class) ............................. . 
ERRORTYPELST (system variable/parameter) ....... . 
ESC (type of read-macro) ..............•......... 
E'SCAPE[FLG] SUBR ...•............................ 
escape character ..................•............. 
ESCAPE (syntax class) .............•............. 
ESCQUOTE (type of read-macro) ......•............ 
EVAL@COMPILE (DECLARE: option) ................. . 
EVAL@COMPILEWHEN (DECLARE: option) ............. . 
EVAL@LOAD (DECLARE: option) .•................... 
EVAL@LOADWHEN (DECLARE: option) ................ . 
EXPR (property name) ........................... . 
fast symbol ic dump .•............................ 
FAST (mak.efile option) ........................ .. 
FC ............................................. . 
FFILEPOS[PATTERN;FILENAME;FILESTART;FILEEND;SKIP; 

TAIL; CASEARRAV] .•....................... 
file attributes ...........................•..... 
file command list .............................. . 
file maps ...........•.................•.......•. 
file names ..................................... . 
FILE NOT COMPATIBLE (error message) ............ . 
FILE NOT FOUND (error message) ................. . 
FILE NOT OPEN (error message) .................. . 
file pack.age ................................... . 
fi 1 e pack.age commands ...•....................... 
fil e package functions ....................... , .. 
fi 1 e pack.age types ...............•.............. 
file pointer ................................... . 
FILE SYSTEM RESOURCES EXCEEDED (error message) 
FILE WONT OPEN (error message) ................. . 
FILE WON'T OPEN (error message) ................ . 
FILE (property name) ........................... . 
FILECHANGES (property name) .................... . 
FILECOMS[FILE; X] .........................•...... 
fileCOMS (in file pack.age) ..................... . 
FILECOMSLST[FILE;TVPE;FLG] ..................... . 
FILECREATED[X] NL· ............................. . 
FILEDATE[FILE; CFLG] ............................ . 
FILEDATES (property name) ...................... . 
FILEFNSLST[FILE] ............................... . 
FILEGROUP (property name) ...................... . 
FILELINELENGTH (file package variable/parameter) .. 
FILELST (file package variable/parameter) ...... . 
FILEMAP DOES NOT AGREE WITH CONTENTS OF file-name 

(error message) ........................... . 
FILEMAP (property name) ........................ . 

INOEX.14.3 

Page 
Numbers 

14.49 
14.30 
14.30 
14.30 
14.36 
14.70 
14.23 
14.7,11 
14.42 
14.11,8,17 
14.30 
14.2 
14.27 
14.14,14 
14.11 
14.25 

. 14.27 
14.59 
14.59 
14.59 
14.59 
14.38 
14.49 
14.64 
14.57 

14.9 
14.4-5 
14.56 
14.41-42 
14.2,3,6-7 
14.36 
14.2-3,38 
14.2,5 
14.54-81 
14.56-61,73-75 
14.64-69,75-76 
14.55-56,61-62,72-73 
14.7-8 
14.3 
14.3 
14.1-2 
14.63-64 
14.63,64,77 
14.76 
14.39,54,63-65,76 
14.76 
14.79,60 
14.79 
14.63,64,77,79 
14.76 
14.66 
14.64,48 
14.63,66 

14.42 
14.41 



FILENAMEFIELO[FILENAME:FIELONAME] ........•...... 
FILEPKGCHANGES[N]· ............................ . 
FILEPKGCOM[COMNAME:PROP1;VAL1; ... ;PROPn;VALn] • 
FILEPKGCOMS{file package command) ............. . 
FILEPKGCOMSPLST (prettyprint vari~ble/parameter) .. 
FILEPKGFLG (file package variable/parameter) 
FILEPKGTYPE[TYPE;PROP1;VAL1; ... :PROPn;VALn] • 
FILEPKGTYPES (file package variable/parameter) 
FILEPKG.SCRATCH (file package variable/parameter). 
FILEPOS[PATTERN;FILENAME;FILESTART;FILEENO;SKIP: 

TAIL;CASEARRAY] ......................... . 
FILEROTBL (system variable/parameter) .......... . 
fi 1 es .......•.....•........................... ' .. 
FILES1[] ...........................•............ 
FILETYPE (property name) ..........•..•.......... 
filevar (in file package) ....•.......•.......... 
FIRST (type of read-macro) ..................... . 
FIRSTCOL (prettyprint variable/parameter) ...... . 
FIX format (in printnum package) .....•.......... 
FLOAT format (in printnum package) ............. . 
floating point numbers ...••.•..••••••.....•.•... 
FLTFMT[FORMATBITS] ..•..........•.....•.......... 
FNS (file package command) .......•.............. 
font package ..................•.............•... 
FONTCHANGEFLG (prettyprint variable/parameter) 
FONTDEFS (prettyprint variable/parameter) ...... . 
FONTDEFSVARS (prettyprint variable/parameter) 
FONTESCAPECHAR (prettyprint variable/parameter) 
FONTNAME[NAME] .........................•....•... 
FONTPROFILE (prettyprint variable/parameter) 
FONTSET[NAME] ........•..•..•....•...•...•..•.... 
format characters .•.....•....................... 
full file name .......•...............•...•.•.... 
FULLNAME[X; RECOG] •......•......•.•......••...... 
GETBRK[ROTBL] SUBR .........•..•.......•.•....... 
GETCOMMENT[X~DESTFL;DEF] •.•....•...••..•...••... 
GETCONTROL[TTBL] .•.•....•••.••••••.•••••••...••• 
GETDEF[NAME:TYPE;SOURCE;OPTIONS] .•.•.••••.....•. 
GETDELETECONTROL[TYPE: HBL] .....••.•.....•...... 
GETECHOMODE{TTBL] ....•.................•......•. 
GETEOFPTR[FILE] SUBR ..•...•.••..••...•.........• 
GETFILEINFO[FILE ;ATTRIB] ....................... . 

. GETFlLEMAP[FILE; FL] ........................... .. 
GETFILEPTR[FILE] SUBR .............•.....•......• 
GETRAISE[TTBL] ................•................. 
GETREADTABLE[RDTBL] SUBR .........•..........••.. 
GETSEPR[RDIBL] SUBR .....•..•....•....•.......... 
GETSYNTAX[CH;TABLE] .......••.................... 
GETTERMTABLE[TTBL] SUBR •....•................... 
GET· (edit command) .....•......•...••........... 
GLOBALVARS (file package command) .............. . 
HASOEF[NAME:TYPE;SPELLFLG] .....••..•••..•..•.•.. 
HCOPYALL[X] ......................•...••••....... 
HERALDSTRING (system variable/parameter) ....... . 
HORRIBLEVARS (file package command) ...........•. 
HPRINT[EXPR;FILE;UNCIRCULAR] .•.............•.••. 
HREAO[FIlE] ................... , ............•...• 

INDEX.14.4 

--- -----
4~. 

Page 
Numbers 

14.6 
14.67 
14.73 
14.58,60 
14.60 
14.54 
14.72 
14.61 
14.72 

14.8 
14.16,38,42,78 
14.1-11 
14.67,64 
14.64 
14.60,39,76 
14.27 
14.48 
14.20 
14.20 
14.12 
14.35 
14.56 
14.49-52 
14.51 
14.52 
14.52 
14.51 
14.52 
14.51 
14.52 
14.25 
14.2-3 
14.3 
14.14 
14.45 
14.33 
14.69 
14.31 
14.31 
14.8 
14.4 
14.41 
14.1 
14.32 
14.24 
14.14 
14.25 
14.29 
14.45 
14.59 
14.72 
14.23 
14.37 
14.69,23 
14.23 
14.23 



IFPROP (file package command) .................. . 
ILLEGAL ARG (error message) .................... . 
ILLEGAL READTABLE (error message) .............. . 
ILLEGAL TERMINAL TABLE (error message) ......... . 
IMMED (type of read-macro) ..................... . 
IMMEDIATE (type of read-macro) ................. . 
INFILE[FILE] SUBR .............................. . 
INFILECOMS?[NAME;TYPE;COMS;ONFILETYPE] ......... . 
INFILEP[FILE] SUBR ............................. . 
INFIX (type of read-macro) ..................... . 
INITRECORDS (file package command) ............. . 
INPUT[FILE] SUBR ............................... . 
input buffer ................................... . 
input functions ................................ . 
inputting numbers .............................. . 
input/output ................................... . 
INREADMACROP[] SUBR ............................ . 
IOFILE[FILE] SUBR ..•........•................... 
I.S.OPRS (file package command) ................ . 
JSYS .................•........•................. 
LAMBDAFONT ..................•....•.............. 
LASTC[FILE] SUBR ............................... . 
LCASELST (prettyprint variable/parameter) ..•.... 
LEFTBRACKET (syntax class) ..................... . 
LEFTPAREN (syntax class) ....................... . 
LINBUF[FLG] SUBR ................•........... , .. . 
1 ine buffer .................................... . 
LINEDELETE (syntax class) ...................... . 
LINELENGTH[N] SUBR ., ..........................•. 
1 ine-buffering .....................•............ 
line-feed ...................................... . 
line-feed (edit command) ..................•..... 
LISPXCOMS (prog. asst. variable/parameter) 
LISPXMACROS (f il e package command) ............. . 
LISPXREADFN (prog. asst. variable/parameter) 
LIST (makefil e opt ion) ......................... . 
LISTFILES[FILES] NL* ........................... . 
LISTFILESTR (file package variable/parameter) 
LISTFILES1[FILE] .........•...................... 
1 iteral atoms .................................. . 
LOAD[FILE;LDFLG;PRINTFLG] ...................... . 
LOADBLOCK[FN;FILE;LDFLG] ....................... . 
LOADCOMP[FILE;LDFLG] ........................... . 
LOADCOMP?[FILE; LDFLG] .......................... . 
LOADDEF[NAME;TYPE;SOURCE] ...................... . 
LOADEDFILELST (file package variable/parameter) 
LOADEFS[FNS;FILE] .............................. . 
LOADFNS[FNS;FILE;LDFLG;VARS] ................... . 
LOADFROM[FILE;FNS;LDFLG] ....................... . 
LOADOPTIONS (system variable/parameter) ........ . 
LOADVARS[VARS;FILE;LDFLG] ...................... . 
LOAD?[FILE;LDFLG;PRINTFLG] ..................... . 
LOCALVARS (file package command) ............... . 
lower case comments ............................ . 
lower case input ............................... . 
MACRO (type of read-macro) ..................... . 
MACROS (file package command) .................. . 

INDEX.14.5 

Page 
Numbers 

14.57,60 
14.3,30 
14.24,30 
14.29-30 
14.28 
14.28 
14.1,7 
14.75 
14.2,2 
14.26 
14.58 
14.1 
14.32,15,19,34 
14.11-16 
14.12 
14.1-81 
14.28 
i4.4,7-8 
14.58 
14.35 
14.50 
14.15 
14.46 
14.25 
14.25 
14.34 
14.32,34 
14.30-31 
14.35,48 
14.32,12,14-15.33 
14.11,17 
14.36 
14.58 
14.58 
14.15 
14.65 
14.66,64-65 
14.61,66 
14.66 
14.12 
14.38 
14.40 
14.40 
14.41 
14.71 
14.63 
14.40 
14.39 
14.40 
14.39 
14.40 
14.39 
14.59 
14.45-46 
14.32 
14.26 
14.59 

~---~~ ------------ -
__ ~, ,< ". _='4. __ _. ~ ,". '--~ i , '-



MAKHIlE.[FIlE.; OPTIONS; REPRINTFNS; SOURCEfllE] 
MAKHIlEFORM (file pacl<age variable/parameter) 
MAKHILEOPTIONS (file pacl<age variable/parameter). 
MAKEFIlEREMAKEFlG 

(file pacl<age variable/parameter) .•.....•.. 
MAKEFIlES[OPTIONS;FIlES] •......••....••.....•... 
MAKENEWCOM[NAME;TVPE;lISTNAME;FIlE] ............ . 
manipu1ati.ng file names .....•................... 
margins (for prettyprint) .....•....•....•....... 
MARKASCHANGED[NAME;TVPE;NEWFlG] •••..•.......•... 
MOVEITEM[TOFIlE;NAME;TVPE;FROMFIlE] ..•.......... 
NCHARS[X;FLG;RDTBl] SUBR ........•............... 
NEW (makefileoption) .......................... . 
N°IlCOMS (file package variable/parameter) ...... . 
NO FILE PACKAGE COMMAND FOR (error message) 
NO PROPERTY FOR (error message) .•....•..•...•... 
NO USERMACRO FOR (error message) ............... . 
HOSIND ..........•..................•.•..•..... '.' 
NOCLISP (makeffle option) ..................... .. 
NOESC (type .of read-macro) •••...........•..••••• 
NOESCQUOTE(type of read-macro) .....•..•.....•.. 
NOFIXFNSlST (dwim variable/parameter) •.........• 
NOFIXVARSLST (dwim variable/parameter) .....•••.. 
NONE (syntax class) .......•...••••...•....•....• 
NONIMMED (type of read-macro) .................. . 
NONIMMEDIATE (type of read-macro) .......•..•.... 
NOHAISE (TENEX command) ...................•..... 
NORMAlCOMMENTSFlG (system variable/parameter) 
NOT DUMPED (error message) ..........•..•..•.•... 
NOT FOUND (error message) .•......••....••..•.••. 
NOT FOUND. 50 IT WILL BE WRITTEN ANEW 

(error message) .••..•.•...••.••.•.•...•.••. 
(NOT PRINTABLE) .......•..........•...•........... 
NOTCOMPILEDFIlES (file package variable/parameter) 
noticing files ..•.•............•.........•....... 
NOTUSTEDflLES (fi 1e package variable/parameter) .. 
NOT-FOUND: ..................................... . 
numbers .....•...........................•.•.•..• 
NUMFORMATCODE[FORMAT;SMASHCODE] ..•..•...•....... 
octal .... ", ..................................... . 
OPENFIlE[FILE;ACCESS;RECOG;8YTESIZE; 

MACHINE.DEPENDENT.PARAMETERS] ..•••.•.... 
opening files ....•...............•......•......• 
OPENP[FILE;ACCESS] SUBR ......•.................. 
ORIG (used as a readtable) ..•..•................ 
ORIGINAL (fi le package command) ................ . 
OUTFILE[FIlE] SUBR ............•......•...•...... 
OUTFILEP[flLE] SUBR ............................ . 
OUTPUT[flLE] SUBR .....................•....•.•.. 
output buffer .....•..•.......•......•...••....... 
output funct iOl1s ......•........•........•....... 
P (file package command) ...................... .. 
PACKFIlENAME[FIELDNAME1;FIELDCONTENTS1; •.• ; 

FIELDNAMEn;FIELDCONTENT5n] - ....... . 
parentheses counting (by READ) ........•.•....... 
PEEKC[FILE;RDTBL] SUBR ...............•.....•.... 
PF[FN;FROMFIlES;TOFIlE] NL- •...•....•..........• 

INDEX. 14.6 

... _----

Page 
Numbers. 

14.64-66 
14.66 
14.65 

14.77,65 
14.66 
14.76 
14.6-7 
14.19 
14.67 
14.76 
14.8 
14.65 
14.68 
14.58 
14.57 
14.58 
14.38 
14.65 
14.27 
14.21 
14.40 
14.40 
14.30 
14.28 
14.28 
14.32 
14.45 
14.65 
14.66 

14.19 
14.43 
14.64,66 
14.63 
14.64,66 
14.39 
14.12 
14.22 
14.12,11 

14.3 
14.1-4 
14.4,2 
14.24 
14.60 
14.2,1-8 
14.3,2 
14.1 
14.19 
14.17-19 
14.51 

14.6 
14.12,32 
14.14,33 
14.44 



PF*[FN;FROMFIlES;TOFIlE] Nl* ................... . 
PlVlFIlEFlG (system variable/parameter) ........ . 
POSITION[FIlE;N] SUBR .......................... . 
PP[X] NL· ..................... '.' ............... . 
PPV (edi t command) ............................. . 
PP*[X] NL* ..................................... . 
PRETTYCOMFONT .................. , ............... . 
PRETTYCOMPRINT[X] Nl ........................... . 
PRETTYDEF[PRTTYFNS;PRTTYFIlE;PRTTYCOMS; 

REPRINTFNS: SOURCEF IlE; CHANGES] ........ . 
PRETTYEQUIVlST (prettyprint variable/parameter) 
PRETTYFlG (prettyprint variable/parameter) , 
PRETTYHEADER (prettyprint variable/parameter) 
PRETTYLCOM (prettyprint variable/parameter) 
PRETTYPRINT[FNS: PRETTYDEFlG; FNSLST] ............ . 
prettyprinting by system functions ............. . 
PRETTYPRINTMACROS (prettyprint variable/parameter) 
PRETTYPRINTYPEMACROS 

(prettyprint variable/parameter) .......... . 
PRETTYTABFlG (prettyprint variable/parameter) 
PRETTYTRANFlG (cl isp variable/parameter) ....... . 
primary input file ............................. . 
primary output file ............................ . 
primary readtabl e .............................. . 
primary terminal table ......................... . 
PRINT[X;FIlE;ROTBl] SUBR ....................... . 
PRINTBEllS[] ................................... . 
PRINTDATE[FIlE;CHANGES] ........................ . 
PRINTOEF[EXPR;lEFT;DEF;TAIlFlG;FNSlST] ......... . 
PRINTFNS[X;PRETTYOEFlG] ........................ . 
printing numbers ............................... . 
printlevel ..................................... . 
PRINTlEVEl[CARN;CORN] SUBR ..................... . 
PRINTNUM[FORMAT;NUMBER;FIlE] ................... . 
pr i ntnum package ............................... . 
PRIN1[X; FILE] SUBR ............................. . 
PRIN2[X;FIlE;ROTBl] SUBR ....................... . 
PRIN3[X; FILE] SUBR ............................. . 
PRIN4[X;FIlE;ROTBl] SUBR ....................... . 
PROP (file package command) .................... . 
PROPS (file package command) ................... . 
PUTOEF[NAME;TYPE;DEFINITION] ................... . 
Q (following a number) ........................ .. 
RAOIX[N] SUBR .................................. . 
RAISE[FlG;TTBL] SUBR ........................... . 
RAISE (TENEX command) .......................... . 
RANDACCESSP[FIlE] .............................. . 
RATEST[X] SUBR ................................. . 
RATOM[FIlE;ROTBl] SUBR ......................... . 
RATOMS[A; FILE; ROTBl] ........................... . 
RC (makefile option) ........................... . 
READ[FIlE;RDTBl;FlG] SUBR ...................... . 
READC[FIlE] SUBR ............................... . 
READFIlE[FIlE] ................................. . 
reading from strings ........................... . 
READlINE[RDTBl;LINE;lISPXFLG] .................. . 
READMACROS[FlG] SUBR ..............•............. 

INOEX.14.7 

Page 
Numbers 

14.44 
14.19 
14.36 
14.43 
14.80 
14.44 
14.50 
14.79 

14.78.64 
14.49 
14.49,64 
14.79 
14.48 
14.43 
14.18 
l4.49 

14.49 
14.43 
14.65 
14.1,5.11 
14.1,5,17 
14.23.11,17,30 
14.29-30 
14.17,18 
14.18 
14.79 
14.79.49,80 
14.79 
14.20-22 
14.18-19 
14.18 
14.20 
14.20-22 
14.17.18 
14.17.18 
14.17 
14.17 
14.67,60 
14.57 
14.70 
14.12,17,34 
14.34,12,17 
14.32 
14.32 
14.8 
14.14 
14.12,13,33 
14.13 
14.65 
14.11,12,33 
14.14,33 
14.42 
14.11 
14.16,16 
14.28 



READP[FILE: FlG] SUBR .•...••.•..........•...•.... 
REAOTABlEP(RDTBl] SUBR ........••......••.......• 
readtab 1 es ...•. ' .....••.................••....•.. 
READVISE(X] Nl. . ...•••. 0 •••• 0·, •••••••••••••••••• 

read-macro characters .......•.....••.••......... 
READ-MACRO CONTEXT ERROR (error message) ....... . 
read-macro options ...................•.......... 
RECOMPIlE[PfIlE;CfIlE;FNS] ..•...••..•......•.... 
RECORDS (ft 1 e package <:ommand) .•.............•.• 
(REDEFINED) (printed by system) ...............•. 
REMAKE {makefile option} •..•.................... 
remaking a file .......•.••.....•..............•. 
REMEMBER (prog. asst. command) •...•...•......... 
RENAME[OlD;NEW;TYPES:FILES;METHOO] ..........•... 
RENAMEFILE[OlD:NEW] .•.............•..•..•...•... 
RESETBUFS[FORM1 ;FORM2~ ... ;FORMn] ............... . 
RESETFORMS (system variable/parameter) •........• 

. RESETREADTABLE[RDTBL;FROM] SUBR ...•............. 
RESETTERMTABLE[TTBl;FROM] SUBR .....•••..•..•••.• 
RETYPE (syntax class) ......•..•..•.........•.•.. 
RIGHTBRACKET (syntax class) ..........•.......... 
RIGHTPAREN (syntax class) .•..•••.••...•.••.•.••. 
root name or the· file ........... ;, ....••....•.... 
RPAQ[X;Y]NL .•....•.•......•.••••.•.••.•.•..••... 
RPAQQ[X;Y] NL ..........•.....•....••............ 
RSTRING[FILE;RDTBL] SUBR •..•.••...•.••.•...•.... 
SAVEDEF[NAME;TYPE;OEFINITION] ..•........•...•..• 
searching files •.....••.....•..•••....•••••..... 
separator characters .••....••......•.•.......... 
SEPRCASE[CLISPFLG] ...•..•.•••••...•...••••...... 
SETBRK[LST;FLG:RDTBl] SUBR ..........•..•..•..... 
SETFILEINFO[FIlE ;ATTRIB ;VALUE] .......•......•... 
SETFIlEPTR[FILE:ADR] SUBR .....••......••....•.•. 
SETINITIAlS[] .........•..............•.••....... 
SETlINElENGTH[N] ..•..•....••..••••.••••••.•.•••. 
SETREADMACROFlG[FLG] SUBR .•...•..........••...•. 
SETREADTABlE[RDTBL;FLG] SUBR .........•.......•.. 
SETSEPR[LST;FLG;RDTBL] SUBR .•.....•.....•....... 
SETSYNTAX[CH:CLASS;TABLE] .......••••..•••..•.... 
SETTERMCHARS[NEXTCHAR;BKCHAR;LASTCHAR: 

UNQUOTECHAR;2CHAR:PPCHAR] .......... . 
SETTERMTABLE[TTBL] SUBR ......•.•.•.•...•.•.•.... 
SHOWDEF[NAME:TYPE:FILE] ...••.••...•....•.....•.. 
SHOWPRINT[X:FILE;RDTBl] ........................ . 
SHOWPRIN2[X;fIlE;RDTBl] .....•.•.......•......... 
SKREAO[FILE;REREADSTRING] .....................•. 
SMASHFILECOMS[FILE] ..•.....•..••.....•.......... 
SPACES[N; FILE] SUBR ..•.•....................•... 
SPECVARS (f ile package command) .•.•....••.•..... 
SPElLfIlE[FIlE;NOPRINTFlG;NSFlG] •...••.•.......• 
spelling correction •.........••••..•...•........ 
spelling lists .............•.•........•.......•. 
SPLICE (type of read-macro) ....•..••...••....... 
square brackets (inserted by prettyprint) ...... . 
STOP (at the end of a file) .••.......•.••....... 
STRINGDElIM (syntax class) •.••.•••.............. 
str.1ngs ........................................ . 

INDEX.14.8 

--- -------- ~~ __ ~~~'F"~,~ .. ~_~~~~~ ..... -;;> , :j- ~ • _____ "_ 

page 
Numbers 

14.15 
14.24 
14.23,11,17,24-29 
14.58 
14.25-29 
14.28 
14.27 
14.65-66 
14.58 
14.38 
14.65 
14.77 
14.67 
14.71 
14.5 
14.34 
14.35 
14.24 
14.29 
14.30 
14.25 
14.25 
14.54 
14.38 
14.38,78 
14.12.13 
14.70 
14.8-9 
14.26.13-15,33 
14.9 '. 
14.13 
14.5 
14.8.36 
14.37 
14.35 
14.28 
14.24 
14.13 
14.25 

14.36 
14.29 
14.70 
14.18 
14.18 
14.16 
14.76 
14.17 
14.59 
14.2 
14.59-60 
14.59-60 
14.26 
14.48 
14.38,42 
14.25 
14.11 



STRPOS[PAT;STRING;START;SKIP;ANCHOR;TAIL] ...... . 
symbol tc fi 1 e input ............................ . 
·syn tax classes ................................. . 
SVNTAXP[CHARCODE;CLASS;TABLE] .................. . 
SVSBUF[FLG] SUBR ............................... . 
SVSIN[FILE} SUBR ............................... . 
SVSLOAD (load option) ....................•...... 
SVSOUT[FlLE] SUBR ......•..................•..... 
SVSOUTDATE (system variable/parameter) .•........ 
SVSOUTFIlE (system variable/parameter) ......... . 
SVSOUTGAG (system variable/parameter) .•........• 
SVSOUTP[FILE] .................................. . 
SVSOUT.EXT (system variable/parameter) ......... . 
SVSPRETTVFlG (system va~iable/parameter) ....... . 
SVSPROPS(system variab1e/paramete~} ........... . 
SVSTEMFONT ..................................... . 
TAB[POS;MINSPACES;FILE] .........•............... 
TCOMPL[FIlES] .................................. . 
TEMPLATES (file package command) ............... . 
TENEX ...........•............................... 
termi nal .................................•...... 
terminal syntax classes ....................•.... 
terminal tables ................................ . 
TERMTABlEP[TTBl] SUBR ...............•....•...... 
TERPRI[FILE] SUBR ....................•.......... 
TTVlINElENGTH (system variable/parameter) ...... . 
typed definitions .............................. . 
TVPESOF[NAME;POSSIBlETVPES;IMPOSSIBlETVPES] 
UCASELST (prettyprint variable/parameter) ...... . 
UGlVVARS (file package command) .....•........... 
UNMARKASCHANGED[NAME;TVPE] ..................... . 
UNPACKFILENAME[FILENAME] .......•................ 
UNSAVEDEF[NAME;TVPE;DEF] ...............•....•... 
UPDATEFIlES[PRLST;FlST] ............•......•..... 
updating files ................................. . 
USEMAPFLG (system variable/parameter) .......... . 
user defined printing .......................... . 
USERFONT ................•...•........•.......... 
USERMACROS (editor variable/parameter) ......... . 
USERMACROS (file package command) ...•..........• 
VARS[FN;USEDATABASE] ..... ~ .................•.... 
VARS (file package command) ......•.............• 
VARTVPE (property name) ......•.......•.......... 
version numbers .•..............................• 
WAITFORINPUT[FIlE] ............................. . 
WHENCLOSE[FILENAME;PROP1;VAll; ... ;PROPn;VALn} • 
whenc10se package ..................•............ 
WHEREIS[NAME;TVPE;FIlES] ....................... . 
whereis package ................................ . 
WIDEPAPER[FlG] ..........•..•.................... 
WRITEFllE[X; FILE] ..........•.................... 
[.] (inserted by prettypr1nt) .................. . 
I (change character) ......................•..... .. 
H (followed by a number) ..................•..... 
HCAREFUlCOLUMNS (prettyprint variable/parameter) .. 
HRPARS (prettyprint variable/parameter) .•....... 

INDEX.14.9 

Page 
Numbers 

14.8 
14.38-42 
14.24-30 
14.25 
14.34 
14.37 
14.38,39 
14.36,38 
14.37 
14.37 
14.37 
14.38 
14.37. 
14.18,18 
14.57 . 
14.50 
14,17 
14.65 
14.58 
14.8 
14.1.5.11-12.15.32,44 
14.30 
14.29-33 
14.29. 
14.17 
14.35 
14.55-56 
14.7Z 
14.46 
14.69,23 
14.67 
14.6 
14.71 
14.63 
14.63 
14.42 
14.22 
14.50 
14.58 
14.58 
14.39 
14.56 
14.62 
14.2 
14.15 
14.10 
14.9-11 
14.67 
14.40,67,69 
14.48 
14.42 
14.48 
14.49 
14.11-12,14 
14.17 
14.48 
14.48 



Page 
Numbers 

## (printed by system) •....•...•..••.......••... 14.32,11.31,33 
$ «esc» ..••.•.•.......•.•.•..•..•...•....•. .... 14.2 
% (escape character) ••..• 4 •••••••••••••••••••••• 14.11,12-14,17,33 
% (use in comments) ...........•.•.••............ 14.46 
%% (use in comments) .....•.••••....••.....••.••. 14.45-46 
& (printed by system) .••••.••......••••.••.•••.. 14.19 
I (as a read-macro) .•..•.••......••..•........... 14.26 
* (as a prettyprint macro) •.•.•...••••....••.... 14.45 
* (as a read-macro) . • • . . . • • . . . . . . . • • . . . . • • . • • . . . 14.45 
* (use in comments) ............................. 14.44,48 
* (use in file package command) •...•.•......••.. 14.60 
"COMMENP* (printed by system) . •. . . . .. . • .. . .. •. 14.44 
"COMMENT**FLG (prettyprint variable/parameter) 14.44 
-- (printed as part of a list structure) ...••••. 14.19 
•.. (printed following a carriage-return) ..••.•. 14.16 
<del) •..•..••••.•....•••••.•••••....••..•..•.... 14.14.32 
<del) (TOPS-20) •.•.•.•••.•••.•••.....••.•..••.••. 14.30 
\ (printed by system) •••••••.•.•••.••.•.•..•••.• 14.11.31~32 
\\(printed by system) •.••••.•••••••••.••••••••• 14.12 
] (us.e in input) • • ...• • • •. • .• • . • • •• .•• ••• . •• • •• •• 14.15 
l' (use in comments) ••••.••••..•••.••••.•••.•••.. 14.46 

INQEX.14.10 



SECTION 15 

DEBUGGING· THE BREAK PACKAGEl 

15.1 DEBUGGING FACILITIES 

Debugging a collection of LISP functions involves isolating problems within particular functions 
and/or detennining when and where incorrect data are being generated and transmitted. In the 
Intertisp system, there are three facilities which allow the user to (temporarily) modify selected 
function definitions so that he can follow the flow of control in his programs, . and obtain this 
debugging infonnation. These three facilities together are called the break package. All three 
redefine functions in tenns of a system function, break! described below. . 

Break modifies the definition of its argument, a function fn,2 so that if a break condition (defined 
by the user) is satisfied, the process is halted temporarily on a call to fn. The user can then 
interrogate the state of the machine, perform any computation, and continue or return from the 
call. 

Trace modifies a definition of a function fn so that whenever fn is called, its arguments (or some 
other values specified by the uscr) are printed. When the value of fn is computed it is printed 
also. (trace is a special case of break). 

Breakin allows the user to insert a breakpoint inside an expression defining a function. When the 
breakpoint is reached and if a break condition (defined by the user) is satisfied, a temporary halt 
occurs and the user can again investigate the state of the computation. 

The following two examples illustrate these facilities. In the first example, the user traces the 
function factorial. trace redefines factorial so that it calls break! in such a way that it prints some 
information, in this case the arguments and value of factorial. and then goes on with the 
computation. When an error occurs on the fifth recursion, break! reverts to interactive mode, and 
a full break occurs. 1be situation is then the same as though the user had originally performed 
BREAK( FACTORIAL) instead of TRACE( FACTORIAL). and the user can evaluate various 
Interlisp forms and direct the course of the computation. In this case, the user examines the 
variable n, and instructs break! to return 1 as the value of this cell to factorial. The rest of the 
tracing proceeds without incident. The user would then presumably edit factorial to change L to 1. 

1 

2 

The break package was written by W. Teitelman. 

break and trace can also be used on clisp operators (Section 23) which appear as car of fonn, e.g. FETCH, + 
REPLACE, IF, FOR, DO. etc., even though these arc not implt:mented as functions. For conditional breaking, the + 
user can refer to the entire expression via the variable .c.!J2. e.g. BREAK « FOR (MEMB 'UNTIL EXP»). + 

15.1 



Section 15: The Break Package 

In the second example, the user has constructed a non-recursive definition of factorial. He uses 
brcakin to insert a call to brcakl just after the PROG label LOOP . lhis break is to occur only on 
the last two iterations, i.e., when n is less than 2. When the break occurs,the user looks at the 
value of n. mistakenly typing NN. However, the break is maintained and no damage is done. 
After examining!! and ill the user allows the computation to continue by typing OK. A second 
break occurs after the next iteration, this time with N= O. When this break is released, the function 
factorial returns its value of 120. 

4-PP FACTORIAL 

(fACTORIAL 
[LAMBDA (N) 

(COHO 
({ZEROP N 

L) 
(T {HIMES H (FACTORIAL (SUB! H) 

FACTORIAL 
4-TRACE(FACTORIAL) 
(FACTORIAL) 
4-FACTORIAl( 4) 

FACTORIAL: 
N = 4 

FACTORIAL: 
N = 3 

U.B.A. 
l 

FACTORIAL: 
N = 2 

FACTORIAL: 
N = 1 

FACTORIAL: 
N = 0 

(FACTORIAL BROKEN) 
:·1 
o 
:RETURN 1 

FACTORIAL = 1 
fACTORIAL = 1 

FACTORIAL = 2 
fACTORIAL = 6 

FACTORIAL. = 24 
24 .. 

IS.l 



Debugging Facilities 

"-PP FACTORIAL 

(FACTORIAL 
[LAMBDA (N) 

(PROG «M 1» 
LOOP(COND 

«ZEROP N) 

FACTORIAL 

(RETURN M») 
(SETQ M (ITIMES M N» 
(SETQ N (SUB1 N» 
(GO LOOP]) 

..-BREAKIN(FACTORIAL (AFTER LOOP) (ILESSP N 2] 
SEARCHING ... 
FACTORIAL 
..-FACTORIAL(5) 

«FACTORIAL) BROKEN) 
:NN 
U.B.A. 
NN 
(FACTORIAL BROKEN AFTER LOOP) 
:N 
1 
:M 
120 
:OK 
(FACTORIAL) 

«FACTORIAL) BROKEN) 
:N 
o 
:OK 
(FACTORIAL) 
120 
to 

15.2 BREAK1 

The basic function of the break package is breakl. Whenever Interlisp types a message of the 
form (- BROKEN) followed by":" the user is then "talking to" breakl, and we say he is "in a 
break." breakl allows the user to interrogate the state of the world and affect the course of the 
computation. It uses the prompt character ":" to indicate it is ready to accept input(s), in the same 
way as evalqt uses "+-". 'The user can type in one of the commands specifically recognized by 
breakl described below, and the command will be processed, and then another: will be printed, to 
indicate that breakl is ready for more input.3 Or, the user may type in an expression for 
evaluation, and the value will be printed. The user can even type in commands to the 
programmer's assistant (Section 22), e.g. to redo or undo previously executed events, including 
break commands.4 

3 unless of course the command caused the break to be exited. 

4 In fact, all inputs not recognized by break! are Simply passed on to the programmer's assistanl 

15.3 



Section 15: The Break Package 

Since break! puts all of the power of Interlisp at the user's command, he can do anything he can 
do at evalqt. For example, he can insert new breaks on subordinate functions simply by typing: 

(BREAK fn1 fn2 ..• ) 

or he can remove old breaks and traces if too much information is being supplied: 

(UNBREAK fn3 fn4 ... ) 

He can edit functions, including the one currently broken: 

ED IT F(fn) 

For example, the user might evaluate an expression, see that the value was incorrect, call the 
editor, change the function, and evaluate the expression again, all without leaving the break. 

Similarly, the user can prettyprint functions, define new functions or redefine old ones, load a file, 
compile functions, time a computation, etc. In short, anything that he can do at the top level can 
be done while inside of the break. In addition the user can examine the pushdown list, via the 
functions described in Section 12, and even force a return back to some higher function via the 
function retfrom or reteval. 

It is important to emphasize that once a break occurs, the user is in complete control of the flow of 
the computation, and the computation will not proceed without specific instruction from him. If 
the user types in an expression whose evaluation causes an error, the break is maintained. 
Similarly if the user aborts a computation5 initiated from within the break, the break is maintained. 
Only if the user gives one of the commands that exits from the break, or evaluates a form which 
does a retfrom or reteval back out of breakl, will the computation continue.6 

Note that break! is just another Interlisp function, not a special system feature like the interpreter 
or the garbage collector. It has arguments which are explained later, and returns a value, the same 
as cons or cond or J2IQ.& or any other function? The value returned by breakl is called "the value 
of the break." The user can specify this value explicitly by using the RETURN command described 
below. But in most cases, the value of a break is given implicitly, via a GO or OK command, and is 
the result of evaluating "the break expression," brkexp, which is one of the arguments to break!. 

The break expression is an expression equivalent to the computation that would have taken place 
had no break occurred. For example, if the user breaks on the function FOO, the break expression 
is the body of the definition of FOO. When the user types OK or GO. the body of FOO is 
evaluated, and its value returned as the value of the break, i.e., to whatever function called FOO. 
The effect is the same as though no break had occurred. In other words, one can think of break1 

5 

6 

By typing control-E. see Section 16. 

Except that break! does not "tum off' control-D. i.e .• a control-D will force an immediate return back to the top 
level. 

+ 7 

+ 
Furthermore. since brealcl itself calls functions. when one of these is broken. an infinite loop would occur. brea1:l 
detects this situation. and prints Break within a break on and the name of the function. and then simply caUs 
the function without going into a break. + 

15.4 



Breakl 

as a fancy eval, which permits interaction before and after evaiuation. The break expression then 
corresponds to lhe argument to eval. 

BREAK COMMANDS 

GO 

OK 

EVAL 

RETURN form 
or 

RETURN fn[args] 

t 

I EVAL 

10K 

Releases the break and allows the computation to proceed.S break1 
evaluates brkexp, its first argument, prints the value of the break. 
brkexp is set up by the function that created the can to breaU. 
For break or trace, brkexp is equivalent to the body of the 
definition of the broken function. For Q.reakin, using BEFORE or 
AFTER, brkexp is NIL. For breakin AROUND, brkexp is the 
indicated expression. See breakin, page 15.16. 

Same as GO except the value Of brkexp is not printed. 

Same as GO or OK except that the break is maintained after the 
evaluation. The user can then interrogate the value of the break 
which is bound on the variable !value, and continue with the break. 
Typing GO or OK following EVAL will not cause reevaluation but 
another EVAL will. EVAL is a useful command when the user is 
not sure whether or not the break will produce the correct value 
and wishes to be able to do something about it if it is wrong. 

The value of the indicated computation is returned as the value of 
the break. For example, one might use the EVAL command and 
follow this with RETURN (REVERSE I VALUE) • 

Calls error! and aborts the break. i.e., makes it "go away" without 
returning a value. This is a useful way to unwind to a higher level 
break. All other errors, including those encountered while 
executing the GO, OK, EVAL. and RETURN commands, maintain 
the break. 

function is first unbroken, then the break expression is evaluated, 
and then the function is rebroken. Very useful for dealing with 
recursive functions. 

Function is first unbroken. evaluated, rebroken, and then exited, 
i.e., 10K is equivalent to I EVAL followed by OK. 

8 In order to facilitate debugging of programs that perform input operations. the carriage return that is typed to 
complete the GO, OK, EVAl: etc. commands is discarded, i.e., read by breakl, so Ulat it will not be part of the 
input stream. 

15.5 



IGO 

UB 

@ 

Section 15: The Break Package 

Function is first unbroken, evaluated, rebroken, and exited with 
value typed, i.e., 1 EVAL followed by GO. 

unbreaks brkfn, c.g., 

(Faa BROKEN) 
:UB 
Faa 

and Faa is now unbroken 

resets the variable lastpos, which establishes a context for the 
commands ? =, ARGS, BT. BTV. BTV .... and EDIT. and IN? 
described below. lastpos is the position of a function call on the 
push-down stack. It is initialized to the function just before the call 
to breakl, i.e., stknth[-I;BREAKl]9 

@ treats the rest of the teletype line as its argument(s). It. first 
resets lastpos to stknth[ -1; B R EA K 1] and then for each atom on the 
line, @ searches backward, for a call to that atom. The following 
atoms are treated specially: 

@ 

numbers 

/ 

= 

do not reset lastpos to stknthI-l~BREAK1] but leave it 
as it was, and continue searching from that point. 

if negative, move lastpos back that number of calls, if 
positive, forward, i.e., reset lastpos to stknth[n;lastpos) 

the next atom is a number and can be used to specify 
more than one call e.g., 
@ Faa 13 is equivalent to 
@ Faa Faa FOO 

resets lastpos to the value of the next expression, e.g., 
if the value of Faa is a stack pointer, @ = FOO FIE 
will search for FIE in the environment specified by 
(the value of) fOO. 

+ 9 When control passes from !lreal~.!. e.g. asa ft.'sult of an EVAL. OK. GO. REVERT. t command. or via a RETfROM or 
+ RETEVAL typed in by the user. (RELSTK LASTPOS) is executed to release this stack. pointer. 

15.6 



?-.-

10 

Break Commands 

Example: 

If the push-down stack looks like 

BREAK1 (13) 
FOO (12) 
SETQ (11) 
COND (10) 
PROG (9) 
FIE (8) 
COND (7) 
FIE (6) 
COND (5) 

-FIE (4) 
COND (3) 
PROG (2) 
FUM (1) 

then @ FIE COND will set lastpos to the position corresponding to 
(7); @ @ COND will then set lastpos to (5); and @ FIE / 3 -1 to 
(3). 

If @ cannot successfully complete a search, it searches the stack + 
again from that point looking for a call to a function whose name is + 
close to that of fn, in the sense of the spelling corrector (Section + 
17), where fn is the name of the function for which it was + 
searching. If the search is still unsuccessful, @ types 
(fn NOT FOUND), and then aborts. 

When @ finishes, it types the name of the function at lastpos, i.e., 
stkname[lastpos] 

@ can be used on brkcoms. In this case, the next command on 
brkcoms is treated the same as the rest of the teletype line. 

1bis is a mUlti-purpose command.10 Its most common use is to 
interrogate the value(s) of the arguments of the broken function, 
e.g., if F 00 has three arguments (X Y Z), then typing 1 = to a 
break on F 00, will produce: 

:1= 
X = value of X 
Y = value of Y 
Z = value of Z 

In fact. 1= is a universal mnemonic for displaying argument names and their corresponding values. In addition to 
being a break command. 1= is an edit macro which prints the argument names and values for the current expression 

(see Section 9). and a read-macro (actually 1 is ti1e read-macro character) which does the same for the current level 

list being read (see Sections 2 and 22), 

15.7 



+ PSll 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

BTll 

Section 15: The Break Package 

1 = operates on the rest of the teletype line as its arguments. If the 
line is empty, as in the above case, it operates on all of the 
arguments of the broken function. If the user types 
1 = X (CA R Y). he will sec the valuell of X. and the value of 
(CAR Y). The difference between using 1= and typing X and 
(CAR Y) directly to break! is that 1 = evaluates its inputs as of 
lastpos, i.e., it uses stkeval. 'Ibis provides a way of examing 
variables. or performing computations as of a particular point on 
the stack. For example, @ FOO I 2 followed by 1= X will allow 
the user to examine the value of X in the previous call to FOO, etc. 

1 = also recognizes numbers as refering to. the correspondingly 
numbered argument, i.e .• it uses stkarg in this case. Thus 

:~ FIE 
FIE 
:7= 2 

will print the name and value of the second argument of FIE. 

7 = can also be used on brkcoms. in which case the next command 
. on brkcoms is treated as the rest of the teletype line. For example, 
if brkcoms is (EVAL 7= (X Y) GO). brkexp will be evaluated, 
the values of X and Y printed. and then the function exited with its 
value being printed. 

(Qrint Qindings) like ?= except ascends the stack starting from 
lastpos, and, for each frame in which the given variable is bound; 
prints the frame name and value of the variable (with printlevel 
reset to (2 . 3», e.g. 

:PB FOO 
~ FN1/-PROG-LAM: 3 
~ FN2: 10 
~ TOP: NOBIND 

Prints a backtrace of function names only starting at lastpos. (See 
discussion of @ above) The several nested calls in system packages 
such as break, edit, and the top level executive appear as the single 
entries ·-BREAK-- t -·EDITOR·- t and --TOP" respectively. 

+ 11 The value of each variable is printed with the function showprint(Section 14). so that if sysprettyOg=T. the value 
+ will be pretlyprinted. 

+ 12 PB is also a programmer's assistant command (Section 22), so that it can also be typed in when talking to the 
+ programmer's assistant, but not in a break. PB is implemented via the function printbindings. 

+ 13 The value of brcakdclimilcr is what is printed to delimit the output of 1= and back trace commands. Initially "01" 
+ but can be reset, e.g. to .. , .. , for more linear outpul 

15.8 

------- - - ~----- ~- ------- -~--

"~ 



BTV 

BTV+ 

BTV· 

BTVI 

Break C{)mmands 

Prints a backtrace offunttion names with variables14 beginning at 
lastpos. 

Same as B TV except also prints localvars and arguments to subrs; + 
(see Section 12). + 

Same as BTV except prints arguments to subrs, loca1vars, and + 
temporaries of the interpreter, i.e. eva1 blips (see Section 12). + 

Same as BTV except prints everything on stack (see Section 12). 

BT. BTV. BTV+. BTV·. and BTVI all pennit an optional functional argument which is a 
predicate that chooses functions to be skipped on the backtrace, e.g., BT SUBRP will skip all 
SUBRs, BTV (LAMBDA (X) {NOT (MEMB X FOOFNS») will skip all but those functions on 
FOOFNS. If used as a brkcom the functional argument is no longer optional, i.e., the next brkcom 
must either be the functional argument, or NIL if no functional argument is to be applied. 

For BT. BTV. BTV+. BTV·. and BTV I, if control-P is used to change a prinUevel during the 
backtrace, the prinUevel will be restored after the backtrace is completed. 

ARGS Prints the names of the variables bound at lastpos. i.e., 
variab1es[lastpos] (Section 12). For most cases, these are the 
arguments to the function entered -at that position, i.e., 
arglist{stkname[lastpos]). 

The following two commands are for use only with unbound atoms or undefined function breaks 
(see Section 16). 

= fonn, = fn[args] only for the break following an unbound atom error. Sets the atom 
to the value of the fonn, or function and arguments, exits from the 
break returning that value, and continues the computation, e.g., 

14 

U.B.A. 
(FOO BROKEN) 
:= (COpy FIE) 

sets Faa and goes on. 

The value of each variable is printed with the function showprint (Section 14), so that if ~'lprettyl1g = T, the value + 
will be prettyprinted. + 

15.9 



-) expr 

EOIT 

Section 15: The Break Package 

for use either with unbound atom error, or undefined function 
error. Replaces the expression containing the error with exprlS (not 
the value of expr) e.g., 

U.O.F. 
(FOOl BROKEN) 
:-} FOO 

changes the FOOl to FOO and continues the computation. 

expr need not be atomic, e.g." 

U.B.A. 
(FOO BROKEN) 
:-} (QUOTE FOO) 

For U. O. F. breaks, the user can specify a function and initial 
arguments, e.g., 

U.O.F. 
'(MEMBERX BROKEN) 
:-} MEMBER X 

Note that in the case ofa U. 0 • F. error occurring immediately 
following a call to ~, e.g., (APPLY X Y) where the value of! 
is FOOand FOO is undefined, or aU. B • A. error immediately 

, following a call to eval; e.g., (EVAl X). where the value of! is 
FOO and FOO is unbound, there ~ no expression containing the 
offending atom. In this case, -} cannot operate, so ? is printed 
and no action taken. 

designed for use in conjunction with breaks caused by errors. 
Facilitates editing the expression causing the break: ' 

NON-NUMERIC ARG 
NIL , 
(IPLUS BROKEN)' 
:ED11 
IN FOO ••• 
(IPlUS X Zl 
EDIT 
-(3 V) 
-Of( 
FOO 

and user can continue by typing OK, EVAl. etc. 

15 -) does not change just brkex.n: it changes the function or expression containing'the erroneous fonn. In other 
words, the user docs not have to pcrfonn any additional editing. 

IS.I() 



Break Commands 

This command is very simple conceptually. but complicated in its implementation by all of the 
exceptional cases involving interactions with compiled functions. breaks on user functions, error 
breaks, breaks within breaks, et a1. 'Therefore. we shall give the following simplified explanation 
which will account for 90% of the situations arising in actual usage. For those others, EOIT will 
print an appropriate failure message and return to the break. 

EO IT begins by searching up the stack beginning at lastpos (set by @ command, initially position 
of the break) looking for a form, i.e., an internal call to eva1. 1ben EDIT continues from that 
point looking for a call to an interpreted function, or to eval. It then calls the editor on either the 
EXPR or the argument to eval in such a way as to look for an expression £9. to the form that it 
first found. It then prints the form, and permits interactive editing to begin. Note that the user 
can then type successive O's to the editor to see the chain of superforms for this computation. 

If the user exits from the edit with an OK; the break expression is reset, if possible, so that the 
user can continue with the computation by simply typing OK. 16 However, in some situations, the 
break expression cannot be reset. For example, if a compiled function FOO incorrectly called putd 
and caused the error ARG NOT ATOM followed by a break on putd, EOIT might be able to find 
the form headed by Faa. and also find that form in some higher interpreted function. But after 
the user corrected the problem in the FOO-form, i.f any, he would still not have in any way 
informed EO IT what to do about the immediate problem, Le., the incorrect call to putd. However, 
if Faa were interpreted EDIT would find the putd form itself, so that when the user corrected that 
form, EDIT could use the new corrected form to reset the break expression. The two cases are 
shown below: 

IN? 

16 

ARG NOT ATOM 
( FUM) 
(PUTO BROKEN) 
: EO IT 
IN FIE ••• 
(FOO X) 
EDIT 
*(2 (CAR X» 
*OK 

ARG NOT ATOM 
(PUTO BROKEN) 
: EO IT 
IN FOO ••• 
(PUTO X) 
EO IT 
*(2 (CAR X» 
*OK 
FOO 

NOTE: BRKEXP NOT CHANGED 
FIE 

:OK 
PUTD 

:? .. 
U ;; (FUM) 
:(SETQ U (CAR U» 
FUM 
:OK 
PUTD 

similar to ED IT, but just prints parent form, and supcrform, but 
does not call editor, e.g., 

ATTEMPT TO RPLAC NIL 
T 
(RPLACO BROKEN) 
:IN? 

Evaluating the new Qrke~m will involve reevaluating the fonn that causes the break. e.g., jf (puro (QUOTE (FOO» 
big'computation) were handled by EDIT. big·computation would be reevaluated. 

15.11 



Section 15: The Break Package 

Faa: (RPLACO X Z) 

Although ED IT and IN? were designed for error breaks, they can also be useful for user breaks. 
For example, if upon reaching a break on his function FOO, the user determines that there is a 
problem in the call to FOO, he can edit the calling form and reset the break expression with one 
operation by using EDIT. The following two protocol's with and without the use of EDIT. 
illustrate this: 

(FOO BROKEN) 
:7= 
x = (A B C) 
Y = 0 
:8 

FOO 
SETQ 
COND find which function 
PROG Faa is called from 
FIE 

:EDITF(FIE) 
EDIT 
*F FOO P 

(aborted with tEl 

(FOO V U) edit it 
*(SW 2 3) 
*OK 
FIE 
: (SETQ Y X) reset X and Y 
(A B C) 
: (SETQQ X D) 
o 
:1= 
X = 0 
Y = (A 8 C) check them 
:OK 
FOO 

(FOO BROKEN) 
:7;; 
x = (A 8 C) 
Y = 0 
:EOIT 
IN FIE. •• 
(FOOVU). 
EDIT 
*(SW 2 3) 
*OK 
FIE 17 
:OK 
FOO 

REVERT goes back to position lastpos on stack and reenters the function 
called at that point with the arguments. found on the stack.18 If the 
function is not already broken, REVERT first breaks it, and then 
unbreaks it after it is reentered. 

REVERT is uSeful for restarting a computation in the situation where a bug is discovered at some 
point below where the problem actually occurred. REVERT essentially says "go back there and start 
over in a break."19 

17 

18 

19 

! and Y.. have not been changed, but brkexp has. See previous footnote. 

REVERT can also be given the position using the conventions described for @ on page 15.6, e.g., REVERT FOO -1 
is equivalent to 0 FOO -1 followed by REVERT. 

REVERT will work correctly if the names or arguments to the function, or even its function type, have been changed. 

15.12 



Break Commands 

ORIGINAL for use in conjunction with breakmacros (dcscribcd below). Form + 
is (ORIGINAL • COMS). corns are executed without rcgard for + 
brcakmacros. Useful for rcdefining a break command in tcrms of + 
itself. + 

BRKCOMS 

The fourth argument to brcak! is brkcoms, a list of break commands that breakl interprets and 
exccutes as though they were teletype input. One can think of brkcoms as anothcr input file which 
always has priority over the teletype. Whenever btkcoms= NI L, breakl reads its next command 
from the teletype. Whenever brkcoms is not NIL, brcakl takes as its next command car[brkcoms] 
and sets brkcoms to cdr[brkcoms]. 20 For example, suppose the user wished to see the value of the 
variable ! after a function was -evaluated. He would set up a break with 
brkcoms= (EVAL (PRINT X) OK), which would have the desired effect. The function trace uses 
brkcoms: it sets up a break with two commands: the first one prints the arguments of the function, 
or whatevcr thc user specifies, and the second is the command GO, which causes the function to be 
evaluated and its value printed. 

If brkcoms is not NIL, the value of a break command is not printed. If you desire to see a value, 
you must print it yourself, as in the above example with the command (PRINT X). 

Note: whenever an error occurs, brkcoms is set to NIL, and a fUll interactive break occurs. 

BRKFILE 

The break package has a facility for redirecting ouput to a file. The variable brkfile should be set 
to the name of the file, and the file must be opened. All output resulting from brkcoms will be 
output to brkfile, e.g., output due to TRACE. Output due to user typein is not affected, and will 
always go to the terminal_ brkfile is initially T . 

BREAKMACROS 

Whenever an atomic command is given breakl it first searches the list breakmacros for the * 
command. The form of break macros is ( ... (macro command} command2 ... commandn) ... ). If * 
the command is dcfined as a macro, break! simply appends its definition, which is a scquence of * 
break commands, to the front of brkcoms, and goes on. If thc command is not contained in * 
breakmacros, brcakl then checks to see if it is one of the built in commands, and finally, treats it * 
as a function or variable as beforef1 * 

20 

21 

Nonnally. when a user breaks or traces a function, the value of brkcoms for the corresponding call to break1 will be 
defaulted to NIL. However, it is possible to specify a list of break commands, as described in the discussion of break 
and break! below. 

If the command is not the name of a defined function, bound variable, or lliP1 command, br~kl will attempt 
spelling correction using m:~.!!!cco!!!~ls! as a spelling IiSL If spelling correction is ullsuccessful, J!r.eakJ: will go ahead 
and call1ispx anyway, since the atom may also be a miSl.l'elled history command. 

15.13 



Section 15: The Break Package 

Example: the command ARGS could be defined by including on breakmacros: 
(ARGS (PRINT (VARIABLES LASTPOS T») 

BREAKRESETFORMS 

If the user is developing programs that change the way a user and Interlisp normally interact, e.g., 
change or disable the intermpt or line-editing characters, tum off echoing, etc., debugging them by 
qreaking or tracing may be difficult, because lnterlisp might be in a "funny" state at the time of 
the break. breakresctforms is designed to solve this problem. lbe user puts on breakrcsetforms 
expressions suitable for use in conjunction with resetform or, resetsave (section 5).22 When a break 
occurs, breakl evaluates each expression on breakresetforms before any interaction with the 
terminal, and saves the values. When the break expression is evaluated via an EVAL, OK, or GO, 
breakl first restores the state of the system with respect to the various expressions on 
brCakresetforms. When (if) control returns to break1, the expressions on breakresetforms are again 
evaluated, and their values saved.23 When the break is exited via an OK, GO, RETURN, or t 

* command, or via a RETFROM or RETEVAL typed in by the user:4 breakl again restores1 state. 
Thus the net effect is to make the break invisible with respect to the user's programs, but 
nevertheless allow the user to interact in the break in the normal fashion.25 

15.3 BREAK FUNCTIONS 

break1[brkexp;brkwhen;brkfn;brkcoms;brktype] 
is an nlambda. brkwhen determines whether a break is to occur. 
If its value is NIL, brkexp is evaluated and returned as the value of 
breakl. Otherwise a break occurs and an identifying message is 
printed using brkfn. Commands are then taken from brkcoms or 
the teletype· and interpreted. The commands, GO, I GO , OK. 
10K, RETURN and t, are the only ways to leave break!. The 
command EVAL causes brkexp to be evaluated, and saves the value 
on the variable !value. Other commands can be defined for break! 
via breakmacros~tYPe is NIL for user breaks, INTERRUPT for 
control-H breaks, and ERRORX for error breaks. 

For error breaks, the input buffer is cleared and saved. (For control-H breaks, the input buffer 
was cleared at the time the control-H was typed, see Section 16.) In both cases, if the break returns 
a value, i.e., is not aborted via t or control-D, the input buffer will be restored (see Section 14). 

* 22 

+ 
+ 
+ 
+ 
+ 23 

+ 24 

+ 
+ 
+ 25 

+ 
+ 

e.g., (ECHOMODE T), (CONTROL), etc., i.e., the value of each fonn is its "previous state," so that the effect of 
evaluating the fonn can be undone by applying car of the fonn to the value. ~ expressions can also be included 
on breakresetfonns for saving and restoring system parameters, e.g. (SETQ LISPXHISTORY NIL), 
(SETQ DWIMflG NIL). etc. These are handled specially by breakl in that the current value of the variable is saved 
before the ~ is executed, and upon restoration, the variable is set back to this value. 

The state of the system is also restored if the user types control-D. 

All user type-in is scanned in order to make the operations undoable as described in section 22. At 1his pOint, 
RETfROMs and RETEVAls are also noticed. However. if the user types in ~n expreSSion which calls a function that 
then does a RETfROM. this RETfROM will not be noticed, and the effects of breakrcsetfonns will not be reversed. 

As mentioned earlier.1>rel!!l detects "Break within a break" situations, and avoids infinite loops. If 1he loop occurs 
because of an error. 1>rcaH simply rebinds brc.1k!£l!.etfonns to NIL, and calls hell!. This situation most frequently 
occurs when there is a bug in a function c..1l1ed by breakresetfonns. 

15.14 

.. _- --------------_._."---- --- ---
~"";~~'?_: .. _ .. ,.'"_~.-,iI'_'-_"'d' ..... '~. 



Break Functions 

breakO[fn;when;coms;-;-] sets up a break on the function fn26 by redefining fn as a call to 
breakl with brkexp an equivalent definition of fn. and when. fn. 
and corns. as brkwhcIl. brkfn. brkcoms. Puts property BROKEN on 
property list of fn with valuc a gensym defined with the original 
definition. Puts property B R KIN F 0 on property list of fn with 
value (BREAKO when corns) (For use in conjunction with rebreak). 
Adds fn to the front of the list brokenfns. Value is fn. 

26 

If fn is not defined. returns (fn NOT DE FI NED). 

If fn is non-atomic anti of the form (fn1 IN fn2), breakO first calls a 
function which changes the name of fn1 wherever it appears inside 
of fn2 to that of a new function. fn1- I N - fn2. which it initially 
defines as fill. Then breakO proceeds to break on fn1- I N - fn2 
exactly as described above. Ihis procedure is useful for breaking 
on a function that is called from many places. but where one is 
only interested in the call from a spccific function, e.g., 
(RPLACA IN FOO). (PRINT IN FIE), etc. It is similar to 
breakin described below. but can be performed even when FN2 is 
compiled or blockcompiled, whereas breakin only works on 
interpreted functions. 

If fn1 is not found in fn2. breakO returns the value 
(fnl NoT FOUND IN fn2). 

If fn1 is found in fn2. in addition to breaking fnl- IN - fn2 and 
adding fn1- I N - fn2 to the list brokenfns, breakO adds fn1 to the 
property value for the property NAMESCHANGED on the property 
list of fn2 and adds the property AL lAS with the value (fn2 . fnl) 
to the property list of fn1- I N - fn2. This will enable unbreak to 
recognize what changes have been made and restore the function 
fn2 to its original state. 

If fn is nonatomic and not of the above form. breakO is called for 
each member of fn using the same values for when. corns, and file 
specified in this call to breakO. This distributivity permits the user 
to specify complicated break conditions on several functions without 
excessive retyping, e.g., 

breakO[(FOOt «PRINT PRINt) IN (F002 F003»): 
(NEQ X T);(EVAL 1= (Y Z) OK)] 

will break on FOOt, PRINT-IN-F002, PRINT-IN-F003, 
PRINt-IN-F002 and PRINt-IN-F003. 

If fn is non-atomic, the value of breakO is a list of the individual 
values. 

As mentioned earlier, it is also possible to break on clisp operators that appear as car of a form, e.g IF. FETCH. 
REPLACE. FOR, DO, etc. 

IS.1S 

+ 

+ 
+ 



Section 15: The Break Package 

break[x} is a nospread nlambda. For each atomic argument, it performs 
breakO[atom;T]. For each list, it performs apply[BREAKO;1ist}. For 
example, break[FOOl (F002 (GREATERP N 5) (EVAl»] is 
equivalent to breakO[FOOI. T] and 
breakO[F002; (GREATERP N 5); (EVAl)] 

tracc[x) is a nospread nlambda. For each atomic argument, it performs 
breakO[atom;Tj (TRACE 1= NIL GO)]27 For each list argument, 
car is the function to be traced, and cdr the forms the user wishes 
to see, i.e., trace performs: 

breakO[car[1ist);T;list[TRACE;?=; cdr[list),GOll 

For example, TRACE( FOOl (F002 Y» will cause both FOOt and 
F002 to be traced. All the arguments of FOOl will be printed; 
only the value. of Y will be printed for F002. In the special case 
that the user wants to see only the value, he can perform 
TRACE«fn». This sets up a break with commands 
(TRACE 1= (NIL) GO). 

Note: the user can always call breakO himself to obtain combination of options of break! not 
directly available with break and trace. These two functions merely provide convenient ways of 
calling breakO, and will serve for most uses. 

BREAKIN 

Breakin enables the user to insert a break, i.e., a call to breakl, at a specified location in an 
interpreted function. For example, if foo calls fie, inserting a break in foo before the call to fie is 
similar to breaking fie. However, breakin can be used to insert breaks before or after prog labels, 
particular SETQ expressions, or even the evaluation of a variable. This is because breakin operates 
by calling the editor and actually inserting a call to break! at a specified point inside of the 
function. 

The user specifies where the break is to be inserted by a sequence of editor commands. These 
commands are preceded by BEFORE, AFTER. or AROUND. which breakin uses to determine what 
to do once the editor has found the specified point, i.e., put the call to breakl BEFORE that point, 
AFTER that point, or AROUND that point. For example, (BEFORE COND) will insert a break 
before the first occurrence of cond, (AFTER COND 2 I) will insert a break after the predicate in 
the first cond clause, (AFTER BF (SETQ X &» after the last place X is set. Note that 
(BEFORE TTY:) or (AFTER TTY:) permit the user to type in commands to the editor, locate 
the correct poinis and verify it for himself using the P command if he desires, and exit from the 
editor with OK, breakin then inserts the break BEFORE. AFTER. or AROUND that point 

27 

28 

The /lag TRACE is checked for in breakl and causes the message "function :" to be printed instead of (function 
BROKEN). 

A· S TOP command typed to TTY: produces the same effect as an unsuccessful edit command in the original 
specification. e.g., (BEFORE CONDO). In both caSt.'S, the editor aborts, and break in types (NOT FOUND). 

15.16 



Break Functions 

For breakin BEFORE or AFTER, the break expression is NIL, since the value of the break is 
irrelevant. For breakin AROUND, the break expression will be the indicated fonn. In this case, the 
user can use the EVAL command to evaluate that fonn, and examine its value, before allowing the 
computation to proceed. For example, if the user inserted a break after a cond predicate, e.g., 
( A F TE R (E QUA L X Y», he would be powerless to alter the flow of computation if the predicate 
were not true, since the break would not be reached. However, by breaking 
(AROUND (EQUAL X Y», he can evaluate the break expression, i.e., (EQUAL X Y) , look at its 
value, and return something else if he wished. 

The message typed for a breakin break, is «fn) BRQKEN), where fn is the name of the function 
inside of which the break was inserted. Any error, or typing control-E, will cause the full 
identifying message to be printed, e.g., (FOO BROKEN AFTER COND 2 1). 

A special check is made to avoid inserting a break inside of an expression headed by any member 
of the list nobreaks, initialized to (GO QUOTE .), since this break would never be activated. For 
example, if (GO L) appears before the label L, breakin (AFTER L) will not insert the break 
inside of the GO expression, but skip this occurrence of L and go on to the next L, in this case the 
label L. Similarly, for BEFORE or AFTER breaks, breakin checks to make sure that the break is 
being inserted at a "safe" place. For example, if the user requests a break (AFTER X) in 
(PROG -- (SETQ X &) --), the break will actually be inserted AFTER (SETQ X &), and a 
message printed to this effect, e.g., BREAK INSERTED AFTER (SETQ X &). 

breakin[fn; where; when;coms1 breakin is an nlambda. when and coms are similar to when and 
corns for breakO, except that if when is NIL, T is used. where 
specifics where in the definition of fn the call to breaklis to be 
inserted. (See earlier discussion). 

unbreak[x] 

If fn is a compiled function, breakin returns (fn UNBREAKABLE) as 
its value. 

If fn is interpreted, breakin types SEARCHING .•. while it calls the 
editor. If the location specified by where is not found, breakin 
types (NOT FOUND) and exits. If it is found, breakin adds the 
property BROKEN-IN with value T, and the property BRKINFO 
with value (where when coms) to the property list of fn, and adds 
fn to the front of the list brokenfns. 

Multiple break points, can be inserted with a single call to breakin 
by using a list of the fonn « BE FOR E ••• ) •• ( AROUND ••. » for where. It is also 
possible to call break or trace on a function which has been 
modified by hreakin, and conversely to breakin a function which 
has been redefined by a call to break or trace. 

unbreak is a nospread nlambda. It takes an indefinite number of 
functions modified by break, trace. or breakin and restores them to 
their original state by calling unbreakO. Value is list of values of 
unbreakO. 

unbreak[] will unbreak all functions on brokenfns. in reverse order. 
It first sets brkinfolst to NIL. 

15.11 



unbreakO[fn;-] 

unbreakin[fn] 

rebreak(x] 

+ breakread[type] 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

changename[fn:from;to] 

'- ~---------- ------
."-~~,,.,.-~ .. ~_-o>'_',..;.<~'-. 

Section 15: The Break Package 

unbreak[T] unbreaks just the first function on brokenfns, i.e., the 
most recenLly broken function. 

restores fn to its original state. If fn was not broken, value is 
(NOT BROKEN) and no changes are made. If fn was modified by 

'breakin. unbreakin is called to edit it back to its original state. If 
fn was created from (fn1, IN fn2). i.e., if it has a property Al lAS, 
the function in which fn appears is restored to its original state. All 
dummy functions that were creatcd by the break are eliminated. 
Adds property value of BRKINFO to (front of) brkinfolst. 

Note: unbreakO[(fn1. IN fn2)] is allowed: unbreakO will operate on 
fn1- IN - fn2 instead. ' 

performs the appropriate editing operations to eliminate all changes 
made by breakin. fn may be either the name' or definition of a 
function. Value is fn. Unbreakin is automatically called by 
unbreak if fn has property BROKEN- IN with value T on its 
property list. 

is an nlambda. nospread function for rebreaking functions that were 
previously broken without having to respccify the break 
information. For each function on !, rebreak searches brkinfolst for 
bre~(s) and performs the corresponding operation. Value is a list 
of values corresponding to calls to breakO or breakin. If no 
information is found for a particular function, value is 
(fn - NO BREAK INFORMATION SAVED). 

rebreakU rebreaks everything on brkinfolst, i.e., rebreak[] is the 
inverse of unbreak[]. 

rebreak[T] rebreaks just the first break on brkinfolst. Le., the 
function most recently unbroken. 

useful for writing breakmacros. If brkcoms is non-NI L (i.e. when 
the command in which the caU to breakread appears is part of a list 
of break commands. rather than having been typed in) returns the 
next break command from the list, which it also sets to its cdr. 
Otherwise. if ~ = LIN E. returns the rest of the commands on the 
line as a list. Otherwise. returns the next command on the line. For 
example, the BT command is defined as 
(BAKTRACE LASTPOS NIL (BREAKREAD) 0 T). 1nu~ if the 
user types BT. the third argument to baktrace will be NIl. If the 
user types BT SUBRP. the third argument will be SUBRP. 

changes all occurrences of from.to to in fn. fn may be compiled or 
blockcompilcd. Valuc is fn if from was found. otherwise NIL. 
Docs not perform any modifications of propcrty lists. Note that 

15.18 



virginfn[ fn; flg] 

Break Functions 

from and to do not have to be functions, e.g., they can be names of 
variables, or any other literals. 

is the function that knows how to restore functions to their original 
state regardless of any amount of breaks, breakins, advising, 
compiling and saving exprs, etc. It is used by prettyprint, define. 
and the compiler. If flg == NIL. as for prettYprint, it does not 
modify the definition of fn in the process of producing a "clean" 
version of the definition, i.e., it works on a copy. If flg == T as for 
the compiler and define, it physically restores the function to its 
original state, and prints the changes it is making, e.g., 
FOO UNBROKEN, FOO UNADVISED, FOO NAMES RESTORED, 
etc. Value is the virgin function definition. 

baktrace[ipos;epos;skipfn;flags] prints back trace from ipos to epos. flags specifies the options of the 
backtrace, e.g., do/don't print arguments, do/don't print 
temporaries of the interpreter, etc., and is the same as for backtrace 
(Section l2i9. baktrace collapses the sequence of several function 
calls corresponding to a call to a system package into a single 
"function" using baktracelst as described below, e.g., any call to the 
editor is printed as .. EDITOR ...... , a break is printed as 
*"'BREAK", etc. If skipfn is not NIL and skipfn[stkname[pos]] is 
T, ~ is skipped (including all variables). baktrace is used by the 
BT, BTV, BTV+, BTV"', and BTVI commands, with flags==O, 1, 
5, 7, and 47Q respectively. 

... 

... 

... 

baktracelst used for telling baktrace (i.e. the BT, BTV, etc. commands) to + 
abbreviate various sequences of function calls on the stack by a + 
single key, e.g. "BREAK*"', *"'EDITOR .... , etc. + 

1be operation of baktrace and format of baktracelst is described so that the user can add his own + 
entries to baktracelst. Each entry on baktracelst is a list of the form (framename key. pattern) or + 
(framename (keYl . patternl) ... (keYn . patteffiu», where a pattern is a list of clements that are + 
either atoms, which match a single frame, or lists, which are interpreted as a list of alternative + 
patterns, e.g. (PROGN *"'BREAK*'" EVAL « ERRORSET BREAK1A BREAK1) (BREAK1») + 

baktrace operates by scanning up the stack and, at each point, comparing the current frame name, + 
with the frame names on baktracelst, i.e. it does an assoc. If the frame name does appear, baktrace + 
attempts to match the stack as of that point with (one of) the patterns. If the match is successful, + 
baktrace prints the corresponding key, and continues with where the match left off. If the frame + 
name does not appear, or the match fails, baktrace simply prints the frame name30 and continues + 
with the next higher frame. + 

29 

30 

The call to backtrace specifies that the values of any variables. blips. temporaries, etc. be printed with the function + 
showprint (Section 14), so that if ?Ymrettyfig= T, the values will be prettyprinted. + 

unless skipfn applied to the frame name is non-NIL as described in discussion of baktra<;g. in which case nothing is + 
printed. + 

15.19 



Section 15: The Break Paclcage 

+ Mat~hing is perfonned by comparing atoms iIi the pattern with the current frame name, and 
+ matching lists as patterns. i.e. sequences of function calls, always working up the stack. For 
+ example. either of the sequence of function calls ... BREAKl BREAKIA ERRORSET EVAL PROGN ..• 
+ or ... BREAKl EVAL PROGN ... would match with the sample entry given above, causing **BREAK** 
+ to be printed. 

+ Special features: 

+ 1. The ~tom & can be used to match any frame. 

+ 2. The pattern "-" can be used to match nothing. ~ is useful for specifying an optional match, 
+ e.g. the example above could also have been written as 
+ (PROGN .*BREAK** EVAl «ERRORSET BREAKIA) -) BREAK1). 

+ 3. It is not necessary to provide in the pattern for matching dummy' frames, i.e. frames for which 
+ dummyframep (see Section 12) is true, e.g. in Interlisp-10. *PROG*lAM, *ENV*, NOLINKOEF1, 
+ etc. When working on a match, the matcher automatically skips over these frames when they do 
+ not match. 

+ 4. If a match succeeds and the key is NIL. nothing is printed. For example, (*PROG*lAMNIl 
+ EVALA *ENV)31 

+ 31 This sequence will occur following an error which then causes a break if some of the function's arguments are 
+ 1ocalvars. 

15.20 



Index for Section 15 

AFTER (as argument to breakin) ................. . 
ALIAS (property name) .......................... . 
ARGLIST[FN] .................................... . 
ARGS (break command) ........................... . 
AROUND (as argument to breakin) ......•.......... 
backtrace ...................................... . 
BAKTRACE[IPOS;EPOS;SKIPFN;FLAGS;FILE] .......... . 
BAKTRACELST (break variable/parameter) ......... . 
BEFORE (as argument to breakin) ................ . 
BREAK[X] NL* ..........•..........•.............. 
break commands ..........•.............•......... 
break expression ............................... . 
BREAK INSERTED AFTER (typed by breakin) ........• 
break package ..................... r ••••••••••••• 

BREAK WITHIN A BREAK (printed by system) ....... . 
BREAKCOMSLST (break variable/parameter) ........ . 
BREAKOELIMITER (break variable/parameter) ...... . 
BREAKIN[FN;WHERE ;WHEN; BRKCOMS] NL .....•......... 
breaking clisp expressions .......•...•....•..... 
BREAKMACROS (break variable/parameter) ......... . 
BREAKREAO[TYPE] ...............•..•..........•... 
BREAKRESETFORMS (break variable/parameter) 
BREAKO[ FN; WHEN; COMS; BRKFN; TAIL] ................ . 
BREAK1[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] NL 
BRKCOMS (break variable/parameter) ............. . 
BRKEXP (break variable/parameter) .....•......... 
BRKFILE (break variable/parameter) ........•..... 
BRKFN (break variable/parameter) ............... . 
BRKINFO (property name) ........................ . 
BRKINFOLST (break variable/parameter) .••........ 
BRKTYPE (break variable/parameter) ............. . 
BRKWHEN (break variable/parameter) ............. . 
BROKEN (printed by system) .......•.............. 
BROKEN (property name) ......•................... 
BROKENFNS (break variable/parameter) ........... . 
BROKEN-IN (property name) ...................... . 
BT (break command) ............................. . 
BTV (break command) ......•...................... 
BTVI (break command) ........................... . 
BTV* (break command) ........................... . 
BTV+ (break command) ........................... . 
CHANGENAME[FN; FROM: TO] ...........•.............. 
control-D .................•..•............•..... 
control-E ...................................... . 
control-H ..............•........................ 
control-P ...............•....................... 
debugging ...............•......•.....•.......... 
EDIT (break command) ....•.............•......... 
editing compiled code ......•.•.................. 
ERROR I [] SUBR ......•............................ 
EVAL (break command) .•..•......•.....•.......... 
EVALQT[USPXID] ..•.........•...•..........•..... 
(fnl IN fn2) ...............•....•.........•.•... 
(fnl NOT FOUND IN fn2) ........................ .. 
fnl-IN-fn2 ....•.•...•...•...........•........... 
GENSYM[CHAR] .............................•....•. 

INDEX.15.1 

Page 
Numbers 

15.16,5.17 
15.15,18 
15.9 
15.9,6 
15.16,5.17 
15.8,9,19 
15.19 
15.19 
15.16,5.17 
15.16,1.5.17 
15.5-13 
15.4.11 
15.17 
15.1-21 
15.4,14 
15.13 
·15.8 
15.16-17.1-2.5.15.18 
15.1 
15.13-14 
15.18 
15.14 
15.15.16-18 
15.3.14.1-2.4-13.15-17 
15.13,7-8,14-15 
15.4.5,8,10-12,14-15 
15.13 
15.14,6,15 
15.15,17-18 
15.17-18 
15.14 
15.14-15 
15.3 
15.15 
15.15,17 
15.17,18 
15.8.6 
16.9.6 
15.9 
16.9.6 
15.9 
15.18 
15.4,14 
15.4,17 
15.14 
15.9 
15.1 
16.10,6,11-12 
15.18 
15.5 
16.6.13-14.17 
15.4 
15.15.18 
15.15 
15.15.18 
15.15 



--
~o;;.~~~,," - ~ 

GO (break command) ••.••••••••••••••.•••••..•.... 
input buffer ••••••••••.••.•.•••••••••••••.•••.•• 
IN? (break command) ........................... .. 
LASTPOS (break variable/parameter) •••••.••.•.••• 
NAMES RESTORED (printed by system) ••••..••.••..• 
NAMESCHANGED (property name) .•••••••••••••.•.•.• 
(NO BREAK INFORMATION SAVED) ••••••••••••••••.••• 
NOBREAKS (break variable/parameter) •.••••••••••• 
(NOT BROKEN) •.••.•••..•••••••••••••••••••••••••• 
(NOT FOUND) (typed by break) •.••••••••.••••••••• 
(NOT FOUND) (typed by breakin) ••••••••••••••.••• 
NOTE: BRKEXP NOT CHANGED. (typed by break) .•••••• 
OK (break command) •••••••••••••••••••••••••••••• 
ORIGINAL (break command) ••••••••••••••••••••.••• 
PB (break command) •••••••••.••••••••.••••••••••• 
PRINTBINDINGS[AT;POS] .......................... . 
prompt character ••••••••••••••••••••••.••••••••• 
REBREAK[X] NL * •••••••••••••••••••••••••••••••••• 
RETEVAL[POS;FORM;FLG;INTERNALFLG] ••••••••••••••• 
RETFROM[POS;VAL;FLG] SUSR •••••••••••••••••••.••• 
RETURN (break command) •••••••••••••••••••• , ••••• 
REVERT (break command) ••••••••••••••••••••.••••• 
SEARCHING ... (typed by breakin) ............... .. 
SHOWPRINT[X;FILE;RDTBL] ••••••••••••••••••••••••• 
spell ing correct ion ••••••••••••••••••••••••••••• 
spell ing 1 ists •••••••••••••••••••••••••••••••••• 
STKARG[N;POS] SUBR •••••••••••••••••••••••••••••• 
STKEVAL[POS;FORM;FLG;INTERNALFLG] ••••••••••••••• 
STOP (edit command) ••••••••••••••••••••••••••••• 
SYSPRETTYFLG Csystem variable/parameter) •••••••• 
TRACE[X] NL* •••••••••••••••••••••••••••••••••••• 
TTY: (edit command) ••••••••••••••••••••••••••••• 
UB (break. command) •••••••••••••••••••••••••••••• 
UNADVISED (printed by system) ••••••••••••••••••• 
UNBREAK[X] NL* •••••••••••••••••••••••••••••••••• 
(UNBREAKABLE) ••••••••••••••••••••••••••••••••••• 
UNBREAKIN[FN] •••••••••••••••••••••••••••••••••.• 
UNBREAKO[FN;TAIL] ••••••••••••••••••••••••••••••. 
UNBROKEN (printed by system) •••••••••••••••••••• 
U.B.A. breaks •••••••••••••••••••••••••.••••••••• 
U.D.F. breaks ••.•••.••••••••••••••••••.••••••••• 
val ue of a break •••••••••••••••••••••••••••••••• 
VARIABLES[POS] •••••••••••••••••••••••••••••••••• 
VIRGINFN[FN: FLG] •••••••••••••••••••••••••••••••• 
IEVAL (break command) ••••••••••••••••••••••••••. 
IGO (break command) ••••••••••••••••••••••••••••• 
10K (break command) .•••••••••••••••••••••••••••. 
IVALUE (break. variable/parameter) ••••••••••••••. 
··BREAK*· (in back.trace) •••••••••••••••••••••••• 
"EDITOR" (in backtrace) •••••••••••••.••.••.••• 
**TOP** (in backtrace) •••••••••••••••••••••••••• 
-) (break command) •••••••••••••••••••••••••••••• 
: (printed by system) ••••••••.•••••••••••••••••• 
= (break command) •••.••••••••.•••••••••••••••••. 
= (use with @ break. command) •••••••••••••••••••• 
?= (break. command) ••••••••••••••••••••.•••.••••• 
@ (break command) ••••••••••••••••••••••••••••••• 

INDEX.15.2 

Page 
Numbers 

15.5,4,6,13-14 
15.14 
15.11,6,12 
15.6,7-9,11 
15.19 
15.15 
15.18 
15.17 
15.18 
15.7 
15.16-17 
15.11 
15.5,4,11,13-14 
15.13 
15.8 
15.8 
15.3 

·15.18,15 
15.4 
15.4 
15.6.4,14 
15.1Z 
15.17 
15.8-9,19 
15.13 
15.13 
15.8 
15.8 
15.16 
15.8-9,19 
16.16.1,5.13.17 
15.16 
15.6 
15.19 
16.17.15,18 
15.17 
16.18.18 
15.18 
15.19 
15.9 
15.10 
15.4 
15.9 
15.19 
15.5 
16.6.14 
16.6.14 
15.5,14 
15.8 
15.8 
15.8 
15.10 
15.3 
15.9 
15.6 
15.6-8 
16.6,7,11 



Page 
Numbers 

1" (break command) .••.•••••.•••••••••.•••.••••••• 15.5.14 
... (printed by system) ........................... 15.3 

INOEX.15.3 





SECTION 16 

ERROR HANDLING 

16.1 UNBOUND ATOMS AND UNDEFINED FUNCTIONS 

Whenever the interpreter encounters an atomic form with no 'binding on the push-down list, and 
whose value cell contains the atom NOB IND,l the interpreter calls the function faulteval. Similarly, 
faulteval is called when a list is encountered, car of which is not the name of a function or a 
function object.2 'The value returned by faulteYal is used by the interpreter exactly as though it 
were the value of the form. 

faulteval is defined to print either U. B . A., for yn!?ound ~tom, or U. 0 . F ., for yngefined 
[unction, and then to call breakl giving it the offending form as brkexp.3 Once inside the break, 
the user can set the atom, define the function, return a specified value for the form using the 
RETURN command, etc., or abort the break using the t command. If the break is exited with a 
value, the computation will proceed exactly as though no error had occurred.4 

The decision over whether or not to induce a break depends on the depth of computation, and the 
amount of time invested in the computation. The actual algorithm is described in detail below in 

1 

2 

3 

4 

As described in Section 3, in Interlisp-10, atoms are initialized (when they are created by the read program) without + 
value cells. However, from the standpoint of the interpreter, an atom without a value cell is treated the same as an + 
atom with a value cell containing NOB IND. The function boundp (Section 3) is available for testing whether or not + 
an atom is bound in the sense described above, i.e. boundp[var)= T means that the variable either has a binding. or + 
else has a value in its value cell other than NOB IND. + 

In Interlisp-10, because of the widespread use of CLISP (Section 23), before calling faulteval, if clisP:m!!Y is non- + 
NIL. the interpreter performs gethash[expression;CLISPARRAY). and if the result is non-NIL, treats it as the new + 
expression to be evaluated, and goes on. This avoids going through the faulteval mechanism, and is done purely in + 
the interests of efficiency. + 

If DWIM is enabled (and a break is going to occur), faulteval also prints the offending form (in the case of a 
U. B. A .• the parent form) and the name of the function which contains the form. For example, if fOO contains 
(CONS X fIE) and FIE is unbound. faulteval prints: U.B.A. FIE [in FOO] in (CONS X FIE). Note that if 
DWIM is not enabled. the user can obtain this information after he is inside the break via the IN? command. 

A similar procedure is followed whenever ;mp]y or ~ arc called with an undefined function. i.e., one whose 
fu!yp is NIL. In this case. faultamilit is called giving it the function as its first argument and the list of arguments to 
the function as its second argument. The value returned by faulL.1pply is used as the value of !llm!Y or ~. 
fault:!illili' is defined to print U. D. F. and then call breakJ giving it (APPLY (QUOTE fn) QUOTE args» as brlcexp. 
Once inside the break. the user can define the function, return a specified value. etc. If the break is exited with a 
value. the computation will proceed exactly as though no error had occurred. fault:lpply is also called for undefined 
function calls from compiled code. 

16.1 



* 
* 

Section 16: Error Handling 

the section on breakcheck. Suffice it to say that the parameters affecting this decision have been 
adjusted empirically so that trivial type-in errors do not cause breaks, but deep errors do. 

16.2 TERMINAL INITIATED BREAKS 

CONTROL·H 

Section 15 on the break package described how the user could cause a break when a specified 
function was entered. The user can also indicate his desire to go into a break at any time while a 
program is running by typing control-H.5 At the next point a function is about to be entered,6 the 
function interrupt is called instead. interrupt types INTERRUPTED BEFORE followed by the 
function name, constructs an appropriate break expression, and then calls breakl. The user can 
then examine the state of the computation, and continue by typing OK. GO or EVAL. andlor 
retfrom back to some previous point, exactly as with a user break. Control-H breaks are thus 
always "safe". Note that control-H breaks are not affected by ·the depth or time of the 
computation. However, they only occur when a function is called, since it is only at this time that 
the system is in a "clean" enough state to allow the user to interact. Thus, if a compiled program 
is looping without calling any functions, or is in a 110 wait, control-H will not affect it. Control-B. 
however. will. 

CONTROL·B 

Control-B is a stronger interruption tha:n control-H. It effectively generates an immediate error. 
This error is treated like any other error except that it always causes a break, regardless of the 
depth or time of the computation.7 Thus if the function FOO is looping internally, typing control-B 
will cause the computation to be stopped, the stack unwound to the point at which Faa was called. 
and then cause a break. Note that the internal variables of FOe are not available in this break, and 
simi1arly, Faa may have already produced some changes in the environment before the control-B 
was typed. In other words, it may not be possible to simply continue the computation, depending 
on the nature of the function interrupted and when it was interrupted. Therefore whenever 
possible, it is better to use control-H instead of control-B. 

CONTROL·E 

If the user wishes to abort a computation, without causing a break, he should type control-E. 
Control-E does not go through the normal error machinery of scanning the stack, calling 
breakcheck. printing a message, etc. as described below, but simply types a carriage-return and 
unwinds. 

5 As soon as control-H is typed. Interlisp clears and saves the input buffer, and then rings the bell. indicating that it is 
now safe to type ahead to the upcoming break. If the break returns a value, i.e .. is not aborted via t or control-D, 
the contents of the input buffer before the control-H was typed will be restored. 

+ 6 

7 

Control-H will not interrupt at linked function calls (see Section 18). 

However. selting bclpOag to NIL will suppress the break. See discussion of brcakcheclc below. 

16.2 



Other Types of Errors 

16.3 OTHER TYPES OF ERRORS 

In addition to U. B . A. and U. D . F. errors, there arc currently 28 other error types in Interlisp, 
e.g., P-STACK OVERFLOW, NON-NUMERIC ARG, FILE NOT OPEN, etc. A complete list is 
given later in this section. When an error occurs, the decision about whether or not to break is 
handled bybreakcheck and is the same as with U. B . A. and U. D . F. errors. If a break is to 
occur, the exact action that follows depends on the type of error. For example, if a break is to 
occur following evaluation of ( R P LACA NIL (ADD 1 5» (which causes an 
ATTEMPT TO RPLAC NIL error), the message printed will be (RPLACA BROKEN), brkexp will 
be (RPLACA U V W), U will be bound to NIL, V to 6, and W to NIL, and the stack will look 
like the user had broken on rplaca himself. Following a NON-NUMERIC ARG error, the system will 
type IN followed by the name of the most recently entered function, and then (BROKEN). The 
system will then effectively be in a break inside of this function. brkexp will be a caU to ERROR so 
that if the user types OK or EVAL or GO, a.? will be printed and the break maintained. However, 
if the break is exited with a value via the RETURN command,S the computation will proceed exactly 
as though no error had occurred. 

16.4 BREAKCHECK - WHEN TO BREAK 

The decision as to whether or not to induce a break when an error occurs is handled by the 
function breakcheck.9 The user can suppress all error breaks by setting the variable help flag to NI L 
(initially set to T). If hc1pflag = T, the decision is affected by two factors: the length of time spent 
in the computation, and the depth of the computation at the time of the error.IO If the time is 
greater than help time or the depth is greater than hc1pdepth, breakcheck returns T. meaning a 
break will occur. Finally, if help flag = BREAK I, a break will always occur following an error. + 

Since a function is not actually entered until its arguments are evaluated,l1 the depth of a 
computation is defined to be the sum of the number of function calls plus the number of internal 
calls to eval. Thus if the user types in the expression 
[MAPC FOO (FUNCTION (LAMBDA (X) (COND {{NOT (MEMB X FIE» (PRINT X] for 
evaluation, and FIE is not bound. at the point of the U. B • A. FIE error, two functions, mapc and 
cond, have been entered, and there are three internal calls to eval corresponding to the evaluation 
of the forms (COND «NOT (MEMB X FIE» (PRINT X»). (NOT (MEMB X FIE». and 
{MEMB X FIE).12 The depth is thus 5. 

breakcheck begins by searching back up the parameter stack looking for an errorset.13 At the same 

8 

9 

10 

11 

12 

13 

Presumably the value will be a number. or the error will occur again. 

breakcheck is available to the user for advising or redefining. It is a function of two arguments, errorpos, the stack 
position at which the error occurred, and~, the error number. 

Except that control-B errors always break. 

Unless of course the function does not have its arguments evaluated, i.e., is an FEXPR, FEXPR·, CFEXPR, 
CFEXPR*, FSUBR or FSUBR·. 

For complete discussion of the stack and the interpreter, see Section 12. 

errorsets are simply markers' on the stack indicating how far back unwinding is to take place when an error occurs, 
i.e .. they segment the stack into sections such as that if an error occurs in any section. control returns to the point at 
which the last errorsct was entered. from which NIL is returned as the value of the errorsct. See page 16.11. 

16.3 

* 
* 



* 

Section 16: Error lJandling 

time, it counts the number of internal calls to eva1. As soon as (if) the number of cal1s to eva! 
exceeds helpdcpth, breakcheck can stop searching for errorset and return T, since the position of 
the crrorset is only needed when a break is not going to occur. Otherwise, breakcheck continues 
searching until either an errorset is found14 or the top of the stack is reached. Breakcheck then 
completes the depth check by counting the number of function calls between the error and the last 
errorset, or the top of the stack. If the number of function calls plus the number of calls to eva! 
(already counted) is greater than or equal to hclpdepth, initially set to 9,15 breakcheck returns T. 
Otherwise, it records the position of the last errorsct, and the value of errorset's second argument, 
which is used in deciding whether to print the error message, and returns NIL. Note that if a 
break is going to occur, the error message is printed regardless of the value of errorset's second 
argument 

breakcheck next measures the length of time spent in the computation by subtracting the value of 
the variable hclpc10ck from the value of (CLOCK 2) .16 If the difference is greater than helptime 
milliseconds, initially set to 1000, then a break will occur, i.e., breakcheck returns T • otherwise 
NIL. 'The variable helpclock is rebound to the current value of (C LOC K 2) for each computation 
typed in to lispx or to a break. 

The time criterion for breaking can be suppressed by setting he1ptime to NIL (or a very big 
number), or by binding hclpclock to NIL. Note that setting helpclock to NIL will not have any 
effect becausc helpclock is rebound by lispx and by break. 

If breakcheck is NIL. i.e., a break is not going to occur, then if an errorset was found, NIL is 
returned (via retfrom) as the value of the errorset, after first printing the error message if the 
errorset's second argument was non-NILP If there was no errorset, the message is printed, and 
control returns to evalqt. This procedure is followed for all types of errors. 

Note that for all error breaks for which a break occurs, breakl will clear and save the input buffer. 
If the break returns a value, i.e., is not aborted via t or control-D, the input buffer will be restored 
as described in Section 15. 

16.5 ERROR TYPES 

There are currently forty-plus error types in the Interlisp system.18 They are listed below by error 
number. The error is set internally by the code that detects the error before it calls the error 
handling functions. It is also the value returned by errorn if called subsequent to that type of 
error, and is used by errormess for printing the error message. 

14 

15 

16 

If the second argument to the errorset is INTERNAL. the errorset is ignored and searching continues. See discussion 
of errorset, page 16.11. 

Arrived at empirically. takes into account the overhead due to lim! or break. 

Whose value is number of milliseconds of compute time. See Section 21. 

+ 17 

+ 
If the value of nlsetggag is NIL (initially T), the message will always be printed. regardless of the value of errorset's 
second argument. 

18 Some of these errors are implementation dependent. i.e .• appear in Interlisp-l0 but may not appear in other Intcrlisp 
systems. 

16.4 



Error Types 

Most error types will print the offending expression following the message, e.g., NON-NUMERIC 
ARG NIL is very common. Error type 18 (control-B) always causes a break (unless helpflag is 
NIL). All other errors cause breaks ifbreakcheck returns T. 

o JSYS ERROR 

1 

2 STACK OVERFLOW 

3 ILLEGAL RETURN 

4 ARG NOT LIST 

In Interlisp-l0 occurs following a trap in a JSYS (see Section 21j9. 

no longer used. 

occurs when computation is too deep, eiUler with respect to numb~r 
of function calls, or number of variablebindings.2O UsuaUybecause 
of a non-terminating recursive computation, i.e., a bug. 

call to return when not inside of an interpreted m:Qg. 

e.g., rplaca called on a non-list. 

+ 

5 no longer used. 

6 ATTEMPT TO SET NIL via set or ~ 

7 ATTEMPT TO RPLAC NIL 
attempt either to rplaca or to rplacd NIL with something other than 
NIl. 

8 UNDEFINED OR ILLEGAL GO 

19 

20 

8Q when not inside of a P!.Qg, or 8Q to nonexistent label 

As described in Section 21, TRAP AT LOCATION is printed, followed by the JSVS diagnostic, and control returns to + 
the operating system executive. The user can then safely CONTINUE, and the Interlisp error. JSVS ERROR is then + 
generated. A TRAP AT LOCATION can also occur if an illegal instruction is executed. In this case, the operating + 
system also prints ILLEGAL INSTRUCTION. This can happen for example if the user is programming directly in + 
ASSEMBLE code, or if his system somehow got smashed. In the latter case. it is quite possible that random + 
programs ot' data structures might have already been smashed. Unless he is sure he knows what the problem is, the + 
user is best advised to abandon this system as soon as possible. (If the user does elect to CONTINUE, Interlisp win + 
(try to) generate a JSVS ERROR and unwind. In some cases, however, the system may be so badly smashed that the + 
error message won't even print) Note that in some cases. e.g. illegal instruction trap while in the garbage collector. + 
Interlisp will print out CAN' T CONTINUE, because traps under those conditions are fatal. The user may be able to + 
reenter his sytem via the START command. and, if lucky, dump some data or functions before the system totany + 
collapses. .+ 

In Interlisp-lO. the garbage collector uses the same stack as the rest of the system. so that if a garbage cotlection 
occurs when deep in a computation. the stack can overflow (particularly if there is a lot of list structure that is deep 
in the gJ! direction). If this does happen. the garbage collector will flush the stack used by the computation in order 
that the garbage collection can complete. Afterwards, the error ml.'SS8ge STACK OVERFLOW IN GC -
COMPUTATION LOST is printed. followed by a reset[],i.e., return to top level. 

16.5 



Section 16: Error Handling 

9 fILE WON'T OPEN From infile or outfil~ Section 14. 

10 NON-NUMERIC ARG a numeric function e.g .• iptus. itimes, igrcaterp, expected a number. 

11 ATOM TOO LONG In Interlisp-l0, 2. 126 characters. 

12 ATOM HASH TABLE FULL 
no room for any more (new) atoms.21 

13 FILE NOT OPEN from an I/O function, e.g., rea~ print, closet 

14 ARG NOT LITATOM e.g .• setg, py!. gettopval. etc., given a non-atomic argo 

* 15 
* 

TOO MANY FILES OPEN 
2. 30 excluding terminal. 

16 END OF FILE from an input ~nction, e.g., read.readc, ratom. Note: the file will 
then be closed. .. . . 

17 ERROR call to~. 

18 BREAK control-B was typed. 

19 ILLEGAL STACK ARG a stack function expected a stack position and was given something 
else. This might occur if the arguments to a· stack function. are 
reversed. Also occurs if user specified a stack position with a 
function name, and that function was not found on the stack. See 
Section 12. 

20 FAUL T IN EVAl artifact of bootstrap. Never occurs after faulteval has been defined 
as described earlier. 

21 In Interlisp-10. the atom hash table witt automatically expand by a specified number of pages each time it . fills up 
until an upper limit of 32K atoms is reached. 

* 22 The entries on errortypelst (described below) are processed before the file is closed. so that the user can intercept 
and process this error via an entry on errortypelst. thereby preventing the file from being closed.· It is also poSSible 
to use an errort~ entry to return a character as the value of the call to erront, and the program will continue, 
e.g. returning ")" may be used to complete a read operation. 

'" 
* 
'" 

16.6 



21 ARRAYS FULL system will first initiate a garbage collection of array space, and if * 
no array space is reclaimed, will then generate this error. 

22 FILE SYSTEM RESOURCES EXCEEDED * 
(Interlisp-10) includes no more disk space, disk quota exceeded, * 
directory full, too many jtbs, job full. * 

28 ARG NOT ARRAY elt or seta given an argument that is not a pointer to the beginning 
of an array. 

29 ILLEGAL OR IMPOSSIBLE BLOCK 
(Interlisp-10) from getblk or relblk. See Section 21. 

30 STACK PTR HAS BEEN RELEASED + 
a released stack pointer was supplied as a stack descriptor for a + 
purpose other than as a stack pointer to be re-used (see Section 12). + 

31 .STORAGE FULL following a garbage collection, if a sufficient amount of words has * 
not been collected, and there is no un-allocated space left in the * 
system, this error is generated. * 

23 Interlisp is initialized with an entry on errortypelst (described below) to call ~lfi1e (Section 17) for error 23. + 
~t>el1fi1e will search alternate directories or perfonn spelling correction on the connected directory. If ~el1fi1e fails. + 
~~~d~~~ + 

16.7 



Section 16: Error Handling 

32 ATTEMPT TO USE ITEM OF INCORRECT TYPE 
Before a field of a user-data type is changed. the type of the item is 
first checked to be sure that it is of the expected type. If not, this 
error is generated. See Section 23. 

33 ILLEGAL DATA TYPE NUMBER 

34 DATA TYPES FULL 

The argument is· not a valid user-data type number. See Section 
23. 

All available user-data types have been allocated. See Section 23. 

+ 35 ATTEMPT. TO BIND NIL OR T 
+ in a J2!Q& or lambda expression. 

36 TOO MANY USER "INTERRUPT CHARACTERS 

37 

38 

39 

40 

+ 41 
+ 
+ 

Attempt to enable a user interruplcharacter whenaB 9 user 
channels are currently enabled. See page 16.12. 

RE.AD-MACRO CONTEXT ERROR 
OcCurs when a °read is executed from within a read-macro function 
and the next token is a ) or a}. See Section 14. 

ILLEGAL READTABLE The argument was expected to be a valid readtable." See Section 
14. . 

ILLEGAL TERMINAL TABLE 
The argument was expeCted to be a valid terminal table. See 
Section 14. 

SWAPBLOCK TOO BIG FOR BUFFER 
(Interlisp-10) An attempt waS made to swap in a function/array 
which is too large for the swapping buffer. See setsbsize.Section3. 

PROTECTION VIOLATION 
(Interlisp-10) attempt to open a file that user does not have access 
to. Also reference to unassigned device. 

+ 42 BAD FILE NAME 
+ 

illegal character in file specification. illegal syntax, e.g. in Interlisp-
10, two ;'s etc. 

43 USER BR~AK Error corresponding to "hard" user-interrupt character. See page 
16.12. 

16.8 " 



Error Types 

In addition, many system functions, e.g., define, arglist, advise, !Qg, expt, etc, also generate errors 
with appropriate messages by calling error (see page 16.10) which causes an error of type 17. 

ERROR HANDLING BY ERROR TYPE 

Occasionally the user may want to treat certain error types differently from others, e.g., always 
break, never break, or perhaps take some corrective action. This can be accomplished via 
errortypelst. errortypelst is a list of elements of the form (n expression), where n is one of the 28 
error numbers. After breakchcck has been completed, but before any other·· action is taken. 
errortypelst is searched for an clement with the same error number as that causing the error. If 
one is found, and the evaluation of the corresponding expression produces a non-N I L value, the 
value is substituted for the offender, and th.e function causing the error is reentered. 

For this application. the following three variables may be useful: 

errormess 

errorpos 

breakchk 

caris the error number •. cadr the "offender" e.g.. (10NU) 
corresponds to NON-NUMERIC ARG NIL error. 

position of the function in which the error occurred, e.g., 
stkname[errorpos] might be IPLUS, RPLACA, INFILE, etc. 

value of breakcheck. i.e;, T means a break will occur, NIL means 
one will noL 

For example. putting 

[10 (AND (NULL (CADR ERRORMESS» 
(SELECTQ (STKNAME ERRORPOS) 

«IPLUS ADDl SUB1) 0) 
(HIMES 1) 
(PROGN (SETQ BREAKCHK T) NIL] 

on errortypelst would specify that whenever a NON-NUMERIC ARG - NIL error occurred, and the 
function in Question was IPLUS, ADDl, or SUBl, 0 should be used for the NIl. If the function 
was HIMES, 1 should be used. Otherwise, always break. Note that the latter case is achieved 
not by the value returned, but by the effect of the evaluation, i.e., setting BREAKCHK to T. 
Similarly. (16 (SETQ BREAKCHK NIL» would prevent END OF FILE errors from ever 
breaking. 

printmsg if T, means print error message, if NI L, don't print error message, 
i.e., corresponds to second argument to errorset. The user can force 
or suppress the printing of error message for various errortypes by 

. including on errortypclst an expression which explicitly sets 
printmsg. 

Note: If the error is going to be handled by a rctfrom, retto, or a rcteval in the errortypelst entry, + 
it probably is a good idea to first release the stack pointer errorpos, c.g. by performing + 
(RELSTK ERRORPOS). + 

16.9 



Section 16: Error Handling 

+ The initial value of errortyPelst is «23 (SPELLFILE (CADR ERRORMESS»». which causes 
+ spellfile (Section 17) to be called in case of a FILE NOT FOUND error. If speUfile is successful, 
+ the operaion will be recxccuted with the new (corrected) file name. 

16.6 ERROR FUNCTIONS 

erroix[erxm) is the entry to the error routines. If mm=NIL, errornD is used 
to detennine the error-message. Otherwise, 
seterrorn[car[erxm);cadr[erxmJ] is performed, "setting" the error 
type and argument. 1nus following either errorx[ (10 T)] or 
( PLUS T), errorn[] is (lOT). errorx calls breakcheck, and either 
induces a break or prints the message and unwinds· to the last 
errorset. Note thar errorx can· be called by any program to 
intentionally indqce an error of any type. However, for most 
applications, the function error will be more useful. 

error[mess1;mess2;nobreak) The message that is (will be) printed is messl (using prinl), 
followed by a space if messl is an atom, otherwise a carriage return. 
Then mess2 is printed, using prinl if mess2 is. a string, otherwise 

help[messl;mess2) 

+ shouldnt[] 
+ 

error![] 

print. e.g., error[ltNON-NUMERIC ARG" ;T] willprint . 
NON-NUMERIC ARG 
T 
and error[FOO;"NOT A FUNCTION"] win print 
FOO NOT A FUNCTION. (If both messl and mess2 are NIL. the 
message is simply ERROR.) 

If nobreak=T, error prints its message and then calls errorl.24 
Otherwise it calls errorx[(l7 (messl . mess2»). i.e., generates an 
error of type 17, in which case the decision as to whether or not to 
break, and whether or not to print a message, is handled as per any 
other error. 

prints mess1 and mess2 a la error, and then calls break!. If both 
messl and·mess2 are NIL. HELP I is used for the message. helpis 
a convenient way to program a default condition, or to terminate 
some portion of a program which the computation is theoretically 

. never supposed to reach. 

for those situations when a program detects a condition that should 
never occur. Calls help with the message "Shoul dn' t happen I". 

~ogrammable control-E, i.e., immediately returns from last errorset 
or resets. 

• 24 unless the value of hclpflag is BREAK!. in which case a break will always occur. as described earlier. 

2S Pronounced "error-bana". 

16.10 



reset[] 

errom[] 

seterrom[num;mess] 

errormess(u) 

errorstring[n] 

errorset[form;flg;-]26 

Error Functions 

programmable control-D, i.e., immediately returns to the top level. 

returns information about the last error in the form (n x) where D 
is the error type number and! is the expression which was (would 
have been) printed out after the error message. Thus following 
(PLUS T). errom[]is (10 T). 

sets errom: after setterrom[num;mess] has been performed, errom[] 
will return (num mess). 

prints message corresponding to an errom that yielded y. For 
example,. errormess[ ( 10 T)] would print 
NON-NUMERIC ARG . 
T 

returns as a new string the message corresponding to an error of 
type D. e.g., errorstring[lO) = "NON-NUMERIC ARG". 

performs eval[form]. Note that errorset is a lambda-type of 
function, and that its arguments are evaluated before it is entered, 
i.e .. errorset{x) means eval is called with the value of!. In most 
cases, ersetq and nlsetg (described below) arc· more useful. If no 
error occurs in the evaluation of form, the value of errorset is a list 
containing one element, the value of eval[forml. If an error did 
occur, the value of errorset is NIL. 

The argument f!g controls the printing of error messages if an error 
occurs. If f!g = T, the error message is printed; if 1¥, = NIL it is 
not, unless the value of nlsetggag is NI L, (initially T). Note that if + 
a break occurs due to an error below an errorset. the message is 
printed regardless of the value of .fig. 

If f!g= INTERNAL, the errorset is ignored for the purpose of 
deciding whether or not to break or print a message. Howevcr. the 
errorsct is in effect for the purpose of flow of control. i.e., if an 
error occurs, this errorset returns NIL. 

If f!g=NOBREAK, no break will occur, even if the time criterion for 
brcaking is met. Notc that f!g= NOBREAK will not prevent a break 
from occurring if the error occurs more than helpdepth function 
calls below the errorset, since breakcheck will stop searching before 

26 errorset is a subr, so the names "fonn" and "fig" don't actually appear on the stack nor will they affect the 
evaluation. 

27 In other words. nlsclggag provides a global override on errorsets .. effectively changing all nlsctgs to ersetgs. + 

16.11 



Section 16: Error l1and1lng 

it reaches the errorset, . as explained on page 16.3. To guarantee 
that no· break occurs, the user would also either have to reset 
hclpdepth or hclptlag. 

ersetq[ersetx] nlambda, performs errorset[ersetx;T}, i.e., (ERSETQ (FOO)) is 
equivalent to (ERRORSET (QUOTE (FOO» T). 

ntsctq(nlsetxl nlamb~. performs errorset[nlsetx; NIL]. 

16.7 INTERRUPT CHARACTERS 

This section describes how the user can disable andlor redefine Interlisp interrupt characters, ~ 
well as defining his own interrupt characters. Interlisp is initialized with 8 interrupt channels which 
we shall call: HELP, PRINTLEVEL, STORAGE, RUBOUT, ERROR, RESET, 
OUTPUTBUFFER, and BREAK. To these are assigned respectively, control-H, control-P,control
S, delete/rubout, control-E, control-D, control-O, and control-B. Each of these channels 
independently can be disabled, or have a new interrupt28 character assigned to· it via the function 
interruptchar described below. In addition, the user can enable up to 9 new interrupt channels, 
and associate with each channel an interrupt character an<,i an expression to be evaluated when that 
character is typed. User interrupts can be either "hard" or "soft". A "hard" interrupt is lik.e 
control-E or control-D: it takes place as soon as it is typed.29 A soft interrupt is like control-H; it 
does not occur until the next function cal1.30 Soft interrupts can always be safely continued from. 
Hard interrupts rip the system out of the function currently being executed and unwind back. to 
the last function call, i.e. part of the computation that was interrupted· is lost and cannot . be 
continued. 

interruptchar[char;typ/form;hardtlg] 
. . char is either a character or a terminal interrupt code.31 

28 

29 

+ 30 

+ 
31 

32 

If typ/form=NIL, char is disabled. If t~/form=T, the current 
state of char is returned without changing it 2 

TENEX requires that interrupt characters be one of control·A. D •...• Z. space. esc(alt-mode). rubout(de1ete). or break. 

Hard interrupts are implemented by generating an error of type 43. and retrieving the corresponding fonn from the 
list userinterrupts once inside of erron. Soft interrupts are implemented by calling interrupt with an appropriate third 
argument, and then obtaining the corresponding form from userinterrupts. In either case, if a character is enabled as 
a user interrupt, but for some reason it is not found on userinterrupts. an UNDEFINED USER INTERRUPT error 
will be generated. 

As soon as a soft interrupt character is typed. Interlisp clears and saves the input buffers, and then rings the beD. 
After the interrupt form is evaluated. the input buffers are restored. 

The terminal interrupt code for break is O. for esc is 27. for rubouVdelete is 28. and for space is 29. The terminal 
. interrupt codes for the control characters can be obtained with ehconl. 

The current state is an expression which can be given back to inleruptchar to restore that state. This option is used 
in connection with undoing and resetfonn. 

16.12 



Interrupt characters 

If typ/form is a literal atom and the name of one of the 8 Interlisp 
interrupt channels given above: HELP. PRINTLEVEL •.... BREAK. 
interruptchar assigns char to that channel, (reenabling the channel if 
previously disabled). Otherwise. char is enabled as an interrupt 
character that when typed causes typ/form to be immediately set to 
T. If char was previously defined as an interrupt character, that 
interpretation is disabled. 

If typ/form is a list, char is enabled as a user interrupt character, 
and typ/form is the form that is evaluated when char is typed. The 
interrupt will be hard if hardflg = T, otherwise soft. Any previous 
interpretations of char are disabled. 

An caUs to interruptchar are undoable. In addition, the value of 
interruptchar is an expression which when given back to 
interruptchar will restore things as they were before the call to 
interruptchar. Thus, interruptchar can be used in conjunction with 
resetform or resetlst (see Section 5). 

Note: interruptchar[T] will restore all Interlisp channels to their original state. and disable all user 
interrupts. 

interruptable[flg] if fig = NIL, turns interrupt off. If fig = T, turns interrupt on. + 
Value is previous setting. interruptable compiles open. + 

Note: Any interrupt character typed while interrupts are off is treated the same as any other + 
character, i.e. placed in the input buffer, and will not cause an interrupt when interrupts are turned + 
back on. + 

interruptablep[] value is T. if interrupts are enabled. NIL if disabled. + 

16.13 

--------,---,.,.-------- .. - --, 





Index for Section 16 

APPLY[FN;ARGS] SUBR ............................ . 
APPLY*[FN;ARGl ;ARG2; ... ;ARGn] SUBR- •..••.•...... 
ARG NOT ARRAY (error message) .......•........... 
ARG NOT LIST (error message) ..•...........•..... 
ARG NOT LITATOM (error message) ...........•..•.. 
ARRAYS FULL (error message) .................... . 
ATOM HASH TABLE FULL (error message) ..••........ 
ATOM TOO LONG (error message) ........••........• 
ATTEMPT TO BIND NIL OR T (error message) .•••.... 
ATTEMPT TO RPLAC NIL (error message) ..•..•...... 
ATTEMPT TO SET NIL (error message) .....•.••..... 
ATTEMPT TO USE ITEM OF INCORRECT TYPE 

(error message) ....•..•.•...........•••.... 
BAD FILE NAME (error message) •.......•....•..... 
BAD SYSOUT FILE (error message) ...••.••..••....• 
bell (printed by system) ....................... . 
BREAK (error message) •............•............• 
BREAKCHECK[ERRORPOS;ERXN] ........•.............. 
BREAK1[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] Nl 
BRKEXP (break variable/parameter) .....•..••..•.. 
(BROKEN) (printed by system) ••••••.••••........• 
control-B ........•...•.....•.•..•.••............ 
control-D ........................................... . 
control-E ..•.......••....•......••••............ 
control-H ........................ It ............................................... .. 

DATA TYPES FULL (error message) ••........•..•.•. 
OWIM ................................................................................ .. 
ELT[A; N] SUBR ......•.••••••.•••..•...•...••..... 
END OF FILE (error message) .•••.••••.•.•.......• 
ERROR [MESS 1; MESS2: NOBREAK] .............•........ 
error handling ••...........••..•••.............• 
error number ................................................................... .. 
error types ...................................................................... .. 
ERROR (error message) .••••..••.......••...••.... 
ERRORMESS[U] .......•.....•...................... 
ERRORN[] SUBR .•...•...........•.•.....•......... 
ERRORSET[FORM;FLG] SUBR .......•........•........ 
ERRORSTR I NG[N] SUBR •.....•......•....•••...•.... 
ERRORTYPELST (system variable/parameter) ...•.... 
ERRORX[ ERXM] ••..............•••.•............... 
ERROR I [] SUBR ......•............................ 
ERSETQ[ERSETX] NL ............•......•........... 
EVAL[X] SUBR •......•.........••...•.......•..... 
EVAL (break command) ....•.•.•................... 
FAULT IN EVAL (error message) ......•••.......... 
FAULTAPPLY[FAULTFN;FAULTARGS] ••.••..•....•...... 
FAULTEVAL[FAULTX] NL- .........•................. 
FILE NOT FOUND (error message) ................. . 
FILE NOT OPEN (error message) .................. . 
FILE SYSTEM RESOURCES EXCEEDED (error message) 
FILE WON'T OPEN (error message) ....•...........• 
funct ion objects ..............•................. 
GETBLK[NJ SUBR .....••.•...............•.....•... 
GO (break command) .........••...•..•..•...••.... 
HASH TABLE FULL (error message) •••••...•........ 
HELP[MESS1;MESS2] ........................•...... 

INDEX.16.1 

Page 
Numbers 

16.1 
16.1 
16.7 
16.5 
16.6 
16.7 
16.6 
16.6 
16.8 
16.5 
16.5 

16.8 
16.8 
16.7 
16.2 
16.6 
16.3,2,4-5.9-10 
16.1-2.4.10 
16.1,3 
16.3 
16.2,3.5-6 
16.2.4.11 
16.2,10 
16.2 
16.8 
16.1 
16.7 
16.6 
16.10,4.6.9 
16.1-12 
16.4 
16.4-9 
16.6 
16.11,4 
16.11,4 
16.11,3-4.10 
16.11 
16.9 
16.10 
16.10,10 
16.12,11 
16.11 
16.2-3 
16.6 
16.1 
16.1,6 
16.7 
16.6 
16.7 
16.6 
16.1 
16.7 
16.2-3 
16.7 
16.10 



HELPCLOCK (system variable/parameter) .•...•..•.• 
HELPDEPTH (system variable/parameter) .......... . 
HELPFlAG (system variable/parameter) ••.•.•.•..•. 
HELPTIME {system variable/parameter} .•.••.••...• 
HELP! (printed by system) ...................... . 
ILLEGAL ARG (error message) •..•••.••.•.•.•..•... 
ILLEGAL DATA TYPE NUMBER (error message) ...•.... 
ILLEGAL INSTRUCTION (error message) •••..••.••.•. 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
ILLEGAL READTABLE (error message) •..••.•...•••.• 
ILLEGAL RETURN (error message) •••...••••..•••••• 
ILLEGAL STACK ARG (error message) ••• ~ •..••.•..•• 
ILLEGAL TERMINAL TABLE (error message) •.••.•.••. 
IN (printed by system) .•.•••••.•..••.••••..••.•. 
input buffer ...................................................................... .. 
interpreter ........................................................................ .. 
INTERRUPT[INTFN;INTARGS;INTYPE] ••.•••..••••••••• 
interrupt characters .•••..•.••••••.•.••••••..••• 
INTERRUPTABlE[FlG] SUBR ....................... .. 
INTERRUPTABLEP[] SUBR •.••••.••••.••...•••••••••. 
INTERRUPTCHAR[CHAR:TYP/FORM;HARDFlG] ••..••••••.. 
INTERRUPTED BEFORE (printed by system) •••••••••• 
IN? (break command l ............................ . 
JSYS ERROR (error message) .................... .. 
NlSETQ[NlSETX] Nl •••••••••••••••••••••••..•••••. 
NlSETQGAG (system variable/parameter) ••••••••••• 
NOBIND .................................................................................. . 
NON-NUMERIC ARG (error message) ••••••••••••••••. 
OK (break comman~l .......................................................... .. 
PRINTMSG (system variable/parameter) •••••••••••• 
PROTECTION VIOLATION (error message) •••••••••••• 
READ-MACRO CONTEXT ERROR (error message) ••••..•. 
RELBLK[ADDRESS;N] SUBR ........................ .. 
RESET[] SUBR .... • " ................................................................ .. 
RETFROM[POS;VAL;FLG] SUBR ..................... .. 
RETURN (break command) ••.••••.•••.•.•••.••...••• 
SETA[A;N:V] .............. a.a ............................................. ' ....... .. 

SETERRORN[NUM;MESS] SUBR ....................... . 
SETSBSIZE[N) SUBR •••••.•••••••••••••••.•••..•••• 
SHOUlDNT[] ................... , .................................. .. 
SHOULDN'T HAPPEN (error message) .•••••.••.•.••.• 
SPELLFIlE[FILE ; NOPRINTFLG:NSFLG] •••••••••••••••• 
STACK OVERFLOW IN GC - COMPUTATION LOST 

(error message) ......................................... .. 
STACK OVERFLOW (error message) .••.••••••..•••••. 
STACK PTR HAS BEEN RELEASED (error message) 
STORAGE FULL (error message) ••••.••••••••.•••••• 
SWAPBlOCK TOO BIG FOR BUFFER (error message) 
terminal initiated breaks ..................... .. 
TOO MANY FILES OPEN (error message) ••..••••••••• 
TOO MANY USER INTERRUPT CHARACTERS (error message) 
TRAP AT LOCATION (error message) ..•••••••••••••• 
unbound atom .............................................................. .. 
undef i n ad funct ion ' ..................................................... .. 
UNDEFINED OR ILLEGAL CO (error message) •.••••.•• 
UNDEFINED USER INTERRUPT (error message) ••••.••• 
UNUSUAL CDR ARG lIST (error message) •••••••••••• 

INDEX.16.2 

Page 
Numbers 

16.4 
16.3-4 
16.3.2.5 
16~3-4 
16.10 
16.7 
16.8 
16.5 
16.7 
16.8 
16.5 
16.6 
16.8 
16.3 
16.2.4 
16.1 
16.2 
16.12 

. 16.13 
16.13 
16.12 
16.2 
16.1 
16.5 
16.J2,11 
16.4.11 
16.1 
16.6.3 
16.2-3 
16.9 
16.8 
16.8 
16.7 
16.11 
16.4 
16.1.3 
16.7 
16.11 
16.8 
16.10 
16.10 
16.7.10 

16.5 
16.5 
16.7 
16.7 
16.8 
16.2 
16.6 
16.8 
16.5 
16.1 
16.1 
16.6 
16.12 
16.7 



USER BREAK (error message) .•...••...••••.••..••. 
user interrupt characters ..•.•.....•.••.•••..... 
U.B.A. (error message) ••..•..•..••......•••...•. 
U.D.F. (error message) ........................ .. 
value cell ...••...••..••••..•...•.......••••.... 
val ue of a break ..••...••...•••.•••...•.•.••.•.. 
7 (printed by system) ......................... .. 
l' (break command) .•••••••••.••••••.••••....•..•. 

INDEX.16.3 

Page 
Numbers 

16.8 
16.12 
16.1,3 
16.1,3 
16.1 
16.1 
16.3 
16.1-2,4 





SECTION 17 

AUTOMATIC ERROR CORRECTI,ON • THE DWIM FACILITyl 

17.1 INTRODUCTION 

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be 
corrected by another LISP programmer without any information about the purpose of the program 
or expression in question, e.g., misspellings, certain kinds of parentheses errors, etc. To correct 
these types of errors we have implemented in Interlisp a DWIM facility, short for Do-What-I
Mean. DWIM is called automatically whenever an error2 occurs in the evaluation of an Interlisp 
expression. DWIM then proceeds to try to correct the mistake using the current context of 
computation plus information about what the user had previously been doing, (and what mistakes 
he had been making) as guides to the remedy of the error. If DWIM is able to make the 
correction, the computation continues as though no error had occurred. Otherwise, the procedure 
is the same as though DWIM had not intervened: a break occurs, or an unwind to the last errorset, 
as described in Section 16. The following protocol illustrates the operation of DWIM. 

EXAMPLE 

The user defines· a function fact of one argument, n. The value of fact[n] is to be n factorial. 

~DEFINEQ«FACT (LAMBDA (N) (COND 
«ZEROP N9 1) «T (ITIMS N (FACCT 8SUB1 N] 
(FACT) 
~ 

Note that the definition of fact contains several mistakes: itimes and fact have been misspelled; the 
9 in N9 was intended to be a right parenthesis, but the shift key was not depressed; similarly, the 
8 in 8SUB 1 was intended to be a left parenthesis; and finally, there is an extra left parenthesis in 
front of the T that begins the final clause in the conditional. 

1 DWIM was designed and implemented by W. Teitelman. It is discussed in [Tei2]. 

2 Currently. DWIM only operates on unbound atoms and undefined function errors. 

17.1 

--_.-
"0 -c--t-:::fi_~"",:-



Section 17: Automatic E"or Co"ection . Do What I Mean 

~PRETTYPRNT({FACCT] [1] 
=PRETTYPRINT [2] 
=FACT (3] 

(FACT 
[LAMBDA (N) 

{CONO 
«ZEROP N9 1) 

{(T (ITIMS N (FACCT 8SUBl N]) 
(FACT) .. 

After defining fact, the user wish(~s to look at its definition using PRETTYPRINT, which he 
unfortunately misspeUs.[l] Since there is no function PRETTYPRINT in the system, aU. D. F. error 
occurs, and DWIM is called. DWIM invokes its spelling corrector, which searches a list of 
functions frequently used (by this user) for the best possible match. Finding one that is extremely 
close, DWIM proceeds on the assumption that PRETTYPRNT meant PRETTYPRINT, notifies the 
user of this, (2) and calls prettmrint. 

At this point, PRETTYPRINT would normally print (FACCT NOT PRINTABLE) and exit, since 
facct has no definition. Note that this is not an Interlisperror condition, so that DWIM. would not 
be called as described above. However, it is obviously not what the user meant. 

This sort of mistake is corrected by having prettyprint itself explicitly invoke the spelling. corrector 
portion of DWIM whenever given a function with no expr definition. Thus with the aid of 
DWIM, prettyprint is able to determine that the user wants to see thedefin~tion of the function 
fact,[3] and proceeds accordingly. . . . 

~FACT(3] 
N9 [IN FACT] -)N ) 7 YES 
[IN FACT] (COND -- «T --») -) 

(CONO -- (T --» 
ITIMS [IN FACT] -) ITIMES 
FACCT [IN FACT] -) FACT 
8SUB1 [IN FACT] -) (SUB1? YES 
6 
"PP FACT 

(FACT 
[LAMBDA (N) 

(CONO 
«ZEROP N) 

1) 
(T (ITIMES N {FACT (SUB1 N]) 

FACT .. 

(4] 

(5] 

[6] 

The user now calls his function fact.[4] During its execution, five errors occur, and DWIM is called 
five times.[5] At each point, the error is corrected. a message printed describing the action taken, 
and the computation allowed to continue as if no error had occurred. Following the last 
correction, 6 is printed, the value of fact(3). Finally, the user prettyprints the new, now correct, 
definition of fact.(6) 

In this particular example, the user was shown operating in TRUSTING mode, which gives DWIM 

17.2 



Introduction 

carte blanche for most corrections. The user can also operate in CAUTIOUS mode, in which'case 
DWIM will inform him of intended corrections before they arc made, and allow the user to 
approve or disapprove of them. For most corrections, if the user does not respond in a specified 
interval of time, DWIM automatically proceeds with the correction, so that' the user need intervene 
only when he docs not approve. Sample output is given below. Note that the user responded to 
the first, second, and fifth questions; DWIM responded for him on. the third and fourth. 

+-FACT(3) 
N9 [IN FACT] -) N }? YES 
U.D.F. T [IN FACT] FIX? YES 
[IN FACT] (COND -- «T --~)} -) 

(COND -- (T --}) 
ITIMS [IN FACT] -) ITIMES? ... YES 
FACCT [IN FACT] -)-FACT? •.• YES 
8SUBl [IN FACT] -) (SUB1? NO 
U.B.A. 
(aSUBl BROKEN) 

[1] 
[2] 

[3] 
[4] 
[5] 

We have put a great deal of effort into making DWIM "smart", and experience with perhaps fifty 
different users indicates we have been very successful; DWIM seldom fails to correct an error the 
user feels it should have, and almost never mistakenly corrects an error. However, it is important 
to note that even when DWIM is wrong, no harm is done:3 since an error had occurred, the user 
would have had to intervene anyway if DWIM took no action. Thus, if DWIM mistakenly corrects 
an error, the user simply interrupts or aborts the computation, UNDOes the DWIM change using 
UNDO described in Section 22, and makes the correction he would have had to make without 
DWIM. It is this benign quality of DWIM that makes it a valuable part of Interlisp. 

17.2 INTERACTION WITH DWIM 

DWIM is enabled by performing either DWIM[C], for CAUTIOUS mode, or DWIM[T] for 
TRUSTI NG mode:4 In addition to setting dwimflg to T and redefining faulteval and faultapply as 
described on page 17.10, DWIM[C] sets approvetlg to T, while DWIM[T] sets approveflgto NIL. 
The setting of approveflg determines whether or not the user wishes to be asked for approval 
before a correction that will modify the definition of one of his functions. In CAUTIOUS mode, 
i.e., approvcflg=T, DWIM will ask for approval; in TRUSTING mode, DWIM will not. For 
corrections to expressions typed in by the user for immediate execution,5 DWIM always acts as 

3 

4 

5 

Except perhaps if DWIM's correction mistakenly caused a destructive computation to be initiated. and information 
was lost before the user could interrupt We have not yet had such an incident occur. 

Interlisp arrives with DWIM enabled in CAUTIOUS mode_ DWIM can be disabled by executing DWIM[] or by 
setting dwimflg to NIL See page 17.20. 

Typed into llil!!- lispx is used by evalgt and brc.1k. as well as for processing the editor's E command_ Functions that 
call the spelling corrector directly. such as edild<ill.!!ll! (Section 9). specify whether or not the correction is to be 
handled as type-in. For example. in the case of edi19cfaull. commands typed din.'Ctly to the editor are treated as 
type-in. so Ihat corrections to them will never require approval. Commands given as an argument to the editor, or 
resulting from macro expansions. or from IF. LP, ORR commands etc. are not treated as type-in. and thus 
approval will be requested if approveng= T • 

17.3 



Section 17: Automatic Error Correetioll - Do What I Mean 

though approveflg were NIL, i.e., no approval necessary.6 In either case, DWIM always infonns the 
user of its action as described below. . 

SPELLING CORRECTION PROTOCOL 

The protocol used by DWIM for spelling corrections is as follows: If the correction occurs in type
in, print = followed by the correct spelling, followed by a carriage-return,and then continue, e.g., 

user types: +-{SETQ FOO (NCOCN FIE FUM» 
DWIM types: =NCONC . 

If the correction does not occur in type-in, ·print the incorrect spelling, followed by [I N function-. 
nam~, -), and then the correct spelling, e.g., ITIMS [IN FACT] -) ITIMES as shown on page 
17.2. Then, if approveflg = NIL, print a carriage return, make the correction and continue. 
Otherwise, print a few spaces and a ? and then wait for approval.8 The user then has six options. 
He can: 

6 

7 

8 

1. Type Y; DWIM types e s, and proceeds with the correction. 

2. Type N; DWIM types 0, and does not make the correction. 

3. Type t; DWIM does not make the correction, and furthermore guarantees that the 
error will not cause a break. See footnote on page 17.10. 

4. Type control-E; for error correction, this has the same effect as typing N. 

S. Do nothing; in which case DWIM will wait a specified interval, 10 and if the user has 
not responded, DWIM will type ... followed by the default answer.l1 

6. Type space or carriage-return; in which case DWIM will wait indefinitely. This option 
is intended for those cases where the user wants to think about his answer, and wants 
to insure that DWIM does not get "impatient" and answer for him. 

For certain types of corrections, e.g., run-on spelling corrections, 8-9 errors, etc., DWIM always asks for approval, 
regardless of the setting of approveflg. ! 

The appearance of • > is to call attention to the fact that the user's function will be or has been changed. 

DWIM uses askuser for its interactions with the user (~ge 17.22). Whenever an interaction is about to take place 
and the user has typed ahead. askuser types several bel1s9 to warn the user to stop typing, then clears and saves the 
input buffers, restoring them after the interac::tiQn is complete. Thus if the user has typed ahead before a DWIM 
interaction, DWIM will not confuse his type ahead with the answer to its question, nor will his typeahead be. lost. 

+ 9 

+ 
The bells are printcd by the function printbelts, which can be advised or redefined for specialized applications, e.g. to 
flash the screen for a display tenninaI. 

10 

* 11 

* 

Equal to dwimwait seconds. DWIM operates by dismissing for 2SO milliseconds, then checking to see if anything has 
been typed. If not. it dismisses again, etc. until dwimwait seconds have elapsed. Thus, there will be a delay of at 
most 1/4 sccond before DWIM responds to the user's answer. 

l1le default on spelling corrections is detennined by the value of the variable fixspelldefaul,- whose top level value II 
initially Y. 

17.4 



Interaction with Dwim 

The procedure for spelling correction on other than Interlisp errors is analogous. If the correction 
is being handled as lype-in, DWIM prints = followed by the correct spelling, and returns it to the 
function that called DWIM, e.g., =FACT as shown on page 17.2. Otherwise, DWIM prints the 
incorrect spelling, followed by the correct spelling. 111en if illmI0veflg = NIL, DWIM prints a 
carriage-return and returns the correct spelling. Otherwise, DWIM prints a few spaces and a ? and 
then waits for approval. The user can then respond WiUl Y, N, control-E, space, carriage return, 
or do nothing as described. 

Note that since the spelling corrector itself is not errorset protected, typing N and typing control-E 
may have different effects when the spelling corrector is called directly.12 lbe fanner simply 
instructs the spelling corrector to return NIL, and lets the calling function decide what to do next; 
the latter causes an error which unwinds to the last errorset, however far back that may be. 

PARENTHESES ERRORS PROTOCOL 

As illustrated earlier on page 17.2, DWIM will correct errors consisting of typing 8 for left 
parenthesis and 9 for right parenthesis.13 In these cases, the interaction with the user is similar to 
that for spelling correction. If the error occurs in type-in, DWIM types = followed by the 
correction, e.g., 

user types: +-(SETQ FOO 8CONS FIE FUM] 
DWIM types: = ( CONS 
lispx types: (A BCD) 

Otherwise, DWIM prints the offending atom, [IN function-name], -). the proposed correction, a 
few spaces and a ?, and then waits for approval, e.g., N9 [IN FACT] -) N ) 7 as shown on 
page 17.2. The user then has the same six options as for spelling correction.14 If the user types Y • 
DW 1M then operates exactly the same as when approveflg = NIL, i.e., makes the correction and 
prints its message. 

U.D.F. T ERRORS PROTOCOL 

DWIM corrects certain types of parentheses errors involving a T clause in a conditional. namely 
errors of the form: 

12 

13 

14 

1. (COND - -) (T - - ). i.e., the T clause appears outside and immediately following the 
COND; 

2. (COND - - (- - & (T - - ) ) ). i.e., the T clause appears inside a previous clause; and 

The DWIM error correction routines are errorset protection. 

Actua\1y. DWIM uses the value of the variables Iparkey and markey to determine the corresponding lower case 
character for left and right parentheses. Ipark~ and markey are initia\1y 8 and 9 respectively. but they can be reset 
for other keyboard layouts, e.g., on some terminals left parenthesis is over 9, and right parenthesis is over O. 

except the wailing lime is 3·dwimwait seconds. 

17.S 



Section 17: Automatic Error Correction - Do What I Mean 

3. (COND - - « T - - ) ) ), i.e., the T clause has an extra pair of parentheses around 
~~ . 

If the error occurs in type-in, DWIM simply types T FI XED and makes the correction. Otherwise 
if approveflg = NIL, DWIM makes the correction, and prints a message consisting of [I N function
name], followed by one of the above incorrect forms of COND, followed by - >, then on the next 
line the corresponding correct form of the. COND, e.g., 

[IN FACT] (CONO -- «T --») -> 
{CONO -- (T --» 

as shown on page 17.2. 

If approveflg = T, DWIM prints U. 0 . F. T, followed by II N function-name], several spaces, and 
then F I X 7 and waits for approval. The user then has the same options as for spelling corrections 
and parenthesis errors. If the user types Y or defaults, DWIM then proceeds exacUythe same as 
when approveflg = NIL, i.e., makes the correction and prints its message, as shown on page 17.3. 

Having made the correction, DWIM must then decide how to proceed with the comP\1tation. In 
case 1, (COND - -) (T --), DWIM cannot know whether the last clause of the CONO before the 
T clause succeeded or not, i.e., if the T clause had been inside of the COND, would it have been 
entered? Therefore DWIM asks the user '1:0NTINUE WITH T CLAUSE' (with a default of YES). 
If the user types N, DWIM continues with the form after the COND, i.e., the form that originally 
followed the T clause. 

In case 2, (COND -- (-- & (T --»}, DWIM has a different problem. After moving the T 
clause to its proper place, DWIM must return as the value of the CONO, the value of the 
expression corresponding to &. Since this value is no longer around, DWIM asks the user, 
'OK TO REEVALUATE' and then prints the expression corresponding to &. If the user types Y, 
or defaults, DWIM continues by reevaluating &, otherwise DWIM aborts, and aU. 0 . F. Terror 
will then occur (even though the COND has in fact been fixed).16 

In case 3, ( C ONO - - « T - - ) )}. there is no problem with continuation, so no further 
interaction is necessary. 

IS 

16 

For u. 0 • F. .T errors that are not one of these . three types. DWIM takes no corrective action at all. i.e .• the error 
will occur. 

If DWIM can detennine for itself that the fonn can safely be reevaluated. it does not consult the user before 
reevalua1,ing. DWIM can do this if the fonn is atomic. or car of the fonn is a member of the list okreeval~ and 
cach of the arguments can safely be reevaluated. e.g .• (SETQ X (CONS (IPLUS Y Z) W» is safe to reevaluate 
tx.'cause SETQ, CONS, and I PLUS are all on okreevalst. 

17.6 



Spelling Correction 

17.3 SPELLING CORRECTION 

The spelling corrector is given as arguments a misspelled word (word means literal atom), a 
spelling list (a list of words), and a number: x word, ~!, and reI respectively. Its task is to find 
that word on splst which is closest to xword, in the sense described below. This word is called a 
respelling of xword. reI specifics the minimum "closeness" between xword and a respelling. If the 
spelling corrector cannot find a word on splst closer to xword than rel, or if it finds two or more 
words equally close, its value is NIL, otherwise its value is the respelling.l1 

The exact algorithm for computing the spelling metric is described later on page 17.16, but briefly 
"closeness" is inversely proportional to the number of disagreements between the two words, and 
directly proportional to the length of the longer word, e.g., PRTTYPRNT is "closer" to 
PRETTYPRINT than CS is to CONS even though both pairs of words have the same number of 
disagreements. The spelling corrector operates by proceeding down splst, and computing the 
closeness between each word and xword, and keeping a list of those that are closest. Certain 
differences between words are not counted as disagreements, for example a single transposition, 
e.g., CONS to CNOS, or a doubled letter, e.g., CONS to CONSS, etc. In the event that the spelling 
corrector finds a word on splst with no disagreements, it will stop searching and return this word as 
the respelling. Otherwise, the spelling corrector continues through the entire spelling list. Then if 
it has found one and only one "closest" word, it returns this word as the respelling. For example, 
if xword is VONS, the spelling corrector will probably return CONS as the respelling. However, if 
xword is CONZ, the spelling corrector will not be able to return a respelling, since CONZ is equally 
close to both CONS and CONDo If the spelling corrector finds an acceptable respelling, it interacts 
with the user as described earlier. 

In the special case that the misspelled word contains one or more < esc> s, the spelling corrector 
searches for those words on splst that match xword, where an < esc > (alt-mode on some terminals) 
can match any number of characters (including 0), e.g., FOO$ matches FOOl and FOO, but not 
NEWFOO. $FOO$ matches all three. Both completion and correction may be involved, e.g. + 
RPETTY$ will match PRETTYPRINT, with one mistake. The entire spelling list is always searched, + 
and if more than one respelling is found, the spelling corrector prints AMBIGUOUS, and returns 
NI L. For example, CON$ would be ambiguous if both CONS and COND were on the spelling list. 
If the spelling corrector finds one and only one respelling, it interacts with the user as described 
earlier. 

For both spelling correction and spelling completion, regardless of whether or not the user 
approves of the spelling corrector's choice, the respelling is moved to the front of splst.18 Since 
many respellings are of the type with no disagreements, this procedure has the effect of 
considerably reducing the time required to correct the spelling of frequently misspelled words. 

SYNONYMS 

Spelling lists also provide a way of defining synonyms for a particular context. If a dotted pair 
appears on a spelling list (instead of just an atom), car is interpreted as the correct spelling of the 
misspelled word, and cdr as the antecedent for that word. If car is identical with the misspelled 

17 

18 

The spelling corrector can also be given an optional functional argument, fn. to be used for selecting out a subset of 
m!l>!. i.e .. only those members of .31.lliJ. that satisfy fu will be considered as possible respellings. 

fixspell has all optional argument, dontmovctopflg. which can be used to suppress moving the respelling. 

17.7 

-.--,-.>' :~:>~--" 

+ 



Section 17: Automatic Error Correction - Do What I Mean 

word, the antecedent is returned without any interaction or approval being necessary. If the 
misspelled word corrects to car of the dotted pair, the usual interaction and approval will take 
place, and then the antecedent, i.e., cdr of the dOlted pair, is returned. For example, the user could 
make IFlG synonymous with CLISPIFTRANFlG by adding (IFlG • CLISPIFTRANFLG) to 
spellings3, the spelling list for unbound atoms. Similarly, the user could make OTHERWISE mean 
the same as ElSEIF by adding (OTHERWISE . ElSEIF) to clispifwordsplst, or make L be 
synonymous with LAMBDA by adding (l . lAMBDA) to lambdasplst. Note that L could also be 
used as a variable without confusion, since the association of l with lAMBDA occurs only in the 
appropriate context 

SPELLING LISTS 

Any list of atoms can be used as a spelling list, e.g., brokenfns, fi1elst, etc. Various system 
packages have their own spellings lists, e.g., lispxcoms, prettycomsplst, clispforwordsplst, editcomsa, 
etc. 'lbese are documented under their corresponding sections, and are also indexed under "spelling 
lists." In addition to these spelling lists. the system maintains, i.e., automatically adds to, and 
occasionally prunes, four lists used solely for spelling correction: spellings!, spellings2, spe11ings3, 
and userwords.19 

Spellings! is a list of functions used for spelling correction when an input is typed in apply format, 
and the function is undefined, e.g., EDT I F ( F 00). Spellings! is initialized to contain definea, 
break, makefi1e, edit£, tcompl, load, etc. Whenever lispx is given an input in apply format, Le., a 
function and arguments, the name of the function is added to spellingsl.20 For example, typing 
CAllS(EDITF) will cause CALLS to be added to spellings!. 1bus if the user typed 
CALLS(EDITF) and later typed CALLLS(EDITV), since spellings! would then contain CALLS, 
DWIM would be successful in correcting CALlLS to CALLS ,11 

Spellings2 is a list of functions used for spelling correction for all other undefined functions. It is 
initialized to contain functions such as addl. append. condo cons, 82. list, nconc. print. P!Q&. return, 
setg. etc. Whenever lispx is given a non-atomic fonn, the name of the function is added to 
spellings2. For example. typing (RETFROM (STKPOS (QUOTE FOO) 2» to a break would add 
retfrom to spellings2. Function names are also added to spellings2 by define, defineg, load (when 
loading compiled code), unsavedef, editf. and prettyPrint 

Spellings3 is a list of words used for spelling correction on all unbound atoms. Spellings3 is 
initialized to edilmacros. breakmacros. brokenfns. and advisedfns. Whenever lispx is given an atom 
to evaluate. the name of the atom is added to spellings3.22 Atoms are also added to spellings3 
whenever they are edited by editv. and whenever they are set via IQj!g or~. For example, 
when a file is loaded, all of the variables set in the file are added to spellings3. Atoms are also 
added to spcllings3 when they are set by a lispx input, e.g., typing 
(SETQ FOO (REVERSE (SETQ FIE u») will add both FOO and FIE to spellings3. 

* 19 

20 

21 

22 

All of the remarks on maintaining spelling lists apply only when addspellflg = T. its initial value. 

Only if the function has a definition. 

If CALLLS( EOITV) were typed before CALLS had been "seen" and added to spellings1. the correction would not 
succeed. However. the alternative to using spelling lists is to look at all the atoms in the system. a procedure that 
would make spelling correction intolerably slow. 

Only if the atom has a value other than NOBIND. 

17.8 



• Spelling Correction 

Userwords is a list containing both functions and variables that the user has referred to, e.g., by 
breaking or editing. Userwords is used for spelling correction by argtist, unsavedef. prettyprint, 
break. editf, advise, etc. Userwords is initial1y NI L. Function names are added to it by define, 
dCfuleq. load, (when loading compiled code, or loading exprs to property lists) unsavedef. editf, 
edilv. editp, prettyprint, etc. Variable names are added to userwords at the same time as they are 
added to spellings3. In addition, the variable lastword is always set to the last word added to 
userwords, i.e., the last function or variable referred to by the user, and the respelling of NI L is 
defined to be the value of lastword. 'Thus, if the user has just defined a function, he can then edit 
it by simply typing ED IT F ( ). or prettyprint it by typing PP ( ) . 

Each of the above four spelling lists are divided into two sections separated by a special marker. 
The first section contains the "permanent" words; the second section contains the temporary words. 
New words are added to the corresponding spelling list at the front of its temporary section.23 (If 
the word is already in the temporary section~ it is moved to the front of that section; if the word is 
in the permanent section, no action is taken.) If the length of the temporary section then exceeds a 
specified number, the last (oldest) word in the temporary section is forgotten, i.e., deleted. This 
procedure prevents the spelling lists from becoming cluttered with unimportant words that are no 
longer being used, and thereby slowing down spelling correction time. Since the spelling corrector 
moves each word selected as a respelling to the front of its spelling list, 24 the word is thereby 
moved into the permanent section. l11us once a word is misspelled and corrected, it is considered 
important and will never be forgotten. 

The maximum length of the temporary section for spellings1, spellings2, spellings3 and userwords 
is given by the value of #spellingsl, #spellings2, #spellings3, and #userwords, initialized to 30, 
30, 30, and 60 respectively. Using these values, the average length of time to search a spelling list 
for one word is about 4 milliseconds.2S 

GENERATORS FOR SPELLING CORRECTION 

For some applications, it is more convenient to generate candidates for a respelling one by one, 
rather than construct a complete list of all possible candidates, e.g., spelling correction involving a 
large directory of files, or a natural language data base. For these purposes, m!g can be an array 
(of any size). The first element of this array is the generator function. which is called with the 
array itself as its argument. Thus the function can use the remainder of the array to store "state" 
information, e.g., the last position on a file. a pointer into a data structure,· etc. The value returned 
by the function is the next candidate for respelling. If NIL is returned, the spelling "list" is 
considered to be exhausted, and the closest match is returned. If a candidate is found with no 
disagreements, it is returned immediately without waiting for the "list" to exhaust. 

* 

splst can also be a generator, i.e. the value of the function generator (Section 12). The generator + 
splst will be started up whenever the spelling corrector needs the next candidate, and it should + 
return candidates via the function produce. For example, + 

23 

24 

25 

Except that functions added to speltingsl or spettings2 by lispx are always added to the end of the permanent section. 

Unless dontmovetopllg. one of the arguments to rlXspen, is T. 

If the word is at the front of the spelling list. the time required is only 1 millisecond. If the word is not on the 
spctling list. i.e .• if the entire list must be searched. the time is proponional to the length of the list; to search a 
spclling list of lcngth 60 takes about 7 milliseconds. 

17.9 

+ 



Section 17: Automatic Error Correction· Do What I Mean 

+ [GENERATOR (MAPATOMS (FUNCTION (LAMBDA (X) (AND (FNTYP X) {PRODUCE X] 
+ could be used as a "spelling list" which effectively contains all functions in the system. 

17.4 ERROR CORRECTION 

As described in Section 16, whenever the interpreter encounters an atomic form with no binding, 
or a non·atomic fonn car of which is not a function or function object, it calls the function 
faulteval. Similarly, when .rumJ.y is given an undefined function, it calls faultapply. When DWIM 
is enabled, faulteval and faultapply are redefined to first call dwimblock, a part of the DWIM 
package. If the user aborts by typing control-E, or if he indiCates disapproval of DWIM's intended 
correction by answering N as described on page 17.4, or if DWIM cannot decide how to fix the 
error, dwimblock returns NIL.26 In this case, faulteval and faultapply proceed exactly as described 
in Section 16, by printing aU. B . A . or U. 0 . F. message, and going into a break if the 
requirements of breakcheck are met, otherwise unwinding to the last errorset 

If DWIM can (and is allowed to) correct the error, dwimblock exits by performing reteval of the 
corrected form, as of the position of the call to faulteval or faultapply. Thus in the example at the 
beginning of the chapter, when DWIM dctermined that ITIMS was ITIMES misspelled,QWIM 
called reteval with (ITIMES N (FACCT 8SUBI N». Since the interpreter uses the value 
returned by faulteval exactly as though it were the value of the erroneous form, the computation 
will thus proceed exactly as though no error had occurred. 

In addition to continuing the computation, DWIM also repairs the cause of the error whenever 
possibleP Thus in the above example, DWIM also changed (with rplaca) the expression 
(ITIMS N (FACCT 8SUBI N» that caused the error. 

Error correction in DWIM is divided into three categories: unbound atoms, undefined cars of 
form, and undefined function in.rumJ.y. Assuming that the user approves if he is asked, the action 
taken by DWIM for the various types of errors in each of these categories is summarized below. 
The protocol of DWIM's interaction with the user has been described earlier. 

UNBOUND ATOMS 

1. If the first character of the unbound atom is " DWIM assumes that the user (intentionally) 
typed 'atom for (QUOTE atom) and makes the appropriate change. No message is typed, and 
no approval requested. 

26 

27 

If the unbound atom is just ' itself, DWIM assumes the user wants the next expression 
quoted, e.g., (CONS X '( ABC» will bc changed to (CONS X (QUOT E (A B C»). 
Again no message will be printed or approval asked. (If no expression follows the '. DWIM 

If the user answers with t, (see page 17.4) dwimblock is exited by performing reteval[FAULTEVAL;(ERRORI)]. 
i.e., an error is generated at the position of the call to faulteval. 

If the user's program had computed the form and catted eval, e.g., performed (EVAL (LIST X Y» and the value 
of ! was a misspelled function; it would not be possible to repair the cause of the error, although DWIM could 
correct the misspelling each time it occurred. 

17.10 



Error Correction 

gives up.)28 

2. If CLiSP (Section 23) is enabled, and the atom is part of a CLISP construct, the CLISP 
transformation is perfOlmed and the result returned, e.g., N-l is transformed to (SUB 1 N), 
( ... FOO.-3 ... ) is transformed into ( ... (SETQ FOO 3) ... ). 

3. If the atom contains an 8,29 DWIM assumes the 8 was intended to be a left parenthesis, and 
calls the editor to make appropriate repairs on the expression containing the atom. DWIM 
assumes that the user did not notice the mistake, i.e., that the entire expression was affected 
by the missing left parenthesis. For example, if the user types 
{SETQ X {LIST (CONS 8CAR Y) (COR Z)} V}. the expression will be changed to 
{SETQ X {LIST {CONS {CAR Y} (COR Z)} V}}. 

The 8 does not have to be the first character of tJie atom, e.g., DWIM will handle 
{CONS X8CAR Y} correctly. 

4. If the atom contains a 930 DWIM assumes the 9 was intended to be a right parenthesis and 
operates as in number 3. 

5. If the atom begins with a 7, the 7 is treated as a', e.g., 7FOO becomes • FOO, and then 
(QUOTE FOO). 

6. If the atom is an edit command (a member of editcomsa), and the error occurred in type-in, 
the effect is the same as though the user typed EO IT F ( ), followed by the atom, i.e., DWIM 
assumes the user wants to be in the editor editing the last thing he referred to. Thus, if the 
user defines the function foo and then types P, he will see =FOO, followed by EDIT, followed 
by the printout associated with the execution of the P command, followed by *, at which 
point he can continue editing foo. 

7. The expressions on dwimuserforms are evaluated in the order that they appear, and if any * 
returns a non-N I L value, this value is treated as the form to be used to continue the * 
computation, and is evaluated and its value returned by oWIM. dwimuserforms is discussed * 
further below. * 

8. If the unbound atom occurs in a function, DWIM attempts spelling correction using as a 
spelling list the list of lambda and prog variables of the function. 

28 

29 

30 

Since ' is nonnally defined as a read-macro character which converts 'FOO to (QUOTE FOO) on input. DWIM + 
will not see the ' in the case of expressions that are typed-in. + 

actually the value of lparkey. initially 8. See footnote on page 17.5. 

actually the value of rparkey. initially 9. See footnote on page 17.5. 

17.11 



* 

Section 17: Automatic Error Correction· Do What I Mean 

9. If the unbound atom occurred in a type-in to a break, DWIM attempts spelling correction 
using the lambda and prog variables of the broken function. 

10. Otherwise, DWIM attempts spelling correction using spellings3. 

If all fail, DWIM gives up. 

UNDEFINED CAR OF FORM 

1. If car of the form is T, DWIM assumes a misplaced T clause and operates as described on 
page 17.5. 

2. If car of the form is F IL, DWIM changes the F IL to 

3. 

FUNCTION(LAMBDA.e.g., (F/L (Y) (PRINT (CAR Y») is changed to 
{FUNCTION (LAMBDA (Y) (PRINT (CAR Y»). No message is printed and no approval 
requested. If the user omits the variable list, DWIM supplies ( X) , e.g .• 
(F/L (PRINT (CAR X») becomes (FUNCTION {LAMBDA (X) (PRINT (CAR X»». 
DWIM determines that the user has supplied the variable list when more than one expression 
follows F I L, car of the first expression is not the name of a function, and every element in 
the first expression is atomic. For example. DWIM will supply (X) when correcting 
(F/L (PRINT (CDR X» (PRINT (CAR X»). 

If car of the form is IF, or one of the CLISP iterative statement operators, e.g., FOR, 
WHILE, DO et aI, or FETCH, REPLACE, MATCH, etc., the indicated transformation is 
performed, and the result returned as the corrected form.31 

4. If car of the form has a function definition, DWIM attempts spelling correction on car of the 
definition using as spelling list the value oflambdasplst, initially (LAMBDA NlAMBDA}.32 

* 5. If car of the form has an EXPR or CODE property, DWIM prints car of the form, followed by 
I UNSAVED', performs an unsavedef. and continues. No approval is requested. 

6. 

+ 31 

+ 
+ 
+ 
+ 

32 

33 

If car of the form has a property FIlEDEF,33 the definition is to be found on a file. If the 

This transfonnation is keyed by putting on the property list of car of the fonn. e.g. IF, WHILE. FETCH. under the 
property CLISPWORD. a list car of which is the atom IFWORD. FORWORD. RECORDWORD. etc. Any other value for 
9!~ of this property is simply applied to the faulty fonn. and the value returned used as the corrected fonn. This 
provides a way of defining new transfonnations keyed by car of the fonn without having to use the more general 
dwimuserfonnJi mechanism. 

The user may wish to add to lambdJ!~ if he elects to define new "function types" via an appropriate 
dwimuscrfonns entry. For example. the QlAMBOAs of SR[,s QLISP are handled in this way. 

except when dwimifying. 

17.12 



Error Correction 

value of the property is atomic, the entire file is to be loaded. If a list, car is the name of the 
file and cdr the relevant functions, and loadfns will be used. For both cases, ldflg will be * 
SYSLOAO (see Section 14). DWIM uses findfile (described later), so that the file can be on * 
any of the directories on directories, initially (NIL NEWLISP LISP LISPUSERS). If the * 
file is found. DWIM types "S HA L L I LOAD" followed by the file name or list of functions. * 
If the user approves, DWIM loads the function(s) or file, and continues the computation. * 

7. If CLISP is enabled, and car of the form is part of a CLISP construct, the indicated 
transformation is performed, e.g., (N~N -1) bec?mes (S ETQ N (SUB 1 N». 

8. If car of the form contains an 8" DWIM assumes a left parenthesis was intended 
e.g., (CONS8CAR X). 

9. If car of the form contains a 9, DWIM assumes a right parenthesis was intended. 

10. If car of the form is a list, DWIM attempts spelling correction on caar of the form using 
lambdasplst as spelling list. If successful, DWIM returns the corrected expression itself. 

11. If car of the form is a small number, and the error occurred in type-in, DWIM assumes the 
form is really an edit command and operates as described in case 6 of unbound atoms. 

12. If car of the form is an edit command (a member of editcomsl), DWIM operates as in 11. 

13. The expressions on dwimuserforms are evaluated in the order they appear, and if any returns * 
a non-N I L value, this value is treated as the corrected form, i.e. it is evaluated and OWl M * 
returns its value. * 

14. Otherwise, DWIM attempts spelling correction using spellings2 as the spelling list. When 
dwimifying, DWlM also attemps spelling correction on function names not defined but 
previously encountered, using nofixfnslst as a spelling list. 

If all fail, DWIM gives up. 

UNDEFINED FUNCTION IN APPLY 

1. If the function has a definition, DWIM attempts spelling correction on £ill: of the definition 
using lambdasplst as spelling list. 

2. If the function has an EXPR or CODE properly, DWIM prints its name followed by 
I UNSAVED I I performs an unsavedef and continues. No approval is requested. 

17.13 

* 



Section 17: Automatic Error Correction - Do What! Mean 

3. If the function has a property FILEOEF. DWIM proceeds as in case 6 of undefined car of 
form. 

4. If the error resulted from type-in, and CLlSP is enabled, and the function name contains a 
CLlSP operator, DWIM performs the indicated transformation, e.g., the user types 
FOO~(APPEND FIE FUM). 

5. If the function name contains an 8, DWIM assumes a left parenthesis was intended, e.g., 
EDIT8FOO]. ' 

6. If the "function" is a list, DWIM attempts spelling correction on car of the list using 
lambdasplst as spelling list 

7. If the function is a number and the error occurred in type-in, DWIM assumes the function is 
an edit command, and operates as described in case 6 of unbound atoms, e.g., the user types 
(on one line) 3 -1 P. 

8. If the function is the name of an edit command (on either editcomsa or editcomsl), DWIM 
operates as in 7, e.g., user types F COND. 

* 9. The expressions on dwimuserforms are evaluated in the order they appear, and if any returns 
a non-N I L value, this value is treated as the function used to continue the computation, i.e., it 
will be applied to its arguments. 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

10. Otherwise DWIM attempts spelling correction using spellings1 as the spelling list, 

11. Otherwise DWIM attempts spelling correction using spellings2 as the spelling list. 

If all fail, DWIM gives up. 

17.5 DWIMUSERFORMS 

Dwimuserforms provides a convenient way of adding to the transformations that DWIM performs, 
e.g., the user might want to change atoms of the form $X to (QA4LOOKUP X). DWIM will 
evaluate each expression on dwimuserforms in the order they appear before attempting spelling 
correction, but after performing its other transformations, e.g., F I L, 8, 9, CLlSP, etc. If any 
expression returns a non-N I L value, this value is treated as a form to be evaluated, and is 
evaluated and the resulting value returned as the value of faulteval, or, in the case of an undefined 
function in !!pp!y, this value is treated as a function to be applied to faultargs, and the resulting 
value is returned as the value of faultapply. Otherwise, if all return NIL, DWIM proceeds as when 
dwimusertorms = NIL, and attempts spelling correction. Note that in the event that an expression 
on dwimuserforms is to handle the correction, it is also responsible for any modifications to the 

17.14 



original expression,34 i.e., DWIM simply takes its value and rcturns it. 

In ordcr for an expression on dwimuserforms to bc ablc to bc effective, it needs to know various 
things about the context of the error. Therefore, sevcral of DWIM's intcrnal variablcs have been 
madc SPECV ARS (sce Section 18) and are thereforc "visiblc" to dwimuscrforms. Bclow are a list 
of thosc variables that may be useful. 

faultx 

faultargs 

faultapplytlg 

tail 

parent 

type-in? 

faultfu 

dwimifyflg 

expr 

for unbound atoms and undefincd car of form, faultx is the atom or 
form. For undefined functions in rumlY, faultx is the name of the 
function. 

for undefined functions in mmlY, faultargs is the list of arguments. 
faultargs may be modified or reset by expressions on 
dwimuserfonils. 

is T for undefined functions in~. (Since faultargs may be NIL, 
faultapplytlg is necessary to distinguish between unbound atoms 
and undefined function in ~, since faultx is atomic in both 
cases). l11e value of faultapplytlg after an expression on * 
dwimuserforms returns a non-N I L value determines how the latter * 
value is to be treated. Thus, following an undefined function in * 
mm!Y, i.e. when fauJtapplytlg is T, an expression on dwimuserforms * 
can construct and return an expression to be treated as a form to * 
be evaluated, rather than a function to be applied, by first setting * 
faultapplyflg to NI L. * 

for unbound errors, tail is the tail car of which is the unbound 
atom. Thus dwimuserfn can replace the atom by another 
expression by performing (lRPLACA TAIL expr) 

for unbound atom errors, parent is the form in which the unbound 
atom appears, i.e.. tail is a tail of parent. 

true if error occurred in type-in. 

name of function in which error occurred. (faultfu is TYPE-IN 
when the error OCCUrred in type-in, and EVAL or APPLY when the 
error occurred under an explicit call to EVAL or APPLY). 

true if error was encountered during dwimifying as opposed to 
during running the program. 

definition of faultfu. or argument to eval, i.e., the supcrform in 
which the error occurs. 

The initial value of dwimuserforms is « MACROTRAN) (DWIMLOADFNS?». macrotran is a + 
package for running interpreted programs containing assemble statements or calls to "functions" + 

34 i.e. dwimuscrfonns should make the ttansfonnation pcnnanent. either by associating it with faultx via clisptran. or by + 
physically smashing faultx. .+ 

17.1S 



Section 17: Automatic Error Correction· Do What I Mean 

+ defined only by MACRO properties. It is described in Section 18. dwimloadfns? is a package for 
+ automalical1y loading functions from files. If dwimloadfhstlg is T (its initial value), and car of the 
+ form is the name of a function, and tile function is contained on a file that has been noticed by the 
+ file package, the function is loaded, and the computation continues. 

17.6 SPELLING CORRECTOR ALGORITHM 

The basic philosophy of DWIM spelling correction is to count the number of disagreements 
between two words, and use tilis number divided by the length of tile longer of the two words as a 
measure of tildr relative disagreement. One minus this number is then the relative agreement or 
closeness. For example, CONS and CONX differ only in their last character. Such substitution 
errors count as one disagreement, so that the two words are in 75% agreement Most calls to the 
spelling corrector specify a relative agreement of 70,35 36 so that a single substitution error is 
permitted in words of four characters or longer. However, spelling correction on shorter words is 
possible since certain types of differences such as single transpositions are not counted as 
disagreements. For example, AND and NAD have a relative agreement of 100. 

The central function of the spelling corrector is chooz. chooz takes· as arguments: a word, a 
spelling list, a minimum relative agreement. and an optional functional argument, xword, sp1st, reI, 
and fn respectively.37 

chooz proceeds down splst examining each word. Words not satisfying fn. or those obviously too 
long or too short to be sufficiently close to xword are immediately rejected. For. example, if 
rel=70, and xword is 5 characters long. words longer than 7 characters will be rejected.38 

If tword, the current word on splst, is not rejected, chooz computes the number of disagreements 
between it and xword by calling a sub function, skor. 

skor operates by scanning both words from left to right one character at a time.39 Characters are 
considered to agree if they are the same characters; or appear on the same teletype key (Le., a shift 
mistake), for example, * agrees witil :, 1 witil !,4O etc.; or if tile character in xword is a lower case 

35 Integers between 0 and 100 are used instead of numbers between 0 and 1 in order to avoid floating point arithmetic. 

+ 36 
+ 

Calls to the spelling corrector from DWIM use the value of fixspellrel, which is initially 70. Note that by setting 
fixspellrel to 100, only spelling corrections with "zero" mistakes, will be considered, e.g. transpositions. double 
characters, etc. as described below. + 

37 

38 

39 

40 

m=NILisequivalenttom=(LAMBDA NIL T). 

Special treatment is necessary for words shorter than xword, since doubled letters are not counted as disagreements. 
For example, CONNSSS and CONS have a relative agreement of 100. (Certain teletype diseases actually produce this 
sort of stuttering.) chooz handles this by counting the number of doubled characters in xword before it begins 
scanning splst, and taking this into account when deciding whether to reject shorter words. 

~or actually operates on the list of character codes for each word. This list is computed by chooz before calling skor 
using dchcon, so that no storage is used by the entire spelling correction process. 

For users on model 33 teletypes, as indicated by the value of mode133flg being T, @ and P appear on the same key, 
as do L and I, Nand L. and 0 and", and DWlM will proceed accordingly. The initial value for .!flode133flg is NIL. 
CerL1in other terminals, e.g .. Anderson Jacobs temlinal, have keyboard layouts similar to the model 33, i.e., N on 
same key as t, etc. In this case, the user might also want to set mode133flg to T, 

17.16 



Spelling Corrector Algorithm 

version of the character in two rd. Characters that agree are discarded, and the skoring continues 
on the rest of the characters in xword and tword. 

If the first character in xword and tword do not agree, skor checks to see if either character is the 
same as one previously encountered, and not accounted-for at that time. (In other words, 
transpositions are not handled by lookahead, but by lookback.) A displacement of two or fewer 
positions is counted as a tranposition; a displacement by more than two positions is counted as a 
disagreement. In either case, both characters are now considered as accounted for and are 
discarded, and skoring continues. 

If the first character in xword and tword do not agree, and neither agree with previously 
unaccounted-for characters, and tword has more characters remaining than xword, skor removes 
and saves the first character of tword, and continues by comparing the rest of tword with xword as 
described above. If tword has the same or fewer characters remaining than xword, the procedure is 
the same except that the character is removed from xword.41 In this case, a special check is first 
made to sec if that character is equal to the previous character in xword, or to the next character in 
xword, i.e., a double character typo, and if so, the character is considered accounted-for, and not 
counted as a disagreement. 42 

When skor has finished processing both xword and tword in this fashion, the value of skor is the 
number of unaccounted-for characters, plus the number of disagreements, plus the number of 
tranpositions, with two qualifications: (1) if both xword and tword have a character unaccounted-for 
in the same position, the two characters are counted only once, i.e., substitution errors count as 
only one disagreement, not two; and (2) if there are no unaccounted-for characters and no 
disagreements, transpositions are not counted. This permits spelling correction on very short 
words, such as edit commands, e.g., XRT->XTR. 43 

17.7 DWIM FUNCTIONS AND VARIABLES 

dwim[x] Ifx=NIl, disables DWIM; value is NIL. Ifx=C. enables DWIM 
in cautious mode; value is CAUTI OUSt If x = T. enables DWIM in 
trusting mode; value is TRUSTING. For all other values of !. 
generates an error. 

dwimify[x;quietflg] ! is a form or the name of a function. dwimify performs all 
corrections and transformations that would occur if ! were actually 
run, and prints the result unless guietflg = T. dwimify is undoable. 

41 

42 

43 

Whenever more than two characters in either xword or tword are unaccounted for. skoring is aborted. i.e., xword 
and tword are considered to disagree. 

In this case. the "length" of xword is also decremented. Otherwise making xword sufficiently long by adding double 
characters would make it be arbitrarily close to tword. e.g .. XXXXXX would correct to PP. 

Transpositions are also not counted when fastypeJJg=T. for example. IPULX and IPLUS will be in 80% agreement 
with .fu!i!yp~ng = T. only 60% with f1stypcflg =0 NIL. The rationale behind this is that transpositions are much more 
common for fast typiSts. and should not be counted as disagrcements. whereas more deliberate typists are not as 
likely to combinc tranposiLions and other mistakes in a single word. and therefore can use more conservative metric. 
fu.:i!1'P~JJg is initially NIL. 

17.17 

* 



ow . 

addspell[x;splst;n] 

Section 17: Automatic Error Correction - Do What I Mean 

edit macro. dwimifies current expression. 

Adds! to one of the four spelling lists as follows:44 

If splst=NIL, adds! to userwords and to spellings2. Used by 
defineg. . 
If splst = 0, adds ! to userwords. Used by load when loading exprs 
to property lists. 
If ~=l, adds! to spellingsl (at end of pennanent section). 
Used by lispx. 
If ~=2, adds! to spellings2 (at end of pennanent section). 
Used by lispx. 
If splst = 3, adds! to userwords and spellings3. 

splst can also be a spelling list, in which case !! is the (optional) 
length of the temporary section. 

addspeU sets lastword to ! when ~= NIL. 0 or 3. 

If! is not a literal atom, addspell takes no action. 

+ Note that the various systems calls to addspell, e.g. from define, edit£, loag, etc., can all be 
+ suppressed by setting or binding addspcllflg to NIL. 

+ 

misspelled?[x word;rel;splst; flg; tai1;fn] 
If x word = NIL or esc, misspelled? prints = followed by the value 
Of lastword. and returns this as the respelling, without asking for 
approval. Otherwise, misspelled? checks to see if xword is really 
misspclled, i.e., if fn applied to xword is true. or xword is already 
contained on splst. In this case, misspelled? simply returns xword. 
Otherwise misspelled? computes and returns 
fixspell[xword;rel;splst;flg;tail;fn). 

fixspell[xword;rel;splst; flg; tail; fn; ticflg;dontmovetopflg;-;-] 
The value of fixspell is either the respelling of xword or NIL. 45 
fixspeU perfonns all of the interactions described earlier, including 
requesting user approval if necessary. 

44 

45 

If xword= NI L or $ « esc », the respelling is. the value of 
lastword, and no approval is requested. 

If xword contains lowercase characters, and the corresponding 

If! is already on the spelling list. and in its temporary section. addspell moves! to the front of that section. See 
page 17.9 for complete description of algorithm for maintaining spelling lists. 

If for some reason xwo!~ itself is on ~t. then .!lx~] aborts and. calls error!. If there is a possibility that xword is 
spelled correctly. misspelled? should be used instead of lixspell. 

17.18 



DWIM Functions and Variables 

uppercase word is correct, i.e. on splst or satisfies fn, the uppercase + 
word is returned and no interaction is performed. + 

If reI = NIL, defaults to value of fixspellre1 (initially 70). + 

If f!g = NIL, the correction is handled in type-in mode, i.e., 
approval is never requested. and xword is not typed. If f!g=T, 
xword is typed (before the =) and approval is requested if 
approveflg = T. If f!g = NO -M ESSAG E, the correction is returned + 
with no further processing.46 + 

If tail is not NIL, and the correction is successful, car of tail is 
replaced by the respelling (using /rplaca). In addition, fixs¥ell will 
correct misspellings caused by running two words together.4 In this 
case, car of tail is replaced by the two words, and the value of 
fixspell is the first one. For example, if fixspell is called to correct 
the edit command (MOVE TO AFTERCONO 3 2) with 
tail = (AFTERCONO 3 2), tail would be changed to 
(AFTER COND 2 3). and fix spell would return AFTER (subject 
to user approval where necessary).48 

If tieflg = NIL and a tie occurs, i.e., more than one word on splst is 
found with the same degree of "closeness", fixspell returns NIL, 
i.e., no correction. If tieflg=PICKONE and a tie occurs, the first 
word is taken as the correct spelling. If tieflg= LIST, the value of 
fix spell is a list of the respellings (even if there is only one), and 
fixspell will not perform any interaction with the user, nor modify 
tail, the idea being that the calling program will handle those tasks. 
Similarly, if tieflg= EVERYTHING, a list of all candidates whose + 
degree of closeness is above reI will be returned, regardless of + 
whether some are better than others. No interaction will be + 
performed. + 

If dontmovetopflg = T and a correction occurs. it will not be moved + 
to the front of the spelling list. + 

The time required for a caU to fix spell with a spelling list of length 60 when the entire list must be 
searched is .5 seconds. If fixspell determines that the first word on the spelling list is the respelling 
and does not need to search any further, the time required is .02 seconds. In other words, the 
time required is proportional to the number of words with which xword is compared, with the time 

46 

47 

48 

In this case, a run-on correction will be returned as a dotted pair of the two parts of the word, and a synonym + 
correction as a list of the form (wordl word2), where wordl is (the corrected version of) xword, and word2 is the + 
synonym. Note that the effect of the function chooz (documented in previous manuals but no longer available) can + 
be obtained by calling fix spell with .tlg=NO-MESSAGE. + 

In this case, user approval is always requested. In addition, if the first word contains either fewer than 3 characters, 
or fewer characters than the second word, the default will be N. 'Run-on' spelling corrections can be suppressed by 
setting the variable runonng to NIL (initially T). 

If ~1tl = T. fix~~!! will also perform run-on corrections. returning a dotted pair of the two words in the event the 
correction is of this type. 

17.19 



+ 
+ 

+ 
+ 
+ 

+ 
+ 

+ 

Section 17: Automatic E"or Co"ection - Do What I Mean 

for one comparison, i.e., one calllo skor takes roughly .01 seconds (varies slightly with the number 
of characters in the words being. compared). 

dwimflg 

fixspeUret 

fixspeUdefault 

·dwimwait 

addspellflg 

nospeUflg 

runonflg 

if NIL, suppresses all dwim operations. 

default for reI on calls to fixspell when rel=NIL (most system calls 
to fixspell specify rel=NIl). Initial value is 70. 

if approval is requested for a spelling correction, and user does not 
respond, defaults to value ... of fuspelldefault initially Y. 
fixspeUdefault is rebound to N when dwimifying. 

number of seconds before dwim assumes the user is not going to 
respond to a question and uses the default response. 

if NIL, suppresses calls to addspell. Initially T .. 

if {. suppresses all spelling correction. If some other non-NIL 
value, suppresses speUing correction in programs but not type-in. 
nospellflg is initia11y NIL. It is rebound to T when compiling from· 
a file. . 

if NI L, suppresses run-on speUing corrections. Initialy T. 

+ dwimuserforms 
+ 

allows user to specify his own corrections or transformations. Initial 
value is (( MACROTRAN) (DWIMLOADFNS1». See page 17.14. 

+ dwimloadfnsflg 
+ 

if T, te11s DWIM when it encounters a call to an undefined function 
contained on a file that has been noticed by the file package~to 
simply load the function. dwimloadfnsflg is initially T. Seepage 
17.16. 

+ 
+ 

fncheck[fn;noerrorflg;spellflg;propflg;tail] 

49 

The task of fncheck is to check whether fn is the name of a 
function and if not, to correct its spelling.49 If fn is the name of a 
function or spelling correction is successful, fncheck adds the 
(corrected) name of the function to userwords using addspell. and 
returns it as its value. 

Since fnchcck is calted by many low level functions such as arg1i~ unsavedef. etc.. spelling correction only takes 
place when dwiml1g=T. so that these functions can operate in a smalt Intcrlisp system which docs not contain 
DWIM. 

17.20 



DWIM Functions and Variables 

noerrorflg infonns fncheck whether or not the calling function 
wants to handle the unsuccessful case: if noerrorflg is T. fncheck 
simply rcturns NIL, otherwise it prints f n NOT A FUNCTI ON and 
gencrates a non-breaking error. 

If fn docs not have a definition, but docs have an EXPR property, 
then spelling correction is not attempted. Instead, if proptlg = T, fn 
is considercd to be the name of a function, and is returned. If 
propflg = NIL, fn is not considered to be the name of a function, 
and NIL is returned or an error generated, depending on the value 
of noerrorflg. 

fncheck caUs misspelled? to perfonn spelling correction, so that if 
fn = NIL. the value of lastword will be returned. spellflg 
corresponds to misspeUed?,s fourth argument, !}g. If spellflg= T • 
approval will be asked if DWIM was enabled in CAUTIOUS mode, 
i.e., if approveflg = T. tail corresponds to the fifth argument to 
misspelled? . 

fncheck is currently used by arglist, unsavedef, prettyprint, breakO. breakin. advise, calls. and edita. 
For example, breakO calls fncheck with noerrorflg=T since if fncheck cannot produce a function, 
breakO wants to define a dummy one. calls however calls fncheck with noerrorflg = NIL, since it 
cannot operate without a function. 

Many other system functions call misspell cd? or fixspell directly. For example. breakl calls fixspeU 
on unrecognized atomic inputs bcfore attempting to evaluate them, using as a spelling list a list of 
all break commands. Similarly, lispx calls fixspell on atomic inputs using a list of all lispx 
commands. When unbreak is given the name of a function that is not broken, it calls fixspell with 
two different spclling lists, first with brokenfns, and if that fails. with userwords. makefile calls 
misspelled? using filelst as a spelling list. Finally, load, bcompl, brecompile, tcompl, and recompile 
all call misspelled? if their input file(s) won't open. 

spellfile[file;noprintflg;nsflg] if file does not have a directory field, speUfile looks on the + 
directories given by the value of directories, initially (N I L LI S P ). + 
(NIL corresponds to login directory.) This correction will not + 
rcquire user approval, (but spcllfile will indicate the correction in + 
the usual way, by printing = followcd by the new file name). + 
Otherwise, spellfile attempts spelling correction against the files in + 
the directory. In this case, user approval will be requested (except + 
if nprinttlg= T, see below). Value is corrected file, if any, otherwise + 
NIL. + 

findfile[file;nsflgJ 

If noprintflg = T, spellfile does not do any printing, nor ask for + 
approval. + 

If nsflg=T (or nospcllflg=T), no spelling correction is attempted, + 
though scarching through directories will stiU be perfonned. + 

If file is not the name of a file, calls spell file specifying no + 
interaction or printing, i.e. findfile is defined as + 
(OR (INFILEP FILE) (SPELLFILE FILE T NSFLG». + 

17.21 



Section 17: Automatic Error Correction - Do What I Mean 

17.8 ASKUSER 

DWIM, the compiler, the editor, and many other system packages all use askuser, an extrCn'lely 
general user interaction package, for their interactions with the user at the terminal. askuser takes 
as its principal argument a keylst which is used to drive the interaction. kcylst specifies what the 
user can type at any given point, how askuser should respond to the various inputs, what value 
should be returned by askuser, and is also used to present the user at any given point with a list of 
the possible responses. ask user also takes other arguments which permit specifying a wait time, a 
default value, a message to be printed on entry, a flag indicating whether or not typeahead is to be 
permitted, a flag indicating whether the transaction is to be stored on the history list (Section 22), a 
default set of options, and an (optional) input file/string. 

ST A RTU P PROTOCOL 

Interlisp permits and encourages the user to typeahead; in actual practice, the user frequently does 
this. This presents a problem for askuser: when askuser is entered and there has been typeahead, 
was the input intended for askuser, or was the interaction unanticipated, and the user simply typing 
ahead to some other program, e.g. the programmer's assistant? Even where there was no typeahead, 
i.e., the user starts typing after the call to askuser, the question remains of whether the user had 
time to see the message from askuser and react to it, or simply began typing ahead at an 
inauspicious moment. Thus, what is needed is an interlock mechanism which warns the user to 
stop typing, gives him a chance to respond to the warning, and then allows him to begin typing to 
askuser. 

Therefore, when askuser is first entered, and the interaction is to take place with a terminal, and 
typeahead to askuser is not permitted, the following protocol is observed: 

(1) If there is typeahead, askuser clears and saves the input buffersso and rings the bell to warn 
the user to stop typing. 

(2) Ifmess, the message to be printed on entry, is not NIL (the typical case), askuser then prints 
mess if it is a string, otherwise £ill: of~, if ~ is a list. 

(3) After printing mess or car of mess, askuser waits until the output has actually been printed on 
the terminal to make sure that the user has actually had a chance to see the output. 'Ibis also 
give the user a chance to react. askuscr then checks to see if anything additional has been 
typed in the intervening period since it first warned the user in (1). If something has been 
typed, askuser clears it out and again rings the bell. This latter material, i.e., that typed 
between the entry to askuser and this point, is discarded and will not be restored since it is 
not certain whether the user simply reacted quickly to the first warning (bell) and this input is 
intended for askuser, or whether the user was in the process of typing ahead when the call to 
ask user occurred, and did not stop typing at the first warning, and therefore this input is a 
continuation of input intended for another program. 

Anything typed after (3) is considered to be intended for askuser, i.e., once the user sees mess or 
car of mess, he is free to respond. For example, UNDO (Section 22) calls askuser when the 

50 The buffers wiII be restored when askuser completes operation and returns._ 

17.22 



AskUler 

number of undosaves are exceeded for an event with mess:;::: (LIST HUNDOSAVES "undosaves. 
continue saving"). Thus, the user can type a response as soon as the value of #undosaves is 
typed. 

(4) askuser then types the rest of mess, if any, and 

(5) then goes into a wait loop until something is typed. If wait, the wait time, is not NI L, and 
nothing is typed in wait seconds, askuser will type " ... " and treat the elements of default, the 
default value, as a list of characters, and begin processing them exactly as though they had 
been typed. If the user does type anything within wait seconds, he can then wait as long as he 
likes, i.el once something has been typed, askuser Will not use the default value specified in 
default.5 

If the calling program knows that the user is expecting an interaction with askuser, e.g. another 
interaction preceded this one, it can specify in the call to. askuser . that typeallead is permitted, In 
this case, askuser simply notes whether there is any typeahead,52 then prints mess and goes into a 
wait loop as described above. 

Finally, if the interaction is not with the terminal, i.e., the optional input file/string is specified, 
askuser simply prints mess and begins reading from the file/string. 

OPERATION 

All input operations are executed with a terminal tableS3 in which (1) control[T) has been executed, 
so that askuser can interact with the user after each character is typed; and (2) echomode[NIL) has 
been executed, so that askuser can decide after it reads a character whether or not the character 
should be echoed, and with what, e.g. unacceptable inputs are never echoed. 

As each character is typed, it is matched against keylst, and appropriate echoing and/or prompting 
is performed. If the user types an unacceptable character, askuser simply rings the bell and allows 
him to try again. 

At any point, the user can type 154 and. receive a list of acceptable responses at that point 
(generated from keylst), or type a control-a, control-q. control-x, or del,55 which causes askuser to 
reinitialize, and start over. 

When an acceptable sequence is completed, askuser returns the indicated value. 

51 

52 

53 

54 

55 

If the user wants to consider his response for more than wait seconds,. and does not want askuser to default. he. can 
type a carriage return or a space, which are ignored if they are not specified as acceptable inputs by ~ (see 
below) and they are the first thing typed. 

In this case. if the typeahead turns out to contain unacceptable input. askuser will assume that the typeahead was not 
intended for askuser. and will restore the typeahead when it completes operation and returns. . 

The name of this tenninal table is askuserttbl 

Unless? itself is an acceptable input. i.e., it matches one of the keys on keylst. 

Unless these characters are acceptable inputs, and assuming del is not an interrupt character so that it is, in fact, seen 
by~. 

17.23 



Section 17: Automatic Error Correction - Do What I Mean 

FORMAT OF KEVLST 

keylst is a list of elements of the form (key promptstring . options), where ill is an atom or a 
string (equivalent). promptstring is an atom or a string. and options a list of options in property list 
format. The following options are recognized and explained below: KEVLST, CONFIRMFlG, 

+ PROMPTCONFIRMFLG, NOCASEFLG, RETURN, EXPLAINSTRING, NOECHOFlG, 
KEYSTRING, PROMPTON, COMPLETEON, AUTOCOMPLETEFLG. If an option is specified in 
options, the value of the option is the next element. Otherwise, if the option is specified in 
optionslst (the seventh argument to askuser), its value is the next element on optionslst. Thus, 
optionslst can be used to provide default options for an entire keylst. rather than having to include 
the option at each level. If an option does not appear on either options or optionslst, its value is 
NIL. 

For convenience. an entry on keylst of the form (key. atom/string) can be used as an abbreviation 
for (key atom/string CONFIRMFLG T),and an entry of just the form key, i.e., a non-list, as an 
abbreviation for (key NIL CONFIRMFLG T). 

As each character is read, it is matched against the currently active keys. A character matches a key 
+ if it is the same character as that in the corresponding position in the key, or, if the character is an 
+ alphabetic character, if the characters are the same without regard for upper/lower case differences. 
+ i.e. 'A' matches 'a' and vice versa.56 In other words, if two characters have already been input 

and matched, the third character is matched with each active key by comparing it with the third 
character of that key. If the character matches with one or more of the keys, the entries on keylst 
corresponding to the remaining keys are discarded. If the character does not match with any of the 
keys, the character is not echoed, and a bell is rung instead. 

When a key is complete, promptstring is printed (N I L is equivalent to It", the empty string. i.e., 
nothing will be printed). 1benj if the value of the CONFIRMFLG option is T, askuser waits for 
confirmation of the key by a,}5 or space. Otherwise, the key does not require confirmation. 

Then, if the value of the KEVLST option is not NIL, its value becomes the new keylst, and the 
process recurses. Otherwise, the key is a "leaf," i.e., it terminates a particular path through the 
original, top-level keylst, and askuscr returns the result of packing all the keys that have been 
matched and completed along the way (unless the RETURN option is used to specify some other 
value, as described below). 

For example, the following keylst is the default keylst, i.e., is used when askuser is called with 
keylst=NIL: ((V "es,}II) (N " o,}"» 
This keylst specifies that if (as soon as) the user types V (or y), askuser echoes with V, prompts 
with "as .l", and returns V as its value. Similarly, if the user types N, askuser echoes the N, prompts 
with "o'}", and returns N. If the user types 1, askuser prints: 

Yes 
No 

to indicate his possible responses. All other inputs are unacceptable, and askuser will ring the bell 
and not echo or print anything. 

+ 56 

57 

Unless the NOCASEFLG option (page 17.27) is T. 

,} is used throughout the discussion to denote carriage return. 

17.24 



Askuser 

Here is a more complicated example, the keylst used for the compiler questions (section 18.2): 

«ST "ore and redefine" KEYlST ("" (F . "orget exprs"» 
(S "arne as last timeff ) 

(F "File only") 
(T "0 terminal") 
1 
2 
(Y lies") 
(N "Oil» 

When askuser is called with this keylst, and the user types an S, two keys are matched: ST and S. 
The user can then type a T, which matches only the ST key, or confirm the S key by typing a ,} or 
space. If the user confim1s the S key, askuser prompts with "arne as 1 as t time", and returns S 
as its value. (Note that the confirming character is not included in the value.) If the user types aT, 
askuser prompts with "ore and redef i ne", and makes {.If. (F . "orget exprs"» be the 
new keylst, and waits for more input. The user can then type an F, or confirm the ".. (which 
essentially starts out with all of its characters matched). If he confirms the '''', askuser returns ST 
as its value the result of packing ST and "". If he types F, askuser prompts with "orget 
exprs", and waits for confirmation again. If the user then confirms, askuser returns STF, the 
result of packing ST and F. 

As mentioned earlier, at any point the user can type a ? and be prompted with the possible 
responses. For example, if the user types S and then ? askuser will type: 

STore and redefine Forget exprs 
STore and redefine 
Same as last time 

COMPLETING A KEY 

The decision about when a key is complete is more complicated than simply whether or not all of 
its characters have been matched. In the example above, all of the characters in the S key are 
matched as soon as the S has been typed, but until the next character is typed, askuser does not 
know whether the S completes the S key, or is simply the first character in the ST key. Therefore, 
a key is considered to be complete when: 

(1) AU of its characters have been matched and it is the only key left, i.e., there are no other keys 
for which this key is a substring; or 

(2) AU of its characters have been matched and a confirming character is typed; or 

(3) All of its characters have been matched, and the value of the CONFIRMFLG option is NIL, 
and the value of the KEY LS T option is not NIL, and the next character matches one of the 
keys on the value of the KEYLST option; or 

(4) There is only one key left and a confirming character is typed. 

Note that if the value of CONFIRMFLG is T, the key still has to be con finned, regardless of 
whether or not it is complete. For example, if the first entry in the above example were instead 

17.25 



* 
* 

Section 17: Automatic Error Correction· Do What 1 Mean 

{ST "ore and redefine tf CONFIRMFLG T KEYLST {tftf (F . !torget exprstl», and 
the user wanted to specify the STF path. he would have to type ST, then confinnbcfore typing F. 
even though the ST completed the ST key by the rule incase (1). However, he would be prompted 
with "ore and redefine" as soon ashe typed the T, and completed the ST key. 

Case (2) says that confirmation can be used to complete a key in the case where it is a substring of 
another key, even where the value of CONFIRMFlG is NIL In this case, the confirming character 
doubles as both an indicator that the key is complete, and also to confirm it, if necessary •. This 
situation corresponds to typing S ~ in the above example. 

Case (3) says that if there were another entry whose key was STX in the above example, so that 
after the user typed ST, two keys, ST and STX, were still active, then typing F would complete the 
ST key, because F matches the (F • "orget exprs" ) entry on the value of the KEYLST 
option of the ST entry. In this case, "ore and redefine" would be printed before the .F was 
echoed. 

Finally, case (4) says that the user can usc confirmation to specify completion when only one key is 
left. even when . all of its characters have not been. matched. For example, if the first key in the 
above example were STORE, the user could type ST and then confirm, and ORE would be echoed, 
followed by whatever prompting was specified. In this case, theconfirmiilg character also confirms 
the key if necessary, so that no further action is required, even when the value ofCONFIRMFlG is 
T. 

Case (4) permits the user not to have to type every character in a key when the key is the only one 
left. Even when there are several active keys, the user can type type $ (the ESC key, or on some 
terminals, the key labelled Al T) to specify the next n>O common characters .among the currently 
active keys. The effect is exactly the same as though these characters had been typed. If there ate 
no common characters in the active keys at that point, i.e. n=O. the $ is treated as an incorrect 
input, and the bell is rung. For example, if keylst is (CLISPFLG CLISPIFYPACKFlG 
CLISPIFTRANFlG), and the user types C followed by $, askuser will supply the L, I. S, and P. 
The user can then type F followed by ~ or space to complete and confirm CLISPFlG, as per case 
(4), or type I, followed by $, and askuser will supply the F, etc~ Note that the characters supplied 
do not have to correspond to a terminal segment of any of the keys. Note also that the $ does not 
confirril the key, although it may complete it in the case that there is only one key active. 

If the user types a confirming character when several keys are left, the next .!}) 0 common 
characters are still supplied, the same as with $. However, askuser aSsumes the intent was to 
complete a key, i.e., case (4) is being invoked. Therefore, after supplying the next n characters, the 
bell is rung to indicate that the operation was not completed. In other words,· typing a confirming 
character has the same effect as typing an $ in that the next n common cliaI'acters are supplied. 
Then, if there is only one key left. the key is complete (case 4) and confirmation is not required. If 
the key is not the only key left. the bell is rung. 

OPTIONS 

KEYlST 

CONFIRMFLG 

When a key is complete, if the value of theKEYlST option is not 
NIL. this value becomes the new keylst and the process tecurses. 
Otherwise, the key terminates a path through the original, top-level 
keylst. and askuscr returns the indicated value. . 

If T, the key must be confirmed with either a ~ or a space. If the 
value of CONFIRMFlG is a list, the confinning character may be 
any member of the list. 

17.26 



l PROMPTCONFIRMFLG 

NOCASEFLG 

RETURN 

EXPLAINSTRING 

NOECHOFLG 

Ashser 

If T, whenever confillDation is required, the user is prompted with + 
the string " [confirm) It. + 

If T, says do not perform case independent matching on alphabetic + 
characters. If NIL, do perfollD case independent matching, i.e. • At + 
matches with 'a' and vice versa. + 

If non-NIL, eval of the value of the RETURN option is returned as 
the value of askuser. Note that different RETURN options can be 
specified for different keys. The variable answer is bound in askuser 
to the list of keys that have been matched. In other words, RETURN 
(PACK ANSWER) would be equivalent to what askuser normally 
does. 

If the value of the EXPLAINSTRING option is non-NIL, its value is 
printed when the user types a 7, rather than key + promptstring. 
EXPLAINSTRING enables more elaborate explanations in response 
to a 7 than what the user sees when he is prompted as a result of 
simply completing keys. See example below. 

If non-NIL, characters that are matched (or automatically supplied 
as a result of typing $ or confillDing) are not echoed, nor is the 
confillDing character, if any. The value of NOECHOFlG is 
automatically NIL when askuser is reading from a file or string. 
The decision about whether or not to echo a character that matches 
several keys is detellDinoo by the value of the NOECHOFLGoption 
for the first key. 

Example: one of the entries on the keylst used by addtofiles(section 14) is: 

(] "Nowhere~" NOECHOFLG T EXPLAINSTRING "] - nowhere. item is marked as 
a dummy~") 

When the user types ), askuser just prints "Nowhere~", i.e., the) is not echoed. If the user types 1. 
the explanation corresponding to this entry will be: 

] - nowhere. item is marked as a dummy 

KEYSTRING 

PROMPTON 

COMPLETEON 

If non-NIL, characters that are matched are echoed as though the 
value of KEYSTRING were used in place of the key. KEYSTRING 
is also used for computing the value returned. The main reason for 
this feature is to enable echoing in lowercase. 

If non-NIL, promptstring is printed only when the key is confirmed 
with a member of the value of PROMPTON. See example below. 

When a confirming character is typed, the n characters that are 
automatically supplied, as specified in case (4), arc echoed only 
when the key is confirmed with a member of the value of 
PROMPTON. 

The PROMPTON and COMPLETEON options enable the user to construct a keylst which will cause 

17.27 

- ----- ---- ------ --
-- ~"':<. 



Section 17: Automatic ErrorCo"ection - Do What I Mean 

astruser to emulate the action of the TENEX exec. The protocol followed by theTENEX eJ.ec is 
that the user can type' as many characters as he likes in specifying a coriunand. The command ~ 
be completed with aJ or space, in which case no further output is forthcoming, or with a$,jn 
which 'case the: rest ,of' the characters in the. command are echoed, followed by some prompting 
information. The following, kcylst would handle the TENEX COpy and CONNECT comands: 

«COPY" (FILE LIST) " P,ROMPTON ($) COMPtETEON ($) CONFIRMFLG ($» 
(CONNECT" (TO DIRECTORY) ~ PROMPTON ($) COMPLETEON ($) CONFIRMFLG($») 

AUTOCOMPLETEFlG Ifthe value of the AUTOCOMPLETEFLG option is not NIL, askuser 
will automatically supply unambiguous, characters whenever it .'can, 
i.e.,askuser acts as though $ ,were typed after each character (except 
that it does not ring the bell if there are no unambiguOu$ , 
characters). 

+ MACROCHARS 
+ 

value, is a list of, doUedpairs of, form (character. form). When 
character is typed, and it does not match any of the current keY$, 
form is evaluated and nothing else happens, i.e. the matching 
process stays where it is. For example, ? c(}uldhave ~, 
implemented using this option. Essentially MACROCHARS provides 
a read macro facility while inside of ask user (since askuser does 
reade's, read macros defined via the readtable are never invoked). 

+ 
+ 
+ 
+ 
+ 

" 

+ EXPLAINDELIMITER 
+ 

value is what is printed to delimit explanation iIi responSe to 1. 
Initially "J" but can be reset, e.g. to ", ", for more linear output. 

SPECIAL KEYS 

& can be used as a key to match with any single character, provided the character does not match 
with some other key at that leve1. For the purposes of echoing and returning a value, the effect is 
the same as though the character that were matched actually appeared as the key. 

$ (esc) can be used as a key to match with the result of a single call to read. For example, if the 
first entry in the TENEX keylst above were: 

(COPY" (FILE LIST) .. PROMPTON ($) COMPLETEON ($) CONFIRMFLG (S) 
KEYLST «$ NIL RETURN ANSWER») 

then if the user typed COP{space}FOOJ, (COpy FOO) would be returned as the value of 
askuser. One advantage of using $, rather than having the calling program perform the read. is that 
the call to read ,from inside askuser, is errorset protected, so that the user can back out of this path 
and reinitialize askuser,e.g. to change from a COpy command to a CONNECT command, simply by 
typing control-E. 

+ $$ can be used as a key to match with the result of a single call to readline. 

+ A list can be used as a key, in which case the lisVform is evaluated and its value "matches" the 
+ key. This feaLure is provided primarily as an escape hatch for including arbitrary input operations 
+ as part of an askuser sequence. For example, the effect of $$ could be achieved simply byusip$, . 

17.28 



Askuser 

(READLINE T) as a key.58 

"" can be used as a key. Since it has no characters, all of its characters are automatically matched. 
"" essentially functions as a place marker. For example, one of the entries on the keylst used by 
addtofiles is: 

("" "Fila/list: "EXPLAINSTRING 
"a file name or name of a function list" KEYLST ($» 

Thus. if the user types a character that does not match any of the other keys on the keylst, then 
the character completes the "" key, by virtue of case (4), since the character will match with the $ 
in the inner keylst. askuser then prints "F i 1 e / 1 i s t: " before echoing the character, then calls 
read. The character will be read as part of the read. The value returned by askuser will be the 
value of the read. 

askuser[wait;default;mess;keylst;typeahead;lispxprntflg;optionslst;file] 
wait is either NIL or a number (of seconds). default is a single 
character or a sequence (list) of characters to be used as the default 
inputs for the case when wait is not NIL and more than wait 
seconds elapse without any input. In this case, the character(s) from 
default are processed exactly as though they had been typed, except 
that askuser first types " ... ". 

mess is the initial message to be printed by askuser. if any, and can 
be a string, or a list. In the latter case, each element of the list is 
printed, separated by spaces, and terminated with a " ? ". keylst 
and optionslst were described earlier. typeahead is T if the user is 
permitted to typeahead a response to askuser. NIL means any 
typeahead should be cleared and saved. lispxprntflg determines 
whether or not the interaction is to be recorded on the history ·1ist. 
file can be either NIL (in which case it is set to T). the name of a 
file, or a string.59 All input operations take place from file until an 
unacceptable input is encountered, i.e., one that does not conform 
to the protocol defined bykeylst. At that point, file is set to T, 
default is set to NIL, the input buffer is cleared, and a bell is rung. 
Unacceptable inputs are not echoed. 

The value of askuser is the result of packing all the keys that were 
matched, unless the RETURN option is specified (page 17.27). 

+ 

makekeylsl[lst;defaultkey;1caseflg] + 

58 

59 

1st is a list of atoms or strings. makekeylst returns an askuser keylst + 
which will permit the user to specify one of the elements on 1st by + 

For S. $S. or a list, if the last character read by the input operation is a separator. the character is treated as a + 
confinning character for the key. However, if the last character is a break character, it will be matched against the + 
~- + 
If file is a string. and all of its characters are read before askus£! finishes. file will be reset to T. and the intcmction 
will continue with ask user reading from the tenninal. 

17.29 



+ 
+ 
+ 

Section 17: Automatic Error Correction· Do What 1 Metln . 

either typing enough characters to make the choice unambiguous. 
or else typing a number between 1.and:!l. where . .!! is the length of 
1st 

+ For example, if askuser is called with keylst=makekeylst[(CONNECT SUPPORT COMPllE)1 then 
+ the user can type C-O-N, S. C-O-M, 1, 2. or 3 to indicate one of the three choices. 

+ 
+ 
+ 
+ 
+ 
+ 

If lcascflg = T. then echoing of upper case elements will be in lower· 
case (but the value returned will still be one of the elements of!m. 
If defaultkeyis non-NIL, it will be the last key on the keylst. 
Otherwise, . a key· which permits the user to indicate "No - none of 
the above"· choices, in which case the value returned by askuser Wilt 
be NIl. 

17.30 



Index for Section 17 

ADDSPELL[X;SPLST;N] ............................ . 
ADDSPELLFLG (dwim variable/parameter) .......... . 
AMBIGUOUS (printed by dwim) .................... . 
approval (of DWIM corrections) ................. . 
APPROVEFLG (dwim variable/parameter) ........... . 
ASKUSER[WAIT;DEFAULT;MESS;KEYLST;TYPEAHEAD; 

LISPXPRNTFLG ;OPTIONSLST; FILE] ........... . 
ASKUSERTTBL (dwim variable/parameter) .......... . 
AUTOCOMPLETEFLG (askuser option) ............... . 
bells (printed by dwim before an interaction) 
BREAKCHECK[ERRORPOS;ERXN] ................. ~ .... . 
BREAK1[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] NL 
BROKENfNS (break variable/parameter) ........... . 
CAUTIOUS (OWIM mode) ........................... .. 
CHOOl[XWORD;REL;SPLST;TAIL;FN;TIEFLG;NDBLS;CLST] .. 
CLISP ...........................•............... 
CLISPWORD (property name) ...................... . 
COMPLETEON (askuser option) .................... . 
CONFIRMFLG (askuser option) .................... . 
CONTINUE WITH T CLAUSE (printed by dwim) ....... . 
control-E ......................•................ 
DIRECTORIES (system variable/parameter) ........ . 
DONTMOVETOPFLG (dwim variable/parameter) ....... . 
OW (edit command) .............................. . 
OWIM ............................•...•........... 
DWIM[X] ........................................ . 
DWIM interaction with user ..................... . 
DWIM variables ................................. . 
DWIMFlG (dwim variable/parameter) .............. . 
OWIMIFY[X ;QUIETFlG; L] .......•....•..•........... 
DWIMLOAOFNSFLG (dwim variable/parameter) ....... . 
OWIMLOAOFNS?[] ................................. . 
DWIMUSERFORMS (dwim variable/parameter) ........ . 
DWIMWAIT (dwim variable/parameter) ............. . 
EOITCOMSA (editor variable/parameter) .......... . 
EOITCOMSL (editor variable/parameter) .......... . 
EDITOEFAUlT .................................... . 
error correction ............................... . 
ERRORSET[fORM;FLG] SUBR ........................ . 
EXPLAINOELIMITER (askuser option) .............. . 
EXPLAINSTRING (askuser option) ................. . 
EXPR (property name) ........................... . 
FASTYPEFLG (dwim variable/parameter) ........... . 
FAULTAPPLY[FAULTFN;FAULTARGS] .................. . 
FAULTEVAL[FAULTX] Nl· .......................... . 
FIlEOEF (property name) ........................ . 
FILELST (file package variable/parameter) ...... . 
FINDFILE[FILE;NSFLG] ........................... . 
FIXSPELL[XWORD;REL;SPLST;FLG;TAIL;FN;TIEFLG; 

DONTMOVETOPFLG;CLST;APPROVALFLG] ....... . 
FIXSPElLOEFAULT (dwim variable/parameter) ...... . 
FIXSPELLREL (dwim variable/parameter) .......... . 
fNCHECK[FN;NOERRORFLG;SPELLFLG;PROPFLG;TAIL] 
format of keylst (for askuser) ................. . 
f /L (as a dwim construct) ...................... . 
generators for spelling correction ............. . 

INDEX.17.1 

Page 
Numbers 

17.18,20 
17.20,8,18 
17.7 
17.3-6,19 
17.3-6,19,21 

17.22,29,23-28,30 
17.23 
17 .28 
17.4 
17 .10 
17.21 
17.21 
17.3,17.21 
17.16 
17.11-14 
'17 .12 
17 .27 
17.26 
17 .6 
17.4-5,10 
17.21 
17.7,9 
17 .18 
17.1-30 
17.17,3 
17 .3 
17.15 
17.20.3 
17.17 
17.20.16 
17.16 
17.20,11,13-15 
17.20,4-5 
17 .11.14 
17.13-14 
17.3 
17.1-30 
17 .10 
17.28 
17 .27 
17.12-13 
17 .17 
17.3,10.14 
17.3.10.14 
17.12,14 
17.21 
17.21 

17.18,19,21 
17.20,4 
17.20,19 
17.20,21 
17.24 
17.12 
17.9 



keyboard 1 ayouts .•.............................. 
KEYLST (askuser option) .......•................. 
KEYSTRING (askuser option) ..•....••.........•... 
LAMBDASPLST (dwim variable/parameter) .......... . 
LASTWORD (dwim variable/parameter) ............. . 
LISPX .............•...........•......•.......... 
LPARKEY (dw~m variable/parameter) ....•.•... ~ .... 
MACROCHARS (askuser option) ...................•. 
macrotran package ............................•.. 
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILE] 
MAKEKEYLST[LST;DEFAULTKEY;LCASEFLG] •............ 
MISSPELLED7[XWORD;REL;SPLST;FLG;TAIL;FN] .•...... 
MODEL33FLG (dwim variable/parameter) ....••.•.... 
NOCASEFLG (askuser option) .....•..••.•..•..•...• 
NOECHOFLG (askuser option) •..•..........•..•..•• 
NOSPELLFLG (dwimvariab1e/parameter)" .......•.... 
OK TO REEVALUATE (printed by dwim) .••......••.•. 
OKREEVALST (dwim variable/parameter) ........... . 
PRINTBELLS[] •............••..•.•... ' ............ . 
PROMPTCONFIRMFLG (askuser option) •...•.........• 
PROMPTON (askuser option) ••••••.•..•.....•.•.••. 
RETEVAL[POS;FORM;FlG;INTERNAlFlG] ............•.. 
RETURN (askuser option) ...•..•.•••.•.•..•..•..•. 
RPARKEY (dwim variable/parameter) •..•..••.•. ; .•• 
RUNONFLG (dwim variable/parameter) ...•..•.••.... 
run-on spell ;ng corrections ................... .. 
SHALL I LOAD (system variab1elparameter) •.•..... 
SKOR[XWORD;TWORD;NCX;NCT;FlG] .•••..••.•••..•.••. 
SPELLFILE[FILE;NOPRINTFLG;NSFLG] ••..••.••.....•• 
spelling comp1eti.on •.•.••.••..•.••••.•.•...••.•. 
spelling correction ..••••••.••••..•••...••.....• 
spelling correction on file names ............. .. 
spell ing correction protocol ................... . 
spelling corrector ...........•••...•........•... 
spelling lists ...........••..•.••.•...•.•....... 
SPELLINGSI (dwim variable/parameter) •.•......... 
SPELLINGS2 (dw1m variable/parameter) ••••••.••.•. 
SPELLINGS3 Cdwim variable/parameter} •..••.•..... 
synonyms ....•....••..•.....•.••••.•...••••...••• 
SYSLOAD (load option) .......................... . 
T FIXED (printed by dwim) ••.•..•....•....•.••.•. 
TRUSTING (DWIM mode) ........................... . 
unbound atom .' ..••.•...•..••..••.........•....... 
undefined function ..•.•.••••...•••.•.•..•....... 
UNDO (prog. asst. command) •••..•..•.••..•.••..•• 
UNSAVED (printed by dwim) .....•...•.•.•.....•... 
UNSAVEDEF[NAME;TYPE;DEF] ........••......•....... 
USERWORDS (dwim variable/parameter) •......•..... 
U.B.A. (error message) ....•..•.••.•..••...•.•.•• 
U.D.F. T FIX? (printed by dw1m) •••...•..•....... 
U.D.F. T (printed by dwim) ..................... . 
U.D.F. (error message) ..•....•................•. 
"" (use in askuser) .......•.........•••.•...•..• 
nSPELLINGS1 (dwim variable/parameter) ..•........ 
nSPELLINGS2 (dwim variabl e/parameter) .•...•..•.. 
nSPELLINGS3 (dwim variable/parameter) •.•••.•..•. 
nUSERWORDS (dwim variable/parameter) •...•.••••.• 

INDEX.17.a 

Page 
Numbers 

17 .5,16 
17.26 
17.27 
17.12,13-14 
17.9,18.21 
17.3,8-9,21 
17 .5 
17.28 
17 .15 
17.21 
17 .29 
17.18,21 
17 .16 
17.27 
17 .27 
17 .20 
17 .6 

·17.6 
17.4 
17.27 
17.27 
17.10 
17.27 
17 .5 
17.19-20 
17.19,4 
17.13 
17.16-17 
17.21 
17.7 
17.7,8-10 
17.21 
17 .4-5 
17.7,2,8-10,16-17 
17.8,9,12-14 
17.8,9.14.18 
17.8,9,13-14,18 
17.8,9.12,18 
17.7 
17 .13 
17.6 
17.3,2,17 
17 .10-14 
17.10-14 
17.3 
17 .12-13 
17 .12-13 
17.9,18,20-21 
17 .10 
17 .5 
17.6 
17 .2,10 
17.29 
17 .9 
17 .9 
17 .9 
17 .9 



$ «esc» (in spelling correction) ............. . 
$ «esc>. use in askuser) ...................... . 
& (use in askuser) ............................. . 

-> (printed by dwim) ........................... . 
... (printed by dwim) .......................... . 
7 (instead of ') ............................... . 
S (instead of left parenthesis) ................ . 
9 (instead of right parenthesis) ............... . 
<esc> (in spelling correction) ..........•....... 
= (printed by dwim) ........................... .. 
? (printed by dwim) .•...•..•.........••..•...... 

INDEX.17.3 

Page 
Numbers 

17.7,18 
17.28 
17.28 
17.10 
17.4,2-3,5 
17.3-4 
17.11 
17.5,1.11.13-14 
17.5,1,11.13 
17.7,18 
17.4-5 
17.4-5 





SECTION 18 

THE COMPILER AND ASSEMBLERl 

18.1 THE COMPILER 

The compiler is available in the standard Interlisp system. It may be used to compile individual 
functions as requested or all function definitions in a standard fOlrnat LOAD file. The resulting 
code may be stored as it is compiled, so as to be available for immediate usc, or it may be written 
onto a file for subsequent loading. 

The most common way to use the compiler is to compile from a symbolic (Prettyde!) file, 
producing a corresponding file which contains a set of functions in compiled form which can be 
quickly loaded. An alternate way of using the compiler is to compile from functions already 
defined in the user's lnterlisp system. In. this case, the user has the option of specifying whether 
the code is to be saved on a file for subsequent loading, or the functions redefined, or both. In 
either case, the compiler will ask the user certain questions concerning the compilation. The first 
question is: 

LISTING? 

The answer to this question controls the generation of a listing and is explained in full below. 
However, for most applications, the user will want to answer this question with either ST or .E, 
which will also specify an answer to the rest of the questions which would otherwise be asked. ST 
means the user wants the compiler to STore the new definitions; £ means the user is only 
interested in compiling to a file, and no storing of definitions is performed. In both cases, the 
compiler will then ask the user one more question: 

OUTPUT FILE? 

to which the user can answer: 

1 

N or NIL 
Y or YES 
File name 

no output file. 
user is then asked the name of the file. 
file is opened if not already opened, and compiled code is written 
on the file. 

The Interlisp-lO compiler itself. i.e .. the part that actually generates code. was written and documcnted by. and is the 
responsibility of A. K. Hartley. The user interfaces. i.e .• l,"-Q...nmJ. recompile. _bcol!m.l. and brecol11Iille. wcre written by 
W. Teitclman. 

18.1 

--------
- ~--.::--;~- -.~, 



Section 18: The Compiler and Assembler 

Example: 

~COMPILE({FACT FACT1 FACT2» 
LISTING? S1 
OUTPUT FILE? FACT.COM 
(FACT COMPILING) 

(FACT REDEFINED)2 

(FACT2 REDEFINED) 
(FACT FACT1 FACT2) 
~ 

This process caused the functions FACT, FACT1, and FACT2 to be compiled, redefined. and the 
compiled definitions also written on the file FACT. COM for subsequent loading. 

18.2 COMPILER QUESTIONS 

The compiler uses the free variables lapflg. strf, svflg, lefil and Istfil which determines various 
modes of operation. These variables are set by the answers to the "compset" questions. When any 
of the top level compiling functions are called, the function compset is called which asks a number 
of questions. Those that can be answered "yes" or "no" can be answered with YES. Y. or T for 
YES; and NO. N. or NIL for NO. The questions are: . 

1. LISTING? 

The answer to this question controls the generation of a listing. Possible answers are: 

1 Prints output of pass 1, the LAP macro code.3 
2 Prints output of pass 2, the machine code. 
YES Prints output of both passes. 
NO Prints no listings. 

The variable .illPflg is set to the answer. If the answer is affirmative, compset will type FILE: to 
allow the user to indicate where the output is to be written. The variable Istfil is set to the answer. 

'There are three other possible answers to LISTING? - each of which specifies a complete mode for 
compiling. They are: 

S ~ame as last setting. 
F Compile to file (no definition of functions). 
ST STore new definitions. 
STF STore new definitions, forget exprs. 

2 compiler printout and error messages are explained in Section 18.18, page 18.33-36. 

3 The LAP and machine code are usually not of interest but can be helpful in debugging macros. 

18.2 



Compiler Questions 

Implicit in these three are the answers to the questions on disposition of compiled code and expr's, 
so questions 2 and 3 would not be asked if 1 were answered with S. F, ST, or STF. 

2. REDEFINE? 

YES Causes each function to be redefined as it is compiled. The compiled code is 
stored and the function definition changed. The variable strf is set to T . 

NO Causes function definitions to remain unchanged. The variable strf is set to 
NIL. 

The answer ST or STF for the first question implies YES for this question, F implies NO, and S 
makes no change. 

3. SAVE EXPRS? 

If answered YES, svflg is set to T, and the exprs are saved on the property list of the function 
name. Otherwise they are discarded. The answer ST for the first question implies YES for this 
question, F or STF implies NO, and S makes no change. 

~ OUTPUT FILE? 

If the compiled definitions are to be written for later loading, you should provide the name of a 
file on which you wish to save the code that is generated. If you answer T or TTY:, the output 
will be typed on the teletype (not particularly useful). If you answer N, NO, or NI L, output will 
not be done. If you answer Y or YES, you will be asked the name of the file. If the file named is 
already open, it will continue to be used. The free variable 1cfil is set to the name of the file. 

Compiler output and error messages are further documented in Section 18.18. 

18.3 COMPILING NLAMBDAS 

When compiling the call to a function, the compiler must prepare the arguments to the function in 
one of three ways: 

1. Evaluated (SUBR, SUBR·, EXPR, EXPR·, CEXPR, CEXPR·) 
2. Unevaluated, spread (FSUBR, FEXPR, CFEXPR) 
3. Unevaluated, not spread (FSUBR·, FEXPR·, CFEXPR·) 

In attempting to determine which of these three is appropriate, the compiler will first look for a 
definition among the functions in the file that is being compiled. If the function is not contained 
there, the compiler will look for other information which can be supplied by the user by including 
nlambda nospread functions on the list nlama (for nlambda ~toms), and including nlambda spread 
functions on the list nlaml (for nlambda list), and including lambda functions on the list lams.4 If 
the function is not contained in the file,5 or on the list nlama, nlaml, or lams, the compiler will 

4 

5 

Including functions on lams is only necessary to override in-core nlambda definitions, since in the absence of other 
information, the compiler assumes the function is a lambda. 

The function can be defined anywhere in any of the files given as arguments to bcompl. !compl. brecompile or 
recompile. 

18.3 

-------------<-:-:-:;:;--" -------~--------- --------- ----



Section 18: The Compiler and Assembler 

look for a current definition. If the function is defined, its function type is assumed to be the 
desired type. If it is not defined, the compiler assumes that the function is of type 0 or 1, i.e., its 
arguments are to be evaluated.6 7 In other words, if there are type 2 or 3 functions called from the 
functions being compiled, and they are only defined in a separate file, they must be included on 
nlama or nlaml, or the compiler will incorrectly assume that their arguments are to be evaluated, 
and compile the calling function correspondingly. Note that this is only necessary if the compiler 
does not "know" about the function. If the function is defined at compile time, or is handled via a 
macro, or is contained in the same group of files as the functions that call it, the compiler will 
automatically handle calls to that function correctly. 

18.4 GLOBAL VARIABLES VS SHALLOW BINDING 

Variables that appear on the list globalvars or have the property GLOBALVAR, with value T. are 
called global variables. Such variables are always accessed through their top level value when they 
are used freely in a compiled function. In other words, a reference to the value of this variable is 
equivalent to (GETTOPVAL (QUOTE variable)}, regardless of whether or not it is bound in the 
current access chain. Similarly, (SETQ variable value) will compile as (SETTOPVAL (QUOTE 
variable) value); i.e., it sets the top-level value. 

+ Note: Interlisp-lO employs a shallow binding scheme as described in Section 12. There is no 
+ distinction between global variables and other types of variables: all variable references are to the 
+ variable's value cell. Thus, the cost of accessing. a variable is small and independent of the depth 
+ of computation, whereas in a deep bound system, it can be expensive to search the stack for the . 
+ most recent binding of a variable, hence the need for a mechanism like global variables. Note 
+ however that in a shallow bound system, the cost of rebinding a variable is somewhat higher than 
+ in a deep bound system.8 We employ shallow binding in Interlisp-lO because measurements 
+ indicated more time would be spent in searching for a variable binding using the deep scheme 
+ than is lost in rebinding using a shallow scheme. For the purposes of compilation, global variables 
+ are treated the same as SPECVARS, i.e. their names are always visible on the stack when they are 
+ rebound. 

+ 
+ 
+ 

All system parameters, unless otherwise specified. are global variables. Thus, rebinding these 
variables in a deep bound system will not affect the behavior of the system: instead, the variables 
must be reset to their new values, and if they are to be restored to their original values, reset again. 
For example, the user might write ... (SETQ globalvar new-value) form (SETQ globalvar old-value). 
Note that in this case, if an error occurred during the evaluation ofform, or a control-D was typed, 

6 

7 

Before making this assumption, if the value- of compileuserfn is not NIL. the compiler calls (the value of) 
compileuserfn giving it as arguments cdr of the form and the form itself, i.e., the compiler does 
(APPLY· COMPILEUSERFN (CDR form) form). If a non-NIL value is returned, it is compiled instead of form. If 
NIL is returned, the compiler compiles the original expression as a call to a lambda-spread that is not yet defined. 
CLISP (Section 23) uses compileuserfn to ten the compiler how to compile iterative statements, IF-THEN-ELSE 
statements, and pattern match constructs. Note that compileuserfn is only called when the compiler encounters a list 
9!.~ of which is not the name of a defined function. The user can instruct the compiler about how to compile other 
data types via compiletypc1st, page 18.12. 

The names of functions so treated are added to the list alams (for l!.ssumed lambda~. alams is not used by the 
compiler: it is maintained for the user's benefit, i.e., so that the user can check to see whether any incorrect 
assumptions were made, 

+ 8 except when the variable is a LOCALVAR, 

18.4 



Global Variables Vs Shallow Binding 

the global variable would not be restored to its original value. The function resetvar (described in 
Section 5) provides a convenient way of resetting global variables in such a way that their values 
arc restored even if an error occurred or control-D is typed. 

18.5 COMPILER FUNCTIONS 

Note: when a function is compiled from its in core definition, i.e., via compile, recompile, or 
brecompile, as opposed to tcompl or bcompl (which uses the definitions on a file), and the function 
has been modified by break, trace, breakin, or ~dvise, it is first restored to its original state, and· a 
message printed out, e.g., FOO UNBROKEN. If the function is not defined as an expr, its property 
list is searched for the property EXPR (see savedef, Section 8). If there is a property EXPR, its 
value is used for the compilation. If there is no EX P R and the compilation is being performed by 
recompile or brecompile, the definition of the function is obtained from the file (using loadfns). 
Otherwise, the compiler prints (fn NOT COMPILEABLE) t and goes on to Ule next function. 

compile[x;flg] ! is a list of functions (if atomic, list{x] is used). compile first asks 
the standard compiler questions, and then compiles each· function 
on !, using its in-core definition. Value is !. 

If compiled definitions are being written to a file, the file is closed 
unless !lg = T • 

compilel[fn;def;'] compiles def, redefining fn if strf = T . 9 compilel is used by 
compile, tcompl, and recompile. If dwimifycompflg is T t or def 
contains a CLISP declaration, def is dwimified before compiling. 
See Section 23. 

tcompl[files] tcompl is used to "compile files", i.e., given a symbolic load file 
(e.g., one created by makefile), it produces a "compiled file" that 
contains the same S-expressions as the original $ymbolic file: except 
that (1) a special FILECREATED expression appears at the front of 
the file which contains information used by the file package, and 
which causes the message COMPI LED ONlo followed by the date, to 
be printed when the file is loaded; (2) every defineq in the 
symbolic file is replaced by the corresponding compiled definitions 
in the compiled file;H and (3) expressions of Ole form 
(DECLARE: -- DONTCOPY --) that appear in Ole symbolic file 
are not copied to the compiled file. 111is "compiled" file can be 
loaded into any Interlisp system with load. 

9 

10 

11 

strf is olle of the variables set by £Qrrl"p'set, described earlier. 

The actual string printed is the value of c<»:J1pileh~!lder. initially "COMPILED ON". The user can reset 
compileheader. for example to distinguish between files compiled by different systems. 

The compiled definitions appear at the front of the compiled file. i.e .. before the other expressions in Ule symbolic 
file. rt.gardless of where they appear in Ihe symbolic file. lhc only exceptions arc expressions that follow a FIRST + 
t.1g inside of a DECLARE. See discussion of DECLARE: below. + 

18.5 



+ 
+ 
+ 

Section 18: The Compiler and Assembler 

files is a list of symbolic files to be compiled (if atomic, list[files) is 
used). tcompl asks the standard compiler questions, except for 
OUTPUT FILE: Instead, the output from the compilation of each 
symbolic file is written on a file of the same name suffixed with 
COM,12 e.g., tcompl[( SVMl SVM2)] produces two files, SVM1. COM 
and SVM2 • CaMP 

tcompl processes the files one at a time, reading in the entire file. 
For each FILECREATED expression, the list of functions that were 
marked as changed by the file package (see Section 14) is noted, 14 
and the FILECREATED expression is written onto the output file. 
If the rootname of file has property FILETVPE with value CLISP, 
or value a list containing CLISP, tcompl rebinds dwimifycompflg to 
T while compiling the functions on file. For each DEFINEQ 
expression, tcompl adds anyNLAMBDA' s in the DEFINEQ to mama 
or lamt,15 and adds LAMBDA's to the list lams,16 so that calls to 
these functions will be compiled correctly. Expressions beginning 
with DECLARE: are processed specially as described below. All 
other expressions are collected to be subsequently written onto the 
output file. After processing the file in this fashion, tcompl 
compiles each function,17 and writes the compiled definition onto 
the output file. tcompl then writes onto the output file the other 
expressions found in the symbolic file. 

The value of tcompl is a list of the names of the output files. All 
files are properly terminated and closed. If the compilation of any 
file is aborted via an error or control-D, all files are properly closed, 
and the (partially complete) compiled file is deleted. 

DECLARE: 

For the purposes of compilation, DECLARE: (see Section 14) has two principal applications: (1) to 
specify. forms that are to be evaluated at compile time, presumably to affect the compilation, e.g., 

12 

13 

14 

15 . 

16 

17 

The actual suffIX used is the value of the variable compile.ext. which is initially COM. The user can reset compile. ext 
or rename the compiled file after it has been written, without adversely affecting any of the system packages. 

The file name is constructed from the name field only, e.g .. tcompl[<BOBROW)FOO. TEM;3j produces FOO.COM on 
the connected directory. The version number will be the standard default 

for use by recompile and brecompile which use the same low level functions as teompl and bcompl 

described earlier, page 18.3. 

lliamJ!. nla!I!!. and lams ar~ rebound to their top level values (using reselvar) by teompl. recompile. bcompl, 
brecompil!". compile. and blbckcompile. so that any additions to these lists while inside of these functions will not 
propagate outside. 

except for thOSe functions which appear on the list donlcqmpilefn!i, initially NIL. For example, this option might be 
used for functions that compile open. since their definitions would be l>'Upernuous when operating with the compiled 
file. Note thal dontcompi1cfns can be set via block declarations page 18.20. 

18.6 



Compiler Functions 

to set up macros; and/or (2) to indicate which expressions appearing in the symbolic file are not to 
be copied to the oUlput file. (Normally, expressions are not evaluated and are copied.) Each 
expression in cdr of a DECLARE: form is either evaluated/not-evaluated and copied/not-copied 
depending on the settings of two internal stale variables, initially set for copy and riot-evaluate. 
lnese state variables can be reset for the remainder of the expressiotls in the DECLARE: by means 
of the tags DOEVAL@COMPILE (or EVAL@COMPILE), DONTEVAL@COMPILE, DOCOPY (or COPY), + 
and DONTCOPY, e.g., (DECLARE: DOEVAL@COMPlLE DONTCOPY (PROP MACRO - -» could + 
be used to set up macros at compile time. 'Ine tags EVAL@COMf'ILEWHEN and COPYWHEN can be + 
used to provide conditional setting of the internal state variables. The expression following the tag + 
is evaluated and determines the setting. e.g .... EVAL@COMPILEWHEN (EQ (SYSTEMTYPE) + 
'TOPS20) ... For expressions that are to be copied to the compiled file, the tag FIRST can be + 
used to specify that the subsequent expressions in the DECLARE: are to appear at the front of the + 
compiled file, before anything else except the FILECREATED expressions. The tag NOTFIRST + 
reverses the effect of FIRST. For example, {DECLARE: COpy FIRST (P (PRINT mess! T» + 
NOTFIRST (P (PRINT mess2 T))) will cause (PRINT messl T) to appear first in the compiled + 
file, followed by any functions, then (PRINT mess2 T). . + 

Note that the function loadcomp (Section 14) provides a convenient way of obtaining information + 
necessary for compiling one file that is contained in DECLARE: expressions that reside on another + 
~oc~ + 

RECOMPILE 

The purpose of recompile is to allow the user to update a compiled file without recompiling every 
function in the file. Recompile does this by using the results of a previous compilation. It 
produces a compiled file similar to one that would have been produced by tcompl, but at a 
considerable savings in time by compiling selected functions and copying from an earlier tcompl or 
recompile file the compiled definitions for the remainder of the functions in the file. 

recompile[pfile;cfile;fils] pfile is the name of the pretty file to be compiled, cfile is the name 
of the £ompiled file containing compiled definitions that may be 
copied. fils indicates which functions in pfile are to be recompiled, 
e.g., have been changed or defined foc the first time since cfile was 
made. Note that pfile, not fils, drives recompile. 

18 

19 

20 

recompile asks the standard compiler questions, except for OUTPUT 
F I L E : . As with tcompl, the output automatically goes to 
pfile.COM.18 19 recompile process pfile the same as does tcompl 
except that DE FIN E Q expressions are not actually read into core. 
Instead, recompile uses the filemap (see Section 14)20 to obtain a 
list of the functions contained in pfile, and simply skips over the 

or pfile.ext. where ext is the value of compile. ext 

In general. all constructions of the fonn pfile.COM. plilcCOMS. plileBlOCKS. etc .. are performed using the name field 
only. For example. if pfile= (BOBROW)FOO. TEM; 3. pfile.COM means FOO. COM. pfileCOMS means FOOCOMS, etc. 

A map is buill if the symbolic file does not already contain one. e.g.. it was written in an earlier system, or with 

buildmapflg=NIL. 

18.7 

----~~-----~--- -------~------------ - --- -"~~-- -- -------------~~------
;.,,':;'i,~';;:~ "';- , ~-,'~-~-. /-=-~ 



* 
* 

Section 18: The Compiler and Assembler 

DEFINEQ' S.21 

After this initial scan of pfile, recompile then processes the 
functions defined in the file. For each function in pfile, recompile 
determines whether or nol the function is to be (re)compiled. A 
function is to be recompiledn if (1) fns is a list and the function is 
a member of that list; or (2) fns= T or EXPRS and the function is 
an expr; or (3) fns= CHANGES and the function is marked as 
having been changed in the FILECREATED expression; or (4) 
fns=ALL. 23 If a function is not to be recompiled, recompile obtains 
its compiled definition from cfile, and copies it (and all generated 
subfunctions) to the output file, pfile.COM~4 Finally, after 
processing all functions, recompile writes out all other expressions 
that were collected in the prescan of pfile. 

If cfile=NIL. pfile.COM is used for copying from.25 If both fns 
and cfile arc NIL, fns is set to the value of recompiledefault, which 
is initially EXPRS.2() 

The value of recompile is the new compiled file, pfile. COM. If 
recompile is aborted due to an error or control-D, the new (partially 
complete) compiled file will be closed and deleted. 

recompile is designed to allow the user to conveniently and efficiently update a compiled file, even 
when the corresponding symbolic file has not been (completell/loaded. For example, the user can 
perform a loadfrom ~SecLion 14) to "notice" a symbolic file, and then simply edit the functions 
he wanted to change, 8 call makefile,29 and then perform recompile[pfile].3O 

21 

22 

23 

24 

25 

26 

27 

211 

29 

The filemap enables recompile to skip over the DEF I NEQ' s in the file by Simply resetting the file pointer, so that in 
most cases the scan of the symbolic file is very fast (the only processing required is the reading of the non
DEFINEQ's and the processing of the DECLARE: expressions as described earlier). 

Functions that are members of dontcompilefns are simply ignored. 

In this latter case. cfile is superfluous, and in fact does not have to exist This option is useful, for example, to 
compile a symbolic file that has never been compiled before, but which has already been loaded (since using tcompl 
would require reading the file in a second time). 

,. 

If the function does not appear on cfile, recompile Simply recompiles it 

In other words. if cfile, the file used for obtaining compiled definitions to be copied, is NIL, pfile. COM is used, ie., 
same name as output file but a different version number (one less) than the output file. 

This is the most common usage. Typically, the functions the user has changed will have been unsavedefed by the 
editor, and therefore will be exprs. Thus the user can perform his edits, dump the file, and then Simply 
recompile[file) to update the compiled file. 

The loadfrom would be unnecessary if the compiled file had been previously loaded, since this would also result in 
the file having been 'noticed'. 

As described in Section 9, the editor would automatically load those functions not already loaded. 

As described in Section 14. make file would copy the unchanged functions from the symbolic me. 

18.8 



Compiler Functions 

18.6 OPEN FUNCTIONS 

When a function is called from a compiled function, a system routine is invoked that sets up the 
parameter and control push lists as necessary for variable bindings and return information. As a 
result, function calls can take up to 350 microseconds per call. If the amount of time spent inside 
the function is small, this function calling time will be a significant percentage of the total time 
required to use the function. '111erefore, many "small" functions, e.g., car, cdr, ~, not, cons are 
always compiled "open", i.e., they do not result in a function call. Other larger functions such as 
m:Qg, se1cctg, mapc, etc. are compiled open because they are frequently used. It is useful to know 
exactly which functions are compiled open in order to determine where a program is spending its 
time. 'Therefore below is a list of those functions which when compiled do not result in function 
calls. Note that the next section tells how the user can make other functions compile open via 
MACRO definitions.31 

The following functions compile open32 in Interlisp-10: 

AC, ADDl, AND, APPLY*, ARG,33 ARRAYP, ASSEMBLE, ATOM, BLKAPPLY, 
BLKAPPLY*, BOUNDP, CAR, CDR, CAAR, ... CDDDAR, CDDDDR, CLOSER, COND, 
CONS, CONSTANT, COROUTINE, DOCOLLECT, ENDCOLLECT, EQ, EQMEMB, ERSETQ, 
EVALV,34 EVERY, EVQ, FASSOC, FCHARACTER, FDIFFERENCE, FGETD, FGREATERP I 

FIX, FIXP, FLAST, FLENGTH, FLOAT, FLOATP, FMEMB, FMINUS, FNTH, FPlUS, 
FQUOn ENT , FRPLACA, FRPLACD, FRPlNODE, FRPLNOOE2, FRPTQ, FTIMES, 
FUNCTION, GENERATOR, GEQ,35 GETATOMVAL, GETFILEPTR, GETHASH, GETPROPLIST, 
GO, IDIFFERENCE, IEQP, IGEQ, IGREATERP, ILEQ, ILESSP, IMINUS, 
INTERRUPTABLE, IPlUS, IQUOTIENT, IREMAINDER, ITIMES, JSYS,~ KWOTE, 
LEQ,37 lISPXWATCH, LIST, LISTP, LITATOM, LLSH, LOC, LOGAND, LOGOR, 
LOGXOR, LRSH, LSH, MAP, MAPC, MAPCAR, MAPCON, MAPCONC, MAPLIST, MINUSP, 
MKLIST, NCONC1, NEQ, NLISTP, NLSETQ, NOT, NOTEVERY, NOTANY, NTYP, NUll. 
NUMBERP, OPENR, OR, POSSIBILITIES, PROG, PROGl, PROGN, RESETFORM, 
RESETlST, RESETSAVE, RESETVAR, RESETVARS, RETURN, RPTQ, RSH, SElECTQ, 
SET, SETARG, SETATOMVAl, SETN, SETPROPLIST, SETQ, SETQQ, SMALlP, SOME. 

30 

31 

32 

33 

34 

35 

36 

37 

Since prettydef automatically outputs a suitable DECLARE: expression to indicate which functions in the file (if any) 
are defined as NLAMBDA' s, calls to these functions will be handled correctly, even though the NLAMBDA functions 
themselves may never be loaded, or even looked at, by recompile. 

The user can also affect the compiled code via compileuserfn, described in footnote on page 18.4, and compiletypelst, 
described on page 18.12. 

Some of these compile in-line via macro expansions and some compile so as to use a PUSHJ to jump into system + 
code. The important point from the user's standpoint is that all of them do not require a function call. + 

when the !!!& variable is bound locally. + 

when given only one argumenl + 

i.e., compiles open as a call to lessp. However, there is still this function call associated with the ~ expression. + 

When the jsys number is itself a small integer, and resultac is either a" small number or NIL, e.g. (JSYS 51Q) but + 
not (JSYS N). + 

See footnote to GEQ above. 

18.9 



Section 18: The Compiler and Assembler 

STACKP, STRINGP, SUB1, SUBSET, SYNTAXP,~ SYSTEMTYPE, TRYNEXT, TYPENAMEP. 
TYPEP, UNDONLSETQ, VAG, ZEROP. 

18.7 COMPILER MACROS 

The Interlisp compiler includes a macro capability by which the user can affect the compiled code. 
Macros are defined by placing the macro definition on the properly list of the corresponding 
function under the property MACRO. 39 When the compiler begins compiling a form. it retrieves a 
macro definition for car of the form, if any, and uses it to direct the compilation.40 The three 
different types of macro definitions are given below. 

(1) Open macros - (LAMBDA ... ) or (NLAMBDA .•• ) 

A function can be made to compile open by giving it a macro definition of the form (LAMBDA ••• ) 
or (NLAMBDA ..• ), e.g., 

(LAMBDA (X) (COND {(GREATERP X 0) X) (T (MINUS X»» for abs. The effect is as if 
the macro definition were written in place of the function wherever it appears in a function being 
compiled, i.e., it compiles as an open LAMBDA or NLAMBDA expression. This saves the time 
necessary to call the function at the price of more compiled code generated. 

(2) Computed macros - (atom expression) 

A macro definition beginning with an atom other than LAMBDA, NLAMBDA, or NIL, allows 
computation of the Interlisp expression that is to be compiled in place of the form. The atom 
which starts the macro definition is bound to cdr of the form being compiled. 11le expression 
foUowinr the atom is then evaluated, and the result of this evaluation is compiled in place of the 
form. 4 For example, list could be compiled this way by giving it the macro definition: 

+ 38 

39 

when class is quoted, e.g. (SYNTAXP X (QUOTE BREAK». 

An expression of the fonn (DECLARE (DEFLIST ••• (QUOTE MACRO») can be used within a function to 
define a MACRO. DECLARE is defined the same as QUOTE and thus can be placed so as to have no effect on the 
running of the function. 

+ 
+ 
+ 
+ 
+ 

40 

41 

The compiler has built into it how to compile certain basic functions such as car,..R!.Q&. etc., so that these will not be 
affccted by macro definitions. These functions are listed above. However, some of them are themselves implemented 
via macros. so that the user could change the way they compile. 

In Interlisp-10. if the result of the evaluation is the atom INSTRUCTIONS, no code will be generated by the 
compiler. It is then assumed the evaluation was done for effect and the necessary code. if any, has been added_ This 
is a way of giving direct instructions to the compiler if you understand it. If the result of the evaluation is the atom 
IGNOREMACnO. the macro is ignored and the compilation of the expression proceeds as if there were no MACRO 
property. 'Ibc differcnce between IGNOREMACRO and INSTRUCTIONS is that if the atom in question is Ilonnally 
treated specially by the compiler, e.g. f!1J. ~<!r. £Q]ld. aneJ. etc .. and also has a macro, for those cases which the macro 
expansion relurns IGNOREMACRO, the atom will still be trealed specially. 

18.10 



Compiler Macros 

[X (LIST (QUOTE CONS) 
(CAR X) 
(AND (CDR X) 

(CONS (QUOTE LIST) 
(CDR X] 

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL»). Note 
the recursion in the macro expansion.42 Ersetg, nlsetg, map, mapc, mapcar, mapconc, and some, 
are compiled via macro definitions of this type. 

(3) Substitution macro - (NIL expression) or (list expression) 

Each argument in the form being compiled is substituted for the corresponding atom in car of the 
macro definition, and the result of the substitution is compiled instead of the form, i.e., the 
compiler performs 

(SUBPAIR (CAR macrodef) (CDR form) (CADR macrodef), and compiles the result. For 
example, the macro definition of addl is «X) (IPLUS X 1». Thus, (ADDI (CAR Y» is 
compiled as (I PLUS (CAR Y) 1). The functions addl, subl, neg, nlistp, zerop, flength, fmemb, 
fassoc, flast, and fnth are all compiled open using substitution macros. Note that abs could be 
compiled open as shown earlier or via a substitution macro. A substitution macro, however, would 
cause (ABS (FOO X» to compile as 
(COND «GREATERP (FOO X) 0) (FOO X» (T (MINUS (FOO X»» and consequently 
( F 00 X) would be evaluated three times. 

The following function is quite useful for debugging macro definitions: + 

expandmacro[form;quietflg] takes a form whose car has a macro definition and expands the + 
form as it would be compiled. The result is prettyprinted on the + 
terminal, unless guietflg = T, in which case the result is simply + 
returned. + 

CONSTANT + 

The function constant enables the user to define certain expressions as descriptions of their + 
"constant" values. For example, if a user program needed a scratch list of length 30, the user + 
could specify (CONSTANT (to 30 collect NIL» instead of (QUOTE (NIL NIL .•. ». The + 
former is more concise and displays the important parameter much more directly than the latter. + 
constant can also be used to denote values that cannot be quoted directly: + 
(CONSTANT (PACK NIL», (CONSTANT (ARRAY 10». It is also useful to parameterize + 
quantities that are constant at run time but may differ at compile time, e.g. (CONSTANT + 
bitsperw.ord) in a program is exactly equivalent to 36, if the variable bitsperword is bound to 36 + 
when the constant expression is evaluated at compile time. + 

When interpreted, the expression occuring as the argument to constant is evaluted each time it is + 

42 list is actually compiled more efficiently. 

18.11 



Section 18: The Compiler and Assembler 

+ encountered. If the constant form is compiled. however, the expression will be evaluated only 
+ once: 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

If the value of the expression has a readable print-name, then it will be evaluated at 
compile-time, and the value will be saved as a literal in the compiled function's 
definition, as if (QUOTE value-of-expression) had appeared instead of (CONSTANT 
expression). 

If the value does not have a readable printname (e.g. the PACK and ARRAY examples), 
then the expression itself will be saved with the function, and it will be evaluated 
when the function is first executed. rThe value will then be stored in the function's 
literals, and will be retrieved on future references. 

+ Whereas the function constant attempts to evaluate the expression as soon as possible (compile
+ time, load-time, or first-run-time), the function deferredconstant will always defer the evaluation 
+ until first running. This is useful when the storage for the constant is' excessive so that it shouldn't 
+ be allocated until (unless) the function is actually invoked. 

COM PILETY PELST 

+ Most of the compiler's mechanism deals with how to handle forms (lists) and variables (literal 
+ atoms). lbe user can affect the compiler's behaviour with respect to lists and literal atoms in a 
+ number of ways, e.g. compiler macros, declarations, compileuserfn, etc. compiletypelst allows the 
+ user to tell the compiler what to do when it encounters a data type other than a list or an atom. It 
+ . is the facility in the compiler that corresponds to defeval (Section 8) for the interpreter. 

+ compiletypelst is a list of elements of the form (type-name. function). Whenever the compiler 
+ encounters a datum that is not a list and not an atom ('or a number) in a context where the datum 
+ is being evaluated, the type-name of the datum is looked up on compiletypelst, i.e. 
+ assoc[typename[datum]:compiletypelst] is performed. If an entry appears car of which is equal to 
+ the typename, cdr of that entry is applied to the datum. If the value returned by this application is 
+ not ~ to the datum, then that value is compiled instead. If the value is ~ to the datum, or if 
+ there is no entry on compiletypelst for this typename, the compiler simply compiles the datum as 
+ (QUOTE datum). 

MACROTRAN 

+ MACROTRAN is a package that enables the user to run programs interpretively which contain calls 
+ to functions which are only defined in terms of a compiler macro. MACROTRAN is implemented via 
+ an entry on dwimuserforms (Section 17).43 When the interpreter encounters a form car of which is 
+ an undefined function, macrotran is called. If car of the form has a MACRO property, the macro is 
+ expanded, and the result of this expansion is evaluated in place of the original form.44 If car of the 

+ 43 

+ 44 

+ 
+ 

and thus will not work if DWIM is not enabled. 

c1i~mral] (Section 23) is used to save the result of this expansion so that the expansion only has to be done once. On 
subsequent occasiolls. the translation (expansion) is retrieved from c1isparr3}' the same as for other clisp constructs; 
macrotran never even has to be invoked. 

18.12 



Compiler Macros 

fonn is ASSEMBLE (see page 18.24), or the macro contains an ASSEMBLE directive,45 instead of + 
the macro being expanded, a dummy function is created with the form as its deflnition, and the + 
dummy function is then compiled.46 47 A form consisting of a call to this dummy function· with no + 
arguments is then evaluated in place of the original form.48 + 

18.8 FUNCTION AND FUNCTIONAL ARGUMENTS 

Expressions that begin with FUNCTION are compiled as separate functions49 named by attaching a 
gensym to the end of the name of the function in which they appear, e.g., FOOA0003. This 
gensym function will be called at run time. rlnus if FOO is defined as 
(LAMBDA (X) .•. (FOOl X (FUNCTION ••• » ... ) and com riled, then when FOO is run, 
FOOl will be called with two arguments, X. and FOOAOOOn, 5 and then FOOl will call 
FOOAOOOn each time it must use its functional argument. 

Note that a considerable savings in time could be achieved by making FOOl compile open via a 
computed macro, e.g. 

(Z (LIST (SUBST (CADADR Z) (QUOTE FN) def) (CAR Zn) 
where def is the definition of FOOl as a function of just its first argument and FN is the name 
used for its functional argument in its definition. The expression compiled contains what was 
previously the functional argument to FOOl, as an open LAMBDA expression. Thus you save not 
only the function call to F 001, but also each of the function calls to its functional argument. For 
example, if FOOl operates on a list of length ten, eleven function calls will be saved. Of course, 
this savings in time costs space, and the user must decide which is more important. 

18.9 BLOCK COMPILING 

Block compiling provides a way of compiling several functions into a single block. Function calls 
between the component functions of the block are very fast. Thus, compiling a block consisting of 
just a single recursive function may be yield great savings if the function calls itself many times, 
e.g., equal, £!mY, and count are block compiled in Interlisp-lO. 

The output of a block compilation is a single, usually large, function. Calls from within the block 
to functions outside of the block look like regular function calls, except that they are usually linked 
(described below). A block can be entered via several different functions, called entries. These 

45 

46 

47 

48 

49 

50 

or contains calls to functions which affect the compiler directly, e.g. cexp, storein, etc. + 

There are some situations for which this procedure is not amenable. e.g. a .&Q inside the form which is being + 
compiled will cause the compiler to give an UNDEFINED TAG error message because it is not compiling the entire + 
function, just a part of it + 

Note that macrotran will work on macros that do not contain ASSEMBLE directives even if the compiler is not + 
loaded. ASSEMBLE directives. however, require the compiler. + 

and c1isptran used to save the translation as described above. + 

except when they are compiled open, as is the case with most of the mapping functions. 

or an appropriate funarg expression. see Section 11. 

18.13 



Section 18: The Compiler and Assembler 

must be specified when the block is compiled.51 For example, the error block has three entries, 
erron, interrupt, and fault!. Similarly, the compiler block has nine entries. 

RETfNS 

Another savings in block compilation arises from omitting most of the information on· the stack 
about internal caUs between functions in the block. However, if a function's name must be visible 
on the stack, e.g., if the function is to be returned from retfrom, retto, reteval, etc., it must be 
included on the list relfns. 

BlKAPPlYFNS 

Normally, a call to mm!Y from inside a block would be the same as a call to any other function 
outside of the· block. ·If the first argument to mm!Y turned out to be one of· the entries to the 
block, the block would have to be reentered. blkapplyfns enables a program to compute the name 
of a function in the block to be called next, without the overhead of leaving the block and 
reentering it. This is done by including on the list blkapplyfns those functions which will be called 
in this fashion, and by using b1kapply in place of rumJy, and blkapp1y* in place of~. For 
example, the calls to the functions handling R I, RO, LI, L 0, B 1, and BO in the editor are 
handled this way. If blkapplyor blkapp1y* is given a function not on blkapplyfns, the effect is the 
same as a call to IDm!Y or ~ and no error is generated. Note however, that blkapplyfns must 
be set at compile time, not run time, and furthermore, that all functions on blkapplyfns must be in 
the block, Or an error is generated (at compile time), NOT ON BLKFNS. 

-BlKLIBRARY 

Compiling a function open via a macro provides a way of eliminating a function call. Forblock 
compiling, the same effect can be achieved by including the function in the block. A further 
advantage is that the code for this function will appear only once in the block, whereas when a 
function is. compiled open, its code appears at each place where it is called. 

The block library feature provides a convenient way of including functions in a block. It is just a 
convenience since the user can always achieve the same effect by specifying the function(s) in 
question as one of the block functions, provided it has an expr definition at compile time. The 
block library feature simply eliminates the burden of supplying this definition. 

To use the block library feature, place the names of the functions of interest on the list blklibrary, 
and their EXPR definition on the property list of the function under the property 
BLKLIBRARYDEF. When the block compiler compiles a form, it first checks to see if the function 
being called is one of the block functions. If not, and the function is on b1klibrary, its definition is 
obtained from the property value of BLKLIBRARYDEF, and it is automatically included as part of 
the block. The functions assoc, equal, getprop, last, length, lispxwatch, memb, member, nconc!, 
nletl, nth, /rplnode, and tailp already have BLKLIBRARYDEF properties. 

51 Actually the block is entered the same as every other function. i.e .• at the top. However. the entry functions caU the 
main block with their name as one of its arguments. and the block dispatches on the name. and jumps to the portion 
of thc block corrcl;ponding to that entry point. The effect is thus the same as though there were several different 
entry points. 

18.14 



Linked Function Calls 

18.10 LINKED FUNCTION CALLS 

Conventional (non-linked) function calls from a compiled function go through the function 
definition cell, i.e., the definition of the called function is obtained from its function definition cell 
at call time. 'lnus, when the user breaks, advises, or otherwise modifies the definition of the 
function FOO, every function that subsequently calls it instead calls the modified function. For 
calls from the system functions, this is clearly not a feature. For example, the user may wish to 
break on basic functions such as print, eval, rplaca, etc., which are used by the break package. In 
other words, we would like to guarantee that the system packages will survive through user 
modification (or destruction) of basic functions (unless the user specifically requests that the system 
packages also be modified). This protection is achieved by linked function calls. 

For linked function calls, the definition of the called function is obtained at link time, i.e., when 
the calling nmction is defined, and stored in the literal table of the calling function. At call time, 
this definition is retrieved from where it was stored in the literal table, not from the function 
definition cell of the called function as it is for non-linked calls. 1nese two different types of cans 
are illustrated in Figure 18-1. 

Note that while function calls from block compiled functions are usually linked (Le. the default for 
blocks is to link)52, and those from standardly compiled functions are usually non-linked, linking 
function calls and blockcompiling are independent features of the Interlisp compiler, i.e., linked 
function calls are possible, and frequently employed, from standardly compiled functions. 

52 In Interlisp-10. linked function calls are actually a IitLle slower and take more space than non-linked calls, so that the + 
user might want to include (NOLINKfNS . T) in block declarations to override the default. + 

18.15 



CALLING 
FUNCTION 

CALLING 
FUNCTION 

Section 18: The Compiler and Assembler 

LINKED CALL 

NON-LI NKED CALL 

DEFINITION 
CELL 

LINKED CALL 

NON-LINKED 

DEFINITION 
CELL 

FIGURE 18-1 

18.16 

DEFINITION 

OLD 
DEFINITION 

NEW 
DEFINITION 



Linked Function Calls 

Note that nonnal function calls require only the called function's name in the literals of the 
compiled code, whereas a linked function call uses two literals and hence produces slightly larger 
compiled functions. 

The compiler's decision as to whether to link a particular function call is detennined by the 
variables linkfns and nolinkfns as follows: 

(1) If the function appears on nolinkfns, the call is not linked; 
(2) If block compiling and the function is one of the block functions, the call is internal as 

described earlier; 
(3) If the function appears on linkfns, the call is linked; 
(4) If nolinkfns = T, the call is not linked; 
(5) If block compiling, the call is linked; 
(6) If linkfns= T, the call is linked; 
(7) Otherwise the call is not linked. 

Note that (1) takes precedence over (2), i.e., if a function appears on nolinkfns, the call to it is not 
linked, even if it is one of the functions in the block, i.e., the call will go outside of the block. 

Nolinkfns is initialized to various system functions such as errorset, breakl, etc. Linkfns is 
initialized to NIL. Thus if the user does not specify otherwise, all calls from a block compiled 
function (except for those to functions on nolinkfns) will be linked; all calls from standardly 
compiled functions will not be linked. However, when compiling system functions such as help. 
error, arglist, ..f!lli:p, breakl, et al, linkfns is set to T so that even though these functions are not 
block compiled, all of their calls will be linked. 

If a function is not defined at link time, i.e., when an attempt is made to link to it, it is tinked 
instead to the function nolinkdef. When the function is later defined, the link can be completed 
by relinking the calling function using relink described below. Otherwise, if a function is run 
which attempts a linked call that was not completed, nolinkdef is called. If the function is now 
defined, i.e., it was defined at some point after the attempt was made to link to it, nolinkdef will 
quietly perfonn the link and continue the call. Otherwise, it will call faultapply and proceed as 
described in Section 16. 

calls, break on fn1- I N - fn2 and advise fnl- I N - fn2 all work correctly for linked function calls, e.g., 
break[ ( F 00 IN FIE)], where F 00 is called from FIE via a linked function call. Note that 
control-H will not interrupt at linked function calls. 

RELINKING 

The function relink is available for relinking a compiled function, i.e., updating all of its linked 
calls so that they use the definition extant at the time of the relink operation. 

relink[fn] fn is either WORLD, the name of a function, a list of functions, or an 
atom whose value is a list of functions. relink perfonns the 
corresponding rclinking opcrations. rclink[WORLD] is possible 
because the compilcd code reader maintains on linkcdfns a list of 
all user functions containing any linked calls. syslinkcdfns is a list 
of all system functions that have any linked calls. relink[WORLD] 
pcrfomls both rc1ink[linkcdfns] and rc1ink[syslinkedfns]. 

lbe value of relink is fn. 
18.17 



Section 18: The Compiler and Assembler 

It is important to stress that linking takes place when a function is defined. Thus, if FOOcalls FIE 
via a linked call, and a bug is found in FIE, changing FIE is not sufficient; FOO must be relinked. 
Similarly, if FOOl,. F002, and F003 are defined (in that order) in a file, and each call the others 
via linked calls, when a new version of the file is loaded, FOOl will be linked to the old F002 and 
F003, since those definitions will be extant at the time it is read and defined. Similarly, F002 will 
link to the new FOOl and old F003. Only F003 will link to the new FOOl and F002.The user 
would have to perform relink[FOOFNS] following the load. 

18.11 LOCALVARS AND SPECVARS 

In normal compiled and interpreted code, all variable bindings are accessible by lower level 
functions because the variable's name is associated with its value. We call such variables special 
variables, or specvars. As mentioned earlier, the block compiler normally does not associate names 
with variable values. Such unnamed variables are not accessible from outside the function which 
binds them and are therefore local to that function. We call such unnamed variables local 
variables, or localvars. 

The time economies of local variables can be achieved without block compiling by use of 
declarations. Using local variables will increase the speed of compiled code; the price is the work 
of writing the necessary specvar declarations for those variables which need to be accessed from 
outside the block. 

localvars and specvars are variables that affect compilation. During regular compilation, specvars is 
normally T, and localvars is NIL or a list. This configuration causes all variables bound in the 
functions being compiled to be treated as special except those that appear on localvars. During 
block compilation, localvarsis normally T and specvars is NIL or a list. All variables are then 
treated as local except those that appear on specvars. 

Declarations to set localvars and specvars to other values, and therefore affect how variables· are 
treated, may be used at several levels in the compilation process with varying scope. (1) They may 
be included in the COMS of a file scope of the declaration is then the entire file, e.g., 

(LOCALVARS • T), (SPECVARS X y).S3 

(2) The declarations may be included in block declarations; the scope is then the block. e.g., 

(BLOCKS «FOOBLOCK FOO FIE (SPECVARS . T) (lOCALVARS X»). 

(3) The declarations may also appear in individual functions, or in R!QS's or lambda's within a 
function. In this case the scope of the declaration is the function or the prog or lambda in which 
it appears. localvars and specvars deClarations must appear immediately after the variable list in 
the function, PIQg, or lambda, but intervening comments are permitted. For example: 

(DEFINEQ « FOO 
(LAMBDA (X Y) 

(DECLARE (LOCALVARS V»~ 
(PROG (X Y Z) 

(DECLARE (LOCALVARS X» 

+ 53 LOCALVARS and SPECVARS are also the names of file package commands, which is why this works. They output 
+ the indicated expression, first embedding it inside of a DECLARE: DOEVAUfCOMPILE DONTCOPY. 

18.18 



Localvars and Specvars 

... ] 

If the above function is compiled (non-block), the outer X will be special, the X bound in the m:Qg 
will be local, and both bindings of Y will be local. 

Declarations for localvars and specvars can be used in two ways: either to cause variables to be 
treated the same whether the function(s) are block compiled or compiled normally, or to affect one 
compilation mode while not affecting the default in the other mode. For example: 

(LAMBDA (X Y) 
(DECLARE (SPECVARS . T» 
(PROG (Z) ... ] 

will cause X, Y, and Z to be specvars for both block and normal compilation while 

{LAMBDA (X Y) 
(DECLARE (SPECVARS X» 
... ] 

will make X a specvar when block compiling, but when regular compiling the declaration will have 
no effect, because the default value of specvars would be T, and therefore both X and Y will be 
specvars by default 

Although localvars and specvars declarations have the same form as other components of block 
declarations such as (LI N K F N S . T), their operation is somewhat different because the two 
variables are not independent. ( S P E CVA RS . T) will cause specvars to be set to T, and localvars 
to be set to NIL. (SPECVARS V1 V2 ... ) will have no effect if the value of specvars is T, but 
ifit is a list (or NIL), specvars will be set to the union of its prior value and (V1 V2 ... ). The 
operation of localvars is analogous. Thus, to affect both modes of compilation one of the two 
(localvars or specvars) must be declared T before specifying a list for the other. 

18.12 THE BLOCK COMPILER 

There are three user level functions for blockcompiting, blockcompile, bcompl, and brecompite, 
corresponding to compile, tcompl, and recompile. All of them ultimately call the same low level 
functions in the compiler, i.e., there is no 'blockcompiler' per se. Instead, when blockcompiling, a 
flag is set to enable special treatment for specvars, retfns, blkapplyfns, and for determining whether 
or not to link a function can. Note that all of the previous remarks on macros, globalvars, 
compiler messages, etc., all apply equally for block compiling. Using block declarations described 
below, the user can intermix in a <;ingle file functions compiled normally, functions compiled 
normally with linked calls, and block compiled functions. 

BLOCKCOMPILE 

blockcompile[blkname;blkfns;entries;flg] 
blkfns is a list of the functions comprising the block, blkname is the 
name of the block, entries a list of entries to the block, e.g., 

~BLOCKCOMPILE(SUBPRBLOCK (SUBPAIR SUBLIS SUBPR) (SUBPAIR SUBLIS» 

Each of the entries must also be on blkfns or an error is generated, 

18.19 

------------~---- -------- ---
:,,<..'- -~~-","'-



Section 18: The Compiler and Assembler 

NOT ON BLKFNS. 54 

If entries is NIL, listIblkname] is used. e.g., 
~BLOCKCOMPILE(COUNT (COUNTCOUNTl» 

If blkfns is NIL, list{blkname1 is used, e.g., 
~BLOCKCOMPILE{EQUAL) 

blockcompile asks the standard compiler questions and then begins 
compiling. As with compile, if the compiled code is being written 
to a file, the file is closed unless fig = T. The value of blockcompile 
is a list of the entries, or if entries = NIL, the value is blkname. 

The output of a call to blockcompile is one function definition for 
blkname, plus definitions for each of the functions on entries if any. 
These entry functions are very short functions which immediately 
call blkname. 

BLOCK DECLARATIONS 

Since block compiling a file frequently involves giving the compiler a lot of information about the 
nature and structure of the compilation, e.g., block functions, entries, specvars, linking, et al, we 
have implemented a special prettydef command to facilitate this commmunication. The user 
includes in the fileCOMS a command of the form (BLOCKS blockl ... block2 ... blockll) where each 
blockl is a block declaration. bcompl and brecompile described below are sensItive to these 
declarations and take the appropriate action.55 

The form of a block declaration is: 

(blkname blkfn1 ... blkfnxn (varl . value) ... (varn . value» 

blkfnl ... blkfn..., are the functions in the block and correspond to blkfns in the call to 
blockcompile. uThe (var. value) expressions indicate the settings for variables affecting the 
compilation. 

As an example, the value of editblocks is shown below. It consists of three block declarations, 
editblock, editfindblock, and edit4e. 

54 If only one entry is specified, the block name can also be one of the blkfns, e.g., 
BLOCKCOMPlLE(FOO (FOO FIE FUM) (FOO». However, if more than one entry is specified. an error will be 
generated, CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME, 

+ 55 

+ 
Note: Masterscope (Section 20) includes a facility for checking the block declarations of a file or files for various 
anomalous conditions, e.g. functions in block declarations which aren't on the file(s), functions in ENTRIES not in 
the block, variables that may not need to be SP[CVARS because they are not used freely below the places they are 
bound, etc. 

+ 
+ 

18.20 



The Block Compiler 

[RPAQQ EOITBLOCKS 
«EOITBLOCKEOITLO EOITLl UNOOEOITL EOITCOM EOITCOMA EOITCOML 

EOITMAC EOITCOMS EOIT]UNOO UNOOEDITCOM 
UNOOEDITCOMl EDITSMASH EOITNCONC EOIT1F EOIT2F 
EOITNTH BPNT BPNTO BPNT1 RI RO LI LO BI BO 
EOITDEFAULT ## EOUP EDIT· EOOR EORPT EOLOC EOLOCL 
EDIT: EOITMBD EOITXTR EOITELT EOITCONT EOITSW 
EOITMV EOITTO EDITBELOW EOITRAN TAILP EOITSAVE 
EDITH (ENTRIES EDITLO ## UNOOEOITL) 
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS 

··COMMENT··FLG PRETTYFLG UNOOLST 
UNDOLST1) 

(RETFNS EDITLO) 
(GLOBALVARS EOITCOMSA EOITCOMSL EOITOPS 

. HISTORYCOMS EOITRACEFN) 
(BLKAPPLYFNS RI RO LI LO BI BO EDIT: EOITMBO 

EOITMV EOITXTR) 
(BLKLIBRARY LENGTH NTH LAST) 
(NOLINKFNS EOITRACEFN» 

{EDITFINDBLOCK EDIT4E EDIT4El EDITQF EDIT4F EOITFPAT 
EOITFPATl EOIT4F1 EOIT4F2 EOIT4F3 EOITSMASH 
EDITFINOP EOITBF EOITBF1 ESUBST 
(ENTRIES EOITQF EOIT4F EDITFPAT EOITFINOP 

EOITBF ESUBST» 
(EOIT4EBLOCK EOIT4E EOIT4E1 (ENTRIES EOIT4E EOIT4E1] 

Whenever bcompl or brecompile encounter a block declaration56 they rebind retfns, specvars, 
localfreevars. globalvars, blklibrary, nolinkfns, linkfns. and dontcompilefns to their top level value, 
bind blkapplyfns and entries to NIL, and bind blkname to the first element of the declaration. 
They then scan the rest of the declaration, gathering up all atoms, and setting car of each 
nonatomic element to cdr of the expression if atomic, e.g., (LI N K F N S • T), or else to union of 
cdr of the expressions with the current (rebound) value,57 e.g., 
(GLOBALVARS EDITCOMSA EDITCOMSL). When the declaration is exhausted, the block 
compiler is called and given blkname, the list of block functions, and entries.58 

Note that since all compiler variables are rebound for each block declaration, the declaration only 
has to set those variables it wants changed. Furthermore, setting a variable in one declaration has 
no effect on the variable's value for another declaration. 

After finishing all blocks. bcompl and brecompile treat any functions in the file that did not appear 
in a block declaration in the same way as do tcompl and recompile. If the user wishes a function 
compiled separately as well as in a block, or if he wishes to compile some functions (not 
blockcompile), with some compiler variables changed, he can use a special pseudo-block declaration 

56 

57 

58 

The BLOCKS command outputs a DECLARE: expression, which is noticed by bcompl and brecompile. 

Expressions of the form (var • form) will cause form to be evaluated and the resulting list used as described above, 
e.g., (GLOBALVARS • MYGLOBALVARS). 

If a function appears in a block declaration. but is not defined in one of the files. then if it has an in-core definition, + 
this definition is used and a message printed NOT ON FILE, COMPILING IN CORE DEFINITION. Otherwise, + 
the messagc NOT COMPILEABLE, is printed and tllC block declaration processed'as though thc function were not on + 
it. i.e. calls to the function will be compiled as external function calls. 

18.21 



Section 18: The Compiler and Assembler 

of the fOlm (NJ L fnl ... f11m (varl . value) ... (varn . value» which means compile fnl '" f11m after 
first selting varl ... varn as described above. For example, 
(NIL CGETD FNTYP ARGLIST NARGS NCONCl GENSYM (LINKFNS . T» 
appearing as a "block declaration" will cause the six indicated functions to be compiled while 
linkfns=T so that alIof their calls will be linked (except for those functions on nolinkfns). 

BCOMPl 

bcompl[files;cfile] files is a list of symbolic files. (If atomic, list[files] is used.) bcompl 
differs from tcompl in that it compiles all of the files at once, 
instead of one at a time, in order to permit one block to contain 
functions in several files. 59 Output is to cfile if given, otherwise to a 
file whose name is car[files] suffixed with COM,60 e.g., 
bcompl[(EDIT WEDIT)] produces one file, EDIT . COM. 

bcompl asks the standard compiler questions, except for OUTPUT 
F I L E :, then processes each file exactly the same as does tcompl 
(see page 18.6).6162 Bcompl next processes the block declarations as 
described above. Finally, it compiles those functions not mentioned 
in one of the block declarations, and then writes out all other 
expressions. 

The value of bcompl is the output file (the new compiled file). If 
the compilation is aborted due to an error or control-D, all files are 
closed and the (partially complete) output file is deleted. 

Note that it is permissible to tcompl files set up for bcompl; the 
block declarations will simply have no effect. Similarly. you can 
bcompl a file that does not contain any block declarations and the 
result will be the same as having tcompled it 

BRECOMPllE 

Brecompile plays the same role for bcompl that recompile plays for tcompl: its purpose is to allow 
the user to update a compiled file without requiring an entire bcompl. 

59 

60 

61 

+ 62 

+ 

Thus if you have several files to be bcompled separately, you must make several calls to bcompt 

or value of cOl!.!Pile.ext, as explained earlier, 

In fact, tCOI!l.PJ is defined in terms of bcompl. The only difference is that tcompl calls bcompl with an extra 
argument specifying that all block declarations are to be ignored 

If any of the files have property FILETYPE with value CLISP, or a list containing CLISP, then ~wimifycompf1g is 
rebound to T for till of the files. 

18.22 



The Block Compiler 

brecompile[files;cfile;fns;-] files is a list of symbolic files (if atomic. list[files] is used). cfile is 
the compiled file corresponding to bcompl[filesl or a previous 
brecompile. Le., it contains compiled definitions that m~ be copied. 
The interpretation of fns is the same as with recompile. 3 

brecompile asks the standard compiler questions except for OUTPUT 
FI lE: As with bcompl. output automatically goes to file.COM~ 
where file is the first file in files. . 

brecompile processes each file the same as does recompile as 
described on page 18.7, then processes each block dec1aration. If 
any of the functions in the block are to be recompiled.· the entire 
block must be (is) recompiled. Otherwise, the block is copied from 
cfile as with recompile. For pscudo~block declarations of the form 
(NIL fn1 ... ), all variable assignments are made, but only those 
functions so indicated by fns are recompiled. 

After completing the block declarations, brecompile processes all 
functions that· do not appear in a block declaration, recompiling 
those dictated by fns, and copying the compiled definitions of the 
remaining from cfile. 

Finally, brecompile writes onto the output file the "other 
expressions" collected in the initial scan of files. 

The value of brecompile is the output file (the new compiled file). 
If the compilation is aborted due to an error or control-D, all files 
are closed and the (partially complete) output file is deleted. 

If cfile=NIL, file.COM is used.64 In addition,if fns and cfile are 
both NIL. fns is set to the value of recompiledefault, initially 
EXPRS .. 

18.13 COMPILER STRUCTURE 

The compiler has two principal passes. The first compiles its input into a macro assembly language 
called LAP. 65 'Inc second pass expands the LAP code, producing (numerical) machine language 
instructions. The output of the second pass is written on a file and/or stored in binary program 
space. 

Input to the compiler is usually a standard Interlisp S-expression function definition. However. in 

63 

64 

65 

In fact. recompile is defined in terms of brecompile. The only difference is that recompile calls brecompile with an 
extra argument specifying that all block declarations are to be ignored. 

See footnote on page 18.7. 

The exact form of the macro assembly language is extremely implementation dependent, as well as being influenced 
by the architecture and instruction set for the machine that will run the compiled program. The remainder of 
Section 18 discusses LAP for the Interlisp·10. 

18.23 

* 
* 



Section 18: The Compiler and Assembler 

Interlisp-10, machine language coding can be included within a function' by the use of one or more 
assemble forms as described below. In other words, assemble allows the user to write portions of a 
function in LAP. Note that assemble is only a compiler directive; it has no independent definition. 
Therefore, functions which use assemble must normally be compiled in order to run.66 

18.14 ASSEMBLE 

Note: assemble is provided for situations where its use is unavoidable. However. its use is 
definitely not encouraged. The disadvantages are several. assemble code is unavoidably dependent 
on the PDP-lO, TENEX, and implementation details of interlisp-10. Thus, assemble code is not 
transportable to Interlisp on another machine or operating system, and implementation changes to 
Interlisp-lO can (and frequently do) require changes to existing assemble code. 

The format of assemble is similar to that of PROG: (ASSEMBLE V Sl S2 ••• SN)' V is a 
list of variables to be bound during the first pass of the compilation, not during the running of the 
object code. The assemble statements S 1 ... SN are compiled sequentially, each resulting in one 
or more instructions of object code. When run, the value of the assemble "form" is the contents 
of AC1 at the end of the execution of the assemble instructions. Note that assemble may appear 
anywhere in an Interlisp-10 function. For example, one may write: 

(IGREATERP (IQUOTIENT {LOC (ASSEMBLE NIL 

4) 

to test if job runtime exceeds 4 seconds.67 

ASSEMBLE STATEMENTS 

1000) 

(MOVE! 1 • -5) 
(JSYS 13») 

If an assemble statement is an atom, it is treated as a label identifying the location of the next 
statement that will be assembled.68 Such labels defined in an assemble form are like IU:Qg labels in 
that they may be referenced from the current and lower level nested ~ or assembles. 

If an assemble statement is not an atom, car of the statement must be an atom and one of the 
following: (1) a number; (2) a LAP op-def (Le., has a property value OPO); (3) an assembler macro 
(Le., has a property value AMAC); or (4) one of the special assemble instructions given below, e.g., 
C. CQ. etc. Anything else wilt cause the error message OPCOOE? - ASSEMBLE. 

The types of assemble statements are described here in the order of priority used in the assemble 

+ 66 

+ 
The MACROTRAN package (page 18.12) does permit the user to run programs interpretively which contain assemble 
directives. Each assemb,k directive is compiled as a separate function. There is some loss in efficiency over compiling 
the entire function as a unit. and not all ass~mble expressions are tractable to this procedure. + 

67 

68 

This example is to illustrate use of assemble. and is not a recommendation to use the above code. The function 1M 
(Section 21) is the appropriate method. 

A label can be the last thing in an assembl~ form. in which case it labels the location of the first instruction qfter the 
assemble form. 

18.24 



Assemble 

processor; that is, if an atom has both properties OPD and AMAC, the OPD will be used. Similarly a 
special assemble instruction may be redefined via an AMAC. 'Inc following descriptions arc of the 
first pass processing of assemble statements. The second pass processing is described in the section 
on LAP, page 18.27. 

(1) numbers 

If car of an assemble statement is a number, the statement is not processed in the first pass. (See 
page 18.27.) 

(2) LAP op-defs 

The property OPD is used for two different types of op-defs: PDP-10 machine instructions, and 
LAP macros. If the OPD definition (i.e., the property value) is a number, the op-def is a machine 
instruction. When a machine instruction, e.g., HRRZ, appears as car of an assemble statement, the 
statement is not processed during the first pass but is passed to LAP. The forms and processing of 
machine instructions by LAP are described on page 18.28. 

If the OPD definition is not a number, then the op-def is a LAP macro. When a LAP macro is 
encountered in an assemble statement, its arguments are evaluated and processing of the statement 
with evaluated arguments is left for the second pass and LAP. For example, LDV is a LAP macro, 
and (LDV (QUOTE X) SP) in assemble code results in (LDV X N) in the LAP code, where N is 
the value of S P . 

The form and processing of LAP macros are described on page 18.29. 

(3) assemble macros 

If car of an assemble statement has a property AMAC. the statement is an assemble macro call. 
There are two types of assemble macros: lambda and substitution. If car of the macro definition is 
the atom LAMBDA, the definition will be applied to the arguments of the caU and the resulting list 
of statements will be assembled. For example, repeat could be a LAMBDA macro with two 
arguments, !! and m, which expands into!! occurrences of m, e.g., (REPEAT 3 (CAR 1» expands 
to « CAR 1) (CAR 1) (CAR 1) ). The definition (Le., value of property AMAC) for repeat is: 

(LAMBDA 
(PROG 

A 

(N M) 
(YY) 
(COND 

«(ILESSP N 1) 
(RETURN (CAR YY») 

(T (SETQ YY (TCONe YY M» 
(SETQ N (SUB1 N» 
(GO A»») 

If car of the macro definition is not the atom LAMBDA, it must be a list of dummy symbols. The 
arguments of the macro call will be substituted for corresponding appearances of the dummy 

18.25 



Section 18: The Compiler and Assembler 

symbols in cdr of lbe definition, and the resulting list of statements will be assembled.69 For 
exarnple,abs could be a substitution macro which takes one argument, a number, and expands into 
instructions to place the absolute value of the number in ACl. 

The definition of ASS is: 

(eX) 
(CQ (VAG X» 
(CAIGE 1 , 0)) 
(MOVN 1 , 1» 

(4) special assemble statements 

CQ (compile quote) takes any number of arguments which are 
assumed to be regular S-expressions' and are compiled in the 
normal way. E.g. 

(CQ (COND «NULL Y) (SETQ Y 1») 
eSETQ X (IPLUS Y Z») 

Note: to avoid confusion and minimize dependence on the current implementation, it is best to 
have as much of a function as possible compiled in the normal way, e.g., to load the value of ~ to 
ACl, (CQ X) is preferred to (LDV (QUOTE X) SP). 

69 

(C s1 ~ ... ) 

(E el ~ ... ) 

(SETQ var) 

(VAR (op ac • varname» 

(* ... ) 

C (£ompile) takes any number of arguments which are first 
evaluated, then compiled in the usual way. Both C and CQ permit 
the inclusion of regular compilation within an assemble form. 

E (~valuate) takes any number of arguments which are evaluated in 
sequence. For example, (PSTEP) calls a function which 
increments the compiler variable SP. 

Compiles code to set the variable var to the contents of AC 1. 

permits writing a machine instruction with the value of a variable as 
the operand. Generates the appropriate address and index fields to , 
reference the value of vamame. vamame may be a locally bound 
variable, free variable, globalvar. etc. Note that VAR may generate 
more than one instruction. 

* is used to indicate a comment; the statement is ignored 

Note that assemble macros produce a list of statements to be assembled. whereas compiler macros produce a single 
expression. An assemble macro which computes a list of st.1tements begins with LAMBDA and may be either spread or 
no-spread. Ibe analogous compiler macro begins with an atom, (i.e., is always no-spread) and the LAMBDA is 
understood. 

18.26 



Assemble 

COREVALS 

1nere arc several locations in the basic machine code of Interlisp-10 which may be referenced from 
compiled code. 'The current value of each location is stored on the property list under the property 
COREVAl. 70 Since these locations may change in different reassemblies of Interlisp-10, they are 
written symbolically on compiled code files, i.e., the name of the corresponding COREVAL is 
written, not its value. Some of the COREVALs used frequently in assemble are: 

KT 
KNIL 
MKN 
MKFN 
IUNBOX 
FUN BOX 

contains (pointer to) atom T 
contains (pointer to) atom NIL 
routine to box an integer 
routine to box floating number 
routine to unbox an integer 
routine to unbox floating number 

The index registers used for the push-down stack pointers are also included as COREVALS. These 
are not expected to change, and are not stored symbolically on compiled code files; however, they 
should be referenced symbolically in assemble code. They are: 

P P parameter stack 
CP control stack 
VP basic frame pointer 

18.15 LAP 

LAP (for 1ISP ~ssembly frocessor) expands the output of the first pass of compilation to produce 
numerical machine instructions. 

LAP STATEMENTS 

If a LAP statement is an atom, it is treated as a label identifying the location of the next statement 
to be processed. If a LAP statement is not an atom, car of it must be an atom and one of the 
following: (1) a number; (2) a machine instruction; or (3) a LAP macro. 

(1) numbers 

If car of a LAP statement is a number, a location containing the number is produced in the object 
code. 

70 The value of corevals is a list of all atoms with COREVAL properties. 

18.27 

--- .--- ------------
~,--, '.~--' 



e.g., 

Section 18: The Compiler and Assembler 

(ADD 1 t A (In 

A (1) 
(4) 
(9) 

71 

Statements of this type are processed like machine instructions, with the initial number serving' as a 
36-bit op-oode. 

(2) Machine Instructions 

If car of a LAP statement has a numeric value for the property OPD t 72 the statement is a machine 
instruction. The general form of a machine instruction ~s: . 

(opcode ac • @ address (index» 

Opcode is any PDP-IO instruction mnemonic or'Interlisp UUO.73 

'Ac, the accumulator field, is optional. However, if present, it must be followed by a comma. Ac is 
either a number or an atom with a COREVAL property. The low order 4 bits of the number or 
COREVAl are OR'd to the AC field of the instruction. 

@ may be used anywhere in the instruction to specify indirect addressing (bit '13 set in the 
instruction) e.g., (HRRZ 1 • 8 1 (VP». 

Address, is the address field which may be any of the following: 

71 

72 

73 

= constant 

• pointer 

Reference to an unboxed constant. A location containing the 
unboxed constant will be created in a region at the end of the 
function. and the address of the location containing the, constant is 
placed in the address field of the current instruction. The constant 
may be a number e.g., (CAME 1 • = 3596); an atom with a 
property COREVAL (in which case the constant is the value of the 
property, at LOAD time); any other atom which is treated as a label 
(the constant is then the address of the labeled location) e.g .. 
(MOVE 1 • = TABLE) is equivalent to (MOVEI 1 • TABLE); 
or an expression whose value is a number. 

The address is a reference to a Interlisp pointer, e.g., a list, number, 
string, etc. A location containing the pointer is assembled al the 

Note that if a function is intended to be swappable (Section 3), it may not contain any re1ocatable, indexed 

instructions. 

The v31ue is an 18 bit quantity (rather than 9). since some UUO's also use the AC field of the insIruction. 

The TENEX JSYS's are nOl defim.-d, that is. one must write (JSYS 107) instead of (KFORK). 

18.28 



* 

literal atom 

number 

list 

LAP 

end of the function, and the current instruction will have the 
address of this location, 
e.g., (HRRZ 1 , ' "IS NOT DEFINED") 
(HRRZ 1 , ' (NOT FOUND» 

Specifics the current location in the compiled function; e.g., 
(JRST • 2) has the same effect as (SKIPA). 

If the atom has a property COREVAL, it is a reference to a system 
location, e.g., (S K I PA 1 , KN I L), and the address used is the 
value of the coreval. Otherwise the atom is a label referencing a 
location in the LAP code, e.g., (JRST A). 

The number is the address; e.g., 
(MOVSI 1 , 400000Q) 
(HLRZ 2 , 1 (1» 

The form is evaluated, and its value is the address. 

Anything else in the address field causes an error message, e.g., ( SKI PA 1 , KN ILL) -
LAPERROR. A number may follow the address field and will be added to it, e.g., (JRST A 2). 

Index is denoted by a list following the address field, i.e., the address field must be present if an 
index field is to be used. The index <£ill: of the list) must be either a number, or an atom with a 
property COREVAL, e.g., (HRRZ 1 , 0 (1». 

(3) LAP macros 

If car of a LAP statement is the name of a LAP macro, i.e., has the property OPD, the statement is 
a macro call. The arguments of the call follow the macro name: e.g., (LQ2 FIE 3). 

LAP macro calls comprise most of the output of the first pass of the compiler, and may also be 
used in assemble. 'Ine definitions of these macros are stored on the property list under the 
property OPD, and like assembler macros, may be either lambda or substitution macros. In the 
first case, the macro definition is applied to the arguments of the call; 74 in the second case, the 
arguments of the call arc substituted for occurrences of the dummy symbols in the definition. In 
both cases, the resulting list of statements is again processed, with macro expansion continuing till 
the level of machine instructions is reached. 

Some examples of LAP macros are shown in Figure 18-2. 

74 The arguments were already evaluated in the first pass, see page 18.25. 

18.29 



Section 18: The Compiler and Assembler 

, 

{DEFLIST{QUOTE( 
(LQ «X) (* LOAD QUOTE TO ACt) 

(HRRl t • ' X))) 
(LQ2 « X AC) (* LOAD QUOTE TO AC) 

(HRRZ AC • ' X}» 
(LDV « ASP) . (* LOAD LOCAL VARIABLE TO AC t) 

(HRRZ 1 • (VREF ASP»» 
(STV «A SP) (* SET LOCAL VARIABLE FROM ACt) 

(HRRMI • (VREF ASP»» 
(LDV2 « A SP AC) (* LOAD LOCAL VARIABLE TO AC) 

(HRRZ AC • (VREF ASP»}) 
(LDF « ASP) . (* LOAD FREE VARIABLE TO ACl) 

(HRRZ 1 • (FREF ASP»» 
(STF «A SP) (* SET FREE VARIABLE FROM ACt) 

(HRRM 1 • (FREF ASP»» 
(LDF2 {(A SP) (* LOAD FREE VARIABLE TO AC) 

(HRRZ 2 • (FREF ASP»» 
(CARt (NIL (* CAR OF ACI TO ACt) 

(HRRZ 1 • 0 (I»)) 
(CDRI (NIL (* COR OF ACI TO ACl) 

{HLRZ 1 • 0 (1»» 
(CAR2 «AC) (* CAR OF AC TO AC) 

(HRRZ AC • 0 (AC»» 
(CLL «NAM N) (* CALL FN WITH N ARGS GIVEN) 

(CCALL N • • NAM») 
(LCLL «NAM N) (. LINKED CALL WITH N ARGS) . 

(LNCALL N • (MKLCL NAM»» 
(RET (NIL (* RETURN FROM FN) 

(POPJ CP .) 
(PUSHP (NIL (PUSH PP • 1») 
(PUSHQ «X) (* PUSH QUOTE) 

(PUSH PP • ' X») 
»(QUOTE OPD» 

Fipre 18-2 

Examples of LAP Macros 

18.30 



Using Assemble 

18.16 USING ASSEMBLE 

In order to use assemble, it is helpful to know the following. things about how compiled code is 
run. All variable bindings and temporary pointers are stored on the parameter pushdown stack 
(addressed by index register PP). Control information is stored on the control pushdown stack 
(addressed by index register. CP). A function call proceeds as follows: . 

1. The calling function pushes the argument· values on the parameter stack. 

2. The calling function invokes a routine that adjusts the number of arguments if too few or too 
many were supplied, and binds the arguments. Binding usually implies the creation of a basic 
frame.75 

3. Then the called function is run. 

The arguments in the basic frame are referenced relative' to jndex register Vp, e.g., 1 (VP) 
addresses the first argument. However, it is better to reference variables in less implementation 
dependent ways, such as (C Q ••• ) or (VAR ( ... ». The compiler will then generate the 
correct code whether the variable is bound locally. is a free reference, is a globalvar,etc. 

The parameter stack may be used for temporary storage of pointers. Both halves of a word on the 
parameter stack may be pointers. On the control stack the right half of a word. must be a pointer, 
the left a non-pointer. Anything else can cause the garbage collector to fail 

For temporary storage of unboxed numbers, the following assemble macros are provided: 

(PUSHN addr) 

(POPN addr) 

(NREF (op ac , n» 

(PUSHNN n1 n2 ... ) 

(POPNN n) 

"Pushes" the number referenced by addr. addr may be any legal 
assemble code address field, for example: 
(PUSHN 1), (PUSHN = 0), (PUSHN 8 2) 

"Pops" the most recent number to addr. 

References. a previously pushed number. .QQ is the opcode~ ac is 
the accumulator, !! is the relative position of the desired number on. 
the pseudo number stack. That is,!! = 0 refers to the most recent 
number, !! == -1 to the next most recent, etc. For example: 
(NREF (MOVN I, -1» 

"Pushes" a sequence of numbers specified by !!i where !!i is a list 
of any legal address field. For example: . 
(PUSHNN (1) (2) (= 0» 
pushes the contents of AC1, the contents of AC2, and the constant 
O. 

"Pops" the !! most recent numbers, discarding the values. 

75 Whether a basic frame is created for a l!!Qg or open lambda depends on whether any of the variables are specvars. 
See page 18.18. 

18.31 



Section 18: The Compiler and Assembler 

Use of these macros is subject to the following restrictions: 

1. PUSHN's and POPN's must be seen by the compiler in the same order and number in which 
they are executed. The compiler does not analyze the code; it assumes when it encounters· a 
PUSHN in the sequential processing of the code that the PUSHN will in fact be executed. 

2. Every number that is pushed must be popped. 

3. In nested assemble statements, if a Q!Q& or open lambda occurs between the inner and outer 
level assemble, numbers pushed in the outer assemble may not be referenced from the inner 
assemble. 

18.17 MISCELLANEOUS 

'The value of a function is always returned in AC 1. Therefore, the pseudo-function, aC,is available 
for obtaining the current contents of AC 1. For example (C Q (F 00 ( AC ») compiles a call to 
FOO with the current contents of ACl as argument, and is equivalent to: 

(PUSHP) 
{E (PSTEP» 
(Cll (QUOTE FOO) 1) 
(E (PSTEPN -1» 

In using ac,be sure that it appears as the first argument to be evaluated in the expression. For 
example: (CQ (IPlUS (lOC (AC» 2» 

There are several ways to reference the values of variables in assemble code. For example: 

to put value of X in ACl: 

to put value of X in AC3: 

to set X to contents of ACl: 

to set X to contents of AC2: 

to box and unbox a number: 

(CQ (lOC (AC») 
(FASTCAlL MKFN) 
(CQ (VAG X» 
(FASTCAll FUNBOX) 

(CQ X) 

(lOV2 (QUOTf X) SP 3) 

(SETQ X) 

(VAR (HRRM 2 • X» 

box contents of AC1 
floating box contents of ACl 
unboxed value of X to ACl 
floating unbox of AC1 

To call a function directly, the arguments must be pushed on the parameter stack, and SP must be 
updated, and then the function called: e.g., 

(CQ (CAR X» 
(PUSHP) 
(E (PSTEP» 
(PUSHQ 3.14) 
(E (PSTEP» 

(* stack first argument) 

(* stack second argument) 
18.32 



(Cll (QUOTE FUM) 2) 
(E (PSTEPN -2» 

and is equivalent to: 

(CQ (FUM (CAR X) 3.14» 

Miscellaneous 

(* call FUM with 2 arguments) 
(* adjust stack count) 

18.18 COMPILER PRINTOUT AND ERROR MESSAGES 

For each function compiled, whether from tcompl, recompile, or compile, the compiler prints: 

(fn (argl ... argn) (freel ... freen» 
The message is printed at the beginning of the second pass of the compilation of fn. (argl ... arg ) 
is the list of arguments to fn, and (freel ... freen) the list of free variables referenced or set in fn~6 
The appearance of non-variables, e.g., function names, words from a comment, etc. in 
(freel ... freen) is a good indication of parenthesis errors. 

If the compilation of fn causes the generation of one or more gensym functions (see page 18.13), a 
compiler message will be printed for these functions before the message for fn, e.g., 

(FOOA0027 NIL (X» 
(FOO (X) NIL) 

When compiling a block, the compiler first prints (blkname blkfnl blkfn2 ... ). Then the nonnal 
message is printed for the entire block.77 Then a message is printed for each entry to the block. 

In addition to the above output, both recompile and brecompile print the name of each function 
that is being copied from the old compiled file to the new compiled file. lbe nonnal compiler 
message is printed for each function that is actually compiled. 

Compiler output and erronnessages go to the file coutfile, initially T. coutfile can also be set to the + 
name of a file opened for output, in which case all compiler output will go to coutfile, i.e. the + 
compiler will compile "silently." However, any error messages will be printed to both coutfile as + 
well as T. . + 

COMPILER ERROR MESSAGES 

Messages describing errors in the function being compiled are also printed on the teletype. These 
messages are always preceded by *****. Unless otherwise indicated below, the compilation will 
continue. 

(fn NOT ON FILE. COMPILING IN CORE DEFINITION) 
from calls to bcompl and brccompile. 

76 

77 

Does not include global variables. see page 18.4. 

The names of the arguments to the block are generated by suffixing .. #" and a number to the block name, e.g., 
(FOOBLOCK (pOOIlLOCK#O FOOBLOCK#l) free-variables). 

18.33 

+ 
+ 



* 
* 

* 
* 

* 
* 

Section 18: The Compiler and Assembler 

(fn NOT COMPIlEABLE) 
An expr definition for fn could not be found. In this case, no code is produced for fu. and 

the compiler proceeds to the next function to be compiled. if any. 

(fnNOT FOUND) 
Occurs when recompile orbrccompile try to copy the compiled definition of fnfrom effie. 

and cannot find it. In this case, no code is copied and the compiler proceeds to the 
next function to be compiled. if any. . 

(fnNOT ON BLKFNS) 
fn was specified as an entry to a block, or else was on blkapplyfns, but did not appear on 

the blkfns. In this case, no code is produced for the entire block and the compiler 
proceeds to the next function to be compiled. if any. . 

(fnCAN'T BE BOTH AN ENTRY AND THE BLOCK NAME) 
In this case, no code is produced for the entire block and the 'compiler proceeds to the next 

function to be compiled, if any. 

(blkname - USED BLKAPPLY WHEN NOT APPLICABLE) 
blkapply is used in the block blkname, but there are no blkapplyfns or entries declaredtbr 

the block. 

+ (var SHOULD BE A SPECVAR - USED FREELY BY fn) 
+ In Interlisp-lO. while compiling a block, the compiler has already generated code· to bind 
+ var as a LOCALVAR, but now dicovers that fn uses m freely . .YM should be declared a 
+ SPECVAR and the block recompiled. 

+ «* --) COMMENT USED FOR VALUE) 
+ a comment appears in a context where its value is being used. e.g. (LIST X (* --)Y). The 
+ compiled function will run, but the value at the point where the comment was used is 
+ "undefined." 

+ «form) - NON-ATOMIC CAR OF FORM) 
+ If user intended to treat the value of form as a function, he should use~. form is 
+ compiled as if ~ had been used. See Section 8. 

+ «SETQ var expr --) -BAD SETQ) 
+ setg of more than two arguments. 

(fn - USED AS ARG TO NUMBER FN7) 
The value of a predicate, such as GREATERP or EQ, is used as an argument to a function 

that expects numbers, such as IPLUS. 

(fn- NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT) 
The compiler has assumed fn is the name of a function. If the user intended to treat the 

value of fn as a function, he must use~. See Section 8.18 

(fn - ILLEGAL RETURN) 

78 This message is printed when ill is not defined, and is also a local variable of the function being compiled Note that 
earlier versions of the Interlisp-lO compiler did treat.fu as a functional argument, and compiled code to evaluate it 

18.34 



Compiler Printout alld Error Messages 

return encountered when not in QIQg. 

(tg - ILLEGAL GO) 
fill encountered when not in a QIQg. 

(tg - MUL TIPL Y DEFINED TAG) 
!,g is a PROG label that is defined more than once in a single PROG. The second definition 

is ignored. 

(tg - UNDEFINED TAG) 
!,g is a PROG label that is referenced but not defined in a PROG. 

(var - NOT A BINDABLE VARIABLE) 
var is NIL, T. or else not a literal atom. 

(var val -- BAD PROG BINDING) 
occurs when there is a prog binding of the fonn (var vall'" vaIn)' 

(tg - MULTIPLY DEFINED TAG, ASSEMBLE) 
1£ is a label that is defined more than once in an assemble fonn. 

(tg - UNDEFINED TAG, ASSEMBLE) 
!,g is a label that is referenced but not defined in an ASSEMBLE form. 

(tg - MULTIPLY DEFINED TAG, LAP) 
!,g is a label that was encountered twice during the second pass of the compilation. If this 

error occurs with no indication of a multiply defined tag during pass one, the tag is in 
a LAP macro. 

(tg - UNDEFINED TAG, LAP) 
1£ is a label that is referenced during the second pass of compilation and is not defined. 

LAP treats 1£ as though it were a coreval, and continues the compilation. 

(op - OPCODE? - ASSEMBLE) 
QQ appears as car of an assemble statement, and is illegal. See page 18.24-26 for legal 

assemble statements. 

+ 
+ 

+ 
+ 

(NO BINARY CODE GENERATED OR LOADED FOR fn) + 
a previous error condition was sufficiently serious that binary code for fn cannot be loaded + 

without causing an error. + 

18.35 





Index for Section 18 

AC (i n a 1 ap statement) ........................ . 
AC (in an assemble statement) .................. . 
ACI ............................................ . 
ALAMS (compiler variable/parameter) ............ . 
AMAC (property name) .............•..........•... 
APPLY[FN;ARGS] SUBR ............................ . 
APPLY*[FN;ARG1;ARG2; ... ;ARGn] SUBR'" ............ . 
ASSEMBLE ....................................... . 
ASSEMBLE macros .....................•........... 
ASSEMBLE statements ......................•.•.... 
BAD PROG BINDING (compiler error message) ...... . 
BAD SETQ (compiler error message) .............. . 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] ................ . 
BLKAPPLY[FN;ARGS] SUBR ......................... . 
BLKAPPLYFNS (compiler variable/parameter) ...... . 
BLKAPPLY*[FN;ARG1;ARG2; ... ;ARGn] SUBR'" •......... 
BLKLIBRARY (compiler variable/parameter) ....... . 
BLKLIBRARYDEF (property name) .................. . 
block compiler ................................. . 
block compil ing ................................ . 
block declarations ............................. . 
block 1 ibrary .................................. . 
BLOCKCOMPILE[BLKNAME;BLKFNS;ENTRIES;FLG] ....... . 
BLOCKS (file package command) .................. . 
BRECOMPILE[FILES;CFILE;FNS;NOBLOCKSFLG] ........ . 
BUILDMAPFLG (system variable/parameter) ........ . 
C (in an assemble statement) ..............•..... 
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME 

(compiler error message) .................. . 
CLISP and comp i 1 er ............................. . 
COM (as suffix to file name) ................... . 
COMMENT USED FOR VALUE (compiler error message) 
COMPILE[X;FLG] ................................. . 
compiled file .................................. . 
COMPILED ON .................................... . 
COMPILEHEADER (compiler variable/parameter) 
compiler ....................................... . 
compiler error messages .............•........... 
compiler functions ............................. . 
compiler macros ................................ . 
compiler printout .............................. . 
compiler questions ............................. . 
compiler structure ............................. . 
COMPILETYPELST (compiler variable/parameter) 
COMPILEUSERFN (compiler variable/parameter) 
COMPILE.EXT (compiler variable/parameter) ...... . 
COMPILE1[FN;DEF;COREFLG] ......•..............•.. 
compiling by datatype ..............•............ 
comp i 1 i ng CLISP ..............•......•........... 
compiling files ................................ . 
compiling FUNCTION ............................. . 
compiling NLAMBDAs ....•......................... 
COMPSET[FILE; FLG; FILES] .................•....... 
computed macros ........•..•............•........ 
CONSTANT[X] ......•.................•............ 
constants in compiled code .....•..•••.....•..... 

INDEX.tB.t 

Page 
Numbers 

18.28 
18.32 
18.32.24.26 
18.4 
18.24-25 
18.14 
18.14 
18.24-21,31-33 
18.25 
18.24-26 
18.35 
18.34 
18.22,19-21.23 
18.14 
18.14,19.21 
18.14 

·18.14,21 
18.14 
IB.19-23 
18.13-23 
18.20,21-22 
18.14 
18.19,20 
18.20-21 
18.23,19-22 
18.7 
18.26 

18.34,20 
18.4-5 
18.6,22 
18.34 
18.5 
18.6.7 
18.5 
18.5 
18.1,2-36 
18.33-36 
18.6,6-8.19-20.22-23 
18.10-12 
18.33 
18.2-3 
18.23 
18.4,12 
18.4,9 
18.6 
18.5 
18.12 
18.4-5 
18.6,7.22 
18.13 
18.3-4 
18.2 
18.10 
18.11 
18.11 



control-D ..•............•.............•......... 
COPYWHEN (DECLARE: option) .....•................ 
COREVAL (property name) ........................• 
COREVALS ....................................... . 
COREVALS (system variable/parameter) ...•........ 
COUTFILE (compiler variable/parameter) ......... . 
CQ (in an assemble statement) .................. . 
DECLARE ..........................•.............. 
DECLARE: (in compiler) ........................ .. 
DEFERRtDCONSTANT[X] ............................ . 
DOEVAL@COMPIlE (DECLARE: option) .....•..•.••.•.. 
DONTCOMPILEfNS (compiler variable/parameter) 
DONTCOPY (DECLARE: option) ................••.... 
DWIMIFYCOMPFLG (compiler variable/parameter) 
E (in an assemble statement) .....•.•....•..•.••. 
ENTRIES (compiler variable/parameter) .•.....•.•. 
entries (to a block) ..........................•. 
errors in compiler ••.......•.........••.••..•.•. 
EVAL@COMPILE (DECLARE: option) .......•....•...•. 
EVAL@COMPILEWHEN (DECLARE: option) ........•..... 
EXPANDMACRO[FORM;QUIETFLG] .......•..........••.. 
EXPR (property name) •...........•.....••......•. 
F (response to compiler question) ....•....•...•• 
FAULTAPPLY[fAULTfN;FAULTARGS] •••• ~ •..•.•••••••.. 
FILECREATED[X} NL· .•...••..•..••.•••..•••••..•.• 
FILETYPE (property name) .......•...............• 
FILE: (compiler question) ..•......•.....•••.•.•. 
FIRST (DECLARE: option) •...•....•....•.•.••.•.•• 
FUNARG •• It ••• It ••••• It •• It • It ••• It •••••••• It ••• It ••••••• 

FUNCTlON[FN:ENV] NL ............................ . 
function definition cell •••••••..•••..•••••••••• 
functional arguments .•.......••..•.•..•......••. 
GENSYMICHAR] .•••.•.••..•••••••..•..•.•..•.•....• 
global variables ..........•••...••.•............ 
GLOBALVAR (property riame) ..........•...........• 
GLOBALVARS (compiler variable/parameter) •....... 
IGNOREMACRO (in compiler) ...................... . 
ILLEGAL GO (compiler error message) ..........••• 
ILLEGAL RETURN (compiler error message) ........• 
INSTRUCTIONS (in compiler) .....................• 
LAMS (compiler variable/parameter) •............. 
LAP ...•.................•...•....•.............. 
LAP macros .........•...•...••................... 
LAP op.,.defs •.•............•.•......•............ 
LAP statements .............••.....•............. 
LAPFLG (compiler variable/parameter) ...........• 
LCFIL (compiler variable/parameter) ....••..•.... 
1 i nk.ed funct i on ca 11s .......................... . 
LINKEDFNS (system variable/parameter) ....•.•.... 
LINKFNS (compiler variable/parameter) ......•.... 
LISTING? (compiler question) ................... . 
LOAD[FILE;LDFLG;PRINTFLG] •......•............... 
LOADFROM[FILE:FNS;LDFLG] .................•...... 
LOCALFREEVARS (compiler variable/parameter) 
LOCALVARS (compiler variable/parameter) ........ . 
LSTFIL (compiler variable/parameter) ........... . 
machine instructions ................•..•...•.... 

INDEX.18.2 

Page 
Numbers 

18.4-5 
18.7 
18.21,28-29 
18.27 
18.27 
18.33 
18.26 
18.10,21 
18.6,6 
18.12 
18.7 
18.6,8.21 
18.7 
18.5,6.22 
18.26 
18.21 
,18.13,19-20 
18.33-36 
18.7 
18.7 
18.11 
18.5.14 
18.1-3 
18.17 
18.5 
18.6 
18.2 
18.7 
18.13 
18.13 
18.15 
18.13 
18.13 
18.5 
18.4 
18.4.21 
18.10 
18.35 
18.34 
18.10 
18.3.6 
18.21,2.23.28;'29 
18.29,25 
18.24-25 
18.27-29 
18.2 
18.2-3 
18.15-18 
18.17 
18.11,21-22 
18.1-2 
18.5 
18.8 
18.21 
18.18 
18.2 
18.21.28-29 



MACRO (property name) .......................... . 
macros (in compiler) ........................... . 
macrotran package .............................. . 
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILE] 
MULTIPLY DEFINED TAG (compiler error message) 
MULTIPLY DEFINED TAG, ASSEMBLE 

(compiler error message) .................. . 
MULTIPLY DEFINED TAG, LAP (compiler error message) 
NIL (use in block declarations) .........•....... 
NlAMA (compiler variable/parameter) ............ . 
NLAMl (compiler variable/parameter) ............ . 
NO BINARY CODE GENERATED OR LOADED 

(compiler error message) .................. . 
NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT 

(compiler error message) .................. . 
NOLINKDEF ...................................... . 
NOLINKFNS (compiler variable/parameter) ........ . 
NON-ATOMIC CAR OF FORM (compiler error message) 
NOT A BINDABLE VARIABLE (compiler error message) .. 
NOT COMPILEABLE (compiler error message) ....... . 
NOT FOUND (compiler error message) ............. . 
NOT IN FILE - USING DEFINITION IN CORE 

(compiler error message) .................. . 
NOT ON BLKFNS (compiler error message) ......... . 
NOT ON FILE, COMPILING IN CORE DEFINITION 

(compiler error message) .................. . 
NOTFIRST (DECLARE: option) ..................... . 
OPCODE (in a lap statement) .................... . 
OPCODE? - ASSEMBLE (compiler error message) 
OPD (property name) ........................... .. 
open functions ................................. . 
open macros ............................•........ 
OUTPUT FILE? (compiler question) ............... . 
PSTEP[] ........................................ . 
PSTEPN[N] ...................................... . 
RECOMPILE[PFILE;CFILE;FNS] ..................... . 
RECOMPILEDEFAULT (compiler variable/parameter) 
REDEFINE? (compiler question) .................. . 
RELINK[FN;UNLINKFLG] ........................... . 
relinking ...................................... . 
RESETVAR[VAR;NEWVALUE;FORM] NL ................. . 
RETFNS (compiler variable/parameter) ........... . 
S (response to compiler question) .............. . 
SAVE EXPRS? (compiler question) ................ . 
second pass (of the compiler) .................. . 
SETQ (in an assemble statement) ................ . 
shallow bi nding ................................ . 
SHOULD BE A SPECVAR (compiler error message) 
SP (in an assemble statement) ., ................ . 
SPECVARS (compiler variable/parameter) ......... . 
ST (response to compiler question) ............. . 
STF (response to compiler question) ............ . 
STRF (compiler variable/parameter) ............. . 
substitution macros ............................ . 
SVFLG (compiler variable/parameter) ............ . 
SYSLINKEDFNS (system variable/parameter) ....... . 
TCOMPL[FILES] .................................. . 

INDEX.18.3 

Page 
Numbers 

18.10,9,12 
18.10-12 
18.12,24 
18.8 
18.35 

18.35 
18.35 
18.22 
18.3 
18.3 

18.35 

18.34 
18.17 
18.17,21-22 
18.34 
18.35 
18.34,5.21 
18.34 

18.33 
18.34,14.20 

18.21 
18.7 
18.28 
18.36,24 
18.26,24.28-29 
18.9-10 
18.10 
18.1.3 
18.26 
18.32 
18.7,5.8.21 
18.8.23 
18.3 
18.17 
18.17-18 
18.5 
18.14,19.21 
18.2-3 
18.3 
18.23 
18.26 
18.4 
18.34 
18.26 
18.18,19.21 
18.1-3 
18.2-3 
18.2,3.5 
18.11 
18.2-3 
18.17 
18.6,6-7.21-22 



UNBROKEN (typed by compiler) ................... . 
UNDEFINED TAG (compiler error message) ......... . 
UNDEFINED TAG. ASSEMBLE (compiler error message) .. 
UNDEFINED TAG. LAP (compiler error message) 
USED AS ARG TO NUMBER FN? (compiler error message) 
USED BLKAPPLY WHEN NOT APPLICABLE 

(compiler error message) .................. . 
WORLD (as argument to RELINK) .................. . 
, (in a 1 ap statement) ......................... . 
• (in a lap statement) ........................ .. 
• (in an assemble statement) ................... . 
••••• (in compiler error messages) ............•. 
= (in a lap statement) ......................... . 
@ (in a lap statement) ......................... . 

INDEX.18.4 

Page 
Numbers 

18.5 
18.35 
18.35 
18.35 
18.34 

18.34 
18.17 
18.28 
18.29 
18.26 
18.33 
18.28 
18.28 



SECTION 19 

ADVISINGl 

The operation of advising gives the user a way of modifying a function without necessarily knowing 
how the function works or even what it does. Advising consists of modifying the intelface between 
functions as opposed to mOQifying the function definition itself, as in editing. break, trace, and 
breakdown, are examples of the use of this technique: they each modify user functions by placing 
relevant computations between the function and the rest of the programming environment. 

The principal advantage of advising, aside from its convenience, is that it allows the user to treat 
functions, his or someone else's, as "black boxes," and to modify them without concern for their 
contents or details of operations. For example, the user could modify sysout to set sysdate to the 
time and date of creation by advise[SYSOUT; (SETQ SYSDATE (DATE»] 

As with break, advising works equally well on compiled and interpreted functions. Similarly, it is 
possible to effect a modification which only operates when a function is called from some other 
specified function, Le., to modify the interface between two particular functions, instead of the 
interface between one function and the rest of the world. This latter feature is especially useful for 
changing the internal workings of a system function. 

For example, suppose the user wanted time (Section 21) to print the results of his measurements to 
the file Faa instead of the teletype. He could accomplish this by 
ADVISE«(PRINI PRINT SPACES) IN TIME) BEFORE (SETQQ U Faa» 

Note that advising prin1, print, or spaces directly would have affected all calls to these very 
frequently used function, whereas advising «PRINt PRINT SPACES) IN TIME) affects just 
those calls to prinl, print, and spaces from time. 

Advice can also be specified to operate after a function has been evaluated. The value of the body 
of the original function can be obtained from the variable !value, as with break!. For example, 
suppose the user wanted to perform some computation following each sysin, e.g., check whether his 
files were up to date. He could then: 

1 

2 

ADVISE(SYSOUT AFTER (COND «LISTP IVALUE) __ »)2 

Advising was developed and implemented by W. Teite1man. 

Aller the ~sin. the system will be as it was when the sysout was performed. hence the advice must be to 1!Y!'oul, not 
min. See Section 14 for complete discussion of sysoutlsysin. 

19.1 



Section 19: Advising 

19.1 IMPLEMENTATION OF ADVISING 

The structure of a function after it has been modified several times by advise is given in the 
following diagram: 

MODIFIED 
FUNCTION ADVICEN 

ENTER 

ORIGINAL 
FUNCTION 

FIGURE 19-1 

19.2 

ADVICE 
BEFORE 

ADVICE 
AFTER 



Implementation of Advising 

The corresponding Interlispdefinition is: 

(LAMBDA arguments (PROG (IVALUE) 
(SETQ IVALUE (PROG NIL 

advice! 

advicen 

advice 
before 

(RETURN body») 
advicel . 

advicem 

advice 
after 

(RETURN IVALUE») 

where body is equivalent to the original definition.3 4 

Note that the structure of a function modified by advise allows a piece of advice to bypass the 
original definition by using the function· RETURN. For example, if 
(COND «ATOM X) (RETURN Y») were one of the pieces of advice BEFORE a function, and 
this function was entered with ! atomic, y would be returned as the value of the inner PROG, 
!value would be set to y, and control passed to the advice, if any, to be executed AFTER the 
function. If this same piece of advice appeared AFTER the function, y would be returned as the 
value of the entire advised function. 

The advice {COND ({ATOM X) (SETQ IVALUE Y») AFTER the function would have a similar 
effect, but the rest of the advice AFTER the function would still be executed. 

19.2 ADVISE FUNCTIONS 

ADVISE 

Advise is a function of four arguments: fn. when, where, and what fn is the function to be 
modified by advising, what is the modification. or piece of advice. when is either BE FORE, AFTER, 
or AROUND,and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body 
of the function definition. where specifics exactly where in the list of advice the new advice is to .. 
be placed, e.g., FIRST, or (BEFORE PRINT) meaning before the advice containing print or 
(AFTER 3) meaning after the third piece of advice, or even (: TTY:). If where is specified, 
advise first checks to see if it is one of LAST, BOTTOM, END. FIRST. or TOP. and operates 
accordingly. Otherwise, it constructs an appropriate edit command and calls the editor to insert the 
advice at the corresponding location. 

Both when and where are optional arguments, in the sense that they can be omitted in the call to 
advise. In other words, advise can be thought of as a function of two arguments (fn;what]. or a 

3 

4 

AcLually, lIdvi~ uses its own versions of PROG. SHQ. and RETURN, (called ADV-PROG, ADV-SETQ. and 
ADV-RETURN) in order Lo enable adviSing these functions. 

If [I! was originally 3n EXPR, body is the body of the definition, otherwise a fonn using a ~ which is defined 
with the original definition. 

19.3 



Section 19: Advising 

function of three arguments: [fn;when;what], or a function of four arguments: 
Ifn;when;where;what]. Note that the advice is always the las/argument. If when = NIL, BEFORE 
is used. If where = NIL, LAST is used. 

advise[fn;when;where;what] fn is the function to be advised, when = BEFORE, AFTER, or 
AROUND, where specifies where in the advice list the advice is to be 
inserted, and what is the piece of advice. 

5 

6 

7 

If fn is of the form (fnl IN fn2). fnl is changed to fnl- IN - fn2 
throughout fn2, as with break, and then fnl- I N - fn2 is used in 
place of fn.5 . 

If fn is broken, it is unbroken before advising. 

If fn is not defined, an error is generated, NOT A FUNCTION. 

If . fn is being advised for the first time, i.e., if 
getp[name,ADVISED]=NIL, a gensYIll is generated and stored on 
the property list of fn under the property ADVISED, and the 
gensym is defined with the original definition of fn. An 
appropriate S-expression definition is then created for fn.OFinally, 
fn is added to the (front of) advisedfns.7 

If fn has been advised before, it is moved to the front of 
advisedfns. 

If when=BEFORE or AFTER, the advice is inserted in fu's 
definition either BEFORE or AFTER the original body of the 
function. Within that context, its position is determined by where. 
If where = LAST, BOTTOM. END. or NIL. the advice is added 
following all other advice, if any. If where = FIRST or TOP, the 
advice is inserted as the first piece of advice. Otherwise, where is 
treated as a command for the editor. a la breakin. e.g., 
(BEFORE 3). (AFTER PRINT) • 

If when = AROUND. the body is substituted for * in the advice, and 
the result becomes the new body. e.g .• 
advise[FOO;AROUND;(RESETFORM (OUTPUT T) *)]. Note that 
if several pieces of AROUND advice are specified, earlier ones will be 
embedded inside later ones. The value of where is' ignored. 

Finally list[when;where;what] is added (by addprop) to the value of 

If fnl and/or fn2are lists. they are distributed as shown in the example on page 19.1 

Using private versions of PROG. SETQ. and RETURN. so that these functions can also be advised. 

So 111at unadvise[T] always ulladvises the last function advised. St.'e page 19.5. 

19.4 



Advise Functions 

property ADVICE on the property list fn.8 Note that this property 
value is a list of the advice in order of calls to advise, not 
necessarily in order of appearance of the advice in the definition of 
fn. 

The value of advise is fn. 

If fn is non-atomic, every function in fn is advised with the same 
values (but copics) for when, wher~ and what. In this case, the 
value of advise is a list of individual functions. 

Note: advised functions can be broken. (However if a function is broken at the time it is advised, 
it is first unbroken.) Similarly, advised functions can be edited, including their advice. unadvise 
will still restore the function to its unadvised state, but any changes to the body of the definition 
will survive. Since the advice stored on the property list is the same structure as the advice 
inserted in the function, editing of advice can be· performed· on either the function's definition or 
its property list 

unadvise[x] is a no-spread NLAMBDA a la unbreak. It takes an indefinite 
number of functions and restores them to their original unadvised 
state, including removing the properties added by advise.9 unadvise 
saves on the list advinfolst enough information to allow restoring a 
function to its advised state using readvise. advinfolst and rcadvise 
thus correspond to brkinfolst and rebreak. 

unadvise[] unadvises all functions on advisedfns.10 It first sets 
advinfolst to NIL. 

unadvise[T] unadvises the first function of advisedfns, i.e., the 
most recently advised function. 

readvise[x] is a no-spread NLAMBDA a la rebreak for restoring a function to its 
advised state without having to specify all the advise information. 
For each function on x, readvise retrieves the advise infonnation 
either from the property READVICE for that function, or from 
advinfolst, and perfonns the corresponding advise operation(s). In 
addition it stores this infonnation on the property READVICE if not 
already there. If no infonnation is found for a particular function, 
value is (fn - NO ADVICE SAVED). 

readvise[] readvises everything on advinfolst. 

8 

9 

10 

So that a record of all the changes is available for subsequent use in readvising. see page 19.5. 

Except if a function also contains the property READVICE (see readvise below). unadvise moves the current value of 
the property ADVICE to READVICE; 

In reverse order. so that the most recently advised function is unadvised last 

19.5 



Section 19: Advising 

readvise[T] readvises just the first function on advinfolst, i.e., the 
function most recently unadvised. . 

A difference between advise, unadvise, and readvise vcrsus break, unbreak, and rebre~ is that if a 
function is not rebroken betwecn successive unbrcak[]'s, its break information is forgotten. 
However, once readviscd, a function's advice is permanently saved on its property list 
(under READVICE); subsequcnt calls to unadvise will not remove it. In fact. calls to unadvise 
update the property READVICE with the current value of the property ADVICE, so that the 
sequcnce readvise, advise, unadvise causes the augmented advice to become permanent Note that 
the sequence readvise, advisc, readvise' removes the "intermediate advice" by restoring the function 
to its earlier state. 

advisedump[x;flg] Used by prettydef when given a command of the form (ADVISE -) 
or (ADVICE --). .fig=T corresponds to' (ADVISE --), ie., 
advisedump writes both a deflist and a readvise. !lg=NIl 
corresponds to (ADVICE --), i.e., only the deflist is written. In 
either case, adviscdump copies the advise information to the 
property READVICE, thereby making it "permanent" as described 
above. 

19.6 



Index for Section 19 

advice ......................................... . 
ADVICE (file package command) .................. . 
ADVICE (property name) ......................... . 
ADVINFOLST (system variable/parameter) ......... . 
ADVISE[FN;WHEN;WHERE;WHAT] ..................... . 
ADVISE (file package command) .................. . 
ADVISED (property name) ...........•............. 
ADVISEDFNS (system variable/parameter) ......... . 
ADVISEDUMP[X: FLG] .............................. . 
advising ....................................... . 
ADV-PROG .................................. ~ .................. . 
ADV-RETURN ..................................... . 
ADV-SETQ ...........•............................ 
AFTER (as argument to advise) .................. . 
AROUND (as argument to advise) ................. . 
BEFORE (as argument to advise) ................. . 
BOTTOM (as argument to advise) ................. . 
FIRST (as argument to advise) ..................• 
(fn1 IN fn2) ................•................... 
fn1-IN-fn2 .........•............................ 
GENSYM[CHAR] ................................... . 
LAST (as argument to advise) ................... . 
NOT A FUNCTION (error message) .......•.......... 
PRETTYDEF .....................•................. 
READVICE (property name) ....................... . 
READVISE[X] NL* ................................ . 
TOP (as argument to advise) .................... . 
UNADVISE[X] NL* ................••............... 
UNBROKEN (typed by advise) ....•..•.............. 
IVALUE (use with advising) ...•.................. 

INDEX.19.1 

Page 
Numbers 

19.1.3 
19. fl-
19.5-6 
19.5 
19.4,3,5 
19.6 
19.4 
19.4-5 
19.6 
19.1-6 
19.3-4 
19.3-4 
19.3-4 
19.3-4,1 
19.3;4 
19.3.4 
19.3-4 
19.3-4 
19.4 
19.4 
19.3-4 
19.3-4 
19.4 
19.6 
19.5-6 
19.6,6 
19.3-4 

"19.6.4,6 
19.4 
19.1,3 





SECTION 20 

MASTERSCOPE AND HELPSYS 

20.1 MASTERSCOPEl 

MasterScope is an interactive program for analyzing and cross referencing user programs. It 
contains facilities for analyzing user functions to detennine what other functions are called, how 
and where variables are bound, set, or referenced, as well as which functions use particular record 
declarations. Masterscope is able to analyze definitions directly from a file as well as in-core 
definitions. 

Masterscope maintains a database of the results of the analyses it perfonns. Via a simple command 
language, the user may interrogate the database, call the editor on those expressions in functions 
that were analyzed which use variables or functions in a particular way. or display the tree 
structure of function calls among any set of functions. . 

Masterscope is interfaced with the editor and file package so that when a function is edited or a 
new definition loaded in, Masterscope knows that it must re-analyze that function. 

The following sample session illustrates some of these facilities. User input is underlined. 

1 Mastcrscope W:IS designed and implemented by L. M. Masinter. 

20.1 



- ,.;" 

Section 20: Masterscope and JIelpsys 

.-MASTERSCOPE] [1] 
Masterscope 1-JAN-76 ... type HELP(cr) for command summary . 
.-. ANALYZE FUNCTIONS ON RECORD~ [2] 

NIL 
~. WHO CALLS RECFIELDlOOK~ 
(RECFIELDLOOK ACCESSDEF ACCESSDEF2 EDITREC) 
.... EDIT WHERE ANY CALL RECFIELDLOOKll 
RECFI ElDLOOK : 
(RECFIELDlOOK (CDR Y) FIELD) 
tty: 
-QK~ 

ACCESSOEF 
(RECFIELDlOOK DECLST FIELD VAR1) 
-OK'} 
(REcFIElDLOOK USERRECLST FIELD) 
-N VARl'} 
-~ ACCESSDEF2 : 
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD) 
tty: 
(RECFIELDLOOK (RECORD.SUBDECS TRAN) FIELD) 
·N (CAR TAIL] 
·OK,} 
EDITREC : 
(RECFIELDLOOK USERRECLST (CAR EDITRECX» 
*Q!i 
NIL 
.-. WHO CALLS ERROR'} 

(EDITREC) 
.-. SHOW PATHS TO RECFIELDLOOK FROM ACCESSDEF'} 
(inverted tree) 
1.RECFIELDLOOK RECFIELDLOOK 
2. ACCESSDEF 
3. ACCESSDEF2 ACCESSDEF2 
4. ACCESSDEF 
5. RECORDCHAIN ACCESSDEF 
NIL 
.... WHO CALLS WHO IN IFNS'} 
RECORDSTAIEMENT -- IRPLNODE 
RECORDECLI -- INCONC, IRPLACD, IRPLNODE 
RECREDECLAREl -- IPUTHASH 
UNCLISPTRAN -- IPUTHASH, IRPLNODE2 
RECORDWORD IRPLACA 
RECORDl IRPLACA, ISETTOPVAL 
EDITREC ISETTOPVAL 
.-. OK~ 

Figure 20-1 

Sample Masterscope Session 

20.2 

- --- - - -

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 



Masterscope 

[1] The user calls masterscope directly. Mastcrscope prints a greeting and prompts with "+-, ", 
Within the top-level executive of Masterscope, the user may issue Masterscope commands, 
programmer's assistant commands, (e.g., REDO, FIX), or run programs.2 

[2] The user then directs that tlle functions on file RECORD should be analyzed. Masterscope 
always prints a . when it (re)analyzes a function, just to let the user know what is happening. 

[3] The user asks which functions call recfic1dlook. Masterscope responds with the list. 

[4] The user asks to edit the expressions where the function recfieldlook is called. Masterscope 
calls editf on the functions it had analyzed that call recfieldlook, directing the editor to the 
appropriate expressions. The user then edits some of those expressions. 

[5] Next the user asks which functions call error. Since some of the functions in the database 
have been changed, Masterscope re-analyzes the changed definitions (and prints out. 's for 
each function it analyzes).3 Masterscope responds that editrec is the only analyzed function 
that calls error. 

[6] The user asks to see a map of the ways in which recfieldlook is called from accessdef. A tree 
structure of the calls is displayed. 

[7) The user then asks to see which functions call which functions in the list /fus. Masterscope 
responds with a structured printout of these relations. 

[8) Finally, the user exits from the Masterscope executive with an OK. 

20.1.1 COMMAND LANGUAGE 

The user communicates with Masterscope via an English-like command language. Through these 
commands, the user can direct that functions should be analyzed, interrogate Masterscope's 
database, and perform other operations. The commands deal with sets of functions, variables, etc., 
and relations between them (e.g., call, bind). Sets correspond to English nouns, relations to verbs. 

A set of atoms can be specified in a variety of ways, either explicitly, e.g., FUNCTIONS ON FIE 
specifies the atoms in filefnslst[FIE]. or implicitly, e.g., NOT CALLING Y, where the meaning must 
be determined in the context of the rest of the command. Such sets of atoms are the basic building 
blocks which the command language deals with. 

Masterscope also deals with relations between sets. For example, the relation CALL relates functions 

2 Note that the user may also enter Masterscope commands directly from the top-level of Interlisp (or from within a 
break or in the editor. etc.) merely by preceding the command with a period and a space. The atom • is defined as 
a nlambda nospread function which interprets its argument as a Masterscope command. executes the command and 
returns. 

• 
• 
• 
• 

3 The feedback when Masterscope analyzes a function is controlled by the flag .vtsprin!:f!g: if msprintflg is the atom + 
...... Masterscope will print out a period. (If an error in the function is detected, a? is printed instead.) If msprintflg + 
is a number, Masterscope will print the name of the function it is analyzing every nth function. If msprintflg is NIL, + 
Maslerscope won't print anything. Initial setting is ...... Note Ihat the fUllction Ilame is printed when Masterscope + 
starts analyzing, and the comma is printed when it finishes. + 

20.3 



Section 20: Masterscope and lIe/psys 

and other functions; the rclations BIND and USE FRE ElY relate functions and variables. The 
relations are what are stored in the Masterscope database when functions are analyzed. In addition, 
Masterscope "knows" about file package conventions; CONTAIN relates files and various types of 
objects (functions, variables). 

Sets and relations are used (along with a few additional words) to form sentence-like commands. 
For example, the command WHO ON I FOO USE I X FREELY witt print out the list of functions 
contained in the file FOO which use the variable X freely. The command EDIT WHERE ANY CALL 

I ERROR will call editf on those functions which have previously been analyzed that directly call 
error, pointing at each successive expression where the call to error actually occurs. 

RELATIONS 

A relation is specified by one of the keywords below. Some of these "verbs" accept modifiers. For 
example, USE, SET, SMASH and REFERENCE all may be modified by FREELY. The modifier 
may occur anywhere within the command.4 Verbs can occur in the present tense (e.g., USE. 
CALLS, BINDS, USES) or as present or past participles (e.g., CALLING, BOUND. TESTED). 
The relations (with their modifiers) recognized by Masterscope are: 

CALL Function F 1 calls F 2 if the definition of F 1 contains a form 
(F2 --). (APPLY (QUOTE F2) --). (FUNCTION Fl). e~. 

CALL SOMEHOW One function calls another SOMEHOW if there is some path from the 
first to the other. That is, if Fl calls F2, and F2 calls F3, then 
Fl CALLS F3 SOMEHOW~ 

USE 

SET 

If unmodified, the relation US E denotes variable usage in any way; 
it is the union of the relations SET, SMASH. TEST. and 
REFERENCE. 

A function SETS a variable if the function contains a form 
( S ET Q va r - - ), ( SET QQ var - - ). e~. 

SMASH A function SMASHES a variable if the function calls a destructive 
list operation (rplaca, rplacd, dremove,· sort, etc.) on the value of 
that variable. Masterscope will also find instances where the 
operation is performed on a "part" of the value of the variable; for 
example, if a function contains a form (RPLACA (NTH X 3) T) 
it will be noted as SMASHING X. 6 

4 

5 

6 

If there is more than one verb, any modifier between two verbs is assumed to modify the first one. For example, in 
USING ANY FREELY OR SETTING X, the FREELY modifies USING but not SETTING-- the entire phrase is 
interpreted as the set of all functions which either use any variable freely or set the variable X, whether or not X is 
bound in the place where it is set 

This information is not stored directly in the database: instead. Masterscope stores only information about direct 
function calls, and (re)computes the CALL SOMEHOW relation as necessary. 

Note, however. that if the function contains a sequence (SETQ Y X) (RPLACA Y T) then Y is noted as being 
smashed, but not X. 

20.4 



TEST 

REFERENCE 

Masterscope Command Language 

A variable is TESTED by a function if its value is only 
distinguishcd bctween NIL and non-N I L. For example, the form 
(COND « AND X - -) - -» tests the value of X. 

This relation includes all variable usage except for SET. 

The verbs USE, SET. SMASH, TEST and REFERENCE may be modified by the words FREELY 
or LOCALL Y.A variable is used FREELY if it is not bound in the function at the place of its use; 
alternatively, it is used LOCALLY if the use occurs within a PROG or LAMBDA that binds the 
variable. 

* 
* 

Masterscope also distinguishes between CALL DIRECTLY and CALL INDIRECTLY. A function is + 
called DIRECTLY if it occurs as car-of-Jorm in a normal evaluation context. A function is called + 
INDIRECTL Y if its name appears in a context which does not imply its immediate evaluation, for + 
example (SETQ Y (LIST (FUNCTION FOO) 3»7. In addition, CALL FOR EFFECT (where + 
the value of the function is not used) is distinguished from CALL FOR VALUE.. + 

BIND The BIND relation between functions and variables includes both * 
variables bound as arguments and those bound in an internal.Q!Q8 * 
or lambda. * 

USE AS A FIELD 

FETCH 

REPLACE 

USE AS A RECORD 

CREATE 

Masterscope notes all uses of record field names within fetch, 
replace or create expressions. 

Use of a field within a fetch expression. 

Use of a record field name within a replace or create expression. 

Masterscope notes all uses of record names within create or ~? 
expressions.S . 

Use of a record name within a create expression. 

USE AS A PROPERTY NAME Masterscope notes the property names used in getprop, putprop, 
getlist. etc. expressions if the name is quoted. E.g. if a function 
contains a form (GETPROP X (QUOTE INTERP», then that 
function USES INTERP AS A PROPERTY NAME. 

+ 

+ 

+ 

USE AS A CLISP WORD Masterscope notes all iterative statement operators and user defined + 
clisp words as being used as a clisp word. + 

CONTAIN Files contain functions, records, and variables. This relation is not 
stored in the database but is computed using the file package. 

7 

8 

The distinction is whether or not the compiled code of the caUer would contain a direct caU to the callee. Note that 
an occurrence of (FUNCTION FOO) as the functional argument to one of the built-in mapping functions which 
compile open is considered to be a direct call. 

Additionally. in X: FOO. FIE. FOO is used as a record name. 

20.5 

------
'-'-'i'-'.< ;._> 



DECLARE AS LOCALVAR 
DECLARE AS SPECVAR 

Section 20: Masterscope and He/psys 

Masterscope notes internal "calls" to DECLARE from within 
functions. 

Note: Masterscope uses "templates" for jUnctions. as described on page 20.16, to decide which 
relations hold. For example, the information that sort SMASHes its first argument is contained in 
the template for SORT. Masterscope initially contains templates for most system functions which set 
variables. test their arguments. or perform destructive operations. The user may change existing 
templates or insert new ones in Masterscope's tables via thesettemplate function. described on 
page 20.18. 

The following abbreviations are recognized: FREE=FREEL Y. LOCAL=lOCAll Y, 
PROP=PROPERTY. REF=REFERENCE. Also, the words A. AN and NAME (after AS) are "noise" 
words and may be omitted. 

SETS 

A "set" is a collection of things (functions, variables, etc.). A set is specified by a sei phrase, 
consisting of a determiner (e.g., ANY, WHICH, WHO) followed by a type (e.g., FUNCTIONS. 
VARIABLES) followed by a specification (e.g., IN MYFNS, @ SUBRP). The determiner, type and 
specification may be used alone or in combination. For example, ANY FUNCTIONS IN MYFNS. 
ANY @ SUBRP, VARIABLES IN GlOBALVARS, and WHO are all acceptable set phrases. Set 
specifications, types and determiners are explained below: 

Set specifications 

'atom 

, list 

IN expression 

@ predicate 

The simplest way to specify a set consisting of a single thing is by 
the name of that thing. For example, in the command WHO CAllS 
, ERROR, the function error is referred to by its name. Although the 
, can be left out, to resolve possible ambiguities names. should 
usually be quoted; e.g., WHO CALLS t CALLS will return the list of 
functions which call calls. 

Sets consisting of several atoms may also be referred to by naming 
the atoms; e.g. the command WHO USES '(AB) will call the 
editor on all expressions where the variables A or B are used freely. 

Similarly, the user can give a LISP expression to be evaluated. and 
have the value treated as a (list of) the elements of a set. For 
example, IN GLOBALVARS specifies the list of variables in the 
value of globalvars. 

A set may also be specified by giving a predicate which the 
clements of that set must satisfy. predicate is either a function 
name, a LAMBDA expression. or an expression in terms of the 
variable X. The specification @ predicate represents all atom for 
which the value of predicate is non-NIL. For example, 8 EXPRP 
specifies all those atoms which have expr dcfintions; (I 
(STRPOSL XCLISPCHARRAY) specifies those atoms which 
contain clisp characters. lbe universe to be searched is either 

20.6 



LIKE atom 

Masterscope Command Language 

detennined by the context within the command (e.g .• in WHO IN 
FOOFNS CALLS ANY NOT @ GElD. the predicate is only applied 
to functions which arc called by any functions in the list FOOFNS), 
or in the extreme case, the universe defaults to the entire set of 
things which have been noticed by Masterscope, as in the command 
WHO IS @ EXPRP. 

atom may contain alt-modes; it is used as a pattern to be matched + 
(as in the editor). For example, WHO LIKE IRS IS CALLED BY + 
ANY would find both IRPLACA and IRPLNODE. + 

A set may also be specified by giving a relation its members' must have with the members of 
another set: . 

relationING set 

relationED BY set 

relationING is used here generically to mean any of the relation 
words in the present participle fonn (possibly with a modifier), e.g .• 
USING. SETTING. CALLING. BINDING. relationING set 
specifics the set of all objects which have that relation with some 
element of set. For example, CALLED BY X specifies the set of 
functions called by the function X; USING ANY IN FOOVARS 
FREELY specifies the set of functions which uses freely any variable· 
in the value of FOOVARS. 

This is similar to the relationING construction. For example, 
CALLED BY ANY IN FOOFNS represents the set of functions 
which are called by any element of FOOFNS; USED FREELY BY" 
ANY CALLING ERROR is the set of variables which are used freely 
by any function which also calls the function error. I N may be used 
instead of BY, i.e., relationED IN set is allowed. 

Note: sets may also be specified with "relative clauses" introduced by the word THAT. e.g. THE + 
FUNCTIONS THAT BIND 'X. + 

blocktype OF functions 
blocktype ON files 

FIELDS OF set 

+ 
These phrases allow the user to ask about BLOCKS declarations on + 
files (see Section 18). blocktme is one of LOCALVARS. + 
SPECVARS, GLOBALVARS. ENTRIES, BLKFNS. + 
BLKAPPLYFNS. or RETFNS. These phrases denote the names + 
which are declared to be blocktype . in any blocks declaration which + 
contain the any of functions (a "set" of functions). The function can + 
either be the block name or just one of the functions in the block. + 
In the second construct, all names which are declared to be + 
block type on any of the given files (a "set" of files) are denoted. + 
For example. WHICH ENTRIES OF ANY CALLING 'Y BIND + 
ANY GLOBALVARS ON 'FOO. + 

set is a set of records. This denotes the field names of those + 
records. + 

20.7 



KNOWN 

Section 20: Masterscope and Helpsys 

The set of all functions which have been analyzed. For example, 
the command WHO IS KNOWN will print out the list of functions 
which have been analyzed. 

* THOSE The set of things printed out by the last Masterscope question. For 
example, following the command WHO IS USED FREELY BY 
PARSE, the user could ask WHO BINDS THOSE to find out where 
those variables are bound. 

* 
* 
* 

ON PATH pathoptions 

Determiners 

Refers to the set of functions which would be printed by the 
command SHOW PATHS pathoptions. For example, IS FOO 
BOUND BY ANY ON PATH TO I PARSE tests if Faa might be 
bound "above" the function PARSE. pathoptions are explained in 
detail on page 20.15. 

Set phrases may be preceded bya determiner. A determiner is one of the words TH E. ANY. WHO 
or WHICH. The "question" determiners (WHO and WHICH) are only meaningful in some of the 
commands, namely those that take the form of questions. ANY and WHO (or WHOM) can be used 
alone; they are "wild-card" elements, e.g., the command WHO USES ANY FREELY, will print out 
the names of all (known) functions which use any variable freely. If the determiner is omitted, ANY 
is assumed; e.g. the command WHO CALLS '(PRINT PRIN1 PRIN2) will print the list of 

+ functions which call any of print, prinl, prin2. THE is also allowed, e.g. WHO USES THE RECORD 
+ FI ELD FI ELDX. 

A set phrase may also have a type: that is, a set may contain either functions, variables, files. record 
names, record field names or property names. The type is used by Masters<;ope in a variety of ways 
when interpreting the set phrase: 

(1) Set types are used to disambiguate possible parsings. For example, both commands WHO 
SETS ANY BOUND IN X OR USED BY Y and WHO SETS ANY BOUND IN X OR 
CALLED BY Y have the same general form. However, the first case is parsed as WHO SETS 
ANY (BOUND BY X OR USED BY Y) since both BOUND BY X and USED BY Y refer to 
variables; while the second case as WHO SETS ANY BOUND IN (X OR CALLED BYY). 
since CALLED BY Y and X must refer to functions.9 

(2) The type is used to determine the modifier for USE: FOO USES WHICH RECORDS is 
equivalent to FOO USES WHO AS A RECORD FIELD. 

(3) The interpretation of CONTAIN depends on the type of its object: the command WHAT 
FUNCTIONS ARE CONTAINED IN MYFILE prints the list of functions in MYFILE; WHAT 
RECORDS ARE ON MYFILE prints the list of records. 

9 Note that parentheses may be used to group phrases. 

20.8 



Masterscope Command lAnguage 

(4) The implicit "universe" in which a set expression is interpreted depends on the type: ANY 
VARIABLES @ GElD is interpreted as the set of all variables which have been noticed by 
Mastcrscope (Le., bound or used in any function which has been analyzed) that also have a 
definition. ANY FUNCTIONS @ (NEQ (GElTOPVAL X) 'NOBIND) is interpreted as the set 
of all functions which have been noticed (either analyzed or called by a function which has 
been analyzed) that also have a top-level value. 

The type may be determined by the context within the command (e.g., in 
CALLED BY ANY ON FOO, the set ANY ON FOO is interpreted as meaning the functions on FOO 
since only functions can be CALLED), or the type may be given explicitly by the user (e.g., 
FUNCTIONS ON FIE). The following types are recognized: FUNCTIONS. VARIABLES. FILES, 
PROPERTY NAMES. RECORDS. FIELDS. 1. S. OPRS.lO 

CONJUNCTIONS 

* 
* 

Sets may be joined by the conjunctions AND and OR or preceded by NOT to form new sets. AND is * 
always interpreted as meaning "intersection"; OR as "union", while NOT means "complement". For * 
example, the set CALLING X AND NOT CALLED BY Y specifies the set of all functions which call * 
the function X but are not called by Y. * 

Masterscope's interpretation of AND and OR follow LISP conventions rather than the conventional 
English interpretation. For example "calling X and Y" would, in English, be interpreted as lhe 
intersection of (CALLING X) and (CALLING Y): but Masterscope interprets CALLING X AND 
Y as CALLING (' X AND • Y): which is the null set. Only sets may bejoined with conjunctions: 
joining modifiers, as in USING X AS A RECORD FIELD OR PROPERTY NAME, is not allowed: 
in this case, the user must say USING XAS A RECORD FIELD OR USING X AS A 
PROPERTY NAME 

As described above, the type of sets is used to disambiguate parsings. The algorithm used is to first 
try to match the type of the phrases being joined and then try to join with the longest preceding 
phrase. In any case, the user may group phrases with parentheses to specify the manner in which 
conjunctions should be parsed. 

COMMANDS 

The normal mode of communication with Masterscope is via "commands". These are sentences in 
the Masterscope command language which direct Masterscope to answer questions or perform 
various operations. The syntax of Masterscope commandS is described below: 

ANALYZE set Analyze the functions in set (and any functions called by them) and 

10 

11 

include the information gathered in the database.ll . 

or abbreviations FNS, VARS, PROPNAMES or the Singular fonns FUNCTION, FN, VARIABLE, VAR, FILE, 
PROPNAME, RECORD. FIELD. Note that most of these types correspond to built-in "file package. types". (See 

Section 14). 

Masterscope will not re-analyzing a function if it thinks it already has valid infonnation about that function in its 
database. The user may use the command REANAl VZE g! to force re-analysis. For example. this would be necessary 
if the user had disabled or subverted the file package, e.g. perfonned putd's to change the definition of functions. 

20.9 

* 
* 
* 



* 
* 
* 
* 

* 
* 

* 

+ 
+ 

Section 20: Maslerscope and Helpsys 

Note that whenever a function is referred to in a command as a "subject" of one of the relations, 
it is automatically analyzed; the user need not give an explicit ANALYZE command Thus, WHO IN 
MYFNS CALLS FI E will automatically analyze the functions in MYFNS if they have not already 
been analyzed 

Note also that only expr definitions will be analyzed; that is. Masterscope will not analyze 
compiled code. If there is no in-core definition for a function (either in the de{inition cell or an 
EX P R property). M asterscope will attempt to read in the definition from a file. 1 If necessary. the 
definition will be dwimifyed before analysis. 

ERASE set Erase all information about the functions in set from the database. 
ERAS E by itself clears the entire database. 

SHOW PATHS pathoptions Displays a tree of function calls. pathoptions are described on page 
20.15. 

set relation set 
set IS I ARE set This command has the same format as an English sentence with a 

subject (the first set), a verb (the relation or IS or ARE), and an 
object (the second ~. Any of the sets within the command may 
be preceded by the question determiners WHICH or WHO (or just 
WHO alone). For example, WHICH FUNCTIONS CALL X prints the 
list of functions that call the function X. relation may be one of the 
relation words in present tense (CALL. BIND, TEST, SMASH, 
etc.) or used as a passive (e.g., WHO IS CALLED BY WHO).13 

12 

The interpretation of the command depends on the number of 
question elements present: 

(1) If there is no question element, the command is treated as an 
assertion and Masterscope returns either T or NIL, 
depending on whether that assertion is true. Thus, ANY IN 
MYFNS CALL HELP will print T if any function in MYFNS 
call the function help, and NIL otherwise. 

(2) If there is one question element, Masterscope returns the list 
of items for which the assertion would be true. For example 
MYFN BINDS WHO USED FREELY BY YOURFN prints the 
list of variables bound by MYFN which are also used freely 
by YOURFN. 

(3) If there are two question elements, Masterscope will print a 
doubly indexed list: 

~. WHO CALLS WHO IN IFNS~ 

Files which have been explicitly mentioned previously in some command are searched first If the definition cannot 
be found on any of those files. Masterscope looks among the files on fileJg for a definition. If a f~nction is found in 
this manner, Masterscope will print a message "( rea din 9 from filename)". I r no definition can be found at all, 
Masterscope will print a message "fn can I t be analyzed". If the function previously was known, the message 
"fu disappeared!" is printed. 

+ 13 Other variants are allowed, e.g. WHO DOES X CALL, IS FOO CALLED BY FIE, etc. 

20.10 



Masterscope Command Language 

RECORDSTATEMENT -
RECORDECL1 -
RECREDECLARE1 -
UNCLISPTRAN -
RECORDWORD 
RECORD1 
EDITREC 

IRPLNODE 
INCONC, IRPLACD, IRPLNODE 
IPUTHASH 
IPUTHASH, IRPLNODE2 
IRPLACA 
IRPLACA, ISETTOPVAL 
ISETTOPVAL 

* 
* 
* 
* 
* 
* 
* 

EDIT WH ERE set relation set [- editcoms] * 

SHOW WHERE set relation set 

EDIT set [- editcoms] 

DESCRIBE set 

CHECK set 

(WH ERE may be omitted.) The first set refers to a set of functions. 
The ED I T command calls the editor on each expression where the 
relation actually occurs.14 For example, EDIT WHERE ANY CALL 
ERROR will call editf on each (analyzed) function which calls ~ 
stopping within a TTY: at each call to error. edilcoms, if given, are * 
a list of commands passed to editf to be performed at each * 
expression. For example, EDIT WHERE ANY * 
CALLS MYFN DIRECTLY - (SW 2 3) P will switch the first * 
and second arguments to MYFN in every call to MYFN and print the * 
result. EDIT WHERE ANY ON MYFILE CALL ANY NOT @ GETD * 
will call the editor on any expression involving a call to an 
undefined function. Note that EDIT WHERE X SETS Y will point 
only at those expressions where Y is actually set, and will skip over 
places where Y is otherwise mentioned. 

Like the EDIT command except merely prints out the expressions 
without calling the editor. 

calls editf on each function in set. editcoms, if given, will be passed + 
as a list of editor commands to be executed. For example EDIT + 
ANY CALLING FN1 - (R FN1 FN2) will replace FN1 by FN2 in + 
those functions that call FN1. + 

Prints out the BIND, USE FREELY and CALL information about 
the functions in set. For example, the command DESCRIBE 
PRINTARGS might print out: 

PRINTARGS[N;FlG] 
binds TEM,lST,X 
calls MSRECORDFILE,SPACES,PRINI 
called by: PRINTSENTENCE,MSHELP,CHECKER 

showing that printargs has two arguments, !! and .f!g, binds 
internally the variables tern, 1st and 1£, calls msrecordfile, spaces and 
prinl and is called by printsentence, mshelp, and checker. 

checks for various anomolous conditions (mainly in the compiler + 
declarations) for the files in set (if set is not given, filelst is used). + 
For example, this command will warn about variables which are + 

14 Currently one cannot EDIT WHERE a file CONTAINS a datum, nor where one function CALLS another SOMEHOW. 

20.11 

-~---
0>- . ." 3,A.~~~_.' ~ 



+ 
+ 
+ 
+ 
+ 
+ 

Section 20: Masterscope and Ilelpsys 

bound but never referenced, functions in BLOCKS delarations which 
aren't on the fi1e containing the declaration, variables declared as 
LOCALFREEVARS but which are used freely in contexts where they 
arc not bound, functions declared as ENTRI ES but not in the 
block, variables which may not need to be SPECVARS because they 
arc not used freely below the places where they are bound, etc. 

+ FOR variable set i.s.tail 
+ 

This command provides a way of combining CLISP iterative 
statements with Masterscope. An iterative statement will be 
constructed in which var is iteratively assigned to each element of 
set, and then the iterative statement tail i.s.tail is executed. For 
example, FOR X CALLED BY FOO WHEN CCODEP DO (PRINT 
(ARGLIST X» will print out the argument list of all of the 
compiled functions which are called by FOO. 

+ 
+ 
+ 
+ 
+ 

HELP Prints out the summary of Masterscope command syntax as shown 
on the next page. Optional clements are shown in brackets []; 
alternatives are separated with vertical bars I or are listed on 
separate lines; words in angle brackets <> arc "meta-objects"; other 
lower-case words are "noise words" and may be omitted. 

Note: any command may be followed by OUTPUT filename to send output to the given file rather 
than the termina~ e.g. WHO CALLS WHO OUTPUT CROSSREF. 

This completes the presentation of the Masterscope command language. 

20.12 



, fit? 

Masterscope Command La'lguage 

*------------------------------------------------------------------
a <command> is: 

[RE]ANALYZE <functions> 
ERASE <functions> 
show PATHS <pathoptions> 
<set> {<relation>!ISIARE} <set> 
EDIT where <functions> [<relation> <set>] [ - <edit commands>] 
SHOW where <functions> <relation} <set} 
CHECK <files> 
FOR <variable> <set} <i.s. opr> <expression} 

a <set} is (at least one of): 
a determiner + a type + a specification 

THE 
ANY 
WHICH 
WHO 

FUNCTIONS 
VARIABLES 
PROPERTY NAMES 
RECORDS 
FIELDS 
FILES 

FIELDS OF <records> 

[' ]{atoml1 1st} 
@ <pred> 
IN <expression} 
<relation>ING <set> 
<relation}ED {BYIIN} <set} 
THAT <relitioh> <set} 
LIKE <edit-pattern> 
ON <f11es> 

<blockword> {ON <files>10F <functions>} 
<functions>, <files>. etc. are <set>s whose typa is implied. 
--------------------------------------------------------~~--------, 
a <relation} is a verb and optional modifier: 
verbs: modifiers (anywhere after the verb): 

CALL SOMEHOWIFOR EFFECTIFOR VALUE 
BIND 
USE 
USE 
USE 
SET 
SMASH 
TEST 
REFERENCE 
FETCH 

AS a {RECORDIPROPERTYlrecord 
AS a CLISP word 
FREELYILOCALLY 
FREELYILOCALLY 
FREELYILOCALLY 
FREELY I LOCALLY 
FREELYILOCALLY 

FIELD} name 

REPLACE *--------------------------------------------------1 
CREATE I <blockword>: ENTRIES. GLOBALVARS. FREEVARS, 1 
CONTAIN I SPECVARS. LOCALFREEVARS. BLKFNS or BLOCKFNS 1 

------------------------------------------------------------------1 
<pathoptions}: I abbreviations & synonyms: 1 

I 1 
FROM <functions> I FNS = FUNCTIONS PROPS = PROPERTIES 1 
TO <functions} t VARS = VARIABLES 1 
AVOIDING <functions> I (& singular FN. VARIABLE. etc) 1 
NOTRACE <functions> I FREE = FREELY LOCAL = LOCALLY 1 
SEPARATE <functions> I AMONG = AVOIDING NOT 1 
LINE LENGTH <number> I 1 

------------------------------------------------------------------1 
<sets> may be joined by AND or OR or preceded by NOT. 1 
Any command can be followed by OUTPUT <filename>. 1 

*-------------------------------------------------------------------
20.13 



Section 20: Masterscope and lIelpsys 

20.1.2 PATHS 

In trying to work with large programs, the user can lose track of the hierarchy which defines his 
program structure. Masterscope can aid the user by providing a map showing the calling structure 
of a set of functions. via the SHOW PATHS command. The SHOW PATHS command prints out a 
tree structure showing which functions call which other functions. For example, the command 
SHOW PATHS FROM MSPARSE will print out the structure of Masterscope's parser: 

1. MSPARSE 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

MSINIT MSMARKINVALID 
I MSINITH MSINITH 
MSINTERPRET MSRECORDFILE 
I MSPRINTWORDS 
I PARSECOMMAND GETNEXTWORD CHECKADV 
I I PARSERELATION {a} 
I I PARSESET {b} 
I I PARSEOPTIONS {c} 
I I MERGECONJ GETNEXTWORD {5} 
I GETNEXTWORD {5} 
I FIXUPTYPES SUBJTYPE 
I I OBJTYPE 
I FIXUPCONJUNCTIONS MERGECONJ {9} 
I MATCHSCORE 
MSPRINTSENTENCE 

------------------------------------------------------ overflow - a 
16.PARSERELATION GETNEXTWORD {5} 
17. CHECKADV 
------------------------------------------------------ overflow - b 
19. PARSESET 
20. 
21. 
22. 

PARSESET 
GETNEXTWORD {5} 
PARSERELATION {6} 
SUBPARSE GETNEXTWORD {5} 

------------------------------------------------------ overflow - c 
23.PARSEOPTIONS GETNEXTWORD {5} 
24. PARSESET {19} 

Figure 20-3 

Figure 20-3 displays that the function msparse calls msinit, msinterpret, and msprintsentence. 
msinterpret in turn calls msrecordfile, msprintwords, parsecommand, getnextword, fixuptyPes. and 
fixupconjunctions. The numbers in braces {} after a function name are backward references: they 
indicate that the trcc for that function was expanded on a previous line. The lowercase letters in 
braces are fonvard references: they indicate that the tree for that function will be expanded below, 
since there is no more room on the line. The vertical bar is used to keep the output aligned. 

20.14 



Paths in MQ$terscope 

Path options 

The SHOW PATHS command takes the form: SHOW PATHS followed by some combination of the 
following path options: 

FROM set 

TO set 

Display the function calls from the elements of set 

Display the function calls leading to elements of set. If TO is given 
before FROM (or no FROM is given), the tree is "inverted" and a 
message, (inverted tree) is printed to warn the user that if 
FN1 appears after FN2 it is because FN1 is called by FN2. 

When both FROM and TO are given, the first one indicates a set of functions which are tobe 
displayed while the second restricts the paths that will be traced; i.e., the command SHOW PATHS 
FROM X TO Y will trace the elements of the set CALLED SOMEHOW BY X AND CALLING Y 
SOMEHOW. 

If TO is not given, TO KNOWN OR NOT @ GETD is assumed; that is, only functions which have 
been analyzed or which are undefined will be included. 15 . 

AVOIDING set 

NOTRACE set 

SEPARATE set 

LINELENGTH n 

Do not display any function in set. AMONG is recognized as a 
synonym for AVOIDING NOT. For example, SHOW PATHS TO 
ERROR AVOIDING ON FILE2 will not display (or trace) any 
function on FILE2. 

Do not trace from any element of set. NOTRACE differs from 
AVOIDING in that a function which is marked NOTRACE wiUbe 
printed, but the tree beyond it will not be expanded; the functions 
in an AVOIDING set will not be printed at all. For example, SHOW 
PATHS FROM ANY ON FILE1 NOTRACE ON FILE2 will display 
the tree of calls eminating from FILE I, but will not expand any 
function on FILE2. 

Give each element of set a separate tree. Note that FROM and TO 
only insure that the designated functions will be displayed. 
SEPARATE can be used to guarantee that certain functions will 
begin new tree structures. SEPARATE functions are displayed in the 
same manner as overflow lines; i.e., when one of the functions 
indicated by S E PARA T E is found~ it is printed followed by a 
forward reference (a lower-case letter in braces) and the tree for 
that function is then expanded below. 

Resets linelength· to n before displaying the tree. 1be linelength is 
used to determine when a part of the tree should "overflow" and 
be expanded lower. 

15 Note that Ma~1erscope will analyze a function while printing out the tree if that function has· not previously been 
seen and it currently has al1 expr definition: thus. any function which can be analyzed will be displayed. 

20.15 



Section 20: Masterscope and HelplP 

20.1.3 AFFECTING MASTERSCOPE ANALYSIS 

Masterscope will analyze the expr definitions of functions· and note in its database the relations that 
function has with other functions and With variables. To perfonn this analysis, Masterscope. uSes 
templates which describe the behavior of functions. 

A template is a pattern of a function's evaluation. A template is a list structure containing any of 
the foUowingatoms: 

PPE 

NIL 

SET 

SMASH 

If an expression appears in this locatiOlf, there is most likely a parenthesis 
em)r.16 

The expression occuring at this location is not evaluated. For example, the 
template for QUOTE is (NIL . PPE). 

A variable appearing at this place is set E.g., the template for SETQQ is 
(SET NIL • PPE). 

The value of this expression is smashed. For example, the template for 
DREVERSE is (SMASH • PPE). . 

* TEST This expression is used as a predicate (that is, the only use of the value of. 
the expression is whether it is NIL or non-NIL.) For example, the 
template for NULL is (TEST. PPE). 

* 
* 

* 
* 

PROP 

FUNCTION 

EVAL 

RETURN 

+ EFFECT 
+ 
+ FETCH 

The value of this expression is used as a property name. If the expression 
is of the fonn (QUOTE atom), Masterscopewill. note that atom is USED 
AS A PROPERTY NAME. For example, the template for getprop is (EVAL 
PROP • PPE). 

The expression at this poil)t is used as a functional argument For 
. example, the template for MAPC is 

(SMASH FUNCTION FUNCTION • PPE).17 

The expression at this location is evaluated (but not set, smashed, tested, 
used as a functional argument, etc.). 

The value of the function (of which this is the template) is the value of 
this expression. 

The expression at this location is evaluated. but the value is not used. For 
example, the template for PROGN is ( •• EFFECT RETURN). 

An atom at this location is a field which is fetched. 

* 16 

* 
* 

Masterscope notes this as a "call" to the function "ppe" (lowercase). Note that. when Masterscope finds a possible 
parenthesis error in the course of analyzing a function definition, rather than printing the usual ", "; it prints out a 
"1" instead. 

17 Actually, Masterscope distinguishcsbctwccn functional arguments to functions which "compile <>pen" from those that 
do nol For the latter (e,g, SORT and APPLY), the token in the template is FUNCTIONAL rather than FUNCTION. 

20.16· 



MaSlerscope Temp/atea 

REPLACE An atom at this location is a field which is replaced. + 
. RECORD An atom at this location is used as a record name . + 

CREATE An atom at this location is a record which is created. + 
BIND An atom at this location is a variable which is bound. + 

CALL An atom at this location is a function. which is called. + 
CLISP An atom at this location is used as a clisp word. + 
In addition to the above atoms which occur in templates. there are some "special forms" which are 
lists keyed by their car. 

•• template Any part of a template may be preceded by the atom .. (two periods) 
which specifies that the template should be repeated an indefinite number 
(n2.0) of times to fill out the expression. For example, the template for 
COND might be ( •. (TEST .• EFFECT RETURN» while the template 
for SELECTQ is (EVAL •• (NIL •. EFFECT RETURN) RETURN). 

{BOTH template template} + 
analyze the current expression twice, using the each of the templates in + 
tum. + 

(I F expression template template) + 
evaluate expression at analysis time (the variable EXPRwill be bound to + 
the expression which corresponds to the 1 F), and if the result is non~NI L, + 
use the first template,. otherwise the second. If expression is a literal + 
atom, it is ~'d to EXPR. For example, (IFLISTP (RECORD + 
FETCH) FETCH) specifies that if the current expression is a list, then the + 
first element is a record name and the second element a field· name, + 
otherwise it is· a field name. + 

«t exprfonn templatefonn) + 

(MACRO • macro) 

evaluate exprfonn giving expr, evaluate templateform glVlng template. + 
Then analyze expr with template. @ lets the user compute on the fly + 
both a template and an expression to analyze it with. The forms can use + 
the variable EXPR, which is bound to the current expression. + 

~ is interpreted in the same way as a compiler macro (see Section 18) 
~~~~~is~~~ + 

Some examples of templates: 

18 Additionally, the template for a function may be the atom MACRO itself, in which case, Masterscope win use the + 
MACRO property of the function itself. This is useful when analyzing code which contains calls to user-defined + 
compiler macros. If the user changes a macro property (e.g. by editing it) of an atom which has template = MACRO, + 
Masterscope will mark any fUJlction which used that macro as needing to be reanalyzed. + 

20.17 



function 

AND 
MAPCAR 

Section 20: Masterscope and He/psys 

template 

(TEST RETURN) 
(EVAL FUNCTION FUNCTION) 

Templates may be changed and new templates defined via the function: 

+ gettemplate[fn] returns current template of fn. 

+ 

settemplate[fn;template] Changes the template for the function fn and returns the old value. 
If any functions in the database are marked as calling fn, they win 
be marked as needing re-analysis. . 

20.1.4 DATA BASE UPDATING 

Masterscope is interfaced to the editor and file package so that it notes whenever a function has 
been changed, either through editing or loading in a new definition. Whenever a command is given 
which requires knowing the information about a specific function, if that function has been noted 
as being changed. the function is automatically re-analyzed before the command is interpreted. If 
the command requires that all the information in the database be consistent (e.g., the user asks WHO 
CALLS X) then all functions which have been marked as changed are re-analyzed. 

20.1.5 MASTERSCOPE ENTRIES 

calls[fn;usedatabase] fn can be a function name, a definition, or a form. calls will also 
work on compiled code. calls returns a list of four elements: a list of 
all the functions called by fn,19 a list of all the variables bound in 
fn, a list of all the variables used freely in fn, and a list of the 
variables used globally in fn. For the purpose of calls, variables 
used freely which are on globalvars or have a property GLOBALVAR 
value T are considered to be used globally. If usedatabase is NIL 
(or fn is not a litatom), calls will perform a one-time analysis of fn. 
Otherwise (Le. if usedatabasc is non-NIL and fn a function name), 
calls will use the information in Masterscope's database (fu will be 
analyzed first if necessary). 

callsccode[fn] The sub-function of calls which analyzes compiled code. callsccode 
returns a list of five elements: a list of all the functions called via 
"linked" function calls, a list of all functions called regularly, a list 

19 Functions called via "linked" calls from compiled code are indicated by semicolons packed around their name; e.g. 
calls[MASTERSCOPE) might return « ;MASTERSCOPEXEC; ;MSINTERPRET; ;PRINT; HELP) --). This 
feature can be suppressed by setting nopackcallsflg to T. 

20.18 



freevars[ fn;usedatabase] 

masterscope[command] 

Masterscope 

of variables bound in fn, a list of variables used freely, and a list of 
variables used globally. 

Equivalent to caddr[calls[fu;usedatabase]]. Returns the list of 
variables used freely within fu. 

Top level entry to Masterscope. If cotnllland is NIL, will enter into 
a userexec in which the user may enter commands. If com%;'lnd is 
not NIL, the command is interpreted and masterscope will return 
the value that would be printed by the command. Note that only 
the question commands return meaningful values. 

setsynonym[newphrase;meaning] 
Defines a new synonym for Masterscope's parser. Both newphrase 
and meaning are lists of words; anywhere ncwphrase is seen in a 
command, meaning will be substituted. For example, 
setsynonym[GLOBALS: (VARS IN GLOBALVARS ORC§{GETPROP 
X 'GLOBALVAR»)] would allow the user to refer with the single 
word GlOBAlS to the set of variables which are either in globalvars 
or have a GlOBAlVAR property. 

The following functions are provided for users who wish to write their own routines using 
Masterscope's database: 

parserelation[relation] relation is a relation phrase; e.g .• parserelation[(USE FREELY)]. 
parserelation returns an internal representation for relation. For use 
in conjunction with getrelation. 

getrelation[item;relation;inverted] 
relation is an internal representation as returned by parserelation (if 
not, getrelation will first perform parserelation[relation]); item is an 
atom. getrelation returns the list of all atoms which have the given 
relation to item. For example, getrelation[X: (US E F R EEL Y)] 
returns the list of variables that X uses freely. If inverted is T, the 
inverse relation is used; e.g. getrelation[X; (USE FREELY) ;Tl 
returns the list·of functions which use X freely. . 

If item is NIL, getrelation will return the list of atoms which have 
relation with any other item; i.e., answers the question WHO 
relationS ANY. Note that getrc1ation does not check to see if item 
has been analyzed, or that other functions that have been changed 
have been re-analyzed. 

testrelation[item;relation;item2;inverted] 
equivalent to memb[item2;getrc1ation[itcm;relation;inverted)), that is. 
tests if item and item2 are related via relation. If item2 is NIL. the 
call is equivalent to not[null[gctrc1alion[item;rcIation;inverted]1J. i.e., 
testrelation tests if item has the given relation with any other item. 

20.19 



Section 20: Masterscop~ and Helpsys 

+ maprelation[relation;mapfn] 
+ 

Calls the function mapfn on every pair of items related via relation. 
If nargs[mapfn] is 1, then mapfn is called on every item which has 
the given relation to any other item. + 

* 

updatefn[ fn; evenifvalid] 

updatechangedD 

msmarkchanged[fn] 

dumpdatabasc[fnlst] 

20.1.6 ERROR MESSAGES 

Equivalent to the command ANALYZE 'fn; that is, updatefn will 
analyzefn if fn has not been analyzed before or if it has been 
changed since the time it was analyzed. If evenifvalid is set, 
updatefn will re-analyze fn even if Masterscope thinks it has a valid 
analysis in the database. 

Performs updatefn[fnJ on every function which has been marked as 
changed 

Mark that fn has been changed and needs to be reanalyzed 

Dumps the current Masterscope database on the current output file 
in a loadable form. If fnlst is not NI L, dumpdatabase will only 
dump the information for the list of functions in fnlst. 20 The 
variable databasecoms is initialized to « E (DUMPDATABASE»); 
thus, the user may merely perform makefile[DA T ABAS E . extention) 
to save the current Masterscope database. If a Masterscopedatabase 
already exists when a DATABASE file is loaded, the database on the 
file will be merged with the one in core.21 . 

When the user gives Masterscope a command, the command is first parsed, i.e. translated to an 
internal representation, and then the internal representation is interpreted. If a command cannot be 
parsed, e.g. if the user typed SHOW WHERE CALLED BY X. the message 
"Sorry. I can't parse that I" is printed and an error is generated. If the command is of 
the correct form but cannot be interpreted (e.g., the command EDIT WHERE ANY CONTAINS 
ANY) Masterscope will print the message "Sorry. that isn't implementedl" and generate 
an error. If the command requires that some functions having been analyzed (e.g .. the command 
WHO CALLS X) and the database is empty, Masterscope will print the message 
"Sorry. no functions have been analyzed I" and generate an error. 

20.1.7 NOTICING CHANGES THAT REQUIRE RECOMPILING 

+ When a record declaration, iterative statement operator or compiler macro is changed, and 

20 

-
21 

The databasefns package (section 24) provides a more convenient way of saving data bases along with the source files 
which they correspond to. 

Note that functions whose definitions are different from their definition when the database was made must be 
REANAl VZEd if their new definitions are to be noticed. 

20.20 



Masterscope 

Masterscope has "noticed" a use of that declaration or macro (Le. it is used by some function + 
known about in the data base) Masterscope will alert the user about those functions which might + 
need to be re-compiled (e.g. they do not currently have expr definitions).22 'ine functions which + 
need recompiling are added to the list needunsave and a message is printed out: The funct ions + 
fnl, fn2, ... use compiler macros which have changed. Call UNSAVEFNS() to load + 
and/or unsave them. The function: + 

unsavefns(] Uses loadfns or unsavedef to make sure that all functions in the list + 
needunsave have expr definitions, and then sets needunsave toNIL. + 

20.1.8 IMPLEMENTATION NOTES 

Masterscope keeps a database of the relations noticed when functions are analyzed. The relations 
arc intersected to form "primitive relationships" such that there is little or no overlap of any of the 
primitives. For example, the relation SET is stored as the union of SET LOCAL and SET FREE. 
The BIND relation is divided into BIND AS ARG, BIND AND NOT USE. and SET LOCAL. SMASH 
LOCAL, etc. Splitting the relations in this manner reduces the size of the database considerably, to 
the point where it is reasonable to maintain a Masterscope database for a large system . of functions 
during a normal debugging session. 

Each primitive relationship is stored in a pair of hash-.tables, one for the "forward" direction and 
one for the "reverse". For example, there are two hash tables, USE AS PROPERTY and USED AS 
PROPERTY. To retrieve the information from the database, Masterscope performs unions of the 
hash-values. For example, to answer FOO BINDS WHO Masterscope wi1llook in all of the tables 
which make up the BIND relation. The "internal representation" returned by parserelation is justa 
list of dotted pairs of hash-tables. To perform getrelation requires only mapping down that list. 
doing gethash's on the appropriate hash-tables and unioning the result 

Hash tables are used for a variety of reasons: storage space is smaller; it is not necessary to 
maintain separate lists of which functions have been analyzed (a special table, DOESN'T DO 
ANYTHING is maintained for functions which neither call other functions nor bind or Use any 
variables); and accessing is relatively fast. Within any of the tables, if the hash-value would be a list 
of one atom. then the atom itself, rather than the list. is stored as the hash-value. This also reduces 
the size of the database significantly. 

This completes the section on Masterscope. 

22 Eltra functions may be noticed: for e13mple if FOO contains a (fetch (REC X) --). and some declaration other 
than REC which contains an X is changed. MaSlerscope will still think thal FOO needs to be loaded/unsaved. 

20.21 



Section 20: Masterscope and Helpsys 

20.2 HELPSYS23 

Hclpsys provides yet another form of on-line assistance to the user, namely in the area of 
documcntation of Interlisp. Hclpsys uses the Intcrlisp Reference Manual as a data base, and 
answers simple questions about Intcrlisp by presenting the appropriate passages from the manual. 
Inquiries arc made in the form of simple sentences, void of punctuation, terminated with a 
carriage-return. The following sample session illustrates the use of Helpsys. User inputs are 
underlined. 

+-HELPSYS() 
Type ??? <CR) for assistance 
ITELL ME ABOUT EVAL~ 
Subcategories available: 
1. function description 
2. break command 
3. cross referenced subject 
4. ERRORSET {cross referenced subject} 
Which one ? FUNCTION DESCRIPTION 

8 
{user typed • J ~ '} 

eval[x] eval evaluates the expression x and returns this 
value i.e., eval provides a way of calling the 
interpreter. 

8 
In INTERLISP-I0, eval is a subr so that the "name" x does not 
actually appear on the stack. 

I REDO'} 
Subcategories available: 
1. function description 
2. break command 

Note that eval is itself a lambda 
type function, so its argument is first 
evaluated, e.g., 

"'SET{FOO (ADDl 3» 
(ADDl 3) 
"'(EVAL FOO) 
4 
"'EVAL(FOO) or (EVAL (QUOTE FOO» 
(ADDl 3) 

3. cross referenced subject 
4. ERRORSET {cross referenced subject} 
Which one ? BREAK COMMAND {user typed '2 ~ '} 

... from section 15 
EVAL Same as GO or OK except that the break is 

23 Hc1psys was wriUen by R. L. Walker II. 

20.22 



ITELL ME ABOUT !ml 

lIelpsys 

maintained after the evaluation. The user can 
then interrogate the value of the break which is 
bound on the variable Ivalue. and continue with 
the break. Typing GO or OK following EVAL will 
not cause reevaluation but another EVAL will. 
EVAL is a useful command when the user is not 
sure whether or not the break will produce the 
correct value and wishes to be able to do 
something about it if it i~ wrong. 

(UB as a break command from section 15) 
UB unbreaks brkfn, e.g., 

(FOO BROKEN) 
:UB 
FOO 

IWHAT ARE THE ARGS FOR BREAK1~ 
Valid-arguments for-BREAK1 are: [BRKEXP:BRKWHEN:BRKFN:BRKCOMS;BRKTYPE] 

ITELL ME ABOUT THE LAST ARUGMENT OFBREAK1~ 
=ARGUMENT - --
Subcategories available: 
1. function description 
2. topic description 
3. cross referenced subject 
4. TRACE {cross referenced subject} 
5. FAULTEVAL {cross referenced subject} 
6. HELP {cross referenced subject} 
Which one 7 FUNCTION DESCRIPTION {user typed 'J~'} 
breakl[brkexp;brkwhen;brkfn;brkcoms;brktype] 

is an nlambda. brktype is NIL for 
user breaks, INTERRUPT for control-H breaks, and 
ERRORX for error breaks. 

ITELL ME ABOUT THE 2ND ARG OF CHANGEPROP~ 

(CHANGEPROP as a function description from section 7) 
changeprop[x;prop1;prop2] 

Changes name of property prop1 to prop2 on 
property list of x, (but does not affect the 
value of the property). 

ITELL ME ABOUT ERROR IN ARRAYSIZE~ 

20.23 

--~~----~ 

~: ---.. ~,;?-~\;~~\;".::,§- ,~- ... , : ~-~'--.--
----------- --- --- -----.-.- -.~~_~_~_~_~R-_.1'-'-_~_~ --- ---,----



Section 20: },{asterscope and Helpsys 

(ARRAYSIZE as a function description from section 10) 
arraysize[a] 

Generates an 
error, ARG NOT ARRAY, it a is not an array. 

IW~AT IS THE VALUE OF MAPC~ 

(MAPC as a function description from section 11) 
mapc[mapx:mapfnl;mapfn2] 

The value of mapc 1s NIL. mapc compiles open. 

lTELL ME ABOUT SPlICE~ 

(SPLICE, type of 
(2) SPLICE 

read-macro, from section 14) 
The result (which should be a list 6r NIL) 1s 
nconc'ed into the input list, e~g., if t.!! 
defined by (SPLICE (LAMBDA NIL (APPEND FOO»). 
and the value of foo is (A B C). when the user 
inputs (X I Y), the 1resul t will be (X ABC Y). 

I TELL ME ABOUT CLISP$FLG~ 
l~ISPFLG· 
2. ClISPIFTRANFLG 
3. ClISPIFYENGLSHFLG 
4. CLISPIFYPACKFLG 
5. CLISPIFYPRETTYFLG 
6. CLISPR£TRANFlG 
Which one ? CLISPIFYPRETTYFLG {user typed'5~1 
Subcategories available: 
1. prettydef variable/parameter 
2. CLISP variable/parameter 
Which one? CLISP VARIABLE/PARAMETER {user typed '2~1 
clispifyprettyflg if non-NIL, causes prettyprint to ClISPIFY 

131 

selected function definitions before printing 
them according to the following interpretations 

131 
of clispifyprettyflg: 

Another way to inform prettyprint to clispify functions is for the 
function to have a CLISP declaration containing the word CLISPIFY. 

ALL 

T,EXPRS 
20.24 

all functions 

functions currently defined as 



132 

He/psys 

CHANGES 

a list 

exprs 

functions marked as having 
been changed 

a member of that list 

clispifyprettyflg is (temporarily) reset to T 
when makefile is called with the option 
CLISPIFY, and reset to CHANGES when the file 
being dumped has the property FILETYPE value 

132 
CLISP. clispifyprettyflg is initially NIL. 

If clispifyprettyflg is non-NIL, and the only transformation 
performed by DWIM are well formed CLISP transformations, i.e., no 
spelling corrections, the function will not be marked as changed, 
since it would only have to be re-clispified and re-prettyprinted 
when the file was written out. 

ITELL ME ABOUT COROUTINES AND GENERATERS~ 
=coroutines% and% generators-

(coroutines and generators as a cross referenced subject from section 
12) 

5 
12.7 Coroutines and Generators 

5 
Designed and implemented by 
documentation. Early versions 
package were written by Henry 
corrected a number of bugs, and 
with the package. 

D.G. Bobrow, who also did the 
of the Conniver possibilites-list 
Thompson. Daryle Lewis found and 

wrote the compiler macros that go 

This section describes an application of the spaghetti stack facility to 
provide mechanisms for creating and using simple generators (with and 
without CLISP, Section 23), generalized coroutines, and Conniver style 
possibility lists. 

IMORE~ 

coroutines and generators ... continued from section 12 

A generator is like a subroutine except that it retains information 
about previous times it has been called. Some of this state may be data 

20.25 

~. - ----------~-- --- ---.--,""'''.-"--.-- - ~-- ,---~-- --



Section 20: Masterscope and He/psys 

(for example. the seed in a random number generator). and some may be in 
program state (as in a recursive generator which finds all the atoms in 
a list structure). For example. if listgen is defined using defineq as: 

(LISTGEN (l) 
(IF L THEN (PRODUCE L:l) (LISTGEN L::l») 

we can use the function generator (described below) to create a 
generator that uses listgen to produce the elements of a list one at a 
time. e.g .• 

G~~(GENERATOR (LISTGEN '(A B C» 

creates a generator, which can be called by 

(GENERATE GR) 

to produce as values on successive calls. A. B. C. When generate (not 
generator) is called the first time. it simply starts evaluating 
(LISTGEN '(A B e». produce gets called from 1 istgen, and pops back up 
to generate with the indicated value after saving the state. When 
generate gets called again, it continues from where the last produce 
left off. This process continues until finally listgen completes and 

More ? -,!o 

lID. 
thank-you 
~ 

12.15 

20.26 



Index for Section 20 

AMONG (Masters cope path option) ................ . 
ANALYZE (Masterscope command) .................. . 
AVOIDING (Masterscope path option) ............. . 
BIND (Masterscope relation) .................... . 
BIND (Masterscope template) .................... . 
BOTH (Masterscope template) .................... . 
BY (Masterscope set specification) ............. . 
CALL DIRECTLY (Masterscope relation) ........... . 
CALL FOR EFFECT (Masterscope relation) ......... . 
CALL FOR VALUE (Masterscope relation) .......... . 
CALL INDIRECTLY (Masterscope relation) ......... . 
CALL SOMEHOW (Masters cope relation) ............ . 
CALL (Masterscope relation) .................... . 
CALL (Masterscope template) ............•........ 
CALLS[FN;USEDATABASE] .......................... . 
CALLSCCODE [FN] ................................. . 
CHECK (Masterscope command) .................... . 
CLISP (Masterscope template) ................... . 
conjunctions (in Masterscope) .................. . 
CONTAIN (Masterscope relation) ................. . 
CREATE (Masterscope relation) .................. . 
CREATE (Masterscope template) .................. . 
DECLARE AS LOCALVAR (Masterscope relation) 
DECLARE AS SPECVAR (Masterscope relation) ...... . 
DESCRIBE (Masterscope command) ................. . 
determiners (in Masterscope) ......•....•........ 
DUMPDATABASE[FNLST] ....•........................ 
EDIT WHERE (Masterscope command) ............... . 
EDIT (Masterscope command) •...•...••.•.......... 
EFFECT (Masterscope template) ........•.......... 
ERASE (Masterscope command) .................... . 
EVAL (Masterscope template) .................... . 
FETCH (Masters cope relation) ................... . 
FETCH (Masterscope template) ................... . 
FIELDS OF (Masterscope set specification) ...... . 
FOR (Masterscope command) ...................... . 
FREELY (use in Masterscope) ..............•...... 
FREEVARS[FN;USEDATABASE] ....................... . 
FROM (Masterscope path option) ................. . 
FUNCTION (Master scope template) •................ 
GETRELATION[ITEM;RELATION;INVERTED] ............ . 
GETTEMPLATE[FN] ................................ . 
HELP (Masterscope command) ..................... . 
hel psys package ................................ . 
IF (Masterscope template) ...•................... 
IN (Masterscope set specification) ............. . 
KNOWN (Masterscope set specification) .......... . 
LIKE (Masterscope set specification) ........... . 
LINELENGTH (Masterscope path option) ...•........ 
LOCALLY (use in Masterscope) ................... . 
MACRO (Masterscope template) ................... . 
MAPRELATION[RELATION;MAPFN] .................... . 
Masterscope .................................... . 
MASTERSCOPE[COMMAND] ........................... . 
Masterscope commands ........•.•.•.•.......•..... 
MSMARKCHANGED[NAME;TYPE;NEWFLG] ............•.•.. 

INDEX.20.t 

'-'i:- ,.-;--; 

Page 
Numbers 

20.15 
20.9 
20.15 
20.5 
20.17 
20.17 
20.7 
20.5 
20.5 
20.5 
20.5 
20.4 
20.4 
20.17 
20.18 
20.18 
20.11 
20.17 
20.9 
20.5 
20.5 
20.17 
20.6 
20.6 
20.11 
20.8 
20.20 
20.11 
20.11 
20.16 
20.10 
20.16 
20.5 
20.16 
20.7 
20.12 
20.5 
20.19 
20.15 
20.16 
20.19 
20.18 
20.12 
20.22-27 
20.17 
20.6 
20.8 
20.7 
20.15 
20.5 
20.17 
20.20 
20.1-22 
20.19 
20.9-12 
20.20 



MSPRINTFLG (Masterscope parameter) ............. . 
NEEDUNSAVE {Masterscope paramater) .... ~ ........ . 
NIL (Masterscope template) .••....•...••..... ' ... . 
NOPACKCALlSFlG (Mastersco,pe parameter) ......... . 
NOTRACE (Masterscope path option) •...•.......... 
ON PATH (Masterscope set specification) .. ' ....... . 
OUTPUT (Masterscope command) .........•...•...... 
PARSERELATION[RELATION] ..........••...•.......•. 
path options (in Masterscope) ...•.......•......• 
paths (in Masterscope) ..........•...•......•.... 
PPE (Masterscope template) .....••...•......•••.. 
PROP (Maste-rscope template) .•.• ; .....••.......•. 
REANALYZE (Masterscope command) ••••.•••..••...•• 
RECORD (Masterscope templ ate) ..•....•..•........ 
REFERENCE (Masters cope relation) ......•..••••... 
relations (in Masterscope) .•••.....••.........•• 
REPLACE (Masterscope relation) ................. . 
REPLACE (Masterscope template) ...••.••.....•.•.. 
RETURN (.Masterscope temp 1 ate) .•.••••.•...••••••• 
SEPARATE (Masterscope path option) "~.""'W"'" 
set specifications (in Masterscope) ••.•........• 
SET (Masterscope relation) •......•.•..•...••. L •• 

SET (Masterscope template) ••••••...•.•......•... 
sets (in Masterscope) ...•.•.......•.••..•.•..•.. 
SETSYNONYM[NEWPHRASE;MEANING] .•......•....•..... 
SETTEMPLATE[FN;TEMPLATE] ....................... . 
SHOW PATHS (,Masterscope command) .•..••..•....... 
SHOW WHERE (Masterscope command) .•••••....•.•..• 
SMASH (Masterscope relation) •....•...•.. ~ •.•.... 
SMASH (Masterscope template) .•..•.•••••..••....• 
SORRY. I CAN'T PARSE THAT (error message) •..•••. 
SORRY. NO FUNCTIONS HAVE BEEN ANALYZED 

(er ror message) .....•.......•..••.....••..• 
SORRY. THAT ISN'T IMPLEMENTED (error message) 
templates (in Masterscope) ...••••.•.•.•.•.•••••• 
TEST (Masterscope relation) .•.•••••••• ~ ...•••••• 
TEST (Masterscope template) .•..•••.•.••.•.•••.•. 
TESTRELAT10N[ITEM;RELATION;ITEM2;INVERTED] 
THOSE (Masterscope set specification) •••.•••.••• 
TO (Masterscope path option) •....•...••.••....•• 
types (in Masterscope) ...•.••.•..•...•.......••• 
UNSAVEFNS[FNS] ..•...•..•.••••.••.••..•...•.•.••. 
UPDATECHANGED[] .••..••......•..................• 
UPDATEFN[FN;EVENIFVALID] ..•........••...••...•.• 
USE AS A CLISP WORD (Masterscope relation) 
USE AS A FIELD (Masterscope relation) .•...•.•.•• 
USE AS A PROPERTY (Masterscope relation) ...•...• 
USE AS A RECORD (Masterscope relation) ....•..•.. 
USE (Masterscope relation) ...•...•.......•••.... 
, (Masterscope set specification) •.••••••••.•••• 
. (printed by Masterscope) ..••••••..•••••.••..•• 
. (use in Masterscope) •.•..••••.••.•....•....••. 
.. (Masterscope template) ...•••.•.•.•..•..••.••• 
7 (printed by M8sterscope) ..•••••••••....••.••.. 
8 (Masterscope set specification) ..•..•.•.•.•••• 
8 (Masterscope template) •••••••••••••.••••..•••• 

INDEX.20.2 

Page 
Numbers 

20.3 
20.21 
20.16 _-
20.18 
20.15 
-20.8 
20.12 
20.19 
20.15 
20.14-15 
20.16 
20-.16 
20.9 
20.17 
20..5 
20.4-6 
20.5 
20.17 
20.16 
20.15 
20.6-8 
20.4 
20.16 
20.6-8 
20.19 
20.18 
20.10 
20.11 
20.4 
20.16 
20..20. 

20..20. 
20..20. 
20. .16-18 
20..5 
20..16 
20..19 
20..8 
20..15 
20..8-9 
20..21 
20..20. 
20..20. 
20..6 
20..5 
20..6 
20..5 
20..4 
20..6 
:to.3 
20..3 
20..17 
20..16 
20..8 
20..17 



SECTION 21 

MISCELLANEOUSl 

21.1 MEASURING FUNCTIONS 

time[timex;timen;timetyp] is an nlambda function. It executes the computation timex, and 
prints out the number of conses and computation time. Garbage 
collection time is subtracted out 

1 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP] 
FILE CREATED 1-AUG-78 14:56:12 
PRETTYCOMS 
collecting lists 
582, 10291 free cells 
13169 CONSES 
29.484 SECONDS 
PRETTY 

If timen is greater than 1 (timen = NIL equivalent to timen = 1), 
time executes timex limen number of times and prints out number 
of conses/timen, and computation time/timen. This is useful for 
more accurate measurement on small computations, e.g. 

~TIME«COPY (QUOTE (A B C») 10) 
30/10 = 3 CONSES 
.055/10 = .0055 SECONDS 
(A B C) 

Some of the functions in this section are TENEXITOPS·20 or implementation dependent. They may not be 
provided in other implementations of Inlerlisp. 

21.1 



date[-]2 

idate[d] 

+ gdate[date;fonnatbits;strptr] 
+ 

Section 21: Miscellaneous 

If timetype is 0, time measures and prints total real time as well as 
computation time, e.g. 

~TIME«LOAD (QUOTE PRETTY) (QUOTE PROP» 1 0] 
FILE CREATED 7-MAY-71 12:47:14 

GC: 8 
582, 10291 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
11.193 SECONDS 
27.378 SECONDS, REAL TIME 
PRETTY 

If timetyp = 3, time measures and prints garbage collection time as 
well as computation time, e.g. 

~TIME{(LOAD (QUOTE PRETTY) (QUOTE PROP» 1 3] 
FILE CREATED 7-MAY-71 12:47:14 

GC: 8 
582, 1091 FREE WORDS 
PRETTYFNS 
PRETTYVARS 
3727 CONSES 
10.597 SECONDS 
1.487 SECONDS, GARBAGE COLLECTION TIME 
PRETTY 

Another option is timetype= T, in which case time measures and 
prints the number of pagefaults. 

The value of time is the value of the last evaluation of timex. 

obtains date and time, returning it as single string in fonnat "dd
mm-yy hh:mm:ss", where dd is day, mm is month, yy year, hh 
hours, mm minutes, ss seconds, e.g., "14-MAY-71 14:26:08". 

4 is a date and time string. Value of idate is 4 converted to a 
number such that if date! is before (earlier than) date2, then 
idatc[datcl] < idate[date2]. If 4 = NIL, idate returns idate[date[J]. 

Intcrlisp-lO function for obtaining time-date fonnatted string, date 
is in internal date-and-time fonnat. If NIL, current time and date 

2 In Interlisp-lO. gate will accept f9nnatbi~ as an argument. which can be used to specify other fonnats, e.g .• day of 
week. time zone, etc .. as described in the JSYS manual. 

21.2 



Measuring Functions 

is used, i.e. value of idate[]. formatbits is 36 bit quantity to be + 
passed to TENEX/TOPS 20 time-date conversion routines (see + 
JSYS manual.) For example, formatbits = -1 gives a "long" date, C.g. + 
"FRIDAY, JUN 16, 1978, 23:41:52-POT".3 If + 
formatbits = NIL, defaults to a value which will produce the same + 
format as that of date[], i.e. "dd-mm-yy hh:mm:ss". strptr is an + 
optional string pointer to be reused.4 + 

c1ock[n) for !! = 0 current value of the timc of day clock i.c., number of 
milliseconds since last systcm start up. 

for !!= 1 

for !!=2 

for !!=3 

value of the time of day clock when the user started 
up this Interlisp, i.e., difference bctween clock[O] and 
c1ock[l] is number of milliscconds (real time) since this 
Interlisp was started. 

number of milliscconds of compute time since user 
started up this Interlisp (garbage collection time is 
subtracted oft). 

number of milliseconds of compute time spent in 
garbage collections (all types).5 

dismiss[n] In Interlisp-lO, dismisses program for !! milliseconds, during which 
time program is in a state similar to an 110 wait, i.e., it uses no 
CPU time. Can be aborted by control-D, control-E, or control-B. 

conscount[n] conscount[] returns the number of conses since Interlisp started up. 
If!! is not NIL, resets conscount to !!. 

boxcount[type;n] In Intcrlisp-10, number of boxing operations (see Section 13) since 
Interlisp started up. If ~ = NIL, returns number of large integer 
boxes; type= FLOATING, rcturns number of floating boxes.6 If!! is 
not NIL, resets the corresponding counter to !!. 

3 

4 

5 

6 

The datefonnat package (Section 24) provides a convenient way of speCifying the ronnat bits in tenns of keywords. + 

In this case. the string characters are stored in an internal scratch string. macscra!fhsIf!M. so that a subsequent call to + 
gdate will overwrite the characters returned by this one. Note that this internal scratch string is also used by several + 
other functions in this section. + 

In Interlisp-lO. this number is directly accessible via the COREVAL GCTIM. 

In Interlisp·lO. these counters are directly accessible via the COREVALs IBOXCN and FBOXCN. 

21.3 



* 

* 

Section 21: Miscellaneous 

gctrp[-] number of conses to next garbage collection of lists, i.e., number of 
list words not in usc. Note that an intervening garbage collection 
of another type could collect as well as allocate additional list 
words. See Section 3. 

gctrp[n] can be used to cause an interrupt when value of gctrpD=n, 
sec Section 10. 

pagefaultsD In Interlisp-lO, number of page faults since Interlisp started up. 

10goutD returns control to operating system.7 In Interlisp-lO, a subsequent 
CONTINUE command will enter the Interlisp-1O program, return 
NIL as the value of the call to logout. and continue the 
computation exactly as if nothing had. happened, i.e., logout is a 
programmable control-C. 

10goutD will not affect the state of any open files. 

21.2 BREAKDOWN8 

Time gives analyses by computation. Breakdown is available to analyze the breakdown of 
computation time (or any other measureable quantity) function by function. The user calls 
breakdown giving it a list of functions of interest. These functions are modified so that they keep 
track of the "charge" assessed to them. The function brkdwnresults gives the analysis of the 
statistic requested as well as the number of calls to each functionY Sample output is shown below. 

~BREAKDOWN(SUPERPRINT SUBPRINT COMMENT1) 
(SUPERPRINT SUBPRINT COMMENT1) 
~PRETTYDEF«SUPERPRINT) FOO) 
FOO. ; 3 
~BRKDWNRESULTS() 
FUNCTIONS TIME # CALLS PER CALL % 
SUPERPRINT 8.261 365 0.023 20 
SUBPRINT 31.910 141 0.226 76 
COMMENTl 1. 612 8 0.201 4 
TOTAL 41.783 514 0.081 
NIL 

The procedure used for measuring is such that if one function calls other and both are 'broken 
down', then the time (or whatever quantity is being measured) spent in the inner function is not 

7 

8 

In Interlisp'lO, if Interlisp was started as a subsidiary fork (see subsys, page 21.7), control is returned to the higher 
fork. 

breakdown was written by W. Teitelman, and extended by L. P. Deutsch. 

+ 9 

+ 
brkdwn.rcsults takes an optional argument, returnvaluesflg. which if non·NIL, causes brkdwnresults not to print the 
results. but instead to return them in the form of a list of elements of the form (name #calls value), e.g. for the 
example shown above, this list would be 
((SUPERPRINT 365 8261)(SUBPRINT 141 31910)(COMMENTi 8 1612». 

+ 
+ 

21.4 



Breakdown 

charged to the outer function as well.lO 

To remove functions from those being monitored, simply unbreak the functions, thereby restoring 
them to their original state. To add functions, call breakdown on the new functions. This will not 
reset the counters for any functions not on the new list. However breakdownO can be used for 
zeroing the counters of all functions being monitored. 

To use breakdown for some other statistic, before calling breakdown, set the variable brkdwntype 
to the quantity of interest, e.g., TI ME. CONS ES, etc, or a list of such quantities. Whenever + 
breakdown is called with brkdwntype not NIL, breakdown performs the necessary changes to its 
internal state to conform to the new analysis. In particular, if this is the first time an analysis is 
being run with a particular statistic, a measuring function will be defined, and the compiler will be 
called to compile it.ll 11le functions being broken down will then be redefined to call this * 
measuring function. When breakdown is through initializing, it sets brkdwntype back to NIL. * 
Subsequent calls to breakdown will measure the new statistic until brkdwntype is again set and a 
new breakdown performed. Sample output is shown below: 

~SET(BRKDWNTYPE (TIME CONSES» 
(TIME CONSES) 
~BREAKDOWN(MATCH CONSTRUCT) 
(MATCH CONSTRUCT) 
~FLIP«A BCD E F G H C Z) ( .. $1 .. #2 .. ) ( .. #3 .. » 
(A B D E F G H Z) 
~RESUL TSO 
FUNCTIONS TIME # CALLS PER CALL % 
MATCH 0.036 1 0.036 54 
CONSTRUCT 0.031 1 0.031 46 
TOTAL 0.067 2 0.033 
FUNCTIONS CONSES # CALLS PER CALL % 
MATCH 32 1 32.000 40 
CONSTRUCT 49 1 49.000 60 
TOTAL 81 2 40.500 
NIL 

The value of brkdwntype is used to search the list brkdwntypes for the information necessary to 
analyze this statistic. The entry on brkdwntypes corresponding to brkdwntype should be of the 
form (type form function), where form computes the statistic, and function (optional) converts the 
value of form to some more interesting quantity. e.g. 
(TIME (CLOCK 2) (LAMBDA (X) (FQUOTIENT X 1000») measures computation time and 
reports the result in seconds instead of milliseconds. If brkdwntype is not defined on brkdwntypes. 
an error is generated. brkdwntypes currently contains entries for TIME. CONSES. 
PAGEFAUL TS. BOXES. and FBOXES. 

10 

11 

breakdown will not give accurate results if a function being measured is not returned from normally, e.g., a lower 
rclJrom (or f-rmr) bypasses it. In this case. all of the time (or whatever quantity is being measured) between the time 
that function is entered and the time the next function being measured is entered will be charged to the first 
function. 

The measuring functions for TIME. CONSES, BOXES. and rBOXES have already been compiled. 

21.5 

---- - -- ------~ 

. ---.;;,,-< 



Section 21: Miscellaneous 

MORE ACCURATE MEASUREMENT 

Occasionally, a function being analysed is sufficiently fast that the overhead involved in measuring 
it obscures the actual time spent in the function. If the user were using time, he would specify a 
value for timen greater than 1 to give greater accuracy. A similar option is avai1able for 
breakdown. The user can specify that a function(s) be executed a multiple number of times for 
each measurement, and the average value reported, by including a number in the list of functions 
given to breakdown, e.g., BREAKDOWN(EDITCOM EDIT4F 10 EDIT4E EOP) means normal 
breakdown for editcom and edit4f but executes (the body 00 edit4e and ~ 10 times each time 
they are called. Of course, the functions so measured must not cause-any harmful side· effects, 
since they are executed more than once for each call. The printout from results wi11look the same 
as though each function were run only once, except that the measurement will be more accurate. 

+ Another way of obtaining more accurate measurement is to expand the call to the measuring 
+ function in-line. If the value of brkdwncompflg is non-NI L (initi~ly NI L), then whenever a 
+ function is broken-down, it will be redefined to call the measuring function, and then recompiled. 
+ The measuring function is expanded in-line via an appropriate macro. In addition, whenever 
+ brkdwntype is reset, the compiler is called for all functions for which brkdwncompflg was set at the 
+ time they were originally broken-down, i.e. the setting of the flag at the time a function is broken
+ down determines whether the call to the measuring code is compiled in-line. 

21.3 INTERFORK COMMUNICATION IN INTERLISP-10 

The functions described below permit two forks (one or both of them Interlisp-lO) to have a 
common area of address space for communication by providing a means of assigning a block of 
storage guaranteed not to move during garbage collections. 

getblk[n] Creates a block !! pages in size (512 words per page). Value is the 
address of the first word in the block, which is a multiple of 512 
since the block will always begin at a page boundary. If not 
enough pages are available, generates the error ILLEGAL OR 
IMPOSSIBLE BLOCK. 

Note: the block can be used for storing un boxed numbers onlv. 

To store a number in the block, the following function could be used: 

[SETBLOCK (LAMBDA (START N X) (CLOSER (IPLUS (LOC START) N) X] 

Some boxing and unboxing can be avoided by making this function compile open via a 
substitution macro. 

Note: getblk should be used sparingly since several unmovable regions of memory can make it 
difficult or impossible for the garbage collector to find a contiguous region large enough for 
expanding array space. 

relblk[address;n] releases a block of storage beginning at address and extending for n 

21.6 



'. 

lnterfork Communication in lmerlisp-IO 

pages. Causes an error ILLEGAL OR IMPOSSIBLE BLOCK if any 
of the range is not a block. Value is address. 

21.4 SUBSYS12 

This section describes a function, subsys, which permits the user to run a TENEX/TOPS 20 
subsystem, such as SNDMSG, SRCCOM, TECO, or even another Interlisp, from inside of an 
Interlisp without destroying the latter. In particular, SUBSYS ( EX EC) will start up a lower exec, 
which will print the operating system herald, followed by @. lbe user can then do anything at 
this exec level that he can at the top level, without affecting his superior Interlisp. For example, 
he can start another Interlisp, perform a sysin, run for a while, type a control-C returning him to 
the lower excc, RESET, do a SNDMSG, etc. The user exits from the lower exec via the command 
QUIT,13 which will return control to subsys in the higher Interlisp. Thus with subsys, the user 
need not perform a sysout to save the state of his Interlisp in order to use a TENEX/TOPS 20 
capability which would otherwise clobber the core image. Similarly, subsys provides a way of 
checking out a sysout file in a fresh Interlisp without having to commandeer another terminal or 
detach a job. 

While subsys can be used to run any subsystem directly, without going through an intervening 
exec, this procedure is not recommended. The problem is that control-C always returns control to 
the next highest EXEC. Thus if the user is running an Interlisp in which he perfoIms 
SUBSYS( LISP). and then types control-C to the lower Interlisp, control will be returned to the 
exec above the first Interlisp. If the user elects to call a subsystem directly, he must therefore 
know how it is normally exited and always exit from it that way.I4 

Starting a lower exec does not have this disadvantage, since it can only be exited via QUIT or 
POP, Le., the lower exec is effectively "errorsetprotected" against control-C. 

subsys[file/fork;incomfile;outcomfile;entrypointflg] 

12 

13 

14 

If filet fork = EX E C, starts up a lower exec, otherwise runs 
<SUBSYS>system, e.g. subsys[SNOMSG], subsys[TECO] etc. subsysn 
is same as subsys[EXEC). Control-C always returns control to next 
higher exec. Note that more than one Interlisp can be stacked, but 
there is no back trace to help you figure out where you are. 

incomfile and outcomfile provide a way of specifying files for input 
and output. incomfilc can also be a string, in which case a 
temporary file is crca~ed, and the string printed on it. 

entrypointflg may be START. REENTER. or CONTINUE. NIL is 
equivalent to START, except when file/fork is a handle (see below) 
in which case NIL is equivalent to CONTINUE. 

subsn was written by J.W. Goodwin and modified by D. C. Lewis. It is TENEXITOPS 20 dependent and may not 
be available in implementations of Interlisp other than Interlisp-lO. 

POP on TOPS-20. 

Intcrlisp is exited via the function logout, TECO via the command ;H, SNDMSG via control-Z. and EXEC via 
QUIT. 

21.7 

+ 



Section 21: Miscellaneous 

Ibe value of subsys is a large intcgcr which is a handle to the lower fork. The lowcr fork is not 
reset unless the uscr spccifically does so using kfork, described below.15 If subsys is givcn as 'its 
first argument the valuc of a prcvious call to subsys,16 it continucs thc subsystem run by that call. 
For example, the user can do (SETQ SOURCES (SUBSYS TECO», load up the TECO with a 
big sourcc filc, massagc the file, leave TECO with ;H, run Interlisp for awhilc (possibly including 
othcr calls to subsys) and then perform (SUBSYS SOURCES) to return to TECO, where he will 
find his filc loadcd and even the TECO pointer position preserved. 

Note that if the user starts a lower EXEC, in which he runs an Interlisp, control-C's from the 
Intcrlisp, then QUIT from the EXEC, if he subsequently continues this EXEC with subsys, he can 
reenter or continue the Interlisp. 

Note also that calls to subsys can be stacked. For example, using subsys, the user can run a lower 
Interlisp, and within that Interlisp, yet another, etc., and ascend the chain of Interlisps using logout., 
and then descend back down again using subsys. 

For convenience, subsys[T] continues the last subsystem run. 

SNDMSG, LISP, TECO, and EXEC, are all LISPXMACROS which perform the corresponding calls 
to subHs. CONTIN is a LISPXMACRO which performs subsys[T), thereby continuing the last 
subsys. 

kfork[fork] accepts a· value from subsys and kills it (RESET in TENEX 
terminology). If subsys[fork] is subsequently performed, an error is 
generated. kfork[T) kills all outstanding forks (from this Interlisp). 

21.5 MISCELLANEOUS OPERATING SYSTEM FUNCTIONS 

fildir[ filegroup; -) filegroup is a file group descriptor, i.e., it can contain stars. fildir 
returns a list of the files which match filegroup, a la the 
DIRECTORY command, e.g., (FILDIR (QUOTE *. COM: 0» . 

10adavU returns current load average as a floating point number (this 
number is the first of the three printed by the SYSTAT command). 

erstr[ ern; -] ern is an error number from a JSYS fail return. em = NIL means 
the most recent error. erstr returns the operating system error 
diagnostic as a string. 

15 

16 

17 

The fork is also reset when the handle is no longer accessible. i.e .• when nothing in the Interlisp system points to it 
Note that the fork is accessible while the handle remains on the history list 

Must be the exact same large number. i.e .• !!fI. Note that if the user neglects to set a variable to the value of a call to 
sul.ill'~. (and has performed an intervening call so that subsys[T] will not work). he can still continue this subsystem 
by obtaining the value of the call to subsys for the history list using the function valueof. described in Section 22. 

The EXEC lispxmacro is defined to save its value on lastexec so that subsequent EXEC commands will restart the 
same exec. 

21.8 



Miscellaneous Operating System Functions 

jsys[n;ac1;ac2;ac3;resultac] loads (unboxed) values of ac1, ac2, and ac3 into appropriate 
accumulaters, and executes JSYS number N:IB If ac1, ac2. or 
ac3 = NIL. 0 is used. Value of jSYS is the (boxed) contents of the 
accumulator specified by resultac. i.e., 1 means ac1. 2 means ~. 
and 3 means ac3, with NIL equivalent to 1. Compiles open if n is + 
itself a small integer, and resultac is a small integer, or N I L.19 + 

username[a] If ~= NI L, returns login directory name; if ~= T, returns connected 
directory name; if ~ is a number, username returns the user name 
corresponding to that user number. In all cases, the value is a 
string. 

usernumber[a;-] If ~ = NIL. returns login user number; if ~ = T, returns connected 
user number; if ~ is a literal atQm or string, usernumber returns the 
number of the corresponding user, or NIL if no such user exists.20 

hostname[hostn] returns hostname as a string for host number hostn,. e.g. "PARC- + 
MAXC2", "BBN-TENEXD," etc. If hostn=NIL, local host is used. + 
If local host is not an arpanet host, value is NIL. Value is also NIL + 
if hostn is not a valid host number. + 

hostnumber[] ruturns host numer of local host, or NI L, of local .host is not an . + 
arpanet host + 

systemtype[] for Interlisp-lO, returns either TENEX or TOPS 20. + 

tenex[str;fileflg] Starts up a lower exec (without a message) using rubsys, and then if + 
fileflg=NIL unreads str, followed by "QUIT"2 (using bksysbuf. + 
described in Section 14). The value of tenex is T if all of str is + 
actually processed/read by the lower exec, NIL if the user + 
control-C's and manually QUIT's back to Interlisp. + 

18 

19 

20 

21 

If the JSYS causes a trap. the message TRAP AT LOCATION nnnnnn is printed by the operating system, followed + 
by JSYS ERROR: and the operating system diagnostic. The user is then talking to the operating system exactly as + 
though control-C had been typed. If the user then continues using the CONTINUE command. an Interlisp error is + 
generated. JSYS ERROR. and control then proceeds the same as for any other flavor of error, i.e. unwinds to last + 
errorset or goes into a break as described in Section 16. + 

The cjsys package (Section 24) enables calling jsyses by their corresponding name, rather than their number. + 

On TOPS-20. there is a difference between the user number, which is associated with the job, and the directory 
number. which is associated with the file system. Therefore. on TOPS-20, usemumber takes an extra argument which, 
if T, says to return the directory number rather than the user number. 

"POP" for Interlisp on TOps·20, 

21.9 

+ 



+ 
+ 
+ 
+ 
+ 
+ 

Section 11: Miscellaneous 

If filcflg = T, tcnex passes the string as the second argument to 
subsys, instead of unreading it. This has the advantage that str can 
be of any length, and also that typcahead will not interfere with the 
call to the lowcr exec. The disadvantage is that tenex cannot tell 
whcthcr the commands to the lower exec terminated successfully, or 
were aborted. Thus, if fileflg = T, the value of tenex is always T. 

+ For example, listfiles (Scction 14) is implemented using tenex, with fileflg = NIL, so list files can tell 
+ if listings actually were completed. The lispxmacro SY, which does a SYSTAT, is implemented as 
+ TENEX[" SY"; T], so that the user can type ahead. 

+ MANIPULATING TENEX FILE DIRECTORIES FROM INTERLlSP·10 

+ The following function allows the user to conveniently specify and/or program a variety of 
+ directory operations: 

+ directory[filegroup;commands;defaultext;defaultvers;-]22 
+ filegroup is either [1] NIL (which is equivalent to *. *; *); or [2] an 
+ atom which can contain $'s or *'s (equivalent) which match any 
+ number of characters23 or 1's which match a single character, or 
+ else [3] filegroup is a list of the form (filegroup + filegroup), 
+ (filegroup - filegroup), or (filegroup * filegroup),24 e.g., (T$ + $L) 
+ will match with any file beginning with T or ending in L, 
+ (T$ - * .COM) matches all files that begin with T and are not 
+ . C OM files. 

+ 
+ 

+ 
+ 

+ 

+ 
+ 

+ 
+ 

+ 

Q fn 

P 

PAUSE 

PROMPT mess 

SIZE 

For each file that matches, each command'in commands is executed 
with the following interpretation: 

apply fn to the JFN for each file; if fn returns NIL, abort 
command processing for this file.25 

print file name. 

wait for user to type any char (good for display if you want to 
ponder). 

prompts with mess; if user responds with No, abort command 
processing for this file. 

print file size. 

22 directory was written by L.M. Masinter. 

23 not necessarily trailing characters. e.g" F$1 matches FOOl and FIEl. 

24 OR can be used for +, and AND for *. ' 

+ 25 If ill is a function of two arguments, it will be passed the name of the file as its second argument 

21.10 



Miscellaneous Operating System Functions 

TRIMTO n deletes all but n versions offile (n 2.. O). 

OUT file directs output to file. 

COLLECT adds file on value list. In this case the value of directory will be 
the list of files (complete file names) collected. 

DATE prints date the file was last written. 

DELETE deletes file. 

The value of directory is NIL if no COLLECT command is 
specified, otherwise the list of files "collected". 

DELETED prints out those files that have .been deleted. 

UNDELETE undeletes the indicated files that have been deleted. 

directory uses dircommands to correct spelling, which also provides a way of defining abbreviations 
and synonyms (see Section 17 on spelling lists). Currently the following abbreviations are 
recognized: 

TI 

DEL 

DEL? 

COLLECT? 

same as DATE 

same as DELETED 

same as PROMPT "del ete?" DELETE 

same as PROMPT "?" COLLECT 

There is also a lispxmacro D I R which calls the function directory: 

D I R group commands calls the function directory with (P . commands) as the command 
list and * and * as the default extension and default version 
respectively. 

For example, to DELVER only those files which you ok, do DIR group PROMPT "?" TRIMTO 1. 

21.6 JFN FUNCTIONS IN INTERLlSP·10 

JFN stands for job file number. It is an integral part of the TENEX file system and is described 
in [Murl], and in somewhat more detail in the TENEX JSYS manual. In Interlisp-10, the 
following functions are available for direct manipulation of JFNs: 

opnjfn[file;access) returns the JFN for file. If file not open, generates a FI LE NOT 
OPEN error. access = NIL, INPUT, OUTPUT, or BOTH as 
described in ~scussion of openp. For example, 
(JSYS 51Q (OPNJFN FILE) BYTE) wiU write a byte on a file, 

21.11 

+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 

+ 



+ 
+ 
+ 
+ 
+ 

gtj fn[file;ext;v; flags] 

rljfn[jfn] 

j fns[jfn;ac3 ;strptr] 

Section 21: Miscellaneous 

while (JSYS 50Q (OPNJFN FILE) NIL NIL 2) will read one 
byte. 

sets up a "long" call to GTJPN (see JSYS manual). file is a file 
name possibly containing control-P and/or < esc> . ext is the 
default extension, y the default version (overriden if file specifies 
extension/version, e.g., FOO. COM; 2). flags is as described on page 
17, section 2 of lSYS manual. file and ext may be strings or 
atoms; y. and flags must be numbers. Value is JPN, or NIL on 
errors. 

releases ifu. r1jfn[-l] releases all lPN's which do not specify open 
files. Value of rljfn is T. 

converts ifu (a small number) to a file name. ac3 is either NIL. 
meaning format the file name as would openp or other Interlisp-10 
file functions, or else is a number, meaning format according to 
JSYS manual. The value of jfns is atomic except where enough 
options are specified by ac3 to exceed atom size. In this case, the 
value is returned as a string. 

strptr is an optional string pointer to be reused. In this case, the 
string characters are stored in an internal scratch string, 
macscratchstring. so that a subsequent call to jfns will overwrite the 
characters returned by this one. The va1ue of jfns when strptr is 
supplied is always a string. 

The following function is available in Interlisp-lO for specialized file applications: 

openflfile;x] opens. file. ! is a number whose bits specify the access and mode 
for file, i.e., ! corresponds to the second argument to the TENEX 
JSYS OPENP (see lSYS Manual). Value is full name of file. 

The first argument to openf can also be a number, which is then 
interpreted as a JPN. openf does not affect the primary input or 
output file scWngs, and does not check whether the file is already 
open - i.e., the same file can be opened more than once, possibly 
for different purposes. 

+ Notc that for almost all applications the function opcnfile (Section 14) provides a more convenient 
+ (and implcmentation independent) way of opening files. 

21.12 



Pmap package 

21.7 PMAP PACKAGE26 

'01is facility allows paged access to files in Interlisp-lO. .It manages a set of paging buffers as a + 
least-recently-used queue, with each buffer being a full-page block (see gelblk, Section 3). Facilities + 
arc provided for allocating and deallocating buffers, locking down pages, mapping a given· page of + 
the file inlo core, and getting the in-core location to which a given word of the file has been + 
mapped. Any number of files can be mapped in at one time. + 

The following scenario illustrates the usc of these facilities: The user first opens the file (or files) + 
that he wants to access. by page-mapping using any of the ordinary file-opening functions. Then, + 
to examine a particular word in one of the files, the user simply gives the word number and the + 
file's name to the function mapword, which returns a pointer to the in-core location that that word + 
is mapped to (i.e. the address as an unboxed number). When he has finished processing, the user + 
simply closes the file (e.g. using closeD and the buffers are automatically unmapped. + 

The basic functions are: 

addbuffer[temp;errortlg] 

+ 

Initially, a single buffer is allocated, so that page-mapping may be + 
done without further initialization. More buffers can be allocated + 
by addbuffer, which may help to avoid thrashing. addbuffer + 
attempts to allocate a single new buffer, and returns T if successful. + 
If there is not enough space to allocate a new buffer, then if + 
errorflg is NIL, addbuffer simply returns NIl. Otherwise, addbuffer + 
causes an error UNABLE TO ALLOCATE PMAP BUFFER. + 

If temp = T, the buffers are allocated on a "temporary" basis: + 
allocation takes place via a resetsave whose restoration form will de- + 
allocate the buffers. + 

mapbuffercount[onlyunlocked] value is the number of buffers currently allocated. If + 
onlyunlocked = T, counts only unlocked buffers; otherwise, counts + 
all buffers. Thus, to insure that at least 3 (unlocked) buffers are + 
allocated, the user could perform (while (MAPBUFFERCOUNT T) + 
1 t 3 do (ADDBUFFER NIL T». + 

mappage(page# ; file] the primitive function for mapping in pages from file into the + 
queue of buffers. ~ is a page number in file. The value of + 
mappage is a pointer to the word in core at which the first word of + 
the page is located, which will always be at a page-boundary (i.e. + 
the pointer will print as # xxxOOO). + 

If file is NIL. the value of defaultmapfile is used. file may also be + 
a fork handle (i.e. a value of li..ubsys), in which case the specified + 
page from that fork will be mapped in. + 

26 The PMAP package was written by R. M. Kaplan and L M. Masinter. 

21.13 



+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ mapword[fileadr;file] 
+ 
+ 
+ 
+ 
+ 
+ 

+ wordoffset(ptr;n] 
+ 
+ 
+ 

+ wordcontents[ptr] 
+ 
+ 
+ 

+ setwordcontents(ptr;n] 
+ 
+ 
+ 

+ c1earmap[file;pages;release] 
+ 
+ 
+ 
+ 
+ 

Section 21: Miscellaneous 

mappage. searches the buffers to see if the given page for the given 
file has already been mapped in. If so, it returns the core address 
to which it was previously mapped. Otherwise, it replaces the 
previous contents of the least-recently-used buffer with the specified 
file page. It is important to note that the contents of a given core 
buffer are not guaranteed across calls tomappage, unless the page 
has been locked down via loekmap. mappage compiles open, and in 
the case where the desired page is already in the buffer it is quite 
efficient 

mappage will allocate an additional buffer if no unlocked buffers 
are.available (and the desired page is not already mapped in). 

like mappage, except that it allows . the specification of a 
word-address in file, not just a page number. map word determines 
what page that address is on, maps that page into a buffer (using 
mappage), and returns a pointer into the middle of the buffer 
where the indicated word appears. The rest of the words on the 
same file page appear at the appropriate wordoffsets from the value 
returned by map word 

If pY is a pointer into a buffer as returned by m.appage or 
map word, wordoffset[ptr;n] returns a pointer to the nth following 
word. For example, map word could be written as an wordoftset of 
a mappage. wordoffset compiles open. 

Returns the contents of the word at pY as an integer. For example, 
wordcontents[mapword[lO;file]] will return the value stored in word 
10 of a (binary) file. wordcontents[ptr] is equivalent to 
openr[loc[ptr]]. wordcontents compiles open. 

Sets the contents of the word pointed to by py to be the number 
. n. Interpreted, setwordcontents checks that py actually is a pointer 
as returned by mappage or mapword. setwordcontentS compiles 
open with no error checks. 

file specifies a file or fork as for mappage, or it is T. ~ is a 
single page number or a list of page numbers. c1earmap unmaps 
any of those pages that are currently mapped in, 27 making those 
buffers available for other mappings. file = T means all files; 
pages=NIL means all pages. 1bus c1earmap[T] will completely 
clear the buffers. 

+. 27 d 1 whether or not they arc currently locke • i.e. clcannap takes precedence over ockmap. 

21.14 



Pmap package 

If release = T, then not only will the buffers containing the specified + 
pages be unmapped, but the buffers themselves will be released, i.e. + 
returned to the Interlisp storage manager. + 

lockmap[ptr] For those situations in which a program needs prolonged access to + 
a particular file page, lockmap can be used to prevent mappage + 
from shifting or unmapping the contents of the given core page. + 
p!! is a pointer into a mapped page (i.e. a value of mapword or + 
mappage). lockmap locks the indicated p,e in core until a + 
corresponding unlockmap has been performed. Value is rur. + 

unlockmap[ptr;flg] p!! is a pointer into a mapped page. unlockmap removes the most + 
recent lock for that page if .fig = NIL, and all locks if .fig = T. + 

21.8 TYPESCRIPT FILES 

A typescript file is a "transcript" of all of the input and output on a terminal. The following 
function enables transcript files for Interlisp. 

dribbleffilename;appendflg;-]29 Opens filename and begins recording the typescript. Value is old 
typescript file if any, otherwise NIl. If appendfle = T, the 
typescript will be appended to the end of filename. 3 dribble[) 
closes the typescript file.31 

dribble processes a line buffer at a time. Thus, the typescript produced is somewhat neater than 
that generated by TELNET because it does not show characters that were erased via control-A or 
control-Q. Note that the typescript file is not included in the list of files returned by openp[], nor 
will it be closed by a call to closeall or closef. Only dribble[] closes the typescript file. 

dribblefile[] returns name of current typescript file, if any, otherwise NIl. 

21.9 DISPLAY TERMINALS 

The value of the variable displaytermflg indicates whether the user is running on a display tenninal 
or not. displaytcrmflg is used in various places in the system, e.g., prettyprint, helpsys, etc., 

28 

29 

30 

31 

If a page has been locked twice, it must be unlocked twice before it is available for reuse. 

dribble was wriuen by D. C. Lewis. 

dribble also takes an extra argument, thawedflg. If thawedflg = T, the file will be opened in "thawed" mode. 

Only one typescript file can be active at anyone point: i.e .• dribble[lilel] followed by dribblc[lile2] will cause mel to 
be closed. 

21.15 

i -_ -~;;;;;; 

+ 



Section 21: Miscellaneous 

primarily to decide how much information to present to the user (more on a display tcrminal than 
on a hard copy terminal.) displaytermflg is initialized to thc value of displaytermp[], whenever 
Interlisp is (re}-entered, and after returning from a sysout. 

displaytermp[] 

21.10 GAINSPACE 

value is T if user is on a display terminal, NIL otherwise. In 
Interlisp-10, displaytermp is defined to invoke the appropriate jsys 
to check the user's terminal type. 

For users with large programs and data bases, the user may sometimes find himself in a situation 
where he needs to obtain more space, and is willing to pay the price of eliminating some or all of 
the context information that the various user-assistance facilities such ~s the programmer's assistant, 
file package, CLISP, etc., have accumulated during the course of his session. The following 
function is available for this purpose. 

gainspace[] 

GAINSPACE() 

walks the user through a menu, prompting him at each point, and 
allowing him to specify what can be discarded and what should be 
retained, e.g.: 

purge history lists? yes 
purge everything, or just the properties, e.g., SIDE, LISPXPRINT. etc. ? 
just the properties 
discard definitions on property lists? Xes 
discard old values of variables? Xes 
erase filepkg information? No 
erase properties? No 
etc. 

gainspace is driven by the list gainspacefonns. Each element on gainspaceforms is of the fonn 
(precheck message form keylst). If precheck, when evaluated, returns NIL, gainspace skips to the 
next entry. For example, the user will not be asked whether or not to discard edita initialization if 
he has not initialized edita. Otherwise, askuser (Section 17) is called with the indicated message 
and the (optional) keylst. If the user responds No, i.e., askuser returns N, gainspace skips to the 
next entry. Otherwise, fonn is evaluated with the variable response bound to the value of askuser. 
e.g., in the above example, if the user had responded with lveryth i ng, instead f)f yes, to the 
"purge history lists" question, he would not have been asked the second question, because the 
form for this entry checks to see whether the value of response is Y or E. 

The "erase properties" entry on gainspacefonns is driven by a list smashpropsmenu. Each element 
on this list is of the form (message. props). 1be user is prompted with message (by askuser), and 
if he responds yes. ~ is added to the list smashprops. The "discard definitions on property 
lists" and "discard old values of variables" entries on gainspaceforms also add to smashprops. 'The 
user will not be prompted for any entry on smashpropsmenu tbr which all of the corresponding 
properties arc already on smashprops. srnashprops is initially set to the value of smashpropslst. 
'Ibis pelmits the user to specify in advance those properties which he always wants to be discarded, 
and not be asked about them subsequently, 

21.16 



Gainspace 

After finishing all the entries on gainspaceforms, gainspace checks to see if the value of smashprops 
is non-N I L, and if so, does a mapatoms, i.e., looks at every atom in the system, and erases the 
indicated properties. 

Note that the user can change the entries on gainspaceforms or smashpropsmenu, and/or add new 
entries to either, so that gainspace can also be used to purge structures that the user's programs 
have accumulated. 

21.17 





Index for Section 21 

ADDBUFFER[TEMP;ERRORFLG] ....................... . 
BKSYSBUF[X] SUBR ............................... . 
BOXCOUNT[TYPE;N] SUBH .......................... . 
BREAKDOWN[ FNS] NL· ............................. . 
BRKDWNRESULTS[RETURNVALUESFLG] ................. . 
BRKDWNTYPE (system variable/parameter) ......... . 
BRKDWNTYPES (system variable/parameter) ........ . 
CLEARMAP[FILE;PAGES;RELEASE] ................... . 
CLOCK[N] SUBR .................................. . 
CONSCOUNT[N] SUBR .............................. . 
CONTIN (prog. asst. command) ................... . 
CONTINUE (TENEX command) ....................... . 
control-B ...................................... . 
control-C ...................................... . 
control-D ...................................... . 
control-E ...................................... . 
COREVAL[X] NL .................................. . 
DATE[FORMATBITS] SUBR .......................... . 
DIR (prog. asst. command) ..................... .. 
DIRECTORY[FILEGROUP;COMMANDS;DEFAULTEXT; 

DEFAULTVERS;LISPXPRNTFLG] ............. . 
DISMISS[N] ..................................... . 
DISPLAYTERMFLG (system variable/parameter) 
DISPLAYTERMP[] ................................. . 
DRIBBLE[FILE;APPENDFLG;THAWEDFLG] .............. . 
DRIBBLEFILE[] SUBR ............................. . 
ERSTR[ERN] ..................................... . 
EXEC (prog. asst. command) ..................... . 
FILDIR[FILEGROUP;FORMATFLG] ................•.... 
FILE NOT OPEN (error message) .................. . 
fork handl e .......................•............. 
forks .......................................... . 
GAINSPACE[] .................................... . 
GAINSPACEFORMS (system variable/parameter) 
GCTRP [N] SUBR .................................. . 
GDATE[DATE;FORMATBITS;STRPTR] .................. . 
GETBLK[N] SUBR ................................. . 
GTJFN[FILE;EXT;V;FLAGS] ........................ . 
HOSTNAME[HOSTN] ................................ . 
HOSTNUMBER[] .........................•.......... 
IDATE[D] ....................................... . 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
interforl< communication ........................ . 
JFN ., .......................................... . 
JFNS[JFN;AC3;STRPTR] ........................... . 
JSYS[N;AC1;AC2;AC3;RESULTAC] SUBR .............. . 
JSYS ........................................... . 
JSYS ERROR (error message) ..................... . 
KFORK[FORK] .................................... . 
LISPXMACROS (prog. asst. variable/parameter) 
LOADAV[] ....................................... . 
LOCKMAP[PTR] ................................... . 
LOGOUT[] SUBR .................................. . 
MACSCRATCIISTRING (system variable/parameter) 
MAPBUFFERCOUNT[ONLY] ........................... . 
MAPPAGE[PAGE#; FILE] ............................ . 

INDEX.21.1 

Page 
Numbers 

21.13 
21.9 
21.3 
21.4-6 
21.4 
21.5 
21.5 
21.14 
21.3 
21.3 
21.8 
21.4 
21.3 
21.7 
21.3 
21.3 
21.3 
21.2 
21.11 

21.10 
21.3 
21.15 
21.16 
21.15 
21.15 
21.8 
21.8 
21.8 
21.11 
21.8 
21.6 
21.16 
21.16 
21.4 
21.2 
21.6 
21.12 
21.9 
21.9 
21.2 
21. 6-7 
21.6 
21.11-12. 
21.12. 
21.9 
21. 8 ,11-12 
21.9 
21.8.8 
21.8 
21.8 
21.15 
21. 4. 8 
21.3,12 
21.13 
21.13 

--- - ---,- --- -----------;::~---



MAPWORD[FILEADR; FILE] .......................... . 
OPENF[FILE;X] SUBR ............................. . 
OPNJFN[FILE;TVPE] SUBR ......................... . 
page mapping ................................... . 
PAGEFAULTS[] ................................... . 
pmap pack.age ................................... . 
QUIT (TENEX command) ........................... . 
RELBLK[ADDRESS;N] SUBR ......................... . 
RESULTS[RETURNVALUESFLG] ....................... . 
RLJFN[JFN] ..................................... . 
running other subsystems from within Interlisp 
SETWORDCONTENTS[PTR;N] ............•...•...•..... 
SUBSYS[FILE/FORK;INCOMFILE;OUTCOMFILE: 

ENTRYPOINTFLG] ........................... . 
SYSTEMTYPE[] SUBR .....................•......... 
TELNET[CONNECTION;TYPE;SKT;BUTTONCHAR] ......... . 
TENEX .......................................... . 
TENEX[STR; FILEFLG] ............................. . 
TIME[FORM;CNT] NL .....................•......... 
TRAP AT LOCATION (error message) ............... . 
typescript files .....................•.......... 
UNABLE TO ALLOCATE PMAP BUFFER (error message) 
UNBREAK[X] NL * ................................. . 
UNLOCKMAP[PTR] ................................. . 
USERNAME[A] .................................... . 
USERNUMBER[A; FLG] .............................. . 
VALUEOF[X] NL* ................................. . 
WORDCONTENTS[PTR] .............................. . 
WORDOFFSET[PTR ;N] ..........•.................... 

INDEX. 21. 2 

Page 
Numbers 

21.14 
21.12 
21.11 
21.13-15 
21.4 
21.13-15 
21.7.8 
21.6 
21.6 
21.12 
21.7 
21.14 

21.7.8 
21.9 
21.15 

.21.11-12 
21.9 
21.1.2 
21.9 
21.15 
21.13 
21.5 
21.15 
21.9 
21.9 
21.8 
21.14 
21.14 



SECTION 22 

THE PROGRAMMER"S ASSISTANTl 

22.1 INTRODUCTION 

The central idea of the programmer's assistant is that the user, rather than talking to a passive 
system which merely responds to cach input and waits for the next, is instead addressing an active 
intermediary, namely his assistant. Normally, the assistant is invisible to the user, and simply 
carries out the user's requests. Howcver, since the assistant remembers what the user has told him, 
the user can instruct him to rcpeat a particular operation or sequence of operations, with possible 
modifications, or to undo the effect of certain specified operations. Likc DWIM, the programmer's 
assistant is not implemented as a single function or group of functions, but is instead dispersed 
throughout much of Intcrlisp.2 Like DWIM, the programmer's assistant embodics a philosophy and 
approach to systcm design whose ultimate goal is to construct a programming environment which 
would "cooperatc" with the user in the development of his programs, and free him to concentrate 
more fully on the conceptual difficulties and creative aspects of the problem he is trying to solve. 

EXAMPLE 

The following dialogue, taken from an actual session at the console, gives the flavor. of the 
programmer's assistant facility in lnterlisp. The user is about to edit a function loadt: which 
contains several constructs of the form (PUTO FN2 (GETO FN1». The user plans to replace 
each of these by equivalent MOVO expressions. 

1 

2 

The programmer's assistant was designed and implemented by W. Teitelman. It is discussed in rrei4}. 

Some of the features of the programmer's assistant have been described elsewhere. e.g .• the UNDO command in the 
editor, the file package. etc. 

22.1 



Section 22: The Programmer's Assistant 

+-EDITF ( LOADFF] 
=LOADF 
EDIT 
*pp 

[LAMBDA (X Y) 
[COND 

«NULL (GETD (QUOTE READSAVE») 
(PUTD (QUOTE READSAVE) 

(GETD (QUOTE READ] 
(PUTD (QUOTE READ) 

(GETD (QUOTE REED») 
(NLSETQ (SETQ X (LOAD X V»~) 
{@UTD (QUOTE READ) 

(GETD (QUOTE READSAVE») 
X] 

*F PUTD (1 MOVD) 
*3 (XTRR 2) 
=XTR 
*OP 
=0 P 
(MOVD (QUOTE READSAVE) (QUOTE READ» 
*(SW 2 3) 
• 

[lJ 

[2] 
[3] 

[4] 

[5] 

At [1], the user begins to edit 10adf.3 At [2] the user finds PUTD and replaces it by MOVD. He then 
shifts context to the third subexpression, [3], extracts its second subexpression, and ascends one 
level [4] to print and result. lne user now switches the second and third subexpression [5], thereby 
completing the operation for this PUTD. Note that up to this point, the user has not directly 
addressed the assistant. The user now requests that the assistant print out the operations that the 
user has performed, [6], and the user then instructs the assistant to REDO FROM F. [7], meaning 
repeat the entire sequence of operations 15 through 20. The user then prints the current 
expression, and observes that the second PUTD has now been successfully transformed. 

3 

*71 FROM F 

15. *F PUTD 
16. *( 1 MOVD) 
17. *3 
18. *(XTR 2) 
19. *0 
20. *(SW 2 3) 

*REDO FROM F 
*p 
(MOVD (QUOTE REED) (QUOTE READ» 
* 

[6] 

[7] 

We prefer to consider the programmer's assistant as the moving force behind this type of spelling correction (even 
though the program that does the work is part of the DWIM package). Whereas correcting @PRINT to PRINT. or 
XlRR to XlR docs not require any information about what this user is doing, correcting LOAOFF to LOAOF clearly 
required noticing when this user defined loadf. 

22.2 



Introduction 

The user now asks the assistant to replay the last three steps to him, [8J. Note that the entire 
REDO FROM F operation is now grouped together as a single unit, [9], since it corresponded to a 
single user request. Therefore, the user can instruct the assistant to carry out the same operation 
again by simply saying REDO. This time a problem is encountered [10], so the user asks the 
assistant what it was trying to do [11]. 

*11 FROM -3 

19. ·0 
20. *(SW 2 3) 
21. REDO FROM 

*F PUTD 
·(1 MOVD) 
·3 
·(XTR 2) 
·0 
·(SW 2 3) 

·REDO 

PUTD ? 

·11 -1 

22. REDO 
·F PUTD 
·(1 MOVO) 
·3 
·(XTR 2) 
·0 

F 

[8] 

[9] 

{to] 

{tt] 

The user then realizes the problem is that the third PUTD is misspelled in the definition of lOADF 
(see page 22.2). He therefore instructs the assistant to USE @UTD FOR PUTD, [12]. and the 
operation now concludes successfully. 

*USE @UTD FOR PUTD 
.p 
(MOVD (QUOTE READSAVE) (QUOTE READ» 
*t PP 

[LAMBDA (X Y) 
[COND 

«NULL (GETD (QUOTE READSAVE») 
(MOVD (QUOTE READ) 

(QUOTE READSAVE] 
(MOVD (QUOTE REED) 

(QUOTE READ» 
(NLSETQ (SETQ X (LOAD X V»~) 
(MOVD (QUOTE READSAVE) 

(QUOTE READ» 
X] 

·OK 
LOADF ... 

[12] 

An important point to note here is that while the user could have defined a macro to execute this 
operation, the operation is sufficiently complicated that he would want to tryout the individual 

22.3 



Section 11: The Programmer's Assistant 

steps before attempting to combine them. At this point, he would already have executed the 
operation once. Then he would have to type in the steps again to define them as a macro, at 
which point the operation would only be repeated once more before failing. 'Iben the user would 
have to repair the macro, or else change @UTD to PUTD by hand so that his macro would work 
correctly. It is far more natural to decide after trying a series of operations whether or not one 
wants them repeated or forgotten. In addition, frequently the user will think that the operation(s) 
in question will never need be repeated, and only discover afterwards that he is mistaken, as 'occurs 
when the operation was incorrect, but salvageable: 

"'P 
(LAMBDA (STR FLGCQ VRB) "''''COMMENT'''''' (PROG & & LPl & LP2 & &» 
"'-1 -1 P 
(RETURN (COND &» 
"'(-2 «EQ BB (QUOTE OUT» BD] [1] 
"'P 
(RETURN (& BB) (COND &» [2] 
"'UNDO 
(-2 --) UNDONE 
"'2 P 
fCO~D (EXPANS & & T» 
"'REDO EQ 
.p 
(COND (& BB) (EXPANS & & T) 
'" 

Here the operation was correct, [1], but the context in which it was executed, (2], was wrong. 

1bis example also illustrates one of the most useful functions of the programmer's assistant: its 
UNDO capability. In most systems, if a user suspected that a disaster might result from a particular 
operation, e.g., an untested program running wild and chewing up a complex data structure, he 
would prepare for this contingency by saving the state of part or all of his environment before 
attempting the operation. If anything went wrong, he would then back up and start over. 
However, saving/ dumping operations are usually expensive and time' consuming, especially 
compared to a short computation, and are therefore not performed that frequently, and of course 
there is always the case when diaster strikes as a result of a "debugged" or at least innocuous 
operation, as shown in the following example: 

~(MAPC ELTS (FUNCTION (LAMBDA (X) (REMPROP X (QUOTE MORPH] [1] 
NIL 
~UNDO [2] 
MAPC UNDONE. 
~USE ELEMENTS FOR ELTS [3] 
NIL 
~ 

The user types an expression which removes the property MORPH from every member of the list 
EL TS (1], and then realizes that he meant to remove that property only from those members of the 
list ELEMENTS, a much shorter list. In other words, he has deleted a lot of information that he 
actually wants saved. He therefore simply reverses the effect of the MAPC by typing UNDO [2], and 
then does what he intended via the USE command [3]. 

22.2 OVERVIEW 

'lbe programmer's assistant facility is built around a memory structure called the "history list." 1be 

22.4 



Overview 

history list is a list of the information associated with each of the individual "events" that have 
occurred in the system, where each event corresponds to one user input.4 For example, (X T R 2) 
([3J on page 22.2) is a single event, while REDO FROM F ([7J on page 22.2) is also a single event, 
although the latter includes executing the operation (XTR 2), as well as several others. 

Associated with each event on the history list is its input and its value,. plus other optional 
information such as side-effects, formatting information, etc. If the event corresponds to a history 
command, e.g., REDO FROM F, the input corresponds to what the user would have had to type to 
execute the same operation(s), although the user's actual input, i.e., the history command, is saved 
in order to clarify the printout of that event ([9J on page 22.3). Note that if a history.command 
event combines several events, it will have more than one value: 

4 For various reasons. there are two history lists: one for the editor. and one for lispx. which processes inputs to evalgt 
and break. see page 22.34. 

22.S 



Section 11: The Programmer's Assistant 

~{LOG (ANTILOG 4» 
4.0 
~USE 4.0 40 400 FOR 4 
4.0 
40.0 
ARG NOT IN RANGE 
400 

~USE -40.0 -4.00007 -19. 
-40.0 
-4.00007 
-19.0 
~USE LOG ANTILOG FOR ANTILOG LOG IN -2 AND -1 
4.0 
40.0 
400.0 
4.00007 
19.0 
~7? 

4 .. USE LOG ANTILOG FOR ANTILOG LOG IN -2 -1 
~(ANTILOG (LOG 4.0» 

·4.0 
~(ANTILOG (LOG 40» 
40.0 
~(ANTILOG (LOG 400» 
400.0 
~(ANTILOG (LOG -40.0» 
40.0 
~(ANTILOG (LOG -4.00007» 
4.00007 
~(ANTIlOG (LOG -19.0» 
19.0 

3. USE -40.0 -4.00007 -19.0 
~(LOG (ANTILOG -40.0» 
-40.0 
~(LOG (ANTILOG -4.00007» 
-4.00007 
~(LOG (ANTILOG -19.0» 
-19.0 

2. USE 4.0 40 400 FOR 4 
~{LOG (ANTILOG 4.0» 
4.0 
(LOG (ANTILOG 40.0) 
40.0 
~(LOG (ANTILOG 400» 

1. ~(lOG (ANTILOG 4» 
4.0 

As new events occur, existing events are aged, and the oldest event is "forgotten." For efficiency, 
the storage used to represent the forgotten event is cannibalized and reused in the representation of 
the new event, so the history list is actually a ring buffer. The size of this ring buffer is a system 

22.6 



Overview 

parameter called the 'time-slice.'5 Larger time-slices enable longer "memory spans," but tie up 
correspondingly greater amounts of storage. Since the user seldom needs really "ancient history," 
and a NAME and RETRIEVE facility is provided for saving and remembering selected events, a 
relatively small time slice such as 30 events is more than adequate, although some users prefer to 
set the time slice as large as 100 events. 

Events on the history list can be referenced in a· number of ways. The output on page 22.8 
shows a printout of a history list with time-slice 16. The numbers printed at the left of the· page 
are the event numbers. More recent events have higher numbers; the most recent event is event 
number 52, the oldest and about-to-be-forgotten event is number 37.6 At this point in time, the 
user can reference event number 51, RECOMPILE(EDIT), by its event number, 51; its relative 
position, -2 (because it occurred two events back from the current time), or by a "description" of 
its input, e.g., (RECOMPILE (EDIT», or (& (EDIT», or even just EDIT. As new events 
occur, existing events retain their absolute event numbers, although their relative positions change. 

Similarly, descriptor references may require more precision to refer to an older event For 
example. the description RECOMPILE would have sufficed to refer to event 51 had event 52, also 
containing a RECOMPILE, not intervened. Event specification will be described in detail1ater. 

5 

6 

Initially 30 events. The time-slice can be changed with the function changeslice. page 2240. 

When the event number of the current event is 100. the next event will be given number 1. (If the time slice is 
greater than 100. the "roll-over" occurs at the next highest hundred. so that at no time will two events ever have the 
same event number. For cxample. if the time slice is 150. evcnt number 1 follows eVent number 200.) 

22.7 



Section 11: The Programmer's Anistant 

+-71· 

52 .... HIST UNDO 
+-RECOMPILE(HIST) 
ST 
HIST.COM 
+-RECOMPILE(UNDO) 
ST 
UNDO.COM 

51. +-RECOMPILE(EDIT) 
ST 
EDIT .COM 

50. +-LOGOUT] 

49. +-MAKEFILES] 
(EDIT UNDO HIST) 

48. +-EDITF(UNDOLISPX) 
UNDOLISPX 

47. REDO GETD 
+-GETD(FIE) 
(LAMBDA (X) (MAPC X (F/L (PRINT X»» 

46. +-UNDO 
FIE 

45. +-GETD(FIE) 
(LAMBDA (X) (MAPC X (FUNCTION (LAMBDA (X) (PRINT X»») 

44. +-FIE] 
NIL 

43. +-DEFINEQ«FIE (LAMBDA (X) (MAPC X (F/L (PRINT X»»» 
(FIE) 

42. REDO GETD 
+-GETD(FIE) 
(LAMBDA (Y) Y) 

41. +-UNDO 
MOVD 

40. REDO GETD 
+-GETD( FIE) 
(LAMBDA (X) X) 

39. +-MOVD(FOO FIE) 
FIE 

38. +-DEFINEQ«FOO (LAMBDA (X) X») 
(FOO) 

31. +-GETD(FIE) 
(LAMBDA (Y) Y) 

The most common interaction with the programmer's assistant occurs at the top level evalgt, or in 
a break, where the user types in expressions for evaluation,· and sees the values printed out. In this 
mode, the assistant acts much like a standard LISP evalgt, except that before attempting to 
evaluate an input, the assistant first stores it in a new entry on the history list. Thus if the 
operation is aborted or causes an error, the input is still saved and available for modification 
and/or reexecution. The assistant also notes new functions and variables to be added to its spemng 
lists to enable future corrections. Then the assistant executes the computation (Le., evaluates the 
form or applies the function to its arguments), saves the value in the entry on the history list 

22.8 



Overview 

corresponding to the input, and prints the result,7 followed by a prompt character to indicate it is 
again ready for input.8 

If the input typed by the user is recognized as a history command, the assistant takes special 
action.9 Commands such as UNDO, ??, NAME, and RETRIEVE are immediately performed. 
Commands that involved reexecution of previous inputs,e.g., REDO and USE, are achieved by 
computing the corresponding input expression(s) and then un reading them. The effect of this 
unreading operation is to cause tile assistant's input routine, lispxread, to act exactly as though 
these expression were typed in by the user. Except for the fact that these inputs are not saved on 
new and separate entries on the history list, but associated with the history command that 
generated them, they are processed exactly as though they had been typed. 

The advantage of this implementation is that it makes the programmer's assistant a callable facility 
for other system packages as well as for users with their own private executives. For example, 
break1 accept user inputs, recognizes and executes certain break commands and macros, and 
interprets anything else as Interlisp expressions for evaluation. To interface break1 with the 
programmer's assistant required three small modifications to break!: (1) input was to be obtained 
via lispxread instead of read; (2) instead of calling eval or ~ directly, break1 was to give those 
inputs it could not interpret to lispx, and (3) any commands or macros handled by break1, i.e., not 
given to lispx, were to be stored on the history list by break1 by calling the function historysave, a 
part of the assistant package. 

Thus when the user typed in a break command, the command would be stored on the history list 
as a result of (3). If the user typed in an expression for evaluation, it would be evaluated as 
before, with the expression and its value both saved on the history list as a result of (2). Now if 
the user entered a break and typed three inputs: EVAL, (CAR I VALUE), and OK, at the next 
break, he could achieve the same effect by typing REDO FROM EVAL. This would cause the 
assistant to unread the three expressions EVAL, (CAR I VALUE). and OK. Because of (1). the 
next "input" seen by break1 would then be EVAL, which break! would interpret. Next would 
come (CAR IVALUE), which would be given to lispx to evaluate, and then would come OK, which 
break1 would again process. Thus, by virtue of unreading, history operations will work even for 
those inputs not interpretable by lispx, in this case, EVAL and OK. 

The net effect of this implementation of the programmer's assistant is to provide a facility which is 
easily inserted at many levels, and embodies a consistent set of commands and conventions for 
talking about past events. lbis gives the user the subjective feeling that a single agent is watching 
everything he does and says, and is always available to help. 

7 

8 

using showprint (Section 14). so that if the value of sysprettyflg = T, the value will be prettyprinted. 

The function that accepts a user input. saves the input on the history list, perfonns the indicated computation or 
history command, and prints the result, is lispx. lispx is called by evalgt and breaIQ. and in most cases. is 
synonymous with "programmer's assistant." Ilowever. for various reasons. the editor saves its own inputs on a history 
list, carries out the requests, i.e., edit commands, and even handles undoing independently of lispx. The editor only 
calls !.!!it!! to execute a history command, such as REDO. USE. etc. Therefore we use the tenn assistant (loosely) 
when the discussion applies to features shared by evalgt. break and the editor, and the tenn lispx when we are 
discussing the specific function. 

+ 

9 If the user defines a fUllction by the same name as a history command, a warning message is printed to remind him + 
that the history command interpretation will take precedence for type-in. + 

22.9 



Section 22: The Programmer's Assistant 

22.3 EVENT SPECIFICATION 

All history commands use the same conventions and syntax for indicating which event or events on 
the history list the command refers to, even though different commands may be concerned with 

. different aspects of the corresponding event(s), e.g., side-effects, value, input, etc. Therefore, before 
discussing the various history commands in the next section, this section describes the types of 
event specifications currently implemented. All examples refer to the history list on page 22.8. 

An event address identifies one event on the history list. It consists of a sequence of "commands" 
for moving an imaginary cursor up or down the history list, much in the manner of the arguments 
to the @ command in break (see Section 15). The event identified is the one "under" the 
imaginary cursor when there are no more commands. (If any . command fails, an error is generated 
and the history command is aborted.) 

The commands are interpreted as follows: 

n (n 2.1) 

n (n ~ -1) 

+-atom 

F 

= 

\ 

10 i.e .• ED ( esc>. 

move forward !! events, i.e., in direction of increasing event 
number. If given as the first "command," !!specifies the event 
with event number !!. 

move backward -n events. 

specifies an event whose function matches atom (i.e., for IDmlI 
format only), e.g., whereas FIE would refer to event 47, +-FIE 
would refer to event 44. Similarly, ED$lO would specify event 51, 
whereas +-ED$ event 48. 

next search is to go forward instead of backward, (if given as the 
first "command". next search begins with last, i.e., oldest, event on 
history list), e.g., +- LAMBDA refers to event 38; 
MAKEFILE5 +- RECOMPILE refers to event 51. 

next object is to be searched for, regardless of what it is, e.g., F - Z 
looks for an event containing a -2. 

next object (presumably a pattern) is· to be matched against values, 
instead of inputs, e.g., = UNDO refers to event 49; 45 = FIE refers 
to event 43; +- = LAMBDA refers to event 37. 

specifies the event last located. 

22.10 



1 

SUCHTHAT pred 

atom 

pat 

Event Specification 

specifies an event for which pred, a function of two arguments. 
when given the input portion of the event as its first argument, and 
the event itself as its second argument, returns true. E.g., 
SUCH THAT (LAMBDA (X Y) (MEMB (QUOTE *ERROR·) Y» 
specifies an event in which an error occurred.ll 

where atom is the name of a command defined via the NAME 
command (page 22.21),12 specifies the event(s) defining atom. 

anything else specifies an event whose input contains an expression 
that matches Pm as described in Section 9.13 

Note: each search. skips the current event, i.e., each command always moves the cursor. For 
example, if FOO refers to event n, FOO FI E will refer to some event before event.!!, even if there 
is a FI E in event n. 
An event specification specifies one or more events: 

FROM #1 THRU #2 
#1 THRU #2 

the sequence of events from the 
event with address #1 through event with address #2,14 e.g., FROM 
GElD THRU 49 specifies events 47, 48, and 49. #1 can .be more 
recent than #2, e.g., FROM 49 THRU GElP specifies events 49, 48, 
and 47 (note reversal of order). 

FROM #1 TO #2 
#1 TO #2 

Same as THRU but does not include event #2. 

FROM #1 Same as FROM #1 THRU -1. e.g., FROM 49 specifies events 49. 
50,51, and 52. 

THRU #2 Same as FROM -1 THRU #2, e.g., THRU 49 specifies events 52. 
51, 50, and 49. Note reversal of order. 

TO #2 Same as FROM -1 TO #2. 

11 

12 

13 

14 

See page 22.34 for discussion of the fonnat of events on the history list 

If Faa is such a command. but the user wants to specify the event containing FOO, he can still use the event 
specification F FOO. 

The matching is performed by the function historymatch (page 22.40). which is initially defined to call editfindp but 
can be advised or redefined for specialized applications. 

i.e .. the symbol #1 corresponds to all words between FROM and THRU in the event specification. and liZ to all 
words from THRU to the end of the event specification. For example. in FROM Faa 2 THRU FIE -I, 111 is 
(Faa 2). and 112 is (FIE -1). 

22.11 

+ 
+ 



Section 22: The Programmer's Assistant 

#1 AND #2 AND .•• AND #n 

ALL #1 

empty 

@@¢ 

i.e., a sequence of event specifications separated by AND's, e.g., 
FROM 47 TO LOGOUT would be equivalent to 47 AND 48 AND 
MAKEFILES. 

specifies all events satisfying #1, e.g., ALL LOAD, All 
SUCHTHAT FOO. 

i.e .. nothing specified, same as -1, unless last event was an UNDO, in 
which case same as _2.15 

¢ is an event specification and interpreted as above, but with 
respect to the archived history list, as specified on page 22.23. 

If no events can be found that satisfy the event specification, spelling correction on each word in 
the event specification is pcrfonned using lispxfindsplst as a spelling list, e.g., REDO 3 THRUU 6 
will work correctly. If the event specification still fails to specify any events after spelling correction, 
an error is generated. 

22.4 HISTORY COMMANDS 

All history commands can be input as either lists, or as lines (see readline, Section J 4, and also 
page 22.35). 

¢ is used to denote an event specification. Unless specified otherwise, ¢ omitted is the same as 
¢=-l, e.g., REDO and REDO -1 are the same. 

REDO ¢ 

REDO ¢ N TIMES 

REDO ¢ WHILE form 

REDO ¢ UNTI L form 

redoes the event or events specified by ¢, e.g., REDO FROM -3 
redoes the last three events. 

redoes the event or events specified by ¢ N times, e.g., REDO 10 
TIMES redoes the last event ten times. 

redoes the specified events as long as the value of form is true. 
form is evaluated before each iteration so if its initial value is NIL, 
nothing will happen. 

same as REDO ¢ WHILE (NOT form). 

15 For example. if the user types (NCONC FOO FIE), he can then type UNDO, followed by USE NCONC!. 

22.12 



REPEAT ¢ 

History Commandl 

same as REDO ¢ WHILE T; i.e., the event(s) are repeated until an 
error occurs, or user types control-E or control-D. 

REPEAT ¢ WHILE/UNTIL fonn 
same interpretation as REDO. 

For all history commands that perform multiple repetitions, the variable redocnt is initialized to 0 
and incremented each iteration. If the event terminates gracefully, i.e., is not aborted by an error 
or control-D, the number of iterations is printed. 

USE exprs FOR args IN ¢ substitutes exprs for args in¢. and redoes the result, e.g., 
USE LOG ANTILOG FOR ANTILOG LOG IN -2 AND -1. . 
Substitution is done by esubst, Section 9, and is carried out as 
described below. exprs and args can include non-atomic members. 

USE exprsl FOR args1 AND ... AND expfSo FOR argsn IN ¢ 
More general form of USE command. See description of 
substitution algorithm below. 

Every US E command involves three pieces of information: the expressions to be substituted, the 
arguments to be substituted for, and an event specification, which defines the expression (input) in 
which the substitution takes place.16 .. 
Any expression to be substituted can be preceded by a !, meaning that the expression is to be 
substituted as a segment; e.g., LI S1 ( A· 8 t) followed by US E 1 (X Y Z)F OR B will produce 
(A X Y Z C), and USE 1 NIL FOR B will produce (A C). 

If args are omitted, i.e., the form of the command is USE exprs IN ¢, or just USE exprs (which is 
equivalent to USE exprs IN -1), and the event referred to was itself a USE command, the 
arguments and expression substituted into are the same as for the indicated US E command. In 
effect, this US E command is thus a continuation of the previous US E command. For example, on 
page 22.6, when the user types (LOG (ANTILOG 4», followed by USE 4.0 40 400 FOR 4, 
followed by 
USE -40.0 -4.00007 -19., the latter command is equivalent to 
USE -40.0 -4.00007 -19. FOR 4 IN -2. 

If args are omitted and the event referred to was not a USE command, substitution is for the 
operator in that command, i.e., if a lispx input, the name of the function, if an edit command, the 
name of the command. For example ARGLIST( FF) followed by USE CALLS is equivalent to 
USE CALLS FOR ARGLIST. 

If IN ¢ is omitted, but args are specified, the first member of args is used for ¢, e.g., USE PUTD 

16 The USE command is parsed by a small finite state parser to distinguish 1he expressions and arguments. For example, 
USE FOR FOR AND AND AND FOR FOR will be parsed correctly. 

22.13 



Section 22: The Programmer's Assistant 

FOR @UTD is equivalent to USE PUTD FOR @UTD IN F, @UTO,17 

If the. US E command has the same number of expressions as arguments, the substitution procedure 
is straightforward, 18 i.e., US E X Y FOR U V means substitute X for U and Y for V, and is 
equivalent to USE X FOR U AND Y FOR V. However, the USE command also pennits 
distributive substitutions, i.e., substituting several expressions for the same argument. For example, 
USE ABC FOR X means first substitute A for X then substitute B for X (in a new copy of the 
expression), then substitute C for X. The effect is the same as three separate USE commands. 
Similarly, USE ABC FOR 0 AND X Y Z FOR W is equivalent to 
USE A. FOR D AND X FOR W, followed by USE B FOR 0 AND Y FOR W, followed by 
USE C FOR 0 AND Z FOR W. USE ABC FOR 0 AND X FOR y19 also corresponds to three 
substitions, the first with A for 0 and X for Y, the second with B for 0, and X for Y, and the third 
with C for 0, and again X for Y. However, USE ABC FOR 0 AND X Y FOR Z is ambiguous 
and will cause an error. Essentially, the USE command operates by proceeding from left to right 
handling each "AND" separately. Whenever the number of expressions exceeds the number of 
expressions available, the expressions multiply.20 . . 

FIX ¢ puts the user in the editor looking at a copy of the input(s) for ¢, 
Whenever the user exits via, OK~ the result is unread and 
reexecuted exactly as with REDO, 

F I X is provided for those cases when the modifications to the input(s) are not of the type that can 
be specified by US E, i.e., not substitutions. For example: 

17 

18 

19 

20 

~(DEFINEQ FOO (lAMBDA (X) (FIXSPEll SPEllINGS2 X 70] 

INCORRECT DEFINING FORM 
FOO 

~FIX 

EDIT 
.p 
(DEFINEQ FOO (lAMBDA & &» 
·(lI 2) 
·OK 
(Faa) .. 

The F is inserted . to handle correctly the case where the first member of ~ is a number. e.g., 
USE 4.0 4.0 400 FOR 4. Obviously the user means find the event containing a 4 and perfonn the indicated 
substitutions. whereas USE 4.0 40 400 FOR 4 IN 4 would mean perfonn the substitutions in event number 4. 

Except when one of the arguments and one of the expressions are the same. e.g.. USE ! Y FOR Y ~, or 
USE! FOR V AND V FOR !. This situation is noticed when parsing the command, and handled correctly. 

or USE X FOR Y AND ABC FOR D. 

Thus USE ABC D FOR E F means substitute A for E at the same time as substituting B for F. then in another 
copy of the indicated expression, substitute C for E and D for F. Note that this is also equivalent to 
USE A C FOR E AND B D FOR F. 

22.14 



History Commands 

The user can also specify the edit command(s) to lispx, by typing - followed by the command(s) 
aftcr the cvcnt spccification, c.g., FI X - (LI 2). In this casc, the editor will not type ED IT, or 
wait for an OK after cxecuting the commands. 

IMPLEMENTATION OF REDO, USE, AND FIX 

The input portion of an event is represented intcrnally on the history list simply as a linear 
sequcnce of theexprcssions which were read. For example, an input in IDmlY fonnat is a list 
consisting of two exprcssions, and an input in eval fonnat is a list of just one expression.21 Thus if 
the user wishcs to convcrt an input in ~ fonnat to eval format, he simply moves the function 
name inside of the argument list: 

~MAPC(FOOFNS (F/L {AND (EXPRP X) (PRINT X] 
NIL 
~EXPRP(F001) 
T 
~FIX MAPC 
EDIT 
.p 
(MAPC (FOOFNS &) "<c.r.>")n 
·(MOVE 1 TO BEFORE 2 1) 
.p 
{(MAPC FOOFNS &) "<c.r.>") 
·OK 
FOOl 
FIE2 
FUM 
NIL 
to 

By simply converting the input from two expressions to one expression, the desired effect, that of 
mapping down the list that was the value of foofn~ was achieved. 

REDO, US E, and FI X all operate by obtaining the input portion of the corresponding event, 
proccssing the input (except for REDO), and then storing it on the history list as the input portion 
of a new event Thc history command completes operating by simply unreading the input When 
thc input is subsequcntly "reread", thc event which already contains the input will be retrieved and 
used for recording the value of the operation, saving side-effects, etc., instead of creating a new 
cvent. Othcrwisc the input is treated exactly the same as if it had been typed in directly. 

If ¢ specifics more than one event, the inputs for the corresponding events are simply concatenated 
into a linear sequence, with spccial markcrs (called pseudo-carriage returns) representing carriage 
retums23 inserted bctwecn cach input to indicate where new lines start. The result of this 

21 

22 

23 

For inputs in eva! fonnat, i.e .. single expressions. FIX calls the editor so that the current expression is that input, 
rather than the list consisting of that input· see the example on the preceding page. However. the entire list is 
actually being edited. Thus if the user typed t P in that example. he would see «DEFINEQ FOO &) "<c. r.)"). 

.. < c.r. ) .. denotes a pseudo'carriage return and is explained later. 

The value of the variable histstrO is used to represent a carriage return. For readability. this value is the string 
.. < c.r. ) ". Note that since the comparison is made using ~. this marker will never be confused with a string that 
was typed in by the user. . 

22.1S 

+ 



Section 22: The Programmer's Assistant 

concatenation is then treated as the input referred to by ¢. For example, when the user typed 
REDO FROM· F ([7] on page 22.2) the inputs for the corresponding six events were concatenated to 
produce: 
(F PUTD "(c.r.>" (1 MOVD) "(c.r.>" 3 "(c.r.>" (XTR 2) "(c.r.>n 
o "( c . r , >" (SW 23». Similarly, if the user had typed 
USE PUTD FOR @UTD IN 15 THRU 20, the above list would have been constructed, and then 
PUTD substituted for @UTD throughout it. 

The same convention is used for representing multiple inputs when a USE command involves 
sequential substitutions. For example, if the user types GETD( Faa) and then 
USE FIE FUM FOR Faa. the input sequence that will be constructed is 
(GETD (FIE) "(c.r.>" GElD (FUM», which is the result of substituting FIE for Faa in 
(GElD (Faa» concatenated with the result of substituting FUM for Faa in (GETD (FOO». 

Once such a multiple input is constructed, it is treated exactly the same as a single input, i.e., the 
input sequence is recorded in a new event, and then unread, exactly as described above. When the 
inputs are "reread," the "pseudo-carriage-returns" are treated by lispxread and readline exactly as 
real carriage returns, i.e., they serve to distinguish between .mmlJ: and eval formats on inputs to 
lispx, and to delimit line. commands to the editor. Note that once this multiple input has been 
entered as the input portion of a new event, that event can be treated exactly the same as one 
resulting from type in. In other words, no special checks have to be made when referencing an 
event, to see if it is simple or multiple. Thus, when the user types REDO following 
REDO FROM F. ([10] page 22.3) REDO does not even notice that the input retrieved from the 
previous event is (F PUTD .. < C • r . >.. ... (SW 2 3» I.e., a multiple input, it simply records 
this input and unreads it. Similarly, when the user then types USE @UTD FOR PUTD on this 
multiple input, the US E command simply carries out the substitution, and the result is the same as 
though the user had typed USE @UTD FOR PUTD IN 15 THRU 20. 

In sum, this implementation permits ¢ to refer to a single simple event, or to several events, or to 
a single event originally constructed from several events (which may themselves have been multiple 
input events, etc.) without having to treat each case separately. 

HISTORY COMMANDS APPLIED TO HISTORY COMMANDS 

Since history commands themselves do not appear in the input portion of events (although they are 
stored elsewhere in the event), they do not interfere with or affect the searching operations of event 
specifications. In effect, history commands are invisible to event specifications.24 As a result, 
history commands themselves cannot be recovered for execution in the normal way. For example, 
if the user types USE ABC FOR D and follows this with USE E FOR 0, he will not produce 
the effect of USE ABC FOR E (but instead will simply cause E to be substituted for D in the 
last event containing a D). To produce this effect, I.e., USE ABC FOR E. the user should type 
USE D FOR E IN USE. The appearance of the word REDO, USE or FIX in an event address 
specifics a search for the corresponding history command. (For example, the user can also type 
UNDO REDO.) It also specifics that the text of the history command itself be treated as though it 
were the input. However, the user must remember that the context in which a history command is 
reexeculed is that of the current history, not the original context. For example, if the user types 
USE FOO FOR FIE IN -1. and then later types REDO USE, the -1 will refer to the event 
before the REDO. not before the USE. 

24 With the exception described below under "History Commands that Fair', 

22.16 



llistory Commtltlth 

HISTORY COMMANDS THAT FAil 

The one exception to the statement that "history commands are invisible to event specifications" 
occurs when a history command fails to produce any input. For example, suppose the user types 
USE LOG FOR ANTILOG AND ANTILOG FOR LOGG, causing lispx to respond LOGG 1. Since 
the USE command did not produce any input. the user can repair it by typing 
USE LOG FOR LOGG (i.e., does not have to specify IN USE). This latter USE command will 
invoke a search for LOGG, which will find the bad USE command. lispx then performs the 
indicated substitution, and unreads USE LOG FOR ANTILOG AND ANTILOG FOR LOG. In tum, 
this USE command invokes a search for ANTILOG. which, because it was not typed in but reread. 
ignores the bad USE command which was found by the earlier search for LOGG, and which is still 
on the history list. In other words, history commands that fail to produce input are visible 10 
searches arising from event specifications typed in by the user, but not to secondary event 
specifications. 

In addition, if the most recent event is a history command which failed to produce input, a 
secondary event specification will effectively back up the history list one event so that relative event 
numbers for that event specification will not count the bad history command. For example, 
suppose the user types USE LOG FOR ANTILOG AND ANTILOG FOR LOGG IN -2 AND -1, 
and after lispx types LOGG 1, the user types USE LOG FOR lOGG. He thus causes the command 
USE LOG FOR ANTILOG AND ANTILOG fOR lOG IN -2 AND -1 to be constructed and 
unread. In the normal case, -1 would refer to the last event, i.e., the j'bad" US E command, and -2 
to the event before it. However, in this case, -1 refers to the event before the bad US E command, 
and the -2 to the event before that. In short. the caveat that "the user must remember that the 
context in which a history command is reexecuted is that of the current history. not the original 
context" does not apply if the correction is performed immediately. 

MORE HISTORY COMMANDS 

RETRY ¢ 

... vars 

similar to REDO except sets helpclock· so that any errors that occur 
while executing ¢ will cause breaks. 

similar to US E except substitutes for the (first) operand. 

For example. EXPRP( FOO) followed by ... FIE FUM is equivalent to USE fIE FUM FOR FOO. 
See also event 52 on page 22.8. 

??¢ prints history list. If ¢ is omitted, ?? prints the entire history list, 
beginning with most recent events. Otherwise?? prints only those 
events specified in ¢ (and in the order specified). e.g., 11 -I, ?? 10 
THRU 15, etc. 

?? commands are not entered on the history list, and so do not affect relative event numbers. In 
other words, an event specification of -1 typed following a ?? command will. refer to the event 
immediately preceding the ?? command. 

?? will print the history command, if any, associated with each event as shown at [9] on page 22.3 
and page 22.6. Note that these history commands are not preceded by prompt characters, 

22.17 



Section 22: The Programmer's Assistant 

indicating they are not stored as input.25 

71 prints mUltiple input events under one event number (see page 22.6). 

Since events are initially stored on· the history list with their value field equal to bell (control-G), if 
an operation fails to complete for any reason, e.g., causes an error, is aborted, etc., its "value" will 
be bell. This is the explanation for the blank line in event 2, page 22.6, and event 50, page 22.8. 

+ 11 resets the value of the variable!! (see page 22.26) to be the value of the last event printed. 

11 is. implemented via the function printhistory, page 22.44, which can also be called directly by 
+ the user. Printing is performed via the function showprin2 (Section 14), so that if the value of 
+ sysprettyflg=T, events will be prettyprinted. 

·UNDO ¢ undoes the side effects of the speciJied events. For each event 
undone, UNDO prints a message: e.g., 
RPLACA UNDONE, REDO UNDONE etc. If nothing is undone 
because nothing was saved, UNDO types NOTHING SAVED. If 
nothing was undone because the event(s} were already undone, 
UNDO types ALREADY UNDONE. If ¢ is empty, UNDO searches back 
for the last event that contained side effects, was not undone, and 
itself was not an UNDO command. 26 1J 

UNDO ¢ : x 1 ... Xu Each Xi refers to a message printed by DWIM in the event(s) 
specified by ¢. The side effects of the corresponding DWIM 
corrections, and only those side effects, are undone. 

25 

26 

27 

REDO. RETRY. USE, ...• and FIX commands, i.e .• those commands that reexecute previous events. are not stored 
as inputs. because the input portion for these eyents are the expressions to be "reread". The history commands 
UNDO, NAME i RETRIEVE, BEFORE ,and AFTER are recorded as inputs. and'!? prints them exactly as they were 
typed. 

Note that the user can undo UNDO commands themselves by specifying the corresponding event address, e.g., 
UNDO -7 or UNDO UNDO. 

UNDOing events in the reverse order from which they were executed is guaranteed to restore all pointers correctly, 
e.g .• to undo all effects of last five events, perform UNDO THRU -5, not UNDO FROM -5. Undoing out of order 
may have unforseen effects if the operations are dependent. For example. if the user performed 
(NCONCl fOO FIE). followed by (NCONCt fOO FUM). and then undoes the (NCONCt FOO fIE). he will also 
have undone the (NCONCt fOO FUM). If he then undoes the (NCONCl FOO FUM). he will cause the FIE to 
reappear. by virtue of restoring fOO to its state before the execution of (NCONCl FOO FUM). For more detailS, see 
~nn . 

22.18 



History Commands 

For example, if the message PRINTT [IN FOO] -) PRINT were printed, UNDO : PRINTT or 
UNDO : PRINT would undo the correction.28 

$29 is a special form of the US E command for conveniently specifying character substitutions. In 
addition, it has a number of useful properties in connection with events that involve errors. 

$ x FOR y IN ¢ equivalent to USE $x$ FOR $y$ IN ¢ 

For example, the user types MOVD(FOO FOOSAVE T), he can then type $ FIE FOR FOO IN 
MOVD to perform MOVD(FIE FIESAVE T). Note that USE FIE FOR FOO would perform 
MOVD{FIE FOOSAVE T). 

An abbreviated form of $ is available: 

$ y x IN ¢ same as $ x FOR y IN ¢, i.e., .is are changed to !'s. can also be 
written as $ y TO x, $ y = x, or $ y -) x. 

$ does event location the same as the US E command, i.e., if IN ¢ is not specified, $ searches for 
~ , 

y.. 

After $ finds the event, it looks to see if an error was involved in that event, and if the indicated 
character substitution can be performed in the object of the error message, called the offender.31 If 
so, $ assumes the substitution refers to the offender, performs the indicated character substitution 
in the offender only, and then substitutes the result for the original offender throughout the event 
For example, the user types (PRETTYDEF FOOFNS 'FOO FOOOVARS) causing a 
U. B. A. FOOOVARS error message. The user can now type $ 00 0, which will change 
FOOOVARS to FOOVARS, but not change FOOFNS or FOO. 

If an error did occur in the specified event, the user can also omit specifying the object of the 
substitution, y., in which case the offender itself is used. Thus, the user could have corrected the 
above example by simply typing $ FOOVARS. Since esubst is used for performing the 
substitution, i.e. the editors R command (see Section 9), $ can be used in ! to refer to the 
characters in y. For example, if the user types LOAD (PHS TRUe PROP), causing the error 
FILE NOT FOUND PRSTRUe, he can request the file to be loaded from LISP's directory by 
simply typing $ (LISP)$. This is equivalent to performing (R PRSTRUe <LISP)S) on the 
event, and therefore replaces PRSTRUe by <LISP>PRSTRUe. 

28 

29 

30 

31 

Some portions of the messages printed by DWIM are strings. e.g., the message FOO UNSAVED is printed by printing 
FOO and then " UNSAVED". Therefore, if the user types UNDO : UNSAVED. the DWIM correction will not be 
found. He should instead type UNDO : FOO or UNDO : $UNSAVED$ ( < esc> UNSAVED < esc > , see R command in 
editor, Section 9). 

$ is the way that < esc> is echoed in Inlerlisp-lO. Rather than writing < esc > throughout in the discussion that 
follows, $ is used instead, since this is what the user will see when he types < esc > . 

However, unlike USE, $ can only be used to specify one substitution at a time. 

Whenever an error occurs, the offender is automatically saved on that event's entry in the history list,. under the 
property ·ERROR·, 

22.19 



Section 22: The Programmer's Assistant 

Note that $ also works for events in the editor. For example, if the user types 
(MOVE COND 33 2 TO BEFORE HERE), and the editor types 33?, the user can type $ 3, 
causing 3 to be substituted for 33 in the MOVE command. 

Note also that $ never searches for an error. Thus, if the user types LOAD( PRSTRUC PROP) 
causing a FI LE NOT FOUND error, types CLOSEALL(), and then types $ (LISP)$, lispx will 
complain that there is no error in C LOS EA L L ( ). In this case, the user would have to type 
$ <LISP)$ IN LOAD, or $ PRS <LISP)PRS (which would cause a search for PRS). 

Note also that $ operates on input, not on programs. If the user types FOO( ), and within the call 
to FOO gets aU. D. F. CONDD error, he cannot repair this by $ COND. lispx will type 
CONDD NOT FOUND IN FOO{). 

+ DWIM ¢ 

+ 
this command is an instruction to the programmer's assistnat to 
reexecute the indicated event, only to "try harder" as described 
below. + 

+ The basic idea behind the DWIM command is that the user has typed something that (a) is not what 
+ he meant to type, and (b) he feels that the p.a. has sufficient information to infer what it was that 
+ he did mean to type. For example, suppose the user had typed GETP (FOO MACCRO), which 
+ returned NIL. There is no .. error" in this event: it is perfectly reasonable for ~ to be given as its 
+ second argument a property not on the property list of a particular atom, or in fact. a property not 
+ on the property list of any atom. Thus there is no justification for DWIM or the programmer's 
+ assistant to perform any corrections or transformations in this event. Nevertheless, most users 
+ would recognize that what was meant was GETP( FOO MACRO). Thus if the user types 
+ DWIM GETP (or just DWIM if the GETP was the previous event), the p.a. would correct MACeRO to 
+ MACRO and reexecute the event. 

+ Another example is if the user types SET (INITIALLS RMK:). which performs the indicated 
+ assignment, and returns RMK:. This sets the value of the new. previously unbound variable initialls, 
+ whereas the user intended to set the time stamp package parameter, initials (see Section 9). The 
+ user now types DWIM, the programmer's assistant undoes the indicated event, corrects INITIALLS 
+ to INITIALS, and then reexecutes the event. 

+ The DWIM command is implemented by associating with various functions certain declarative 
+ information about their arguments, e.g. for g£!p, the p.a. knows that atm, its first argument, 
+ "should" have a non-N I L property list, and P!QP. its second argument, either should be one of the 
+ property names on that property list, or else a member of sysprops. When the p.a. is given a DWIM 
+ command, it searches the indicated event looking for a function for which one of these declarations 
+ is not satisfied.32 It then tries to "coerce" the corresponding argument so that the declaration is 
+ true, e.g. if told that the argument should have a property list, the p.a. would attempt spelling 
+ correction using the spelling lists userwords, spellings2, and spellings1, specifying 
+ fn=GETPROPLIST. 

+ The p.a. currently knows about the following information in the context of the DWIM command: 

+ (1) getd. fu!.yQ, and movd should be given as a first argument an atom which has a definition; 

+ 32 looking at quoted arguments only. e.g. if the user types (GETP X • MACeRO). the p.a. would not try to do anything 
+ to X (or its value). The DWIM command works only on what is typed by the user. 

22.20 



History Comrruznds 

(2) ~, getprop, getproplist, Iill!, and putprop should given as a first argument an atom which has + 
a non-NIL property list, and as a second argument, a property which is either on the property list + 
of that atom, or a member of sysprops; + 
(3) set, setg, and ~ should be given a variable that has a top level value or is bound; + 
(4) loadfns and editf should be given the name of a function that is contained on one of the files + 
oo~ + 

When the DWIM command is typed, and any of these conditions are not true, and the + 
programmer's assistant can make them be true by appropriate spelling correction(s), the corrected + 
event will be reexecuted. Otherwise, if all declarations are satisfied or the p.a. is unable to coerce + 
an argument to satisfy one of these conditions, there is still one more thing that it can try: if an + 
error occurred in the indicated event, the p.a. will pack $$ (two < esc> s) on the end of the + 
offender, substitute the result for the offender throughout the event, and then reexecute the event + 
For those events in which the editor's pattern match is being employed (see Section 9), e.g. history + 
commands, edit commands, etc., this has the effect of specifying a search for an atom that is + 
"close" to the offender in the sense used by the spelling corrector (see pattern type 6b, Section 9). + 
For example, suppose the user types UNDO LOADD, to which the p.a. responds LOADD ? because + 
there was no event on the history list containing the atom LOADD. The user then types OWIM, and + 
the p.a. is able to find an event containing LOAD. Similarly, the user types to the editor + 
(MOVE 3 2 TO AFTER CONDD i), and gets the error message CONOD? because. the find + 
command failed to find CONDD. A DWIM command will cause the edit command + 
(MOVE 3 2 TO AFTER CONOD$$ 1) to be executed, which will search for an atom that is + 
"close" to CONDD, e.g. CONDo + 

If all of these procedures fail, the p.a. types "Unable to figure out what you meant + 
in:" followed by the indicated event + 

NAME atom ¢ saves the event(s) (including side effects) specified by ¢ on the 
property list of atom (under the property HISTORY) e.g., 
NAME Faa 10 THRU 15. NAME commands are undoable. 

Commands defined by NAME can also be typed in directly as though they were builHn commands, 
e.g., FOO.2 is equivalent to REDO Faa. 33 

Commands defined by NAME can also be parameterized, i.e., be defined to take arguments: 

NAME name (args) : ¢ 
or 
NAME name ... args ... : ¢ 

args are interpreted the same as the arguments 
for a US E command. See page 22.13. When name 
is invoked, the argument values are substituted for args using the 
same substitution algorithm as for USE. 

For example, following the event (PUTD 'Faa (COpy (GETP 'FIE 'EXPR»), the user types 
NAME MOVE Faa FIE PUTD. Then typing MOVE TESTl TEST2 would cause 
(PUTD 'TEST 1 (COpy (GETP 'TEST2 'EXPR») to be executed, i.e., would be equivalent to 
typing USE TESTl TEST2 FOR Faa FIE IN MOVE. Typing MOVE ABC D would cause two 
PUIO's to be executed. Note that I's and $'s can also be employed the same as with USE. For 
example, if following 

33 However, if FOO is the name of a variable, it would be evaluated, i.e., FOO.2 would return the value of FOO. 

22.21 



Section 22: The Programmer's Assistant 

~PREPINDEX«MANUAL>14LISP.XGP) 
~FIXFILE«MANUAL>14LISP.XGPIDX) 

the user performed NAME Faa $14$ : -2 AND -1, then Faa $15$ would perform the 
indicated two operations with 14 replaced by 15.34 

RETRIEVE atom Retrieves and reenters on the history list the events named by 
atom. Causes an error if atom was not named by a NAME 
command. 

For example, if the user performs NAME Faa 10 THRU 15, and at some time later types 
RETRIEVE Faa, 6 new events will be recorded on the history list (whether or not the 
corresponding events have been forgotten yet). Note that RETRIEVE does not reexecute the 
events, it simply retrieves them. The user can then REDO, UNDO, FIX, etc. any or all of these 
events. Note that the user can combine the effects of a RETRIEVE and a subsequent history 
command in a sin~le operation, e.g., REDO Faa is equivalent to RETRIEVE Faa, followed by an 
appropriate REDO. 5 Note that UNDO Faa and?? Faa are permitted. 

BEFORE atom undoes the effects of the events named by atom. 

AFTER atom undoes a BEFORE atom. 

BEFORE/AFTER provide a convenient way of flipping back and forth between two states, namely 
that state before a specified event or events were executed, and that state after execution. For 
example, if the user has a complex data structure which he wants to be able to interrogate before 
and after certain modifications, he can execute the modifications, name the corresponding events 
with the NAME command, and then can turn these modifications off and on via BEFORE or AFTER 
commands.36 Both BE FORE and AFTER are no-ops if the atom was already in the corresponding 
state; both generate errors if atom was not named by a NAME command. 

Note: since UNDO, NAME, RETRIEVE, BEFORE, and AFTER are recorded as inputs they can be 
referenced by REDO, USE, etc. in the normal way. However, the user must again remember that 
the context in which the command is reexecuted is different than the original context. For 
example, if the user types NAME Faa DEFINEQ THRU COMPILE, then types ... FIE, the input 
that will be reread will be NAME FIE DEFINEQ THRU COMPILE as was intended, but both 
DEFINEQ and COMPILE, will refer to the most recent event containing those atoms, namely the 
event consisting of NAME Faa DEFINEQ THRU COMPILE! 

34 

35 

36 

NAME FOO ¢ is equivalent to NAME FOO : ¢. In either case, if FOO is invoked with arguments, an error is 
generated. 

Actually, REDO FOO is better than RETRIEVE followed by REDO since in the latter case, the corresponding events 
would be entered on the history list twice, once for the RETRIEVE and once for the REDO. 

The alternative to BEFORE/AFTER for repeated switching back and forth involves UNDO, UNDO of the 
UNDO. UNDO of that etc. At each stage. the user would have to locate the correct event to undo, and furthermore 
would run the risk of that event being "forgotten" if he did not switch at least once per time-slice. 

22.22 



L 

t2r 

ARCHIVE ¢ 

History Commands 

records the events specified by ¢ on a permanent history list. This 
history list can be referenced by preceding a standard event 
specification with @@, e.g., ?? @@ prints the archived history list, 
REDO @@ -1 will recover the corresponding event from the 
archived history list and redo it, etc. 

'The user can also provide for automatic archiving of selected events by appropriately defining 
archivefn, or by putting the property * ARC H I V E *, value T, on the event. Events that are 
referenced by history commands are automatically marked for archiving in this fashion. For more 
details, see page 22.28. 

FORGET ¢ permanently erases the record of the side effects for the events 
specified by ¢. If ¢ is omitted, forgets side effects for entire history 
list. 

FORGET is provided for users with space problems. For example, if the user bas just performed 
sets, rplacas, rplacds, putd, remprops, etc. to release storage, the old pointers would not be garbage 
collected until the corresponding events age sufficiently to drop off the end of the history list and 
be forgotten. FORGET can be used to force immediate forgetting (of the side-effects only). 
FORGET is not undoable (obviously). 

REMEMBER ¢ instructs the file package to "remember" the events specified by ¢. + 
These events will be marked as changed objects of file package type + 
EXPRESSIONS.37 For example, following: + 

~MOVD?(DELFlLE IDELFILE) 
DELFILE 
~REMEMBER -1 
(MOVD? (QUOTE DELFILE) (QUOTE IDELFILE» .. 

+ 
+ 
+ 
+ 
+ 

if the user calls files?, makefiles, or cleanup, the command + 
(P (MOVD? (QUOTE DELFILE) (QUOTE IDELFILE)l) will be constructed by the file + 
package and added to the fileCOMS indicated by the user.3& + 

22.5 MISCELLANEOUS FEATURES AND COMMANDS 

PL atom (property list) prints out the property list of atom in a nice fonnat, + 
with prinUevel reset to (2 . 3), e.g. + 

37 

38 

~PL + + 

which can be written out via the file package command P 

unless the user has already explicitly added the corresponding expression to some P command himself. Note that . + 
"remembering" an event like PUT(FOO CLISPTYPE expression) will not result in a + 
(PROP CLISPTYPE FOO) command. because this will save the current (at the time of the make file) value for the + 
CLISPTYPE property. which mayor may not be expression. Thus. even if there is a PROP command which saves + 
the CLISPTYPE property for FOO in some fileCOMS. remembering this event will stin require a + 
(P (PUT' FOO 'CLISPTYPE 'expression» command to appear. + 

22.23 

• 



+ 
+ 

Section 22: The Programmer's Assistant 

CLISPTYPE: 12 
ACCESSFNS: (PLUS IPLUS FPLUS)~ 

+ PB atom 
+ 

(~rint !2indings) prints value of atom with printlevel reset to (2 . 3). 
If atom is not bound, does not attempt spelling correction or 
generate an error.4O + 

?¢ For use following an error. If ¢ is not specified, searches back on 
history list for last event that contains an error. The programmer's 
assistant then attempts to "analyze" the nature and cause of the 
error using the context information that was automatically saved at 
the time of the error. 

For example, suppose the function foo contains the expression (E LT· X 3), and foo is called with 
! equal to (#526234), i.e., a list of an array, causing the error ARG NOT ARRAY. If the user then 
types ?, the programmer:s assistant will respond with: 

becauSe elt requires that A (its first argument) be an array, but in 
(ELT X 3) {in FOO}. the value of X is (#526234) 

The programmer's assistant contains built-in information about many of the more common errors.41 

In the event that it is unable to analyze the error, the programmer's assistant simply calls helpsys 
(Section 20) to present the user with information from the Interlisp manual relating to this error 
message. 

EXEC 

allows the user to type a line of text without having the 
programmer's assistant process it. Useful when linked to other 
users, or to annotate a dribble file (Section 21). 

in Interlisp-10. calls subsys (Section 21) to descend to lower exec. 42 

+ 39 

+ 40 

+ 

Pl is implemented via the function printprops. 

PB is also a break command (Section 15). As a break command, it ascends the stack, and, for each frame in which 
atom is bound, prints the frame name and value of atom. If typed in to the programmer's assistant when not at· the 
top level, e.g. in the editor, a lower userexec, etc., PB will also ascend the stack as it does with a break. However, as 
a programmer's assistant command, it is primarily used to examine the top level value of a variable that mayor may 
not be bound, or to examine a variable whose value is a large S-expression. PB is implemented via the function 
printbindings. 

+ 
+ 
+ 
+ 

41 

* 42 

* 
* 

At some point in the future, we hope to extend this facility to enable the programmer's assistant to propose 
corrections to certain simple errors, e.g., argument reversal, leaving out an argument, etc. 

Rather than start up a new fork each time the user types EXEC, the EXEC command will save the old fork handle 
upon retum from an EXEC command, and, if the fork handle is stin active, reuse it for the next EXEC command, i.e, 
an EXEC followed by another EXEC is equivalent to an EXEC followed by a CONTIN, 

22.24 

-=-c--- -.-..... -.--.----------.---... 



Miscellaneous Features and Commands 

CONTIN in Interlisp-10, perfonns subsys[T] (see Section 21) to continue last 
call to subsys. 

TYPE-AHEAD is a command that allows the user to type-ahead an indefinite 
number of inputs. 

111e assistant responds to TYPE -AHEAD with a prompt character of ). The user can now type in 
an indefinite number of lines of input, under errorset protection. The input lines are saved and 
unread when the user exits the type-ahead loop with the command $GO « esc) GO). While in the 
type-ahead loop, ?? can be used to print the type-ahead, F I X to edit the. type-ahead, and $Q 
( < esc ) Q) to erase the last input (may be used repeatedly). For example: 

+-TYPE-AHEAD 
>SYSOUT(TEM) 
)MAKEFILE(EDIT) 
)BRECOMPILE«EDIT WEDIT» 
>F 
>$Q 
\\F 
)$Q 
\\BRECOMPILE 
>LOAD(WEDIT PROP) 
)BRECOMPILE{{EDIT WEDIT» 
)F 

>MAKEFILE(BREAK) 
>LISTFILES(EDIT BREAK) 
)SYSOUT{tURRENT) 
)LOGOUT] 
>71 

>FIX 
EDIT 

)SYSOUT(TEM) 
>MAKEFILE{ EDIT) 
)LOAD(WEDIT PROP) 
)BRECOMPILE{(EDIT WEDIT» 
)F 43 

>MAKEFILE(BREAK) 
)LISTFILES(EDIT BREAK) 
>SYSOUT(CURRENT) 
>LOGOUT] 

*(R BRECOMPILE BCOMPL) 
*p 
«LOGOUT) (SYSOUT &) (LISTFILES &) (MAKEFILE &) (F) (BCOMPL &) 
(LOAD &) (MAKEFILE &) (SYSOUT &» 
*(DELETE LOAD) 
*OK 
>$GO 

The TYPE -AHEAD command may be aborted by $STOP « esc) STOP); control-E simply aborts 
the current line of input 

43 Note that type-ahead can be addressed to the compiler, since it uses ~rcad for input Type-ahead· can also be 
directed to the editor. but type-ahead to the editor and to lispx cannot be intermixed. 

22.25 



Section 22: The Programmer's Assistant 

$BUFS « esc> BUFS) is a command for recovering the input buffers. 

Whenever an error occurs in executing a lispx input or edit command. or a control-E or control-D 
is typed. the input buffers are saved and cleared. 'Ibe $BUFS command is used to restore the 
input buffers, i.e .• its effect is exactly the same as though the user had retyped what was "lost." For 
example: 

*(-2 (SETQ X (COND «NULL Z) (CONS 
*p 
(COND (& &) (T &» 
*2 
*$BUFS 
(-2 (SETQ X (COND «NULL Z) (CONS 

(user typed control-E) 

and user can now finish typing the (-2 .. ) command 

Note: the type-ahead does not have to have been seen by Interlisp, i.e., echoed, since the system 
buffer is also saved. 

Input buffers are not saved on the history list, but on a free variable. Thus, only the contents of 
the input buffer as of the last clearbuf can ever be recovered. However, input buffers cleared at 
evalgt are saved independently from those cleared by break or the editor. The procedure followed 
when the user types $ BU F S is to recover first from the local buffer. otherwise from the top level 
buffer.44 Thus the user can lose input in the editor, go back to evalgt, lose input there, then go 
back into the editor, recover the editor's buffer, etc. Furthermore, a buffer cleared at the top can 
be recovered in a break, and vice versa. 

valueof{x] is an nlambda function for obtaining the value of a particular event, 
e.g., (VALUEOF -1),45 (VALUEOF +-FOO -2). 

The value of an event consisting of several operations is a list of the 
values for each of the individual operations. 

Note: the value field of a history entry is initialized to bell (control-G). Thus a value of bell 
indicates that the corresponding operation did not complete, i.e., was aborted or caused an error (or 
else returned bell). 

+ IT 
+ 

44 

45 

the value of i! is always the value of the last event executed, i.e. 
valueof{-l], e.g. 

The local buffer is stored on lispxbufs; the top level buffer on toplispxbufs. The fonns of both buffers are 
(CONS (LINBUF) (SYSBUF» (see Section 14). Recovery of a buffer is destructive, i.e., $BUFS sets the 
corresponding variable to NIL. If the user types $BUFS when both lispxbufs and toplispxbufs are NIL, the message 
NOTHING SAVED is typed, and an error generated. 

Although the illput for valueof is entered on the history list before yalueof is called, valueofl-1] still refers to the 
value of the expression immediately before the valu~Qf input, because valut'of effectively backs the history list up one 
entry when it retrieves the specified event. Similarly, (VALUEOF FOO) will find the first event before this one that 
contains a FOO, 

22.26 



Miscellaneous Features and Commands 

~(SQRT 2) + 
1.414214 + 
~(SQRT IT) + 
1.189207 + 

If last event was a multiple event, e.g. REDO -3 THRU -1, II is set + 
to value of the last of these events. Folowing a ?? command, II is + 
set to value of corresponding event. In other words, in all cases, II + 
is set to the last value printed on the terminal. + 

control-U46 when typed in at any point during an input being read by 
lispxread, permits the user to edit the input before it is returned to 
the calling function. 

This feature is useful for correcting mistakes noticed in typing' before the input is executed, instead 
of waiting till after execution and then performing an UNDO and a FIX. For example, if the user 
types (DEFINEQ (FOO (LAMBDA (X) (FIXSPELl X and at that point notices the missing left 
parenthesis. instead of completing the input and allowing the error to occur, and then fixing the 
input, he can simply type control-U,47 finish typing normally, whereupon the editor is called on 
(FOO (LAMBDA (X) (FI XSPE LL X - - ], which the user can then repair, e.g., by typing 
(LI 1). If the user exits from the editor via OK, the (corrected) expression will be returned to 
whoever called lispxread exactly as though it had been typed.48 If the user exits via STOP, the 
expression is returned so that it can be stored on the history list. However it will not be executed. 
In other words, the effect is the same as though the user had typed control-E at exactly the right 
instant. 

promptHflg is a flag which when set to T causes the current event number to be 
printed before each ... , : and * prompt characters. See description 
of promptchar, page 22.38. 

prompt # flg is initially NIL. 

promptcharforms list of forms to be executed each time promptchar is called. See + 
description of promptchar. + 

promptcharforms initially contains the expression (C H E C KN I L) which checks to see if £ill: or cdr of + 
NIL have been clobbered, or NIL or T have been reset or rebound, and if so, restores them and + 
prints a warning message. + 

historysaveforms list of forms to be executed each time historysave is called. See + 
description of historysave. + 

46 control-N for Interlisp on TOPS-20. + 
47 Control-U can be typed at any point. even in the middle of an atom; it simply sets a variable checked by lispxread. 

48 Control-U also works for calls to rcadlinc, i.e .• for line commands. 

22.27 



Section 22: The Programmer's Assistant 

+ Note that promptcharforms and historysaveforms together enable bracketing each interaction with 
+ the user, e.g. to measure how long he takes to respond, use a different readlable or terminal table, 
+ etc. 

+ resetfonns 
+ 

list of fonns to be evaluated at each RESET, i.e. when user types 
control-D, calls function reset, or types control-C followed by 
START. + 

archivefn allows the user to specify events to be automatically archived. 

,When archivefn is set to T, and an event is about to drop off the end of the history list and be 
forgotten, archivefn is called giving it as its first argument the input portion of the event. and as its 
second argument, the entire event.49 If archivefn returns T, the event is archived. For example, 
some users like to keep a record of all calls to load. Defining archivefn as: 
(LAMBDA (X Y) (EQ (CAR X) (QUOTE LOAD») will accomplish this. Note that archivefn 
must be both set and defined. archivefn is initially NIL and undefined. 

The . user can also specify that a particular event be archived when it is about to drop. off the end 
of the history list by putting the property *ARCHIVE*, value T, on the event. e.g., by means ofan 
appropriately defined lispxuscrfn (see below). One use of this feature is that the system 
automatica116 adds the *ARCHIVE* property to all events that are referenced by history 
commands.5 Thus once an event is redone, it is guaranteed to be saved. 

lispxmacros provides a macro facility for lispx. 

lispxmacros allows the user to define his own lispx commands. It is a list of elements of the fonn 
(command det). Whenever command appears as the first expression on a line in a lispx input. the 
variable lispxline is bound to the rest of the line, the event is recorded on the history list. and def 
is evaluated. and its value stored as the value of the event. Similarly, whenever command appears 
as car of a form in a lispx in~ut, the variable lispxline is bound to cdr of the form, the event 
recorded. and def is evaluated. 1 (See page 22.44 for an example of a lispxmacro). RETRIEVE. 
BE FOR E, and A F TE R are implemented as lispxmacros. In addition in Interlisp-10, LI S P • 
SNDMSG. TECO, and EXEC are lispxmacros which perform the corresponding calls to subsY! 
(Section 21), and CONTIN is a lispxmacro which perfonns (SUBSYS T). SY is a lispxmacro which 
perfonns the SYSTAT command. Finally, DIR is a lispxmacro which calls the function directory, 
e.g., 01 R *. COM: * lists all compiled files. (For more details, see Section 21.) 

lispxhistorymacros provides a macro facility for history commands. 

lispxhistorymacros allows the . user to define his own history· commands. The format of 

49 

50 

In case archivefn needs to examine the value of the event, its side effects. etc. See page 22.34 for discussion of the 
fonnat of history lists. 

unless archiveng=NIL. archiveflg is initially T. 

+ 51 

+ 
An clement of the fonn (command NIL deO is interpreted to mean bind lispxlin~ and evaluate def as described 
above. except do not save the event on the history list 

22.28 



Miscellaneous Features and Commands 

lispxhistorymacros is the same as that of lispxmacros, except that the result of evaluating def is 
treated as a list of expressions to be unread, exactly as though the expressions had been retrieved 
by a REDO command, or computed by a USE command.52 Note that returning NIL means nothing + 
else is done. This provides a mechanism for defining lispx commands which are executed for + 
effect only, and do not really have values, per se. For example, the? command is implemented as + 
a lispxhistorymacro. + 

lispxuserfn provides a way for a user function to process selected inputs. 

When lispxuserfn is set to T. it is applied53 to all inputs not recognized as one of the commands 
described above. If lispxuserfn decides to handle this input, it simply processes it (the event was 
already stored on the history list before lispxuserfn was called), sets lispxvalue to the value for the 
event, and returns T. lispx will then know not to call eval or illmlY, and will simply store 
lispxvalue into the value slot for the event, and print it. If lispxuserfn returns NIL, lispx proceeds 
by calling eval or illmlY in the usual way. Thus by appropriately defining (and setting) lispxuserfn, 
the user can with a minimum of effort incorporate the features of the programmer's assistant into 
his own executive (actually it is the other way around). 

The following output illustrates such a coupling. 54 

**SETQ(ALTFORM (MAPCONC NASOIC (F/L (GETP X 'ALTFORMS] [1] 
=NASOICT 
(AL26 BE7 C056 C057 C060 C13 H3 MN54 NA22 SC46 S34 T144) 
**(GIVE ME LINES CONTAINING COBALT) [2] 
SAMPLE PHASE CONSTIT. CONTENT UNIT CITATION TAG 
S10002 OVERALL C056 40.0 OPM/KG 070-237 0 

C13 8.8 DEL 070-228 0 
H3 314.0 OPM/KG 
MN54 28 

**GETP(COBALT ALTFORMS) 
(C056 C057 C060 C13 H3 MN54 NA22 SC46 S34 T144) 
"UNDO MAPCONC 
SETQ UNDONE. 
"REDO GETP 
(C056 C057 C060) 
"REDO COBALT 
SAMPLE PHASE CONSTIT. 
S10002 OVERALL C057 
S10003 OVERALL CO 

C056 
C057 
C060 

**USE MANGANESE FOR COBALT 

CONTENT UNIT CITATION 
40.0 OPM/KG 070-237 
15.0 070-203 
14.1 070-216 
43.0 OPM/KG 070-237 
43.0 070-241 
1.0 

52 See page 22.15 for discussion of implementation of REDO. USE. and FIX. 

53 Like archivefn. lispxuserfn must be both set and defined. 

TAG 
0 
0 

0 
0 

[3] 

[4] 

[5] 

[6] 

54 The output is from the Lunar Sciences Natural Language Information System developed for the NASA Manned 
Spacecraft Center by William A. Woods of Bolt Beranek and Newman Inc .. Cambridge, Mass. 

22.29 

.. ,"-,.,;--::----



section 22: The Programmer's Assistant 

rThe user is running under his own executive program which accepts requests in the form of 
sentences, which it first parses and then executes. rThe user first "innocently" computes a list of all 
ALTERNATIVE-FORMS for the elements in his system [1]. He then inputs a request in sentence 
format [2] expecting to see under the column CONSTIT. only cobalt, CO, or its alternate forms, 
C056, C057, or C060. Seeing C13, H3, and MN54, he aborts the output, and checks the 
property AL TFORMS for COBALT [3]. The appearance of C13, H3, MN54, he aborts the output, 
and checks the property AL TFORMS for COBALT [3]. rThe appearance of C13, H3, MN54 et aI, 
remind him that the mapconc is destructive, and that in the process of making a list of the 
ALTFORMS, he has inadvertently strung them all together. Recovering from this situation would 
require him to individually examine and correct the AL TFORMs for each element in his dictionary, 
a tedious process. Instead, he can simply UNDO MAPCONC .[4] check to make sure the 
ALTFORM has been corrected [5], then redo his original request [6] and continue. rThe UNDO is 
possible because the first input was executed by lispx; the (GIVE ME LINES CONTAINING 
COBALT) is possible because the user defined lispxuserfn appropriately; and the REDO and USE 
are possible because the 
(GIVE ME LINES CONTAINING COBALT) was stored on the history list before it was 
transmitted to lispxuserfn and the user's parsing program. 

lispxuserfn is a function of two arguments, ! and line, where! is the first expression typed. and 
line the rest of the line, as read by readline (see page 22.35). For example, if the user types 
FOO(A B C). !=FOO, and line=«A B C»; if the user types (FOO A B C). 
!=(FOO A B C), and line = NIL; and if the user types FOO ABC. !=FOO and 
line= (A B C). 

Thus in the above example, lispxuserfn would be defined as: 

[LAMBDA (X LINE) 
(COND . 

«AND (NULL LINE) 
(LISTP X» 

(SETQ lISPXVALUE (PARSE X» 
T] 

Note that since lispxuserfn is called for each input (except for p.a. commands). it can also be used 
to monitor some condition or gather statistics. 

In addition to saving inputs and values, lispx saves most system messages on the history list, e.g., 
FILE CREATED --, (fn REDEFINED), (var RESET), output of TIME, BREAKDOWN, STORAGE, 
DWIM messages, etc. When printhistory prints the event, this output is replicated. This facility is 
implemented via the functions lispxprint, lispxprin1, lispxprin2, lispxspaces, lispxterpri, lispxtab, 
and lispxprintdef.55 56 In addition to performing the corresponding output operation, these 

+ 55 

+ 
i.e. to perfonn output operations from user programs so that the output will appear on the history list, the program 
needs simply to call the corresponding Iispx printing function. All of these functions have an optional argument, 
nodoflg. which if T, says to store the output on the history list as though it had been printed, but not to do the 
actual printing. 

+ 
+ 

56 

* 

The function userlispxprint is available to pennit the user to define additional lispxprinting functions for already 
existing printing functions. The user can define a lispxprinting function by simply giving it the definition of 
lb,,£rlisn!n.ri.!!\.. e.g .. MOVD(USERLISPXPRINT LISPXPRINTDEF), as long as the new function name is fonned by 
adding "LISPX" to the front of the name of an existing printing function. and that this function takes three or fewer 
arguments. and the second argument be the file name. !l~crH~.J:i.!!! is defined to look back on the stack, find the 
name of the calling function, strip off the leading "LISPX ", perfonn the appropriate saving information, and then 
eall the function to do the actual printing. . 

22.30 



Miscellaneous Features and Commands 

functions store an appropriate expression on the history event under the property 
*LISPXPRINT*.57 This expression is used by printhistory to reproduce the output. 

Lispx also performs spelling corrections using lispxcoms, a list of its commands, as a spelling list 
whenever it is given an unbound atom or undefined function, i.e., before attempting to evaluate 
the input.58 

22.6 UNDOING 

The UNDO capability of the programmer's assistant is implemented by requiring that each operation 
that is to be undoable be responsible itself for saving on the history list· enough information to 
enable reversal of its side effects. In other words, the assistant does not "know" when it is about 
to perform a destructive operation, i.e., it is not constantly checking or anticipating. Instead, it 
simply executes operations, and any undoable changes that occur are automatically saved on the 
history list by the responsible function. 59 The operation of UNDOing, which involves recovering the 
saved information and performing the corresponding inverses, works the same way, so that the user 
can UNDO an UNDO, and UNDO that etc. 

At each point, until the user specifically requests an operation to be undone, the assistant does not 
know, or care, whether information has been saved to enable the undoing. Only when the user 
attempts to undo an operation does the assistant check to see whether any information has been 
saved. If none has been saved, and the user has specifically named the event he wants undone, the 
assistant types NOTHING SAVED. (When the user simply types UNDO, the assistant searches for the 
last undoable event, ingnoring events already undone as well as UNDO operations themselves.) 

This implementation minimizes the overhead for undoing. Only those operations which actually 
make changes are affected, and the overhead is small: two or three cells of storage for saving the 
information, and an extra function call. However, even this small price may be too expensive if 
the operation is sufficiently primitive and repetitive, i.e.. if the extra overhead may seriously 
degrade the overall performance of the program.60 Hence not every destructive operation in a 
program should necessarily be undoable; the programmer must be allowed to decide each case 
individually. 

Therefore for each primitive destructive operation, we have implemented two separate functions, 
one which always saves information, i.e., is always undoable, and one which does not, e.g., /rplaca 

57 

58 

59 

60 

unless lispxprintflg is NIL. 

lispx is also responsible for rebinding helpclock, used by breakcheck, Section 16. for computing the amount of time 
spent in a computation, in order to determine whether to go into a break if and when an error occurs. 

When the number of changes that have been saved exceeds the value of #undosaves (initially set to 50), the user is 
asked if he wants to continue saving the undo information for this event. The purpose of this feature is to avoid 
tying up large quantities of storage for operations that will never need to be undone. The interaction is handled by 
the same routines used by DWIM. so that the input buffers are first saved and cleared. the message typed, then the 
system waits dwimwait seconds. and if there is no response. assumes the default answer. which in this case is NO. 
Finally the input buffers are restored. See page 22.41 for details. 

The rest of the discussion applies only to !i~: the editor handles undoing itself in a slightly different fashion, as 
described on page 22.45. 

22.31 

~---~ 

-_, ,,"·;;'~_-'CCfi~~"'-"'" 



Section 11: The Programmer's Assistant 

and rplaca, /remprop and remprop.61 In the various system packages, the appropriate function is 
used. For example, break uses /putd and /remprop so as to be undoable, and DWIM uses /rplaca 
and /rplacd, when it makes a correclion.62 Similarly the user can simply use the corresponding / 
function if he wants to make a destructive operation in his own program undoable. When the / 
function is called, it will save the undo information in the current event on the history list. 

However, all operations that are typed in to lispx are made undoable, simply by substituting the 
corresponding undoable function for any destructive function throughout the input.63 For example, 
on page 22.7, when the user typed (MAPCONC NASDIC (F /l ••• » it was 
(lMAPCONC NASDIC (F/L .•. » that was evaluated. Since the system cannot know whether 
efficiency and overhead are serious considerations for the execution of an expression in a user 
program, the user must decide, e.g., call /mapconc if he wants the operation undoable. However, 
expressions that are typed-in rarely involve iterations or lengthy computations directly. Therefore, 
if all primitive destructive functions that are immediately contained in a type-in are made 
undoable, there will rarely be a significant loss of efficiency. Thus lispx scans all user input before 
evaluating it, and substitutes the corresponding undoable function for all primitive destructive 
functions. Obviously with a more sophisticated analysis of both user input and user programs, the 
decision concerning which operations to make undoable could be better advised. However, we 
have found the configuration described here to be a very satisfactory one. The user pays a very 
small price for being able to undo what he types in, and if he wishes to protect himself from 
malfunctioning in his own programs, he can have his program specifically call undoable functions, 
or go into testmode as described next. 

TESTMODE 

Because of efficiency considerations. the user may not want certain functions undoable afterbis 
program becomes operational. However, while debugging he may find it desirable to protect 
himself against a program running wild, by making primitive destructive operations undoable. The 
function testmode provides this capability by temporarily making everything undoable. 

testmode[ fig] testmode[ T] redefines all primitive destructive functions64 with 
their corresponding undoable versions and sets testmodefig to T. 
testmodeD restores the original definitions, and sets testmodetlg-to 
NI l.65 

Note that setg's are not undoable, even in testmode. To make the corresponding operation 
undoable in testmode, set or rplaca should be used. 

* 61 

62 

63 

64 

65 

The "slash" functions that are currenUy implemented can be found as the value of Ifns. 

The effects of the following functions are always undoable (regardless of whether or not they are typed in): defme. 
defineg. defc (used to give a function a compiled code definition). deflist, load. savedef, unsavedef, break. unbrea~ 
rebreak, trace. breakin. unbreakin, changename. editfns. editf. editv, editp, edite, ediU, esu~ advise, unad~ 
readvise, plus any changes caused by DWIM. 

The substitution is performed by the function lispx/, described on page 22.42. 

i.e., the "slash" functions: see footnote on page 22.32. 

testrnode will have no effect on compiled mapconc's, since they compile open with frplacd·1. 

22.32 



Undoing 

UNDOING OUT OF ORDER 

/rplaca and /rplacd operate by saving the pointer that is to be changed and its original contents 
(Le., /rplaca saves car and /rplacd saves cdr). Undoing /rplaca and /rplacd simply restores the 
pOintcr. Thus, if the user types (RPLACA FOO 1), followed by (RPlACA FOO 2), then undoes 
both events by undoing the most reCent event first, then undoing the older event, FOO will be 
restored to its state before either rplaca operated. However if the user undoes the first event, then 
the second event, (CAR FOO) will be I, since this is what was in car of FOO before 
(RPlACA FOO 2) was executed. Similarly, if the user performs (NCONC1 FOO 1) then 
(NCONC1 FOO 2), undoing just (NCONC1 FOO 1) will remove both 1 and 2 from FOO. The 
problem in both cases is that the two operations are not "independent." In general, 2Pcrations are 
always independent if they affect different lists or different sublists of the same list. Undoing in 
reverse order of execution, or undoing indepcndent operations, is always guaranteed to do the 
"right" thing. However, undoing dependent operations out of order may not always have the 
predicted effect. 

SAVESET 

Setq's are made undoable on type in by substituting a call to saveset (described in detail on page 
22.40), whenever setg is the name of the function to be applied, or gr of the form to be 
evaluated.67 In addition to saving enough information on the history list to enable undoing, saveset 
operates in a manner analogous to savedef when. it resets a top level value, i.e., when it changes a 
top level binding from a value other than NOB I ND to a new value that is not equal to the old one. 
In this case, saveset saves the old value of the variable being set on the variable's property list 
under the property VALUE, and prints the message (variable RESET). The old value can be 
restored via the function unset,68 which also saves the current value (but does not print a message). 
Thus unset can be used to flip back and forth between two values. 

~ and milll9. arc implemented via calls to saveset. Thus old values wilt be saved and messages 
printed for any variables that are reset as the result of loading a file.69 Calls to set and ~ 
appearing in type in are also converted to appropriate calls to saveset. 

For top level variables, saveset also adds the variable to the appropriate spelling list, thereby 
noticing variables set in files via .!lmY or ~, as well as those set via type in. 

66 

67 

68 

69 

Property list operations, (i.e., ID!.t. addprop and remprop) are handled specially so .that they are always independent. 
even when they affect the same property list. For example, if the user types PUT ( F 00 FI E1 FUN 1) then 
PUT{FOO FIE2 FUM2), then undoes the first event, the FIE2 property will remain, even though CDR(FOO) may 
have been NIL at the time the first event was executed. 

~ is made undoable by substituting savesetg. ~ by savesetgg, both of which are implemented in terms of 
saveset. 

Of course. UNDO can be used as long as the event containing this call to saveset is still active. Note however that the 
old value will remain on the property list, and therefore be recoverable via un~ even after the original ~vent has 
been forgotten. 

To complete the analogy with define, saveset will not save old values on property lists if dfnflg == T. e.g., when !Q!!!t 
is called with second argument T, (however. the caUlo avcsc;! will still be un doable). and when!!f.!!.lJg=AlLPROP, 
the value is stored directly on the property list under property VALUE (the latter applil.'s only to calls from.nmgg and 
~, . 

22.33 



Section 22: The Programmer's Assistant 

UNDONLSETQ AND RESETUNOO 

The function undonlsetg provides a limited form of backtracking: if an error occurs under the 
undonlsetg, all undoab1c side effects executed under the undonlsetg are undone. resetundo, for use 
in conjunction with resetIst and resetsave (Section 5), provides a more general undo capability in 
that the user can specify that the side effects be undone after the specified computation finishes, is 
aborted by an error, or by a control-D. undonlsetg and resetundo are described in detail on page 
22.43. 

22.7 FORMAT AND USE OF THE HISTORY LIST 

lucre are currently two history lists, lispxhistory and edithistory. Both history lists have the same 
format, and in fact, each use the same function, historysave, for recording events. and the same set 
of functions for implementing commands that refer to the history list, e.g., history find. printhistory. 
undosave, etc.70 . 

Each history list is a list of the form Q event# size mod), where 1 is the list of events with the 
most recent event first, event# is the event number for the most recent event on 1, size is the size 
of the time-slice. i.e .. the maximum length of 1, and mod is the highest possible event number (see 
foolnoteon page 22.7). lispxhistory and edithistory arc both initialized to (NI L 0 30 100). Setting 
lispxhistory or edithistory to NIL is permitted, and simply disables all history features, i.e., 
lispxhistory and edithistory act like flags as well as repositories of events. 

Each individual event on ! is a list of the form (input id value . props), where input is the input 
sequence for the event. as described on page 22.15-16. id the prompt character,e.g., +-, :, *,71 and 
value is the value of the event, and is initialized to beU.7T 

~ is a property list, i.e., of the form (property value property value --). props can be used to 
associate arbitrary information with a particular event. Currently, the properties SIDE, 
"'ARCHIVE"', "'GROUP"', "'HISTORY*, "'PRINT"', USE-ARGS, •.• ARGS, "'ERROR·, 
"'CONTEXT* and "'LISPXPRINT* are being used. The value of property SlOE is a list of the side 
effects of the event. (See discussion of undosave, page 22.41, and undolispx. page 22.42.) The 
*HISTORY* and *GROUP* properties are used for commands that reexecute previous events, i.e., 
REDO, RETRY, USE, .... and FIX. "The value of the *HISTORY* property is the history 
command itself. i.e .. what the user actually typed. e.g .. REDO FROM F, and is used by the 11 
command for printing the event. The value of the property *PRINT* is also for use by the 11 
command, when special formatting is required. for example, in printing events corresponding to the 
break commands OK, GO, EVAL, and ?=. USE-ARGS and ... ARGS are used to save the 
arguments and expression for the corresponding history command. "'ERROR* and "'CONTEXT* are 
used to save information when errors occur for subsequent use by the $ and ? commands. The 
property "'ARCHIVE* on an event causes the event to be automatically archived when it "falls off 
the end" of the history list (see page 22.28). "'LISPXPRINT* is used to record calls to lispxprint 
lispxprinl, et al. (see page 22.30). 

70 

71 

72 

A third history list, archivel~ is used when events are archived, as described on page 22.23. It too uses the same 
fonnal 

if! is one of the arguments to Iispx and to historysave. A user can call lispx giving it any prompt character he wishes 
(except for ., since in certain cases, Iispx must use the value of if! to tell whether or not it was called from the 
editor.) For example, on page 22.29, the user's prompt character was ••. 

On edithistory, this field is used to save the side effects of each command. 

22.34 



Format and Use of the History List 

When lispx is given an input, it calls historysave to record the input in a new event.73 Normally, 
historysave returns as its value the new event. lispx binds lispxhist to the value of historysave, so 
that when the operation has completed, lispx knows where to store the value, namely in caddr of 
lispxhist.74 lispxhist also provides access to the property list for the current event. For example, 
the / functions are all implemented to call undosave, which simply adds the corresponding 
information to lispxhist under the property SID E, or if there is no property SID E, creates one, 
and then adds the information. 

After binding lispxhist. lispx executes the input. stores its value in caddr of lispxhist. prints the 
value. and returns. 

When the input is a REDO, RETRY, USE, ... , or FIX command, the procedure is similar, except 
that the event is also given a "'GROUP'" property, initially NIL, and a "'HISTORY'" property, and 
lispx simply unreads the input and returns. When the input is "reread", it is historysave, not lispx, 
that notices this fact, and finds the event from which the input originally came.15 historysave then 
adds a new (input id value. props) entry to the "'GROUP'" property for this event, and returns this 
entry as the "new event." lispx then proceeds exactly as when its input was typed directly, i.e., it 
binds lispxhist to the value of historysave, executes the input, stores the value in caddr of lispxhis~ 
prints the value, and returns. In fact, lispx never notices whether it is working on freshly typed 
input, or input that was reread. Similarly, undosave will store undo information on lispxhist under 
the property S IDE the same as always, and does not know or care that lispxhist is not the entire 
event, but one of the elements of the "'GROUp· property. Thus when the event is finished, its 
entry wi11look like: 
(input id value ·HISTORY· command "'GROUp· «input! idl valuel SIDE side!) 

(input2 id2 value2 SIDE side2) ... » 76 

This implementation removes the burden from the function calling historysave of distinguishing 
between new input and reexecution of input whose history entry has already been setup,11 . 

22.8 LlSPX AND READLINE 

lispx is called with the first expression typed on a line as its first argument, lispxx. 

If this is not a list, lispx always does a readline, and treats lispxx plus the line as the input for the 

73 

74 

75 

76 

77 

The commands ?? FORGET, TYPE-AHEAD, $BUFS, and ARCHIVE are executed immediately, and are not 
recorded on the history list 

Note that by the time it completes. the operation may no longer correspond to the most recent event on the history 
list For example, all inputs typed to a lower break will appear later on the history list 

If historysave cannot find the event. for example if a user program unreads the input directly, and not via a history 
command, historysave proceeds as though the input were typed. 

In this case, the value field is not being used; valueoJ instead collects each of the values from the -GROUp· 

property. i.e., returns mapcar[listget[event; -GROUp· ] ; CADDR]. Similarly, undo operates by collecting the SIDE 

properties from each of the elements of the -GROUP- property, and then undoing them in reverse order. 

Although we have not yet done so. this implementation, i.e., keeping the various "sub-events" separate with respect 
to values and properties, also permits constructing commands for operating on just one of the sub-events. 

22.35 



Section 22: The Programmer's Assistant 

event, and stores it accordingly on the history list.18 Then it decides what to do with the input, i.e., 
if it is not recognized as a command, a lispxmacro, or is processed by lispxuserfn, call eval or 
mmlY.79 readline normally is terminated either by (1) a carriage return that is not preceded by a 
space, or (2) a list that is terminated by a ], or (3) an unmatched) or ], which is not included in 
the line. However, when called from lispx, readline operates differently in two respects: 

(1) If the line consists of a single) or ], readline returns (NI L) instead of NIL, i.e., the) or 
] is included in the line. 111is permits the user to type FOO) or FOO], meaning call the 
function' FOO with no arguments, as opposed to F0002 (FOOcarriage-return), meaning 
evaluate the variable FOO. 

(2) If the first expression on the line is a list that is not preceded by any spaces, the list 
terminates the line regardless of whether or not it is terminated by]. This permits the 
user to type ED I TF ( F 00) as a single input 

Note that if any spaces are inserted between the atom and the left parentheses or bracket, readline 
will assume that the list does not terminate the line. This is to enable the user to type a line 
command such as USE (FOO) FOR FDa. In this case, a carriage return will be typed after (FOO) 
followed by ....... as described in Section 14. Therefore, if the user accidentially puts an extra space 
between a function and its arguments, he will have to complete the input with another carriage 
return, e.g., 

+-EDITF (FOO) 
... ~ 
EDIT 
• 

22.9 FUNCTIONS 

lispx[lispxx;lispxid;lispxxmacros;1ispxxuserfnj80 

78 

79 

80 

81 

lispx is like evall~. It carries out a single computation, and 
returns its value. The first argument, lispxx is the result of a single 
call to lispxread. lispx will call readline, if necessary as described 
on page 22.35. lispx prints the value of the computation, as well as 
saving the input and value on lispxhistory.8l 

If lispxx isa history command, lispx calls historysave, executes the 
command, and returns the value of historysave. 

If lispxx is a list car of which is LAMBDA or NLAMBDA, lispx calls lispxread to obtain the arguments. 

If the input consists of one expression, eval is called; if two,lmP!Y; if more than two, the entire line is treated as a 
single form and eval is called. 

lispxid corresponds to iQ on PAGEREF L!47. Lispx also has a fifth argument, lispxflg, which is used by the E 
command in the editor, . 

Note that the history is not one of the arguments to Iispx, i.e., the editor must bind (reset) Iispxhistory to edithistory 
before calling liffi! to carry out a history command. 
!Jg?~ will continue to operate as an eval/!!12lli1 function if Iispxhistory is NIL. Only those functions and commands 
that involve the history list will be affected. 

22.36 



Functions 

If the value of the fourth argument, lispxxmacros, is not NIL, it is 
used as the lispx macros, otherwise the top level value of 
lispxmacros is used. If the value of the fifth argument, 
lispxxuserfn, is not NIL, it is used as lispxuscrfn. In this case, it is 
not. necessary to both set and define lispxuserfn as described on 
page 22.29. 

The overhead for a call to lispx (in Interlisp-10) is approximately 17 milliseconds, of which 12 
milliseconds are spcnt in maintaining thc spclling lists. In other words, in Interlisp, the user pays 
17 more milliseconds for each eval or s!pp!y input over a conventional LISP executive, in order to 
enable the fcatures described in this chapter. 

userexec[1ispxid;1ispxxmacros;1ispxxuserfn] 
repeatedly calls lispx under errorset protection specifying 
lispxxmacros and lispxxusetfn, and USing lispxid (or'" if 
lispxid=NIL) as a prompt character. Userexec is exited via the 
lispxmacro OK, or else with a retfrom. 

lispxread[file;rdtbl] is a generalized read. The value of readbuf is a list of expressions * 
that have been unrcad.82 If readbuf = NIL, lispxread performs * 
read[file;rdtbl),which it returns as its value. (If the user types 
control-U during the call to reag. lispxread calls the editor and 
returns the edited value.) 

If readbuf is not NIL, lispxread "reads" the next expression on 
readbuf, i.e., esscntially returns 
(PROGI (CAR READBUF) 

(SETQ READBUF (CDR READBUF»)~3 

readline, described in Section 14, also uses this generalized notion of reading. When readbuf is not 
NIL, readline "reads" expressions from readbuf until it either reaches the end of readbuf, or until 
it reads a pseudo-carriage return (see page 22.15). In both cases, it returns a list of the expressions 
it has "read". (The pseudo-carriage return is not included in the list.) 

When readbuf is not NIL, both lispxread and readline actually obtain their input by performing 
(APPLY· LISPXREADFN FILE), where lispxreadfn is initially set to READ. Thus, if the user 
wants lispx, the editor, break, et al to do their reading via a different input function, e.g., uread. he 
simply sets lispxreadfn to the name of that function (or an appropriate LAMBDA expression). 

82 

83 

Note: the user should only add expressions to readbuf by using the function lispxunrea!l. since it knows about the 
fonnat of readbuf. 

Except that pseudo'carriage returns. as represented by the value of !tist.~trO. are ignored. i.e .. skipped. Lispxread also 
sets rercadflg to NIL when it reads via read. and sets rereadflg to the value of rcadbuf when rereading. 

22.37 

* 
* 



lispxreadp[flg] 

lispxunread[lst; -] 

promptchar[id;flg;history] 

Section 22: The Programmer's Assistant 

is a generalized readp. If .flg=T, lispxreadp returns T if there is 
any input waiting to be "read", a la lispxread. If.flg = NIL, 
lispxreadp returns T only if there is any input waiting to be "read" 
on this line. In both cases, leading spaces are ignored, i.e., skipped 
over with reade, so that if only spaces have been typed, lispxreadp 
will return NIL. 

unreads 1st. a list of expressions to be read. 

prints the prompt character id. 

promptchar will not print anything when the next input will be 
"reread", i.e., readbuf is not NIL. promptchar will also not print 
when readp[] = T. unless.tlg is T • 

Thus the editor calls promptchar with .flg = NIL so that extra *'s are not printed when the user 
types several commands on one line. However, evalgt calls promptchar with flg = T, since it always 
wants the +- printed (except when "rereading"). 

Finally, if prompt#flg is T and history is not NI L, promptchar 
prints the current event number (of history) before printing id. 

+ The value of promptcharforms is a list of expressions to be evaluated by promptchar before, and if, 
+ it does any printing. If promptchar is going to print something, it first maps down 
+ promptcharforms evaluating each expression under an errorset. These expressions can be 
+ conditioned on the values of history, id, and promptstr, which is what promptchar will print before 
+ id, if anything, e.g. when prompt#flg is T, promptstr will be the event number. The expressions 
+ on promptcharforms can be executed for effect, e.g. to change the shape of a cursor, update a 
+ clock, check for mail, etc. or to change what promptchar is about to print by resetting id and/or 
+ promptstr.84 After promptcharforms have been evaluated, promptstr is printed if it is (still) 
+ non-N I L, and then id is printed, if it is (still) non-N I L. 

lispxeval[lispxform;lispxid] evaluates lispxform (using eval) the same as though it were typed in 
to lispx, i.e., the event is recorded, and the evaluation is made 
undoable by substituting the slash functions for the corresponding 
destructive functions, as described on page 22.32. lispxeval returns 
the value of the form, but does not print it. 

historysave[history;id;inputl;input2;input3;props] 
records one event on history. If input! is not NIL. the input is of 
the form (inputl input2 . input3). If inputl is NIL, and input2 is 
not NIL, the input is of the form (input2 . input3). Otherwise, the 
input is just input3. 

+ 84 Rffi!l1.J2~charfo!Il!~ initially contains the expression (CHECKNIL) which checks to see if car or cdr of NIL have been 
+ clobbered. or NIL or T have been reset or rebound, and if so. restoR'S them and prints a warning message. 

22.38 



Functions 

historysave creates a new evenl with the corresponding input. id. 
value field initialized to bell. and~. If the history has reached 
its full size. the last event is removed and cannibalized. 

The value of history save is the new event. However. if rereadflg is 
not NIL, and the most recent event on the history list contains the 
history command that produced this input, historysave does not 
create a new event. but simply adds an (input id bell. props) entry 
to the *GROUP* property for that event and returns that entry. 
See discussion on page 22.35. 

historysaveforms is a list of expressions that arc evaluated under errorset protection each time + 
historysave creates a new event, i.e. each time there was an interaction with the· user. but not when + 
performing an operation that is being redone. The expressions on historysaveforms are presumably + 
executed for effect, and can use the value of history and id. a~ well as the value of event, which is + 
the current. about to be executed, event, i.e. the value historysave is going to return. + 

lispxstorevalue[ event; value] used by lispx for storing the value of an event. Can be advised by + 
user, e.g. to watch for particular values or perform other monitoring + 
functions. + 

lispxfind[history;line;type;backup;-] 
line is an event specification. ~ specifies the format of the value 
to be returned by lispxfind, and can be either ENTRY. ENTRIES. 
COPY. COPIES. INPUT, or REDO. lispxfind parses line. and 
uses history find to find the corresponding> events. lispxfind then 
assembles and returns the appropriate structure. 

lispxfind incorporates the following special features: 

1) 

2) 

3) 

4) 

if backup = T. lispxfind interprets line in the context of the history list before the current event 
was added. This feature is used, for example. by valueof, so that (VAlUEOF -1) will not 
refer to the valueof event itself; 

if line=NIl and the last event is an UNDO, the next to the last event is taken. This permits 
the user to type UNDO followed by REDO or USE; 

lispxfind recognizes @@. and substitutes archivelst for history (see page 22.12); and 

lispxfind recognizes @. and retrieves the corresponding event(s) from t1:}.e property list of the 
atom following @. 

historyfind[lst;index;mod;eventadr;-] 
searches 1st and returns the tails of 1st beginning with the event 
corresponding to eventadr. 1st. index, and mod arc as described on 
page 22.34. eventadr is an event address, as described on page 
22.10-12, e.g., (43), (-1), (FOO FIE), (LOAD'" FOO). etc. If 
history find cannot find !. it generates an error. 

22.39 



Section 22: The Programmer's Assistant 

+ historymatch[input;pat;event] 
+ 

used by history find for "matching" when eventadr specifies a 
pattern. Matches Illi! against input. the input portion of the history 
event event. Initially defined as editfindp[input;pat;T), but can be 
advised or redefined by the user. 

+ 
+ 

+ 

entry # (hist;x] 

valueot[xl 

changeslice[ n;history; -] 

hist is a history list, i.e., of the form described on page 22.34. ! is 
one of the events on hist, i.e., {MEMB X (CAR HIST» is true, 
The value of entry # is the event number for !. 

is an nlambda, nospread function for obtaining the value of the 
event specified bYe, e.g., (VALUEOF -1), (VALUEOF LOAD 1). 
etc. valueof returns a list of the corresponding values if! specifies 
a multiple event. 

changes time-slice for histor.y to n. If history is NIL, changes both 
edithistory and lispxhistory. 

Note: the effect of increasing a time-slice is gradual: the history list is simply allowed to grow to 
the corresponding length before any events are forgotten. Decreasing a time-slice will immediately 
remove a sufficient number of the older events to bring the history list down to the proper size. 
However, changeslice is undoable, so that these events are (temporarily) recoverable. Thus if the 
user wants to recover the storage associated with these events without waiting .n more events for 
the changeslice event ·to be forgotten, he must perform a FORGET command. 

saveset[name;value;topflg;flg] an undoable set (see page 22.33). saveset scans the pushdown list 
looking for the last binding of name, sets ~ to value, and· 
returns value. 

If the binding changed was a top level binding, name is added to 
spellings3 (see Section 17). Furthermore, if the old value was not 
NOBIND, and was also not equal to the new value, saveset calls the 
file package to update the necessary file records. Then, if dfnflg is 
not equal to T, saveset prints (name RESET), and saves the old 
value on the property list of name, under the property VALUE. If 
flg=NOPRINT, saveset saves the old value, but does not print the 
message. This option is used by unset. 

If topflg = T, saveset operates as above except that it docs not scan 
the pushdown list but goes right to name's value cell, e.g., 
rpaqq[x;y) is simply saveset[x;y;T). When Lopflg is T, and dfnflg is 
ALLPROP and the old value was not NOBIND, saveset simply stores 
value on the property list of name under the property VALUE, and 
returns value. This option is used for loading files without 
disturbing the current value of variables (see Section 14). 

If flg = NOSAVE. savesct docs not save the old value on the property 
list. nor does it add name to spellings3. However, the call to 
saveset is still undoablc. lbis option is used by Iset. If 

22.40 



Functions 

f!g=NOSTACKUNDO, saveset is undoable only if the binding being + 
changed is a top-level binding, i.e. this says when resetting a + 
variable that has been rebound, don't bother to make it undoable. + 
lbis option is used by !lli!.9., !lli!ilil, and addtovar. + 

unset[name] if name does not contain a property VALUE, unset generates an 
error. Otherwise unset calls saveset with name, the property value, 
topflg=T, and f!g=NOPRINT. 

undosave[undoform;-]85 if lispxhist is not NIL (see discussion on page 22.35), and 
get[lispxhist;SIDE] is not equal to NOSAVE, undosave adds 
undoform to the value of the property S IDE on lispxhist. creating a 
SID E property if one does not already exist. The form of 
undoform is (fn. args),86 i.e., l:1lldoform is undone by performing 
apply[car[undoform];cdr[undoform]]. For example, if the definition 
of FOO is def. /putd[FOO;newdef] will cause a call undosave with 
undoform = (/PUTD FOO det). 

car of the SIDE property is the number of "undosaves", i.e., length 
of cdr of the SIDE property, which is the list of undoforms. Each 
call to undosave increments this count, and adds undoform to the 
front of the list, i.e., just after the count. When the count reaches 
the value of #undosaves (initially 50),87 undosave prints a message 
asking the user if he wants to continue saving.lIg If the user answers 
NO or defaults, undosave discards the previously saved information 
for this event, and makes NOSAVE be the value of the property 
SIDE, which disables any further saving for this event. If.the user 
answers YES, undosave changes the count to -1. which is then never 
incremented, and continues saving.89 

• 
* 

/rplnode[x;a;d] Undoably performs rplaca[x;a] and rplacd[x;d]. Value is !. 
Generates an error, ILLEGAL ARG. if! is not a list The principle 
advantage of /rplnode is that when ~ is a list, /rplnodesaves its 
undo information as cons[x;cons[car[x];cdr[x]]], i.e., 
(x origina1car . origina1cdr). and therefore requires only 3 cells of 
storage, instead of the 8 that would be required for a /rplaca and a 

85 

86 

87 

88 

89 

Undosave has a second optional argument, histentry. which can be used to specify lispxhisl If both histentry and 
lispxhist are NIL. undosave is a no-op. 

Except for /rplnode. as described below. 

#undosaves=NIL is equivalent to #undosaves=infinity. 

If #undosaves is negative. when the count reaches I#undosavesl. undosave simply stops saving without printing any + 
messages or interacting with the user. + 

!9i1.Q initializes the count on SIDE to -1. so that regardless of the value of #undoSavcs. no message will be printed. 
and the load will be undoable. 

22.41 

--------:::---;'.--:::-:., - --'« - ---------



Section 22: The Programmer's Assistant 

/rplacd that saved their information as described earlier.90 

/rplnode has a BLKLIBRARYDEF. 

/rplnode2[x;y] same as /rplnode[x;car[y];cdr[yll. 

Note: for consistency, there are definitions for both rplnode and rplnode2, although there primary 
reason for existence is the undoable versions. 

new/fu[fu] After the user has defined /fu, new/fu performs the necessary 
housekeeping operations to make fu be undoable. 

For example, the user could define /radix as 
(LAMBDA (X) (UNDOSAVE (LIST (QUOTE /RADIX) (RADIX X») and then perform 
new/fu[radix], and radix would then be undoable when typed in or in testmode. 

lispx/[x;fu;vars] 

undolispx[line] 

undolispxl[event;flg;-] 

performs the substitution of / functions for destructive functions. 
If fn is not NIL, it is the name ofa function, and! is its argument 
list. If fu is NIL, ! is a form. In both cases, lispx/ returns! with 
the appropriate substitutions. Vars is a list of bound variables 
(optional). 

lispx/ incorporates information about the syntax and semantics of 
Interlisp expressions. For example, it does not bother to make 
undoable operations involving variables bound in!. It does not 
perform substitution inside of expressions car of which is NLAMBDA, 
i.e., has argtype 1 or 3 (unless 9!r of the form has the property 
INFO value EVAL, as described in Section 20). For example, 
(BREAK PUTD) typed to lispx, will break on putd, not /putd. 
Similarly, substitution should be performed in the arguments for 
functions like mapc, !P!g, etc., since these contain expressions that 
will be evaluated or applied. For example, if the user types 
mapc[ (FOOl F002 F003); PUTD] the putd must be replaced by 
/putd. 

line is an event specification. undolispx is the function that 
executes UNDO commands by calling undolispx1 on the appropriate 
entry(s). 

undoes one event. The value of undolispx1 is NI L if there is 
nothing to be undone. If the event is already undone, undolispx1 

90 Actually. lm!.;!~ and Imlacd also use this fonnat for saving their undo infonnation when their first arguments are 
liSl~. However, if both a Imlaca and Lmlacd are to be performed, it is still more efficient to use lmLnode (3 cells 
versus 6 cells). 

22.42 



Functions 

prints ALREADY UNDONE and returns T.91 Otherwise, undolispxl 
undoes the event, prints a message, e.g., SETQ UNDONE I and 
returns T. 

Undoing an event consists of mapping down {fQr of) the property value for S IDE I and for each 
clement, applying car to cdr, and then marking the event undone by attaching (with /attach) a NI L 
to the front of its SIDE property. Note that the undoing of each element on the SIDE property 
will usually cause undosaves to be added to the current lispxhist, thereby enabling the effects of 
undolispxl to be undone. 

undonlsetq[form;-] is an nlambda function similar to nlsetg. undonlsetg evaluates 
form, and if no error occurs during the evaluation, returns 
list[eval[form]] and passes the undo information from form (if any) 
upwards.92 If an error does occur, the value of undonlsetg is NIL, 
and any changes made by / functions during the evaluation of form 
are undone. 

undonlsetg compiles open. 

undonlsetg will operate even if lispxhistory or lispxhist are NIL, or 
if #undosaves is or has been exceeded for this event, or is 
exceeded while under the scope93 of the undonlsetg. 

resetundo[ x; stop fig] For use in conjunction with resetlst (Section 5). resetundo[] 
initializes the saving of undo information and returns a value which 
when given back to resetundo undoes the intervening side effects. \ 

For example, (RESElLST (RESElSAVE (RESETUNDO» • forms) will undo the side effects 
of forms on normal exit, or if an error occurs or a control-D is typed. Note that (UNDOLSETQ 
form) could be written as: 

91 

92 

93 

If fI.g = T and the event is already undone. or is an undo command. ulldolispx1 takes no action and returns NIL. 
Undolispx uses this option to search for the last event to undo. Thus when line=NIl, undolispx Simply searches 
history until it finds an event for which undolispx1 returns T. i.e., undolispx performs 
(SOME (CDAR LISPXHISTORY) (F/L (UNDOLISPXl X T)}} 

Actually. undonlsetg does not rebind Iispxhist. so that any undo infonnation is stored directly on the history event, 
exactly as though there were no undonl§£N. Instead. undonlset,g simply marks the state of the undo infonnation 
when it starts. so that if an error occurs. it can then know how much to undo. The purpose of this is so that if the 
user control-D's out of the undonlsetg. the event is still undoable. 

Caution must be exercised in using coroutines or other non-standard means of exiting while under an undonlsetg. 
Sec discussion under CHANGING AND RESTORING SYSTEM STATE in Section S. 

22.43 

* 
* 

* 
* 



Section 22: The Programmer's Assistant 

(RESETLST (RESETSAVE (RESETUNDO) 

. forms) 

(AND (EQ RESETSTATE 'ERROR) 
(RESETUNDO OLDVALUE») 

If stopflg = T, resetundo stops accumulating undo information it is 
saving on !.94 

For example, 

(RESETLST (SETQ FOO (RESETUNDO» 
(RESETSAVE NIL (LIST 'RESETUNDO FOO» 
(ADVISE --) 
(RESETUNDO FOO T) 
. forms) 

would cause the advice to be undone, but not any of the side effects in forms. 

printhistory[history;line;skipfn;novalues;file] 
line is an event specification. printhistory prints the events on 

+ history specified by line, e.g., (-1 TH RU -10). Printing is 
+ performed via the function showprin2, so that if the value of 
+ sysprettyflg = T, events will be prettyprinted. skipfn is an (optional) 

functional argument that is applied to each event before printing. 
If its value is true, the event is skipped, i.e., not printed. If 
novalues = T, or novalues applied to the corresponding event is true, 
the value is not printed.95 

For example, the following lispxmacro will define n' as a command for printing the history list 
while skipping all "large events" and not printing any values. 

94 

95 

(11' {PRINTHISTORY LISPXHISTORY LISPXlINE 
(FUNCTION (LAMBDA (X) 

(IGREATERP (COUNT (CAR X» 5») 
T T» 

Note that this has no bearing on the saving of undo infonnation on higher reselundo's, or on being able to undo the 
entire evenl 

For example, novalues is T when printing events on edithistory. 

22.44 



The Editor and the Programmer'! Assistant 

22.10 THE EDITOR AND THE PROGRAMMER'S ASSISTANT 

As mentioned earlier, all of the remarks concerning "the assistant" apply equally well to user 
interactions with evalgt, break or the editor. 'The differences between the editor's implementation 
of these features and that of lispx are mostly obvious or inconsequential. However, for 
completeness, this section discusses the editor's implementation of the programmer's assistant 

The editor uses promptchar to print its prompt character, and lispxread, lispxreadp, and readline 
for obtaining inputs. When the editor is given an input, it calls historysave to record the input in a 
new event on its history list, edithistory.90 Edithistory follows the same conventions and fonnat as 
lispxhistory. However, since edit commands have no value, the editor uses the value field for 
saving side effects, rather than storing them under the property SID E • 

l11e editor recognizes and processes the four commands DO, t E , ! F, and t N commands which 
refer to previous events on edithistory. The editor also processes UNDO itself, as described below. 
All other history commands91 are simply given to lispx for ex.ecution, after first binding (resetting) 
lispxhisto98 to edithistory. The editor also calls lispx when given an E command as described in 
Section 9. 

The major implementation difference between the editor and lispx occurs in undoing. Edithistoll 
is a list of only the last !! commands, where !! is the value of the time-slice. However the editor 
provides for undoing all changes made in a single editing session, even if that session consisted of 
more than !! edit commands. Therefore, the editor saves undo infonnation independently of the 
edithistory on a list call undolst, (although it also stores each entry on undolst in the field of the 
corresponding event on edithistory.) l11us, the commands UNDO, t UNDO, and UNBLOCK, are not 
dependent on edithistory,99 i.e., UNDO specifies undoing the last command on undolst, even if that 
event no longer appears on edithistory. The only interaction between UNDO and the history list 
occurs when the user types UNDO followed by an event specification. In this case, the editor calls 
lispxfind to find the event, and then undoes the corresponding entryonundolst. Thus the user 
can only undo a specified command within the scope of the edithistory. (Note that this is also the 
only way UNDO commands themselves can be undone, that is, by using the history feature, to 
specify the corresponding event, e.g., UNDO UNDO.) 

l11e implementation of the actual undoing is similar to the way it is done in lispx: each command 
that makes a change in the structure being edited does so via a function that records the change on 
a variable. After the command has completed, this variable contains a list of all the pointers that 

96 

97 

98 

99 

Except that the atomic commands OK, STOP, SAVE, P, ?, PP and E are not recorded. In addition, number 
commands are grouped together in a single event For example, 3 3 -1 is considered as one command for changing 
position; 

as indicated by their appearance on historycoms. a list of the history commands. editdefault interrogates historycoms 
before attempting spelling correction. (All of the commands on historycoms are also on editcomsa and editcomsl so 
that they can be corrected if misspelled in the editor.) Thus if the user defines a Iispxmacro and wishes it to operate 
in the editor as wen. he need simply add it to historycoms. For example, RETRIEVE is implemented as a lispxmacro 
and works equally well in lispx and the editor, 

In this case, the editor uses the fifth argument to lispx. lispxtlg. to specify that any history commands are to be 
executed by a recursive call to lispx, rather than by unreading. For example. if the user types E REDO in the editor, 
he wants the last event on lispxhistory processed as lispx input, and not to be unread and processed by the editor. 

and in fact will work if edilhistory = NIL, or even in a system which does not contain lispx at all. 

22.45 



* 
* 

Section 22: The Programmer's Assistant 

have been changed and their original contents. Undoing that command simply involves mapping 
down that list and restoring the pointers. 

22.11 STATISTICS 

The programmer's assistant keeps various statistics about system usage, e.g., number of lispx inputs, 
number of undo saves, number of calls to editor, number of edit commands, number of p.a. 
commands, cpu time, console time, et at. These can be viewed via the function lispxstats. 

lispxstats[returnvaluesflg] prints statistics. If returnvaluesflg = T, returns the statistics as a list 
of elements of the form (value. explanation). 

The user can add his own statistics to the lispx statistics via the function addstats. 

addstats[ staUst] 

lispxwatch[stat;n] 

no spread, nlambda. StatIst is a list of elements of the form 
(statistic-name. message), e.g., (EDITCALLS CALLS TO 
EDITOR) (UNDOSTATS CHANGES UNDONE). etc. statistic-name 
is set to the cell in an unboxed array, where the corresponding 
statistic will be stored. This statistic can then be incremented by 
lispxwatch. 

increments stat by n (or 1 if n=NIL). lispxwatch has a 
BLKLIBRARYDEF • 

The user can save his statistics for loading into a new system by performing 
MAKEFILE(DUMPSTATS). After the file DUMPSTATS is loaded, the statistics printed by lispxstats 
will be the same as those that would be printed following the make file. 

22.12 GREETING AND USER PROFILES 

Many of the features of Interlisp are parameterized to allow the user to adjust the system to his or 
her own tastes. Among the more commonly adjusted parameters are prompt # flg, dwimwait, 
changeslice, #rpars, lowercase, archivefn, #undosaves, fltftnt, etc. In addition, the user can 
modify the action of system functions in ways not specifically provided for by using advise 
(Section 19). 

* 
In order to encourage this procedure, and to make it as painless and automatic as possible, the p.a. 
includes a facility for both a site-profile and a user-defined profile. When Interlisp is first run, it 

+ looks for a file on the LISP directory, with name INIT, extension LISP, and if one is found, loads 
+ the file. lbis provides a way of setting defaults for a particular community of users, patching bugs, 
+ etc. Interlisp then looks on the user's login directory for a file with name INIT, extension LISP, 
+ and if one is found, loads that. In both cases, the loads are performed "silently" by rebinding 
+ prettyheader (Section 14) to NIL.lbe p.a. then prints a greeting, e.g., "HELLO, WARREN." or 

22.46 



Greeting and User Profiles 

"GOOD AFTERNOON, DANNY.", etc.1OO 

Greeting (Le., the initialization) is undoab1e, and is stored as a separate event on the history list 
The user can also specifically invoke the greeting operation via the function greet. for example, if 
he wishes to effect another user's initialization. 

greet[name] perfonns greeting for user whose usemame is name, or if 
name=NIL, for login name (see usemame and usemumber, Section 
21), i.e., when Interlisp first starts up, it perfonns greet[]. Before 
greet perfonns the indicated initialization, it first undoes the effects 
of the previous greeting.10l 102 

greet also sets the variable usemame to the name for which the greeting was perfonned. 

100 

101 

102 

The p.a. uses the value of firstname in greeting the user. firstname should be set in the user's INIT . LISP file. In 
addition. the value of greetdates can be used to specify special greeting messages for various dates. greetdates is a 
list of elements of the form (datestring . string). e.g. (,,25-DEC" . "Merry Christmas"). The user can add entries to 
this list in hislher INIT.LISP file. e.g. by using a prettydef command like (ADDVARS (GREETDATES ("Zl
FEB" . "Happy Bi rthday"»). On the specified date. the p.a. will use the indicated salutation. If the user 
wishes his functions to be time stamped (see Section 9) with his initials when edited. he should also include a 
preUydefcommand (ADDVARS (INITIALSLST (username • initials»). 

The side effects of the greeting operation are stored on a global variable as well as the history list. thus enabling the 
previous greeting to be undone even if it is no longer on the history list 

In addition. makem is advised to undo the effects of the previous greeting. thereby returning the system to a pristine 
state. 

22.47 

+ 
+ 
+ 
+ 
+ 
+ 
+ 





Index for Section 22 

ADDSTATS[STATLST] NL* .......................... . 
AFTER (prog. asst. command) .................... . 
ALL (in event specification) ................... . 
ALL PROP (as value of DFNFLG) ................... . 
ALREADY UNDONE (printed by system) ............. . 
AND (in event specification) .................. .. 
AND (in USE command) ........................... . 
ARCHIVE (prog. asst. command) .................. . 
ARCHIVEFLG (prog. asst. variable/parameter) 
ARCHIVEFN (prog. asst. variable/parameter) 
ARCHIVELST (prog. asst. variable/parameter) 
BEFORE (prog. asst. command) ................... . 
bell (in history event) ....................... .. 
BLKLIBRARYDEF (property name) .................. . 
CHANGESLICE[N;HISTORY;L] ....................... . 
CHECKNIL[] ..................................... . 
CLEARBUF[FILE; FLG] SUBR ........................ . 
CONTIN (prog. asst. command) ................... . 
CONTINUE SAVING? (printed by system) ........... . 
control-D ...................................... . 
contro1-E ...................................... . 
contro1-G (use in history list) ................ . 
contro1-N (TOPS-ZO) ............................ . 
contro1-U .......................•............... 
DFNFLG (system variable/parameter) ............. . 
DIR (prog. asst. command) ...................... . 
DO (edit command) .............................. . 
DWIM (prog. asst. command) ..................... . 
DWIMWAIT (dwim variable/parameter) ............. . 
E (edit command) ............................... . 
EDITDEFAULT ..........................•........•. 
EDITHISTORY (editor variable/parameter) ........ . 
ENTRY#[HIST; X] ................................. . 
ESUBST[NEW;OLD;EXPR;ERRORFLG;CHARFLG] .......... . 
event address ...............................•... 
event number ................................... . 
event specification ............................ . 
EXEC (prog. asst. command) ..•.................... 
EXPRESSIONS (file pack.age type) .........•....... 
F (in event address) ........................... . 
FIRSTNAME (system variable/parameter) .......... . 
FIX (prog. asst. command) ...................... . 
FOR (in USE command) ...........•................ 
FORGET (prog. asst. command) ................... . 
format and use of history list ................. . 
FROM (in event specification) .................. . 
GREET[NAME; FLG] ................................ . 
GREETDATES (system variable/parameter) ......... . 
greeting and user profiles ..................... . 
HELPCLOCK (system variable/parameter) .......... . 
history commands .............................•.. 
history commands applied to history commands 
history commands that fail ..................... . 
his to r y 1 is t ................................... . 
HISTORYCOMS (editor variable/parameter) ......•.. 
HISTORYFIND[LST;INDEX;MOD;EVENTADDRESS; 

LISPXFINDFLG] ................•....... 

INDEX.22.1 

--- -. - ---
<- . '?,,o;..-

Page 
Numbers 

22.46 
22.22.18,28 
2Z.12 
22.40 
22.18.43 
22.12 
22.13 
22.23 
22.28 
22.28.23 
22.34.39 
22.22.18,28 
22.26.18,34,39 
22.42,46 
22.40.7 
22.38 
22.26 
22.25.28 
22.41.31 
2Z.26 
22.26 
22.26.18 
22.27 
22.27.37 
22.33,40 
22.28 
22.45 
22.20-21 
22.31 
22.45 
22.45 
22.34.45.36,44 
22.40 
22.13 
22.10-11 
22.7.10,17,27.40 
22.10-12.16-17 
22.24.28 
22.23 
22.10 
22.47 
22.14.15,18 
22.13 
22.23.40 
22.34-35 
22.11 
22.47 
22.47 
22.46 
22.17,31 
22.9-23 
22.16 
22.17 
22.4.5-12,34-35 
22.45 

22.39.39 



HISTORYMATCH[INPUT; PAT; EVENT] .................. . 
HISTORYSAVE[HISTORY;ID;INPUTl;INPUT2;INPUT3; 

PROPS] .............................. . 
HISTORYSAVEFORMS (prog. asst. variable/parameter). 
HISTSTRO (prog. asst. variable/parameter) ...... . 
ILLEGAL ARG (error message) .................... . 
implementation of REDO. USE. and FIX ........... . 
IN (in USE command) ............................ . 
IT (prog. asst. variable/parameter) ............ . 
LISPX[LISPXX;LISPXID;LISPXXMACROS;LISPXXUSERFN; 

LISPXFLG] ................................. . 

LISPXCOMS (prog. asst. variable/parameter) 
LISPXEVAL[LISPXFORM; LISPXID] ................... . 
LISPXFIND[HISTORY;LINE;TYPE;BACKUP;QUIETFLG] 
LISPXFINDSPLST (prog. asst. variable/parameter) 
LISPXHIST (prog. asst. variable/parameter) 
LISPXHISTORY (prog. asst. variable/parameter) 
LISPXHISTORYMACROS 

(prog. asst. variable/parameter) .......... . 
LISPXLINE (prog. asst. variable/parameter) 
LISPXMACROS (prog. asst. variable/parameter) 
LISPXPRINT[X;Y;Z;NODOFLG] ...................... . 
LISPXPRINTDEF[EXPR;FILE;LEFT;DEF;TAIL;NODOFlG] 
LISPXPRINTFLG (system variable/parameter) ...... . 
lispxprinting functions ........................ . 
LISPXPRINl[X;Y;Z;NODOFLG] ...................... . 
LISPXPRIN2[X;Y;Z;NODOFLG] ...................... . 
LISPXREAD[FILE ;RDTBl] .......................... . 
LISPXREADFN (prog. asst. variable/parameter) 
LISPXREADP[FLG] ................................ . 
LISPXSPACES[X;Y;Z;NODOFLG] ..................... . 
LISPXSTATS[RETURNVALUESFLG] .................... . 
LISPXSTOREVALUE[EVENT ;VAlUE] ................... . 
LISPXTAB[X;Y;Z;NODOFlG] ........................ . 
LISPXTERPRI[X;Y;Z;NODOFLG] ..................... . 
LISPXUNREAD[LST;EVENT] ......................... . 
LISPXUSERFN (prog. asst. variable/parameter) 
LISPXWATCH[STAT; N] ............................. . 
LISPX/[X;FN;VARS] .............................. . 
NAME (prog. asst. command) ..................... . 
NEW/FN[FN] ..................................... . 
NlSETQ[NLSETX] Nl .............................. . 
NO VALUE SAVED: (error message) ................ . 
NOBIND ......................................... . 
NOSAVE ......................................... . 
NOTHING SAVED (printed by system) .............. . 
PB (prog. asst. command) ....................... . 
PL (prog. asst. command) ...................... .. 
PRINTBINDINGS[AT; POS] .......................... . 
PRINTHISTORY[HISTORY;LINE;SKIPFN;NOVALUES;FILE] 
PRINTPROPS[AT] ................................. . 
programmer's assistant ......................... . 
programmer's assistant and the editor .......... . 
programmer's assistant commands ................ . 
prompt character ............................... . 
PROMPTCHAR[ID;FlG;HISTORY] ..................... . 

INDEX.22.2 

Page 
Numbers 

22.40 

22.38,9.27,34-35,39,45 
22.27 
22.15,37 
22.41 
22.15-16 
22.13 
22.26,18 

22.9,35-36,13,15-17,25, 
28-32.34.37-38,45 

22.31 
22.38 
22.39,45 
22.12 
22.35,41,43 
22.34,36,43,45 

22.28 
22.28 
22.28,37 
22.30,34 
22.30 
22.31 
22.30 
22.30 
22.30 
22.37,9,16,25.27,36,45 
22.37 
22.38.45 
22.30 
22.46 
22.39 
22.30 
22.30 
22.38 
22.29,30,36-37 
22.46 
22.42,32 
22.21,18,22 
22.42 
22.43 
22.41 
22.33,40 
22.41 
22.31.18 
22.24 
22.23 
22.24 
22.44,18,30-31 
22.24 
22.1-36 
22.45 
22.9-27 
22.9,27,38 
22.38,27,45 



PROMPTCHARFORMS (prog. asst. variable/parameter) .. 
PROMPT#FLG (prog. asst. variable/parameter) 
pseudo-carriage return ......................... . 
READBUF (prog. asst. variable/parameter) ....... . 
READLINE[RDTBL;LINE;LISPXFLG] .................. . 

REDO N TIMES (prog. asst. command) ............. . 
REDO (prog. asst. command) ..................... . 
REDOCNT (prog. asst. variable/parameter) ....... . 
REMEMBER (prog. asst. command) ................. . 
REPEAT (prog. asst. command) ................... . 
REREADFLG (prog. asst. variable/parameter) 
RESET (printed by system) ...................... . 
RESETFORMS (system variable/parameter) ......... . 
RESETUNDO[X; STOPFLG] ........................... . 
restoring input buffers ........................ . 
RETRIEVE (prog. asst. command) ................. . 
RETRY (prog. asst. command) .................... . 
RPAQ[X; Y] NL ................................... . 
RPAQQ[X;Y] NL .................................. . 
SAVESET[NAME;VALUE:TOPFLG:FLG] ................. . 
SAVESETQ[SETQX] NL* ............................ . 
SAVESETQQ[SETQX;SETQY] NL ...................... . 
SHOWPRINT[X;FILE;RDTBL] ........................ . 
SHOWPRIN2[X:FILE;RDTBL] ........•................ 
SIDE (property name) ........................... . 
spelling correction ............................ . 
spelling lists ................................. . 
SPELLINGS3 (dwim variable/parameter) ....•....... 
statistics ..................................... . 
SUBSYS[FILE/FORK:INCOMFILE:OUTCOMFILE; 

ENTRYPOINTFLG] ., ......................... . 
SUCHTHAT (in event address) .................... . 
SY (prog. asst. command) ...................... .. 
SYSPRETTYFLG (system variable/parameter) ....... . 
TESTMODE[FLG] .................................. . 
TESTMODEFLG (prog. asst. variable/parameter) 
THRU (in event specification) .................. . 
time-slice (of history list) ................... . 
TO (in event specification) .................... . 
TYPE-AHEAD (prog. asst. command) ............... . 
UNDO (edit command) .......•..................... 
UNDO (prog. asst. command) •.............•....... 
undoi ng ........................................ . 
undoing DWIM corrections ....................... . 
undoi n9 out of order ........................... . 
undoing (in editor) ............................ . 
UNDOLISPX[LINE] ................................ . 
UNDOLISPX1[EVENT:FLG;DWIMCHANGES] .............. . 
UNDOLST (editor variable/parameter) ............ . 
UNDONE (printed by system) ..................... . 
UNDONLSETQ[FORM] NL ............................ . 
UNDOSAVE[UNDOFORM;HISTENTRY] ................... . 
unreading ...................................... . 
UNSET[NAME] .................................... . 
UNTIL (use with REDO) .....•.....•............... 
USE (prog. asst. command) ..................... .. 

INDEX.22.3 

-,------ -- -
.,,~)i~O-·lt(F---it~_~~~...,;-'-'-::._;.::-"~~-;:;;';:;:-~.;~o<$'~'i;j-;~"~;:;:::;: -------,----- ----::;-.-- ---.:--.::-;;;~7,:;:t-----:-~,~-~--- ,',c_;,-c; -, '-.-:'<" 

Page 
Numbers 

22.27,38 
22.27,38 
22.15 
22.37-38 
22.35,12,16,27,30,36-37, 

45 
22.12 
22.12,15,18 
22.13 
22.23 
22.13 
22.37,39 
22.33,40 
22.28 
22.43,34 
22.26 
22.22,18,28 
22.17.18 
22.33 
22.33 
22.33,40 
22.33 
22.33 
22.9 
22.18,44 
22.35,41,43,45 
22.12,31 
22.12,31 
22.40 
22.46 

22.28 
22.11 
22.28 
22.9,18,44 
22.32 
22.32 
22.11 
22.7.40 
22.11 
22.25 
22.45 
22.18,12,33,42,45 
22.31,4,32-33,40-43,45 
22.18,18 
22.33,18 
22.45 
22.42 
22.42 
22.45 
22.18,43 
22.43,34 
22.41,35 
22.9,15,38 
22.41,33 
22.12 
22.13-14.15,18 



USEREXEC[LISPXID;LISPXXMACROS;LISPXXUSERFN] 
USERLISPXPRINT[X; FILE; Z; NODOFLG] ............... . 
USERNAME (prog. asst. variable/parameter) ...... . 
USE-ARGS (property name) ...................... .. 
VALUE (property name) .......................... . 
VALUEOF[X] NL'" ................................. . 
WHILE (use with REDO) .......................... . 
I (use in history commands) .................... . 
IE (edit command) .............................. . 
IF (edit command) .............................. . 
IN (edit command) .............................. . 
"(c.r.)" (use in history commands) ............. . 
#UNDOSAVES (prog. asst. variable/parameter) 
$ «esc» (prog. asst. command) ................ . 
$BUFS «esc>BUFS) (prog. asst. command) ........ . 
"'ARCHIVE'" (property name) ............... , ...... . 
"'ERROR'" (property name) ........................ . 
"'GROUP'" (property name) ........................ . 
"'HISTORY'" (property name) ...................... . 
"'LISPXPRINT'" (property name) ................... . 
"'PRINT'" (property name) ........................ . 
... (printed following a carriage-return) ...... . 
... (prog. asst. command) ...................... . 
/ functions ..... " ............................. . 
/RPLNODE[X;A;D] ................................ . 
/RPLNODE2[X:Y] ................................. . 
: (prog. asst. command) ........................ . 
(esc> (prog. asst. command) .................... . 
(esc)BUFS (prog. asst. command) ................ . 
= (in event address) ........................... . 
? (prog. asst. command) ....................... .. 
?? (prog. asst. command) ...................... .. 
@ (in event specification) ..................... . 
@@ (in event specification) .................... . 
\ (in event address) ........................... . 
... (in event address) ........•...•............... 

INDEX.22.4 

Page 
Numbers 

22.37 
22.30 
22.47 
22.34 
22.33,40-41 
22.26,40,35 
22.12 
22.13 
22.45 
22.45 
22.45 
22.15,37 
22.31,41,43 
22.19-20 
22.26 
22.28,23 
22.34,19 
22.34,35,39 
22.34,35 
22.31,34 
22.34 
22.36 
22.17,18 
22.32,42 
22.41.42 
22.42 
22.24 
22.19-20 
22.26 
22.10 
22.24 
22.17,18 
22.39 
22.12.23,39 
22.10 
22.10 



SECTION 23 

CLlSp· CONVERSATIONAL LlSpl 

23.1 INTRODUCTION 

The syntax of LISP is very simple, in the sense that it can be described concisely, but not in the 
sense that LISP programs are easy to read or write! This simplicity of syntax is achieved by. and 
at the expense of, extensive use of explicit structuring, namely grouping through parenthesization. 
Unlike many languages, there are no reserved words in LISP such as IF, THEN, AND, OR, FOR. 
DO, BEGIN, END, etc., nor reserved characters like +, -, *, I, =, .. , etc.2 This eliminates entirely 
the need for parsers and precedence rules in the LISP interpreter and compiler, and thereby makes 
program manipulation of LISP programs straightforward. In other words, a program that "looks 
at" other LISP programs does not need to incorporate a lot of syntactic information. For example, 
a LISP interpreter can be written in one or two pages of LISP code ([Mcel], pp. 70-71). It is for 
this reason that LISP is by far the most suitable, and frequently used, programming language for 
writing programs that deal with other programs as data, e.g., programs that analyze, modify, or 
construct other programs. 

However, it is precisely this same simplicity of syntax that makes LISP programs difficult to read 
and write (especially for beginners). 'Pushing down' is something programs do very well, and 
people do poorly. As an example, consider the following two "equivalent" sentences: 

"The rat that the cat that the dog that I owned chased caught ate the cheese." 
versus 

"I own the dog that chased the cat that caught the rat that ate the cheese." 

Natural language contains many linguistic devices such as that illustrated in the second sentence 
above for minimizing embedding, because embedded sentences are more difficult to grasp and 
understand than equivalent non-embedded ones (even if the latter sentences are somewhat longer). 
Similarly, most high level programming languages offer syntactic devices for reducing apparent 
depth and complexity of a program: the reserved words and infix operators used in ALGOL-like 
languages simultaneously delimit operands and operations, and also convey meaning to the 
programmer. lbey are far more intuitive than parentheses. In fact, since LISP uses parentheses 
(Le., lists) for almost all syntactic forms, there is very little information contained in the parentheses 

1 

2 

CLISP was designed and implemented by W. Teitelman. It is discussed in [TeiS]. 

except for parentheses (and period), which are used for indicating structure, and space and end-or-line, which are 
used for delimiting identifiers. 

23.1 



Section 23: ClLfP and Dwimify 

for the person reading a LISP program, and so the parentheses tend mostly to be ignored: the 
meaning of a particular LISP expression for people is found almost entirely in the words, not in the 
structure. For example, the following expression 

(COND (EQ N 0) 1) (T TIMES N FACTORIAL «SUB1 N») 
is recognizable as FACTORIAL even though there are five misplaced or missing parentheses. 
Grouping words together in parentheses is done more for LISP's benefit, than for the 
programmer's. 

CLISP is designed to make Interlisp progiamseasier to read and write by permitting the user to 
employ various in~ operators, IF-THEN-ELSE statements, 
FOR-DO-WHILE-UNLESS-FROM-TO-etc. expressions,' which are automatically converted to 
equivalent Interlisp expressions when they are first interpreted .. For example, FACTORIAL could 
be written in CLISP: 

(IF N=O THEN 1 ELSE N*(FACTORIAL N-l» 

Note that this expression would become an equivalent COND after it had been interpreted once, so 
that programs that might have to analyze or otherwise process this expression could take advantage 
of the simple syntax. 

There have been similar efforts in other LISP systems, most notably the MLISP language at 
Stanford [SmilJ. CLISP differs from these in that it does not attempt to replace the LISP syntax 
so much as to augment it. In fact, one of the principal criteria in the design of CLISP was that 
users be able to freely intermix LISP and CLISP without having to identify which is which. Users 
can write programs, or type in expressions for evaluation, in LISP, CLISP, or a mixture of both. 
In this way, users do not have to learn a whole new language and syntax in order to be able to use 
selected facilities of CLISP when and where they find them useful. 

CLISP is implemented via the error correction machinery in Interlisp (see Section 17). Thus, any 
expression that is welHonned from Interlisp's standpoint will never be seen by CLISP (i.e., if the 
user defined a function IF. he would effectively tum off that part of CLISP). This means that 
interpreted programs that do not use CLISP constructs do not pay for its availability by slower 
execution time. In fact, the Interlisp interpreter does not "know" about CLISP at all. It operates 
as before, and when an erroneous fonn is encountered, the interpreter calls an error routine which 
in tum invokes the Do-What-I-Mean (DWIM) analyzer which contains CLISP. If the expression 
in question turns out to be a CLISP construct, the equivalent Interlisp form is returned to the 
interpreter. In addition, the original CLISP expression, is modified so that it becomes the correctly 
translated Interlisp fonn. In this way, the analysis and translation are done only once. 

Integrating CLISP into the Interlisp system (instead of, for example, implementing it as a separate 
preprocessor) makes possible Do-What-I-Mean features for CLISP constructs as well as for pure 
LISP expressions. For example, if the user has defined a function named GET-PARI:NT, CLISP 
would know not to attempt to interpret the form (GET -PARENT) as an arithmetic infix operation. 
(Actually, CLISP would never get to see this fonn, since it does not contain any errors.) If the 
user mistakenly writes (GET-PRAENT). CLISP would know he meant (GET-PARENT). and not 
(DIFFERENCE GET PRAENT). by using the infonnation that PRAENT is not the name of a 
variable, and that GET - PAR E NTis the name of a user function whose spelling is "very close" to 
that of GET-PRAENT. Similarly, by using information about the program's environment not 
readily available to a preprocessor, CLISP can successfully resolve the following sorts of 
ambiguities: 

1) (LIST X*FACT N). where FACT is the name ofa variable, means (LIST (X*FACT) N). 

23.2 



Introduction 

2) ( LI S T X * F AC TN), where F AC T is not the name of a variable but instead is the name of a 
function, means (LIST X*( FACT N», i.e., N is FACT's argument 

3) (LIST X * FACT (N) ), FACT the name of a function (and not the name of a variable), 
means (LIST X*(FACT N». 

4) cases (1), (2) and (3) with FACT misspelled! 

The first expression is correct both from the standpoint of CLISP syntax and semantics and the 
change would be made without the user being notified. In the other cases, the user would be 
informed or consulted about what was taking place. For example, to take an extreme case, suppose 
the expression (L 1ST X * FCC TN) were encountered, where there was both a function named 
FACT and a variable named FCT. 1be user would first be asked if FCCT were a misspelling of 
FCT. If he said YES, the expression would be interpreted as (LIST (X* FCT) N). 3 If he said 
NO, the user would be asked if FCCT were a misspelling of FACT, i.e., if he intended X*FCCT N 
to mean X * ( F AC TN). If he said YES to this question, the indicated transformation would be 
performed. If he said NO, the system would then ask if X*FCCT should be treated as CLlSP, 
since FCCT is not the name of a (bound) variablc.4 If he said YES, the expression would be 
transformed, if NO, it would be left alone, i.e., as (LIST X* FCCT N). Note that we have not 
even considered the case where X * FCCT is itself a misspelling of a variable name, e.g., a variable 
named XFCT (as with GET-PRAENT). This sort of transformation would be considered after the 
user said NO to X*FCCT N -) X*(FACT N). The graph of the possible interpretations for 
(LIST X*FCCT N) where FCT and XFCT are the names of variables, and FACT is the name ofa 
function, is shown in Figure 23-1 below. 

3 

4 

Through this discussion, we speak of CLISP or DWIM asking the user. Actually, if the expression in question was 
typed in by the user for immediate execution, the user is simply informed of the transformation, on the grounds that 
the user would prefer an occasional misinterpretation rather than being continuously bothered. especially since he can 
always retype what he intended if a mistake occurs, and ask the programmer's assistant to UNDO the effects of the 
mistaken operations if necessary. For transformations on expressions in user programs, the user can inform CLISP 
whether he wishes to operate in CAUTIOUS or TRUSTING mode. In the former case (most typical) the user will be 
asked to approve transformations, in the latter. CLISP will operate as it does on type' in, i.e., perform the 
transformation after informing the user, 

lois question is important because many Interlisp users already have programs that employ identifiers containing 
CLISP operators. ·Ibus. if CLiSP encounters the expression AlB in a context where either A or B arc not the names 
of variables, it will ask the user if AlB is intended to be CLlSP, in case the user really docs have a free variable 
named AlB. 

23.3 



Section 23: Clisp and Dwimify 

FCCT- )FCT ., 

i ~ 
FCCT N - ) (FACT N)? 

i ~ 
2 x- FCCT- ) XFCT 

yi \: 
3 x-FCCT TREAT AS CL I SP ? 

i \: 
4 

Figure 23~1 

23.4 



Introduction 

11le final states for the various terminal nodes shown in the graph are: 

1: (LIST (TIMES X FeT) N) 
2: (LIST {TIMES X (FACT N») 
3: (LIST XFCT N) 
4: (LIST (TIMES X FCCT) N) 
5: (LIST X*FCCT N) 

CUSP can also handle parentheses errors caused by typing 8 or 9 for "(" or ")". (On most 
terminals, 8 and 9 are the lower case characters for "(" and ")", i.e., "e" and "8" appear on the 
same key, as do ")" and "9".) For example, if the user writes N*SFACTORIAL N-l, the 
parentheses error can be detected and fixed before the infix operator * is converted to the Interlisp 
function TIMES. CUSP is able to distinguish this .situation from cases like N*S*X meaning 
(TIMES N S X), or N*SX, where SX is the name ofa variable, again by using information about 
the programming environment. In fact, by integrating CUSP with DWIM, CLISP has been made 
sufficiently tolerant of errors that almost everything can be misspelled! For example, CUSP can 
successfully translate the definition of FACTORIAL: 

(IFF N=O THENNl ESLE N*SFACTTORIAlNN-l) 

to the corresponding COND, while making 5 spelling corrections and fixing the parenthesis error.S 

This sort of robustness prevails throughout CUSP. For example, the iterative statement permits 
the user to say things like:6 

FOR OLD X FROM M TO N 00 (PRINT X) WHILE (PRIMEP X) 

However, the user can also write OLD (X+-M) , (OLD X+-M) , (OLD (X+-M», permute the order 
of the operators, e.g., DO PRINT X TO N FOR OLD X+-M WHILE PRIMEP X, omit either or 
both sets of parentheses, misspell any or all of the operators FOR, OLD, FROM, TO, DO, or 
WH I L E, or leave out the word DO entirely! And, of course, he can also misspell PR I NT, 
PRIMEP, M or N!7 

CUSP is well integrated into the Interlisp system. For example, the above iterative statement 
translates into an equivalent Interlisp form using PROG, COND, GO, etc.8 When the interpreter 

S 

6 

7 

8 

CLISP also contains a facility for converting from Interlisp back to CLISP, so that after running the above incorrect 
definition of FACTORIAL, the user could "CLISPIFY" the now correct LISP version to obtain 
(IF N-O THEN 1 ELSE N·( FACTORIAL N-l)). 

This expression should be self explanatory, except possibly for the operator OLD, which says X is to be the variable 
of iteration, i.e., the one to be stepped from N to M, but X is not to be rebound. Thus when this loop finishes 
execution, X will be equal to N+l. 

In this example, the only thing the user could not misspell is the first X, since it specifies the name of the variable of 
iteration. The other two instances of X could be misspelled 

(PROG NIL 
(SETQ X M) 

$$LP(COND 
«OR (IGREATERP X N) (NOT (PRIMEP X») 

(RETURN») 
(PRINT X) 
(SETQ X (ADDl X» 
(GO $$LP» 

23.S 



Section 23: C/ispand Dwimify 

subsequently encounters thisCLISP expression, it automatically obtains and evaluates the 
translation.9 Similarly, the compiler "knows" to compile the translated form. However, if the user 
PRETTYPRINTs his program, at the corresponding point in his function, PRETTYPRINT "knows" 
to print the original CLISP. Similarly, when the user edits his program, the editor keeps the 
translation invisible to the user. If the user modifies the CLISP, the translation is automatically 
discarded and recomputed the next time the expression is evaluated. 

In short, CLISP is not a language at all, but rather a system. It plays a role analagous to that of 
the programmer's assistant (Section 22). Whereas the programmer's assistant is an invisible 
intermediary agent between the user's console requests and the Interlisp executive, CLISP sits 
between the user's programs and the Interlisp interpreter. 

Only a small effort has been devoted to defining the core syntax of CLISP. Instead, most of the 
effort has been concentrated on providing a facility which "makes sense" out of the input 
expressions using context information as well as built-in and acquired information about user and 
system programs. It has been said that communication is based on the intention of the speaker to 
produce an effect in the recipient. CLISP operates under the assumption that what the user said 
was intended to represent a meaningful operation, and therefore tries very hard to make sense out 
of it. The motivation behind CLISP is not to provide the user with many different ways of saying 
the same thing, but to enable him to worry less about the syntactic aspects of his communication 
with the system. In other words, it gives the user a new degree of freedom by permitting him to 
concentrate more on the problem at hand, rather than on translation into a formal and 
unambiguous language. 

23.2 CLiSP SYNTAX 

lluoughout CLISP, a non-atomic form, i.e., a list, can always be substituted for a variable, and 
vice versa, without changing the interpretation. For example, if the value of (Faa X) is A, and 
the value of (FIE Y) is B, then (LIST (Faa X)+(FIE Y» has the same value as 
(LIST A+B). Note that the first expression consists of a list of four elements: the atom "LIST", 
the list "( Faa X)", the atom "+", and the list "( FI EX) ", whereas the second expression, 
(LIST A+B), consists of a list of only two elements: the atom "LIST" and the atom "A+B". 
Since (LIST (Faa X)+(FIE Y» is indistinguishable from (LIST (Faa X}_+_(FIE Y» 
because spaces before or after parentheses have no effect on the Interlisp READ program,lO to be 
consistent, extra spaces have no effect on atomic operands either. In other words, CLISP will treat 
(LIST A+_B), (LIST A_+B), and (LIST A_+_B) the same as (LIST A+B). 

23.3 INFIX OPERATORS 

CLISP recognizes the arithmetic infix operators +, -, *, I, and t. These are converted to IPlUS. 

9 

10 

See page 23.22, for discussion of how translations are stored. 

CLISP does not use its own special READ program because this would require the user to explicitly identify CUSP 
expressions, instead of being able to intennix Interlisp and CUSP, 

23.6 



Infix Operators 

IDIFFERENCE (or in the case of unary minus, IMINUS), ITIMES, IQUOTIENT. and EXPT.ll 
The usual precedence rules apply (although these can be easily changed by the user),l2 i.e., ... has 
higher precedence than + so that A+B"'C is the same as A+(B"'C). and both * and / are lower 
than t so that 2'" X t 2 is the same as 2'" ( X t 2) • Operators of the same precedence group from left 
to right, e.g., A I B I C is equivalent to (A I B) Ie. Minus is binary whenever possible, i.e., except 
when it is the first operator in a list, as in (- A) or (-A), or when it immediately follows another 
operator, as in A'" - B • 13 14 

Note that grouping with parentheses can always be used to override the normal precedence 
grouping, or when the user is not sure how a particular expression will parse. 

CLISP also recognizes as infix operators =, GT. l T, GE. and lE ,IS as well as various 
predicates, e.g., MEMB E R , AND, OR, EQUAL, etc.16 AND is higher than OR, e.g., 
(X OR Y AND Z) is the same as (X OR (Y AND Z», and both AND and OR are lower than the 
other infix operators, e.g., (X AND Y EQUAL Z) is the same as (X AND (Y EQUAL Z». All of 
the infix predicates have lower precedence than Interlisp fOI1)1s, i.e., (F 00 X G T FIE Y) is the 
same as « F 00 X) G T (F lEY) ), since it is far more common to apply a predicate to two 
forms, than to use a Boolean as an argument to a function, e.g., (F 00 (X G T (F I E V»). 
However, again, the user can easily change this. 

Note that only single character operators, e.g., +, ... , = • etc., can appear in the interior of an 
atom All other operators must be set off from identifiers with spaces. For example, X l TV will not 
be recognized as C LISP. 17 

11 

12 

13 

14 

15 

16 

17 

The I in IPLUS denotes integer arithmetic, i.e., IPLUS converts its arguments to integers, and returns an integer 
value. Interlisp also contains floating point arithmetic functions as well as mixed arithmetic functions (see Section 13). 
floating point arithmetic functions are used in the translation if one or both of the operands are themselves floating 
point numbers, e.g., X+1. 5 translates as (FPLUS X 1. 5). In addition, CLlSP contains a facility for declaring 
which type of arithmetic is to be used, either by making a global declaration, or by separate declarations about 
individual functions or variables. See section on declarations, page 23.24. 

The complete order of precedence for CLlSP operators is given in Figure 23·2. page 23.9. 

There are some do· what· I-mean features associated with Unary minus, as in (LI S T - X Y). See section on 
operation, page 23.51 

Note that + in front of a number will disappear when the number is read, e.g., (FOO X +2) is indistinguishable 
from (FOO X 2). This means that (FOO X +2) will not be interpreted as CLlSP, or be converted to 
(FOO (IPLUS X 2». Similarly, (FOa X -2) will not be interpreted the same as (FOO X-2). To circumvent 
this, always type a space between the + or - and a number if an infix operator is intended, e.g., write 
(FOO X + 2). 

Qreater Ihan. !,ess Ihan, Qreater than or ~qual to, and 1ess than or !;qual to, respectively. GT, LT. GE. and LE 
are all affected by the same declarations as + and ., with the initial default to use IGREATERP and ILESSP. 

Currently the complete list is MEMBER, MEMB, FMEMB. ILESSP. IGREATERP, LESSP, GREATERP, FGTP, 
EQ. NEQ. EQP, EQUAL. OR, and AND. New infix operators can be easily added. as described in the section on 
CLISP internal conventions, page 23.53. Spelling correction on misspelled infix operators is peformed using 
clispinfixsplst as a spelling list 

In some cases, nWIM will be able to diagnose this situation as a run-on spelling error. in which case after the atom 
is split apart. CLISP will be able to perfoml the indicated transformation. 

23.7 

:~,-~cc::;-. --:-.... -~--- .--.~ -~c-c 



Section 23: Clisp and Dwimify 

: is an infix operator used in CLISP for extracting substructures from lists,l8 e.g., X: 3 specifics the 
3rdc1ement of X. (FOO Y): : Z specifics the second tail of (FOO Y), i.e., (CDDR (FOO Y». 
and Z: 1 : 2 is the second element of the first element of Z. or (CADAR Z). Negative numbers 
may be used to indicate position counting from the end of a list, e.g., X: - 1 is the last element of 
X. or (CAR (LAST X». X::-listhelasttail,i.e., (LAST X).1"9 

+- is used to indicate assignment, e.g., X+-Y translates to (S ET Q X Y). 20 21 In conjunction with : 
and ::, +- can also be used to perform a more general type of assignment, namely one involving 
structure modification. For example, X! 2 +-Y means make the second clement of X be Y in 
lnterlisp terms (RPLACA (CDR X) y).22 23 Negative numbers can also be used, e.g., X:-2+-V.i4 +
is also used to indicate assignment in record operations, page 23.25, and pattern match operations 
(Section 24). 

+- has different precedence on the left from on the right. On the left, +- is a "tight" operator, i.e .. 
high precedence, so that A+B+-C is the same as A+(B+-C). On the right, +- has broader sc()pe so 
that A+-B+C is the same as A+-(B+C). 

On typein, $+-form « esc> +-form) is equivalent to set the "last thing mentioned".25 For example. 
immediately after examining the value of LONGVARIABLENAME. the user could set it by typing $4-
followed by a form. 

23.4 PREFIX OPERATORS 

CLISP recognizes • and .... as prefix operators. ' means QUOT E when it is the first character in an 
identifier. and is ignored when it is used in the interior of an identifier. Thus. X=' Y means 
(EQ X (QUOTE Y», but X=CAN'T means (EQ X CAN'T). not (EQ X CAN) followed by 

18 

19 

The record facility, page 23.25, provides another way of extracting substructures by allowing the user to assign 
names to the various parts of the structure and then retrieve from or store into the corresponding structure by name. 
The pattern match facility (Section 24) also can be used to extract substructure. : is also used to indicate both record 
and pattern match operations. 

The interpretation of negative numbers can be explained neatly in terms of edit commands: :'n retJ,\tnS what would 
be the current expression after executing the command -n, and ::-n returns what would be the current expression 
after executing -n followed by UP. 

20 . If! does not have a value, and is not the name of one of the bound variables of the function in which it appears, 
spelling correction is attempted. However, since this may simply be a case of assigning an initial value to a new free 
variable, DWIM will always ask for approval before making the correction. 

21 

22 

23 

24 

25 

Note that an atom of the form X+-V, appearing at the top level of a PROG, will not be recognized as an assignment 
statement because it will be interpreted as a PROG label by the Interlisp interpreter, and therefore will not cause an 
error, so DWIM and CLISP will never get to see it Instead, one must write (X+-V). 

Note that the value of this operation is the value of tplaca, which is the corresponding node. 

The user can indicate he wants Irpla<=;! and {mlacd used (undoable version of rplaca and rplacd, see Section 22). or 
frplaCl! and frplacd (fast versions of rplaca and rplacd, see Section 5). by means of declarations (page 23.24). The 
initial default is for rplaca and mlacd. 

which translates to (RPLACA (NLEFT X 2) V). 

i.e .• is equivalent to (SETQ lastword form). See Section 17. 

23.8 



Prefix Operators 

(QUOTE T). This enables users to have variable and function names with '-in them (so long as 
the ' is not the first character). 

Following " all operators are ignored for the rest of the identifier, e.g., '*A means (QUOTE *A), 
and • X=Y means (QUOTE X=Y). not (EQ (QUOTE X) y).26 . 

On typein, '$ (i.e., '< esc » is equivalent to (QUOTE value-of-lastword) (see Section 17). For·. 
example, after calling prett~frint on LONG FUNCTION, the user could move its definition to Faa by 
typing (MOVD • $ • Faa). 

- means NOT. - can negate a fonn, as in -(ASSOC X Y), or -X, or negate an infix operator, 
e.g., (A -GT B) is the same as (A LEQ B). Note that -A=Bmeans (EQ (NOT A) B). 

26 

27 

28 

29 

--p- ""'jjM$ t 

Order of Precedence of CLISP operators 

... (left precedence) 
- (unary), -
t 
*, I 
+, - (binary) 
... (right precedence) 
= 
Interlisp fonns 
L r, GT, EQUAL, MEMBER. etc. 
AND 
OR 
IF, THEN, ELSfIF. ELSE 
iterative statement operators 

Figure 23-2 

28 
29 

To write (EQ (QUOTE X) Y), one writes Y-'X, or 'X_-Y. This is one place where an extra space does make a 
difference. 

Not (MOVD $ 'FOO) ,which would be equivalent to (MOVD LONGFUNCTION 'FOO), and would (probably) 

cause aU. B . A. LONGF UNCTION error, nor MOVO( $ FOO), which would actually move the definition of $ to FOO, 
since DWIM and the spelling corrector would never be invoked. 

... has a different left and right precedence, e.g., A+B"'C+D is the same asA+( B"'(C+D». In other words. ... has 

minimal scope on the left and maximal scope on the right 

When - negates an operator, e.g., - =, - L T, the two operators arc treated as a single operator whose precedence is 
that of the second operator. When - negates a function, e.g.. (-FOO X Y), it negates the whole form, i.e., 
(-(FOO X Y)). 

23.9 



Section 23: Clisp and Dwimify 

23.5 CONSTRUCTING LISTS - THE < AND) OPERATORS30 

Angle brackets are used in CLISP to indicate list constmction. 'The appearance of a "<" 
corresponds to a "(" and indicates that a list is to be constmcted containing all the elements up to 
the corresponding ')'. For example, (A B (C» translates to {LIST A B (LIST C». ! can 
be used to indicate that the next expression is to be inserted in the list as a segment, e.g., 
<A B I C) translates to {CONS A (CONS B C» and (I A I B C> to 
( A P PEN 0 A B (LI S T C».!! is used to indicate that the nex. t expression is to be inserted as a 
segment, and furthermore, all list structure to its right in the angle brackets is to be physically 
attached to it, e.g., <II A B) translates to (NCONCl A B), and <IIA IB IC> to 
(NCONC A (APPEND B C) ).31 32 Note that <, !, !!, and) need not be separate atoms, for 
example, (A B I C) may be written equally well as < A BI C >. Also, arbitrary Interlisp or 
CLISP forms may be used within angle brackets. For example, one can write 
<FOO+-(FIE X) I Y) which translates to (CONS (SETQ FOO (FIE X» V). CLISPIFY 
converts expressions in cons, list, append, nconc, nconc1, Inconc, and Inconcl into equivalent 
CLISP expressions using <, ), !, and II. 

Note: brackets differ from other CLISP operators. For example, <A B • C> translates to 
( LIS TAB (QUO T E C» even though following " all operators are ignored for the rest of the 
identifier.33 Note however that <A B'_C) 0> is equivalent to (LIST A B (QUOTE C» 0). 

+ Section 23.17 describes how the user can define his own bracketing operators. 

23.6 IF, THEN, ELSE 

CLISP translates expressions employing IF I THEN I ELSEIF I ELSE into equivalent conditional 
expressions. 'Ine segment between IF I ELSEIF and the next THEN corresponds to the predicate of 
a COND clause, and the segment between THEN and the next ELSE I ELSE IF as the consequent(s). 
ELSE is the same as ELSEIF T THEN. 

IF, THEN, ELSE. and ELSEIF are of lower precedence than all infix and prefix operators. as 
well as Interlisp forms, so that parentheses can be omitted between IF I ELSEIF, and THEN.34 For 
example, (IF FOO X Y THEN --) is equivalent to (IF (FOO X Y) THEN __ ).35 Similarly. 
CLISP treats (IF X THEN FOO X Y ELSE --) as equivalent to 
(IF X THEN (FOO X Y) ELSE - -) because it does not "make sense" to evaluate a variable 
for effect. In other words, even if FOO were also the name of a variable, (COND (X FOO X Y» 
doesn't make sense. Essentially, CLISP determines whether the segment between THEN and the 

30 

31 

32 

33 

34 

35 

The <, > operator was written by p.e. Jackson. 

Not (NCONC (APPEND A B) C}, which would have the same value, but would attach C to B, and not attach 
either to A. 

The user can indicate Inconc or Inconc1 be used instead of ~ and nconc1 by declarations. 

Only if a previous unmatched < has been seen. e.g., (PRINT 'A)B) will print the atom A>B. 

IF, THEN, ELSE, and ELSEI F can also be misspelled. Spelling correction is performed using c1ispifwor~ as a 
spelling list 

If FOO is the name of a variable. IF roo THEN -- is translated as (COND (FOO --» even if FOO is also the 
name of a function. If the functional interpretation is intended, FOO should be enclosed in parentheses, e.g., 
IF (FOO) THEN --. Simi1ary for IF -- TlIEN FOO ELSEIF 

23.10 



IF, THEN, ELSE 

next ELSE I ELSEIF corresponds to one form or several and acts accordingly.36 Thus, 
(IF - - THE N (F 00 X) Y E LS E - -) corresponds to a clause with two consequents. Similarly, 
(IF -- THEN FOO+-X Y ELSE --) corresponds to a clause with two consequents, and is 
equivalent to (IF -- THEN (FOO+-X) Y ELSE __ ).37 

23.7 ITERATIVE STATEMENTS 

The following is an example of a CLISP iterative statement: 

(WHILE X+-(READ)~='STOP DO (PRINT (EVAL X») 

This statement says "READ an expression and set X to it. If X is not equal to the atom STOP, then 
evaluate X, print the result, and iterate.,,38 

The Ls. (iterative statement) in its various forms permits the user to specify complicated iterative 
statements in a straightforward and visible manner. Rather than the user having to perform the 
mental transformations to an equivalent Interlisp form using PROG. MAPC. MAPCAR. etc., the 
system docs it for him. The goal was to provide a robust and tolerant facility which could "make 
sense" out of a wide class of iterative statements. Accordingly, the user should not feel obliged to 
read and understand in detail the description of each operator given below in order to use iterative 
statements. 

Currently, the following i.s. operators are implemented: FOR. BIND. OLD. IN. ON. FROM, 
TO. BY, WHEN. WHILE. UNTIL. REPEATWHILE. REPEATUNTIL, UNLESS. COLLECT. 
JOIN, DO. SUM, COUNT, ALWAYS. NEVER, THEREIS. AS. FIRST. FINALLY, 
EACHTIME. Their function is explained below. New operators can be defined as described on 
page 23.19. Misspellings of o~erators are recognized and corrected.39 The order of appearance of 
operators is never important;4 CLISP scans the entire statement before it begins to construct the 
equivalent Interlisp form. 

36 

37 

38 

39 

40 

occasionally interacting with the user to resolve ambiguous cases. 

To write the equivalent of a singleton cond clause. i.e., a clause with a predicate but no consequent, write either 
nothing following the THEN. or omit the THEN entirely, e.g., (IF (FOO X) THEN ElSEIF --) or 
(IF (FOO X) ELSE! F - -), meaning if( FOO X) is not NI l, it is the value of the cond. 

The statement translates to: 
(PROG (UVAl) 

$$lP(CONO 
«EQ (SETQ X (READ» (QUOTE STOP» 

(RETURN $$VAL») 
(PRINT (EVAl X» 

$$ITERATE (GO $$lP» 

USing the spelling list c1ispforwordsplsL 

DWIM and CLISP are invoked on iterative statements because gil of the i.s. is not the name of a function. and 
hence generates an error. If the user defines a fUllction by the same name as an i.s. operator, e.g., WHILE. TO. etc., 
the operator will no longer have the CLISP interpretation when it appears as .f!lJ of a form, although it wilt continue 
to be treated as an i.s. operator if it appears in the interior of an i.s. To alert the user, a warning message is printed. 
c.g., (WHILE DEFINED, TltEREFORE DISABLED IN CLISP). 

23.11 



Section 23; Clisp and Dwimify 

DO form specifics what is to be done at each iteration. DO with no other operator 
specifics an infinite loop. If some explicit or implicit terminating 
condition is specified, the value of the Ls. is NIL. Translate to MAPC or 
MAP whenever possible. 

COLLECT form like DO, except specifics that the value of form at each iteration is to be 
coUected in a list. which is returned as the value of the Ls. when it 
terminates. Translates to MAPCAR, MAPLIST or SUBSET whenever 
possible.41 

JOIN form like DO, except that the values are NCONCed. Translates to MAPCONC or 
MAPCON whenever possible.42 

SUM form like DO, except specifies that the values of form at each iteration be added 
together and returned as the value of the i.s., e.g., 
(FOR I FROM 1 TO 5 SUM It2) is equal to 1+4+9+16+25.43 

COUNT form like DO, except counts number of times that form is true, and returns that 
count as its value. 

ALWAYS form like DO, except returns T if the value of form is non-NI L for all iterations 
(returns NIL as soon as the value of form is 
(FOR X IN Y ALWAYS (ATOM X» is the 
(EVERY Y (FUNCTION ATOM». 

NIL), 
same 

e.g., 
as 

NEVER fonn like ALWAYS, except returns T if the value of form is never true, i.e., 
NEVER form is the same as ALWAYS .... fonn. 

THEREIS fonn returns the first value of the Lv. for which form is non-NI L, e.g., 
(FOR X IN Y THERE IS NUMBERP) returns the first number in Y, and 
is equivalent to (CAR (SOME Y (FUNCTION NUMBERP) ».44 

41 

42 

43 

44 

when COLLECT translates to a PROG. e.g .• a WHILE operator appears in the iterative statement, the translation 
employs an open tconc using two pointers similar to that used by the compiler for compiling mapcar. To disable this 
translation. perform cldisable[FCOLLECT]. 

INCONC, IMAPCONC, and IMAPCON are used when the declaration UNDOABLE is in effect 

iplus, fplus, or ~ will be used for the translation depending on the declarations in effect 

THEREIS returns the i.v. instead of the tail (as does the function som~) in order to provide an interpretation 
consistent with statements such as (FOR I FROM 1 TO 10 THEREIS --), where there is no tail. Note that 
(SOME Y (FUNCTION NUMBERP» is equivalent to 
(FOR X ON Y THERE IS (NUMBERP (CAR X»). 

23.12 



Iterative Statements 

DO. COLLECT. JOIN. SUM. ALWAYS. NEVER. and THEREIS are examples of a certain kind 
of Ls. operator called an Ls.type. The Ls.type specifies what is to be done at each iteration. Its 
operand is called the body of the iterative statement. Each Ls. must have one and only one 
Ls.type. 

FOR var 

FOR vars 

OLD var 

B I NO var, vars 

specifies the variable of iteration, or i.v., which is used in conjunction with 
IN. ON. FROM. TO, and BY. The variable is rebound for the scope of 
the i.s., except when modified by OLD as described below. 

vars a list of variables, e.g., FOR (X Y Z) IN - -. The first variable is 
the Lv., the rest are dummy variables. See B I NO below. 

indicates var is not to be rebound, e.g., 
(FOR OLD X FROM 1 TO N DO -- UNTIL --), 

used to specify dummy variables, e.g., FOR (X Y Z) IN -- is 
equivalent to FOR X BIND (Y Z) IN --. BIND can be used without 
FOR. For example, in the i.s. shown on page 23.11, X could be made 
local by writing (BIND X WHILE X+-{ READ )-=' STOP ••• ). 

Note: FOR, OLD, and BIND variables can be initialized by using + • e.g., 
(FOR OLD (X+-form) BIND (Y+-form) ..• ). 

IN form 

ON form 

specifies that the i.s. is to iterate down· a list with the i. v. being reset to 
the corresponding element at each iteration. For example, 
FOR X IN Y DO -- corresponds to 
{MAPC Y (FUNCTION (LAMBDA (X) --»). If no Lv. has been 
specified, a dummy is supplied, e.g., IN Y COLLECT CADR is equivalent 
to {MAPCAR Y (FUNCTION CADR». 

same as IN except that the i.v. is reset to the corresponding tail at each 
iteration. Thus IN corresponds to MAPC, MAPCAR, and MAPCONC. 
while ON corresponds to MAP, MAP LIST , and MAPCON. 

Note: for both I N and ON, form is evaluated before the main part of the i.s. is entered, i.e. outside + 
of the scope of any of the bound variables of the i.s. For example, + 
(FOR X BIND Y+-(LIST 1 2 3) IN Y --) will not map down (1 2 3). + 

IN OLD var 

IN OLD (var+-form) 

specifies that the i.s. is to iterate down var. with var itself being reset to . + 
the corresponding tail at each iteration, e.g., after + 
(FOR X IN OLD L DO -- UNTIL --) finishes, L will be some tail of + 
its original value. + 

same as IN OLD var, except varis first set to value of form. 
23.13 



ON OLD var 

ON OLD (var+-fonn) 

+ INSIDE form 
+ 
+ 
+ 

WHEN fonn 

UNLESS fonn 

WHILE fonn 

UNTIL fonn 

UNTIln 

REPEATWHIlE fonn 

REPEATUNTIL fonn 

REPEATUNTIL n 

FROM form 

TO fonn 

Section 23: Clisp and Dwimify 

same as IN OLD var except the Lv. is reset to the current value of var at 
each iteration, instead of to car[var). 

same as ON OLD var, except TI!r is first set to value of form. 

like IN, except treats first non-list, non-NIL tail as the last element of the 
iteration, e.g., INSIDE '( ABC D . E) iterates five times with the i.v. 
set to E on the last iteration. Similarly, INSIDE 'A is equivalent to 
INSIDE '(A), i.e., will iterate once. 

provides a way of excepting certain iterations. For example, 
(FOR X IN Y COLLECT X WHEN NUMBER~ >0 collects only the 
elements of Y that are numbers. 

same as WHEN except for the difference in sign, i.e., WHEN Z is the same 
as UNLESS -Z. 

provides a way of terminating the i.s. WH I l E form evaluates form before 
each iteration, and if the value is NIL, exits. 

Same as WH I L E except for difference in sign, i.e., WH I l E form is 
equivalent to UNTIL -form. 

n a number, equivalent to UNTI L (i.v. GT n). 

same as WHILE except the test is performed after the evalution of the 
body, but before the i.v. is reset for the next iteration. 

same as UNTIL, except the test is performed after the evaluation of the 
body. 

n a number, equivalent to REPEATUNTIl (Lv., GT n). 

is used to specify an initial value for a numerical i.v. The f.v. is 
automatically incremented by 1 after each iteration 
(unless BY is specified). If no Lv. has been specified, a dummy i.v. is 
supplied and initialized, e.g., (COLLECT SQRT FROM 2 TO 5) returns 
(1.414 1.732 2.0 2.236). 

is used to specify the final value for a numerical Lv. If FROM is not 
specified, the Lv. is initialized Lo 1. If no i.v. has been specified, a 

23.14 



Iterative Statements 

dummy i.v. is supplied and initialized. If BY is not fccified, the i.v. is 
automatically incremented by 1 after each iteration.4 When the i.v. is 
definitely being incremented, i.e., either BY is not spccified, or its operand 
is a positive number, the Ls. terminates when the Lv. exceeds the value of 
form46 e.g., (FOR X FROM 1 TO 10 --), is equivalent to 
(FOR X FROM 1 UNTIL {X GT 10) --). 

Similarly, when the i.v. is definitely being decremented the i.s. terminates 
when the i.v. becomes less than the value of form (see description of BY). 

BY form (with INION) If IN or ON have been specified, the value of form determines the tail for 
the next iteration, which in tum determines the value for the Lv; as 
described earlier, i.e., the new i.v. is car of the tail for IN, the tail itself for 
ON. In conjunction with IN, the user can refer to the current tail within 
form by using the Lv. or the operand for INION, e.g., 
(FOR Z IN L BY (COOR Z,) .oo) or 
(FOR Z IN L BY (COOR !J ... ). At translation time, the nameof 
the internal variable which holds the value of the current tail is substituted 
for the Lv. throughout form. For example, 
(FOR X IN Y BY (COR (MEMB 'FOO (COR X») COLLECT X) 
specifies that after each iteration, cdr of the current tail is to be searched 
for the atom FOO, and (cdr ot) this latter tail to be used for the next 
iteration. 

BY form (without INION) 

45 

46 

47 

If IN or ON have not been used, BY specifies how the i.v. itself is reset at 
each iteration. If FROM or TO have been specified, the i.v. is known to be 
numerical, so the new i.v. is computed by adding the value of form 
(which is reevaluated each iteration) to the current value of the Lv., e.g., 
(FOR N FROM 1 TO 10 BY 2 COLLECT N) makes a list of the first 
five odd numbers. 

If form is a positive number,47 the i.s. terminates when the value of the 
Lv. exceeds the value of TO's operand. If form is a negative number, the 
Ls. terminates when the value of the i.v. becomes less than TO's operand, 
e.g., (FOR I FROM N TO M BY -2 UNTIL (I LT M) ••• ). 
Otherwise, the terminating condition for each iteration depends on the 
value of form for that iteration: if form < 0, the test is whether the i.v. is 
less than TO's operand, if form > Ollie test is whether the Lv. exceeds 
TO's operand, otherwise if form=O, the Ls. terminates unconditionally. 

except when both the operands to TO and FROM are numbers. and TO's operand is less than FROM's operand. e.g.. 
FROM 10 TO 1, in which case the i.v. is decremented by 1 after each iteration. In this case, the i.s. terminates 
when the iv. becomes less than the value of fonn. 

form is evaluated only once. when the i.s. is first entered, and its value bound to a. temporary variable againsi which 
the i.v. is checked each interation. If the user wishes to specify an i.s. in which the value of the boundary condition 
is recomputed each iteration, he should use WHILE or UNTIL instead of TO. 

form itself. nol its value. which in general CLISP would have no way of knowing in advance. 

23.15 

• 
• 
• 



FIRST fonn 

FINALL Y form 

EACHTIME fonn 

AS var 

OUTOF fonn 

+ DECLARE: decl 
+ 
+ 
+ 
+ 
+ 
+ 

Section 23: Clisp and Dwimify 

If FROM or TO have not been specified and form is not a number, the i.v. 
is simply reset to the value of fonn after each iteration, e.g., 
(FOR I FROM N BY M ••• ) is equivalent to 
(FOR I~N BY (IPLUS I M) ••• ). 

fonn is evaluated once before the first iteration, e.g., 
(FOR X Y Z IN L -- FIRST (FOO Y Z», and FOO could be used 
to initialize Y and Z. 

fonnis evaluated after the i.s. terminates. For example, 
(FOR X IN L BIND Y~O DO (IF ATOM X THEN Y~Y+t) 
FINALL Y (RETURN Y» will return the number of atoms in L. 

fonn is evaluated at the beginning of each iteration before, and regardless 
of, any testing. For example, consider (FOR I FROM t TO N DO ( ••• 
(FOO I) ... ) UNLESS (... (FOO I) ... ) UNTIL (... (FOO 
I) ... ». The user might want to set a temporary variable to the value 
of (FOO I) in order to avoid computing it three times each iteration. 
However, without knowing the translation, he would not know whether to 
put the assignment in the operand to DO, UNLESS. or UNTIL, i.e., 
which one would be executed first. He can avoid this problem by simply 
writing EACHTIME J~( FOO I). 

is used to specify an iterative statement involving more than one iterative 
variable, e.g., (FOR X IN Y AS U IN V DO --) corresponds to 
map2c. The i.s. tenninates when any of the terminating conditions are 
met, e.g., (FOR X IN Y AS I FROM I TO 10 COLLECT X) makes a 
list of the first ten elements of Y, or however many elements there are on 
Y if less than 10. . 

The operand to AS, var, specifies the new i.v. For the remainder of the 
i.s., or until another AS is encountered, all operators refer to the new i.v. 
For example, (FOR I FROM I TO Nl AS J FROM 1 TO N2 BY 2 
AS K FROM N3 TO 1 BY -1 --) terminates when I exceeds Nt. 
or J exceeds N 2, or K becomes less than 1. After each iteration, I is 
incremented by I, J by 2, and K by -1. 

for use with generators (Section 12). On each iteration, the i.v. is set to 
successive values returned by the generator. The i.s. terminates when the 
generator runs out. 

inserts dec1 immediately following the .Q!Qg variable list in the translation, 
or, in the case that the translation is a mapping function rather than a 
.Q!Qg, immediately following the argument list of the lambda expression in 
the translation. For example 
(FOR X IN Y (DECLARE: (LOCALVARS X» -- ). Several 
DECLARE: 's can apppear in the same i.s.; the declarations arc inserted in 
the order they appear. 

23.16 



Iterative Statements 

DECLARE dec1 same as DECLARE: .48 + 

ORIGINAL i.s.apr operand + 
is.opr will be translated using its original, built-in interpretation, + 
independent of any user defined i.s. operators. See section on "Defining + 
New Iterative Statement Operators" below. + 

MISCELLANEOUS 

1. Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., (for X in Y 
... ). 

2. Each i.s. operator is of . lower precedence than all Interlisp forms, so parentheses around the 
operands can be omitted, and will be supplied where necessarY,e.g., BIND (X Y Z) can be 
written BIND X Y Z, OLD (X+-form) as OLD X+-form, WHEN (NUMBERP X) as 
WHEN NUMBERP X,eoc. 

3. RETURN or GO may be used in any operand. (In this case, the translation of the iterative 
statement will always be in the form of a PROG. never a mapping function.) RETURN means 
return from the i.s. (with the indicated value), not from the function in which the Ls appears. 
GO refers to a label elsewhere in the function in which the Ls. appears, except for the labels 
$$LP ,$$ITERATE, and $$OUT which are reserved, as described in 6 below. 

4. In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the Ls.oprs, e.g., DO, 
COLLECT, SUM, eoc., the operand can consist of more than one form. e.g .• 
COLLECT (PRINT X: 1) X: 2, in which case a PROGN is supplied. 

5. Each operand can be the name of a function,· in which case it is applied to the (last) 
i.v.,49 50 51 e.g.. FOR X IN Y DO PRINT WHEN NUMBERP, is the same as 
FOR X IN Y DO (PRINT X) WHEN (NUMBERP X). Note that the Lv. need not be 
explicitly specified, e.g., IN Y DO PRINT WHEN NUMBERP will work. 

6. While the exact form of the translation of an iterative statement depends on which operators 
are present. a PROG will always be used whenever the i.s. specifies dummy variables, i.e., if a 
BIND operator appears, or there is more than one variable specified by a FOR operator, ora 
GO, RETURN, or a reference to the variable $$VAL appears in any of the operands. When a 
PROG is used, the form of the translation is: 

48 

49 

50 

51 

Note that since declare is also the name of a function, DECLARE cannot be used as an i.s. operator when it appears + 
as car of a form, i.e. as the first i.s. operator in an iterative statement However, dec 1 are (lower-case version) can + 
be the first i.s. operator. + 

For is.oprs, e.g., DO, COLLECT, JOIN, the function is always applied to the first iv. in the i.s., whether explicity 
named or nol For example, (IN Y AS I FROM 1 TO 10 DO PRINT) prints elements on Y, not integers 
between 1 and 10. 

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON. since they "operate" before 
the loop starts. when the i.v. may not even be bound 

In the case of BY in conjunction with IN, the function is applied to the current tall e.g., 
FOR X IN Y BY CDDR , •• , is the same as FOR X IN Y BY (CDDR X) •.• See page 23.15. 

23.17 



Section 23: C/isp and Dwimi./Y 

(PROG variables 
{initialize} 

$$LP {eachtime} 
{test} 
{body} 

$$ITERATE 
{aftertest} 
{update} 
(GO $$LP) 

$$OUT {finalize} 
(RETURN $$VAL» 

where {test} corresponds to that portion of the loop that tests for termination and also for 
those iterations for which {body} is not going to be executed, (as indicated by a WHEN or 
UNLESS); {body} corresponds to the operand of the i.s.opr, e.g., DO, COLLECT, etc.; 
{aftcrtest} corresponds to those tests for termination specified by REPEATWHILE or 
REPEATUNTIL; and {update} corresponds to that part that resets the tail, increments the 
counter, etc. in preparation for the next iteration. {initialize}, {finalize}, and {eachtime} 
correspond to the operands of FIRST, FINALLY, and EACHTIME, if any. 

Note that since {body} always appears at the top level of the PROG, the user can insert labels 
in {body}, and gQ to them from within {body} or from other i.s. operands, e.g., 
(FOR X IN Y FIRST (GO A) DO (FOO) A (FIE».52 The user can also gQ to $$LP, 
$$ITERATE or $$OUT, or explicitly set $$VAL. , 

ERRORS IN ITERATIVE STATEMENTS 

An error will be generated and an appropriate diagnostic printed if any of the following conditions 
hold: 

1. Operator with null operand, i.e., two adjacent operators, as in FOR X IN Y UNTIL DO --

2. Operand consisting of more than one form (except as operand to FIRST, FINALLY, or one 
of the i.s.oprs), e.g., FOR X IN Y (PRINT X) COLLECT 

3. IN, ON, FROM, TO, or BY appear twice in same i.s. 

4. Both IN and ON used on same i.v. 

5. FROM or TO used with IN or ON on same Lv. 

6. More than one i.s.type, e.g., a DO and a SUM. 

In 3, 4, or 5, an error is not generated if an intervening AS occurs. 

If an error occurs, the Ls. is left unchanged. 

52 However. since {body} is dwimified as a list of. forms. the label(s) should be added to the dummy variables for the 
iterative statement in order to prevent their being dwimified and possibly "corrected". e.g., 
(FOR X IN Y BIND A FIRST (GO A) DO (FOO) A (FIE». 

23.18 



Iterative Statements 

If no DO. CO L LE CT. JO I N or any of the other i.s.oprs are specified, CLlSPwill first attempt to 
find an operand consisting of more than one form, e.g .• 
FOR X IN Y (PRINT X) WHEN ATOM X. and in this case will insert a DO after the first form. 
(In this case, condition 2 is not considered to be met, and an error is not generated.) If CLISP 
cannot find such an operand, and no WH I L E or UN TI L appears in the i.s., a warning message is 
printed: NO DO. COLLECT. OR JOIN: followed by the i.s. 

Similarly, if no terminating condition is detected, i.e., no IN. ON. WHILE, UNTIL, TO, or a 
RETURN or GO, a warning message is printedS3: 
POSSIBLE NON-TERMINATING ITERATIVE STATEMENT: followed by the i.s. However, since 
the user may be planning to terminate the i.s. via an error, control-E, or a retfrom from a lower 
function, the i.s. is still translated. 

DEFINING NEW ITERATIVE STATEMENT OPERA TORS 

The following function is available for defining new or redefining existing iterative statement * 
~~ * 

i.s.opr[name;form;others;evalflg] 
lli!:!lli: is the name of the new i.s.~r. If form is a list, name will be 
a new i.s. type, and form its body. 

For example, for COLLECT, form would be (SETQ $$VAL (NCONCl $$VAL BODY» 
For SUM. form would be ($$VAL'-UVAL+BODY),55 others would be (FIRST $$VAL'-O). 
For NEVER: (IF BODY THEN $$VAL'-NIL (GO $$OUT»),56 and for 
THEREIS: (IF BODY THEN $$VAL'-I.V. (GO $$OUT». 

53 

54 

55 

56 

57 

others is an (optional) list of additional i.s .. operators and operands 
which will be added to the i.s. at the place where lli!:!lli: appears. If 
form is NIL, name is a new i.s.opr defined entirely by others. 

In both form and others, $$VAL can be used to reference the value 
to be returned by the i.s., I. V. to reference the current i.v., and 
BODY to reference !@ill:'S operand.57 

unless the value of ctispi.s.gag is T. clispi.s.gag is initially NIL. 

The i.s.type is the i.s.opr that specifies what is to be done at each iteration. e.g.. perfonning an operation (00), 
collecting values on a list (COLLECT). adding numbers (SUM). searching for a particular condition (THEREIS). 
etc. Each i.s. can have one and only one i.s. type. 

$$VAL+BODY is used instead of (IPLUS $$VAL BODY) so that the choice of function used in the translation. i.e .• 
iplus. fplus. or~. will be detennined by the declarations then in effect. 

(IF BODY THEN RETURN NIL) would exit from the i.s. immediately and therefore not execute the operations 
specified via a F I NALLY (if any). 

In other words. the current i.v. wilt be substituted for all instanccs of I. V. and nam.!!·s operand will be substituted 
for all instances of BODY throughout fonn and others. 

23.19 



Examples: 

Section 23: Clisp and Dwimify 

If evalflg is T. fonn and others are evaluated at translation time, 
and their values used as described above.58 

If name was previously an i.s.opr and is being redefined, the 
message (name REDEFINED) will be printed (unless dfnflg=T), 
and all expressions using the i.s.opr name that have been translated 
will have their translations discarded. 

(1) To define RCOLLECT, a version of COLLECT which uses ~ instead of ncone1 and then 
reverses the list of values: . 
i.s.opr[RCOLLECT: ($$VAL4-( CONS BODY $$VAL»; 

(FINALLY (RETURN (DREVERSE $$VAL»)] 

(2) To define TCOllECT, a version of COLLECT which uses tcone: 
i.s.opr[TCOLLECT: (TCONC $$VAL BODY); . 

(FIRST $$VAL4-(CONS) FINALLY (RETURN (CAR $$VAl»)] 

(3) To define PRODUCT: i.s.opr[PRODUCT; ($$VAL4-$$VAL*BODY) ; (FIRST $$VAl4-t)] 

(4) To define UPTO, a version of TO whose operand is evaluated only once: 
i.s.opr[UPTO;NIL; (BIND $$FOO4-BODY TO $$FOO)]. 

(5) To redefine TO so that instead of recomputing fonn each iteration, a variable is bound to the 
value of fonn. and then that variable is used: 
i.s.opr[TO;NIL:(BIND $$END FIRST $$END4-BODY ORIGINAL TO $$END)] 

Note the ~use of ORIGINAL to redefine TO in terms of its original definition.59 

i.s.opr can also be used to define synonyms for already defined i.s. operators by calling i.s.opr with 
form an atom, e.g .• i.s.opr[WHERE: WHEN] makes WHERE be the same as WHEN. Similarly. 
following i.s.opr[ISTHERE: THEREIS]. one can write (ISTHERE ATOM IN Y). and following 
i.s.opr[FIND;FOR] and i.s.opr[SUCHTHAT;THEREIS], one can write 
(FIND X IN Y SUCHTHAT X MEMBER Z).60 

+ 58 

+ 
Istvars is a list of dummy variable names used by the iterative statement translator. If the user wishes to obtain a 
dummy variable for use in translation, and be sure it does not clash with a dummy variable already used by some 
other i.s. operators. he can use car of lstvars, and reset lstvars to cdr[lstvars], + 

+ 59 

+ 
+ 

60 

ORIGINAL is intended for usc in redefining built-in operators, since their definitions are not accessible, and hence 
not directly modifiable. Thus if the operator had been defined by the user via i.s.opr, ORIGINAL would not obtain 
its original definition. In this case, one presUmably would simply modify the i.s.opr definition. 

In the current system, WHERE is synonymous with WHEN, SUCHTllAT and ISTHERE with TIlEREIS, and FIND with 
fOR. 

23.20 



Iterative Statements 

If fonn is the atom MOD I FIE R, then name is defined as an i.s.opr which can immediately follow + 
another i.s. operator (i.e., an error will not be generated. as described previously). name will not + 
tenninate the scope of the previous operator, and will be stripped off when dwimify is called on its + 
operand. OLD is an example of a MODIFIER type of operator. The MODIFIER feature allows the + 
user to define Ls. operators similar to OLD, for use in conjunction with some other user defined + 
i.s.opr which will produce the appropriate translation . + 

For convenience, there is a file package command, I. S. OPRS, which dumps i.s.oprs, e.g., 
(I. S. OPRS PRODUCT UPTO) as a file package command will print suitable expressions so that 
these iterative statement operators will be (re)defined when the file is loaded. 

This completes the description of iterative statements. 

23.8 ENGLISH PHRASES 

CLISP also recognizes a limited but expandable set of english-like constructions of the fonn "A is 
B", e.g., FOO IS A NUMBER, Z IS NOT A STRING, (CDDR X) ISN'T A TAIL OF Y. 
Both subject and relation can be "distributed", e.g., X AND Y ARE ATOMIC is equivalent to X IS 
ATOMIC AND Y IS ATOMIC. Similarly. Z IS AN ARRAY OR A LIST is equivalent to Z IS 
AN ARRAY OR Z IS A LIST, and A AND B ARE NUMBERS AND LESS THAN 5 AND GT 0 
is equivalent to the conjunction of the indicated six predicates. These constructions are translated 
to the corresponding LISP expressions when they are run or dwimified. In addition, c1ispify will 
convert LISP fonns into "english" when c1ispifyenglshflg is T. 

Qisp currently knows about the following unary relations in their singular and plural forms: 
ARRAY, ATOM, ATOMIC, FLOATING POINT NUMBER, LIST, LITATOM, LITERAL ATOM, 
NEGATIVE, NIL (Le., X IS NIL), NULL, NUMBER, SMALL INTEGER, SMALL NUMBER, 
STRING; and the following binary relations in their singular and plural fonns:EQ TO, EQUAL 
TO, GEQ, GREATER THAN, GT, LESS THAN, LT, MEMB OF, MEMBER OF, TAIL OF. 
All relationships can be negated with either NOT, N. or N'T. e.g •• X IS -LESS THEN Y, A 
AND B AREN'T ATOMIC. New relations can be defined via the function newisword. 

newisword[sing;plu;fonn;~ars] sing is the singular form of the new english construct, llli! the plural 
without the subject. fonn is the fonn the singular ~onstruct 
translates to. and ~ the parameters. 

For example, "SMALL INTEGER" could be defined by newisword[(X IS A SMALL INTEGER); 
(ARE SMALL INTEGERS); (SMALLP X); (X)] and "TAIL OF" by newisword[(X IS A 
TAIL OF V); (ARE TAILS OF V); (TAILP X V); (X V)]. 

23.21 

-~--~-

~~.-" > > • "-' 



+ 
+ 
+ 
+ 

Section 23: Clisp and Dwimify 

23.9 CLiSP TRANSLATIONS 

The translation of inftx operators and IF I THEN I ELSE statements are handled in CUSP by 
replacing the CLlSP expression with the corresponding Interlisp expression, and discarding the 
original CLISP, because (1) the CLlSP expression is easily recomputable (by c1ispify),61 and (2) the 
lnterlisp expressions are simple and straightforward. In addition to saving the space required to 
retain both the CUSP and the Interlisp, another reason for discarding the original CUSP is that it 
may contain errors that were corrected in the course of translation, e.g., the user writes 
F OO+- F 000: 1, N· 8 F 00 X), etc. If the original CUSP were retained, either the user would have 
to go back and fix these errors by hand, thereby negating the advantage of having DWIM perform 
these corrections, or else DWIM would have to keep correcting these errors over and over. 

Where (1) or fJ) are not the case, e.g., with iterative statements, pattern matches, record 
expressions, etc. the original CUSP is retained (or a slightly modified version thereot), and·.the 
translation is stored elsewhere, usually in c1isparray, a hash array.63 64 The interpreter automatically 
checks this array using gethash when given a form car of which is not a function.65 Similarly, the 
compiler performs a gethash when given a form it does not recognize .to see if it has a translation, 
which is then compiled instead of the form. Whenever the user changes a CUSP expresson by 
editing it, the editor automatically deletes its translation (if one exists), so that the next time it is 
evaluated or dwimified, the expression will be retranslated.66 The function 1m! and the edit 
commands PPT and CLISP: are available for examining translations, see page 23.60. Similarly, if 
prettytr.anfl~ is T, prettyprint will print the translations instead of the corresponding CLISP 
expressIOn. . 

61 

62 

63 

64 

65 

66 

67 

Note that clispify is sufficiently fast that it is practical for the user to configure his Interlisp system so that aU 
expressions are automatically clispifyed immediately before they are presented to him. For example. he can define an 
edit macro to use in place of P which calls fIispify on the current expression before printing it Similarly. he can 
inform prettyprint to call clispify on each expression before printing it, etc. 

The handling of translations for I F I THE N I ELSE statements is determined by the value of clispiftranflg. If T. the 
translations are stored elsewhere. and the (modified) CLISP retained as described below. If NIL. the corresponding 
COND replaces the IF I THEN I ELSE expression. The initial value of clispiftranflg is NIL. 

The actual storing of the translation isperfonned by the function clisptran. page 23.S7. 

The user can also indicate that he wants the original clisp retained by embedding it in an expression of the fonn 
(CLISP • clisp-expression). e.g .• (CLISP X:5:3) or (CLISP (A B C 1 D». In such cases. the 
translation will be stored remotely as described in the text. Furthennore. such expressions will be treated as c1isp 
even if infIx and prefIx transformations have been disabled by setting clispfig to NIL. as described on page 23.56. In 
other words. the user can instruct the system to interpret as c1isp infIX or prefIX constructs only those expressions that 
are specifIcally flagged as such. The user can also include clisp declarations by writing 
(CLISP declarations . form). e.g .• (CLISP (CLISP: FLOATING) ••• ). These declarations will be 
used in place of any clisp declarations in the function defInition. Note this feature provides a way of including clisp 
declarations in compiler macro definitions. 

CLISP translations can also be used to supply an interpretation for function objects. as well as forms. either for 
function objects that are used openly. i.e .. appearing as car of ronn. function objects that are explicitly.rumJyed. as 
with arguments to mapping functions. or function objects contained in function defInition cells. In all cases. if car of 
the object is not LAMBDA or NLAMBDA. the interpreter and compiler will check clisparray. 

If the value of clisprelranfig is T. dwimify will also (re)translate any expressions which have translations stored 
remotely. ,The initial value of clispretranfig is NIL. 

Note that· the user can always examine lhe translation himself by performing 
(GETHASH expression CLISPARRAY). 

23.22 



Clisp Translations 

If c1isparray is NI L,68 translations are implemented instead by replacing the CUSP expression by 
an expression of the form (CLISP%_ translation. CUSP-expression),69 e.g., 
(FOR X IN Y COLLECT (CAR X» would be replaced by 
(CLISP%_ (MAPCAR Y (FUNCTION CAR» FOR X IN Y COLLECT (CAR X». Both the 
editor and prettyprint know about CLISP% expressions and treat them specially by suppressing 
the translations: Prettyprint prints just the -CUSP (unless prcttytranflg= T, as described below), 
while the editor makes the translation completely invisible, e.g., if the current expression were the 
above CLISP% expression, F MAPCAR would fail to find the MAPCAR, and (3 ON) would replace 
IN with ON, i.e-:-: the editor operates as though both the CLISP%_ and the MAPCAR were not there. 
As with translations implemented via c1isparray, if the CUSP expression is changed by editing it, 
the translation is automatically deleted. 

CLISP%_ expressions will interpret and compile correctly: CLISP%_ is defined as an nlambda 
nospread function with an appropriate compiler macro. Note that if the user sets c1isparray to NI L, 
he can then break, trace, or advise CLISP% to monitor the evaluation of iterative statements, 
pattern matches, and record operations. 111is technique will work even if c1isparray was not NIL at 
the time the expressions were originally translated, since setting c1isparray to NIL will effectively 
delete the translations, thereby causing the CUSP expressions to be retranslated when they are first 
encountered. Note that if the user only wishes to monitor the CUSP in a certain function, he can 
accomplish this by embedding its definition in (RESETVAR CLISPARRAY NIL .). 

I f a C LIS P% expression is encountered and c1isparray is not NIL, the translation is transferred 
to the hash array, and the CLISP%_ expression replaced by just the CUSP. Setting prettytranflg 
to CLISP% causes prettyprint to print CUSP expressions that have been translated in the form of 
(CLISP%_-translation . CLISP-expression), even if the translation is currently stored 
in c1isparray. These two features together provide the user with a way of dumping CLISP 
expressions together with their translations so that when reloaded (and run or dwimified), the 
translations will automatically be transferred to clisparray. 

In summary, if prettytranflg = NIL, only the CLISP is printed (used for producing listings). If 
prettytranflg = T, only the translation is printed (used for exporting programs to systems that do not 
provide CLISP, and to examine translations for debugging purposes).1O- If prettytranflg=CLISP%_, 
an expression of the form (CLISP%_ translation. CUSP) is printed, (used for dumping both 
CUSP and translations). The preferred method of storing translations is in c1isparray, so that if 
any CLISP%_ expressions are converted while c1isparray is not NIL, they will automatically be 
converted so as to use c1isparray. If c1isparray = NIL, they will be left alone, and furthermore, new 
translations will be implemented using CLISP%_ expressions. 

68 

69 

70 

clisparray is initially NIL, and # clisparray is its size. The first time a translation is perfonned, a hash array of this 
size is created. Therefore to disable clisparray, both it and #c1isparray should be set to NIL. 

CLISP%_ is an atom conSisting of the six characters C, L, I, S, p, and space, which must be preceded by the escape 
character % in order for it to be included as a part of an identifier. The intent was to deliberately make this atom 
hard to type so as to make it unlikely that it would otherwise appear in a user's program or data. since the editor 
and prettyprint treat it very specially, as described above, 

Note that makefile will reset prcttytranflg to T, USing resetvar, when called with the option NOCLISP, 

23.23 



Section 23: Clisp and Dwimify 

23.10 DECLARATIONS 

Declarations are used to affect the choice of Interlisp function used as the translation of a particular 
operator. For example, A+B can be translated as either (IPLUS A B), (FPLUS A B), or 
( PLUS A B), depending on the declaration in effect. Similarly X : 1 f-Y can mean 
(RPLACA X V), (FRPLACA X V), or (lRPLACA X V), and (I IA B) either (NCONCl A B) 
or (lNCONC 1 A B). The table below gives the declarations available in CLISP, and the Interlisp 
functions they indicate. The choice of function on all C LISP transformations are affected by these 
declarations, i.e .. iterative statements, pattern matches, record operations, as well as infix and prefix 
operators. 

The user can make (change) a global declaration by calling the function CLISPDEC and giving it 
as its argument a list of declarations, e.g., (CLISPDEC (QUOTE (FLOAJING UNDOABLE»). 
Changing a global declaration does not affect the speed of subsequent CLISP transformations, since 
all CLISP transformation are table driven (Le.. property list). and global declarations are 
accomplished by making the appropriate internal changes to CLISP at -the time of the declaration. 
If a function employs local declarations (described below), there will be a slight loss in efficiency 
owing to the fact that for each CLISP transformation. the declaration list must be searched for 
possibly relevant declarations. 

Declarations are implemented in the order that they are given, so that later declarations override 
earlier ones. For example, the declaration FAST specifics that FRPLACA, FRPLACD, FMEMB, 
and FLAST be used in place of RPLACA, RPLACD, MEMB, and LAST; the declaration RPLACA 
specifics that RPLACA be used. Therefore: the declarations (FAST RPLACA RPLACD) will cause 
FMEMB, FLAST, RPLACA, and RPLACD to be used. 

The initial global declaration is INTEGER and STANDARD. 

TABLE OF DECLARATIONS 

Declaration 

INTEGER or FIXED 

FLOATING 

MIXED 

FAST 

UNDOABLE 

STANDARD 

RPLACA, RPLACD, 
IRPLACA, ... 

Interlisp functions to be used 

IPLUS, IMINUS, IDIFFERENCE, ITIMES, IQUOTIENT, 
ILESSP, IGREATERP 

FPLUS, FMINUS, FDIFFERENCE, FTIMES, FQUOTIENT, 
LESSP, FGTP 

PLUS, MINUS, DIFFERENCE, TIMES, QUOTIENT, LESSP, 
GREATERP 

FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC 

IRPLACA, IRPLACD, INCONC, INCONC1, IMAPCONC. 
IMAPCON 

RPLACA, RPLACD, MEMB, LAST, ASSOC, NCONC, NCONC1, 
MAPCONe, MAPCON 

corresponding function 

23.24 



Declarations 

LOCAL DECLARATIONS 

The user can also make declarations affecting a selected function or functions by inserting an 
expression of the form (CLISP: . declarations) immediately following the argument list, i.e., as 
CADDR of the definition. Such local declarations take precedence over global declarations. 
Declarations affecting selected variables can be indicated by lists, where the first element is the 
name of a variable, and the rest of the list the declarations for that variable. For example, 
( C LI S P: F LOA TI N G (X IN TE G E R » specifies that in this function integer arithmetic be used 
for computations involving X, and floating arithmetic for all other computations.71 The user can 
also make local record declarations by inserting a record declaration, e.g., ( RECORD - - ), 
(ARRAYRECORO --), etc., in the local declaration list. Local record declarations override global 
record declarations for the function in which they appear. Local declarations can also be used to 
override the global setting of certain DWIM/CLISP parameters effective only for transformations 
within that function, by including in the local declaration an expression of the form 
(variable = value), e.g., (PATVARDEFAULT = QUOTE). 

The CLISP: expression is converted to a comment of a special form recognized by CLISP. 
Whenever a CLISP transformation that is affected by declarations is about to be performed in a 
function, this comment will be searched for a relevant declaration, and if one is found, the 
corresponding . function will be used. Otherwise, if none are found, the global declaration(s) 
currenUy in effect will be used. 

Local declarations are effective in the order that they are given, so that later declarations can be 
used to override earlier ones, e.g., (CLISP: FAST RPLACA RPLACO) specifies that FMEMB, 
FLAST, RPLACA, and RPLACD be used. An exception to this is that declarations for specific 
variables take precedence of general, function-wide declarations, regardless of the order of 
appearance, as in (CLISP: (X INTEGER) FLOATING). 

Oispify also checks the declarations in effect before selecting an infix operator to ensure that the 
corresponding CLISP construct would in fact translate back to this form. For example, if a 
FLOATING declaration is in effect, clispify will convert (FPLUS X Y) to X+Y, but leave 
(IPLUS X Y) as is. Note that if (FPLUS X Y) is CLISPIFYed while a FLOATING declaration 
is under effect, and then the declaration is changed to INTEGER, when X+Y is translated back to 
Interlisp, it will become (I PLUS X Y). 

23.11 THE RECORD PACKAGE72 

The advantages of "data-less" or data-structure-independent programming have long been known: 
more readable code, fewer bugs, the ability to change the data structure without having to make 
major modifications to the program, etc. The record package in CLISP both encourages and 
facilitates this good programming practice by providing a uniform syntax for treating, accessing and 
storing data into many different types of data structures, e.g. those employing arrays, list structures, 
association lists, hash links, etc., and combinations thereof, as well as removing from the user the 

71 

72 

"involving" means where the variable itself is an operand. For example. with the declaration 
(FLOATING (X INTEGER» in effect. (FOO X)+(FIE X) would translate to FPLUS, i.e., use floating arithmetic, 
even though X appears somewhere inside of the operands, whereas X+( FIE X) would translate to IPLUS. If there 
are declarations involving both operands, e.g., X+Y, with (X FLOATING) (Y INTEGER), whichever appears first 
in the declaration list will be used. 

The record package was written by L. M. Masinter, 

23.25 



i' Section 23: CUsp and Dwimify 

task of writing the various routines themselves. The user declares (once) the datastructurc(s) used 
by his programs. and thcreafter indicates the manipulations of the data in a data-structure
independent manner. The rccord package automatically computes from the declaration(s) the 
corresponding Interlisp expressions neccssary to accomplish the indicated access/storage operations. 
The user can change his data structure simply by changing the corresponding declaration(s), and 
his program automatically (re)adjusts itself to the new conventions. 

The user informs the record package about the format of his data structures by making a record 
declaration. A record declaration defines a record, i.e., a data structure. The record declaration is a 
description of the record, associating names with its various parts, or fields. For example, the 
record. declaration (RECORD MSG (ID (FROM TO) • TEXT» describes a data structure called 
MSG, which contains four fields: 10. FROM. TO. and TEXT. The user can then reference these 
fields by name, either to retrieve their contents or to store new data into them, by using the : 
opcrator followed by the field name. For cxample, for the above record declaration, X: FROM 
would be equivalcnt (and translate) to (CAADR X), and Y: TO ... Z to 
(CAR (RPLACA (CDADR Y) Z) ).73 Record operations are implemented by replacing expressions 
of the form X: FOO by (fetch FOO of X), and X: FOO"'Y by (replace FOO of X with Y) 
and then storing the translation elsewhere, usually in a hash array, as described on page 23.22. 
CLISP also recognizes expressions input in this form; both lower and upper case are acceptable.14 

The fields of a record can be further broken down into sub-fields bysubdeclarations within the 
record, e.g., 

(RECORD NODE (POSITION • LABEL) (RECORD POSITION (XLOC • YLOC») 
would permit the user to refer to POSITION, or to its sub fields XLOC and YLOC. 

Note that what the record declaration is really doing is specifying the data-paths of the structure, 
and thcreby specifying how the corresponding access/storage operations are to be carried out. For 
example, the above declaration of NODE says the XLOC of a NODE is to be found as the CAR of its 
POSITION, which is the CAR of the NODE itself. Hcnce, N: XLOC"'30 is achieved by performing 
(CAR (RPLACA (CAR N) 30». 

Note also that when the user writes N: XLOC, he is implicitly saying the N is an instance of the 
record NODE, or at least is to be treated as such for this particular operation. In other words, the 
interpretation of N : fie 1 d never depends on the value gJ!i. The record package does not provide 
any facility which uses run-time checks to determine data paths, nor is there any error checking 
othcr than that providcd by Interlisp itself. For example, if N happened to be an array, N: YLOC 
would still computc (CDAR N). 

The user can also create new data structures using a record declaration as a guide or template. 
Initial values for the contents of cach field can be specified in thc C R EA TE expression, defaulted to 
valucs specificd in the rccord declaration, or CREATE can be instructed to use an existing datum as 
a model, i.e. to obtain the field values for the new datum from the corresponding fields ofan 

73 or IRPLACA or FRPLACA, depending on the CLISP declaration in effect Note that the value of X: TO"'Z is Z. In 
general. the value of a replacement record operation is the same as the value stored into the field. In this case, the 
Interlisp·lO compiler will eliminate the CAR if the value of X: TO"Z is not actually used, e.g. if the replacement is a 
.statement in a PROG. 

+ 74 

+ 
FFETCU and FREPLACE are versions which insure FAST CLISP declarations will be in effect, IREPLACE insures 
UNOOA8LE declarations, e.g. USing the declaration for the record MSG shown above, (FREPLACE TO OF Y WITH 
Z) would translate as (CAR (FRPLACA (CDAOR Y) Z». and (lREPLACE TO OF Y WITH Z) would use 
IRPLACA. 

+ 
+ 

23.26 



The Record Package 

existing datum. For example, with the 
(CREATE NODE USING FOO XLOC~10 LABEL~'l1) 
(CONS (CONS 10 (CDAR FOO» (QUOTE L1». 

above declaration 
translates 

of NODE, 
to 

The record package also provides a facility for allowing the user to test if a datum is an instance of 
a given record via a TYPE? expression, as explained below. 

RECORD (used to specify elements and tails of a list structure) is just one of several record-types 
currently implemented. For example, the user can specify a property list format by using the 
record type PROPRECORD, or that fields arc to be associated with parts of the data structure via 
hash links by using the record-type HASHLINK, or that an entirely new data type be allocated (as 
described in section 3) by using the record-type DATATYPE. These are described in detail below. 

As with all DWIM/CLISP facilities. the record package contains many do-what-I-mean features, 
spelling correction on field names. record types, etc. In addition, the record package includes a 
RECORDS file package command for dumping record declarations,75 as well as the appropriate 
modifications to the file package (Section 14), so that files? and cleanup will inform the user about 
records that need to be dumped. 

RECORD DECLARATIONS 

A record declaration is an expression of the form 
(record-type record-name fields. {record tail}) 

This expression is evaluated to effect the corresponding declaration,16 

1. record-type specifies the "type" of data being described by the record declaration. and thereby 
implicitly specifies the data paths, Le., how the corresponding access/storage operations are 
performed. record-type currently is either RECORD. TYPE RECORD , ARRAYRECORD, 
ATOMRECORD, ASSOCRECORD, PROPRECORD, DATATYPE, HASHLINK,ARRAYBlOCK or 
ACCESSFNS. RECORD and TYPERECORD are used to describe list structures, DATATYPE to 
describe user data-types. ARRAYRECORD to describe arrays, ATOMRECORD to describe (the 
property list of) atoms, PROPRECORD to describe lists in property list format, and 
ASSOCRECORD to describe association list format. HASHLINK can be used with any type of 
data: it simply specifics the data path to be a hash-link. ACCESSFNS is also type-less; the user 
specifies the data-paths in the record declaration itself, as described below. 

2. record-name is a literal atom used to identify the record. declaration for dumping to files via 
the RECORDS file package command, creating instances of the record via CREATE,and testing 
via TYPE? DATATYPE and TYPERECORD declarations also use record~ to identify the 

75 

76 

The file package command INITRECORDS can be used to write expressions on a file that will. when loaded. perform + 
whatever initialization/allocation is necessary for the indicated records. but not to write out and hence cause to be + 
read back in. the record declarations themselves. This facility is useful for building systems on top of Interlisp. in + 
which the implementor may want to eliminate the record declarations from a production version of the system, but + 
the initialization for these records must still be done. + 

Local record declarations are performed by including an expression of this form in the CLISP declaration for that 
function (page 23.25). rather than evaluating the expression itself. 

23.27 



Section 23: Clisp and Dwiml/Y. 

data structure (as described below).77 

Forsubdeclarations, record-name specifies the parent field that is being elaborated. 

3. fields describes the structure of the record. Its exact interpretation varies with the record-type: 

77 

78 

79 

80 

RECORD fields is a list structure whose non-NIL literal atoms are taken as field-names 
to be associated with the corresponding clements and tails of a list structure. 
NIL can be used' as a place marker to fill an unnamed field, e.g., (A NIL B) 
describes a three element list, with B corresponding to the third element. A 
number may be used to indicate a sequence of NILs, e.g. (A 4 B) is 
interpreted as (A NIL NIL NIL NIL B). 

TYPE RECORD Similar to RECORD except that record-name is also used as an indicator in 
CAR of the datum to signify what "type" of record it is. CREATE will insc;rt 
an extra field containing record-name at the beginning of the structure, and 
the translation of the access and storage functions will take this extra field into 
account. 78 For example, ' for 
(TYPERECORD MSG (ID (FROM TO) • TEXT». X:FROM translates as 
(CAADDR X), not (CAADR X). 

ASSOCRECORD fields is a list of literal atoms. The fields are stored in a-list fonnat; i.e., 
«fieldname. value) (fieldname . value) ... ). Accessing is performed with 
assoc,79 storing with putassoc. 

PROPRECORD fields is a list of property names. The fields, are stored in "prop~rty list" 
format; i.e., (fieldname value fieldname value ... ). Accessing is performed with 
listget, storing with listpuL Both ASSOCRECORD and PROPRECORD are useful 
for defining data structures in which it is often the case that many of the 
fields are NIL. A CREATE for these record types only stores those fields which 
are non-NIL.so 

ARRAYRECORD fields is a list of field-names that arc associated with the corresponding 
elements of the array. NIL can be used as a place marker for an unnamed 
field (element). Positive integers can be used as abbreviation for the 
corresponding number of NIls. For example, (ARRAYRECORD (ORG 
DEST NIL ID 3 TEXT» describes an eight element array, with ORG 
corresponding to the first element, I D to the fourth, and' T EXT to the eighth. 

HASHLINK fields is either just field-name, i.e. an atom, or a list interpreted as 

For ~e top-level declarations, record-name is optional. e.g., (RECORD (ID (FROM TO) • TEXT» is 
acceptable. However, if record.:!lame is omitted, the user cannot specify the record by name, e.g., in CREATE 
expressions, or when using the RECORDS file package command 

This type-field is used by the record package in the translation of TYPE? expressions. 

or fassoc. depending on current CLISP declarations. 

However. with the declaration (PROPRECORD FIE (H I J» the expression (CREATE FIE) would still construct 
(H NIL). since a later operation of X: J+-T could not possibly change the instance of the record if it were NIL. 

23.28 



81 

82 

DATATYPE 

The Record Package 

(field-name arrayname arraysize). arrayname indicates the hash-array to be 
used: if not given, SYSHASHARRAY is used. For example, 
(HASHLINK (CLISP CLISPARRAY» would permit the user to obtain the 
CLlSP translation of X by simply writing X: eLI S P. arraysize is used for 
initializing the. hash array: if arrayname has not been initialized at the time of 
the declaration, it will be set to 
(LIST (HARRAY (OR arraysize 100»). HASHLINKs are useful as 
sub declarations to other records to add additional fields to already existing 
data-structures. 

specifies that a new user data type with type name record-name be allocated 
via dec1aredatatype (see Section 3).81 When a DATA TYPE declaration is given 
for the first time, the system allocates storage space and a type number for 
that data type. Thus. unlike other record-types, the records of a DATATYPE 
declaration are represented with a completely new Interlisp type, and. not in 
terms of other existing types.82 fields is· a list of field specifications, where 
each specification is either fieldname or (fieldname fieldtype). If fieldtype is 
omitted (or fieldtype= POINTER) then the field can contain a pointer to any 
arbitrary Interlisp datum. Other options for fieldtype are: 

BITS n. 
BETWEEN "1 02 

INTEGER or fIXP 

FLOATING or FLOATP 

FLAG 

field contains an n-bit unsigned integer. 

a generalization of B ITS. field may contain an 
integer x. such that x is greater than or equal to 
"1 and less than or equal to n 2. Enough bits are 
allocated to store a number between 0 and 
(n2-n1); n1 is appropriatly added or subtracted 
when the field is accessed or stored. 

field contains a full word signed integer. 

field contains a full word floating point number. 

field is a one bit field that "contains" T or NIL. 

For example, the declaration 

(DATATYPE MSG «FLG BITS 12) TEXT (eNT BETWEEN 10 25) 
HEAD (DATE BITS 18) (PRIO FLOATP) 
(READ? FLAG) ) ) 

would define a data type MSG which occupies (in Interlisp-lO) three words of 
storage with two pointer fields (one word), a full word floating point number, 
fields for an 18, 12, and 4 bit unsigned integer, and a flag (one bit), with 1 bit 

+ 

Since the data type must be set up at run-time. the RECORDS file package command will dump a declaredatatype 

expression as well as the DATA TYPE declaration itself. The INITRECORDS command will dump only the + 
declaredatetype expression. + 

For this reason. DATATYPE declarations should be used with caution within local declarations, since a new and 

different data type is allocated for each one with a different name. 

23.29 



+ 
+ 
+ 
+ 

+ 

+ 
+ 
+ 

ARRAYBLOCK 

ACCESSFNS 

Section 23: CUsp and Dwimify 

left over.83 

similar to a DATATYPE declaration, except that the objects it creates and 
manipulates are arrays. As with DATATYPE's, the actual order of the fields of 
the ARRAYBLOCK may be shuffled around in order to satisfy garbage collector 
constraints. 

For example, 

(ARRAYBLOCK FOO «F1 INTEGER) (F2 FLOATING) (F3 POINTER) 
(F4 BETWEEN -30 -2) (F5 BITS 12) 
(F6 FLAG) ) ) 

fields is a list of elements of the form (field-name accessdef setdef), i.e. for 
each fic1dname, the user specifies how it is to be accessed and set. accessdef 
should be a function of one argument, the datum, and will be used for 
accessing. setdcf64 should be a function of two arguments, the datum and the 
new value. and will be used for storing. Alternatively, accessdef and/or setdef 
may be a LAMBDA expression or a form written in telms of variables DATUM 
and (in the case of setdef) NEWVALUE.85 For example, given the declaration 

[ACCESSFNS «FIRSTCHAR (NTHCHAR DATUM 1) 
(RPLSTRING DATUM 1 NEWVALUE» 

(RESTCHARS (SUBSTRING DATUM 2] 
X: FIRSTCHAR+-Y would translate to (RPLSTRING X 1 V). Since no setdef 
is given for the RESTCHARS field, attempting to perform X: RESTCHARS"'Y 
would generate an error, REPLACE UNDEFINED FOR FIELD. Note that 
ACCESSFNS do not have a CREATE definition. However, the user may supply 
one in the {defaults and/or subdectarations} of the declaration, as described 
below. Attempting to CREATE an ACCESSFNS record without specifying a 
create definition will cause an error CREATE NOT DEFINED FOR THIS 
RECORD. 

ATOMRECORD fields is a list of property names, e.g., 
(ATOMRECORD (EXPR CODE MACRO BLKLIBRARYDEF». Accessing is 
performed with gelprop, storing with putprop.86 

+ In addition to the above built-in record types, users can declare their own record types by 
+ performing the fonowing steps: 

83 

84 

+ 85 

+ 
+ 
+ 

86 

Fields are allocated in such a way as to optimize the storage used and not necessarily in the order specified. To store 
this information in a conventional RECORD list structure, e.g., 
(RECORD MSG (FlG TEXT CNT OATE PRIO • HEAD», would take 5 words of list space and up to three 
number boxes (for FlG, DATE. and PRIOlo 

setdef may be omitted, in which ca~e, no store operations are allowed. 

!lCC!!~mct' and setdef can alSo be a property list which specify FAST, STANDARD and UNDOABlE versions of the 
ACCESSFNS forms, e.g. [ACCESSFNS LITATOM «DEF (STANDARD GETD FAST FGETD) 
(STANDARD PUTD UNDOABLE /PUTD] means if FAST declaration is in effect, use FGETD for fetching, if 
UNDOABlE, use /PUTD for saving. 

as with ACCESSFNS, CREATE is not initially defined for ATOM RECORD records. 

23.30 



The Record Package 

(1) add the new record-type to the value of clisprccordtypes;. + 

. (2) perform movd[RECORD;record-type], i.e. give the record-type the same definition as that of + 
record; + 

(3) put on the property list of the record-type, under the property USERRECORDTYPE. the + 
name of a function which will return the translalion. Whenever a record declaration of + 
type record-type is encountered, this function will be passed the record declaration as its + 
argument, and should return a new record declaration which the record package will then + 
use in its place. + 

4. {record-tail} is optional. It may contain expressions of the form: 

87 

88 

(1) field-name +- form 

(2) (CREATE form)81 

(3) (INIT form) 

allows the user to specify within the record declaration the 
default value to be stored,in field-name by a CREATE (if no 
value is given within the C R EA TE expression itselt). Note that 
form is evaluated at CREATE time, not when the declaration is 
made. 

{re)defines the manner in which CREATE of this record should· * 
be performed. This provides a way of specifying how * 
ACCESSFNS should be created or overriding the usual * 
definition of CREATE. If form contains the field-names of the * 
declaration as variables, the forms given in the CREATE will be * 
substituted in. For example. * 
(RECORD C (A . 0» and * 
(ACCESSFNS C «A CAR RPLACA)(D CDR RPLACD» * 

(CR£ATE(CONS A D») * 
are equivalent. 88 * 

If the word DATUM appears in the create form, the original + 
create definition is inserted. This effectively allows the· user to + 
"advise" the create. + 

specifies that form should be evaluated when the record is 

CREATE may also be given as recordname .. fonn. e.g. C .. (CONS A D). * 
This facility allows the use of data-structures not specified by one of the built-in recorJ types. For example, one 
possible representation of a data-structure is to store the fields in parallel arrays. especially if the number of instances 
required is known, and they do not need to be garbage collected. Thus. to implement a data structure called LINK 
with two fields FROM and TO, one would have two arrays FROMARRAY and TOARRAY. The representation of an 
"instance" of the record would be an integer which is used to index into the arrays. This can be accomplished with 
the declaration: 
[ACCESSFNS LINK 

«FROM (ELT FROMARRAY DATUM) (SETA FROMARRAY DATUM NEWVALUE» 
(TO (ELT TOARRAY DATUM) (SETA TOARRAY DATUM NEWVALUE») 

(CREATE (PROGl (SETQ LINKCNT (ADDl LINKCNT» 
(SETA FROMARRAY LINKCNT FROM) 
(SETA TOARRAY LINKCNT TO] 

To CREATE a new LINK. a counter is incremented and the lIew elemenl~ stored (although the create fonn given the 
declaration should actually include a test for overflow). 

23.31 



+ 
+ 

(4) a subdeclaration . 

(5)(TYPE? form)92 

Section 2J: Clisp and Dwimify 

i.e., a record declaration of. any of the above types. The 
record-name of a subdeclaration must be either the record-name 
of its immediately superior declaration or one of the superior's 
field~names. Instead of identifying the declaration as with top 
level declarations. the rccord';'name ofa sub declaration identifies 
the parent field . or . record that is being described by the 
subdeclaration. Subdeclarations can be nested to an arbitrary 
depth.90 91 

(Re)defines the manner in which TYPE? exptessions are to be 
translated. form may either be an expression in terms of 
DA TUM or a function of one argument 

+ .. (6) (SUBRECORD name. defaults) 
+ . name must be a field that appears in the current declaration 
+ and the name of another record. This says that, for the 
+ purposes of create expressions. substitute the top-level 
+ declaration of ~ for the SUBRECORD form, adding on any 
+ defaults specified. 

+ For example: given (RECORD B (E F G». then 
+ (RECQRD A (8 C D) (SUBRECORD B» would be treated 
+ like '(RECORD A (8 C D) (RECORD 8 (E F G»). for the 
+ purposes of translating CREATE expressions. 

CREATE 

Record operations can be applied to arbitrary structures, i.e., structures created directly by user 
programs can be manipulated in a data-independent manner using record declarations. However. to 
be completely data-independent, new data should be created using the same declarations that 
define its data paths. This can be done by means of an expression of the form 
(CREATE record-name . {assignments}). A CREATE expression translates into an 
appropriate Interlisp form using cons, list, puthash, array, etc., that creates the new datum with the 

+ 89 

90 

+ 91 

+ 92 

fonn will also be dumped by the INITREeORDS file paaage command. 

Note that, in a few cases. it makes sense for a given field to have more than one subdeclaration. For example. in 
(RECORD (A . B) (PROPRECORD B (FOO FIE FUM» (HASHLINK Be» 

B is elaborated by both a PROPRECORD and a HASHLINK. Similarly. 
(RECORD (A B) (RECORD A (C D» (RECORD A (FOO FIE») 

is also acceptable. and essentially "overlays" (FOO FIE) and (C D), i.e. X:FOO and X:C would be equivalenlln 
such cases, thejirst subdeclaration is the one used by CREATE. 

Giving (RECORD name1 name2) is a simple way of defining a synonym for the field name1. 

TYPE? may also be given as record name @ Conn, e.g. C (t LISTP. 

23.32 



The Record Package 

various fields initialized to the appropriate values.93 {assignments} is optional and may contain 
expressions of the following form: 

field-name .. form 

USING form 

COPYING form 

REUSING form 

SMASHING form 

specifies initial value for ficld-name.94 

specifies that for all fields not given a value by (1), the value of 
the corresponding field in form is to be used. 

like USING except the corresponding values are copied (with 
copyall). 

like US I NG, except that wherever possible, the corresponding 
structure in form is used.9S 

a new instance of the record is not created at all; rather, the + 
value of form is used and smashed. + 

If the value of a field is neither explicitly specified, nor implicitly specified via USING, REUSING 
or COPYING, the default value in the declaration is used, if any, otherwise NIL.96Forexample, 
following (RECORD A (0 CO) 0 .. 3), 
(CREATE A O"T USI~G X) translates as (LIST T (CAOR X) (CAOOR X». 
(CREATE A O"T COPYING X» as [LIST T(COPYALL (CAOR X» (COPYALL 
(CAOOR X]. 
(CREATE A O"T REUSING X) as (CONST (COR X». and 
(CREATE A O+-T) as (LIST T NIL 3). 

TYPE? 

The record package allows the user to test if a given datum "looks like" an instance of a record. 

93 

94 

9S 

96 

CREATE is not defined as a function. Instead, DWIM calls the appropriate function in the record package giving it 
the entire CREATE expression as an argumenl The translation of the CREATE expression, i.e., the Interlisp fonn 
which is evaluated to construct the datum, is then stored elsewhere, as with iterative statements and pattern matches. 

The record package goes to great pains to insure that the order of evaluation in the translation is the same as that 
given in the original create expression if the side effects of one expression might affect the evaluation of another. For 
example, given the declaration {RECORD CONS (CAR • CDR», the expression (CREATE CONS CDR .. X CAR"Y) 
will translate to (CONS Y X), but (CREATE CONS CDR"{FOO) CAR"{FlE» will translate to 
{{LAMBDA (SS1) {CONS (PROGN (SETQ S$l (FOO» (FIE}) S$l}}) 

because, for example. FOO might set some variables used by FIE. 

Note that {CREATE record REUSING form ..• } does not itself do any destructive operations on the value of 
form. The distinction between USING and REUSING is that (CREATE record REUSING form •.• ) win 
incorporate as much as possible of the old data structure into the new one being created, while 
(CREATE record USING form .•. ) will create a completely new data structure. with only the contents of the 
fields re·used. For example. CREATE REUSING a PROPRECORD just conses the new property names and values onto 
the list. while CREATE USING copies the top level of the lisl Another example of this distinction occurs when a 
field is elaborated by a subdeclaration: USING will create a new instance of the sub-record. while REUSING will use 
the old contents of the field (unless some field of the subdeclaration is assigned in the CREATE expression.) 

For BETWEEN fields in OATATYPE records. n1 is used: for other non-pointer fields zero is used. 

23.33 

- ----- -- -----------
~ -- - - , _c, 



Section 23: C/isp and Dwimify 

This can be done via an expression of the form (TYPE? record-name form). TYPE? is mainly 
intended for declarations involving record-type DATATYPE or TYPERECORD. For DATATYPEs, the 
TYPE? check is exact; i.e. the TYPE? expression will return non-NIL only if the value of form is 
an instance of the record named by record-name. For TYPERECORDs, the TYPE? expression will 
check that the value of form is a list beginning with record-name. For ARRAYRECORDs, it checks 
that the vaiue is an array of the correcl size.' For PROPRECORDs and ASSOCRECORDs, a TYPE? 
expression will make sure that the value of form is a property/association list with property names 
among the field-names of the declaration. 

Attempting to execute a TYPE? expression for a record of type ACCESSFNS,HASHLINK or 
RECORD will cause an error, TYPE? NOT IMPLEMENTED FOR THIS RECORD. The user can 
(re)define the interpretation of TYPE? expressions for a, particular declaration by inclusion of an 
expression of the form (TYPE? com) in the declaration, as described on page 23.32. 

DATA-PATHS 

The user may also elaborate a field by declaring that field name in a separate record declaration (as 
opposed to an embedded subdeclaration). For example, the declarations 

(RECORD MSG (10 (FROM TO) . TEXT» and (RECORD TEXT (HEADER • TXT» 
also subdivide TEXT . into two sub fields. The user may then specify X: MSG. HEADER to achieve the 
interpretation "x is a MSG, retrieve its HEADER".97 The notation X: NAME 1. NAME2 is interpreted to 
mean "find a path from the record with name NAME 1 to the field named NAME2", as opposed to 
X: NAME 1: NAME2, where NAME 1 and NAME2 are interpreted independently. 

The central point of separate declarations is that the (sub)rccord is not tied to another record (as 
with embedded declarations), and therefore can be used in many different contexts. For example, 
one might additionally have a declaration 

(RECORD REPLY (TEXT TO . RESPONSE». 
In this case, one could specify X : REPLY. HEADER to mean that X is a REPLY, and to retrieve 
(CAAR X). In general, the user may specifr as a data-path a chain of record/field names, e.g., 
X:MSG.TEXT.HEADER.SUBHEAD ... etc} where there is some path from each record to the 
next in the chain. Only as much of the path as ~iiCcessary to disambiguate it needs to be 
specified. For example, with the above declarations of MSG, TEXT and REPL Y,the path 
X:MSG.HEADER is unambiguous (it must go through TEXT); however, X:TEXT is not,99 as this 
could mean that X is either a MSG or a REPL Y.1oo 'Ibe record package interprets a data path by 
performing a tree search among all current declarations for a path from each name to the next, 
considering first local declarations (if any) and then global ones. 

97 

98 

99 

\ 

X: HEADER by itself is interpreted to mean that X is an instance of TEXT, and translates as (CAR X). 

Translation of expressions involving data paths are handll!d by replacing the expression by a fetch or replace 
statement with the fields given in a list: e.g .. X: F 00. FI E. A and X: FOO. FIE. MY are replaced by the expression 
(fetch (FOO FIE A) X) and (replace (FOO FIE A) of X with Y) respectively, with the translation 
stored elsewhere. Input of this form is also acceptable. 

Note that if a field has an identical interpretation in two declarations, e.g. if the field TEXT occurred in the same 
location Within the declarations of MSG and REPLY. it would not be considered ambiguous. 

100 In this case, the message AMBIGUOUS RECORD FIELD is printed and an error is generated. If a data-path rather 
than a single field is ambiguous. (e.g .. if there were yet another declaration (R[CORD TO (NAME • HEADER» and 
the user specified X:MSG.HEADER), the error AMBIGUOUS DATA PATH is generated. 

23.34 



The Record Package 

CHANGING RECORD DECLARATIONS 

The user may edit ( or delete) global record declarations with the function 

editrec[ editrecx] nlambda. nospread function, similar to editf or editv. editrcc calls 
the editor on a copy of all declarations in which carfeditrccx] is the 
record-name or a field name. On exit, it redeclares those that have 
changed and undeclares any that have been deleted. If car[editrecx] 
is NIL, all declarations are edited. 

Records can also be declared local to a particular function by using a CLISP declaration, as 
described on page 23.25; all local record declarations override global ones. In addition, a local + 
declaration of the form (RECORDS A B C) is equivalent to having copies of the global declarations + 
A , B, and C in the local declaration. + 

For both global and local records, the translation is computed using all CLISP declarations in effect 
as described on page 23.24, e.g., if the declaration UNDOABLE is in effect, IRPLACA, IRPLACD. 
IPUTHASH, etc. will be used. 

When the user redeclares a global record, the translations of all expressions involving that record or 
any of its fields are automatically deleted,l01 and thus will be recomputed using the new 
information. If the user changes a local record declaration, or changes some other. CLISP 
declaration, e.g., STANDARD to FAST, and wishes the new information to affect record expressions 
already translated, he must make sure the corresponding translations are removed, usually either by 
CLISPIFYING or applying the IDW edit macro. 

OTHER FUNCTIONS 

reclook[recordname;-;-;-;-] 

field1ook[ fieldname] 

returns the entire declaration for the record named recordname. + 
NIL if no record declaration with name recordname.102 + 

returns the list of declarations in which fieldname is the name of a + 
field. + 

recordfieldnames[recordname] returns the list of fields declared in record recordname, recordname + 
may either be a name or an entire declaration. + 

101 from clisparray. If the user is not using this method for storing translations. i.e., is instead using the CLIS~ 
method (page 23.23). those expreSSions already translated will remain as they are. (There is no practical way to locate 
them.) 

102 Note that the record package maintains internal state about current record declarations; performing destructive 
operations (e.g. ncoJlJ;) on the value of rec100k may leave the record package in an inconsistant state. To change a 
record delcaration. use editrec. 

23.35 

----:;-----:;-;:-::-:-- --



Section 23: CUsp and Dwimify 

+ recordaccess[fic1d;value;type;newvalue;dec] 
+ ~ is one of (FETCH FFETCH REPLACE FREPLACE 
+ IRE P LAC E) or their lowercase equivalents. ~ = NIL means 
+ FETCH. If ~ corresponds to a fetch operation, i.e. is FETCH, or 
+ FFETCH. recordaccess performs (type field OF value). If ~ 
+ corresponds to a replace. recordaccess performs (type field OF value 
+ WITH new value). dec is an optional declaration; if given, field is 
+ interpreted as a field name of that declaration.103 

23.12 CHANGETRAN104 

+ A very common programming construction consists of assigning a new value to some datum that is 
+ a function of the current value of that datum. Some examples of such read-modify-write sequences 
+ include: 

+ (SETQ X (IPLUS X 1» Incrementing a counter 
+ (SETQ X (CONS Y X» Pushing an item on the front ofa list 
+ . (PROG1 (CAR X) (SETQ X (CDR X») Popping an item off a list 

+ It is easier to express such computations when the datum in question isa simple variable as above 
+ than when it is an element of some larger data structure, for instance, the car of some list: 

+ (RPLACA X (IPLUS (CAR X) 1» 
+ (RPLACA X (CONS Y (CAR X» 
+ (PROG1 (CAAR X) (RPLACA X (CDAR X») 
+ (SETA A N (IPLUS (ELT A N) 1») 

+ The difficulty in expressing (and reading) modification idioms is in part due to the well-known 
+ . assymmetry of smashing versus accessing operations on structures: rpIaca is used to smash what car 
+ would return, seta corresponds to elt, and so on. The CLISP operator ... and the record package : 
+ operator combine to provide a more uniform mode of expression: 

+ X:1 ... (IPLUS X:l 1) 
+ X:1'" (CONS Y X:l) 
+ (PROG1 (CAR X:1) (X:1 ... (CDR X:1») 

+ The ... operator also helps in the seta-elt example, because elt and seta are defined to be 
+ setfn-~essfn pairs: 

+ (ELT A N) ... (IPLUS (ELT A N) 1) 

+ CLISP allows the same expression to be used for both the accessing and the smashing components 
+ of these statements, but it is still not obvious that they all involve a simple notion of structure 
+ modification. The user must read these statements very carefully to notice that the X: 1 and 
+ (EL TAN) expressions appear twice (e.g., the second expression might have been (ELl AM». 

103 Note that recordaccess is relatively inefficient, although it is better than constructing the equivalent fonn and 
perfonning an EVAL. 

104 Changetran was designed by R. M. Kaplan. 

23.36 



Changetran 

and he must type (and edit) the same expressions twice, which can be cumbersome if the + 
expressions are large. + 

The Changetran facility is designed to provide a more satisfactory notation in which to express + 
certain common (but user-extensible) structure modification operations. Changetran defines a set + 
of CLlSP words that encode the kind of modification that is to take place, e.g. pushing on a list, + 
adding to a number, etc. More important, the expression that indicates the datum whose value is + 
to be modified needs to be stated only once. Thus, the "change word" ADDis used to increase the + 
value of a datum by the sum of a set of numbers. Its arguments are an expression denoting the + 
datum, and a set of items to be added to its current value. For example, (ADD X: 3 (F 00» is + 
equivalent to X: 3+-X: 3+( FOO). + 

The datum expression in this and all other changewords must be an expression that can appear to + 
the left of the CLlSP +- operator, e.g. a variable, a : expression, an accessfn form. or any of the + 
corresponding dwimified expressions fetch, CAR. LAST, etc .• e.g. (ADD (ELT A N) 1). For + 
ADD and for all other changewords. the lower-case version may also be specified. Except for POP + 
(see below), the value of all built-in changeword forms is defined to be the new value of the + 
datum. Finally. if the datum expression is a complicated form involving subsidiary function calls + 
(e.g. (E L T (F 00 X) (F lEY) ) ), changetran goes to some lengths to make sure that those + 
subsidiary functions are evaluated only once (it binds local variables to save the results), even + 
though they logically appear in both the setting and accessing parts of the translation. Thus, in + 
thinking about both efficiency and possible side effects. the user can rely on the fact that the forms + 
will be evaluated only as often as they appear in the expression. + 

CHANGE WORDS RECOGNIZED BY CHANGETRAN + 
The following is a list of those change words recognized by changetran: + 
(ADD datum iteml item2 ... ) 

(PUSH datum iteml item2 ... ) 

(PUSHNEW datum item) 

Adds the specified items to the current value of the datum, stores + 
the result back in the datum location. lOS + 

Conses the items onto the front of the current value of the datum, + 
and stores the result back in the datum location. Equivalent to + 
(datum+- < iteml item2 ... ! datum». For example + 
(PUSH X A B) would translate as + 
[SETQ X (CONS A (CONS B X]. + 

Like PUSH (with only one item) except that the item is not added if + 
it is already fmemb of the datum's value.106 + 

(PUSHLIST datum iteml item2 ... ) 
Similar to PUSH, except that the items are appended in front of the 
current value of the datum. Equivalent to 

+ 
+ 
+ 
+ (datum +- <! item 1 ! item2 ... ! datum». 

lOS The translation will use IPLUS. PLUS. Of' FPLUS according to the CLISP declarations in effect. 

106 Note that. whereas [CAR (PUSH X 'FOO] will always be FOO, [CAR {PUSHNEW X 'FOO] might be something 
else if FOO already existed in the middle of the list 

23.37 



+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(POP datum) 

(SWAP fonnl fonn2) 

(CHANGE datum fonn) 

23.13 CLiSPIFY 

Section 23: Clisp and Dwimify 

Returns car of the current value of the datum after storing its cdr 
into the datum. Equivalent to 
[PROGl (CAR datum) (datum f- (CDR datum]. 
The current value is computed only once even though it is 
referenced twice. Note that this is the only built-in changeword for 
which the value of the fonn is not the new value of the datum. 

sets fonnl to fonn2 and vice versa, i.e. is equivalent to 
(fonnlf-(PROGl fonn2 fonn2f-fonnl», except that care is taken to 
make sure that expressions are not reevaluated unnecessarily. 

This is the most flexible of all change words, since it enables the 
user to provide an arbitrary form describing. what the new value 
should be, but it still highlights the fact that structure modification 
is to occur, and still enables the datum expression to appear only 
once. (CHANGE datum form) is equivalent to (datum f- form'). 
where form' is constructed from the form in the CHANGE statement 
by substituting the datum expression for every occurrence of the 
atom DATUM. For example, (CHANGE X: FOO (DATUM*5» is 
equivalent to (X: FOO f- (ITIMES X: FOO 5». CHANGE is useful 
for expressing modifications that are not built-in and are not 
sufficiently common to justify defining a user-changeword. As for 
other changeword expressions, the user need not repeat the datum
expression and need not worry about multiple evaluation of the 
accessing form. 

Oispify converts Intcrlisp expressions to CLISP. Note that the expression given to c1ispify need 
not have originally been input as CLISP, i.e., c1ispify can be used on functions that were written 
before CLISP was even implemented. Oispify is cognizant of declaration rules as well as all of the 
precedence rules.1°7 For example, c1ispify will convert (IPLUS A (ITIMES B C» into A+B*C. 
but (ITIMES A (IPLUS B C» into A*(B+C).108 Clispify converts calls to the six basic 
mapping functions, MAP, MAPC, MAPCAR, MAPLIST, MAPCONC, and MAPCON, into equivalent 
iterative statements. It also converts certain easily recognizable internal PROG loops to the 
corresponding i.s. For example, 

becomes 
... label (COND (pred ... forms ... (GO label») ... 

... label (WH I L E pred DO ... forms ... ) ... 109 

107 c1ispi.fy is table driven exactly the same as CLISP. so that if the user changes any precedence, or defines new 
operators. c1ispify "automatically" knows about it 

108 climlfy also knows how to handle expressions consisting of a mixture of Interlisp and CLISP, e.g .. (IPLUS A B-C) 
is converted to A+B·C, but (ITIMES A B+C) to (A-(B+C». clispify handles such cases by first dwimifying the 
expression. 

109 c1igTIJ.Y can convert all iterative statements· input in CLISP back to CLISP, regardless of how complicated the 
translation was. because the original CLiSP is saved. 

23.38 



Clispify 

Clispify is not destructive to the original Interlisp expression, i.e., c1ispify produces a new 
expression without changing the original.l1O Clispify will not convert expressions appearing as 
arguments to NlAMBDA functions. III 

lbe value of various global parameters affect the operation of ctispify: 

The user can disable the : transformation by setting the variable c1:flg to NIL. This will prevent 
c1ispify from constructing any expression employing a : infix operator, e.g., (CADR X) will not be 
transformed to X: 2. When c1:flg is T, c1ispify will convert to : notation only when the argument is 
atomic or a simple list (a function name and one atomic argument). If cl:flg is All, clispify will 
convert to : expressions whenever possible. The initial value of c1:flg is T. 

clremparsflg 

Clispify will remove parentheses in certain cases from simple forms, where "simple" means a 
function name and one or two atomic arguments. For example, (COND «ATOM X) --» will 
CLISPIFY to (IF ATOM X THEN --). However, if clremparsflg is set to NIL, clispify will 
produce (IF (ATOM X) THEN --). Note that regardless of the setting of this flag, the 
expression can be input in either form. The initial value of c1remparsflg is T . 

clispifypackflg 

c1ispifypackflg affects the treatment of infix operators with atomic operands. If clispifypackflg is T • 
c1ispify will pack these into single atoms, e.g., (I PLUS A (HIMES B C» becomes A+B*C. If 
c1ispifypackflg is NI L, no packing is done, e.g., the above becomes A + B * C. The initial value 
of clispifypackflg is T. - - - -

c1ispifyenglshflg 

If T, causes clispify to convert LISP forms to english phrases when possible, e.g., (MEMBER X Y) 
-) X IS A MEMBER OF Y .. See page 23.21. 

funnyatomlst 

Suppose the user has variables named A. B. and A*B. If clispify were to convert 
(ITIMES A B) to A*B, A*B would not translate back correctly to (ITIMES A B), since it would 
be the name of a variable. and therefore would not cause an error. The user can prevent this from 
happening by adding A*B to the list funnyatomlst. Then, (HIMES A B) would clispify to 
A_*_B. 

Note that A*B's appearance on funnyatomlst would not enable DWIM/CLISP to decode A*B+C as 

110 The new expression may however contain some "pieces" of the original. since c1ispify attempts to minimize the 
number of CONSes by not copying structure whenever possible. 

111 Except for those functions whose INFO property is or contains the atom EVAL. such as n1s~. resetlst, etc. c1ispify 
also contains built in information enabling it to process special forms such as 1lli'-Z. sel£..~t.9. etc. If the INFO + 
property is or contains the atom LABELS. ~1isn.if1 will never create an atom (by packing) at the top level of the + 
expression. For example. P!Q& is handled in this fashion. + 

23.39 



Section 23: Clisp and Dwimify 

( I PLUS A *B C); funnyatomlst is used only by clispify. Thus, if an identifier contains a CLiSP 
character, it should always be separated (with spaces) from other operators. For example, if X * is a 
variable, the user should write (S ET Q X * form) in CLlSP as X * +- form, not X· +-form. However, 
in general, it is best to avoid use Q[ identifiers containing CLISP character operators as much as 
possible. 

c1ispifyprettyfig 

If T, causes prettyprint to c1ispify all expressions before printing them (but not to redefine any 
functions). c1ispifyprettyfig is temporarily reset to T, using resetvar, when make file is called with 
the option CLISPIFY, or when the file in question has property FILETYPE with value CLISP on 
its property list. c1ispifyprettyflg is initially NIL. 

In addition to the above controls, disabling a CLiSP operator (see c1disable, page 23.59) will also 
disable the corresponding CLlSPIFY transformation. Thus, if +- is "turned off', A+-B will not 
transform to (S ET Q A B). nor vice versa. 

+ clispifyuserfn 

+ If T. causes clispifyuserfn, a function of one argument, to be called on the form (list) to be 
+ c1ispified, when form is not otherwise recognized by c1ispify. If a non-N I L value is returned, this 
+ value is treated as the clispified version of the fonn. 

23.14 DWIMIFY 

Dwimify is effectively a preprocessor for CLlSP. Dwimify operates by scanning an expression as 
though it were being interpreted, and for each form that would generate an error, calling DWIM to 
"fix" it.H2 'Thus the user will see the same messages, and be asked for approval in the same 
situations, as he would if the expression were actually run. If DWIM is unable to make a 
correction, no message is printed, the fonn is left as it was, and the analysis proceeds. 

Dwimify knows exactly how the interpreter works. It knows the syntax of progs, se1ect~sj lambda 
expressions, setqs, et a1. It knows that the argument of nlambdas are not evaluated. 1 It also 
knows how variables arc bound.114 In the course of its analysis of a particular expression, dwimify 
builds a list of the bound variables from the LAMBDA expressions and PROGs that it encounters. It 
uses this list for spclling corrections. Dwimify also knows not to try to "correct" variables that are 
on this list since they would be bound if the expression were actually being run. However, note 
that dwimify cannot, a priori, know about variables that are used freely but would be bound in a 
highcr function if the expression were evaluated in its normal context. Therefore, dwimify will try 

112 Thus dwimify perfonns all DWIM transfonnations, not just CLISP transfonnations, i.e., it does spelling correction, 
fixes 8-9 errors. handles F fl, etc. 

113 The user can infonn dwimifl' that an NlAMBDA function does evaluate its arguments (presumably by direct calls to 
eval), by including on its property list the property INFO with value EVAl or a list which contains the atom EVAl. 

+ 114 

+ 
The user can infonn gwimlfy that a particular function or construct binds variables by including the atom BINDS on 
the INFO property for 911" of the fonn. In this case. dwj!!!ify assumes that f..1Q!" of the foml is the variable list. i.e. a 
list of atoms. or lists of the fonn (var value). lambda, nlambda,.J!!Qg, and resctvars are handled in this fashion. + 

23.40 



Dwimify 

to "correct" these variables.llS Similarly, dwimify will attempt to correct forms for which fill: is 
undefined, even when the form is not in error from the user's standpoint, but the corresponding 
function has simply not yet been defined. 

Dwimify will also inform the user when it encounters an expression with too manyarguments,1l6 + 
because such an occurrence, although does not cause an error in the lnterlisp interpreter, + 
nevertheless is frequently symptomatic of a parenthesis error, e.g. the user wrote + 
(CONS (QUOTE Faa X» instead of (CONS (QUOTE Faa) X). Dwimify will print + 

POSSIBLE PARENTHESIS ERROR IN + 
(QUOTE FOO X) + 
TOO MANY ARGUMENTS (MORE THAN 1). + 

dwimify will also check to see if a m:Q& label contains a clisp character,117 and if so, will alert the + 
user by printing the message SUSPICIOUS PROG LABEL, followed by the label. The ru:Q& label + 
will not be treated as clisp. + 

Note that in most cases, an attempt to transform a form that is already as the user intended will 
have no effect (because there will be nothing to which that form could reasonably be transformed). 
However, in order to avoid needless calls to DWIM or to avoid possible confusion, the user can 
inform dwimify not to "attempt corrections or transformations on certain functions or variables by 
adding them to the list nofixfnslst or nofixvarslst respectively.U8 119 

Dwimify and dwimifyfns (used to dwimify several functions) maintain two internal lists of those 
functions and variables for which corrections were unsuccessfully attempted. These lists are 
initialized to nofixfnslst and nofixvarslst. Once an attempt is made to fix a particular function or 
variable, and the attempt fails, the function or variable is added to the corresponding list, so that 
on subsequent occurrences (within this caU to dwimify or dwimifyfns), no attempt at correction is 
made. For example, if FOO calls FIE several times, and FIE is undefined at the time FOO is 
dwimified, dwimify will not bother with FIE after the first occurrence. In other words, once 
dwimify "noticcs" a function or variable, it no longer attempts to correct it.120 Moreover, once 
dwimify "notices" such functions or variables, it subsequently treats them the same as though they 
were actually defined or set. 

U5 dwimify rebinds fixsnelldefault to N. so that if the user is not at the terminal when dwimifying (or compiling), + 
spelling corrections will not be perfotmed. + 

116 unless dwimcheck#argsflg=NIL (initially T). + 

117 unless dwimcheckproglabelsflg=NIL (initially T). or the label is a member of nofixvarslst. + 

118 Note that the user could achieve the same effect by simply setting the corresponding variables. and giving the 
functions dummy definitions. 

119 Dwimify will never attempt corrections on global variables. i.e .• variables that are a member of the list globalva!J. or 
have the property GlOBAlVAR with value T. on their property lisL Similarly. Dwimify will not attempt to correct 
variables declared to be LOCALFREEVARS or SPECVARS in block declarations or via DECLARE expressions in the 
function body. The user can also declare variables that are simply used freely in a function by using the USEDFREE + 
declaration. + 

120 Dwimify and dwimifyfns also "noticc" free variables that are set in the expression being processed. 

23.41 



Section 23: CUsp arul Dwimify 

Note that these internal lists are local to each call to dwimify and dwimifyfns, so that if a function 
containing FOOO, a misspelled call to FOO, is dwimified before Faa is defincd or mentioned, if the 
function is dwimificd again aftcr Faa has bccn dcfined, the correction will be made. 

Note that the user can undo selected transfonnations perfonncd by dwimify, as described in 
Section 22. 

COMPILING CLiSP 

Since the compiler docs not know about CLlSP, in order to compile functions containing CLlSP 
constructs, the definitions must first be dwimified. The user can automate this process in several 
ways: 

1) If the variable dwimifycompflg is T, the compiler will always· dwimify expressions before 
compiling them. dwimifycompflg is initially NIl. 

2) If a file has the property FILETYPE with value CLlSP on its property list, tcomp1, bcompJ, 
recompile, and brecompile will operate as though dwimifycompflg is T and dwimify an 
expressions before compiling. 

3) If the function definition has a CLISP declaration (see page 23.24), including a null 
declaration, I.e., just ( C LI S P : ), the definition will be automatically dwimified before 
compiling. 

Note: compileuserfn (Section 18) is defined to call dwimify on iterative statements, IF -THEN 
statements, and fetch, replace, and match expressions, I.e., any CLlSP construct which can be 
recognized by its car of form. Thus, if the only CLlSP constructs in a function· appear inside of 
iterative statements, I F statements, etc., the function does not have to be dwimified before 
compiling. 

+ If dwimify is ever unsuccessful in processing a CLISP expression, it will: print the error message 
+ UNABLE TO DWIMI FY followed by the expression, and go into a break~21 The user can then 
+ either: 

+ (1) type OK to the break, which will cause the compiler to try again, e.g. the user could define 
+ some missing records while in the break, and then continue; or 

+ (2) type t, which will cause the compiler to simply compile the expression as is, i.e. as thoughclisp 
+ had not been enabled in the first place; or 

+ (3) return an expression to be compiled in its place by using the RETURN break command. 

Note: teompl, bcompl, recompile, and brecompile all scan the entire file before doing any 

121 . unless dwimeSSM-E = T. In this case, the expression is just compiled as is. i.e. as though clisp had not been enabled. 

23.42 



Dwimify 

compiling, and take note of the names of all functions that are defined in the file as well as the 
names of all variables that are set by adding them to nofixfnslst and nofixvarslst, respectively. 
11lUs, if a function is not currently defined, but is defined in the file being compiled, when 
dwimify is called before compiling, it will not attempt to interpret the function name as CLISP 
whcn it appears as car of a form. Dwimify also takes into account variables that have been + 
declared to be GLOBALVARS, LOCALVARS, or SPECVARS, either via block declarations or + 
DECLARE expressions in the function being compiled, and does not attcmpt spelling correction on + 
these variables. 111e declaration US ED F R E E is also available to declare variables simply used freely + 
in a function. These variables will also be left alone by dwimify. Finally, nospellflg (see page + 
23.57) is reset to T when compiling functions from a file (as opposed to from their in-core + 
definition) so as to suppress spelling correction. + 

23.15 THE PRINTOUT PACKAGE + 

Interlisp provides many facilities for controlling the format of ·printed output. By executing various + 
sequences of prin1, prin2, tab, terpri, spaces, printnum, and printdef, almost any effect can be + 
achieved. The printout package implements a compact language for specifying complicated + 
sequences of these elementary printing functions. It makes fancy output formats easy to design + 
and simple to program. + 

OVERVIEW AND EXAMPLES + 

PRINTOUT is a CLISP word (like for and if) for interpreting a special printing language in + 
which the user can describe the kinds of fancy printing he wants to achieve. The description is + 
translated by dwimify machinery to the appropriate sequence of prinl, tab, etc. before it is + 
evaluated or compiled. Printout printing descriptions have the following general form: + 

(printout file printcom1 printcom2 ... printcomn) + 

The file parameter is evaluated to obtain the name of the file to which the output from this + 
specification is directed, and each printcom in the sequence is a command that indicates a printing + 
event to be executed. The various ways of realizing a printcom are defined below. The following + 
examples give a general flavor of how printout is used. + 

Example 1: Suppose the user wanted to print out on his terminal the values of three variables;!. + 
y, and ~, separated by spaces and followed by a carriage return. This could be done by: + 

(PRIN1 X T) + 
(SPACES 1 T) + 
(PRINl Y T) + 
(SPACES 1 T) + 
(PRINl Z T) + 
(TERPRI T) + 

or by the more concise printout form: + 

(PRINTOUT T X , Y , Z T) + 

Here the first T specifics output to the terminal, the commas cause single spaces to be printed, and + 
the final T specifics a tcrpri. The variable names arc not recognized as special printout commands; + 
so U1CY arc printed using prin1 by default. + 

23.43 



Section 23: Clisp and DwimiJY 

+ Example 2. Suppose the values of ! and y. are to be pr<..;tty-printed lined up at position 10. 
+ preceded by identifying strings. If the output is to go to the primary output file. the user could 
+ write either: 

+ 
+ 
+ 
+ 
+ 
+ 

(PRIN1 "X =") 
( PRINTDEF X 10 
(TERPRI ) 
(PRIN1 "Y =") 
(PRINTDEF Y 10 
(TERPRI) 

T) 

T) 

+ or the equivalent: 

+ (printout NIL "X =" 10 .PPV X T "Y :" 10 .PPV Y T) 

+ Since strings are not recognized as special commands, "X =" is also printed with prin1 by default 
+ The positive integer means tab to position 10, where the . P PV command causes the value of.! to 
+ be prettyprinted as a variable. By convention, special atoms used as printout commands are 
+ prefixed with a period. The T causes a carriage return, so the y. information is printed on the next 
+ line. 

+ Example 3. As a final example, suppose that the value of! is an integer and the value of y. is a 
+ floating-point number. ! is to be printed right-flushed in a field of width 5 beginning at position 
+ 15, and y. is to be printed in a field of width 10 also starting at position 15 with 2 places to the 
+ right of the decimal point. Furthermore, suppose that the variable names are to appear in the font 
+ named BOLD FONT and the values in font SMALL FONT. The program in ordinary Lisp that would 
+ accomplish these effects is too complicated to include here. With printout, one could write: 

+ 
+ 
+ 

(PRINTOUT NIL .FONT BOLDFONT "X =" 15 .FONT SMALLFONT .15 X T 
.FONT BOLDFONT "Y =" 15 .FONT SMALLFONT 
.FIO.2 Y T .FONT BOLDFONT) 

+ The. FONT commands print on the file the font-changing instructions appropriate for a multi-font 
+ output device (see Section 14). lbe .15 command sets up a FIX format for a call to the function 
+ printnum (see Section 14 ) to print X in the desired format. The . FlO. 2 specifies a FLOAT 
+ format for printnum. 

+ THE PRINTOUT FORM 

+ There are two parts to the expression that is the Lisp translation of a printout form. The first part 
+ sets up a context in which printing is to be done in the case that a non-NIL file parameter is 
+ specified. In this case, the previous primary output file is remembered and the specified file is 
+ made primary during the execution of any subsequent printing. When the printout form is 
+ completed. the earlier primary file is restored,122 The second part of a printout translation contains 

+ 122 

+ 
+ 
+ 

i.e. if a non-N I l file parameter is specified, the J2rintout must effectively be embedded in a resetform (see Section 5). 
For this reason, if the user is going to be performing several calls to printoill specifying the same, non-NIL file, it 
will be more efficient to embed them all in a single resetfot:m which changes the primary output file, and then 
specify file =' NIL in the printout expressions themselves. 

23.44 



The Printout Package 

the Lisp expressions which actually carry out the list of printout commands. Notice that the + 
printout commands are strung together, one after tile other without punctuation, as cddr of the + 
printout form. Some commands occupy a single position in this list, but many commands expect + 
to find arguments following the command name in the list + 

The printout commands fall into several logical groups: one set deals with horizontal and vertical + 
spacing, another group provides controls for certain formatting capabilities (font changes and + 
subscripting), while a third set is concerned with various ways of actually printing items. Finally, + 
there is a command that permits escaping to a simple Lisp evaluation in the middle of a printout + 
form. + 

HORIZONTAL SPACING COMMANDS + 

The horizontal spacing commands provide convenient ways, of calling tab and spaces. In the + 
following descriptions, !! stands for a literal positive integer. + 

n 

.TABpos 

. TABO pos 

-n 

, ., ,,, 

. S P distance 

.RESET 

used for absolute spacing. It results in a tab to position!! (literally, + 
a (TAB n». If the line is currently at position n or beyond, the file + 
will be positioned at n on the next line. + 

specifies tab to position (the value of)~. This is one of several + 
commands whose effect could be achieved by simply escaping to + 
Lisp, and executing the corresponding form. It is provided as a + 
separate command so that the printout form is more concise and is + 
prettyprinted more compactly. Note that. TAB nand n, where.n is + 
an integer, are equivalent. + 

like . TAB except might result in zero spaces.123 + 

Negative integers indicate relative (as opposed to absolute) spacing. + 
Translates as (SPACES I n I). + 

Provide a short-hand way of specifying 1, 2 or 3 spaces, i.e., these + 
commands are equivalent to -1, -2, and -3, respectively; + 

Translates as (SPACES distance). Note that. SP nand -n, where n + 
is an integer, are equivalent. + 

Resets the current line by causing a carriage-return to be printed + 
without a line-feed. Useful for overprinting, or for regaining . + 

123 Le. the call to tab specifies minspaces::O. + 

23.45 



+ 
+ 

Section 23: Clispand Dwimify 

control of a line on which characters have been printed in a 
variable pitched font. 

+ VERTICAL SPACING COMMANDS 

+ Vertical spacing is obtained by calling terpri or printing fonn-feeds. The relevant commands are: 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

T 

.SKIP lines 

. PAGE 

Translates as (TERPRI). This command is functionally equivalent 
to the integer command 0: they both move to position 0 
(= column 1) of the next line. Note, to print the letter T, use the 
string "T". 

Equivalent to a sequence of lines (TERPRI),s. The .SKIP 
command allows for skipping large constant distances and for 
computing the distance to be skipped. 

Puts a fonn-feed (control-L) out on the file. Care is taken to make 
sure that Interlisp's view of the current line position is correctly 
updated. 

+ SPECIAL FORMATTING CONTROLS 

+ There are a small number of commands for invoking some of the formatting capabilities of 
+ multi-font output devices. The available commands are: 

+ . FONT fontspec 
+ 
+ 
+ 
+ 
+ 
+ 

+ .SUP 
+ 
+ 

+ .SUB 
+ 

+ .BASE 
+ 
+ 

Puts out a control sequence that causes a change to font fontspec 
(the association between fontspec and a specific font must be 
defined in the user's font profile, as described in Section 14). 
fontspec may be a font-name variable or an expression that 
evaluates to the value of a font-name variable. fontspec may also 
be a positive integer n. which is taken as an abbreviated reference 
to the font named FONTn (e.g. 1 = > FONT1). 

Specifies sup{'rscripting. All subsequent characters are printed 
above the base of the current line. Note that this is absolute, not 
relative: a . SUP following a . SUP is a no-op. 

Specifics subscripting. Subsequent printing is below the base of the 
current line. As with superscripting, the effect is absolute. 

Moves printing back to the base of the current line. Un-does a 
previous . SUP or . SUB; a no-op, if printing is currently at the 
base. 

23.46 



~-"C--=--------

The Printout Package 

PRINTING SPECIFICATIONS + 

The value of any expression in a printout fOim that is not recognized as a command itself or as a + 
command argument is printed using prin1 by default. For example, title strings can be printed by + 
simply including the string as a separate printout command, and the values of variables and forms + 
can be printed in much the same way. Note that a literal integer, say 51, cannot be printed by + 
including it as a command, since it would be interpreted as a T AS; the desired effect can be + 
obtained by using instead the string specification "51", or the form (QUOTE 51). + 

For those instances when prin1 is not appropriate, e.g. the user wants prin2 instead, or he wants + 
list structures to be prettyprinted, the following commands are available: + 

• P2 thing 

• PPV thing 

• PPF thing 

• PPVTL thing 

• PPFTL thing 

Paragraph format 

Causes thing to be printed using prin2; 
(PRI N2 thing). 

translates as + 
+ 

Causes thing to be prettyprinted at the current line position via + 
printdef. The call to printdef specifies that thing is to be printed as + 
a variable, not a function, so that nothing special is done for + 
SELECTQ, PROG, etc. + 

Prettyprints thing as part of a function definition. S E L E CTQ • + 
PROG, etc. do receive special treatment. + 

Causes thing to be preUyprinted as a tail, that is, without the initial + 
and final parentheses if it is a list. Useful for prettyprinting sub- + 
lists of a list whose other elements are formatted with other + 
commands. + 

Prettyprints thing as a tail, and as part of a function definition. + 

+ 

Interlisp's prettyprint routines are designed to display the structure of S-expressions, but they are + 
not really suitable for formatting unstructured text. If a list is to be printed as a textual paragraph, + 
its internal structure is less important than controlling its left and right margins, and the + 
indentation of its first line. The . PARA and . PARA2 commands allow these parameters to be + 
conveniently specified. + 

• PARA Imarg rmarg list 

· PARA2 lmarg rmarg list 

Prints list in paragraph format, using prinl. Translates as + 
(PRINTPARA Imarg rmarg list) (see page 23.50). Example: + 
(PRINTOUT T 10 . PARA 5 -5 LST) will print the clements of + 
1st as a paragraph with left margin at 5, right margin at + 
(LINELENGTH)-S, and the first line indented to 10. + 

Print as paragraph using prin2 instead of prinl. Translates as + 
(PRINTPARA Imarg nnarg list T). + 

23.47 



Section 23: Clispand Dwimify 

+ Right-flushing 

+ Two commands are provided for printing simple expressions flushed-right against a specified line 
+ position, using the function flushtight. They take into account the current position, the number of 
+ characters in the print-name of the expression. and the position the expression is to be flush 
+ against, and then print the appropriate number of spaces to achieve the desired effect. Note that 
+ this might entail going to a new line before printing. Note also that right-flushing of expressions 
+ longer than a line (e.g. a large list) makes little sense,and the appearance of the output is not 
+ guaranteed. 

+ . FR pos expr 
+ 
+ 
+ 
+ 
+ 

+ . FR2 pos expr 

+ Centering 

Flush-right using prin!. The value of ~ determines the position 
that the right end of expr will line up at. As with the horizontal 
spacing commands, a negative position number means Iposl 
columns from the current position, a Positive number specifies the 
position absolutely. ~=O specifies the right-margin, i.e. is 
interpreted as (LINELENGTH). 

Flush-right using prin2 instead of prin!. 

+ Commands for centering simple expressions between the current line position and another specified 
+ position are also available. As with right flushing, centering of large expressions is not guaranteed. 

+ . CENTERpos expr 
+ 
+ 
+ 

+ . CENTER2 pos expr 

+ Numbering 

Centers expr between the current line position and the position 
specified by the value of~. A positive ~ is an absolute position 
number, a negative ~ specifies a position relative to the current 
position, and 0 indicates the right-margin. Uses prin1 for printing. 

Centers using prin2 instead of prinl. 

+ The following commands provide FORTRAN-like formatting capabilities for integer and 
+ floating-point numbers. Each command specifies a printing format and a number to be printed. 
+ The format specification translates into a format-list for the function printnum, which is described 
+ in Section 14. 

+ . I format number 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Specifies integer printing. Translates as a call to the function 
printnum with a FIX format-list constructed from format. The 
atomic format is broken apart at internal periods to form the 
format-list. For example, . 15 . - 8 . T yields the format-list 
( F I X 5 - 8 T), and the command sequence (... . 15 . - 8 • T 
FOO ... ) will translate as (PRINTNUM '( FIX 5 -8 T) FOO). 
It will cause the value of foo to be printed with radix -8 right
flushed in a field of width 5, with O's used tor padding on the left. 

23.48 



------... ' .--.'=",~. ",' ~.~-~--

• F fonnat number 

. N format number 

ESCAPING TO LISP 

The Printout Package 

Internal NI L's may be omitted, e.g. the commands . I5 .. T and + 
. I5. NI L. T arc equivalent. + 

Specifics floating-number printing. Like the .lfonnat command, + 
except translates with a F LOA T format-list. + 

The . I and . F commands specify calls to printnum with quoted + 
fonnat specifications. The . N command translates as (PRINTNUM + 
format number), i.e., it permits the fonnat to be the value of some + 
expression. Note that, unlike the . I and . F commands, fonnat is + 
a separate element in the command list, not part of an atom + 
beginning with . N. + 

+ 
There are many reasons for taking control away from printout in the middle of a long printing + 
expression. Common situations involve temporary changes to system printing parameters (e.g. + 
linc1ength), conditional printing (e.g. print foo only if fie is T), or lower-level iterative printing + 
within a higher-level print specification. + 

# form the escape command. form is an arbitrary Lisp expression that will + 
be evaluated within the context established by the printout form, + 
i.e. form can assume that the primary output file has been set up + 
appropriately. + 

USER-DEFINED COMMANDS + 
The collection of commands and options outlined above is aimed at fulfilling all common printing + 
needs. However, certain applications might have other, more specialized printing idioms, so a + 
facility is provided whereby the user can define his own commands. To do this, he must make + 
entries on the global list printoutmacros to define how his new commands are to be translated. + 
printoutmacros is an a-list whose elements are of the form (command-name translation-function). + 
Whenever command-name appears in command position in the sequence of printout commands (as + 
opposed to an argument position of another command), translation-function is applied to the tail of + 
the command-list. After inspecting as much of the tail as necessary, the function must return a list + 
whose car is the translation of the user-defined command and its arguments, and whose cdr is the + 
list of commands still remaining to be translated in the nonnal way. + 

For example, suppose the user wanted to define a command "?", which will cause its single + 
argument to be printed with prinl only if it is not NIL. He must enter (7 ?IRAN) on + 
printoutmacros, and define the function ?tran as follows: + 

(LAMBDA (COMS)+ 
(CONS (SUBST COMS:2 'ARG + 

'(PROG «TEMP ARG» + 
(AND TEMP (PRINt TEMP»» + 

COMS: :2» + 

23.49 



Section 23: Clisp and Dwimify 

+ Note that ?tran does not do any printing itself; it returns a form which. when evaluated in the 
+ proper context. will perfonn the desired action. This fQrm should direct all printing to the primary 
+ output file. . 

+ SPECIAL PRINTING FUNCTIONS 

+ The paragraph printing commands are translated into calls on the function printpar~ which may 
+ also be called directly: 

+ printpara[1marg;rmarg;list;p2flg;parenflg;file] 
+ Prints list on file in line-filled paragraph format with its first 
+ element beginning at the current line position and ending at or 
+ before rmarg. and with subsequent 1in~ appearing between Jmru:g 
+ and rmarg. If P.Wg is non-N I L, prints elements using prin2, 
+ otherwise prinl. If parenflg is non-N I L, then parentheses will be 
+ printed around the elements of list. 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

If lmarg is zero or positive, it is interpreted as an absolute column 
position. If it is negative, then the left margin will be at 
Ilmargl+(POSITION). If lrnarg=NIL, the left margin will be at 
(POSITION), and the paragraph will appear in block format 

If rmarg is positive, it also is an absolute column position (which 
may be greater than the current (LINE LENGTH». Otherwise, it is 
interpreted as relative to (LINELENGTH), i.e., the right margin will 
be at (LlNELENGTH)+lrmargl. Example: (TAB 10) 
(PRINTPARA 5 -5 LST T) will prin2 the elements of 1st in a 
paragraph with the first line beginning at column 10, subsequent 
lines beginning at column 5, and all lines ending at or before 
(LINELENGTH)-5. 

The current (LINE LENGTH) is unaffected by printpara, and upon 
completion, file will be positioned immediately after the last 
character of the last item of list. printpara is a no-op if list is not a 
list 

+ The right-flushing and centering commands translate as calls to the function flushright: 

+ flushright[pos;x ;min;p2flg ;centerflg; file] 
+ If centerflg=NIL, prints! right-flushed against position ~ on file; 
+ otherwise. centers ! between the current line position and ,PQ§. 
+ Makes sure that it spaces over at least min spaces before printing 
+ by doing a terpri if necessary; min=NIL is equivalent to min=!. 
+ A positive ~ indicates an absolute position, while a negative pos 
+ signifies the position which is Iposl to the right of the current line 
+ position. ~=O is interpreted as (LINELENGTH), the right margin. 

23.50 



Clisp Operation 

23.16 CLiSP OPERATION 

CLISP is a part of the basic Interlisp system. Without any special preparations, the user can 
includc CLISP constructs in programs, or typc thcm in dircctly for cvaluation ~n cval or .mm!Y 
format), thcn, when thc "crror" occurrs, and DWIM is called, it wi1l destructively 24 transform the 
CUSP to tilC cquivalent Intcrlisp cxprcssion and evaluate thc Interlisp expression. User approval 
is not requested, and no message is printed.125 

However, if a CUSP construct contains an error, an appropriate diagnostic is generated, and the 
fOlro is left unchanged. For example, if the user writes (LI S T X + Y· ), the error diagnostic 
MISSING OPERAND AT X+Y· IN (LIST X+Y·) would be generated. Similarly, if the user 
writes (LAST+EL X), CUSP knows that «IPLUS LAST EL) X) is not a valid Interlisp 
expression, so the crror diagnostic MISSING OPERATOR IN (LAST+EL X) is generated. (For 
example, the user might have meant to say (LAST+EL·X).) Note that if LAST+EL were the 
name of a defined function, CLISP would never see this form. 

Since the bad CUSP transformation might not be CLISP at all, for example, it might be a 
misspclling of a user function or variable, DWIM holds all CLISP error messages until after trying 
othcr corrections. If one of thesc succeeds, the CLISP mcssage is discardcd. Otherwise, if all fail, 
thc message is printcd (but no change is made).126 For examplc, suppose the user types 
(R/PLACA X V). CLISP generates a diagnostic, since «IQUOTIENT R PLACA) X Y) is 
obviously not right. However, since R/PLACA spelling corrects to IRPLACA, this diagnostic is 
never printed. 

If a CLISP infix construct is well formed from a syntactic standpoint, but one or both of its 
operands are atomic and not bound,127 it is possible that either the operand is misspelled, e.g., the 
user wrote X+YY for X+Y, or that a CLISP transformation operation was not intended at all, but 
that the entire expression is a misspelling. For example, if the user has a variable named LAST
E L, and writes (LI S T LAS T - ELL) . Therefore, CLISP computes, but does not actually perform, 
the indicated infix transformation. DWIM then continues, and if it is able to make another 
correction, does so, and ignores the CLISP interpretation. For example, with LAST-ELL. the 
transformation LAS T - ELL - > LAS T - EL would be found. 

If no other transformation is found, and DWIM is about to interpret a construct as CLISP for 
which one of the operands is not bound, DWIM will ask the user whether CLISP was intended, in 
this case by printing LAST-ELL TREAT AS CLISP 1128 

124 CLISP transfonnations, like all DWIM corrections, are undoable. 

125 This entire discussion also applies to CLISP transfonnation initiated by calls to DWIM from dwimify. 

126 Except that CLISP error messages are not printed on type-in. For example, typing X + .. Y will just produce aU. 8 . A. 

127 

128 

X + .. Y message. 

For the purpose of ffi\'imifying. "not bound" means no top level value. not on list of bound variables built up by 
dwimjfy during its analysis of the expression. and not on nofixvarslst, i.e., not previously seen. 

If more than one infix operator was involved in the CLISP construct, e.g., X+Y+Z, or the operation was an 
assignmellt to a variable already noticed. or tre;!,t.1sclispflg is T (initially NIL), the user will simply be informed of the 
correction. e.g., X+Y+Z TREATED AS CLISP. Otherwise, even if DWIM was enabled in TRUSTING mode, the user 
will be asked to approve the correction. 

23.51 



Section 23: Clisp and Dwimify 

The same sort of procedure is followed with 8 and 9 errors. For example, suppose the user writes 
F008*X where FOOS is not bound. The CLlSP transformation is noted, and DWIM proceeds. It 
next asks the user to approve FOOS*X -) FOO ( *X. (For example, this would make sense if 
the user has (or plans to define) a function named *X.) If he refuses, the user is asked whether 
FOOS"'X is to be treated as CLlSP. Similarly, if FOOS were the name of a variable, and the user 
writes FOOOS"'X, he will first be asked to approve FOOOS*X -) FOOO ( XX ,129 and if he 
refuses, then be offered the FOOOS -) FOOS correction. 

CLISP also contains provision for correcting misspellings of infix operators (other than single 
characters), I F words, and i.s. operators. lbis is implemented in such a way that the user who 
does not misspell them is not penalized. For example, if the user writes 
IF N=O THEN 1 ELSSE N"'( FACT N-l) CLISP does not operate by checking each word to see 
if it is a misspelling of IF, THEN, ELSE, or ELSEI F, since this would seriously degrade 
CLlSP's performance on all I F statements. Instead, CLISP assumes that all of the I F words are 
spelled correctly, and transforms the expression to 
(COND «ZEROP N) 1 ELSSE N"'(FACT N-l»). Later, after DWIM cannot find any other 
interpretation for E LSS E~ and using the fact that this atom originally appeared in an IF statement, 
DWIM attempts spelling correction, using (IF THEN ELSE ELSE IF) for a spelling list. When 
this is successful, DWIM "fails" all the way back to the original IF statement, changes ElSSE to 
ELSE, and starts over. Misspellings of AND. OR, L T, GT, etc. are handled similarly. 

CLISP also contains many Do-What-I-Mean features besides spelling corrections. For example, the 
form (LIST +X Y) would generate a MISSING OPERATOR error. However, (LIST -X Y) 
makes sense, if the minus is unary, so DWIM offers this interpretation to the user. Another 
common error, especially for new users, is to write (LIST X*FOO(Y» or (LIST X*FOO y), 
where Faa is the name of a function, instead of (LIST X"'( FOO Y». Therefore, whenever an 
operand that is not bound is also the name of a function (or corrects to one), the above 
interpretations are offered. 

23.17 CLiSP INTERACTION WITH USER 

Syntactically and semantically well formed CLISP transformations are always performed without 
informing the user. Other CLISP transformations described in the previous section, e.g., 
misspellings of operands, infix operators, parentheses errors, unary minus - binary minus errors, all 
follow the same protocol as other DWIM transformations (Section 17). That is, if DWIM has been 
enabled in TRUSTING mode, or the transformation is in an expression typed in by the user for 
immediate execution, user approval is not requested, but the user is informed.l3O However, if the 
transformation involves a user program, and DWIM was enabled in CAUT I OUS mode, the user will 
be asked to approve. If he says NO, the transformation is not performed. Thus, in the previous 
section, phrases such as "one of these (transformations) succeeds" and "the transformation 
LAST-ELL -) LAST-EL would be found" etc., all mean if the user is in CAUTIOUS mode and 
the error is in a program, the corresponding transformation will be performed only if the user 
approves (or defaults by not responding). If the user says NO, the procedure followed is the same 
as though the transformation had not been found. For example, if A'" B appears in the function 
FOO, and B is not bound (and no other transformations are found) the user would be asked 

129 The 8·9 transfonnation is tried before spelling correction since it is empirically more likely that an unbound atom or 
undefined function containing an 8 or a 9 is a parenthesis error, rather than a spelling error. 

130 However. in certain situations. DWIM will ask for approval even if DWIM is enabled in TRUSTING mode. For 
example. the user will always be asked to approve a spelling correction that might also be intelpretcd asa CUSP 
transformation. as in LAST-ELL -) LAST-EL. 

23.52 



Clisp Interaction with User 

A*B [IN FOO] TREAT AS CLISP? 131 

If the user approved, A*B would be transformed to (ITIMES A B), which would then cause a 
U. B . A. B error in the event that the program was being run (remember the entire discussion also 
applies to DWIMIFYing). If the user said NO, A*B would be left alone.l32 

23.18 CLiSP INTERNAL CONVENTIONS 

Note: the reader can skip this section and proceed to "Function and Variables" (page 23.56), 
unless he wants to add new operators, or modify the action of existing ones (other than by making 
declarations). 

CLISP is almost entirely table driven by property lists for the corresponding infix or prefix 
operators. Thus it is relatively easy to add new infix or prefix operators or change old ones, simply 
by adding or changing selected property values.B3 . 

CLISPTYPE The property value of the property CLlSPTYPE is the precedence 
number of the operator: l34 higher values have higher precedence, 
i.e., are tighter. Note that the actual value is unimportant, only the 
value relative to other operators. For example, CLISPTYPE for :, 
t, and * are 14, 6, and 4 respectively. Operators with the same 
precedence group left to right, e.g., I also has precedence 4, so 
A/B*C is (A/B)*C. 

An operator can have a different left and right precedence by 
making the value of CLISPTYPE be a dotted pair of two numbers, 
e.g., CLISPTYPE of +- is (8 ,-12). In this case, car is the left 
precedence, and cdr the right, i.e., car is used when comparing with 
operators on the left, and cdr with operators on the right. For 
example, A*B+-C+D is parsed as A*(B+-(C+D» because the left 
precedence of +- is 8, which is higher than that of *, which is 4. 
The right precedence of +- is -12, which is lower than that of +, 
which is 2. 

Clisp bracket operators are defined by having the value of the + 
CLISPTYPE property be the atom BRACKET for both left and right + 
brackets, e.g. for both < and >. See discussion of + 
CLISPBRACKET below. + 

131 The waiting time on such interactions is three times as long as for simple corrections, i.e .• 3*dwimwait. 

132 If the value of clisphe\pflg = NIL (initally T). the user will not be asked to approve any clisp transformation. Instead, + 
in those situations where approval would be required. the effect is the same as though the user had been asked and + 
~* + 

133 There is some built in information for handling minus. :. '. and -. i.e .• the user could not himself add such "special" 
operators. although he can disable or redefine them. 

134 Unless otherwise specified. the property is stored on the property list of the operator. 

23.53 



UNARYOP 

BROADSCOPE 

LISPFN 

SETFN 

CLISPINFIX 

+ CLISPWORD 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Section 23: Clisp and Dwimify 

If the CLISPTYPE property for any operator is removed, the 
corresponding CLISP transformation is disabled, as well as the 
inverse CLISPIFY transformation. 

'The value of property UNARYOP must be T for unary operators or 
brackets. The operand is always on the right, i.e., unary operators 
or brackets are always prefix operators. 

The value of property BROADSCOPE is T if the operator has lower 
precedence than Interlisp forms, e.g., l T, EQUAL, AND, etc. For 
example, (FOO X AND Y) parses as «FOO X) AND V). If the 
BROADSCOPE property were removed from the property list of 
AND, (FOO X AND Y) would parse as. (FOO (X AND Y». 

The value of the property LISPFN is the name of the function to 
which the infix operator translates. For example, the value of 
LISPFN for t is EXPT, for I QUOTE, etc. If the value of the 
property LISPFN is NIL, the infix operator itself is also the 
function e.g., AND. OR. EQUAL. 

If FOO has a SETFN property FIE, then (FOO -- )+-X translates to 
( FIE - - X) . For example, if the user makes E l T be an infix 
operator,e.g. #, by putting appropriate CLISPTYPE and LISPFN 
properties on the property list of # then he can also make # 
followed by 4- translate to SETA, e.g., X#N+-Y to (S ETA X NY). 
by putting SETA on the property list of E l T under the property 
SETFN. Putting (ElT) (i.e.,list[ElT]» on the property list of 
SETA under property SETFN will enable SETA forms to CLISPIFY 
back to E L 1's. 

The value of this property is the CLISP infix to be used in 
CLISPIFYing. This property is stored on the property list of the 
corresponding Interlisp function, e.g., the value of property 
CLISPINFIX for EXPT is t, for QUOTE is' etc. 

appears on property list of clisp operators which can appear as car 
of a form, such as FETCH, REPLACE, IF, iterative statement 
operators, etc. Value of property is of the form (keyword. name). 
where name is the lowercase version of the operator, and keyword 
is its type, e.g. FORWORD, I FWORD, RECORDWORD, etc. keyword 
can also be the name of a function; in which case when the atom 
appears as car of a form, the function is applied to the form and 
the result taken as the correct form.135 

+ 135 In this case. the function should either physically change the fonn. or call clisptran to store the translation. 

23.54 



Clisp Internal Conventions 

Global declarations operate by changing the corresponding LISPFN and CLISPINFIX properties. 

clispchars 

c1ispcharray 

c1ispinfixsplst 

is a list of single character operators that can appear in the interior 
of an atom. Currently these are: +, -,*, I, t, .... , " =, +-, :, <, 
and >. 

is abittable of the characters on c1ispchars used for caUs to strposl 
(see Section 10). c1ispcharray is initialized by performing 
{SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS». 

is a list of infix operators used for spelling correction. 

As an example, suppose the user wants to make 1 be an infix character operator meaning OR. He 
performs: 

+-{PUT (QUOTE I) (QUOTE CLISPTYPE) 
{GETP (QUOTE OR) (QUOTE CLISPTYPE») 
+-PUT{I LISPFN OR) 
+-PUT(I BROADSCOPE T) 
+-PUT(OR CLISPINFIX I) 
+-SETQ(CLISPCHARS {CONS (QUOTE I) CLISPCHARS» 
+-SETQ(CLISPCHARRAY (MAKEBITTABLE CLISPCHARS» 

CLISPBRACKET Used for defining CLISP bracket operators. This property must be + 
on the property list of both the left and right brackets, and also on + 
the property list of any of the functions that expressions involving + 
the brackets translate to (to enable clispifying). For the latter, the + 
property value is simply the left bracket, e.g. <.. For the brackets + 
themselves, car of the property value is the left bracket, cadr the + 
right bracket, and cddr a list in property list format. The following + 
properties are recognized: + 

DWIMIFY function to be called to dwimify the construct: If the + 
bracket is a unary operator, the function will be + 
applied to the list consisting of the (dwimified) + 
segment between the matching brackets. + 

If the bracket is not a unary operator, the function will + 
be applied to the (dwimitied) expression to the left of + 
the bracket and the (dwimified) segment between the + 
brackets. (See example below.) + 

23.55 



+ 

+ 
+ 
+ 

Section 23: Clisp and Dwimify 

CLISPI FY (optional) function to be called when c1ispifying.l36 

SEPARATOR (optional) character to be split from any atoms but 
otherwise unprocessed, e.g. for < and >, the 
separator is ! 

+ For example, to define { } as a bracket which translates to elt in the case of a single expression, 
+ and multi-cIt for more than one: 

+ ~PUT({ CLISPTYPE BRACKET) 
+ ~PUT(} CLISPTYPE BRACKET) 
+ ~PUT({ CLISPBRACKET ({ } SEPARATOR • DWIMIFY FOO] 
+ ~PUT(} CLISPBRACKET ({ } SEPARATOR. DWIMIFY FOO] 
+ ~DEFINEQ[(FOO (A LST) 
+ (IF (MEMB '. LST) 
+ THEN ('MULTI-ELT A (FOR X IN LST COLLECT X WHEN X-=',» 
+ ELSE ('ELT A I LST>] 
+ ~(NCONC CLISPCHARS '({ } .» 
+ ~(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS» 

+ Then. X:l{N-l} willdwimify to (ELT (CAR X) (SUBt N» 
+ and Z{N .M} will dwimify to (MULTI -EL T Z N M) 

+ To enable c1ispifying. 

+ ~PUT(ELT CLISPBRACKET {) 
+ ~PUT(MULTI-ELT CLISPBRACKET {) 

+ Then. (MULTI-ELT (CADR A) (IQUOTIENT (SUBt N) 2» I)willc1ispifyto 
+ A:2{(N-t)/2,I}. 

23.19 CLiSP FUNCTIONS AND VARIABLES 

clisptlg if set to NIL. disables all CLISP infix or prefix transformations 
(but does not affect IF /THEN/ELSE statements, or iterative 
statements). 

+ 136 

+ 
+ 

If c1isptlg=TVPE-IN. CLISP transformations are performed only 
on expressions that are typed in for evaluation, i.e .. not on user 
programs. 

If c1isptlg = T ; CLISP transformations are performed on all 
expressions. 

If the CLISPIFY property is not present, !fuI1ifying will consist of, for unary brackets, c1ispifying cdr of the form. 
inserting the separator if any between each clement, and surrounding the result with the brackets. For brackets that 
are not unary operators, cadr of the form is c1ispified and placed to the left of the brackets, and £..ddr of the form 
treated as above. 

23.56 



c1isparray 

c1isptran[x; tran] 

nofixfnslst 

nofixvarslst 

nospellflg 

clisphelpflg 

dwimify[x;quictflg;l] 

Clisp Functions and Variables 

The initial value for c1ispflg is T. clispifying anything will cause 
c1ispflg to be set to T. 

hash array used for storing translations. c1isparray is checked by 
faulteval and faultapply on erroneous forms before calling DWIM, 
and by the compiler. 

gives ! the translation tran. If clisparray is not NIL. uses hashing 
scheme. otherwise uses CLISP%_scheme. See page 23.22-24.137 

list of functions that dwimify will not try to correct. See page 
23.41. 

list of variables that dwimify will not try to correct. See page 23.41. 

If nospellflg is T, dwimify will not perform any spelling corrections. 
The initial value of nospellflg is NIL. nospeUflg is reset to T when 
compiling functions whose definitions are obtained from a file, as 
opposed to being in core. 

if NIL. dwimify will not ask the user for approval of any clisp + 
transformations. Instead, in those situations where approval would + 
be required, the effect is the same as though the user hadb~ + 
asked and said No. + 

dwimifies !, i.e., performs all corrections and transformations that 
would be performed if ! were run, and prints the result unless * 
quietflg = T. If! is an atom and ! is NIL • .! is treated as the name * 
of a function, and its entire definition is dwimified. 

Otherwise, if ! is a list or ! is not NIL. ! is the expression to be 
dwimified. If! is not NIL, it is the edit push-down list leading to 
!. and is used for determining context, i.e., what bound variables 
would be in effect when x was evaluate~ whether x is a form or 
sequence of forms, e.g., a cond clause; etc. 38 -

137 c1isptran is called for all clisp translations, via a non' linked. external function call. i.e. it can be advised. + 
138 If! is an iterative statement and 1 is NIL, dwimify will also print the translation, i.e., what is stored in the hash 

array. 

23.57 

-.--~ 

'_4,.,-",-"-"-:_ ... --: 



* dwimifyfns[fns] 
* 
* 
* 
* 
* 
* 

* 
* 

* 

dwimifycompflg 

+ dwimcheck#argsflg 

+ dwimcheckproglabelsflg 
+ 

+ dwimessgag 

c1ispdec[ declstJ 

c1ispify[x ;1] 

Section 23: Clisp and Dwimify 

nlambda, nospread. Dwimifies each function on fns. If fns is a list 
of only one element, car[fns] is evaluated. If its value is a list, this 
list is used, e.g. dwimifyfns[FOOFNS]. If car[fns] is atomic, and its 
value is not a list, and car[fns] is the name of a known file, 
dwimifyfns will operate on filefnslst[car[fns]], . e.g. 
dwimifyfus[FOO. LSP] will dwimify every function in the file 
FOO. LSP. 

Every 30 seconds, dwimifyfns prints the name of the function it is 
processing,a la prettyprint. 

Value is a list of the functions dwimified. 

if T. dwimify is called before compilipg an expression. See page 
23.42. 

if T, causes dwimify to check for too many arguments in a form. 

if T, causes dwimify to check whether a P!Qg label contains a clisp 
character. 

if T (initially NIL), suppresses all dwimify error messages. 

puts into effect the declarations in declst. clispdec performs 
spelling corrections on words not recognized as declarations. 
clispdec is undoable. 

c1ispifies :!. If! is an atom and ! is NIL, ! is treated as the name 
of a function, and its definition (or EXPR property) is clispified. 
After c1ispify has finished, ! is redefined (using IPUTD) with its 
new CLlSP definition. The value of c1ispify is!. If! is atomic 
and not the name of a function, spelling correction is attempted. If 
this fails, an error is generated. 

If ! is a list. or ! is not NIL. ! itself is the expression to be 
c1ispified. If 1 is not NIL. it is the edit push-down list leading to.! 
and is used to determine context as with dwimify, as well as to 
obtain the local declarations, if any. Ibe value of clispify is the 
clispified version of!. 

See earlier section on CLlSPIFY for more details. 

23.58 



c1ispifyfns[fns] 

c1disable[op] 

c1ispiftranflg 

c1ispretranflg 

c1:flg 

clremparsflg 

clispifypacktlg 

c1ispifyenglshflg 

c1ispifyprettyflg 

Clisp Functions and Variables 

nlambda, nospread. Like dwimifyfns except calls c1ispify instead of * 
dwimify. * 

disables QP, e.g., c1disable[-] makes - be just another character.B9 

c1disable can be used on all CLISP operators, e.g., infix operators, 
prefix operators, iterative statement operators, etc. c1disable is 
undoable. 

affects handling of translations of I F I THEN I ELSE statements. If T, 
the translations are stored elsewhere, and the (modified) CLISP 
retained. If NI L, the corresponding COND expression, replaces the 
CLISP. clispiftranflg is initially NIL. See page 23.22. 

If T, informs dwimify to (re)translate all expressions which have 
remote translations, either in hash array or using CLISP%. Initially 
NIL. 

affects clispify's handling of forms beginning with car, cdr, ... 
cddddr, as well as pattern match and record expressions. See page 
23.39. 

affects c1ispify's removal of parentheses from "small" forms. See 
page 23.39. 

if T, informs c1ispify to pack operator and atomic operands into 
single atoms; if NIL, no packing is done. See page 23.39. 

if T, informs clispify to convert LISP expressions to english phrases 
when possible. See page 23.21. 

if non-N I L, causes prettyprint to CLISPIFY selected function 
definitions before printing them according to the following 
interpretations of c1ispifyprettyflg:140 

139 Simply removing a character operator from c1ispchars will prevent it from being treated as a c1isp operator when it + 
appears as part of an atom, but it will continue to be an operator when it appears as a separate atom, e.g. + 
(FOO + X) vs FOO+X. + 

140 Another way to inform prettyprint to c1ispify functions is for the function to have a CLISP declaration containing the 
word CLISPIFY. 

23.59 



Section 23: Clisp and DlVimify 

ALL all functions 

T,EXPRS functions currently defined as exprs 

CHANGES functions marked as having been changed 

a list a member of that list 

c1ispifyprettyflg is (temporarily) reset to T when makefile is called 
with the option CLISPIFY, and reset to CHANGES when the file 
being dumped has the pro£erty FIlETYPE value CLISP. 
c1ispifyprettyflg is initially N I L.1 1 

+ c1ispifyuserfn 
+ 

if T, causes c1ispifyuserfn to be called on each form (list) not 
otherwise recognized by clispify. If a non-N I l value is returned. it 
is treated as the c1ispified form. + 

prettytranflg 

PPT 

CLISP: 

funnyatomlst 

Cl 

If T, causes prettyprint to print translations instead of CLISP 
expressions. This is useful for creating a file for compilation, or for 
exporting to a LISP system that does not have CLISP. 
prettytranflg is (temporarily) reset to T when makefile is called with 
the option NOCLISP. If prettytranflg is CLISP%_, both the CLISP 
and translations are printed in appropriate form. For more details, 
see page 23.23. prettytranflg is initially NIL. 

is both a function and an edit macro for prettyprinting translations. 
It performs a P P after first resetting prettytranflg to T. thereby 
causing any translations to be printed instead of the corresponding 
CLISP. 

edit macro that obtains the translation of the correct expression, if 
any, from c1isparray, and calls edite on it. 

list of identifiers containing CLISP operators. Used by c1ispify to 
avoid accidentally constructing a user identifier, e.g., 
(ITIMES A B) should not become A"'B if A"'B is the name of a 
PROG variable. See page 23.39. 

edit macro. Replaces current expression with CLISPIFY ed current 
expression. Current expression can be an clement or tail. 

141 If c1ispifyprettyflg is non-NIL, and the only transfonnation perfonned by DWIM are wen fonned CLISP 
transfonnations, i.e .. no spelling corrections, the function will not be marked as changed, since it would only have to 
be re-clispilied and re-prettyprinted when the file was written out. 

23.60 



ow 

Clisp Functions and Variables 

edit macro. DWIMIFYs current expression, which can be an 
element (atom or list) or tail. 

Both eLand OW can be called when the current expression is either an element or a tail and will 
work properly. Both consult the declarations in the function being edited, if any, and both are 
undoable. 

lowercase[ fig] If !!g = T. lowercase makes the necessary internal modifications so 
that clispify will use lower case versions of AND. OR. IF. THEN. 
ELSE. ELSEIF. and all i.s. operators. This produces more 
readable output. Note that the user can always type in either upper 
or lower case (or a combination), regardless of the action of 
lowercase. 

If f!g = NIL, clispify will use uppercase versions of AND. OR.· et al. 
The value of lowercase is its previous "setting". Lowercase is 
undoable. The initial setting for lowercase is T. 

23.61 





Index for Section 23 

ACCESSFNS (record package) ..................... . 
ADD (change word) .............................. . 
ALWAYS (clisp iterative statement operator) 
AMBIGUOUS DATA PATH (error message) ............ . 
AMBIGUOUS RECORD FIELD (error message) ......... . 
ARRAYBLOCK (record package) .................... . 
ARRAYRECORD (record package) ................... . 
AS (clisp iterative statement operator) ........ . 
aSSignments (in clisp) ........................ .. 
ASSOCRECORD (record package) ................... . 
ATOMRECORD (record package) .................... . 
BETWEEN (record field type) .................... . 
BIND (cl i sp iterative statement operator) ...... . 
BINDS (as value of INFO property) .............. . 
BITS (record field type) ....................... . 
BROADSCOPE (property name) ..................... . 
BY (clisp iterative statement operator) ........ . 
CAUTIOUS (DWIM mode) ........................... . 
CHANGE (change word) ........................... . 
CHANGETRAN (in record package) ................. . 
changing record declarations ................... . 
CL (edit command) .............................. . 
CLDISABLE[OP] .................................. . 
CLISP .....................•..................... 
(CLISP declarations. form) .................... . 
CLISP interaction with user ....•................ 
CLISP internal conventions ..................... . 
CLISP operation ................................ . 
CLISPARRAY (clisp variable/parameter) .......... . 
CLISPBRACKET (property name) ....•.•..•.......... 
ClISPCHARRAY (clisp variable/parameter) ........ . 
CLISPCHARS (clisp variable/parameter) ......... .. 
CLISPDEC[DEClST] ............................... . 
CLISPFLG (clisp variable/parameter) ............ . 
CLISPFORWORDSPLST (clisp variable/parameter) 
CLISPHELPFlG (clisp variable/parameter) ........ . 
CLISPIFTRANFLG (cl isp variable/parameter) ...... . 
CLISPIFWORDSPLST (clisp variable/parameter) 
CLISPIFY[X; L] .................................. . 
CLISPIFY (makefile option) ..................... . 
CLISPIFYENGLSHFLG (clisp variable/parameter) 
CLISPIFYFNS[FNS] NL* ........................... . 
CLISPIFYPACKFLG (clisp variable/parameter) 
ClISPIFYPRETTYFLG (prettyprint variable/parameter) 
CLISPIFYUSERFN (cl isp variable/parameter) ...... . 
CLISPINFIX (property name) ..................... . 
CLISPINFIXSPLST (clisp variable/parameter) 
CLISPI.S.GAG (clisp variable/parameter) ........ . 
cl i sprecordtypes ............................... . 
CLISPRETRANFLG (clisp variable/parameter) ...... . 
CLISPTRAN[X; TRAN] .............................. . 
CLISPTYPE (property name) ...................... . 
CLISPWORD (property name) ...................... . 
CLISP% ......................................... . 
CLISP: (edit command) .......................... . 
CLREMPARSFLG (cl isp variable/parameter) ........ . 

INDEX.23.1 

Page 
Numbers 

23.30-31 
23.37 
23.12 
23.34 
23.34 
23.30 
23.28 
23.16 
23.8 
23.28 
23.30 
23.29 
23.13 
23.40 
23.29 
23.54 
23.15,14,17 
23.3,52 
23.38 
23.36-38 
23.35 
23.60 
23.59 
23.1,2-61 
23.22 
23.52 
23.53 
23.51-52 
23. 57,22.60 
23.55 
23.55 
23.55 
23.68,24 
23.56 
23.11 
23.57,53 
23.69,22 
23.10 
23.38.58,25,39-40 
23.40,60 
23.69,21,39 
23.59 
23.59,39 
23.59 
23.60,40 
23.54 
23.56,7 
23.19 
23.31 
23.69,22 
23.57 
23.53-54 
23.54 
23.23,60 
23.60,22 
23.69,39 



CL:FLG (clisp variable/parameter) .............. . 
COLLECT (clisp iterative statement operator) 
COMPILEUSERFN (use by clisp) .................... . 
compiling CLISP ................................ . 
constructing lists (in clisp) .................. . 
control-L ......................•................ 
COPYALL[X] .........................•... " ...... . 
COPYING (record package) ....................... . 
COUNT (clisp iterative statement operator) 
CREATE NOT DEFINED FOR THIS RECORD (error message) 
CREATE (record package) ........................ . 
DATATYPE (record package) .....................•. 
data-paths (in records in clisp) ............... . 
DATUM (use in changetran constructs) ........... . 
dec 1 a r at i on s (i n c 1 i sp ) .........•.......•....... 
DECLARE (clisp iterative statement operator) 
DECLAREDATATYPE ..................•..... ' ........ . 
DECLARE: (clisp iterative statement operator) 
DEFINED. THEREFORE DISABLED INCLISP 

(error message) ........................... . 
defining new iterative statement operators 
disabling CLISP operators ...................... . 
DO (clisp iterative statement operator) ........ . 
DW (edit command) ................................ . 
DWIMCHECKPROGLABELSFLG (dwim variable/parameter) .. 
DWIMCHECK#ARGSFLG (dwim variable/parameter) 
DWIMESSGAG (dwim variable/parameter) ........... . 
DWIMIFY[X ;QUIETFLG; L] .......................... . 
dwimify (printed by dwim) ...................... . 
DWIMIFYCOMPFLG (compiler variable/parameter) 
DWIMIFYFNS[FNS] NL· ............................. . 
EACHTIME (clisp iterative statement operator) 
EDITREC[EDITRECX] NL· ..................•........ 
english phrases in clisp .....•.........•........ 
errors in iterative statements ................. . 
FETCH (use in records in clisp) ................ . 
FFETCH (use in records in clisp) ............... . 
FIELDLOOK[FIELDNAME] ........................... . 
FILETYPE (property name) .......•................ 
FINALLY (clisp iterative statement operator) 
FIRST (clisp iterative statement operator) 
FIXP (record .field type) ............••..•....... 
FIXSPELLDEFAULT (dwim variable/parameter) ...•... 
FLAG (record field type) ....................... . 
FLOATING (~ecord field type) ......•..•.......... 
FLOATP (record field type) ..................... . 
FLUSHRIGHT[POS;X;MIN;P2FLAG;CENTERFLAG;FILE] 
fOR (clisp iterative statement operator) ....... . 
FREPLACE (use in records in clisp) ...••......... 
FROM (clisp iterative statement operator) ...... . 
FUNNYATOMLST (clisp variable/parameter) ........ . 
GETHASH[ITEM;HARRAY] SUBR ...................... . 
global variables ............................... . 
GLOBALVAR (property name) .............•......... 
GLOBALVARS (compiler variable/parameter) ....... . 
GO (use in iterative statement in c11sp) ....... . 
HASHLINK (record package) ........•....•......... 

INDEX.23.2 

Page 
Numbers 

23.59,39 
23.12 
23.42 
23.42 
23.10 
23.46 
23.33 
23.33 
23.12 
23.30 
23.31-33 
23.29 
23.34,26 
23.38 
23.24,8,10,25 
23.17 
23.29 
23.16 

23.11 
23.19-21 
23.59 
23.12 
23.61 
23.58,41 
23.68,41 
23.68,42 
23.40,67,41-42,51,58 
23.42 . 
23.68,42 
23.68,41 
23.16,17 
23.35 
23.21 
23.18 
23.26 
23.26 
23.35 
23.4.0,42,60 
23.16.17 
23.16.17 
23.29 
23.41 
23.29 
23.29 
23.29 
23.50 
23.13 
23.26 
23.14,15-16 
23.60.39 
23.22 
23.41 
23.41 
23.41 
23.17 
23.28 



IF-THEN-ELSE statements .......•....•............ 
IN (clisp iterative statement operator) ........ . 
infix operators (in clisp) ..................... . 
INFO (property name) .......................... .. 
INIT (use in record declarations) .............. . 
INITRECORDS(file package command) ............. . 
INSIDE (cl isp iterative statement operator) 
INTEGER (record field type) .................... . 
iterative statements (in clisp) ................ . 
I. S .OPR[NAME; FORM;OTHERS; EVALFLG] ...••.......... 
i.s.oprs ....................................... . 
I.S.OPRS (file package command) ................ . 
i. s. typ'e ....................................... . 
JOIN (clisp iterative statement operator) ...... . 
LABELS (use with clispify) ..................... . 
LASTWORD (dwim variable/parameter) ............. . 
LISPFN (property name) ......................... . 
LISTGET[LST; PROP] .............................. . 
LISTPUT[LST;PROP;VAL] .......................... . 
local record declarations (in clisp) ........... . 
lower case in cl isp .......•...•................. 
LOWERCASE[FLG] ................................. . 
makefile and 'clisp ..............•..•............ 
MISSING OPERAND (dwim error message) ........... . 
MISSING OPERATOR (clisp error message) .....•.... 
MODIFIER (use'with interative statement operators) 
n (n a number. printout command) ............... . 
NEVER (clisp iterative statement operator) 
NEWISWORD[SING;PLU;FORM;VARS] .................. . 
NO DO. COLLECT. OR JOIN (error message) •.......• 
NOCLISP (makefile option) ..•...........••....... 
NOFIXFNSlST (dwim variable/parameter) .......... . 
NOFIXVARSLST (dwim variable/parameter) ......... . 
NOSPELLFLG (dwim variable/parameter) ........... . 
OLD (clisp iterative statement operator) ....... . 
ON (clisp iterative statement operator) ........ . 
order of precedence of CLISP operators ......... . 
ORIGINAL (clisp iterative statement operator) 
OUTOF (clisp iterative statement operator) 
POINTER (record field type) .................... . 
POP (change word) .............................. . 
POSSIBLE NON-TERMINATING ITERATIVE STATEMENT 

(error message) ...................•....•... 
POSSIBLE PARENTHESIS ERROR (error message) 
PPT[X] NL* ..................................... . 
PPT (edit command) ....................•...•.•... 
precedence rules (for CLISP operators) ......... . 
prefix operators (in clisp) .................... . 
PRETTYTRANFLG (clisp variable/parameter) ....... . 
printout package ............................... . 
PRINTOUTMACROS (printout parameter) ............ . 
PRINTPARA[LMARG;RMARG;LIST;P2FLAG;PARENFLAG;FILE]. 
PROPRECORD (record package) .......•............. 
PUSH (change word) ........•..................... 
PUSHLIST (change word) ..........•.....•......... 
PUSHNEW (change word) .........•.•............... 
PUTASSOC[KEY;VAL;ALST] .....•..............•.•.•. 

INDEX.23.3 

Page 
-Numbers 

23.10 
23.13,15,17 
23.6-8 
23.39,40 
23.31 
23.27 
23.14 
23.29 
23.11-21 
23.19 
23.11-21 
23.21 
23.13,19 
23.12 
23.39 
23.8 
23.54 
23.28 
23.28 
23.25 
23.61 
23.61 
23.60.23 
23.51 
23.51 
23.21 
23.45 
23.12 
23.21 
23.19 
23.23.60 
23.57,41.43 
23. 57. 41 • 43 .51 
23.57 
23.13.5.14 
23.13.15 
23.9 
23.17 ,20 
23.16 
23.29 
23.38 

23.19 
23.41 
23.60,22 
23.22.60 
23.7 
23.8 
23.60.22-23 
23.43-51 
23.49 
23.50 
23.28 
23.37 
23.37 
23.37 
23.28 



RECLOOK[RECNAME;TL;LOCALDEC;PARENT;ERROR] ...... . 
record declarations (in clisp) ..... , ........... . 
record package (in clisp) ...................... . 
RECORD (record package) ........................ . 
RECORDACCESS[FIELD;DATUM;DEC;TYPE;NEWVALUE] 
RECORDF IELDNAMES[RECORDNAME] ................... . 
RECORDS (file package command) ................. . 
record-type (record package) ................... . 
REPEATUNTIL (clisp iterative statement operator) .. 
REPEATWHILE (clisp iterative statement operator) .. 
REPLACE UNDEFINED FOR FIELD (error message) 
REPLACE (use in records in clisp) .............. . 
RETURN (use in iterative statement in clisp) 
REUSING (record package) .............•.......... 
SETFN (property name) .......•...•............... 
spelling correction ............................ . 
spelling lists ................................. . 
structure modification (the changetran package) 
subdeclarations (record package) .....•.......... 
SUM (clisp iterativ~ statement operator) ....... . 
SUSPICIOUS PROG LABEL (error message) .......... . 
SWAP (change word) ............................. . 
T (printout command) ........................... . 
THEREIS (clisp iterative statement operator) 
TO (clisp iterative statement operator) ........ . 
translations (in clisp) ....................... .. 
TREAT AS CLISP ? (printed by dwim) ............. . 
TREATASCLISPFLG (clisp variable/parameter) 
TREATED AS CLISP (printed by dwim) ............. . 
TRUSTING (DWIM mode) ........•................•.. 
TYPERECORD (record package) ..•.................. 
TYPE? NOT IMPLEMENTED FOR THIS RECORD 

(er ror message) .................•.......... 
TYPE? (record package) ...........•.............. 
TYPE? (use in record declarations) ............. . 
UNABLE TO DWIMIFY (error message) .....•...•..... 
UNARYOP (property name) ..............•.......... 
undoing DWIM corrections ....................... . 
UNLESS (clisp iterative statement operator) 
UNTIL (clisp iterative statement operator) 
USEDFREE (clisp declaration) ..............•..... 
USERRECORDTYPE (property name) ...•.............. 
USING (record package) ......................... . 
WHEN (cl isp iterative statement operator) •...•.. 
WHERE (clisp iterative statement operator) 
WHILE (clisp iterative statement operator) 
- (clisp operator) ......•........• '" .......... . 
I (use with <,> in clisp) ...................... . 
II (use with <,> in clisp) .................... .. 
/I (printout command) .......................... .. 
$ «esc» (in clisp) .......................... .. 
, (clisp operator) ............................. . 
o (printout command) ........................... . 
-n (n a number 0 printout command) .............. . 
.BASE (printout command) ...................... .. 
.CENTER (printout command) ..................... . 
.CENTER2 (printout command) ......•........•..•.. 

INDEX.23.4 

Page 
Numbers 

23.35 
23.27,25,28-32 
23.25-36 
23.28 
23.36 
23.35 
23.27,29 
23.27 
23.14 
23.14 
23.30 
23.26 
23.17 
23.33 
23.54 
23.7,10-11,55 
,23.7,10-11,55 
23.37 
23.32 
23.12 
23.41 
23.38 
23.46 
23.12 
23.14,15-16 
23.22-23 
23.51 
23.51 
23.51 
23.3,51-52 
23.28 

23.34 
23.33,28,34 
23.32 
23.42 
23.54 
23.42 
23.14 
23.14 
23.41,43 
23.31 
23.33 
23.14 
23.20 
23.14 
23.9 
23.10 
23.10 
23.49 
23.8-9 
23.8 
23.45 
23.45 
23.46 
23.48 
23.48 



.F (printout command) •••.•••..•...•••••••..••..• 
· FONT (printout command) .....•...•..••.••.••...• 
.FR (printout command) ••.•••.•••••••••••••••.•.. 
· FR2 (pri ntout command) .•.••.•.•••.•••..•....•.. 
· I (printout command) •.••....••••.••••.••.•••••• 
.N (printout command) ••...••...••••••••••••.••.. 
.PAGE (printout command) ••.•.•••.•••••.•.••••••• 
.PARA (printout command) ••••.••••.••••.•••.•.••• 
.PARA2 (printout command) ••..•••••••••.••••••••• 
.PPF (printout command) ••••..••••..•••.•.•••.••• 
· PPFTL (printout command) •••••.••••.••.•••..•••• 
.PPV (printout command) ••••...•...••.•.••.. 0 •••• 

. PPVTL (printout command) •••••••••••••.••••••••• 

.P2 (printout command) ••••••••••••••••.•••..•••• 

.RESET (printout command) ••.•••••.••.•.•••.••••. 

.SKIP (printout command) .••••.••••••••.•••..•••• 

.SP (printout command) •••••••••••••••••.••.••••• 

.SUB (printout command) .••••••.••••••••••••••••. 
• SUP (printout command) •••••••••••••••••••.•••.. 
.TAB (printout command) ••••••••••••••••••..••••• 
· TABO (printout command) •••••••••••••••••..••••• 
{REPLACE ••.•••••• " ••.•••.•••••••••••••••••••••• 
: (clisp operator) ..•••••.•••••••.•••••••..••••• 
<.> (use in clisp) ............................. . 
to operator (in clisp) .......................... . 
to (use in record declarations) ••••••••••..•••••• 

INDEX.23.5 

- ------------ ----- - -------
-.","-,,-,-p;,,~..;;:-- -+-., 

Page 
Numbers 

23.49 
23.46 
23.48 
23.48 
23.48 
23.49 
23.46 
23.47 
23.47 
23.47 
23.47 
23.47 
23.47 
23.47 
23.45 
23.46 
23.45 
23.46 
23.46 
23.45 
23.45 
23.26 
23.8 
23.10 
23.8-9 
23.31 





SECTION 24 

LlSPUSERS PACKAGES 

This chapter contains packages which are of sufficient utility that they would otherwise be included 
as part of the Interlisp system, except for virtual address space . limitations. In Interlisp-lO, these 
packages normally reside on either the directory (LISP) or (LISPUSERS). 

24.1 PATTERN MATCH COMPILERI 

The pattern match compiler provides within CLISP a fairly general pattern match facility. The 
purpose of this pattern match facility is to make more convenient the specifying of certain tests 
that would otherwise be clumsy to write (and not as intelligible), by allowing the user to give 
instead a pattern which the datum is supposed to match. Essentially, the user writes "Does the 
(expression) X look like (the pattern) P?" For example, X: (& t A - - t B) asks whether the 
second clement of X is an A, and the last element a B. The implementation of the matching is 
performed by computing (once) the equivalent Interlisp expression which will perform the 
indicated operation, and substituting this for the pattern, and not by invoking each time a general 
purpose capability such as that found in FLIP or PLANNER. For example, the translation of 
X : (& 'A - - t B ) is: 
(AND (EQ (CADR X) (QUOTE A» (EQ (CAR (LAST X» (QUOTE B»). Thus the 
CLlSP pattern match facility is really a Pattern Compiler, and the emphasis in its design and 
implementation has been more on the efficiency of object code than on generality and 
sophistication of its matching capabilities. 111e goal was to provide a facility that could and would 
be used even where efficiency was paramount, e.g., in inner loops. As a result, the CLISP pattern 
match facility does not contain (yet) 'some of the more esoteric features of other pattern match 
languages, such as repeated patterns, disjunctive and conjunctive patterns, recursion, etc. However, 
the user can be confident that what facilities it does provide will result in Interlisp expressions 
comparable to those he would generate by hand. 2 

The syntax for pattern match expressions is form:pattern, where pattern is a list as described below. 
As with iterative statements, the translation of patterns, i.e., the corresponding Interlisp expressions, 

1 

2 

The pattern match compiler was written by L. M. Masinter. It can be loaded from the file MATCH. COM. or, since the 
entries have a FIlEDEF property, (see Section 17) Simply using a pattern match construct will cause the file to be 
loaded automatically, 

Wherever possible. already existing lnterlisp functions are used in the translation, e.g .. the translation of ($ 'A $) 
useS MEMO. ($ (' A $) $) uses ASSOC, etc. 

24.1 

-----------
'",;, 



Section 24: Lispusers Packages 

are stored in c1isparray, a hash array, as described in Section 23.5. The original expression, 
form: pattern, is replaced by an expression of the form (MATCH form WITH pattern). CLISP 
also recognizes expressions input in this fonn. 

If form appears more than once in the translation, and it is not either a variable, or an expression 
that is easy to (re)compute, such as (CAR Y), (CDDR Z), etc., a dummy variable will be 
generated and bound to the value of form so that fonn is not evaluated a multiple number of 
times. For example, the translation of (Faa X): ($ 'A $) is simply 
(MEMB (QUOTE A) (Faa X», while the translation of (Faa X):('A 'B --) is: 

[PROG ($$2) (RETURN 
(AND (EQ (CAR (SETQ $$2 (Faa X») 

(QUOTE A» 
(EQ (CADR $$2) (QUOTE B]. 

In the interests of efficiency, the pattern match compiler assumes that all lists end in NIL. i.e., 
there are no LI S T P checks inserted in the translation to check tails. For example, the translation 
of X:('A & --) is (AND (EQ (CAR X) (QUOTE A» (CDR X», which will match 
wi th (A B) as well as (A • B). Similarly, the pattern match compiler does not insert LISTP 
checks on elements, e.g., X: « 'A --) --) translates simply as (EQ (CAAR X) (QUOTE A», 
and X:«$1 $1 --) --) as (eDAR X).3 Note that the user can explicitly insert LISTP 
checks himself by using @, as described on page 24.3, e.g., X: «$1 $1 --)@LISTP --) 
translates as (CDR (LISTP (CAR X»). 

PA TTERN ELEMENTS 

A pattern consists of a list of pattern elements. Each pattern element is said to match either an 
clement of a data structure or a segment. (cf. the editor's pattern matcher, "--" matches any 
arbitrary segment of a list, while & or a subpattern match only one element of a list.) Those 
patterns which may match a segment of a list are called segment patterns; those that match a single 
element are called element patterns. 

ELEMENT PATTERNS 

There are several types of clement patterns, best given by their syntax: 

3 The insertion of LISTP checks for elements is controlled by the variable patlistpcheck. When patlistpchcck is T, 
LISTP checks are inserted. e.g .. X: « 'A --) --) translates as: 

(EQ (CAR (LISTP (CAR (LISTP X»» (QUOTE A» 
lliI!l~~tp~J!_~f! is initially NIL. Its value can be changed within a particular function by using a local declaration, as 
described in Section 23.10. 

24.2 



Pqttern Match Compiler 

PATfERN 

$1, or & 

MEANING 

matches an arbitrary element of a list 

I expression matches only an element which is equal to the given expression e.g., I A .4 
• (A B). 

= form matches only an element which is equal to the value of form, e.g., = X • 
=(REVERSE V). 

= = form same· as =, but uses an £Q. check instead of equal. 

atom treatment depends on setting of patvardefault. 
If patvardefault is I or QUOTE, same as I atom. 
Ifpatvardefault is = or EQUAL, same as = atom. 
If patvardcfault is = = or EQ, same as = =atom. 
Ifpatvardefault is +- or SETQ, same as atom+-&. 
patvardefault is initially ,.5 

Note: numbers and strings are always interpreted as though patvardefault were =, regardless of its 
setting. ~,memb, and assoc are used for comparisons involving small integers. 

(pattern! .... patternu) n 2. ! 
matches a list which matches the given patterns, e.g., (& &) I (- - • A) • 

element-pattern@fn matches an element if the element-pattern matches it, and fn (name of a 
function or a LAMBDA expression) applied to that element returns 
non-NIL, e.g., &@NUMBERP matches a number, (' A -- )@FOO matches a 
list whose first element is A. and for which FOO applied to that list is 
non-NIL.6 

4 

5 

6 

~. memb. and assoc are automatically used in the translation when the quoted expression is atomic. otherwise equal. 
member. and ~. 

patvardefault can be changed within a particular function by using a local declaration. as described in Section 23.10. 

For "simple" tests. the function-object is applied before a match is attempted with the pattern, e.g., 
«-- 'A --)~LlSTP --) translates as (AND (LISTP (CAR X» (MEMB (QUOTE A) (CAR X»), not 
the other way around. fu may also be a form in terms of the variable @. e.g .. &@(EQ @ 3) is equivalent + 
to -3. + 

24.3 



+ 
+ 

* 

Section 24: Lispusers Packages 

matches any arbitrary element. If the entire match succeeds, the element 
which matched the * will be returned as the value of the match. 

Note: normally, the pattern match compiler constructs an expression whose value is guaranteed to 
be non-N I l if the match succeeds and NIL if it faits. However, if a * appears in the pattern, the 
expression generated will either return NIL if the match fails, or whatever matched the 'it even 
though that may be NIl. For example, X: ( t A * - - ) translates as 
(AND (EQ (CAR X) (QUOTE A» (CADR X)}. . 

.... element-pattern matches an element if the element is not matched by element-pattern, e.g., 
.... 'A, ,.. = X, ... ( - - 'A - - ) • 

(*ANY* element-pattern element-pattern ... ) matches if any of the 
contained patterns match. 

SEGMENT PATTERNS 

$, or -- matches any segment of a list (including one of zero length). 

'Ibe difference between $ and -- is in the type of search they generate. For example, 
X:($ 'A 'B $) translates as {EQ (CADR {MEMB (QUOTE A) X» (QUOTE B». whereas 
X:(-- 'A 'B $) translates as: [SOME X (FUNCTION (LAMBDA ($$2 $$t) 
(AND (EQ $$2 (QUOTE A» (EQ (CADR $$1) (QUOTE B]. 1)1us, a paraphrase of 
($ 'A 'B $) would be "Is the element following the first A a B1", whereas a paraphrase of 
( - - t A 'B $) would be "Is there any A immediately followed by a B1" Note that the pattern 
employing $' will . result in a more efficient search than that employing --. However, 
( $ 'A 'B $) will not match with (X Y Z A M N 0 ABC), but (- - t A 'B $) will. 

Essentially, once a pattern following a $ matches, the $ never resumes searching, whereas -
produces a translation that will always continue searching until there is no possibility of success. 
However, if the pattern match compiler can deduce from the pattern that continuing a search after 
a particular failure cannot possibly succeed, then the translations for both -- and $ will be the 
same. For example, both X: ($ 'A $3 $) and ( - - 'A $ 3 - - ) translate as 
(CDDDR (MEMB (QUOTE A) X», because if there arc not three elements following the first A, 
there certainly will not be three elements following subsequent A's, so there is no reason to 
continue searching, even for --a Similarly, ($ 'A $ t B $) and (-- 'A -- 'B --) are equivalent. 

$2, $3. etc. 

!element-pattern 

matches a segment of the given length. Note that $1 is not a segment 
pattern. 

matches any segment which the given clement pattern would match as a 
list. For example, if the value of FOO is (A B C) 1= FOO will match the 
segment ... ABC... etc. Note that !* is permissible and means Value
of-match +-$, e.g., X: ($ 'A I*) translates to 
(COR (MEMB (QUOTE A) X». 

Notc: sincc I appearing in front of thc last pattcrn specifics a match with somc tail of thc given 

24.4 



Pattern Match Compiler 

expression, it also makes sense in this case for a ! to appear in front of a pattern that can only 
match with an atom, e.g., ($ 2 I I A) means match if cddr of the expression is the atom A. 
Similarly, X: ($ I I A) translates to (EQ (COR (LAST X» (QUOTE A». 

!atom treatment depends on setting of patvardcfault. If patvardcfault is ' or 
QUOTE, same as !'atom (see above discussion). If patvardefault is =or 
EQUAL, same as ! = atom. If patvardefault is = = or EQ, same as 
! = = atom. If patvardefault is +- or SETQ, same as atom+-$. 

The atom ..... is treated exactly like !.7 In addition, if a pattern ends in an 
atom, the ..... is first changed to !, e.g., ($1 • A) and ($1 I A) are 
equivalent, even though the atom ..... does not explicitly appear in the 
pattern. 

Segment-pattern@function-object 
matches a segment if the segment-pattern matches it, and the function 
object applied to the corresponding segment (as a list) returns non-N I L, 
e.g., ($@COOR '0 $) matches (A B C 0 E) but not (A B 0 E), 
since COOR of (A B) is NI L. 

Note: an @ pattern applied to a segment will require computing the corresponding structure 
(with ldiID each time the predicate is applied (except when the segment in question is a tail of the 
list being matched). 

ASSIGNMENTS 

Any pattern element may be preceded by a variable and a '+-', meaning if the match succeeds (i.e., 
everything matches), the variable given is to be set to what matches that pattern element For 
exampIc, if X = (A B C 0 E), X: ($2 Y+-$3) will set Y to (C 0 E). Assignments are not 
perfonned until the entire match has succeeded Thus, assignments cannot be used to specify. a 
search for an element found earlier in the match, e.g., X: ( Y +-$1 = Y - - ) 8 will not match with 
(A ABC ... ).9 This type of match is achieved by using place-markers, described below. 

7 

R 

9 

With one exception, namely': preceding an assignment does not have the special interpretation that! has preceding 
an assignment (see page 24.6). For example, X: ( 'A • FOO"" B) translates as: 
(AND (EQ (CAR X) (QUOTE A» (EQ (COR X) (QUOTE B» (SETQ FOO (COR X»), but 
X: ( 'A I FOO"" B) translates as: 

.. 
(AND (EQ (CAR X) (QUOTE A» 

(NULL (CoDR X» 
(EQ (CADR X) (QUOTE B» 
(SETQ FOO (CDR X»). 

The translation of this pattern is: 
(COND «AND (CDR X) (EQUAL (CAoR X) V»~ 

(SETQ Y (CAR X» 
T». 

The AND is because if Y is NIL. the pattern should match with (A NIL), but not with just (A). The T is because 
(CAR X) might be NIL. 

unless, of course, the value of Y was A before the match started.. 

24.S 



Section 24: Lispusers Packages 

If the variable is preceded by a !, the assignment is to the tail of the list as of that point in the 
pattern, i.e., that portion of the list matched by the remainder of the pattern. For example, if X is 
(A BCD E), X: ($ IY+-'C '0 $) sets Y to (C 0 E), i.e., cddr of X. In other words, when 
! precedes an assignment, it acts as a modifier to the +-, and has no effect whatsoever on the 
pattern itself, e.g., X: ( 'A 'B) and X: ( 'A I FOO+-' B) match identically, and in the latter case, 
Faa will be set to CDR of X. 

Note: *+-pattern-element and !*+-pattern-element are acceptable, e.g., X:($ 'A *+-( '8 --) --) 
translates as: 

[PROG ($$2) (RETURN 
(AND (EQ (CAAOR (SETQ $$2 (MEMB (QUOTE A) X») 

(QUOTE B» 
(CAOR $$2] 

PLACE·MARKERS 

Variables of the form #n, !!. a number, are called place-markers, and are interpreted specially by 
the pattern match compiler. Place-markers arc used in a pattern to mark or refer to a particular 
pattern element. Functionally, they are used like ordinary variables, i.e., they can be assigned 
values, or used freely in forms appearing in the pattern, e.g., X: (#1+-$1 ::::(A001 #1» will 
match the list (2 3). However, they are not really variables in the sense that they are not bound. 
nor can a function called from within the pattern expect to be able to obtain their values. For 
convenience, regardless of the setting of patvardefault, the first appearance of a defaulted 
place-marker is interpreted as though patvardefault were +-. Thus the above pattern could have 
been written as X: (# 1 :::: ( ADD 1 # 1) ) . Subsequent appearances of a place-marker are interpreted 
as though patvardefault were For example, X : (# 1 # 1 - - ) is equivalent to 
X: (#1+-$1 ::::#1 --), and translates as (AND (CDR X) (EQUAL (CAR X) (CAOR X».lO 

REPLACEMENTS 

Any pattern element may be jollowed by a .. +-" and a form, meaning if the match succeeds, the 
part of the data that matched is to be replaced (e.g., with RPLACA or RPLACO)l1 with the value of 
< form> . For example, if X :::: (A BCD E). X: ($ 1 C $1 +-Y $1) will replace the third 
element of X with the value of Y. As with ~ssignments, replacements are not perfonned until after 
it is detennined that the entire match will be successfuL 

Replacements involving segments splice the corresponding structure into the list being matched, 
e.g., if X is (A BCD E F) and Faa is (1 2 3), after the pattern ('A $+-FOO '0 $) is 
matched with X, X will be (A 1 2 3 D E F), and FaD will be £g to CDR of !, i.e., 
(1 230 E F). 

Note that ($ FOO+-FIE $) is ambiguous, since it is not clear whether FaD or FIE is the pattern 
element, i.e., whether +- specifics assignment or replacement. For example, if pat vardefault is =, 

10 

11 

Just (EQUAL (CAR X) (CADR X» would incorrectly match with (NIL). 

The user can indicate he wants Lrplaca and Lm.!aed used, or frplaca and frplaed. by means of declarations. lbe initial 

default is for !]JE.Q! and rplaed. 

24.6 



Pattern Match Compiler 

this pattern can be interpreted as ($ FOO+-=FIE $), meaning search for the value of FIE, and if 
found set FOO to it, or ($ = FOO+-F I E $) meaning search for the value of FOO, and if found, 
store the value of FIE into the corresponding position. In such cases, the user should 
disambiguate by not using the patvardefault option, i.e., by specifying' or =. 

RECONSTRUCTION 

The user can specify a value for a pattern match operation other than what is returned by the 
match by writing after the pattern =) followed by another form, e.g., X: (FOO+-$ 'A -
) =) (REVERSE FOO), 12 which translates as: 

[PROG ($$2) (RETURN 
(COND «SETQ $$2 (MEMB (QUOTE A) X» 

(SETQ FOO (LDIFF X $2» 
(REVERSE FOO] •. 

Place-markers in the pattern can be referred to from within form, e.g., the above could also have 
been written as X:(1#1 'A --)=)(REVERS£ #1). If -) is used in place of =), the 
expression being matched is also physically changed to the value of form. For example. 
X : (# 1 'A 1 # 2 ) - ) (C 0 N S # 1 # 2) would remove the second element from X, if it were equal 
to A. 

In general, forml:pattern-) form2 is translated so as to compute form2 if the match is successful. 
and then smash its value into the first node of forml. However, whenever possible, the translation 
does not actually require form2 to be computed in its entirety, but instead the pattern match 
compiler uses form2 as an indication of what should be done to forml. For example. 
X:(#1 'A 1#2) -) (CONS #1 #2) translates as 
(AND (EQ (CADR X) (QUOTE A» (RPLACD X (CDDR X»). 

EXAMPLES 

X : ( - - 'A - - ) -- matches any arbitrary segment. 'A matches only an A, and the 
2nd -- again matches an arbitrary segment; thus this translates to 
(MEMB (QUOTE A) X). 

X: ( - - 'A) Again, -- matches an arbitrary segment; however, since there is no 
-- after the 'A, A must be the last element of X. Thus this 
translates to: (EQ (CAR (LAST X» (QUOTE A». 

X: ( 'A 'a -- 'C $3 --) CAR of X must be A, and CADR must be a, and there must be at 
least three elements after the first C, so the translation is: 

12 

(AND (EQ (CAR X) (QUOTE A» 
(EQ (CADR X) (QUOTE a» 
(CDDDR (MEMB (QUOTE C) (CDDR X»» 

The origiual CLiSP is replaced by an expression of the fonn (MATCH formi WITH pat tern -> form2). 
CLiSP also recognizes expressions input in this fonn. 

24.7 



Section 24: Lispusers Packages 

X:.«'A 'B) 'C Y+-$1 $) Since ('A 'B) docs not end in $or--, (CDDAR X) must be NIL. 
(COND 

«AND (EQ (CAAR X) (QUOTE A» 
(EQ (CADAR X) (QUOTE B» 
(NULL (CDDAR X» 
(EQ (CADR X) (QUOTE e» 
(CDDR X» 

(SETQ Y (CADDR X» 
1) 

X : ('/I 1 'A $ 'B 'C '/I 1 $) # 1 is implicitly assigned to the first clement in the list. The $ 
searches for the first B following A. 'This B must be followed by a 
C, and the C by an expression equal to the first clement. 

[PROG ($$2) (RETURN 
(AND (EQ (CADR X) (QUOTE A» 

(EQ [CADR (SETQ $$2 (MEMB (QUOTE B) (CODR X] 
(QUOTE C» 

(CDDR $$2) 
(EQUAL (CADDR $$2) (CAR X] 

X : ('/I 1 'A - - 'B 'C '/I 1 $ )Similar to the pattern above, except that -- specifies a search for 
any B followed by a C followed by the first clement, so the 
translation is: 

[AND (EQ (CADR X) (QUOTE A» 
(SOME (CDDR X) (FUNCTION (LAMBDA ($$2 $$1) 

(AND (EQ $$2 (QUOTE B» 
(EQ (CADR $$1) (QUOTE C» 
(CDDR $$1) 
(EQUAL (CADDR $$1) (CAR X] 

1bis concludes the description of the pattern match compiler. 

24.2 EDITA13 

Edita is an editor for arrays. However, its most frequent application is in editing compiled 
functions (which arc also arrays in Interlisp-lO), and a great deal of effort in implementing edi~ 
and most of its special features, are in this area. For example, edita knows the format and 

13 edi!;! was written by W. Teitclman. and modified by D. C. Lewis. 111at portion of £..<lit;J relating to compiled code 
mayor may not be available in implementation of Interlisp other than Interlisp-10. ~!!.H!! is cont.ained on the file 
EDIlA.COM . .£.<li!!! also has a FILEDEF property so that the user can Simply call ediU) and the file will be 
automatically loaded. 

24.8 



Edita 

conventions of Interlisp-lO compiled code, and so, in addition to decoding instructions a la DDT,14 
edita can fill in the appropriate COREY ALS, symbolic names for index registers, references to 
literals, linked function calls, etc. loe following output shows a sequence of instructions in a 
compiled function first as they would be printed by DDT, and second by edita. 

4667161 PUSH 16, LISP&KNIL 31 PUSH PP,KNIL 
4667171 PUSH 16,LISP&KNIL 41 PUSH PP,KNIL 
4667201 HRRZ 1,-12(16) 51 HRRZ l,-10(PP) 
4667211 CAME 1, LISP&KNIl 61 CAME l,KNIL 
4667221 JRST 466724 71 JRST9 15 

4667231 HRRZ 1,@467575 81 HRRZ l,@'BRKFILE 
4667241 PUSH 16,1 91 PUSH PP,l 
4667251 LISP&IOFIL,,467576 101 PBIND 'BRKZ 
4667261 -3, • -3 111 -524291 
4667271 HRRZ 1,-14(16) 121 HRRZ l,-12(PP) 
4667301 CAMN 1,467601 131 CAMN .1, 'OK 
4667311 JRST 466734 141 JRST 17 
4667321 CAME 1,467602 151 CAME 1,' STOP 
4667331 JRST 466740 161 JRST 21 
4667341 PUSH 16,467603 171 PUSH PP,' BREAKI 
4667351 PUSH 16,467604 181 PUSH PP.'{ERRORl) 
4667361 LISP&FILEN,,467605 191 CCALL 2,'RETEVAL 
4667371 JRST 467561 201 JRST 422 
4667401 CAME 1,467606 211 CAME I, 'GO 

. 4667411 JRST 466754 221 JRST 33 
4667421 HRRZ 1,@-12(16) 231 HRRZ l,@-10(PP) 
4667431 PUSH 16.1 241 PUSH PP,l 

Therefore, rather than presenting edita as an array editor with some extensions for editing compiled 
code, we prefer to consider it as a facility for editing compiled code, and point out that it can also 
be used for editing arbitrary arrays. 

OVERVIEW 

To the user, edita looks very much like DDT with Interlisp-lO extensions. It is a function of one 
argument, the name of the function to be edited.16 Individual registers or cells in the function may 
be examined by typing their address followed by a slash, 17 e.g. 

14 

15 

16 

17 

61 HRRZ 1,-10(PP) 

DDT is one of the oldest debugging systems stin around For users unfamiliar with it, let us simply say that edita 
was patterned after it because so many people are familiar with it 

Note that edita prints the addresses of cells contained in the function relative to the origin of .the function. 

An optional second argument can be a list of commands for edita. These are then executed exactly as though they 
had come from the teletype. 

Underlined characters were typed by the user. ~dil! uses its own read program. so that it is unnecessary to type a 
space before the slash or to type a carriage return after the slash .. 



Section 24: Lispusers Packages 

The slash is really a command to edita to open the indicated register.18 Only one register at a time 
can be open, and only open registers can be changed To change the contents of a register, the user 
first opens it, typesthe new contents, and then closes the register with a carriage-retum,19 e.g. 

7/ CAME 1,' t CAMN I, 't.} 

If the user closes a register without specifying the new contents, the contents are left unchanged. 
Similarly, if an error occurs or the user types control-E, the open register, if any, is closed without 
being changed. 

INPUT PROTOCOL 

Edita processes all inputs not recognized as commands in the same way. If the input is the name 
of an instruction (i.e., an atom with a numericOPD property), the corresponding number is added 
to the input value being assembled,20 and a flag is set which specifies that the input context is that 
of an instruction. 

The general fOIm of a machine instruction is (opcode ac, @ address (index» as described in 
Section 18. Therefore, in instruction context, edita evaluates all atoms (if the atom has a COREVAl 
property, the value of the COREVAL is used), and then if the atom corresponds to an !£,21 shifts it 
left 23 bits and adds it to the input value, otherwise adds it directly to the input value, but 
performs the arithmetic in the low 18 bits.22 Lists are interpreted as specifying index registers, and 
the value of £ill: of the list (again COREVALs are permitted) is shifted left 18 bits. Examples: 

PUSH PP, KNIL 
HRRZ 1,-10(PP) 
CAME 1. 'GO 
JRST 33 ORG 23 

The user can also specify the address of a literal via the ' command, see page 24.13. For 
example, if the literal" UNBROKEN" is in cell 85672, HRRZ 1,'" UNBROKEN" is equivalent to 
HRRZ t. 85672. 

When the input context is not that of an instruction, i.e., no OPD has been seen, all inputs are 

18 

19 

21 

22 

23 

edita also converts absolute addresses of cells within the function to relative address on input Thus, if the definition 
of foo begins at 85660. typing 61 is exactly the same as typing 85666/. 

Since carriage-return bas a special meaning. edita indicates the balancing of parentheses by typing a space. 

The input value is initially O. 

i.e., if a "." has not been seen. and the . value of the atom is less than 16. and the low 18 bits of the input value are 
all zero. 

If the absolute value of the atom is greater than l000000Q. full word arithmetic is used. For example. the indirect bit 
is handled by simply binding @ to 20000000Q. 

edit!! cannot in general know whether an address field in an instruction that is typed in is relative or absolute. 
Therefore. the user must add ORG. the origin of the function, to the address field himself. Note that edita would 
print this instruction, JRST 63 ORG. as JRST 63, 

24.10 



Edita 

evaluated (the value of an atom with a COREVAL property is the COREVAL.) Then numeric values 
are simply added to the previous input value; non-numeric values become the input value.24 

'The only exception to the entire procedure occurs when a register is open that is in the pointer 
region of the function, i.e., literal table. In this case, atomic inputs are not evaluated. For 
example, the user can change the literal F 00 to FIE by simply opening that register and then 
typing FIE followed by carriage-return, e.g. 

'FOOl FOO FIE.} 

Note that this is equivalent to 'FOOl Faa (QUOTE FIE),} 

EDITA COMMANDS AND VARIABLES 

;;! (carriage-return) 

ORG 

I 

tab (control-I) 

If a register is open and an input was typed, store the input in the 
register and close it. 25 

If a register is open and nothing was typed, close the register 
without changing it. 

If a register is not open and input was typed, type its value. 

Has the value of the address of the first instruction in the function. 
i.e., loe of getd of the function. 

Opens the register specified by the low 18 bits of the quantity to 
the left of the I, and types its contents. If nothing has been typed, 
it uses the last thing typed by edita, e.g., 

351 JRST 53 I CAME 1, 'RETURN I RETURN 

If a register was open, I closes it without changing its contents. 

After a I command, edita returns to that state of no input having 
been typed. 

Same as carriage-return, followed by the address of the quantity to 
the left of the tab, e.g., 

351 JRST 53 tab 
531 CAME 1, 'RETURN 

Note that if a register was open and input was typed, tab will change the open register before 
closing it, e.g., 

24 Presumably there is only one input in this case. 

25 If the register is in the ullboxed region of the function. the unboxed value is stored in the register. 

24.11 



. (period) 

line-feed 

t 

$Q «esc>Q) 

LITS 

BOXED 

$ (dollar) 

= 

OK 

? 

Section 24: Lispusers Packages 

35/ JRST 53 JRST 54 tab 
54/ JRST 70 l. 
35/ JRST 54 

has the value of the address of the current (last) register examined . 

same as carriage-return followed by ( ADD 1 .) / i.e. closes any 
open register and opens the next register. 

same as carriage-return followed by (S UB 1 .) / 

has as its value the last quantity typed by edita e.g. 

35/ JRST 53 ~ 
. / JRST 54 

has as value the (relative) address of the first literal. 

same as LITS 

has as value the relative address of the last literal in the function. 

Sets radix to -8 and types the quantity to the left of the = sign. 
i.e., if anything has been typed, types the input value. otherwise, 
types $Q. e.g. 

35/ JRST 54 '.:.254000241541Q 
JRST 54=254000000066Q 

Following =, radix is restored and edita returns to the no input 
state. 

leave edita 

return to "no input" state. ? is a "weak" control-E, i.e., it negates 
any input typed, but does not close any registers. 

24.12 



Edita 

address1, address21 prints26 the contents of registers address 1 through address2. . is set 
to address2 after the completion. 

IX corresponds to the I in LAP. The next expression is read, and if it 
is a small number, the appropriate offset is added to it. Otherwise, 
the literal table is searched for !, and the value of 'x is the 
(absolute) address of that cell. An error is generated if the literal is 
not found, i.e., ' cannot be used to create literals. 

·:atom defines atom to an address 
(1) the value of $Q if a register is open, 
(2) the input if any input was typed, otherwise 
(3) the value of ".".27 

For example: 

35/ JRST 54 :FOO~ 

: FIE.2 
FIE/ JRST FOO~35 

Edita keeps its symbol tables on two free variables, usersyms and symlst. Usersyms is a list of 
elements of the fonn (name. value) and is used for encoding input, i.e., all variables on usersyms 
are bound to their corresponding values during evaluation of any expression inside edita. Symlst is 
a list of elements of the fonn (value. name) and is used for decoding addresses. Usersyms is 
initially NIL, while symlst is set to a list of all the corevals. Since the : command adds the 
appropriate information to both these two lists, new definitions will remain in effect even if the 
user exits from edita and then reenters it later. 

Note that the user can effectively define symbols without using the : command by appropriately 
binding usersyms and/or symlst before calling edita. Also, he can thus use different symbol tables 
for different applications. . 

$W «esc>W) search command. 

Searching consists of comparing the object of the search with the contents of each register, and 
printing those that match, e.g., 

26 

27 

HRRZ 8 $W.2 
8/ HRRZ l,8 1 BRKFILE 
23/ HRRZ l,8-10{PP) 
28/ HRRZ 1,8-12{PP) 

output goes to fi~. initially set to T. The user can also set file (while in edit;!) to the name of a disc file to redirect 
the outpul (The user is responsible for opening and closing file.) Note that file only affects output for the addressl, 
address21 command. 

Only the low 18 bits are uscd and converted to a relative address whenever possible. 

24.13 



Section 24: Lispusers Packages 

The $W command can be used to search either the unboxed portion of a function, i.e., instructions, 
or the pointer region, i.e., literals, depending on whether or not the object of the search is a 
number. If any input was typed before the $W, it will be the object of the search, otherwise the 
next expression is read and used as the object.28 lbe user can specify a starting point for the 
search by typing an address followed by a "," before calling $W, e.g., 1, JRST $W. If no starting 
point is specified, the search will begin at 0 if the object is a number, otherwise at LITS, the 
address of the first litera1.29 After the search is completed, "." is set to the address of the last 
register that matched. 

If the search is operating in the unboxed portion of the function, only those fields (Le., instruction, 
ac, indirect, index, and address) of the object that contain one bits are compared. 3D For example, 
HRRZ @ $W will find all instances of HRRZ indirect, regardless of ac, index, and address fields. 
Similarly, I PRINT $W will find all instructions that reference the literal PRINT.31 

If the search is operating in the pointer region, a "match" is as defined in the editor. For. example, 
$W (&) will find all registers that contain a list consisting of asing1e expression. 

$C «esc)C) like $W except only prints the first match, then prints the number 
of matches when the search finishes. 

EDITING ARRAYS 

Edita is called to ,edit a function by giving it the name of the function. Edita can also be called to 
edit an array by giving it the array as its first argument,32 in which case the following differences 
are to be noted: 

28 

29 

30 

31 

32 

1. decoding - The contents of registers in the unboxed region are boxed and printed as 
numbers, i.e., they are never interpreted as instructions, as when editing a function. 

2. addressing convention - Whereas 0 corresponds to the first instruction of a function, the 
first element of an array by convention is element number 1. 

Note that inputs typed before the $W will have been processed according to the input protocol, i.e .• evaluated; inputs 
typed after the $W will not. Therefore, the latter fonn is usually used to specify searching the literals, e.g., $W FOO is 
equivalent to (QUOTE FOO) $W. 

Thus the only way the user can search the pointer region for a number is to specify the starting point via ",". 

Alternately. the user can specify his own mask by setting the variable mask (while in edita). to the appropriate bit 
pattern. 

The user may need to cS!'1blish instruction context for input without giving a specific instruction. For example, 
suppose the user wants to find all instructions with ac = 1 and jndex = PP. In this case, the user can give & as a 
pseudo' instruction, e.g., lype & 1. (PP). 

the array itself. not a variable whose value is an array, e.g., (EDITA FOO). not EDITA( FOO). 

24.14 



Edita 

3. input protocols - If a register is open, lists are evaluated, atoms are not evaluated 
(except for $Q which is always evaluated). If no register is open, all inputs are 
evaluated, and if the value is a number, it is added to the "input value". 

4. left half - If the left half of an element in the pointer region of an array is not all O's or 
NIL, it is printed followed by a ;, e.g. 

10/ (A B) ; T 

Similarly, if a register is closed, either its left half, right half, or both halves can be 
. changed, depending on the presence or absence, and position of the ; e.g. 

10/ (A B) ; T 
.I B T 
.I B; NIL 
.I A; C 

changes left 
changes right 
changes both 

If ; is used in the unboxed portion of an array, an error will be generated. 

The $W command will look at both halves of elements in the pointer region, and match if either 
half matches. Note that $W A ; B is not allowed. 

This concludes the discussion of edita. 

24.3 PRINTING REENTRANT AND CIRCULAR LIST STRUCTURES 

CIRCLPRINT33 

Horribleprint (Section 14) is designed primarily for dumping circular or reentrant list structures (as 
well as other data structures for which read is not an inverse of print) so that they can be read 
back in by Interlisp. The circlprint package is designed for printing circular or reentrant structures 
so that the user can look at them and understand them. 

A reentrant list structure is one that contains more than one occurrence of the same~ structure. 
For example, tconc (Section 6) makes uses of reentrant list structure so that it does not have to 
search for the end of the list each time it is called. Thus, if !. is a list of 3 elements, (A Be), 
being constructed by tconc, the reentrant list structure used by tconc for this purpose is: 

33 CIRCLPRINT was written by P. C. Jackson. It is contained on the file CIRCLPRINT • COM. 

24.15 



Section 24: Lispusers Packages 

FIGURE 24-1 

This structure would be printed by print as « ABC) C). Note that print would produce the 
same output for the non-reentrant structure: 

FIGURE 24-2 

In other words, print does not indicate the fact that portions of the structure in Figure 24-1 are 
identical. Similarly, if print is applied to a circular list structure (a special type of reentrant 
structure) it will never terminate. 

For example, if print is called on the structure: 

FIGURE 24-3 

it will print an endless sequence of left parentheses, &nd if applied to: 

24.16 



Printing Reentrant and Circular List Structures 

FIGURE 24-4 

will print a left. parenthesis followed by an endless sequence of A's. 

The function circlprint described below produces output that will exactly describe the structure of 
any circular or reentrant list structure. This output may be in either single or double-line formats. 
Below are a few examples of the expressions that circ1print would produce to describe the 
structures discussed above. 

expression in Figure 24-1: 
single-line: 
double-line: 

expression in Figure 24-3: 
single-line: 
double-line: 

expression in Figure 24-4: 
single-line: 
double-line: 

«A B ·1· C) {I}) 
«A B C) {I}) 

1 

(·1· A . {I}) 
(A . {1}) 
1 

24.17 



The more complex structure: 

is printed as follows: 
single-line: 
double-line: 

Section 24: Lispusers Packages 

FIGURE 24-5 

(*2* (*1* {1} *3* {2} A *4* B . {3}) . {4}) 
«{1} {2} A B . {3}) . {4}) 
21 3 4 

In both formats, the reentrant nodes in the list structure are labeled by numbers. (A reentrant 
node is one that has two or more pointers coming into it.) In the single-line format, the label is 
printed between asterisks at the beginning of the node (list or tail) that it identifies. In the 
double-line format, the label is printed below the beginning of the node it identifies. An 
occurrence of a reentrant node that has already been identified is indicated by printing its label in 
brackets. 

circ1print[list;printflg; rlknt] 

circlmark[list;rlknt] 

rlprinl[Jist] 

prints an expression describing list. If printflg = NIL, double-line 
format is used, otherwise single-line format. circlprint first calls 
circ1mark[list;rlkntJ, and then calls either rlprinl[list] or rlprin2[1ist), 
depending on the value of printflg (T or NI L, respectively). 
Finally, rlrestore[list] is called, which restores list to its unmarked 
state. Value i~ list 

marks each reentrant node in list with a unique number, starting at 
rlknt+l (or I, if rlknt is NIL). Value is (new) rlknt. 

Marking list physically alters it. However. the marking is 
performed undoably. In addition, list can always be restored by 
specifically calling rlrcstore. 

prints an expression describing list in the single-line format. Does 
not restore list to its uncirclmarked state. list must previously have 
been circlmarked or an error is generated. 

24.18 



rlprin2[list] 

rlrestore[list] 

Printing Reentrant and Circular List Structures 

same as rlprinl, except that the expression describing list is printed 
in the double-line fonnat. 

physically restores list to its original, unmarked state. 

Note that the user can mark and print several structures which together share common 
substructures, e.g., several property lists, by making several calls to circlmark, followed by calls to 
rlprinl or rlprin2, and finally to rlrest6re. 

circlmaker[list] 

circlmaker l[1ist] 

PRINTL34 

list may contain labels and references following the convention used 
by circ1print for printing reentrant structures in single line fonnat, 
e.g., (* 1 * . {1}) . circlmaker perfonns the necessaryrplaca's 
and rplacd's to make list correspond to the indicated structure. 
Value is (altered) list. 

Does the work for circ1maker. Uses free variables labelst and reflst. 
labelst is a list of dotted pairs of labels and corresponding nodes. 
reflst is a list of nodes containing references to labels not yet seen. 
Circlmaker operates by initializing labelst and reflst to NIL, and 
then calling circlmakerl. It generates an error if reflst is not NIL 
when circ1makerl returns. The user can call circImakerl directly to 
"connect up" several structures that share common substructures, 
e.g., several property lists. 

+ 
The printl package uses a different scheme than circlprint to present circular structures in an easily + 
readable format. printl uses indentation a la prcttyprint to make it easier for the user to see the + 
nesting of list structure, and prints index numbers for the beginning and ends of expressions so + 
that the user can find what is referred back to easily.35 The following example illustrates the use of + 
printl: + 

34 

3S 

PRINTL was written by M. J. Kay. It is contained on the file PRINTL. COM. 

Note that m:kt!! docs not provide an output fonnat which can be read back in to reconstruct the original list + 
structure; it is intended primarily as a debugging aid. + 

24.19 



+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Section 24: Lispusers Packages 

32~(PRINTL (NCONC (SETQQ X (A BCD» X» 
1: (A BCD. {1}) 

NIL 
33~(PRINTL (LIST X (CDR X) (CDOR X) (CODOR X] 

1: «A BCD. {2}) {3} {4} {5}) 
NIL 
34~(PRINTL (LIST X (CONS 'P (CDR X» (CONS 'Q (CODR X» 
(CONS 'R (CODDR X] 

1: «A BCD. {2}) 
6: (P {3}) 
7: (Q . {4}) 
8: (R . {5}» 

NIL 
35~USE LIST FOR CONS 

1: «A BCD . {2}) 
6: (P {3}) 
8: (Q {4}) 
10: (R {5}» 

NIL 

: 1 

: 1 

:2 
:6 
: 7 
: 1 

:2 
:6 
:8 
: 1 

+ printl uses the following algorithm: Each list node that is printed ~ or cdr) is assigned a number. 
+ The second and subsequent appearences of tllis list node are represented simply by printing the 
+ number corresponding to the node in {} brackets. Every line on which the representation of a list 
+ begins shows the corresponding number of the fIrst such list, Le. this number corresponds to the 
+ first open parenthesis on the line. Similarly, to the right of every line on which a list ends is 
+ printed the number that corresponds to the last close parenthesis on the line. The numbers for 
+ those list nodes which do not correspond to the first open parentheses or the last close parentheses 
+ on a line can be obtained by simply counting from the last numbered parenthesis. For example, in 
+ the line 

+ 1: «A BCD. {2}) {3} {4} {5}) : 1 

+ 2 is (A BCD), 3 is (B CD), 4 is (C D), and 5 is (D). 

+ printl[item;depth;lmarg;rmarg;file] 
+ -".~ prints an item which is known to be, or suspected of being a 
+ circular list structure, in the form described above. depth controls 
+ the depth of recursion in the car direction and defaults to the value 
+ of the varible printdepth (initially 4). Elements of the structure at 
+ this depth are printed as '{--}'. 

+ 
+ 
+ 

+ 

+ PRNTL args 
+ 
+ 

lmarg is Ole left margin. If NIL, lmarg defaults to position[file]. Im 
is the position at which the righthand column of numbers will be 
printed. If NIL. rm defaults to (LINELENGTH)-5. 

Printing is to file. which is opened if necessary. 

lispxmacro that perfOlTIlS (PRINTL . args) provided car[args] is not 
a number. If it is. or if ~:2= NI L. the item to be printed is taken 
to be the last event on the history list with a non-null value. Thus 
PRNTL 6 will print the last non-null value with depth=6. 

24.20 



Transor 

24.4 TRANSOR36 

INTRODUCTION 

transor is a LISP-to-LISP translator intended to help the user who has a program coded in one 
dialect of LISP and wishes to carry it over to another. The user loads transor along with a file of 
transformations. These transformations describe the differences between the two LISPs, expressed 
in terms of Interlisp editor commands needed to convert the old to new, i.e. to edit forms written ' 
in the source dialect to make them suitable for the target dialect transor then sweeps through the 
user's program and applies the edit transformations, producing an object file for the target system. 
In addition, transor produces a file of translation notes, which catalogs the inajor changes made in 
the code as well as the forms that require further attention by the user. Operationally, therefore, 
transor is a facility for conducting massive edits, and may be used for any purpose which that may 
suggest 

Since the edit transformations are fundamental to this process, let us begin with a definition and 
some examples. A transformation is a list of edit commands associated with a literal atom, uSJJa11y 
a function name. transor conducts a sweep through the user's code, until it finds a form whose £m: 
is a literal atom which has a transformation. The sweep then pauses to let the edjtor execute the 
list of commands before going on. For example, suppose the order of arguments for the function 
tconc must be reversed for the target system. The transformation for tconc. would then be: « SW 
2 3». When the sweep encounters the form (leONe x (FOO», this transformation would be 
retrieved and executed, converting the expression to (leONe (FOO) X). Then the sweep would 
locate the next form, in this case (FOO). and any transformations for foo would be executed, etc. 

Most instances of tconc would be successfully translated by this transformation. However, if there 
were no second argument to teone, e.g. the form to be translated was (leONe X), the command 
(SW 2 3) would cause an error, which transor would catch. The sweep would go on as before, 
but a note would appear in the translation listing stating that the transformation for this particular 
form failed to work. The user would then have to compare the form and the commands, to figure 
out what caused the problem. One might, however, anticipate this difficulty with a more 
sophisticated transformation: « I F (iIiI 3) {( SW 2 3» « -2 NIL»», which tests for a 
third element and does (SW 2 3) or (- 2 NIL) as appropriate. It should be obvious that the 
translation process is no more sophisticated than the transformations used. 

This documentation is divided into two main parts. The first describes how to use transor 
assuming that the user already has a complete set of transformations. . The second documents 
transorset, an interactive routine for building up such sets. transorset contains commands for 
writing and editing transformations, saving one's work on a file, testing transformations by 
translating sample forms, etc. 

Two transformations files presently exist for translating programs into Interlisp. 
< LISP> SDS940.xFORMS is for old BBN LISP (SDS 940) programs, and 
< LISP> LISP16.xFORMS is for Stanford Al LISP 1.6 programs. A set for LISP 1.5 is planned. 

36 TRANSOR was written by J. W. Goodwin. It is contained on the file TRANSOR. COM. 

24.21 



Section 24: LispltSers Packages 

UStNG TRANSOR 

The first and most exasperating problem in carrying a program from one implcmentation to 
another is simply to gct it to read in. For cxample, SRI LISP uses / exactly as Interlisp uses %, 
Le. as an escapc character. The function prescan exists to help with these problems: the user uses 
prcscan to perform an initial scan to disposc of these difficulties,. rather than attempting to transor 
the foreign sourcefilcs directly. 

prescan copics a filc, performing character-for-charactcr substitutions. It is hand-codcd and is 
much fastcr than cithcr rcadc's or text-editors. 

prescan[file;charlst] Makes a new version of file, performing substitutions according to 
charlst. Each elemcnt of charlst must be a dot-pair of two character 
codes, (OLD . NEW). 

For example, SRI files are prescan'ed with charlst = «37 . 47) (47 . 37», which exchanges slash 
(47) and percent-sign (37). 

The user should also make sure that the treatment of doublequotes by the source and target 
systems is similar. In Interlisp, an unmatched double-quote (unless protected by the escape 
character) will cause the rest of the file to read in as a string. 

Finally, the lack of a STOP at the end of a file is harmless, since transor will suppress END OF 
F I L E errors and exit normally. 

TRANSLATING 

transor is the lop-level function of the translator itself, and takes one argument, a file to be 
translated. The file is assumed to contain a sequence of forms, which are read in, translated, and 
output to a file called file.TRAN. 'The translation notes are meanwhile output to file.LSTRAN. Thus 
the usual sequence for bring a foreign file to Interlisp is as follows: prcscan the file; examine code 
and transformations, making changes to the transformations if needed; transor the file; and clean 
up remaining problems, guided by the notes. The user can now make a pretty file and proceed to 
exercise and check out his program. To export a file, it is usually best to transor it, then prescan 
it, and pcrform clean-up on the foreign system where the file can be loaded. 

transor[sourcefile1 

transorform[form1 

transorfns(fnlst] 

Translates sourcefile. Prettyprints translation on file. TRAN: 
translation listing on file.LSTRAN. 

Argument is a LISP form. Rcturns the (destructively) translated 
form. The translation listing is dumped to thc primary output file. 

Argumcnt is a list of function namcs whosc interpreted definitions 
arc dcstructively translated. Listing to primary output file. 

transform and transorfns can be used to translatc exprcssions that are already in core, whereas 
transor itself only works on files. 

24.22 



Transor 

THE TRANSLATION NOTES 

lhe translation notes arc a catalog of changes made in the user's code, and of problems which 
require, or may require, further attention from the user. 'l11is catalog consists of two cross-indexed 
sections: an index of forms and an index of notes. '111e first tabulates all the notes applicable to 
any form, whereas the second tabulates all the forms to which anyone note applies. Forms appear 
in the index of forms in the order in which they were encountered. i.e. the order in which they 
appear on the source and output files. '111e index of notes shows the name of each note. the entry 
numbers where it was used. and its text, and is alphabetical by name. The following sample was 
made by translating a small test file written in SRI LISP. 

LISTING FROM TRANSORING OF FILE TESTFILE.;7 
DONE ON 1-NOV-71 20:10:47 

1. APPLY/EVAL at 
[DEFINEQ 

(FSET (LAMBDA 8. 

INDEX OF FORMS 

(PROG ... 3 •.. 

2. APPLY/EVAL at 
[DEfINEQ 

-- l 

(FSET (LAMBDA 8. 

(SETQ Z (COND 
((ATOM (SETQ --» 

(COHO 

--) ) 

((ATOM (SETQ Y (NLSETQ "(EVAL W)"») 
--) 

--» 

(PROG ••• 3 .•• 

-- ] 
3. MACHINE-CODE at 

(DEfINEQ 
(LESS1 (LAMBDA 8. 

(SETQ Z (COND 
«ATOM (SETQ --» 

(CONO 
«ATOM (SETQ --» 

--» 
"(EVAL (NCONS W»") 

--» 

(PROG •.. 3 .•• 
(COND 

4. MACHINE-CODE at 
(DEfI"EQ 

] 

(lESS1 (LAMBDA 8. 

••• 2 ... 
«NOT (EQUAL (SETQ X2 "(OPENR (MAKNUM 8. -»" 

) 
--» --» 

(PROG ..• 3 ••• 
(COND 

... 2 ... 
(NOT (EQUAL & (SETQ V2 

"(OPENR (MAKNUM 8. --»"») 
--» 

] 

INDEX OF NOTES 
APPLV/EVAL at 1, 2. 

24.23 



Section 24: Lispusers Packages 

TRANSOR will translate the arguments of the APPLY or EVAL expression, but the user 
must make sure that the run-time evaluation of the arguments returns a BBN-compatible 
expression. 
MACHINE-CODE at 3, 4. 

Expression dependent on machine-code. User must recode. 

The translation notes are generated by the transformations used, and therefore reflect the judgment 
of their author as to what should be included. Straightforward conversions are usually made 
without comment; for example, the DEFPROP's in this file were quietly ehl,mged to DEFINEQ's. 
transor found four noteworthy forms on the file. and printed an entry for. each in the index of 
forms, consisting of an entry number, the name of the note, and a printout showing the precise 
location of the form. The form appears in double-quotes and is the last thing printed, except for 
closing parentheses and dashes. An ampersand represents one non-atomic element not shown, and 
two or more elements not shown are represented as ... n ...• where n is the number of.el~ehts. 
Note that the printouts describe expressions on the output file rather than the source file; in the 
example, the DEFPROP's of SRI LISP have been replaced with DEFINEQ's. 

ERRORS AND MESSAGES 

transor records its progress through the source file by teletype printouts which identify each 
expression as it is read in. Progress within large expressions, such as a 10ngDEFINEQ. is reported 
every three minutes by a printout showing the location of the sweep. 

'.- ',' 

If a transformation fails, transor prints a diagnostic to the teletype which ideritifies' the' faulty 
transformation, and resumes the sweep with the next form. . .The translation notes will identify the 
form which caused this failure, and the extent to which the form and its arguments were 
compromised by the error. 

If the transformation for a common function failsfepeatedly, the user can type control-H. When 
the system goes into a break, he can use transorset to repair tbe transformation. and even test it 
out (see TEST command. page 24.26). He may then continue the main translation with OK. 

TRANSORSET 

To use transorset, type transorsetO to Interlisp. transorset will respOnd' with a + sign, its prompt 
character, and await input. The user is now in an executive loop which is like evalgt with some 
extra context and capabilities intended to facilitate the writing of transformations. transorset will 
thus progress IDm1Y and eval input, and execute history commands just as evalgt would. Edit 
commands. however, are interpreted as additions to the transformation on which the user is 
currently working. transorset always saves ona variable named currentfn the name of the last 
function whose transformation was altered or examined by the user. currentfn thus represents the 
function whose transformation is currently being worked on. Whenever edit commands are typed 
to the + sign, transorset will add them to the transformation for currentfn. This is the basic 
mechanism for writing a transformation. In addition, transorset contains commands for printing 
out a transformation, editing a transformation, ctc., which all assume that the command applies to 
currentfn if no function is specified. The following example illustrates this process. 

+-TRANSORSET() 
+FN TeONe 
TeONe 
+(SW 2 3) 

24.24 

[1] 

(2] 



Transor 

+TEST (TCONC A B) [3] 
P 
(lCONC B A) 
+TEST (TCONC X) [4] 
TRANSLATION ERROR~ FAULTY TRANSFORMATION 
TRANSFORMATION: {(SW 2 3» [5] 
OBJECT FORM: (TCONC X) 

1. TRANSFORMATION ERROR AT [6] 
"(TCONC X)" 

(lCONC X) 
'+(IF (NN 3) «SW 2 3» {(-Z NIL] [7] 
+SHOW. 
TeONC 

[(SW Z 3) 
(IF (NN 3) [8] 

«SWZ 3» 
«-2 NIL] 

lCONC 
+ERASE [9] 
lCONC 
+REDO IF [10] 
+SHO" 
TCONC 

[(IF <NN 3) 
«SWZ 3» 
({-Z NIL] 

TCONe 
+TDST 
=TEST [11] 
(TCONC NIL X) 
+ 
In this example, the user begins by using the FN command to setcurrentfn to TCONC [1]. He then 
adds to the (empty) transformation for tconc a command to switch the order of the arguments [2] 
and tests the transformation [3]. His second TEST (4] fails, causing an error diagnostic [5] and a 
translation note [6]. He writes a better command [7) but forgets that the original SW command is 
stilt in the way [8). He therefore deletes the entire transformation [9] and redoes the IF [10]. This 
time, the TEST works [11}. 

TRANSORSET COMMANDS . 

The fol1owing commands for manipulating transformations are all lispxmacros·. which treat the rest 
of their input line as arguments. All are undoable. 

FN Resets currentfn to its argument, and returns the new value. In 
effect FN says you are done with the old function (as least for the 
moment) and wish to work on another. If Ule new function already 
has a transformation, the message (OLD TRANSFORMATIONS) is 
printed, and any editcommands typed in will be added to the end· 
of the existing commands, FN followed by a carriage return will 
return the value of currentth without changing it. 

24.25 



SHOW 

EDIT 

ERASE 

TEST 

DUMP 

Section 24: Lispusers Packages 

Command· to prettyprint a transformation. SHOW followed by a 
carriage return will show the transformation for currentfn, and 
return currentfn as its value. SHOW followed by one or more 
function names will show each one in tum, reset currentfn to the 
last one, and return the new value of currentfn. 

Command to edit a transformation. Similar to SHOW except that 
instead of prettyprinting the transformation, EDIT gives it to edite. 
The user can then work on the transformation until he leaves the 
editor with OK. 

Command to delete a transformation. Otherwise similar to SHOW. 

Command for checking out transformations. TEST takes one 
argument, a form for translation. The translation notes, if any, are 
printed to the teletype, but in an abbreviated format·. whiCh omits 
the index of notes. The value returned is the translated form. 
TEST saves a copy of its argument on the free variable testfo!m. 
and if no argument is given, it uses testform, i.e. tries the previous 
test again. 

Command to save your work on a file. DUMP takes one argument, 
a filename. The argument is· saved on the variable dumpfile, so 
that if no argument is provided, a new version of the previous file 
will be created. 

The DUMP cOmmand creates files by make file. Normally fileFNS will be unbound, but the user 
may set it himself; functions called from a transformation by the E command may be saved in this . 
way. DUMP makes sure that the necessary command is included on the fileVARS to save the user's 
transformations. The user may add anything else to his fileVARS that he Wishes. .When a 
transformation file is loaded, all previous transformations are erased unless the variable merge is set 
to T. 

EXIT transorset returns NIL. 

THE REMARK FEATURE 

The translation notes arc generated by thOse transformations that are actually executed via an 
editmacrocalled REMARK. REMARK takes one argument, the name of a nole. When the macro is 
execuled, il saves the appropriate information for the translation notes, and adds one entry to the 
index of forms. The location that is printed in the index of forms is the editor's location when the 
REMARK macro is executed. 

To write a transformation which makes a new note, one must therefore do two things: define the 
note, i.e. choose a new name and associate it with the desired text; and call the new note with the 
REMARK macro, i.e. insert the edit command (REMARK name) in some transformation. 1be NOTE 
command, described below, is used to define a new note. 1be call to the note may be added to a 

24.26 



Transor 

transformation like any other edit command. Once a note is defined, it may be called from as 
many different transformations as desired. 

The user can also specify a remark with a new text, without bothering to think of a name and 
perform a separate defining operation, by calling REMARK with more than one argument, e.g. 
(REMARK text-of-remark). This is interpreted to mean that the arguments are the text. 
t ran S 0 r set notices all such expressions as they are typed in, and handles naming automatically; a 
new name is generated37 and defined with the text provided, and the expression itself is edited to 
be (REMARK generated-name). The following example illustrates the use of REMARK. 

t-TRANSORSET( ) 
+NOTE GREATERP/LESSP (BBN'S GREATERP AND LESSP ONLY [1] 
TAKE TWO ARGUMENTS, WHEREAS SRI'S FUNCTIONS TAKE AN 
INDEFINITE NUMBER. AT THE PLACES NOTED HERE, THE SRI CODE 
USED MORE THAN TWO ARGUMENTS, AND THE USER MUST RECODE.] 
GREATERP/LESSP 
+FNGREATERP 
GREATERP 
+(IF (IGREATERP (lENGTH (##»3) NIL «REMARK GREATERP/LESSP] [2] 
+FN LESSP 
LESSP 
+REDO IF [3] 
+SHOW 
lESSP 

[(IF (IGREATERP (LENGTH (H#» 
3) 

NIL 
«REMARK GREATERP/lESSP] 

LESSP 
+FN ASCII 
(OLD TRANSFORMATIONS) 
ASCII 
+(REMARK ALTHOUGH THE SRI FUNCTION ASCII IS IDENTICAL [4] 
TO THE BBN FUNCTION CHARACTER, THE USER MUST MAKE SURE THAT 
THE CHARACTER BEING CREATED SERVES THE SAME PURPOSE ON 80TH 
SYSTEMS, SINCE THE CONTROL CHARACTERS ARE ALL ASSIGNED 
DIFFRENTl Y.] 
+SHOW [5] 
ASCII 

«1 CHARACTER) 
(REMARK ASCII:» 

ASCII 
+NOTE ASCII: [6] 
EDIT 
·NTH -2 
.p 
... ASSIGNED DIFFRENTlY.) 
·(2 DIFFERENTLY.) 
OK 
ASCII : 
+ 

37 The name generated is the value of currentfll suffixed with a colon. or with a number and a colon. 

24.27 



Section 24: Lispusers Packages 

In this example, the user defines a note named GREATERP/LESSP by using the NOTE command 
II], and writes transformations which call this note whenever the sweep encounters a GREATERP or 
LESSP with more than two arguments [2-3). Next, the implicit naming feature is used {4] to add a 
REMARK command to the transformation for ASCII, which has already been partly written. The 
user realizes he mistyped part of the text, so he uses the SHOW command to find the name chosen 
for the note [5]. 'Ibcn he uses the NOTE command on this name, ASCII:, to edit the note [6]. 

NOTE First argument is note name and must be a literal atom. If already 
defined, NOTE edits the old text; otherwise it defines the name, 
reading the text either from the rest of the input line or from the 
next line. The text may be given as a line or as a list Value is 
name of note. 

The text is actually stored.38 as a comment, i.e. a • and %% are added in front when the note is 
first defined. The text will therefore be lower-cased the first time the user DUMPs (see Section 14). 

DELNOTE Deletes a note completely (although any calls to it remain in the 
transformations). 

CONTROLLING THE SWEEP 

transor's sweep searches in print-order until it finds a form for which a transformation. exists. The 
location is marked, and the transformation is executed. The sweep then takes over again, 
beginning from the marked location, no matter where· the last command of the transformation left 
the editor. User transformations can therefore move around freely to examine the context, without 
worrying about confusing the translator. However. there are many cases where the user wants his . 
transformation to guide the sweep, usually in order to direct the processing of special forms and 
FEXPR's. For example, the transformation for QUOT E has only one objective: to· tell the sweep to 
skip over the argument to QUOTE, which is (presumably) not a LISP form. NLAM is an editmacro 
to permit this. 

NLAM Anatomic editmacro which sets a flag which causes the sweep to 
skip the arguments of the current form when the sweep resumes. 

Special forms such as cond, ru:Q&, selectg, etc., present a more difficult problem. For example, 
(CONO (A 8» is processed just like {FOO (A 8»: i.e. after the transformation for cond 
finishes, the sweep williocatcthe "next form," (A 8), retrieve the transformation for thc function 
A. if any, and execute it Therefore, special forms must have transformations that preempt the 
sweep and direct the translation themselves. The fonowing two atomic editmacros permit such 
transformations to process their forms. translating or skipping over arbitrary subexpressions as 
desired. , 

24.28 



DOTH1S 

DOTH ESE 

Transor 

Translates the editor's current expression, treating it as a single 
form. 

Translates the editor's current expression, treating it as a list of 
forms. 

For example, a ·transformation for setg might be (3 DOTHIS).39 This translates the second 
argument to a setg without translating the first. For con~ one might write 
(1 (LPQ NX OOTHESE». which locates each clause of the COND in tum, and translates it as a 
list of forms, instead of as a single f.orm. 

The user who is starting a completely new set of transformations must begin by writing 
transformations for all the special form'S. To assist him in this and prevent oversights, the .file 
< LISP> SPECIALXFORMS contains a set of transformations for LISP special forms, as well as 
some other transformations which should also be included. The user will probably have to revise 
these transformations substantially, since they merely perform sweep control for Interlisp, i.e. they 
make no changes in the object code. They are provided chiefly as a checklist and tutorial device, 
since these transformations are both the first to be written and the most difficult, especially for 
users new to the Interlisp editor. 

When the sweep mechanism encounters a form which is not a list, or a form car of which is not an 
atom, it retrieves one of the following special transformations. 

NLISTPCOMS Global value is used as a transformation for any form which is not 
a list. 

For example, if the user wished to make sure that all strings were quoted. he might set nlistpcoms 
to «IF (STRINGP (##» «ORR «~ QUOTE»«MBD QUOTE»» NIL». 

LAMBDACOMS Global value is used as a transformation for any form, car of which 
is not an atom. 

These variables are initialized by < LISP> SPECIAL.XFORMS and are saved by the DUMP 
command. nlistpcoms is initial1y NIL, making it a NOP. lambdacoms is initialized to check first 
for open LAMBDA expressions, processing them without translation notes unless the expression is 
badly formed. Any other forms with a non-atomic gr are simply treated as lists of forms and are 
always mentioned in the translation notes. The user can change or add to this algorithm simply by 
editing or resetting lambdacoms. 

This completes the discussion of TRANSOR. 

39 Recall that a transfonnation is a list of edit commands. In this ca,5e. there are two commands, 3 and DOTH IS. 

24.29 



Section 24: Lispusers Packages 

+ 24.5 INDEXING AND CROSS REFERENCING FILES 

+ MUl TIFllEINDEX40 

+ Many systems built in Interlisp consist of a number of symbolic source files. Finding. one's way 
+ around in the listings for these various files can be very tedious, even for the implementor of the 
+ system. The multifileindcx package is an attempt to help users deal with this problem by creating 
+ a listing of an entire system or set of files, inc1udingan alphebetized table of contents containing 
+ entries for each function on any of the files. Information is also included for other entities in the 
+ files such as records, blocks, and properties. The function multifileindex implements this 
+ mechanism. 

+ multifileindex first creates an alphabetized table of contents, indicating the name of the entity, the 
+ file that it belongs to, and its type (property, variable (set or saved), record, block, etc.) ina 
+ columnar format. If the entity is the name of a function, then the information also includes a 
+ unique index in the listing for the function, its function type, and its arguments. The files are then 
+ printed with each function being preceeded by its indexnumber right-justified on the line. Header 
+ information is placed at the top of each page, and the pages are numbered. After the files have 
+ been listed, they are (undoably) removed from notlistedfiles. 

+ multifileindex[filenamelst;mapf'ile;newpageflg] 
+ filenamelst can either be a list of file names, or an atom. If 
+ filenamelst is NIL, multifileindex returns immediately. If it is T. 
+ filelst is used. multifileindex reQuires that the· COMS for all the files 
+ being listed need to be loaded.41 If a particular file is not loaded, 42 
+ then its filcCOMS will not be set. In this case, multifileindex will do 
+ a loadvars on the file to load the fileCOMS. (Note that this may 
+ have other side effects.) 

+ 
+ 
+ 

map file is the output. file. If map file is NIL. it defaults to value the 
of printer (initially LPT:). If newpageflg= T, each function in the 
listing will be placed on a page by itself. 

+ The value of linesperpage determines the number of lines per page, and is initially 58. The value 
+ of filelinelength determines the width of the page. lbe following four parameters affect how the 
+ columns are placed. The value of multifileindcxcols indicates how the other three are to be 
+ interpreted These other variables are mtJltifilcindexnamecol. rnultifitcindexfilecol and 
+ multifileindextmccol (initatly 0, 26 and 41, respectively). If multifilcindexcols is the atom 
+ FLOATCOLS (its initial value), then an attempt is made to fit the columns onto the page in a way 
+ that maximizes the amount of space for the type information (the amount of space allocated for the 
+ type field must be at least 45% of filelinelength in this case). If multifileindexcols is either T or 

+ 40 multifileindex was written by J. J. Vittal. It is contained on the file MULTI FI LE INDEX. COM. 

+ 41 multifileindex assumes if fileCOMS is Set. then all nested or indirect COMS are also set 

+ 42 or it was loaded with the SYSLOAD option to load. 

24.30 



Indexing and Cross Referencing Files 

FIXCOLS, then the value of the other variables are treated as abso1ute column positions on the + 
page. lfmultifilcindexscols is eithcr NIL or FIXFLOATCOLS, thc columns will bc floated, but will + 
not bc any smaller than thc column positions dcfined by the other variables. + 

SlNGLEFILEINDEX43 + 
singlcfilcindex is a package for giving thc uscr an· alphabctical function index on the front of each + 
lisp tile listed by lnlerlisp. This package is similar to the multifileindex package described above, + 
except that singlefileindex provides a tablc of contcnts for functions only, and operates on one file + 
at a time. However, singlefileindex is much· simpler and faster than multifileindex and is useful + 

. cvery time a file is made. + 

llle first page gives the filename, time of creation, and the time of the listing. Following that (on + 
possibly more than one page) are n columns of function names and index numbcrs, where the + 
index number indicatcs the function's linear occurrence within the file. The number of columns is + 
determined by thc length of the longest function name, as well. as by the numbcr of functions in + 
the file as described below. The file is then printed with the filcname and page number at the top + 
of evcry page, and each function is preceded by its index number right-justified on the page. + 

When the singlefileindex package is first loaded, it redefines listfiles1 (Section 14) so that all files + 
listed by listfiles will be listed using singlefileindex.44 Note that· the file being indexed docs not + 
have to be loaded, or even noticed in the file package sense. + 

singlcfileindex[file;outputfile;newpageflg] + 
file is the lisp source file. outputfile is the destination file. If + 
output file = NIL, then the value of printer (initially LPT:) is used. + 
ncwpageflg = T means each function will be printed on a new page. + 
The value of fileline1ength determines the position of the index + 
numbers, as well as the placement of the columns. The value of + 
linesperpage (initially 58) determines the number of lines per page. + 

24.6 DATABASEFNS4s 

databasefns is a very small package whose purpose is to make the construction and maintenance of + 
Mastcrscopc databases an esscntially automatic process. It modifies make file, load, and loadfrom to + 
bchave in the following way: + 

A database will be maintained automatically for any file (containing functions) whose file name has + 
the property DATABASE with value YES. Whenever such a file is dumped via makefile, + 
masterscope will analyse any new or changed functions on the file, and a database for all of the + 

43 singlcfilcindcx was written by M. D. Yonkc. It is contained on the file S I NGL E F I LEI NOE X • COM. + 
44 with both outputfitc and ncwpageng being NIL. + 
4S Thc databascfns package was written by R. M. Kaplan. It is containcd on the file OAT ABASEF NS. COM. + 

24.31 

---:;------:::-::---:-:;:----- ------- ----- --- --------



Section 24: Lispusers Packages 

+ functions on the file will be written on a separate file whose name is of the form file.DA T ABAS E. 
+ Whenever a file which has a OAT ABASE property with value YES is loaded via load or loadfrom, 
+ then the corresponding .DATABASE file, if any, is also loaded. The database will not be dumped 
+ or loaded if the value of the OAT ABAS E property for the file is NO.46 

+ If the DATABASE property is not YES or NO, then for make file, load, and loadfrom will ask the 
+ user whether he wants automatic database maintenance.4'111us when a file is dumped for the first 
+ time, the user will be asked "Do you want a Masterscope Database for this file?". Similarly, if the 
+ user loads a file which· has an associated database, the user will be asked "load database for 
+ < file> ?". 

+ The above interactions may be controlled via the global variables savedbflg and loaddbflg. When a 
+ file which has neither a YES or NO database property is being dumped, make file will assume (and 
+ store) a YES value if the value of savedblfg is YES, and a NO value if savedbflg is NO. The user 
+ will be queried only if savedbflg is ASK (its initial value). Similarly, if loaddblfg is YES, load and 
+ loadfrom will automatically load an existing . OAT ABAS E file for a file which does not have a YES 
+ or NO value for its DATABASE property. lbe database will not be loaded if loaddbflg is NO, and 
+ the user will be interrogated as described above if loaddbflg is ASK (its initial value). 

+ The user can dump and restore databases explicitly via the following functions: 

+ dumpdb[file] 
+ 
+ 

+ loaddb(file] 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 24.7 LAMBDATRAN48 

dumps a database for file then sets the DATABASE property to YES, 
so that database maintenance for file will subsequently be 
automatic. 

loads the file file. OAT ABAS E if one exists. After the database is 
loaded, the DATABASE property for file is set to YES, so that 
maintenance will thereafter be automatic. 

Database files include the date and full filename of the file to 
which they correspond. loaddb will print out a warning message if 
it loads a database that docs not correspond to the in-core version 
of the file. 

Note that loaddb is the only approved way of loading a database: 
Attempting to load a database file will cause an error. 

+ The purpose of this package is to facilitate defining new lambda words in such a way that a variety 
+ of other system packages will respond to them appropriately. A lambda word is a word that can 

+ 46 . The DATABASE property is considered to be NO if the file is loaded with Idflg=SYSLOAD. 

+ 47 '!be user's answer will be storcd on the DATATBASE property so that he will not be asked again. 

+ 48 TI1C lambdatran package was written by R. M. Kaplan. It is contained on the file LAMBDATRAN. COM. 

24.32 



Lambdatran 

appear as car of a function definition, like LAMBDA and NLAMBDA. New lambda words are useful + 
because they enable the user to define his own conventions about such things as the interpretation + 
of arguments, and to build in certain defaults about how values are returned. For example, the + 
dec1 package (page 24.53) defines DLAMBDA as a new lambda word with unconventional + 
arguments such as the following: + 

(DLAMBDA «A FLOATP) (B FIXP) (RETURNS SMALLP» (FOO A B» + 

In order for such an expression to be executable and compilable, a mechanism must be provided + 
for translating this expression to an ordinary LAMBDA or NLAMBDA, with the special behavior + 
associated with the arguments built into the function body. The lambdatran package accomplishes + 
this via an appropriate entry on dwimuserforms (see Section 17) that computes the translation. + 

Besides executing and compiling, Interlisp applies a number of other operations to function + 
definitions (e.g. breaking, advising), many of which depend on the system being able to determine + 
certain properties of the function, such as the names of its arguments, their number, and the type + 
of the function (EXPR. FEXPR, etc.). The lambdatran package also provides new definitions for + 
the functions ili!YQ, arglst, nargs, and argtype which can be told how to compute properties for the + 
user's lambda-words. + 

A new lambda-word is defined in the following way: + 

1. Add the lambda-word itself (e.g. the atom DLAMBDA) to the list lambdasplst. This suppresses + 
attempts to correct the spelling of the lambda-word. + 

2. Add an entry for the lambda-word to the association-list lambdatranfns, which is a list of + 
elements of the form: (Lambda-word Tranfn Fntyp Arglist), where + 

lambda-word is the name of the lambda-word (e.g. DLAMBDA). + 

tranfn is a function of one argument that will be called whenever a + 
real definition is needed for the lambda-word definition. Its + 
argument is the lambda-word definition, and its value should be a + 
conventional LAMBDA or NLAMBDA expression which will become + 
the translation of the lambda-word form. The free variable faultfn + 
is bound to the name of the function in which the lambda-word + 
form appeared (or TY P E - I N if the form was typed in). + 

.fu!yp determines the function-type of a definition beginning with + 
lambda-word. It is consulted if the definition does not already have + 
a translation from which the function type may be deduced. If + 
.fu!yp is one of the atoms EXPR. FEXPR. EXPR"'. FEXPR"', then + 
all definitions beginning with lambda-word are assumed to have + 
that!yp£. Otherwise, fntyp is a function of one argument that will + 
be applied to the lambdj!-word definition. Its value should be one + 
of the above four function types. + 

arglist determines the argument list of the definition if it has not + 
already been translated (if it has, the arglist is simply the arglist of + 
the translation). It is also a function of one argument, the + 
lambda-word definition, and its value should be the list of + 
arguments for the function (e.g. (A B) in the DLAMBDA example + 

24.33 



+ 
+ 
+ 
+ 

Section 24: Lispusers Packages 

above). If the lambda-word definition is ilHormed and the 
argument list cannot be computed. the function should return T. If 
an arglist entry is not provided in the lambdatranfns clement, then 
the argument list defaults to the second clement of the definition. 

+ As an example, the lambdatranfns entry for DlAMBDA is (DlAMBDA DECl EXPR 
+ DLAMARGLI S1), where decl and dlamarglist arc functions of one argument 

+ Note: if the lambda-word definition has an argument list with argument names appearing either as 
+ literal atoms or as the first element of a list, the user should also put the property INFO with value 
+ BINDS.on the property list of the lambda-word in order to inform dwimify (Section 23) to take 
+ notice of the names of the arguments when dwimifying. 

+ 24.8 PERMSTATUS49 

+ The function permstatus defined in this package can be used in conjunction with the whenclose 
+ package (Section 14) to make a file "permanently" open in the sense that as much of its status as 
+ possible will be restored when a sysout is resumed. This includes its access mode, file-pointer 
+ position, bytesize, and any pages mapped in by the pmap package. The desired effect is achieved 
+ by saying (WHENClOSE fil ename I STATUS 'PERMSTATUS) after the file has been opened. 

+ Note that the permanency of files is not guaranteed in that files may be deleted or renamed, or 
+ their contents changed, despite their permanent attribute in some sysout. When restarting a sysout, 
+ a warning message will be printed if the file cannot be found or restored. However, permstatus 
+ will not be able to detect that the contents of a file have been modified since the sysout was 
+ created. Note also that "permanent" files will still be closed by close£. and will not be immune to 
+ closeall or to closing on end-of-file errors unless the appropriate whenclose attributes for closeall 
+ and EOF are also established. 

+ 24.9 WHEREIS50 

+ This package extends the function whereis (see Section 14) such that, when asked about a given 
+ name as a function, whereis will consult not only the commands of files that have been noticed by 
+ the file package (Section 14) but also a hashtile database (page 24.47) that associates function 
+ names with filenames. 

+ whereis[name;type;files;-] 
+ 
+ 
+ 

behaves exactly like the definition in Section 14 unless ~= FNS 
(or NIL) and files = T. In this case, whereis will consult, in addition 
to the files on filclst. the hashfile that is the value of whercis.hash 
(initially <LISPUSER>WHEREIS. HASH). 

+ Note: most system functions can whereis with files=1, so loading this package automatically makes 
+ the information contained in the whereis database available throughout the system. 

+ 49 The permstatus package was written by R. M. Kaplan. It is contained on the file PE RMS T ATUS • COM. 

+ 50 The whcreis package was written by L. M. Masintcr. It is contained on the file WHE REI S • COM. 

24.34 



Whereis 

InfOlmation may be added to a whercis hashfile by explicitly calling the following function: + 

whereisnotice[filegroup;newflg] inserts the information about all of the functions on the files in + 
fi1egroup into the whereis data base contained on (the value of) + 
whercis.hash. filegroup is given as a filegroup argument . to + 
directory (see Section 21), so &, $, etc. may be used. If newflg=T, + 
a new version of whercis.hash will be created containing the + 
database for the functions specified in filegroup. + 

Note the whereis package requires the hash package (page 24.47). Loading WHERE IS. COM will + 
also load HASH. COM, if it has not already been loaded. + 

24.10 CJSVS51 + 

This package provides assistance to Interlisp-10 users who wish to make direct calls on the + 
operating system (via JSYSes). It also makes the coding of certain common assemble constructions + 
more convenient. The package defines the following functions: + 

jsUsysname;acl;ac2;ac3;result] nlambda function.· All arguments are evaluated except for + 
jsysname. Like jsys (see Section 21), loads the unboxed values of + 
acl. ac2, and ac3 into the appropriate registers, and executes the + 
JSYS jsysname. .lli differs from jsys in that the JSYS may be + 
indicated by its symbolic name, not just by its number. 52 .lli also + 
generates slightly cleaner code than ~ . .lli also differs from jSYS in + 
that: + 

(a) if any argument is supplied as NIL, then it is not loaded at all, + 
i.e. the corresponding ac will contain garbage. G§y§ loads the ac + 
with~ + 

(b) if result is NIL, then no value is loaded (interpreted, .lli returns + 
the string "garbage resul t from JS"). + 

(c) result can be T, meaning return T if the JSYS skips, NIL if not. + 

Because of these differences, caution must be exercised in turning + 
jsys calls into .lli calls. + 

Examples: (JS BIN (OPNJFN FILE) NIL NIL 2) returns the value of AC2 after doing a BIN + 
from the JFN of file. {JS BOUT (OPNFJN FILE) 3) sends a control-C to file. The value of + 
this .lli call is garbage. + 

51 

52 

The cjsys package was written by L. M. Masinter. It is contained on the file CJSYS. COM. + 

The symbolic JSYS name is looked up on the list jS~~1>. an a-list of (jsysname jsysnumber # skips). If any entry is + 
not found. then the file STENEX. MAC (or SYS: MONSYMS. MAC for Tops-20) is scanned. + 

24.35 



+ xwd[nl;n2} 
+ 

+ bit[bit# ;word] 
+ 
+ 
+ 

+ 

+ jsyserror[errorn] 
+ 
+ 

Section 24: Lispusers Packages 

rcturns( LOGOR (LLSH nl 18) (LOGAND n2 777777Q», i.e. 
the word with nl in the left half and n2 in the right. 

lambda no-spread. If word is not specified, bit simply returns a 
number with bit bit# set to 1 and all other bits O. If word is 
given, then bit is a predicate that returns T if bit# is set in word. 
Bits are numbered from left to right. 

Examples: (8 I T 32) is 8 (= lOQ), (8 I T 32 8) is T. 

nlambda function. Returns the TENEXITOPS-20 error number 
for errom. For example, (JSYSERROR GJFX23) is 600103Q. 
jsyserror compiles open as a constant. 

+ This package also defines the following assemble macros: 

+ (JS jsysname) 

+ (CVexpr) 

+ (CV2 expr) 
+ 

+ 24.11 SCRATCHLIST 

can be used in assemble statements instead of (JSYS jsysnumber) 

expands to (CQ (VAG (FIX expr))), which unboxes expr to ACt. 

expands to {CQ2 {VAG (FIX expr»), which unboxes expr to AC2, 
saving ACt. 

+ This facility helps in writing programs that wish to reuse a scratch list to collect together some 
+ result. 

+ There are two functions (both of which compile open): 

+ scratchlist[lst;xl ;x2; ... ;xn] 
+ 
+ 
+ 
+ 
+ 
+ 

+ addtoscratchlist[value] 
+ 
+ 
+ 

nlambda, nospread. scratchlist sets up a context in which the value 
of 1st is used as a "scratch" list. The expressions !l' !2' ... !n are 
evaluated in tum. During the course of evaluation. any value passed 
to addtoscratchlist will be saved. reusing cons cells from the value 
of 1st. If the value of 1st is not long enough. new cons cells will be 
added onto its end. If the value of 1st is NIL. the entire value of 
scratchlist will be "new" (i.e. no cons cells will be reused). 

For use under calls to scratchlist. value is added on to the end of 
the value being collected by scratchlist. When scratch list returns, its 
value is a list containing all of the things that addtoscratchlist has 
added. 

24.36 



Nobox 

24.12 NOBOX53 + 

This package contains facilities for subverting the normal manner of dynamically allocating and + 
collecting cons cells. large integer boxes, and floating boxes in Interlisp-lO by using static, compile- + 
time allocation. Storage allocation is controlled by allocating the memory for temporary results + 
(e.g. a list that will be thrown away or a floating number that will not exist outside a local + 
computational context) at compile-time or load-time. This "static" storage will be reused whenever + 
the given line of code is re-executed. Because functions which use these facilities may exhibit + 
bizarre behaviour if they are called recursively or if values escape outside of them, these facilities + 
must be used with extreme caution, and should be reserved for those cases where the normal + 
method of storage allocation and garbage collection is not workable or practical. Note: compiled + 

.functions need no run-time support for these facilities, i.e. NOBOX does not have to be loaded to + 
execute compiled code. + 

CONS CELLS + 
The function cbox may be used to avoid allocation of cons cells. When run interpreted. cbox is + 
exactly equivalent to the function cons. Compiled, cbox operates like cons, except that the cons cell + 
returned is constructed (once) at compile or load time. New values for car and cdr are smashed + 
into the cell at each execution. + 

The function lbox performs an analagous role for list. When run interpreted, lbox is exactly + 
equivalent to list. Compiled, the corresponding fQ!!§ cells are allocated at compile or load time. + 
For example, (LBOX ABC) will cause a 3"element static list to be included with a compiled + 
function's literals. Each time the corresponding compiled code is executed, those three cells will be + 
returned containing the current values of the variables ~, ~, and $!. + 

Ibox allocates as many cells as there are arguments in the corresponding form, i.e. the number of + 
scratch cells is determined at compile time. The iterative statement operator SCRATCHCOLLECT + 
enables avoiding conses when the length of a list is not known at compile-time. + 
SCRATCHCOLLECT is used in iterative statements exactly as COLLECT. Each time it is executed, it + 
reuses the cells that it returned on previous executions, which it remembers as an internal scratch + 
list. Ibe length of this scratch list is always the length of the longest value that was ever returned; + 
new cells are allocated whenever. the scratch list runs out, and they are permanently remembered. + 

The SCRATCHCOLLECT i.s.opr and the function scratchlist (page 24.36) have similar applications. + 
With scratchlist, the user makes explicit the origin of the list getting smashed, while with the + 
SCRATCHCOLLECT i.s.opr, the scratch list is hidden (and there is a different scratch-list for each + 
occurence of the i.s.opr). + 

NUMBER BOXES + 
The functions ibox, tbox, and nbox, and the record declarations IBOX and FBOX are provided to + 
improve the efficiency of arithmetic computations. They permit information to be given to the + 
Interlisp-lO compiler that will inhibit the allocation (and subsequent collection) of number boxes + 

53 The NOBOX package was written by R. M. Kaplan with assistance from B. A. Sheil and M. Kay. It is contained on 
the file NOBOX. COM. 

24.37 

+ 
+ 



Section 24: Lispusers Packages 

+ needed for holding temporary results of numeric computations.54 In addition, access time to 
+ variable-values that are known to be large integers or floating point numbers is improved. 

+ The records IBOX and FBOX essentially describe the structure of large integer and floating point 
+ boxes respectively. IBOX consists of a single field, cal1ed I, which corresponds to the actual 
+ contents of the large integer box. FBOX consists of a single field, called F, which corresponds to 
+ the contents of the floating point box. For example, the user can create a large integer box 
+ containing a given value and assign it to.1' by saying (SETQ X( create IBOX I +- form». 
+ Even if the value of form is a small integer, the result will be stored in a new, large number box. 
+ 111is seeming i~efficiency is important because if some values of form might be large, making all 
+ values large means that the compiler can be told how to treat all references to ~ without generating 
+ run-time tests to discover how to do the unboxing. 111us, wherever the value of ! is to be 
+ referenced, the user simply writes X: I (or (f etc h I 0 f X». In compiling this expression, the 
+ compiler generates a single MOVE instruction without any type-testing whatsoever. The user can 
+ reuse that number box by saying X: I+-( FOO), which is equivalent to, but much more efficent 
+ than, (S E TN X (F 00) ). In other words, once it is known that ! is bound to a large integer, the 
+ suffix:l can be used in all number-contexts to inform the compiler of that fact. 

+ The facilities described so far do nothing to suppress the creation of unnecessary boxes; indeed, the 
+ (create IBOX --) will produces boxes for small numbers that would not be allocated otherwise. 
+ The functions (not records) ibox, tbox, and nbox are used to suppress unnecessary boxing of 
+ temporaries. Effectively, they cause "constant" or "static" boxes of the appropriate type to be 
+ allocated and stored in a function's literals when a function is compiled or loaded. Those boxes 
+ can be used (and reused) to hold temporary results. 

+ ibox and tbox can be called with 0 or 1 arguments. If no arguments are specified (as opposed to a 
+ single argument whose value is NIL), then the value of the function is a large-integer or floating 
+ number box which is allocated statically. For example, these might be used to construct an initial 
+ binding for a variable into which temporary values will be stored using the : I or : F assignments. 
+ For example: 

+ (PROG «X (IBOX») (X:I+-(FOO» ... ). 

+ If an argument is specified for ibox or tbox, then a static box of the appropriate type will be 
+ allocated at compile- or load-time, and the value of the argument will be stored in that box 
+ whenever the IBOX statement is executed. For example, suppose the user wanted to set a file 
+ pointer to 1 past a given byte position. The expression 

+ (SETFILEPTR FILE (ADDl POS» 

+ would generate a new number box on each execution for which ~ happened to be a large 
+ number. That box would be passed into setfileptr and then returned as its value. Since the value 
+ is not saved, the box would be thrown away, to be collected later. The expression 

+ (SETFILEPTR FILE (IBOX (ADDl POS») 

+ would store the desired position in a constant box, and no al1ocations would take place. 

+ 54 In the latter respect, these duplicate some of what lie1n (Section 13) docs, except that they are more convenient to 
+ usc and are executed with less run' time checking (i.e. setn will never smash random memory locations). 

24.38 



Nobox 

As another example, consider a complicated integer expression whose value must be saved in a + 
variable to be used a little further down in a program: + 

(X~(IPLUS 2000 (ITIMES roo (IQUOTIENT FUM 5»» 

(Z~(IPLUS x (GETFILEPTR FILE») 

+ 
+ 
+ 

The Interlisp-10 compiler is smart enough to suppress the boxing inside the (IPLUS 2000 &) + 
expression, but it will generate a box when it comes to do the setg (~). This box can be + 
suppressed by writing + 

(X~(IBOX (IPLUS 2000 (ITIMES FOO (IQUOTIENT FUM 5»)) + 
Furthermore, since it is known that! is bound to a large integer, the l: assignment can be speeded + 
up by writing + 

(Z~(IPLUS X:I (GETFILEPTR FILE») + 
The function fbox behaves the same as ibox, except that it traffics in constant floating boxes. Note + 
that if the argument of ibox is FLOATP, then it will be FIXed; if the argument of tbox is FIXP, it + 
will be FLOATed. . + 

The function nbox is a generic function for copying unknown values into constant number boxes.' + 
It allocates two constant boxes, one integer and one floating, and stores the value of its argument + 
in the one compatible with the value's type. nbox is useful if the argument value is a constant + 
number box (but one of unknown type) that needs to be copied (see caution (2) below). + 

CAUTIONS + 

There are some dangers in using these facUities. The user of this package should be particularly + 
aware of the following: + 

(1) The F and I fields aim at efficiency more than validity. This means that they do not check + 
the type of the pointer that they smash into. For example; if ! is bound to NIL, the expression + 
X : I ~ Z will clobber car and cdr of N I II The user must be very careful that the arguments given + 
for replacing do indeed point to cells that unboxed numbers can be smashed into. Note: the dec! + 
package (page 24.53) can be used to generate the replaces, iboxes, tboxes automatically in a safe + 
and efficient way. + 

(2) cbox, lbox, SCRATCHCOLLECT, i1)ox, and tbox all allocate constant boxes, and those boxes will + 
be reused (i.e. smashed with new values) every time the code containing that function call is + 
executed. If that box is saved in a variable or data~structure (e.g. by a setg) as a way of preserving + 
the value it contains, and then the code is re-executed, the value that was saved will be smashed. + 
Thus, the user must beware of using constant boxes to save information in loops or recursions that + 
can get back to the same statement. In these situations, the values must be copied into other cells, + 
perhaps a constant associated with some other line of code, or into cells allocated in the ordinary + 
way. l11e user must also be careful about returning a constant box as the value of a function, since .+ 
the caller might unknowingly save the value and re-invoke the box-returner. + 

(3) because the constant boxes are allocated only in compiled code, these functions will work quite + 
dij]erel/tly compiled and interpreted. Side effects which occur because of inadvertent smashing of + 
shared stmctures will only occur when running compiled definitions and will not be detectable + 
when running interpreted. . + 

24.39 



Section 24: Lispusers Packages 

+ 24.13 DATEFORMAT55 

+ date format is a small file (one function) which provides assistance for constructing format bits for 
+ the ODTIM JSYS (output dale/lime) as required by date and gdate. dateformat is given a set of 
+ keywords (listed below) and it retums a number suitable as a parameter to date and gdate. 
+ dateformat is an NLAMBDA NOSPREAD function. lbe keywords arc given below (usually in pairs) 
+ and can be thought of as switches (Le. tum on or off a particular format feature). The default for 
+ each pair is indicated by an "[ *]" after the keyword. If no keyword is given for a particular pair, 
+ the default is used. 56 The variable dateformat.keys is a list of the keywords used for spelling 
+ correction. 

+ The keywords are: 

+ DATE [*] 
+ NO.DATE 

+ NAME. OF. MONTH [*] 
+ NUMBER.OF.MONTH 

+ MONTH. LONG 
+ MONTH. SHORT [*] 

+ YEAR. LONG 
+ YEAR. SHORT [*] 

+ DAY. OF. WEEK 
+ NO.DAY .OF .WEEK [*] 

+ DAY. LONG 
+ DAY. SHORT [*] 

+ DASHES [*] 
+ SLASHES 
+ SPACES 

+ USA. FORMAT 
+ EUROPE. FORMAT [*] 

+ LEADING .SPACES [*] 
+ NO.LEADING.SPACES 

+ TIME [*] 
+ NO. TIME 

+ TIME. ZONE 
+ NO. TIME. ZONE [*] 

Include the date information. 
Don't include the date information. 

Show the month as the name of month. 
Show the month as the number of the month. 

If the name of the month was requested, spell it out. 
If the name of the month was requested, abbreviate it 

Four digit year, e.g. 1978. 
Two digit year, e.g. 78. 

Include the day of the week in the date information. 
Don't include the day of the week in the date information. 

If the day of the week was included, spell it out 
If the day of the week was included, abbreviate it. 

Separate the < day >, < month>, and < year> fields with dashes. 
Separate the < day>, < month>, and < year> fields with slashes. 
Separate the < day >, < month>, and < year> fields with spaces. 

The order (month> < day> < year> . 
The order < day> < month> < year> . 

Keep the < day> field two characters long. 
< day> field can be one character for dates earlier than the lOth. 

Include the time information. 
Don't include the time information. 

Include the time zone in the time specification. 
Don't include the time zone in the time specification. 

+ 55 The datefonnat package was written by M. Yonke. It is contained on the file DATE FORMAT • COM. 

+ 56 The variable Ql!lefonnat.d!=f:mlt is the number used as the initial value to work with. Therefore. to switch any of 
+ these defaults. set the variable !Iatefonnat.deflmlt to be Ule value of a call to datefonnat with the appropriate keys. 

24.40 



SECONDS [*] 
NO.SECONDS 

CIVILIAN. TIME 
MILITARY. TIME [*] 

Dateformat 

Include the seconds. 
Don't include the seconds. 

12 hour time (with AM or PM). 
24 hour time. 

+ 
+ 

+ 
+ 

24.14 EXEC57 + 

This file contains a set of lispmacros (Section 22) which resemble features of the TENEX EXEC. + 
It also defines functions that provide certain . EXEC capabilities for Interlisp programs, e.g. + 
changing the connected directory, detaching the job, etc. + 

EXEC LlSPXMACROS + 

DA 

LD 

prints out current time and date. 

prints systat information, just like theLD subsystem. Jobs are 
sorted in inverse order of CPU utilization.58 

LD usemame prints information for that user only. 

LD ALL like LD, but includes system jobs. 

OET detaches the current job. 

QU does a logout(). Does not go on history list 

LINK user mimics the exec link command. If ~ has multiple jobs logged in. 

OR 

57 

58 

59 

asks which tty to link to.59 . 

breaks links. 

The EXEC package was written by L. M. Masinter, D. C. Lewis and J. J. Vittal. It is contained on the file 
EXEC.COM. The Exec package uses the passwords package. Loading EXEC. COM will load PASSWORDS.COM if it 
has 1I0t already been loaded. Note: some of the facilities described below will work correctly only on TENEX 
systems, others only 011 TOPS-20. The system will inform the user when he attempts to use a facility not supported 
by his particular operating system. 

SY and WHE is a synonym for LD. 

TALK is a synonym for LINK. 

24.41 

~ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 

.. -------~----- -~:-"-:------------- ~ -- ---~--------



+ CONN dir pwd 
+ 
+ 
+ 
+ 
+ 

+ NDIR filegroup 

+ 0 E L filegroup 
+ 
+ 

+ UNO fitegroup 

+ DELVER filegroup 
+ 
+ 

. + EXP dir 

+ TY file outfile bytesize 
+ 
+ 
+ 

+ DSK dir days 
+ 
+ 

+ FI 
+ 

+ FI jfn 

Section 24: Lispusers Packages 

connects to the directory dir. If the password pwd is not given and 
is required, conn will prompt. dir can be abbreviated; if omitted, it 
defaults to the user's login directory. If pwd is given in command 
line, it is removed from the history list so that ?? will not print it 
out. Password prompting is handled by getpassword from the 
passwords package (page 24.44). 

prints the files in filegroup in a multi-column fonnat. 

deletes specified files. Uses directory. Note that if < esc > is 
specified, all files that match will be deleted. This command is 
undoable. 

undeletes the specified files (undoably). 

deletes all but 1 version of the filegroup specified. Uses directory 
(Section 21), so filegroup may utilize any of the options allowed for 
directory filegroup specifications. 

expunges directory dir.60 

copies file to outfile, or T if outfile is not given. Assumes that the 
bytes of file arc bytesize bits wide (bytesize = N IL defaults to 7). 
Suppresses blank lines and control character sequences used to 
indicate font changes.61 

prints out disk allocation and usage for the directory dir using 
dskstat. Also prints total size of files untouched in days days (90 if 
days not specified). 

like the EXEC filcstat command, prints out status of all currently 
assigned JFNS for the current job. 

prints information for.ill! only. 

+ 60 If the user does not have access to dir. a message is printed. 

+ 61 SEE is a synonym for TV. 

24.42 



EXEC FUNCTIONS 

jobd[] 

Uyd[] 

detach[] 

-dctachedp[] 

linktotty[tty #) 

linktouser[ user) 

breaklinks[) 

cndir[ dir;password] 

/ del file[ file) 

/undelfile[file] 

expunge[dir] 

Exec 

+ 

returns the job number for the logged in job. + 

returns the teletype-number of the current job. + 

detaches the current job. + 

a predicate that returns T if the current program is running + 
detached. + 

generates a two-way link between the controlling terminal of the + 
user's job and tty #. Returns T if the link was successful, otherwise + 
prints an error message and returns NIL. + 

links the controlling terminal to a terminal associated with user. + 
Generates an error if the user is not logged in or not attached. If + 
user has more than one attached job, then a systat of his jobs is + 
printed, and the user is asked to provide the proper tty number for + 
the job. Returns T if successful. + 

breaks all links to the user's controlling terminal. + . 

Implements the £Q!ill command. + 

undoable version of delfile. + 

undeletes a single file (undoably). + 

expunges directory dir. On TENEX, dir is ignored. and the + 
connected directory is expunged. On TOPS20, if the user does not + 
have access to dir, a message is printed. + 

copyallbytes[fromfile;tofile;bytesize) + 
+ implements the see command. 

dskstat[ dir;printifover; printsys ;printdcl ;printold] + 
prints disk usage statistics for directory dir (either a name or + 
number). printifover=NIL means always print printifover=T + 
means only print if dir is over allocation prinlifover a number + 
means only print if dir has more than that many pages in use. + 

24.43 



+ 

+ 
+ 

+ 
+ 

+ memstat[pgl;pgn;forkj 
+ 
+ 

+ 24.15 PASSWORDS62 

+ getpassword[ directoryname] 
+ 
+ 
+ 

+ 24.16 TELNET63 

Section 24: Lispusers Packages 

printsys = T means print system disk statistics too. 

printdel = T means print total size of deleted files for dir (this is 
slow). 

printold = T or a number means print total size of files untouched 
in 90 (or printold) days. 

prints the status of the memory pages pgl (0 ifpgnl=NIL) to pgn 
(the last page of memory if NIL) in fork fork. fork is either NIL. 
meaning the current fork, or a fork handle. 

prompts the user for the password for the given directory. The 
user's response is not echoed. getpassword remembers the 
password so' that it need not ask again; however, saved information 
is cleared before sysout, so that the sysout contains no passwords. 

+ This package makes it possible to interact with connections created via the net package (described 
+ below) without leaving lnterlisp. 

+ telnet[connection;type;skt;-] 
+ 

in addition, all typeout is included in the dribble file. It permits 
connections to ARPANET hosts (a la TELNET). connection may 
be an instance of a CONNECTION record (as created by 
makenewconnection, see below). Alternatively, the arguments to 
makenewconnection may be specified in the call to telnet (i.e. if 
connection is a litatom, telnet uses 
makenewconnection[connection;type;skt] for the connection). In any 
case, telnet returns the connection as an instance of the 
CONNECTION record, so that it is possible to telnet back. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 24.17 FTp64 

+ 'The ftp package makes it possible to deal with files at other hosts on the Arpa network almost as if 
+ they were files on the user's local machine, i.e. the files can be opened via in file, outfile, open file, 

+ 62 

+ 63 

+ 

+ 64 

+ 
+ 

The passwords package was written by L. M. Masinter. It is contained on the file PASSWORDS. COM. 

The telnet package was written by L. M. Masinter. It is contained on the file TELNET . COM. Since the telnet package 
uses the net package. loading TELNET . COM will also load NET. COM unless it has already been loaded. 

The ftp package was written by L. M. Masinter. It is contained on the file FTP. COM. The ftp package uses the net 
and passwords packages. Loading FTP.COM will load NET. COM and PASSWORDS. COM if they are not already 

loaded. 

24.44 



Ftp 

read from and printed to by the ordinary reading and printing functions, and closed in the + 
standard way. + 

Files on remote hosts are designated by including the host name between curly brackets. {}, at the + 
front of the ordinary file name. Since curly brackets are illegal characters in regular file names, a + 
BAD FILE NAME error is generated. This error is intercepted by an entry on errortypelst (see + 
Section 16) which then establishes the appropriate network connections.65 For example, + 
infile[{BBN-D}<LEWIS)INIT. LISP] will open the file <LEWIS)INIT. LISP on the host BBN-D + 
and make it be the primary input file. The user could then say read[) to obtain the first expression + 
on that file. The ftp package extends the functions packfilename. unpackfilename, and + 
filenamefield so that they will associate the curly bracket syntax with the new file field HOST. + 
Thus, packfilename[HOST i BBND i NAME; INIT} will return {BBND}INIT. + 

Remote files have certain properties that limit how they may be used: + 

(1) randaccessp is NIL for such files, and setfileptr may not be· applied to them. This means, for + 
example, that functions and variables may not be loaded from such files via loadfns. + 

(2) the open bytesize of a remote file may not be changed (e.g. by setfileinfo). This means that + 
Interlisp-lO compiled files may not be loaded from remote hosts. . . + 
(3) The remote host may close the connection spontaneously (e.g: because of a timeout if the file is + 
not referenced for some . length of time, or because of a crash). If this happens, the next attempt at + 
reading or writing on the file will generate a FILE DATA ERROR. Note: it is unwise to keep a + 
remote file open for long periods of time.66 + 

When the connection for the remote file is first established, . a password for the remote + 
machine/directory may be required. The user will be asked to supply one via the passwords + 
package (page 24.44). Alternatively, if the host name has on its property list the property LOGIN + 
with value of the form (name password account), then the indicated name, password, and account + 
will be used to log the user into the remote host67 . + 

ftp[host;file;access;user;password;account;bytesize) + 

6S 

66 

67 

68 

opens a network connection to the ftp server at host If + 
~= INPUT or OUTPUT, fip works like openfile: value is a literal + 
atom of the form {host}file which can then be used as a file name + 
by all Inlerlisp input and output functions, e.g. reag, print, + 
copybyt~ etc.68 For example, + 

Note: it is fairly expensive to open a network connection as compared with the time to open a local file. e.g. an + 
order of magnitude slower. + 

For input files. these limitations may be skirted conveniently in the following way: if a colon appears between the + 
last character of the host name and the right curly bracket (e.g. {BBND: }<LEWIS>INIT. LISP). then the remote + 
file will be copied to a temporary local file when it is opened. and all subsequent refercnces will be to that local file. + 

If the value is of the form (name NIL accounl). then getpassword{namel will be used for the password. If the + 
account ficld is NIL. no account will be supllied to the remote host If no LOGIN property is supplied. ANONYMOUS + 
will be used as the user name. + 

In reality, this "filc" is a nctwork connection to thc host's ftp servcr. This "file" has a whcncl~!; attribute (Section + 
14) associated with it so that whcn Interlisp clost-os the file, thc correct terminating scquencc will be pcrformed. + 

24.45 



+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 24.18 NET69 

Section 24: Lispusers Packages 

ftp[SU-AI YUMYUM%[P. DOC%] INPUT] will allow the Stanford 
Reslraurant .Guide to be read. Note that file must satisfy the file 
name conventions of the remote host 

If access=DIRECTORY, then ftQ will print on the terminal the 
names of all files which match ~ e.g. 
ftp[PARC-MAXC2 <NETLISP>* .SAV DIRECTORY). 

user, password, and account are used for logging in to the remote 
host. If not supplied, the values are obtained from the LOGIN 
property (if any) as described above. bytesize is the byte size in 
which to open the connection. bytesizes of 7, 8, 16, 32 and 36 are 
supported. bytesize=NIL defaults to 7. 

+ This package contains functions for establishing ARPANET connections from an Interlisp-10 job. 
+ A connection is described by and is an instance of the record CONNECTION. The only fields of 
+ interest to the user in this record are IN and OUT, which are guaranteed to be car and cadr. 
+ respectively. IN is a file name which can be read from, OUT a file name which can be printed to. 

+ makenewconnection[host;type;skt;scratchconn;waittlg) 
+ makes a connection to host. For ~=ARPA, host is the name of 
+ the host to which the connection is to be made.1o For skt=NIL 
+ (the normal case), the connection will be to the telner server of 
+ host: connections to other servers can be made. by supplying the 
+ appropriate value for skt 

+ 
+ 
+ 
+ 
+ 

+ 
+ 

The value of makenewconnection is a connection. If waitflg is 
non-NIL, makenewconnection waits until its request for connection 
is acknowledged. Otherwise, checkconnection must be called on the 
result before it is used (this allows additional processing to be done 
while waiting for the remote host to respond). 

If scratchconn is non-NI L, it is a scratch connection which is 
reused. 

+ For example, (MAKENEWCONNECTION 'BBND) makes an ARPA connection to BBND. 
+ (MAKENEWCONNECTION' SU-AI 'ARPA' FINGER) makes a connection to the Stanford whereis 
+ service. 

+ c1oscconnection[connection] 
+ 

Ooses the given connection and replaces the I N and OUT fields 
with NIL. 

+ 69 The net package was written by L. M. Masinter. It is contained on the file NET • COM. 

+ 70 Other values of type are supplied when makcnewconncction is called from arpauscr or ,!!!])ascrvcr. described below. 

24.46 



Net 

checkconnection[connection] Checks to make sure that the given connection is still open (e.g. it + 
hasn't been closed remotely). If the connection is valid, connection + 
is returned. If the connection is in an in-between state, i.e. in the + 
process of being opened or closed, checkconnection waits to see + 
what happens before returning. Otherwise the connection is cleaned . + 
up (as if a closeconnection were performed) and checkconnection + 
returns NIL. + 

net&erver[ arpa # ; waittlg] Initiates a "server" connection. TIus is a·connection which will talk· + 
to a "user" connection. If waittlg is non-NIL, waits for a user to + 
connect; if waittlg=NIl, returns immediately (and checkconnection + 
must be called on the connection before the connection is actuatly + 
used). MPMt defaults to O. + 

netuser[host;user;arpa# ;waittlg] + 
Initiates the other half of an arpa connection. ~ defaults to 0 + 
and must be the same as the argument given the corresponding call + 
to netserver. user must be the USERNUMBER (directory number) + 
under which the server job is logged in. + 

For example, to establish an ARPANET connection between two Intcrlisp jobs (which can then be + 
written to and read from like files), do {SETQ CONN (NETSERVER» in one job and + 
{SETQ CONN (NETUSER HOST USER» in the other job, where host is the machine on which + 
the first job is running and user is the directory number under which the first job is logged in + 
(obtainable through the function usernumber). Then, perform (CHECKCONNECTION CONN) in + 
each job; when these return, the connection is ready to be used. + 

forceout[connection/file] Normally, characters sent to the "OUT" of a connection are + 
buffered locally. The function forceout can be used to force + 
partially filled packets of bytes to be sent across the connection. + 
The argument to forceout can either be the connection record or + 
the OUT filename. + 

24.19 HASH -- A HASH-CODED DICTIONARY FACILlTy71 + 
The hash package is an Interlisp-lO facility that permits information associated with string or atom + 
"keys" to be stored on and retrieved from files. The information (or "values") associated with the + 
keys in a file may be numbers. strings. or arbitary s-expressions. The associations are maintained + 
by a hashing scheme that minimizes the number of page-maps it takes to access a value from its + 
~ + 
A hac;hfile may contain information other than key-value associations. The user may print on the + 
file using ordinary printing functions (e.g. print. printdef). and he may also store non-character + 

71 The hash package. implement.cd by R. Kaplan. is an extension of previous versions writt.cn by L. Masinter and W. + 
van Melle. It is contained on the file HASH. COM. + . 

24.47 



Section 24: Lispusers Packages 

+ information (e.g. binary data) formatted to suit his particular applications. This information is 
+ stored in regions of the file distinct from the hash index. The hash index can be used to locate 
+ non-hash information, if the necessary file addresses arc stored as hash values. 

+ A hashfile is created by the function createhashfile: 

+ createhashfile[file;valuetype;itemlength; # entries] 
+ A new version of file is opened and initialized as a hash file. 
+ valuetype is one of NUMBER. STRING. EXPR. SMALLEXPR, or 
+ SYMBOLTABLE, interpreted as follows: 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ openhashfile[ file;access] 
+ 
+ 
+ 

+ 

NUMBER 
STRING 
characters. 

The values are 24-bit unsigned integers. 
The values are strings with less than 128 

EXPR The values are arbitrary s-expressions72• 
SMALlEXPR The values are arbitrary s-expressions such that 
(NCHARS value T HASHFILERDTBL) is less than 128. Storing 
and retrieving is more efficient than for the more general EXPR 
valuetyp. 
SYMBOL TABLE The values are 24-bit unsigned numbers, as for 
valuetype NUMB E R, except that the numbers are treated as the 
addresses of "symbols" located on non-hash pages in the file. See 
the discussion of symbol-tables below. 

The other arguments to createhashfile are optional. itemlength is 
the user's estimate of the average number of characters in the 
entries he expects to store in the hashfile (= the average key length 
plus the average number of characters in the values for valuetype 
STRING or SMALLEXPR). #entries is an estimate of the the total 
number of· key-value associations he is likely to store. These two 
arguments determine how many pages in the file will be initially 
allocated as hash-pages; accurate estimates can reduce the number 
of times that the file must be rehashed as information is stored in 
it. If these arguments are not given, reasonable defaults are 
supplied. 

After being initialized, file is left open and createhashfile returns as 
its value a hashfile datum, a handle on the hashfile that may be 
used as an argument for most of the functions described below. 

Re-opens the previously existing hashfile file. access may be 
INPUT (or NIL), in which case file is opened for reading only. or 
BOTH, in which case file is open for both input and output. Causes 
an error NOTA HASHFILE, if file is not recognized as a hashfile. 

If access is BOTH and file is a hashfile open for reading only. 

+ 72 lbe values are stored by printing them in the file with h.1shfilcrdtbl. initially OR I G. 

24.48 



hashfilcp[x] 

HASIl -- A Ilash-Coded Dictionary Facility 

openhashfile attempts to close it and re-open it· for writing. + 
Otherwise, if file designates an already open hash file, openhashfile + 
is a no-op. + 

The value of openhashfile is a hashfile datum. + 

Returns ! if ! is a hashfile datum (i.e., a value returned by + 
createhashfile or openhashfile). If! is NIL, returns syshashfile if it + 
is a hash file datum. If! is the name of an open hashfile, returns + 
the corresponding hashfile datum. Otherwise, returns NIL. + 

The following functions require an open hashfile as an argument, i.e. an object for which hashfilep + 
is non-NIL. + 

puthashfile and gethashfile are the basic functions for storing and retrieving values in an open + 
hashfile: + 

puthashfile[key;value;haShfile] Puts value in hashfile, indexed under~. If value is NIL, any + 

gethashfile[key;hashfile] 

hashfileprop[hashfiIe;prop ] 

hashfilename[hashfile] 

closehashfile[hashfile] 

previous entry for key is deleted. + 

Returns the value corresponding to ID in hashfile. For files of + 
valuetype STRING. NUMBER, or SYMBOL TABLE, the value + 
returned by gethashfile is temporary in that any subsequent calls to + 
hash or pmap· function may smash it concat or mkatom must be + 
applied if the value is a string, or iplus if it is a number, in order to + 
make the value permanent + 

returns the value of the mop property of hashfile. The recognized + 
P!Qp§ and the values returned are: + 

VALUETYPE 
NAME 
ACCESS 

one of NUMBER. STRING, etc. + 
the full name of the file. + 
BOTH if file is open for writing, INPUT if it is + 
read-only. + 

same as hashfilcprop[hashfile;NAMEJ. + 

same as c1osct[hashfileprop[hashfile;NAME]]. + 

The function hashstatus can be used as a STATUS function for the whenclose package (Section 14) + 
to restore the slate of a hash file when a sysout is resumed. If hashstatus is used, the permstatus + 
package (page 24.34) must also be loaded. + 

lbe functions in the following group operate on all the keys in a hashfile: + 

24.49 

---i'.-:;;'--::--~- -



+ maphashfilc[hashfile;mapfn] 
+ 
+ 
+ 
+ 
+ 

+ rehashfj.lc[hashfile] 
+ 
+ 
+ 
+ 

Section 24: Lispusers Packages 

For each entry in hash file, performs 
mapfn[key;gethashfile[key:hashfile]]. If mapfn is a function of only 
one argument, performs mapfn[key] thereby avoiding the call to 
gethashfile needed to obtain the value. ill (also value for 
STRING, NUMBER, and SYMBOLTABLE files) is temporary, as for 
gethashfile. 

After many insertions and deletions much of the space in a hashfile 
may be unusable. . rehashfile reclaims that space by rehashing all 
the keys. The information on non-hash pages in the file is not 
altered or moved (except that the pname-pointers in a 
SYMBOL TABLE file are updated. See below.). 

+ copyhashfile[hashfile;newname;fn:vtype] 
+ calls creatchashfile to open newname as a hash file, with valuetype, 
+ itemlcngth and # entries determined by examining the open 
+ hash file hashfilc. Then maps through all the keys in hashfile, doing 
+ the equivalent of: 

+ puthashfile[key;gethashfile[key;hashfile);newhashfile) 

+ for each key. In essence. copyhashfile copies the hash portion of 
+ hash file to newname. 

+ If fn is given. then it is applied to the suecessive values of hashfile, 
+ thc old hashfile. and the new hashfile. and the value rcturned is 
+ used as the value in the new file. In effect, 
+ puthashfilc[kcy:fn[gcthashfile[kcy;hashfile];hashfile;newhashfile];newhashfile] 
+ is evaluated for each key. Thus, the user can intervene as each key 
+ is processed in order to copy information associated with the key 
+ that resides on non-hash pages. 

+ For example, an EXPR file could be implemented by printing the 
+ full s-expressions in a NUMBER file's printing region (see below) and 
+ storing their byte-positions as hash values. Instead of reading an 
+ s-expression into internal data structures before writing it out to the 
+ new file, a fn could be given that transferred the s-expression to the . 
+ new file more efficiently, via copybytes. lbe function would return 
+ the byte-position on the new file where the expression ended up.13. 

+ If fn is given, then ~, if specified, is a temporary valuetype 
+ (NUMBER, STRING, etc.) to be used during copying. This permits 
+ the user to force the valuetype of both files to one more suited for 
+ fn, e.g. SMALLEXPR to STRING or EXPR to NUMBER, as in the 
+ example. ~ does not affect the permanent valuetype of either 
+ file. 

+ 73 Actually. this is the way EXPR files are copied if.fu is not specified 

24.50 



HASH -- A Hash-Coded Dictionary Facility 

hashfilesplst[hashfile] Returns a "generator" for the keys in hash file that is acceptable as + 
an argument to fixspeU. Thus. (FIXSPELL BADWORD 70 + 
(HASHFlLESPLST hashfile» will spet1ing correct a word using the + 
~~~~ + 

lookuphashfile[key;value;hashfile;caUtype] + 

Examples: 

a generalized entry for inserting and retrieving values; provides + 
certain options not available with gethashfile or puthashfile. + 
calltype is one of RETRIEVE. DELETE. REPLACE. INSERT or a + 
list of any combination of them. lookuphashfile looks up m in + 
hashfile. If m is found, then if calltype is or contains RETRIEVE, + 
the old value is returned from lookuphashfile; otherwise returns T. + 
If cal1type is or contains DELETE, the value associated with m is + 
deleted from the file. If cal1type is or contains REPLACE, the old + 
value is replaced with value. + 

If m is not found, returns NIl. In addition, if call type is or + 
contains INSERT, lookuphashfile inserts value as the value + 
associated with key. + 

+ 

To either return an old value or insert a new value in the file if one does not already exist, + 
perform 100kuphashfile[key;newvalue;hashfile;(INSERT RETRIEVE)]. The value returned will be + 
NIL if newvalue was inserted, or the old value if m was found. + 

To merely check whether m exists in the file without actually retrieving its value (which may be + 
expensive for the more general valuetypes), perform lookuphashfile[key;NIL;hashfile;NIL] + 

The function puthashfile is defined as: + 

{LAMBDA (KEY VALUE HASHFILE) + 
{if VALUE=NIL + 

then (LOOKUPHASHFILE KEY NIL HASHFILE 'DELETE) + 
else (LOOKUPHASHFILE KEY VALUE HASHFILE '(INSERT REPLACE» + 

VALUE] + 

And gethashfile is defined as: + 

(LAMBDA (KEY HASHFILE) (LOOKUPHASHFILE KEY NIL HASHFILE 'RETRIEVE]) + 

UNSTRUCTURED PAGES AND SYMBOL TABLES + 

TIle non-hash information in a hash-file may be formatted as printed character strings or binary + 
data. Printed information resides in a file's "printing region", while binary data is stored on + 
"unstructured pages". + 

Unstructured pages in a file are allocated and deallocated by the hash package so that they do not + 
encroach on hash or printing pages. Other than that. the user has complete freedom to map them + 
in via mapin or locate for arbitrary reading and writing. "Inc primitive operations are: + 

24.51 



+ getpage[hashfile;n) 
+ 
+ 

+ delpage[page # ;hashfile) 
+ 
+ 
+ 
+ 
+ 
+ 

Section 24: Lispusers Packages 

returns the page number of a free page in hash file. If!! is given, 
then the user is guaranteed that the page returned is the first of 11 
contiguous pages all of which are free. 

removes page page# from hashfile. page# should be the number 
of an unstructured page, either a value of getpage or within the 
block of free pages guaranteed by getpage. 'The contents of the 
page in the file are lost, and the page itself becomes available for 
re-allocation either by getpage or internally as a hash page. If 
page# happens to be the number of a hash' page, the hashing 
information will be destroyed. 

+ Unstructured pages are available on hashfiles so that the user cail link ,hash keys to data in special 
+ formats. For example, the user might associate lists of properties with a key by writing the 
+ properties on an unstructured page, and then storing the file address of the properties as the value 
+ of the key in a NUMBER file. The properties could be retrieved by applying locate to 
+ gethashfile[key;hashfile]. . 

+ A SYMBOL TABLE hashfile provides an additional feature that makes it possible to implement 
+ arbitrary. file-resident symbol processing systems. The user may store the data to be associated 
+ with a key on unstructured pages, and he can then link the file address to the key via puthashfile, 
+ as described above. The difference between a NUMBER and SYMBOL TABLE file is that for a 
+ SYMBOL TABLE, the hash package also stores the reverse link from the file address to the key. This 
+ makes it possible to obtain a "print-name" for an address on an unstructured page. via the function 
+ getpname: 

+ getpname[fileadr;hashfile] 
+ 
+ 

returns a temporary string containing the characters of the key 
whose hash value is the 24-bit unsigned fileadr. Causes an error if 
hashfile is not a SYMBOLTABLE file. 

+ The hash package automatically updates the print-name information for the file address if the key 
+ is relocated by rehashing, and it destroys the back-link if the value for the key is deleted. A 
+ SYMBOL TABLE file imposes one restriction on the way unstructured pages are treated: If a file 
+- address is stored as a hash-value for some key, then the right-most 24 bits of the word at that 
+ location in the file are reserved for the use of the hash mechanism.74 The user must not write into 
+ it 

+ With these primitives, a list-processing system with a 24-bit non-resident address space is easy to 
+ build. The user is responsible for allocating "atoms" on unstructured pages. and updating the 
+ "atom hash table" with puthashfile. The second (and subsequent) words after an atom address 
+ may be used to store the atom's "property Jist", containing other atom addresses, or other addresses 
+ interpreted as pointers to "cons" cells. lbese can also be allocated on unstructured pages. It is a 
+ simple matter to implement the equivalent of car, cdr, rplaca, and rplacd. 

+ 74 The left-most 12 bits are available and can be used for a number of applications, e.g, to store type· bits. 

24.52 



HASH -- A Hash-Coded Dictionary Facility 

THE PRINTING REGION + 

Hashfiles arc organized so that it is always permissible to print at the end of the file with ordinary + 
interlisp output functions. That is, the file is arranged so that the hash and unstructured pages are + 
always located before the end-of-file for sequential reading and writing. This is accomplished by + 
creating the file with the end-of-file some number of free pages past the last hash or unstructured + 
page. When all free pages below the end-of-file have been used, the end-of-file is moved so that + 
there arc again a reservoir of free pages before it + 

Thus, the printing region may shift as a result of calls to getpage or puthashfile, and the user + 
cannot rely on the output from two different printing operations being located at adjacent positions + 
in the file. The expressions he prints cannot be retrieved by successive calls to standard reading + 
functions. Instead, the user should record the byte position of each printed expression as a hash + 
value or on an unstructured page so that he may use setfi1eptr to position the file properly. If he + 
does change the file's byte-pointer, he must be sure to reset it to the end-of-file (e.g. + 
setfileptr[file;-l]) before more printing is done. + 

24.20 THE DECL PACKAGE75 + 

INTRODUCTION + 

The Decl package extends Interlisp to allow the user to declare the types of variables and + 
expressions appearing in functions. It provides a convenient way of constraining the behavior of + 
programs when the generality and flexibility of ordinary Interlisp is either unnecessary, confusing, + 
or inefficient. + 

The Decl package provides a simple language for declarations, and augments the interpreter and + 
the compiler to guarantee that these declarations are always satisfied. The declarations make + 
programs more readable by indicating the type, and therefore something about the intended usage, + 
of variables and expressions in the code. They facilitate debugging by localizing errors that + 
manifest themselves as type incompatibilities. Finally, the declaration information is available for + 
other purposes: compiler macros can consult the declarations to produce more efficient code; + 
coercions for arguments at user interfaces can be automatically generated; and the declarations will + 
be noticed by the Masterscope function analyzer. + 

The declarations interpreted by the Dec1 package are in terms of a set of declaration types called + 
decltypes, each of which specifies a set of acceptable values and also (optionally) other type specific + 
behavior. The Ded package provides a set of facilities for defining decltypes and their relations to + 
each other, including type valued expressions and a comprehensive treatment of union types. + 

'!be following description of the Ded package is divided into three parts. First, the syntactic + 
extensions which permit the concise attachment of declarations to program elements are discussed. + 
Second, the mechanisms by which new decltypes can be defined and manipulated arc covered. + 
Finally, some additional capabilities based on the availability of declarations are outlined. + 

75 The Dec1 package was designed and implemented by R. M. Kaplan and B. A. Sheil. with the assistance of W. + 
Teitc1man and L. M. Masinter. It is containcd on tile Iile OECL.COM. The Ded package rcquires the LAMBOATRAN + 
package. whieh will automatically be loaded with Dec1 if it is not already present + 

24.53 



Section 24: Lispusers Packages 

+ USING DECLARATIONS IN PROGRAMS 

+ Declarations may be attached to the values of arbitrary expressions and to LAMBDA and .P.!Qg 
+ variables Uuoughout (or for part of) their lexical scope. The declarations are attached using 
+ constructs that resemble the ordinary lnterlisp LAMBDA, QrQg, and progn, but which also permit the 
+ expression of declarations. The following examples illustrate the use of declarations in programs. 

+ Consider the factorial function discussed in Section 2: 

+ 
+ 
+ 
+ 

[LAMBDA (N) 
(COND 

«EQN 0) 1) 
(T (ITIMES N (FACT (SUB1 N] 

+ Obviously, this function presupposes that !! is a number, and the run-time checks in itimes and 
+ subl will cause an error if this is not so. For instance, FACT(T) will cause an error and print the 
+ message NON-NUMERIC ARG T. By defining FACT as a DLAMBDA, the Decl package analog of 
+ LAMBDA, this presupposition can be stated directly in the code: 

+ 
+ 
+ 
+ 

[DLAMBDA ({N NUMBERP» 
{COND 

({EQ N 0) 1) 
(T (ITIMES N (FACT (SUB1 N] 

+ With this definition, FACT(T) will not result in a NON-NUMERIC ARG T error when the body of 
+ the code is executed. Instead, the numberp declaration will be checked when the function is first 
+ entered, and a declaration fault will occur. Thus, the message that the user will see will not dwell 
+ on the offending value T, but instead give a symbolic indication of what variable and declaration 
+ were violated, as follows: 

+ 
+ 
+ 

DECLARATION NOT SATISFIED 
({N NUMBERP) BROKEN) 

+ The user is left in a break from which the values of variables, e.g. !!, can be examined to determine 
+ what the problem is. 

+ The function fact also makes other presuppositions concerning its argument,!!. For example, fact 
+ will go into an infinite recursive loop if !! is a number less than zero. Although the user could 
+ program an explicit check for this unexpected situation, such coding is tedious and tends to 
+ obscure the underlying algorithm. Instead, the requirement that !! not be negative can be 
+ succinctly stated by declaring it to be a subiype of NUMBERP which is restricted to non-negative 
+ numbers. This can be done by adding a SATISFIES clause to !!'s type specification: 

+ 
+ 
+ 
+ 

[DLAMBOA ([N NUMBERP {SATISFIES (NOT (MINUSP N]) 
(COND 

«EQ N 0) 1) 
(T (ITIMES N (FACT (SUB1 N] 

+ The predicate in the SATISFIES clause will be evaluated after B is bound and found to satisfy 
+ numberp, but before the function body is executed. In the event of a declaration fault, the 
+ SAT I S F I ES condition will be included in the error message. For example, FACT ( -1) would result 
+ in: 

+ DECLARATION NOT SATISFIED 
24.54 



The flecl Package 

«N NUMBERP (SATISFIES (NOT (MINUSP N») BROKEN) + 
+ 

rIbe DLAMBDA construct also permits the type of the value that is returned by the function to be + 
declared by means of the pseudo-variable RETURNS. For example, the following definition + 
specifics that fact is to return a positive integer: + 

[DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N] 
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0]) 

(COND 
( (EQ NO) t) 
(T {ITIMES N (FACT (SUBt N] 

+ 
+ 
+ 
+ 
+ 

After the function body is evaluated, its value is bound to the variable value and the RETURNS + 
declaration is checked. A declaration fault will occur if the value is not satisfactory. lois prevents + 
a bad value from propagating to the caller of fact, perhaps causing an error far away from the + 
source of the difficulty. + 

Declaring a variable causes its value to be checked not only when it is first bound, but also + 
whenever that variable is reset by setg within the DLAMBDA. In other words, the type checking + 
machinery will not allow a declared variable to take on an improper value. An iterative version of + 
the factorial function illustrates this feature in the context of a dprog, the Decl package analog of +. 
P!Q2;; + 

(DLAMBDA ([N NUMBERP (SATISFIES (NOT (MINUSP N] 
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0]) 

[DPROG ([TEMP 1 FIXP (SATISFIES (IGREATERP TEMP 0] 
[RETURNS FIXP (SATISFIES (IGREATERP VALUE 0]) 

LP (COND «EQ N 0) (RETURN TEMP») 
{SETQ TEMP (ITIMES N TEMP» 
{SETQ N (SUBt N» 
(GO LP] 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

dprog declarations are much like DLAMBDA declarations, except that they also allow an initial value + 
for the variable to be specified. In the above example. temp is declared to be a positive integer + 
throughout the computation and!! is declared to be non-negative. TI1US, a bug which caused an + 
incorrect value to be assigned by one of the setg expressions would cause a declaration failure. + 
Note that the RETURNS declaration for a dprog is also useful in detecting the common bug of + 
omitting an explicit RETURN. + 

DLAMBDAS + 
The Dec1 package version of a LAMBDA expression is an expression beginning with the atom + 
DLAMBDA. Such an expression is a function object that may be used in any context where a + 
LAMBDA expression may be used. It resembles a LAMBDA expression except that it permits + 
declaration expressions in its argument list. as illustrated in the examples given earlier. Each + 
clement of the argument list of a DLAMBDA may be a literal atom (as in a conventional LAMBDA) + 

24.55 



Section 24: Lispusers Packages 

+ or a list of the fonn (name type. extras).16 

+ name fulfills the standard function of a parameter, i.e. providing a name to which the value of the 
+ corresponding argument will be bound. 

+ 1W is either a Decl package type name or type expression. When the DLAMBDA is entered, its 
+ arguments will be evaluated and bound to the corresponding argument names, and then, after all 
+ the argument names have been bound, the declarations will be checked. The type checking is 
+ delayed so that SATISFIES predicates can include references to other variables bound by the 
+ same DLAMBDA. For example, one might wish to define a function whose two arguments are not 
+ only both required to be of some given type, but are also required to satisfy some relationship 
+ (e.g., that one is less than the other). 

+ extras allows some additional properties to be attached to a variable. One such property is the 
+ accessibility of name outside the current lexical scope. Accessibility spec~fications include the atoms 
+ LOCAL or SPECIAL, which indicate that this variable is to be compiled so that it is either a 
+ localvar or a specvar, respectively. This is illustrated by the following example: 

+ [DLAMBDA «A LISTP SPECIAL) 
+ (B FIXP LOCAL» 
+ -J 

+ A more infonnative equivalent to the SPECIAL key word is the USEDIN form, the tail of which 
+ can be a list of the other functions which are expected to have access to the variable: 17 

+ [DLAMBDA ({A LISTP (USEDIN FOO FIE» 
+ (B FIXP LOCAL» 
+ ... J 

+ extras may also include a comment in standard format, so that descriptive information may be 
+ given where a variable is bound: 

+ 
+ 
+ 

[DLAMBDA {{A LISTP (USEDIN FOO FIE) 
(B FIXP LOCAL» 

... J 

(. This is an important variable» 

+ As mentioned earlier, the value returned by a DLAMBDA can also be declared, by means of the 
+ pseudo-variable RETURNS. The RETURNS declaration is just like other DLAMBDA declarations, 
+ except (1) in any SATISFIES predicate, the value of the function is referred to by the 
+ distinguished name value; and (2) it makes no sense to declare the return value to be LOCAL or 
+ SPECIAL. 

+ 76 

+ 
+ 
+ 

77 

Strictly. this would require a declaration with a SATISFIES clause to take the fonn 
(N (NUMBERP (SATISFIES --» --) (page 24.62). However. due to the frequency with which this 

construction is used. it may be written without the inner set of parentheses, e.g. 
(N NUMBERP (SATISFIES --) --). 

USEDIN is mainly for document.1tion purposes. since there is no way for such a restriction to be enforced. 

24.56 



The Decl Package 

DPROGS + 
Just as DLAMBDA resembles LAMBDA, dprog is analogous to P!Q&. As for an ordinary prog, a + 
variable binding may be specified as an atom or a list including an initial value form. However, a + 
gprog binding also allows !m£ and extras information to appear following the initial value form. + 
The format for these augmented variable bindings is (name initialvalue type. extras). Note that + 
the only difference between a dprog binding and a DLAMBDA binding is that the second position is + 
interpreted as the initial value for the variable.78 The same rules apply for the interpretation of the + 
type information· for dprogs as for DLAMBDAs, and the same set of optional extras can be used. + 
dprogs may also declare the type of the value they return, by specifying the pseudo-variable + 
RETURNS. + 

Just as for a DLAMBDA. type tests in a dprog are not asserted until aftera1l the variables have been + 
bound, thus permitting predicates to refer to other variables being bound by this dprog. If NIL + 
appears as the initial value for a binding (i.e. the atom NIL actually 'appears in the code. not + 
simply an expression which evaluates to· NI L) the initial type test will be suppressed. but + 
subsequent type tests, e.g. following a setg, will still be performed. + 

A common construct in Lisp is to bind and initialize a ID:Qg variable to the value of a complicated + 
expression in order to avoid recomputing it, and then to use this value in initializing other.P!'Q8 + 
variables, e.g. . + 

[PROG «A expression» 
(RETURN (PROG «B C ••• A ... » (C ( •.. A ... ») 

... J 

+ 
+ 
+ 

The ugliness of such constructions in conventional .. Lisp often tempts the programmer to loosen the + 
scoping relationships of the variables by binding them all at a single level and using setg's in the + 
body of the I!!Q& to establish the initial values for variables that depend on the. initial values of + . 
other variables, e.g. . + 

[PROG C (A expression) B C) 
(SETQ B ( ... A ..• » 
CSETQ C C ... A ... » 
... J 

+ 
+ 
+ 
+ 

In the Dec1 package environment, this procedure undermines the protection offered by the type + 
mechanism by encouraging the usc of uninitialized variables. 1berefore, the dprog offers a syntactic + 
form to encourage more virtuous initialization of its variables. Adprog variable list may be +. 
segmented by occurrences of the special atom THEN, which causes the binding orits variables in + 
stages, so that the bindings made in earlier stages can be used in later ones, e.g. + 

[DPROG C(A (LENGTH FOO) FIXP LOCAL) 
THEN (B (SQRT A) FLOATP) 
THEN (C (CONS A B) LISTP» 

... J 

+ 
+ 
+ 
+ 

Each st.1ge is carried out as a conventional set of dprog bindings (i.e., simultaneously, followed by + 
the appropriate type testing). 'Ibis layering of the bindings permits one to gradually descend into a + 

78 Thus. if the user wishes to supply a type declaration for a variable. an initial value must be specified. + 

24.S7 



Section 24: Lispusers Packages 

+ inner scope, binding the local names in a very structured and clean fashion, with initial values 
+ type-checked as soon as possible. 

+ DECLARATIONS IN ITERATIVE STATEMENTS 

+ The clisp iterative statement (Section 23) provides a very useful facility for specifying a variety of 
+ I1!Q.£s that follow certain widely used formats. 1be Decl package allows declarations to be made 
+ for the scope of an iterative statement via the declare clisp Ls.opr. declare can appear as an 
+ operator anywhere in an iterative statement, followed by a list of declarations, for example: 

+ (for J from 1 to 10 decl are (J FIXP) do ... ) 

+ Note that declare declarations do not create bindings, but merely provide declarations for existing 
+ bindings. For this reason. an initial value cannot be specified and the fonn of the declaration is the 
+ same as that of DLAMBDAs. namely (name type. extras).79 . 

+ DECLARING A VARIABLE FOR A RESTRICTED LEXICAL SCOPE 

+ The Decl package also permits declaring the type of a variable over some restricted portion of its 
+ existence. For example. suppose the variable! is either a fixed or floating number, and a program 
+ branches to treat the two cases separately. On one path! is known to be fixed, wht:;reas on the 
+ other it is known to be floating. The Ded package dprogn construct can be used in such cases to 
+ state the type of the variable along each path. dprogn is exactly like progn, except that the second 
+ element of the form is interpreted as a list of DLAMBDA format declarations. These declarations are 
+ added to any existing declarations in the containing scope, and the composite declarationSO is 
+ considered to hold throughout the lexical scope created by the dprogn. Thus, our example 
+ becomes: 

+ 
+ 

{if (FIXP X) then {DPROGN ({X FIXP» ... stuff ... ) 
else (DPROGN «X FLOATP» ... otherstuff ... » 

+ Like dprog and DLAMBDA, the value of a dprogn may also be declared, using the pseudo-variable 
+ RETURNS. 

+ dprogn may be used not only to restrict the declarations of local variables, but also to declare 
+ variables which are being used freely. For example, if the variable ~ is used freely inside a 
+ function but is known to be fixp, this fact could be noted by enclosing the body of the function in 
+ (DPROGN «A FIXP FREE» ... body ... ). Instead of FREE, the more specific construction 
+ (BOUNDIN functionl function2 ... ) can be used. This not only states that the variable is used freely 
+ but also gives the names of the functions which might have provided this binding.81 

+ 79 

+ 

+ 80 

+ 81 

+ 

Note that variables bound outside of the scope of the iterative statement, i.e. a variable used freely in the i.s. can also 
be declared using this construction. Such a declaration will only be in efft..'Ct for the scope of the iterative statement 

created using the ALLOF type expression, page 24.62. 

Like USEDIN declarations. FREE and BOUNDIN declarations cannot be checked. and are provided for documentation 
purposes only. 

24.58 



The flecl Package 

Since the dprogn form introduces another level of parenthesization, which results. in the enclosed + . 
forms being preLtyprinted indented, the Decl package also permits such declarations to be attached + 
to their enclosing DLAMBDA or dprog scopes by placing a DECL expression,e.g. + 
(DECL (A FIXP (BOUNDIN FUM», before the first executable fonn in that scope. Like + 
dprogn's, DECL declarations use DLAMBDA fonnat. + 

DECLARING THE VALUES OF EXPRESSIONS + 

The Decl package allows the value of an arbitrary fOrIn to be declared with the Ded construct· + 
THE. A THE expression is of the fonn (THE type. fonns), e.g. (THE FIXP (FOO X». forms + 
are evaluated in order, and the value of the last one is checked to see if it satisfies ~, a type + 
name or type expression. If so, its value is returned, otherwise a declaration fault occurs. + 

ASSERTIONS + 

The Decl package also allows for checking that an arbitrary predicate holds at a particular point in + 
a program's execution, e.g. a condition that must hold at funCtion entry but not throughout its + 
execution. Such predicates can be checked using an .. expression of the fonn + 
(ASSERT formI form2 .. :), in which each form· is either a list (which will be evaluated) or a + 
variable (whose declaration will be checked). Unless all elements of the ASSERT fonn are satisfied. + 
a declaration fault will take place. + 

ASSERTing a variable provides a convenient way of verifying that the value of the variable has not + 
been improperly changed by a lower function. Although a similar. effect could be achieved for + 
predicates by explicit checks of the form (OR predicate (SHOULDNT», ASSERT also provides the + 
ability both to check that a variable's declaration is currently satisfied and to remove its checks at + 
compile time without source code modification (see page 24.60). . + 

USING TYPE EXPRESSIONS AS PREDICATES + 

The Decl package extends the Record package TYPE? construct (Section 23) SO that it accepts + 
decltypes, as well as record names, e.g. + 
(TYPE? (FIXP (SATISFIES (ILESSP VALUE 0») expr). Thus, a TYPE? expression is + 
exactly the same as a THE expression except that, rather than causing a declaration fault, TYPE? is + 
a predicate which detennines whether or not the value satisfies the given type. + 

ENFORCEMENT + 
The Decl package is a "soft" typing system - that is, the data objects themselves are not inherently + 
typed. Consequently, declarations can only be enforced within the lexical scope in which the + 
declaration takes place, and then only in certain contexts. In general, changes to a variable's value + 
such as those resulting from side effects to embedded structure (e.g., rplaca, setn, etc.) or free + 
variable references from outside the scope of the declaration cannot be, and therefore are not, + 
enforced. + 

Declarations are enforced i.e. checked, in three different situations: when a declared variable is + 
bound to some value or rebound with setq or ~. when a declared expression is evaluated, and + 
when an ASSERT expression is evaluated. In a binding context, the type check takes place after + 
the binding, including any user-defined behavior specified by the type's binding function. Any + 

24.S9 



Section 24: Lispusers Packages 

+ failure of the declarations causes a break to occur and an infonnative message to be printed. In 
+ that break, the name to which tile declaration is attached (or value if no name is available) will be 
+ bound to the offending value. Thus, in the FACT (T) example on page 24.54, .D would be bound to 
+ T. The problem can be repaired either by returning an acceptable value from the break via the 
+ RETURN command, or by assigning an acceptable value to the offending name and returning from 
+ the break via an OK or GO command. 'fbe unsatisfied declaration will be reasserted when the 
+ computation is continued, so an unacceptable value will be detected.82 

+ The automatic enforcement of type declarations is a very flexible and powerful aid to program 
+ development. It docs, however, exact a considerable run-time cost because of all the checking 
+ involved.83 As a result, it is usually desirable to remove the declaration enforcement code when the 
+ system is believed to be bug-free and perfonnance becomes more central. Setting the value of the 
+ variable compileignoredecl to T (initially NIL) instructs the compiler not to insert declaration 
+ enforcement tests in the compiled code. More selective removal can be achieved by setting 
+ compileignoredecl to a list of function names. Any function whose name is found on this list is 
+ compiled without declaration enforcement. Finally, declaration enforcement may be suppressed 
+ selectively by file using the IGNOREOECL file package command. If this appears in a file's file 
+ commands, it redefines the value of compileignoredecl to cdr of the IGNOREOECL command for 
+ the compilation of this file only. 

+ DECLTYPES 

+ A Decl package type, or decltype, specifies a subset of data values to which values of fuis type are 
+ restricted. For example, a "positive number" type might be defined to include only fuose values 
+ that are numbers and greater than zero. A type may also specify how certain operations, such as 
+ assignment or binding (see page 24.64), are to be performed on variables declared to be of fuis 
+ type. 

+ The inclusion relations among fue sets of values which satisfy the different types define a natural 
+ partial ordering on types, bound by the universal type ANY (which all values satisfy) and the empty 
+ type NONE (which no value satisfies). Each type has one or more supertypes (each type has at least 
+ ANY as a supertype) and one or more subtypes (each type has at least NONE as a subtype). This 
+ structure is important to the user of Decl as it provides fue framework in which new types are 
+ defined. Typically, much of the definition of a new type is defaulted. rather than specified 
+ explicitly. The definition will be completed by inheriting atttributes which are shared by all its 
+ immediate supcrtypes. 

+ An initial set of dec1types which defines the Interlisp built-in datatypes and a few other commonly 
+ used types is provided. Thereafter, new decltypes are created in terms of existing ones using fue 
+ type expressions described below. For conciseness, such new types can be associated with literal 
+ atoms using the function dccltype (page 24.63). 

+ 82 

+ 
+ 83 

+ 

With this exception. assignments to variables from within the break are not considered to be in the scope of the 
declarations that were in effect when the break took place, and so are not checked. 

Factors of two to ten in running speed are not uncommon, especially where low level, frequently used functions 
employ type dt'Clarations. 

24.60 



The Dec! Package 

PREDEFINED TYPES + 

Some commonly used types, such as the Interlisp built-in data types, are already defined when the + 
Decl package is loaded. lbese types, indented to show subtype-supertype relations, are: + 

ANY 
ARRAYP 

HARRAYP 
READTABLEP 

ATOM FUNCTION LST84 
ALIST85 
llSTP 

STACKP STRINGP 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

LITATOM 
NIL 

NUMBERP 
FIXP 

LARGEP 
SMALLP 

FLOATP 

NONE + 

Note that the definition of LST causes NIL to have multiple supertypes, i.e. LITATOM and LST, + 
reflecting the duality of NIL as an atom and a (degenerate) list. + 

In addition, declarations made using the Record package (Section 23) also define types. which are + 
attached as subtypes to an appropriate existing type (e.g., a typerecord declaration defines a + 
subtype of LISTP, a datatype declaration a subtype of ANY, etc.) and may be used directly in + 
declaration contexts. + 

TYPE EXPRESSIONS + 
Type expressions provide convenient ways for defining new types in terms of modifications to, or + 
compositions of one or more, existing types. + 

(MEMQ value! ... valuen) specifies a type whose values can be anyone of the fixed set of + 
elements {value! ... valuen}. For example, the status of a device + 
might be represented by a datum restricted to the values BUSY and + 
FREE. Such a "device status" type could be defined via + 
(MEMQ BUSY FREE). The new type will be a subtype of the + 
narrowest type which all of the alternatives satisfy (e.g., the "device + 
status" type would be a subtype of LITATOM). The membership + 
test uses ~ if this supertype is LITATOM; equal otherwise. Thus, + 
lists, floating point numbers, etc., can be included in the set of + 
alternatives. + 

(ONEOF type! ... typen) specifies a type which is the union of two or more other types. For + 

84 

85 

lST is defincd as either LISTP or NIL. i.e. a list or NIl. The name lST is used. because the name LIST is treated + 
specially by clisp. + 

ALI S T is defincd as either NIL. or a list of elements each of which is of type LI S TP. + 

24.61 

- --------------- --- ---- -------
~- ' .'t' '- •• ~-"-~.'" 



+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ (ALLOF typel ... typen) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ (aggregate OF element) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Section 24: Lisplisers Packages 

example, the notion of a possibly degenerate list is something that 
is either LISTP or NIL. Such a type can be (and the built in type 
LST in fact is) defined simply as (ONEOF NI L LISTP). A union 
data type becomes a supertype of all of the alternative types 
specified in the ONEOF expression, and a subtype of their lowest 
common supertype. I'hc type properties of a union type are taken 
from its alternative types if they all agree, otherwise from the 
supertype. 

specifies a type which is the intersection of two or more other 
types. For example, a variable may be required to satisfy both 
FIXP and also some type which is defined as 
(NUMBERP (SATISFIES predicate». 1be latter type will admit 
numbers that are not FIXP, i.e. floating point numbers; the former 
does not include predicate. Both restrictions can be obtained by 
using the type 
(ALLOF (NUMBERP (SATISFIES predicate» FIXP).86 

specifies a type which is an aggregate of values of some other type 
(e.g., list of numbers, array of strings, etc.). aggregate must be a 
type which provides an EVERYFN property (page 24.64). The 
EVERYFN is used to apply an arbitrary function to each of the 
elements of a datum of the aggregate type, and check whether the 
result is non-NIL for each clement. element may be any type 
expression. For example, the type "list of either strings or atoms" 
can be defined as (LISTP OF (ONEOF STRINGP ATOM». The 
type test for the new type will consist of applying the type test for 
clement to each element of the aggregate type using the EVERYFN 
property. The new type will be a subtype of its aggregate type.87 

+ (type (SATISFIES forml ... formn» 
+ . specifies a type whose values are a subset of the values of an 
+ ... - existing type. The type test for the new type will first check that 
+ the base type is satisfied, i.e. that the object is a member of ~. 
+ and then evaluate forml ... formn. If each form returns a non-NIL 
+ value, the type is satisfied. 

+ 1be value that is being tested may be referred to in form I'" formn 
+ by either (a) the variable name if the type expression appears in a 
+ binding context such as DLAMBDA or dprog (b) the distinguished 

- + atom cIt for a SA TI S F 1£S clause on the clements of an aggregate 
+ type, or (c) the distinguished atom value. when the type expression 
+ is used in a context where no name is available (e.g., a RETURNS 
+ declaration). For example, one might declare the program variable 

+ 86 When a value is tested. the component type tests are applied from left to right 

+ 87 The built-in aggregate types are am!yp'. fu;Jl1. b~!. and ~trit!g]1 (and their subtypes). 

24.62 



The Dec! Package 

~ to be a negative integer via + 
(FIXP (SATISFIES (MINUSP A»}, or declare the value of a + 
DLAMBDA to be of type «ONEOF FIXP FLOATP) + 
(SATISFIES (GREATERP VALUE 25}». Note that more than + 
one SATISFIES clauses may appear in a single type expression + 
attached to different alternatives in a ONEOF type expression, or + 
attached to both the elements and the overall stlUcture of an + 
aggregate. For example, + 

[LISTP OF [FIXP (SATISFIES (ILEQ ELT (CAR VALUE] + 
(SATISFIES (ILESSP (LENGTH VALUE) 7] + 

specifies a list of less than 7 integers each of which is no greater + 
than the first element of the list. + 

(SHARED type) Specifies a sUbtype of ~ with default binding behavior, i.e. the + 
binding function (see page 24.64), if any, will be suppressed.88 For + 
example, if the type FLOATP were redefined so that DLAMBDA and + 
dprog bindings of variables that were declared to be FLOATP + 
copied their initial values (e.g., to allow setns to be free of side + 
effects). then variables declared (SHARED FLOATP) would be + 
initialized in the normal fashion. without copying their initial + 
values. + 

NAMED TYPES + 
Although type expressions can be used in any declaration context, it is often desirable to save the + 
definition of a new type if it is to be used frequently. or if a more complex specification of its + 
behavior is to be given than is convenient in an expression. The ability to define a named type is + 
provided by the function decltyPe. + 

decltype[typename;type;proPl :vall ; ... ;proPn;valn] + 
Nfambda. nospread function. typename is a literal atom. ~ is + 
either the name of an existing type or a type expression, and P!QPl' + 
vall •.... P!QQn' vaIn is a specification (in property list format) of + 
other attributes of the type. decltype derives a type from ~ + 
associates it with typename. and then defines any . properties + 
specified with the values given. + 

The following properties are interpreted by the Decl package.89 Each of these properties can have + 
as its value either a function name or a LAMBDA expression. + 

88 

89 

As no predefined type has a binding function. this is of no concern until the user defines or redefines a type to have + 
a binding function. + 

Actually. any property can be attached to a type. and will be available for use by user functions via the function + 
gctdccltypeprop. described below. + 

24.63 



Section 24: Lispusers Packages 

+ TESTFN fn will be used by the Oecl package to test whether a given value 
satisfies this type. 'The type is considered satisfied if fn applied to 
the item is non-NIL. For example, one might define the type 
INTEGER with TESTFN fixp.9O 

+ 
+ 
+ 

+ EVERYFN fn specifics a mapping function which can apply a functional argument 
to each "clement" of an instance of this type, and which will return 
NIL unless the result of every such application was non-N I L. fn 
must be a function of two arguments: the aggregate and the 
function to be applied. For example, the EVERYFN for the built-in 
type LISTP is every. As described on page 24.62, the Oecl package 
uses the EVERYFN property of the aggregate type to construct a 
type test for aggregate type expressions. In fact, it is the presence of 
an EVERYFN Jiroyerty which allows a type to be used as an 
aggregate type. 9 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ BINOFN fn is used to compute from the initial value supplied for a DLAMBOA 
or dprog variable of this type, the value to which the variable will 
actually be initialized. fn must be a function of one argument 
which will be applied to the initial value,93 and which should 
produce another value which is to be used to make the binding. 
For example, a B I NDFN could be used to bind variables of some 
type so that new bindings are copies of the initial value. Thus, if 
FLOATP were given the BINDFN fplus, any variable declared 
FLOATP would be initialized with a new floating box, rather than 
sharing with that of the original initial value.94 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ SETFN fn is used for performing a setg or g:!gg of variables of this type. fn 
is a function of two arguments, the name of the variable, and its 
new value. A SET F N is typically used to avoid the allocation of 
storage for intermediate results. Note that the SET FN is not the 
mechanism for the enforcement of type compatibility, wh~ch is 

+ 
+ 
+ 
+ 

+ 90 

+ 
+ 
+ 
+ 
+ 91 

+ 
+ 
+ 92 

+ 
+ 93 

+ 94 

+ 

Typically, the TESTFN for a type is derived from its type expression, rather than specified explicitly. The ability to 
specify the TESTFN is provided for those cases where a predicate is available that is much more efficient than that 
which would be derived from the type expression. For example, the type SMALLP is defined to have the function 
5ml,llm as its TESTFN, rather than (LAMBDA (DATUM) (AND (NUMBERP DATUM) (FIXP DATUM) 

(SMALLP DATUM») as would be derived from the subtype structure. 

Note that a type's EVERYFN is not used in type tests for that type, but only in type tests for types defined by OF 

expressions (page 24.62) which used this type as the aggregate type. For example, every is not used in determining 
whether some value satisfies the type LISTP. 

The Ded package never applies the EVERYFN of a type to a value without first verifying that the value satisfies that 
type. 

For a dprog binding, In will be applied to no arguments if the initial value is lexically NIL. 

The BINDFN, if any, associated with a type may be suppressed in a declaration contclt by creating a subtype with 
the type expression operator SIIARED, as described on page 24.63. 

24.64 



The Dec! Package 

checked after the assignment has taken place. Also note that not all + 
functions which can change values are affected: in particular, set + 
~~~~ + 

Manipulating named types + 

dec1type is a file package type (Section 14). Thus all of the operations relating to file package types, + 
e.g. getdef, putdef, edildef, deldef,95 showdef, etc., can be performed on dec1types. + 

The file package command, DECL TYPES, is provided to dump named decltypes symbolically. + 
lbey will be written as a series of decltype forms which will specify only those fields which differ + 
from the corresponding field of their supertype(s). If the type depends on any unnamed types, + 
those types will be dumped (as a compound type expression), continuing up the supertype chain + 
until a named type is found. Care should be exercised to en~ure that enough of the named type + 
context is dumped to allow the type definition to remain meaningful. + 

The functions getdec1typeprop and setdecltypeprop, defined analogously to the property list + 
functions for atoms, allow the manipulation of the properties of named types. Setting a property + 
to NIL with setdecltypeprop removes it from the type. + 

RELATIONS BETWEEN TYPES + 

The notion of equivalence of two types is not well defined. However, type equivalence is rarely of + 
interest. What is of interest is type inclusion, i.e. whether one type is a supertype or subtype of + 
another. The predicate covers can be used to determine whether the values of one type include + 
those of another. + 

covers[hi;lo] is T if hi can be found on some (possibly empty) supertype chain + 
of 10; else NIL. Thus, covers[FIXP;dec10f{41l=T, even though the + 
decltype of 4 is SMALLP, not FIXP. lbe extremal cases are the + 
obvious identities: covers[ANY;anytype] = covers[anytype;NONE] = + 
covers[x;x] for any type! = T. + 

covers allows declaration based transformations of a form which depend on clements of the form + 
being of a certain type to express their applicability conditions in terms of the weakest type to + 
which they apply, without explicit concern for other types which may be subtypes of it. For + 
example, if a particular transformation is to be applied whenever an element is of type NUMBERP, + 
the program which applies that transformation does not have to check whether the element is of + 
type SMALLP, LARGEP, FIXP, FLOATP, etc., but can simply ask whether NUMBERP fQY£!] the + 
type of that clement. + 

The elementary relations among the types, out of which arbitrary traversals of the type space can + 
be constructed, arc made available via: + 

95 Deleting a named type could possibly invalidate other type definitions that have the named type as a subtype or + 
supertype. Consequently. the deleted type is simply unnamed and left in the type space as long as it is needed. + 

24.65 



Section 24: Lispusers Packages 

+ subtypes[type] returns the list of types which are immediate subtypes of ~. 

+ . supertypes[type] returns the list of types which are immediate supertypes of ~. 

+ THE DECLARATION DATABASE 

+ One of the primary uses -of type declarations is to provide information that other systems can use 
+ . to interpret or optimize code. For example, one might choose to write all arithmetic operations in 
+ terms of general functions like plus and times and then use variable declarations to substitute more 
+ efficient, special purpose code at compile time based _ on the types of the operands~To this end, a 
+ data base of declarations is made available by the Decl package to support these· operations. 

+ declof{form] returns the type of form in the current declaration context.96 If 
form is an. atom, declof will look up that atom directly in its 
database of current declarations. Otherwise, declof win look on the 
property list of car[formJ for a DECLOF property, as described 
below. If there is no DECLOF property, declof will check if 
car[formJ is one of a large set of functions of known result type 
(e.g., the arithmetic functions). Failing that, if car[form] has a 
MACRO property, declof will apply itself to the result of expanding 
(with expandmacro, Section 18) the macro definition. Finally, if 
form is a Lisp program elementthatdeclof "understands" (e,g., a 
cond,. P!Q&, selectg, etc.). deCtof applies itself recursively to the 
part(s) of the contained form which will be returned as value. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ DECLOF val allows the specification of the type of the values returned by a 
particular function. The value of the DECLOF property can be 
either a type, i.e. a type name or a type expression, or a .1ist of the 
form (FUNCTION fn), where fn is a function object fn will be 
applied (by declot) to the form whose car has this DECLOF property 
on its property list. The value of this functiQ1l application will then 

+ 
+ 
+ 
+ 
+ 
+ be considered to be the type of the. form.· -

+ As an example of how declarations can be used to automatical1y generate more efficient code, 
+ consider an arithmetic package. Declarations of numeric variables could be used to guide code 

- -+ generation to avoid the inefficiencies of Interlisp's handling of arithmetic values. Not only could 
+ the generic arithmetic functions be automatically specialized, as suggested above, but by -redefining 
+ the BINDFN and the SETFN properties for the types FLOATP and LARGEP to re~use storage in the 

+ 96 

+ 
+ 
+ . + 
+ 
+ 

The "current declaration context" is defined by the environment at the time that declof is catted. Code reading 
systems. such as the compiler and the interpreter. keep track of the lexical scope within which they are currently 
operating. in particular. which declarations are currently in effect. Note that (currently) declof does not have access to 
imy global data base of declarations. For example. dec10f docs not have information available about the types of the 
arguments of. or the v~lue retumed by. a particular function. unless it is currently "inside" of that function . 
However. the DECLOF propcrty (described below) can be used to inform declof of the type of the value returned by 
a particular function. 

24.66 



The Dec! Package 

appropriate contexts (Le., when the new value can be determined lo be of the appropriate type), + 
tremendous economics could be realized by not allocating storage to intermediate results which + 
must laler be reclaimed by the garbage collector. The Decl package has been used as the basis for + 
several such code optimizing systems. . + 

DECLARATIONS AND MASTERSCOPE + 

The Decl package notifies Masterscope about type declarations and defines a new Masterscope + 
relation, TYPE, which depends on declarations. Thus, the user can ask questions such as + 

WHO USES MUMBLE AS A TYPE? + 
DOES FOO USE FIXP AS A TYPE? + 

24.67 





Index for'Section 24 

ADDTOSCRATCHLIST[VALUE] ........................ . 
ANY (i n Dec 1 package) ..........•................ 
ASSERT (in Decl package) ....................... . 
assignments (in pattern match compiler) ........ . 
BIT[BIT';WORD] ........•.................... '" .. 
BOUNDIN (in Decl package) ........•.....••....... 
BOXED (edita parameter) ..•...........•.•........ 
BR (exec command) .............................. . 
BREAKLINKS[] .......•.......•..•...•............. 
carriage-return (edita command) •.........•...... 
CBOX[X: Y] ................•....•.............•... 
CHECKCONNECTION[CONNECTION] ......••...•. 4 ••••••• 

tIRCLMAKER[LIST] ..••......•...•................. 
CIRCLPRINT[LIST;PRINTFLG;RLKNT] .........••...... 
cj sys package ....•........• ' .............•....... 
CLISPARRAY (clisp variable/paramete~) .......... . 
CLOSECONNECTION[CONNECTION] ..........•.......... 
CLOSEHASHFILE[HASHFILE] .•..........•.....•...... 
CNDIR[DIR;PASSWORD] ............................ . 

, COMPILEIGNOREDECL (Decl package parameter) 
CONN (exec command) ................•...•....•... 
control-E (typed to ~dita) ••...•••.•.••......... 
COPYALLBYTES[FROMFILE;TOFILE;BYTESIZE] ......... . 
COPYHASHFILE[HASHFILE;NEWNAME;FN;VTYPE] ..•..•..• 
COREVAL (property name) ........................ . 
COVERS[HI; LO] •.......••...........••.•••....•.•. 
CREATEHASHFILE[FILE;VALUETYPE;ITEMLENGTH: 

'ENTRIES] ............•••..•...•... 
curly brackets (use with ftp package) .....•..... 
current declaration context ....................• 
CURRENTFN (transor variable) •.....•............. 
CV (assemble macro) ...........•..•..••......•... 
CV2 (assemble macro) ...........••.......•....... 
DA (exec command) .....•......................... 
databasefns package ..........•..............•... 
DATEFORMAT[KEYWORDl;KEYWORD2; ... :KEYWORDn] 
dateformat package ......••.....•...••..•.•..•..• 
DDT[] SUBR ............•............•....•....... 
Dec 1 package ........•.......... ' ..•.•............ 
DECL (in Decl package) .•••..............•.•.••.. 
declaration fault (in Decl package) ........... .. 
DECLARATION NOT SATISFIED (error message) ...... . 
declarations (in pattern match compiler) ....•••• 
DECLOF[FORM] .........•.......................... 
DECLOF (property name) ..........•........•...... 
DECLTYPE[TYPENAME;TYPEEXPRESSION;PROPl;VALl: ••. : 

PROPn ;VALn] ................•............ 
DECLTYPES (file package command) ...•............ 
decltypes (in Decl package) •..•••............... 
DEL (exec command) ...............•...•........•. 
DELNOTE (transor command) ......•............•... 
DELPAGE[PAGE';HASHFILE] ....•...•................ 
DELVER (exec command) ..........••.......•...••.. 
DET (exec command) .....•.............•....••.... 
DETACH[] ..............•......•.................. 
DETACHEOP[] .•..•.•••..••.•••.••••.••.••• I •••••••• 

INDEX.24.1 

Page 
Numbers 

24.36 
24.60 
24.59 
24.5 
24.36 
24.58 
24.12 
24.41 
24.43 
24.11.10 
24.37 
24.47 
24.19 
24.18.17 
24.35-36 
24.2 
24.46 
24.49 
24.43 
24.60 
24.42 
24.10 
24.43 
24.50 
24.10-11 
24.65 

24.48 
24.45, 
24.66 
24.24 
24.36 
24.36 
24.41 
24.31-32 
24.40 
24.40-41 
24.9 ' 
24.53-68 
24.59 
24.54 
24.54 
24.6 
24.66 
24.66.66 

24.63 
24.65 
24.53 
24.42 
24.28 
24.52 
24.42 
24.41 
24.43 
24.43 



DLAMBDA (in Decl package) ...................... . 
DOTHESE (transor command) ...................... . 
DOTHIS (transor command) .....•.................. 
DPROG (in Decl package) ..........•...•.......... 
DSK (exec command) .........................•.... 
DSKSTAT[DIR;PRINTIFOVER:PRINTSYS;PRINTOEL: 

PRINTOLD] ............................... . 
DUMP (transorset command) ...................... . 
DUMPDB[fILE] .........................•.•........ 
DWIMUSERfORMS (dwim variable/parameter) ........ . 
EDIT (transorset command) ..•.........•.......... 
EDITA[EDITARRY;COMS] ...... , ....................• 
editing arrays ....••.....•........••.......•.... 
edi t i ng compi 1 ed code .................•........• 
element patterns (in pattern match compiler) 
ERASE (transorset command) ...•.......•........•. 
exec package ......................•............. 
EXIT (transorset command) .............•.....•... 
EXP (exec command) ......•......•...........•.•.. 
EXPUNGE[OIR] ....•.....••..................••.•.• 
FBOX[N] .......•..•.••••..•...•.•.•....•.•...•..• 
fBOX (record decl~ration) ..••................... 
fI (exec command) •. , ...•.••.••••••.........•...•• 
fILE DATA ERROR (error message) ................• 
FILE (edita parameter) ..........••.........•.••• 
FN (tr-ansorset command.) ...•...•..••.....•...••.. 
FORCEOUT[CONNECTION/fILE] ..•..•....•........•.•• 
FREE (in Decl package) ...•.•..•....•..••.•.•.•.. 
FTP[HOST:FILE;ACCESS;USER:PASSWORD;ACCOUNT; 

BYTESIZE] •.......•.........•.•..•••••••..•••• 
ftp package ................. ~ .................. . 
generators for spelling correction •...........•. 
GETOECL TYPEPROP[TYPE; PROP] ...•..•.••..•.•••••..• 
GETHASHFILE[KEY;HASHFILE] ..•.........••......... 
GETPAGE[HASHfILE ;N] •.....•..•..•••..•..••.•..••• 
GETPASSWORD[DIRECTORYNAME] ....•.......•.••..••.. 
GETPNAME[FILEADR ;HASHfILE] ....•......•.•.....•.. 
has h package ..••...••.......•••..•.••...••...... 
HASHfILENAME[HASHFILE] ......................... . 
HASHfILEP[X] .............•........•..•.•........ 
HASHFILEPROP[HASHFILE;PROP] ..••...•......•...•.. 
HASHFILESPLST[HASHfILE] ••....••...•.....•.....•. 
HOST (as a file name field) ...........•.....•.•. 
IBOX[N] .......•...........•••.•..•..........•.•. 
IBOX (record declaration) ............•.••....... 
IGNOREDECL (file package command) •.•.....•...•.. 
JOBO[] .................•..........•..•.......... 
JS[JSYSNAME;AC1:AC2:AC3;RESULT] ................ . 
JS (assemble macro) ...............•...•.....••.. 
JSYSERROR[ERRORN] ...........................•... 
JSYSES (system variable/parameter) ........•..... 
LAMBDACOMS (transor parameter) .......•....•..•.. 
LAMBDASPLST (dwim variable/parameter) •.......... 
1 ambdatran package ........... , ................. . 
LAMBDATRANfNS (lambdatran parameter) ..•••....... 
LBOX[Xl;~2: ... :Xn] ......•.................•..... 
LD (exec command) .............•..........•....•. 

INDEX.24.2 

Page 
Numbers 

24.66.54 
24.29 
24.29 
24.55,57 
24.42 

24.43 
24.26 
24.32 
24.33 
24.26 
24.8-15 
24.8-15 
24.8-15 
24.2-4 
24.26 
?4.41-44 
24.26 
24.42 
24.43 
24.38 
24.38 
24.42 
24.45 
24.13 
24.25 
24.47 
24.58 

24.45 
24.44 
24.51 
24.65 
24.49 
24.52 
24.44 
24.52 
24.47-53 
24.49 
24.49 
24.49 
24.51 
24.45 
24.38 
24.38 
24.60 
24.43 
24.35 
24.36 
24.36 
24.35 
24.29 
24.33 
24.32-34 
24.33 
24.37 
24.41 



1 ine-feed (edita command) ...................... . 
LINK (exec command) ............................ . 
LINKTOTTY[TTY#] ............................... ' .. 
LINKTOUSER[USER] " ...................... , ...... . 
listp checks (in pattern match compiler) ....... . 
LITS (ed ita parameter) ......................... . 
LOADDB[FILE] ................................... . 
LOADDBFLG (system variable/parameter) .......... . 
LOCAL (in Decl package) ........................ . 
LOGIN (property name) .......................... . 
LOOKUPHASHFILE[KEY;VALUE;HASHFILE:CALLTYPE] 
mach i ne instruct ions ........................... . 
MAKENEWCONNECTION[HOST;TYPE;SKT:SCRATCHCONN: 

WAITFLG] ...................... . 
MAPHASHFILE[HASHFILE:MAPFN] .................... . 
MASK (edita parameter) ......................... . 
MATCH (use in pattern match in clisp) ......... .. 
MEMSTAT[PG1:PGN:FORK] .......................... . 
MULTIFILEINDEX[FILENAMELST;MAPFIlE;NEWPAGEFLG] 
multifileindex package .......•.................. 
NBOX[N] ........................................ . 
NDIR (exec command) ............................ . 
net package ...........•......................... 
NETSERVER[ARPA#;WAITFLG] ....................... . 
NETUSER[HOST;USER;PUP#;WAITFLG] ................ . 
NLAM (transor command) ........................ .. 
NLISTPCOMS (transor parameter) ................. . 
nobox package .................................. . 
NONE (in Decl package) ......................... . 
NOT A HASHFILE (error message) ...............•.. 
NOTE (transor command) ........................ .. 
OK (edita command) ............................. . 
OPD (property name) ............................ . 
OPENHASHFIlE[FILE;ACCESS] ...................... . 
ORG (edita parameter) ......................... .. 
passwords package .............................. . 
PATLISTPCHECK (in pattern match compiler) ...... . 
pattern match compiler ......................... . 
PATVARDEFAULT (in pattern match compiler) ...... . 
permanent files ................................ . 
permstatus package ............................. . 
place-markers (in pattern match compiler) ...... . 
PRESCAN[FILE;CHARlST:PRESCANFN] ................ . 
printing circular lists ....................... .. 
PRINTL[ITEM;DEPTH;LMARG:RMARG:FILE] ............ . 
PRNTl (prog. asst. command) .................... . 
PUTHASHFIlE[KEY;VAlUE;HASHFIlE] ................ . 
QU (exec command) .......... 0 •••••••••••••••••••• 

reconstruction (in pattern match compiler) 
REHASHFIlE[HASHFILE] ........................... . 
REMARK (transor command) ....................... . 
replacements (in pattern match compiler) ....... . 
RETURNS (in Decl package) ...................... . 
SATISFIES (in Decl package) .................... . 
SAVEDBFLG (system variable/parameter) .......... . 
SCRATCHCOLLECT 

(clisp iterative statement operator) ...... . 

INDEX.24.3 

Page 
Numbers 

24.12 
24.41 
24.43 
24.43 
24.2 
24.12 
24.32 
24.32 
24.56 
24.45 
24.51 
24.10 

24.46 
24.50 
24.14 
24.2 
24.44 
24.30 
24.30-31 
24.38-39 
24.42 
24.46-47 
24.47 
24.47 
24.28 
24.29 
24.37-40 
24.60 
24.48 
24.28.26 
24.12 
24.10 
24.48 
24.11 
24.44 
24.2 
24.1-8 
24.3,5-6 
24.34 
24.34 
24.6 
24.22 
24.15-21 
24.20 
24.20 
24.49 
24.41 
24.7 
24.50 
24.26 
24.6 
24.66.55.58 
24.54 
24.32 

24.37 



SCRATCHLIST[LST;Xl;X2; ... ;Xn] •....•............. 
scratchl ist package ............................ . 
segment patterns (in pattern match compiler) ..•• 
SETOECLTYPEPROP[TYPE ;PROP ;VAL] ................. . 
SHOW (transorset command) .........•............• 
SINGLEFILEINDEX[FILE;OUTPUTFILE;NEWPAGEFLG] 
singlefileindex package ........................ . 
SPECIAL (in Oecl package) ...................•.•• 
spell ing correction on hash files ............. .. 
SUBTYPES[TYPE] .•....•.....•..........•.......... 
subtypes (in Oecl package) ...•.•.•...•.......... 
SUPERTYPES[TYPE] .........•............•.....•..• 
supertypes (in Oecl package) ..............•...•. 
SYMLST (edita parameter) ...•.•....•........••..• 
tab (edita command) ......•.........•.........•... 
TELNET[CONNECTION;TVPE;SKT:8UTTONCHAR] •.•......• 
tel net package .•....•...........•...•.••••.•...• 
TEST (transorset command) ..•..........•.•.•..... 
THE (in Oecl package) ....•.......••........••.•. 
THEN (in Oecl package) ....•....•...........••... 
translation notes (in transor package) •••..•..•. 
tran sor package ..•..•.•.......•••.•....•...•.... 
transor sweep .••....•.............•••........... 
TRANSORSET[] .•••............•..•.••.•.•..•..•... 
TTY/[] .... ' .................•......••.••••.•..••• 
TY (exec command) .......•....•.•.•.......•....•. 
type decl·arations ..•.......•.••..•.•............ 
TYPE (Masterscope relation) .......•............. 
UNO (exec command) ....•............•....•..•.... 
USEDIN (in Oecl package) ...................... .. 
USERSYMS (edita parameter) •.................•.•. 
WHENCLOSE[FILENAME;PROP1:VAL1; ... ;PROPn:VALn] * 
WHEREIS[NAME;TVPE;FILES] ......................•. 
whereis package ..•.......•........••...•.......• 
WHEREIS.HASH (system variable/parameter) •.•••••• 
XWO[Nl;N2] ....•.......................•.......•. 
{} (use with ftp package) .....••.•...•••.....•.. 
- (in pattern match compiler) ..••......•..•...•• 
I (in pattern match compiler) ............•...••. 
In (n a number. in pattern match comp 11 er) 
$ (dollar) (edita parameter) •.•..•.............• 
$ (dollar) (in pattern match compiler) •..•.••••• 
$C «esc)C) (edita command) ••....••••.•...•..... 
$n (in pattern match compiler) .......•.........• 
$Q «esc)Q) (edita command) ......•.............. 
$W «esc)W) (edita command) ...••.•.••.....•..... 
$1 (in pattern match compiler) .•.•••........•... 
& (in pattern match compiler) ....•..•........... 
• (edita command) ........•...•.................. 
• (in pattern match compiler) ..•....•••......... 
* (in pattern match compiler) ..•......•..•...... 
• (edita command) .......................•....... 
-- (in pattern match compiler) ....•...•......... 
-) (in pattern match compiler) .............•.•.• 

(edita parameter) .....••...................... 
. (in pattern match compiler) ............••••.•. 
/ (edita command) ............•.................. 

INDEX.24.4 

Page 
Numbers 

24.36 
24.36 
24.4-5 
24.65 
24.26 
24.31 
24.31 
24.56 
24.51 
24.66 
24.60 
24.66 
24.60 
24;13 
24.11 
24.44 
24.44 
24.26 
24.59 
24.51 
24.22-24 
24.21-29 
24.28 
24.24.21 
24.43 
24.42 
24.53-68 
24.67 
24.42 
24.56,58 

. 24.13 
24.34,49 
24.34 
24.34.35 
24.34 
24.36 
24.45 
24.4 
24.4-6 
24.6 
24.12 
24.4 
24.14 
24.4 
24.12 
24.13.14-15 
24.3 
24.3 
24.13.10 
24.3 
24.4 
24.10 
24.4 
24.7 
24.12 
24.5 
24.11.10 



IDELFILE[FILE] ••••••.•••••••.••.•••••••.••.•••.• 
IUNDELFILE[FILE] •..•...••.•••..••.•••.••.••••••. 
: (edita command) •.........•.•...•..••.......... 
; (edita command) ......•..•...........•......•.• 
= (ed ita command) .........•..•....•............. 
= (in pattern match compiler) ..•..•....••...•.•• 
== (in pattern match compiler) ..•........•...•.. 
=) (in pattern match compiler) .......•.•...•••.• 
? (edita command) •........•......•.....•.•.•.••. 
@ (ed i ta command) .........•.•...•..•...•......•. 
@ (in pattern match compiler) .....••.....•.•..•. 
l' (edita command) .••...••..•...•..•..........•.• 
.. (in pattern match compiler) .................. . 

INDEX.24.5 

Page 
Numbers 

24.43 
24.43 
24.13 
24.15 
24.12 
24.3 
24.3 
24.7 
24.12 
24.10 
24.3,5 
24.12 
24.5 





<; 

APPENDIX 1 

CONTROL CHARACTERS 

Several control characters are available to the user for communicating directly to Intertisp, i.e., not 
through the read program. These characters are enabled by lnterlisp as interrupt characters, so_ 
that lnterlisp immediately "sees" the characters, and takes the corresponding action as soon as 
possible. For example, control characters are available for aborting or interrupting a computation, 
changing the printlevcl, etc. Ibis section summarizes the action of these characters, and references 
the appropriate section of the manual where a more complete description may be obtained. 
Section 16 describes how these interrupt characters can be disabled and/or redefined, as well as 
how the user can define his own new interrupt characters. 

CONTROL CHARACTERS AFFECTING THE FLOW OF COMPUTATION 

1. 

2. 

3. 

4. 

5. 

control-H 

control-B 

control-E 

control-D 

control-C 

(interrupt) at next non-linked function call, Interlisp goes into a break. 
Section 16. 

(break) computation is stopped, stack backed up to the last function call, 
and a break occurs. Section 16. 

(error) computation is stopped, stack backed up to the last errorset, and 
NIL returned as its value. Section 16. 

(reset) computation is stopped, control returns to evalgt. 

In Interlisp-10, computation is stopped, control returns to the operating 
system. Program can always be continued without any ill effect with 
CONTINUE command. 

If typed during a garbage collection the action of control-B, control-E, and control-D is postponed 
until the garbage collection is completed. 

Typing control-E and control-D causes Interlisp to clear and save the input buffers. Their contents 
can usually be recovered via the $BUFS «esc)BUFS) command, as described in Section 22. 

1/0 CONTROL CHARACTERS 

1. clears terminal input buffer. For example, (del> would be used if the 
user typed ahead while in a garbage collection and then changed his 
mind. Section 2. A bell is rung when the buffer has been cleared, so that 
the user will know when he may begin typing again. 

Note: a sudden burst of noise on a telephone line frequently causes Interlisp to receive a < del>, 
since the code for (del) is 177Q, i.e., all l's. Ibis causes lnterlisp to (mistakenly) clear the input 
buffer and ring a bell. If Interlisp seems to be typing many spurious bells, it is a good indication 
that you have a bad connection. 

1 Control-Z for Intcrlisp-lO on TOPS-20. 

A1.1 

+ 



'" 
'" 
'" 
'" 
'" 
'" 
'" 
'" 

Appendix 1: Control Characters 

2. control-O clears teletype output buffer, Sections 2 and 14. 

3. control-P changes printlevel. Section 14. 

4. control-A2,Q,3W line editing characters, Sections 2 and 14.4 

5. control-R causes Inlcrlisp to retype the input line, useful after several control-A's, 
e.g., if the user types 
+-DE F IN EQ( (LAMDA \A \DBA \ Acontrol-R, Interlisp 
types 
DEFINEQ« LAMB. 

6. control-V on input from the terminal, control-V followed by A, B, ... Z inputs the 
corresponding control character, otherwise is a no-op. The control-Vis 
not passed to the line buffer; the transformation takes place before that 
Thus AllCtVD followed by two control-A's erases the conlrol-D and the 
C. t V takes precedence over, i.e., tV inputs a control-C, t VC inputs a C. 

MISCELLANEOUS 

1. control-T (time) prints total execution time for program, as well as its status, e.g., 

+-RECLAIM() 

collecting lists 
COLLECTING AT 26310, LOAD 0.1, UTIL 37.8% 
7819, 10379 FREE CELLS 
10379 
+-LOAD( FOO) 10 WAIT IN READ IN "'EVAL QT* IN LISPXBLOCK, LOAD 
0.1, UTI L 57.6% 
RUNNING IN EVAL IN "'LOAD'" IN LOAD, LOAD 0.1, UTIL 8.6~ 

2. control-S6 

3. control-U7 

(storage) change minfs. Section 10. 

if typed in the middle of an expression that is being typed to evalgt. 
break1 or the editor, will cause the editor to be called on the expression 
when it is finished being read. See Section 22. 

+ 2 

+ 3 

< del> for Interlisp-10 on TOPS-20. 

Control-U for Interlisp-lO on TOPS-20. 

4 

+ 5 

+ 

Control-A. Q. R. V. and Ware not interrupt characters. since their effect does not take place when they are typed, 
but when they are read. Section 14 desctibes how these pseudo-interrupt characters can also be disabled and/or 
redefined. Note that control-A. Q. R. V. and W have their special effect only on input from the terminal. On input 
from files. they are treated the same as any other character. 

Users who prefer the format used by the TENEX or TOPS-20 exec. i.e. RUNNING AT 
USED -- IN --, may disable the Interlisp Control-T by performing interruptchar[20). 

LOAD --, UTIL 

+ 6 Control-X for Interlisp-lO on TOPS-20. 

+ 7 COlltrol-N for Interlisp-lO 011 TOPS-20. 

A 1.2 



4. line-feed 

5. control-X8 

6. control-Z9 

7. control-Y 

Appendix 1: Control Characters 

edit command. Aborts printout and moves to next expression and prints + 
it. Section 9. + 

edit command. Aborts printout and moves to previous expression and -f 
prints it. Section 9. 

edit command. Aborts printout and moves to last expression of current T 

expression and prints it. Section 9. + 

read macro. Returns result of evaluating next expression read as though it + 
had been typed. Section 14. + 

The function performed by < line-feed>. < control-X>. < control-Z >. and < control-Y >. may + 
be easily assigned to other control characters via the function settermchars described in Section 14. + 

8 Control-A for Interlisp-lO on TOPS-20. + 
9 Control-L for Interlisp-lO on TOPS-20. + 

A1.3 





Index for Section At 

bell (printed by system) .....................•.. 
bells (printed by system) ...................... . 
CONTINUE (TENEX command) .............•.......... 
control characters ............................. . 
control-A ." ......................•............... 
control-A (TOPS-20) (edit command) ............. . 
control-B .................................. " .... . 
control-C ..........................•............ 
control-D ...................................... . 
control-E ...................................... . 
control-H ............. , ........................ . 
control-L (TOPS-20) (edit command) ............. . 
control-N (TOPS-20) .•••••.•.....•••..••..••..•.. 
control-O ....•....•........•......•..•........•. 
control-P ...•••..••.. " .•......•.....•••..•.. " •.•.. 
control-Q ................. ,., ................... . 
control-R ...................................... . 
control-S .................•..•.................. 
control-T ........•.. " ..•.........•..........•.... 
con tro l"-U ••••• , •• " ••••••••••••••••••••••••••••••• 
control-U (TOPS-20) .....•.....•...•............. 
control-V .....................................•. 
control-W .................•................•.... 
control-X (edit command) .........•.............. 
control-X (TOPS-20) .......•..•.................. 
control-Y (as a read-macro) ......•.............. 
control-Z (edit command) .•....•••..•......•..... 
control-Z (TOPS-20) ..••.........•..•........•... 
interrupt characters •••..•.•••..••.••......•.... 
line-feed (edit command) .•.••.•••••...••••..•... 
SETTERMCHARS[NEXTCHAR;BKCHAR;LASTCHAR: 

UNQUOTECHAR;2CHAR:PPCHAR] .••.••..... 
$BUFS «esc>BUFS) {prog. asst. command) ........ . 
(de 1) ....................•.....•.•....•....••... 
(del) (TOPS-20) ......•....•....•...•........•... 
(esc)BUFS (prog. asst. command) ..•......•...••.• 

INDEX .A1.l 

Page 
Numbers 

A1.l 
A1.l 
A1.l 
A1.1,2-4 
A1.2 
A1.3 
A1.l 
A1.l 
A1.l 
A1.l 
Al.l 
A1.3 
A1.2 
A1.2 
A1.2 
Al.2 
Al.2 
A1.2 
A1.2 
A1.2 
A1.2 
A1.2 
A1.2 
A1.3 
Al.2 
A1.3 
A1.3 
A1.l 
A1.2 
Al.3 

A1.3 
At.l 
A1.l 
A1.2 
A1.l 

--- -~----- -- ."---- -- ------
",: .-,,~._,,-.~~,~ • .,::_ .. _~~., •• -,,,,::o->o!_.o 





Index of Functions 

ABS[X] ......................................... . 
ADDBUFFER[TEMP;ERRORFLG] ....................... . 
ADDPROP[ATM;PROP;NEW;FLG] ...................... . 
AODSPELL[X;SPLST;N] ............................ . 
ADDSTATS[STATLST] NL· .......................... . 
ADDTOCOMS[COMS;NAME;TYPE] ..................•.... 
ADOTOFILE[NAME;TYPE;FILE;NEAR] ................. . 
ADDTOFILES?[NOASKSTR] .......................... . 
ADOTOSCRATCHLIST[VALUE] ........................ . 
ADDTOVAR[VAR;Xl;X2; ... ;Xn] NL •.................. 
ADD1[X] ........................................ . 
A!JIEU[VAL##]· ................................. . 
AOVISE[FN;WHEN;WHERE;WHAT] .................•.... 
ADVISEDUMP[X; FLG] .............................. . 
ALPHORDER[A; B] .................................• 
AND[Xl;X2; ... ;Xn] FSUBR. . ....................... . 
ANTILOG[X] .........................•............ 
APPEND[Xl;X2: ... :Xn]. . ........................ . 
APPLY[FN;ARGS] SUBR ............................ . 

APPLY·[FN;ARG1:ARG2; ... :ARGn] SUBR· 

ARCCOS[X;RADIANSFLG] ................•........... 
ARCSIN[X;RADIANSFLG] ....... ~ .•.................. 
ARCTAN[X;RADIANSFLG] ........................... . 
ARCTAN2[X;Y;RADIANSFLG] ........................ . 
ARG[VAR ;M] FSUBR .....•......................•... 
ARGLIST[FN] ............................•........ 
ARGTYPE[FN] SUBR ......•......................... 
ARRAY[N;P;V] SUBR .......•. ' ..•..•.........•.•.... 
ARRAYBEG[A] SUBR .......................•........ 
ARRAYP[X] SUBR ................................. . 
ARRAYSIZE[A] ................................... . 
ARRAYTYP[ARRAY] ................................ . 
ASKUSER[WAIT;DEFAULT;MESS;KEYLST;TYPEAHEAD; 

LISPXPRNTFLG;OPTIONSLST;FILE] ........... . 
ASSOC[KEY;ALST] ................•.......•.....•.. 
ATOM[X] SUBR ....•......•..•.......••••..•.•....• 
ATTACH[X;L] ...............•...............•..... 
AU-REVOIR[VAL##]· ................•......••..... 

BACKTRACE[IPOS;EPOS;FLAGS;FILE;PRINTFN] SUBR 
BAKTRACE[IPOS;EPOS;SKIPFN;FLAGS;FILE] .....••.... 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] ................ . 

BIT[BIT#;WORD] ............••...•.•.............. 
BKLINBUF[X] SUBR ...............•................ 
BKSYSBUF[X] SUBR .. ' ......•..•...•••.............. 
BLIPSCAN[BLIPTYP;IPOS] SUBR .................... . 
BLIPVAL[BLIPTYP;IPOS;FLG] SUBR .........•........ 
BLKAPPLY[FN;ARGS] SUBR •......................... 
BLKAPPLY·[FN;ARG1;ARG2; ... ;ARGn] SUBR· ...•...•.. 
BLOCKCOMPILE[BLKNAME;BLKFNS;ENTRIES;FLG] ......•. 
BOUNDP[VAR] ....................................• 
BOXCOUNT[TYPE; N] SUBR .........•••.•.•.........•• 
BREAK[X] NL· ....•.........•......•...•.......... 

FUNCTION.INDEX.l 

Page 
Numbers 

13.7 
21.13 
7.2 

17.18,20 
22.46 
14.75 
14.75 
14.67 
24.36 
5.6 

13.2 
12.17 
19.4,3.5 
19.6 
6.8 
5.11 

13.7 
6.1 
8.7; 2.3; 11.1; 16.1. 

18.14 
8.8; 2.3; 11.1; 16.1. 

18.14 
13.8 
13.8 
13.8 
13.8 
8.9; 4.2 
8.4; 2.2: 8.1-3: 15.9 
8.3.1-3 

10.8; 3.5 
10.9 
6.10; 10.9: 3.14 

10.9 
10.9 

17.22,29,23-28.30 
5.13 
5.9 
6.3 

12.17 

12.11 
15.19 
18.22; 14.65; 18.19-21. 

23 
24.36 
14.34 
14.34; 21.9 
12.4 
12.4 
18.14 
18.14 
18.19.20 

8.7 
21.3 
16.16.1.5.17 



BREAKCHECK[ERRORPOS;ERXN] ••••••••••••••••.••.••• 
BREAKOOWN[ FNS] NL'" ••••••••••.•••••••..••.•••.••. 
BREAKIN[FN;WHERE;WHEN;BRKCOMS] NL •••••...••••••• 
BREAKLINKS[] ••....••••••••...••••••••..•••.••••. 
BREAKREAO[TYPE] ., ••••••.••••••••••.••••••.•••..• 
BREAKO[FN;WHEN;COMS;BRKFN;TAIL] ..••••••••••••••• 
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] NL 

BRECOMPILE[FILES;CFILE;FNS;NOBLOCKSFLG] 

BRKOWNRESULTS[RETURNVALUESFLG] 

CALLS[FN;USEOATABASE] ••••••••••••••••••••••••••• 
CALLSCCOOE[FN] •••••••••••••••••••••••••.•••••••• 
CAR[X] SUBR ••••••••••••••••.••.•••••••••..•.••.• 
CBOX[X;Y] ••••••••••••••••••••••••••••••••••••••• 
CCOOEP[FN] SUBR •••••.••••••••••••••••••.•••••••• 
COR[X] SUBR ••••••••••••••••••••••••••••••.•..••• 
CHANGECALLERS[OLO;NEW;TYPES;fILES;METHOD] ••••••. 
CHANGEFONT[FONTCLASS] ••••••••••••••••••••...•••. 
CHANGENAME[FN;FROM;TO] ••••••••••••.•••••••••••.. 
CHANGEPROP[X;PROPl;PROP2] ••••••••••••••••••••••• 
CHANGESLICE[N;HISTORY;L] ••••••••••••••.•••••..•. 
CHARACTER[N] SUBR ••••••.••••••••••••••••••.••••• 
CHCON[X;FLG;ROTBL] SUBR ••••••••••••••••••••••••• 
CHCON1[X] SUBR •••••••••••••••••••••••••••..•.••. 
CHECKCONNECTION[CONNECTION] ••••••••••••••••••••• 
CHECKNIL[] ••••••••••••••••••••••••••••••..•.•••• 
CHOOl[XWORO;REL;SPLST;TAIL;FN;TIEFLG;NDBLS;CLST] •• 
CIRCLMAKER[LIST] ••••••••••••• , •••••••••••••••••• 
CIRCLPR INT[LIST; PR INTFLG; RLKNT] ••••••••••••••••• 
CLDISABLE[OP] •••••••••••••••••••••••••••••••.••• 
CLEANPOSLST[PLST] ••••••••••••••••••••••••.•••••• 
CLEANUP[FILES] NL'" •••••••••••••••••••••••••••••• 
CLEARBUF[FILE;FLG] SUBR ••••••••••••••••••••••••• 
CLEARMAP[FILE;PAGES;RELEASE] ••••••••••••••••.••• 
CLEARSTK[FLG] SUBR ••••••••••••••••••.•••••••.••. 
CLISPDEC[DECLST] •••••••••••••••••••••••••••••••• 
CLISPIFY[X; L] ••••••••••••••••••••••••••••.•••••• 

CLISPIFYFNS[FNS] NL'" •••••••••••••••••••••••••••• 
CLISPTRAN[X; TRAN] •••••••••.••.••••••••••••••.••• 
CLOCK[N] SUBR •••••••••••••••••••••.•.•••••••.••• 
CLOSEALL[] ..••••.• , •••••••••••••••••••••••.••••• 
CLOSECONNECTION[CONNECTION] ••••••••••••••••••••• 
CLOSEF[FILE] •••••••••••••••••••••••••••••••••••• 
CLOSEF?[FILE] ••••••••••••••••••••••••••••••••••• 
CLOSEHASHFILE[HASHFILE] ••••••.•.••••••••••••.••• 
CLOSER[A;X] SUBR •••••••••••••••••••••••••.•••••. 
CLRHASH[HARRAY] SUBR ••••••••••••••••••••••••.••• 
CNDIR[DIR; PASSWORD] ••••••••••••••••••••••••••••• 
COMMENTl[L; INBLOCKFLG] ••••••••.•.••••••.•••••••• 
COMPARE[NAMEl;NAME2;TYPE;SOURCE1;SOURCE2] ••••••• 
COMPAREDEFS[NAME; TYPE; SOURCES] •••.•••••.•••••••• 
COMPARELISTS[X ;Y] ••••••••••••••••••••••••.•••••• 
COMPILE[X; FLG] •••••••••••••••••••••••••••••••••• 
COMPILEFILES[FILES] NL'" ••••••••••••••••••••••••• 

FUNCTION.INDEX.2 

Page 
Numbers 

16.3.2,4-5,9-10; 17.10 
21. 4-6 
15.16-17.1-2,5,15,18 
24.43 
15.18 
15.15.16-18 
15.3.14.1-2,4-13,15-17, 
16.1-2,4,10; 17.21 
18.23; 14.65-66, 
18.19-22 
21.4 

20.18 
20.18 
5.1 

24.37 
8.3; 3.13-14; 8.1-3 
5.1 

14.71 
14.52,50 

9.64; 15.18 
7.3 

22.40,7 
10.3 
10.3 
10.3 
24.47 
22.38 
17.16 
24.19 
24.18,17 
23.59 
12.17 
14.66 
14.34; 22.26 
21.14 
12.11 
23.58,24 
23.38.58; 14.65; 23.25, 

39-40 
23.59 
23.57 
21.3 
14.6,10 
24.46 
14 .. 5 
14.5 
24.49 
10.15 
7.4 

24.43 
14.80 
14.71 
14.72 
6.9 

18.5 
14.66 



COMPI LE I[FN; DEF; COREfLG] ....................... . 
COMPSET[FILE;FLG;FILES] ........................ . 
CONCAT[Xl;X2; ... ;Xn] SUBR* .................•.... 
COND[Cl;C2; ... ;Cn] FSUBR* .......•............... 
CONS[X; V]' SUBR .................•................ 
CONSCOUNT[N] SUBR .•............................. 
CONSTANT[X] ............................... , .... . 
CONTROL[FLG;RDTBL] SUBR •...•.................... 
COPV[X] ......... " ............................... . 
COPVALL[X] ..................................... . 
COPVALLBVTES[FROMFILE;TOFILE;BVTESIZE] ......... . 
COPVARRAV[AR] ................................... ' 
COPVBVTES[SRCFIL;DSTFIL;START;END] .•............ 
COPVDEf[OLD;NEW;TVPE;SOURCE;OPTIONS] ........... . 
COPYHASHFILE[HASHFILE;NEWNAME:FN;VTYPE] ........ . 
COPYREADTABLE[RDTBL] SUBR ...................... . 
COPYSTK[POSl;POS2] SUBR ........................ . 
COPYTERMTABLE[TTBL] SUBR .........•.............. 
COREVAL[X] NL .................................. . 
COROUTINE[CALLPTR##;COROUTPTR##;COROUTFORM##; 

ENDFORM##] NL ......................... . 
COS[X;RADIANSFLG] ....................•..•....... 
COUNT[X] ...........•..•••....•......•........... 
COUNTDOWN[X; N] .....•............................ 
COVERS[HI ; LO] .................................. . 
CREATEHASHFILE[FILE;VALUETVPE;ITEMLENGTH; 

#ENTRIES] ........................ . 

DATE[FORMATBITS] SUBR .......................... . 
DATEFORMAT[KEVWORDl;KEYWORD2; ... ;KEVWORDn] 
DCHCON[X;SCRATCHLIST;FLG;RDTBL] ................ . 
DDT[] SUBR ..................................... . 
DECLAREDATATVPE[TVPENAME;FIELDSPECS;FLG] ....... . 
DECLARE: [X] NL * ................................ . 
DECLOF[FORM] ............................•....•.. 
DECLTVPE[TYPENAME;TVPEEXPRESSION;PROPl;VAL1; ... ; 

PROPn ;VALn] ............................ . 
DEFAULTMAKENEWCOM[NAME;TVPE;LISTNAME;F.ILE] 
DEFERREDCONSTANT[X] ..•.......................... 
DEFEVAL[TVPE; FN] .....•.......................... 
DEFINE[X: TVPE-IN] .............................. . 
DEFINEQ[Xl;X2; ... ;Xn] NL· ...................... . 
DEFLIST[L;PROP] .........•....................... 
DEFPRINT[TVPE; FfII] .............................. . 
DELDEF[NAME; TVPE] .............................. . 
DELETECONTROL[TYPE;MESSAGE;TTBL] ...•............ 
DELFILE[FILE] ....................•.............. 
DELFROMCOMS[COMS; NAME; TVPE] .................... . 
DELFROMFILES[NAME;TVPE;FILES] .................. . 
DELPAGE[PAGE#;HASHFILE] ........................ . 
DETACH[] ....................................... . 
DETACHEDP[] .................................... . 
DIFFERENCE[X ;Y] ................................ . 
DIRECTORV[FILEGROUP;COMMANDS;DEFAULTEXT: 

DEFAULTVERS; LISPXPRNTFLG] ............. . 
DISMISS[N] ..................................... . 
DISPLAVTERMP[] ................................. . 

FUNCTION. INDEX. 3 

Page 
Numbers 

18.5 
18.2 
10.5; 3.6; 10.8 
5.3; 4.3 
5.1; 3.5,9 
5.1; 10.14; 21.3 

18.11 
14.33; 2.4; 14.12,14,32 

6.4 
6.4; 23.33 

24.43 
10.10 
14.9 
14.70 
24.50 
14.24 
12.11 
14.29 
21.3 

12.15 
13.7 
6.6 
6.7 

24.65 

24.48 

21.2 
24.40 
10.3 
24.9 
3.7; 23.29 

14.59 
24.66 

24.63 
14.72 
18.12 
8.7 
8.5; 2.5 
8.5; 2.5-6 
7.3 

14.22 
14.70 
14.31 
14.5 
14.76 
14.75 
24.52 
24.43 
24.43 
13.6 

21.10 
21.3 
21.16 



DMPHASH[ARRAYNAME1: ... :ARRAYNAMEn] NL~ ......... . 
DOBE[] ......................................... . 
DOCOLLECT[ITEM:LST] .......................... " .• 
DREMOVE[X: L] ................................... . 
DREVERSE[L] ...... " ............................ . 
DRIBBLE[FILE;APPENDFLG;THAWEDFLG] .............. . 
DRIBBLEFILE[] SUBR ......................... ; ... . 
DSKSTAT[DIR;PRINTIFOVER:PRINTSYS:PRINTDEL; 

PRINTOLD] ............................... . 
DSUBLIS[ALST:EXPR:FLG] ..............•........... 
DSUBST[NEW; OLD; EXPR] ........................... . 
DUMMYFRAMEP[POS] ..................•............. 
QUMPDATABASE[FNLST] ............................ . 
DUMPDB[FILE] ................................... . 
DUNPACK[X :SCRATCHLIST: FLG; RDTBL] ............... . 
DWIM[X] ........................................ . 
DWIMIFY[X:QUIETFLG;L] .......................... . 

DWIMIFYFNS[FNS] NL* ............................ . 
DWIMLOADFNS?[] ................................. . 

ECHOCONTROL[CHAR:MODE:TTBL] .................... . 
ECHOMODE[FLG:TTBL] SUBR ........................ . 
EDITA[EDITARRY:COMS] ........................... . 
EDITCALLERS[ATOMS:FILES;COMS] .................. . 
EDITDATE[OLDATE:INITLS] ........................ . 
EDITDATE?[COMMENT] ............................. . 
EDITDEF [NAME: TYPE: SOURCE: ED IlCOMS] ............. . 
EDITE[EXPR:COMS;ATM;TYPE:IFCHANGEDFN] .......... . 
EDITF[NAME;COM1;COM2; ... :COMn] NL* ............. . 
EDITFINDP[X:PAT;FLG] ........................... . 
EDITFNS[NAME;COM1;COM2; ... ;COMn] NL* ........... . 
EDITFPAT[PAT; FLG] .............................. . 
EDITL[L;COMS;ATM;MESS;EDITCHANGES] ............. . 
EDITLOADFNS?[FN;STR;ASKFLG;FILES] .............. . 
EDITLO[L;COMS;MESS;EDITLFLG] ................... . 
EDITP[NAME;COM1;COM2; ... ;COMn] NL* ............. . 
EDITREC[EDITRECX] NL* ' .......................... . 
EDITUSERFN[COM] .................................. . 
EDITV[NAME;COM1;COM2; ... ;COMn] NL* ............. . 
EDIT4E[PAT;X;CHANGEFLG] .. : ..................... . 
ELT[A;N] SUBR .................................. . 
ELTD[A;N] SUSR ................................. . 
ENDCOLLECT[LST; TAIL] ........................... . 
ENDFILE[FILE] .................................. . 
ENTRY#[HIST; X] ................................. . 
ENVAPPLY[FN;ARGS;APOS;CPOS;AFLG;CFLG] SUBR 
ENVEVAL[FORM;APOS:CPOS;AFLG:CFLG] SUSR ......... . 
EQ[X:Y] SUBR ................................... . 
EQLENGTH[X;N] .................................. . 
EQMEMB[X; Y] .................................... . 
EQP[X:Y] SUBR .................................. . 

EQUAl[X;Y] SUSR ................................ . 
EQUALALL[X;Y] .................................. . 
EQUALN[X:Y;DEPTH] .............................. . 
ERROR[MESS1:MESS2:NOBREAK] ..................... . 

FUNCTION. INDEX. 4 

Page 
Numbers 

7.5 
14.18 
6.3 
6.3 
6.4 

21.15 
21.15 

24.43 
6.5 
6.4,5 

12.7 
20.20 
24.32 
10.3 
17.17,3 
17.17; 23.40,57,41-42, 

51,58 
23.58,41 
17 .16 

14.30 
14.30 
24.8-15 
9.60 
9.59 
9.59 

14.70 
9.61,1,61 
9.68,1,59,61 
9.63 
9.69,60 
9.63 
9.62 
9.64 
9.63 
9.61,1 

23.35 
9.56 
9.61,1 
9.63 

10.9; 3.5: 16.7 
10.10: 3.5 

6.3 
14.42 
22.40 
12.9 
12.9 
6.10: 2.2 
6.6 
5.12 
6.10: 13.3,6: 3.3, 

13.1,4 
6.10; 2.2: 13.1 
5.11 
5.11 

16.10,4,6.9 



ERRORMESS[U] ................................... . 
ERRORN[] SUBR .................................. . 
ERRORSET[FORM;FLG] SUBR ........................ . 

ERRORSTRING[N] SUBR ............................ . 
ERRORX[ERXM] ................................... . 
ERROR I [] SUBR " ................................ . 
ERSETQ[ERSETX] NL .............................. . 
ERSTR[ERN] ..................................... . 
ESCAPE[FLG] SUBR ............................... . 
ESUBST[NEW;OLD;EXPR;ERRORFLG;CHARFLG] .......... . 
EVAL[X] SUBR ................................... . 
EVALA[X ;A] SUBR ................................ . 
EVALQT[LISPXID] ................................ . 
EVALV[X; POS] SUBR .............................. . 
EVERY[EVERYX; EVERYFN1; EVERYFN2] ........... , .... . 
EXPANOMACRO[FORM;QUIETFLG] ..................... . 
EXPRP[FN] SUBR ................................. . 
EXPT[M; N] ...................................... . 
EXPUNGE[DIR] ................................... . 

FASSOC[KEY;ALST] ............................... . 
FAULTAPPLY[FAULTFN;FAULTARGS] .................. . 
FAULTEVAL[FAULTX] NL* .......................... . 
FBOX[N] ........................................ . 
FCHARACTER[N] SUBR ............................. . 
FDIFFERENCE[X;y] ............................... . 
FETCHFIELD[DESCRIPTOR;DATUM] ................... . 
FFILEPOS[PATTERN;FILENAME;FILESTART;FILEEND;SKIP; 

TAIL;CASEARRAY] ........................ . 
FGETO[X] ....................................... . 
FGREATERP[X;Y] SUBR ............................ . 
FIELOLOOK[FIELONAME] ........................... . 
FILOIR[FILEGROUP;FORMATFLG] .................... . 
FILECOMS[FILE; X] ............................... . 
FILECOMSLST[FILE;TYPE;FLG] ..................... . 
FILECREATEO[X] NL* ............................. . 
FILEOATE[FILE; CFLG] ............................ . 
FILEFNSLST[FILE] ............................... . 
FILENAMEFIELD[FILENAME;FIELDNAME] .............. . 
FlLEPKGCHANGES[N] * ............................ . 
FILEPKGCOM[COMNAME;PROPl;VALl; ... ;PROPn;VALn] * 
FILEPKGTYPE[TYPE;PROP1;VALl; ... ;PROPn;VALn] * 
FILEPOS[PATTERN;FILENAME;FILESTART;FILEEND;SKIP; 

TAIL; CASEARRAY] ......................... . 
FILES7[] ....................................... . 
FINOCALLERS[ATOMS;FILES] ....................... . 
FINDFILE[FILE; NSFLG] ........................... . 
FIX[X] .•........................................ 
FIXEDITDATE[EXPR] .............................. . 
FIXP[X] ........................................ . 
FIXSPELL[XWORD;REL;SPLST;FLG;TAIL;FN;TIEFLG; 

DONTMOVETOPFLG;CLST;APPROVALFLG] ....... . 
FLAST[X] ....................................... . 
FLENGTH[X] ..................................... . 
FLESSP[X;Y] .................................... . 
FLOAT[X] ....................................... . 

FUNCTION.INDEX.5 

Page 
Numbers 

16.11,4 
16.11,4 
16.11; 7.5; 16.3-4,10, 
17.10 
16.11 
16.10 
16.10; 15.5; 16.10 
16,12: 5.5; 16.11 
21.8 
14.14,14 
9.63: 6.5; 22.13 
8.6: 2.3,6; 4.1; 16.11 
8.8 
2.3: 5.7; 15.4 

12.10 
5.11 

18.11 
8.3,1-2,4 

13.7 
24.43 

5.13: 2.2 
16.1: 17.3,10,14; 18.17 
16.1,6; 17.3,10,14 
24.38 
10.3 
13.5 
3.8 

14.9 
8.2 

13.5 
23.35 
21.8 
14.76 
14.76 
14.79,60; 18.5 
14.79 
14.76 
14.6 
14.67 
14.73 
14.72 

14.8 
14.67,64 

9.61 
17.21 
13.4 
9.59 

13.4 

17.18,19,21 
6.5: 2.2 
6.6; 2.2 

13.5 
13.6 



FLOATP[X] SUBR •.••••••••••••••••••.••••••••.•.•• 
FLTFMT[FORMATBITS] ••••.••.•••••••••••••••••..•.. 
FLUSHRIGHT[POS;X;MIN;P2FLAG:CENTERFLAG;FILE] 
FMAX[Xl;X2: ••. :Xn] ••••.••.••..•••••.•...•...•.•• 
FMEMB[X: Y] •••••.••••••••..•.•••.••••••..••.•.... 
FMIN[Xl:X2: ••• ;Xn] •••••••••••••••••••••••••••••• 
FMINUS[X] .•••••.•••••••••••••.•••••••••••••••••• 
FNCHECK[FN;NOERRORFLG:SPELLFLG:PROPFLG;TAIL] 
FNTH[X:N] •••••••••••••••••••••••••••••••••..•.•• 
FNTYP[FN] •••••••••.•••.••••••••••••••.•.•••••.•. 
FONTNAME[NAME] •••••••••••••••••••••.••••••••..•• 
FONTSET[NAME] •••...••.••.•••.••••••••.•.....•.•. 
FORCEOUT[CONNECTION/FILE] •••••••.•••••••.•.••••• 
FPLUS[Xl:X2: ••• :Xn] SUBR· ••••••••••••••••••••••• 
FQUOTIENT[X;Y] SUBR •••••••••••••••••••••••.••••• 
FRAMESCAN[ATOM;POS] SUBR •••••••••••••••••••••••• 
FREEVARS[ FN: USEDATABASE] •••••••••••••.•••••••••• 
FREMAINDER[X; Y] SUBR ••••••••••••••••••••••••.••• 
FRPLACA[X; Y] SUBR ••••••••••••••••••••••••••••••• 
FRPLACD[X; Y] SUBR ••••••••••••••••••••••••••••••• 
FRPLNODE[X;A; 0] .. " ............................ . 
FRPLNODE2 [X; Y] •••••••••••••••••••••••••••••••••• 
FRPTQ[N;FORM1;FORM2; ••. ;FORMn] NL· •••••••••••••• 
FTIMES[Xl;X2: .•• :Xn] SUBR· •••••••••••••••••••••• 
FTP[HOST;FILE;ACCESS;USER;PASSWORD;ACCOUNT; 

BYTESIZE] •••••••••••••••••••••••••••••••••••• 
FULLNAME[X; RECOG] ••••••••••••.•••••••••••••••••• 
FUNCTION[ FN; ENV] NL ••••••••••••••••••••••••••.•• 

GAINSPACE[] ••••••••••••••••••••••••••••••••••••• 
GCD[X;Y] •••••••••••••••••••••••••••••••••••••••• 
GCGAG[MESSAGE] •••••••••••••••••••••••••••••••••• 
GCMESS[MESSAGE#; STRING] SUBR ••••••••.•••...•••.. 
GCTRP[N] SUBR ••••••••••••••••••••••••••••••••••• 
GDATE[DATE;FORMATBITS;STRPTR] ••••••••••••••••••• 
GENERATE[HANDLE;VAL] •••••••••••••••••••••••••••• 
GENERATOR[FORM##;COMVAR##] NL ••••••••••••••••••• 
GENSYM[CHAR] ••••••••••••••••••••••••••••••..••.• 

GEQ[X;Y] .••••••••••••••••••••••••••••••••••••••• 
GETATOMVAL[ATM] SUBR ••••••••••••••••.••.•••••••• 
GETBLK[N] SUBR •••••••••••••••••••••••••••••••••• 
GETBRK[RDTBL] SUBR •••••••••••••••••••••••••••••• 
GETCOMMENT[X;DESTFL;DEF] •••••••••••••••••••••.•• 
GETCONTROL[TTBL] •••••••••••••••••••••••••••.•••• 
GETD[X] SUBR •••••••••••••••••••••••••••••••••••• 
GETDECLTYPEPROP[TYPE;PROP] ••••••••••.•••••••.••• 
GETDE F[NAME; TYPE: SOURCE; OPTIONS] •••••.•••••..••• 
GETDELETECONTROL[TYPE; TTBL] •••••••••••••.••.•••• 
GETDESCRIPTORS[TYPENAME] •••.••••••• , •••.••••.••• 
GETECHOMODE[TTBL] ••••••••••••••••••••••••••••••• 
GETEOFPTR[FILE] SUBR ••••••••••••••••••••••.••••• 
GETFIELDSPECS[TYPENAME] ••••••••••••••••••••••••• 
GETFILEINFO[FILE ;ATTRIB] •••••••••••••••••••••••• 
GETF I LEMAP[ FILE; FL] ••••••••••••••••••••••••••••• 
GETFILEPTR[FILE] SUBR ••••••••••.•••••••••••••••• 

FUNCTION.INDEX.6 

Page 
Numbers 

13.6 
14.35: 3.4 
23.50 
13.6 
5.12; 2.2 

13.6 
13.5 
17.20; 8.4; 17.21 
6.6; 2.2 
8.3; 4.2; 8.1-2.4,6 

14.52 
14.52 
24.47 
13.5 
13.5 
12.8 
20.19 
13.5 
5.2 
5.2 
5.2 
5.2 
8.8 

13.5 

24.45 
14.3 
11.1; 12.10; 11.3-4, 
18.13 

21.16 
13.5 
10.11 
10.12 
10.14; 21.4 
21.2 
12.14 
12.14 
10.3; 3.2; 10.4; 15.15, 
18.13; 19.3-4 
13.6 
5.6 

21.6; 16.7 
14.14 
14.45 
14.33 
8.2; 2.3,5; 8.1,6 

24.65 
14.69 
14.31 
3.8 

14.31 
14.8 
3.8 

14.4 
14.41 
14.7 



GETHASH[ITEM;HARRAY] SUBR •.•.••.•••.•••..••...•. 
GETHASHFILE[KEY;HASHFIlE] .•.•.••.....•.••....... 
GETLIS[X; PROPS] .•.....•...•..•.•...••...••.•.•.• 
GETPAGE[HASHFILE; N] •..•.••...•..•.••....•....... 
GETPASSWORD[DIRECTORYNAME] ....••...•.•.......•.. 
GETPNAME[FILEADR;HASHFIlE] ...••...••....•....•.• 
GETPROP[ATM; PROP] .....•......•......•......•.... 
GETPROPLIST[ATM] ...••••...•.•••••....•...•••.••. 
GETRAISE[TTBL] •..••.••.•.•••.•.••.••..•.•..•.... 
GETREADTABlE[RDTBL] SUBR .• , ..•.•.....•.......... 
GETRELATION[ITEM; RELATION; INVERTED] ••••.•...•... 
GETSEPR[RDTBL] SUBR •••..•........••••...•....... 
G.ETSYNTAX[CH;TABLE] ..•••..••.•.••.•...••..•..... 
GETTEMPLATE[FN] .•.•••••.•••.••••••••••••••••.••. 
GETTERMTABlE[TTBl] SUBR •.•.•....••••.••.••••••.• 
GETTOPVAL[ATM] SUBR •.••..••..•.•..••.•..••...... 
GETTYPEDESCRIPTION[TYPE] •••.••..•.••......••••.. 
GLC[X] SUBR .•.•.•.••.••.••••••.•.••••••••....•.. 
GNC[X] SUBR ••••.•.••.•••••••••.•.•••.•••••..•••• 
GO[X] FSUBR* .•.••••.•••..••..•.•...••...••..•... 
GREATERP[X;Y] SUBR •.•••••.•..•...•••.•..•.•..... 
GREET[NAME; FLG] .••.•.•••.....••..•••........•.•. 
GT JFN[FIlE; EXT;V; FLAGS] .••..••.••.••.••.•..•...• 

HARRAY[N] SUBR •.•.•.•••••.••.•.•..•••..••.....•. 
HARRAYP[X] ..••.•••••.••.••.••••••.•.•••.••••••.• 
HARRAYSIZE[HARRAY] ..•••.••••..•••.....•.•..•.... 
HASDEF[NAME;TYPE;SPEllFlG] .•••.••••.••.••.•••••. 
HASHFILENAME[HASHFILE] •••.•..••...•••...•..••.•. 
HASHFILEP[X] ...••••..•••.••.••.••.••....•..••••. 
HASHFILEPROP[HASHFILE;PROP] .•••••....•.•••...•.. 
HASHFILESPLST[HASHFILE] .••••••••••.•••.•..••.••• 
HCOPYALL[X] •.•..•.••.••••••.•.••••••••.•..•••.•. 
HELP[MESS 1; MESS2] .•••.....••...••.....•.•.•....• 
HERALD[STRING] SUBR •....•.•..••••....••••••••••• 
HISTORYFIND[LST;INDEX;MOD;EVENTADDRESS; 

LISPXFINDFLG] •.•••••••.••.•..••.....• 
HISTORYMATCH[INPUT;PAT;EVENT] ..•..•...•.•...•..• 
HISTORYSAVE[HISTORY;ID;INPUT1;INPUT2;INPUT3; 

PROPS] ....••...••.•.••..•...•.....••. 
HOSTNAME[HOSTN] •.........•...•....•..•......••.. 
HOSTNUMBER[] .•.•...•..•...••.•.••.•...•.•.•.•... 
HPRINT[EXPR;FILE;UNCIRCUlAR] .•.•.••..•.••..•.•.. 
HREAD[FIlE] .••....•.•••••••..•••..••••••••.•..•. 

IBOX[N] .••...•..•.••.•.•••...••.•......•..•...•. 
IDATE[D] •..•.••••..•.•••.•••.•••.•.••..•..•••••• 
IDIFFERENCE[X; Y] •..•.••.•.••.••...•......•..••.. 
IEQP[N;M] SUBR ..•.•..••.•••.••.•.•••••..••.•••.. 
IGEQ[X;Y] •.•.••..•••.•.••.••..••••...•••.•••.••• 
IGREATERP[X;Y] SUBR •.••••.••..•.....••••...•.•.. 
ILEQ[X;Y] ..•..•.•••..•.••.••...••••.•..••.•••••. 
ILESSP[X;Y] ••...••.•.••.•.••..•••.....••..•..••. 
IMAX[X1;X2; ..• ;Xn]· .••••.•••.••......••..••.•.. 
IMIN[X1;X2: •.• :Xn]· ••••••••••••.••••.•.•••••••• 
ININUS[X] .....••••..•••••••••••••••..•••••.•.•.• 
INFILE[FILE] SUBR ..•.•..•••••••••..••••••.•..•.. 

FUNCTION. INDEX. 7 

---------------
c· " "-\._-,-~.:J--,,'_ _ ~-

Page 
Numbers 

7.4; 23.22 
24.49 

7.3 
24.52 
24.44 
24.52 

7.1 
7.1: 2.3 

14.32 
14.24 
20.19 
14.14 
14.25 
20.18 
14.29 
5.5: 2.3 

10.13 
10.5,8 
10.5,8 

5.5 
13.6 
22.47 
21.12 

7.4: 
7.4: 
7.4: 

14.72 
24.49 
24.49 
24.49 
24.51 
6.4: 

16.10 
3.11 

10.9 
10.9 
10.9 

14.23 

22.39,39 
22.40 

22.38,9.27.34-35.39.45 
21.9 
21.9 
14.23 
14.23 

24.38 
21.2 
13.2 
13.3 
13.3 
13.3 
13.3 
13.3 
13.3 
13.3 
13.2 
14.1,7 



INFIlECOMS?[NAME;TYPE;COMS;ONFIlETYPE] ......... . 
INFILEP[FILE] SUBR ............................. . 
INPUT[FILE] SUBR ............................... . 
INREADMACROP[] SUBR ............................ . 
INTERRUPT[INTFN;INTARGS;INTYPE] ................ . 
INTERRUPTABLE[FLG] SUBR ........................ . 
INTERRUPTABLEP[] SUBR .......................... . 
INTERRUPTCHAR[CHAR;TYP/FORM;HARDFlG] ........... . 
INTERSECTION[X; Y] .........•..................... 
IOFIlE[FIlE] SUBR .............................. . 
IPLUS[Xl;X2; ... ;Xn] SUBR* ......................• 
IQUOTIENT[X; Y] SUBR ............................ . 
IREMAINDER[X; Y] SUBR ....•....•.•................ 
ITIMES[Xl;X2; ... ;Xn] SUBR* ..................... . 
LS .OPR[NAME; FORM; OTHERS; EVAlFlG] .............. . 

JFNS[ JFN; AC3; STRPTR] ........................... . 
JOB#[] ......................................... . 
JS[JSYSNAME;AC1;AC2;AC3;RESUlT] ................ . 
JSYS[N;ACl;AC2;AC3;RESUlTAC] SUBR .............. . 
JSYSERROR[ERRORN] .............................. . 

KFORK[FORK] ..• ~ .•..••.....••......•....... " ..... ~ 
KWOTE[X] ......•................................. 

LAST[X] ........................................ . 
lASTC[FILE] SUBR ............................... . 
LASTN[l; N] ...................................... . 
LBOX[Xl:X2; ... ;Xn] ............................. . 
LCONC[PTR ;X] ............•..•.................... 
LDIFF[X; Y; Z] ................................... . 
lDIFFERENCE[X; Y] ............................... . 
LENGTH[X] ...................................... . 
LEQ[X;Y] ....................................... . 
LESSP[X; Y] ..................................... . 
LINBUF[FLG] SUBR ..........•..................... 
lINELENGTH[N] SUBR ............................. . 
lINKTOTTY[TTY#] ....................•............ 
LINKTOUSER[USER] ............................... . 
LISPX[lISPXX;lISPXID;lISPXXMACROS;lISPXXUSERFN; 

lISPXFLG] ................................. . 

LISPXEVAL[lISPXFORM;lISPXIO] ................... . 
LISPXFIND[HISTORY;LINE;TYPE;BACKUP;QUIETFlG] 
LISPXPRINT[X;Y;Z;NODOFlG] ...................... . 
lISPXPRINTDEF[EXPR;FIlE;lEFT;OEF;TAIl;NODOFlG] 
lISPXPRIN1[X;Y;Z;NODOFlG] ...................... . 
lISPXPRIN2[X;Y;Z;NODOFlG] ...................... . 
LISPXREAD[FIlE;ROTBl] .......................... . 
LISPXREADP[FlG] .........•....................... 
LISPXSPACES[X;Y;Z;NODOFlG] ........•............. 
lISPXSTATS[RETURNVAlUESFlG] ...............•..... 
LISPXSTOREVAlUE[EVENT ;VAlUE] ................... . 
lISPXTAB[X;Y;Z;NODOFlG] ........................ . 
lISPXTERPRI[X;Y;Z;NOOOFlG] •..........••....•..•. 

FUNCTION. INDEX. 8 

Page 
Numbers 

14.75 
14.2,2 
14.1 
14.28 
16.2; 10.14 
16.13 
16.13 
16.12 
6.7 

14.4,7-8 
13.2 
13.3 
13.3 
13.2 
23.19 

21.12 
24.43 
24.35 
21.9 
24.36 

21.8,8 
5.3 

6.5 
14.15 
6.6 

24.37 
6.2,3 
6.7 
6.7 
6.6 

13.7 
13.6 
14.34 
14.35,48; 2.2; 3.5 
24.43 
24.43 

22.9,35-36; 9.41,48, 
17.3,8-9,21; 22.13, 

15-17,25,28-32,34, 
37-38,45 

22.38 
22.39,45 
22.30,34 
22.30 
22.30 
22.30 
22.37,9,16,25,27,36,45 
22.38,45 
22.30 
22.46 
22.39 
22.30 
22.30 



LISPXUNREAD[LST:EVENT] ......................... . 
LISPXWATCH[STAT: N] ............................. . 
LISPX/[X:FN:VARS] .............................. . 
LIST[X1: X2: ... : Xn] SU8R'" ....................... . 
LISTFlLES[FILES] NL'" ........................... . 
LISTFILES1[FILE] ............................... . 
LISTGET[LST: PROP] ......................... , .... . 
LISTGET1[LST: PROP] ............................. . 
LISTP[X] SUBR .................................. . 
LISTPUT[LST; PROP ;VAL] .......................... . 
LISTPUT1[LST;PROP;VAL] ......................... . 
LITATOM[X] SUBR ................................ . 
LLSH[N;M] SUBR ................................. . 
LOAD[FILE;LDFLG;PRINTFLG] ...................... . 
LOADAV[] ....................................... . 
LOADBLOCK[FN;FILE;LDFLG] ....................... . 
LOADCOMP[FILE; LDFLG] ........................... . 
LOADCOMP?[FILE: LDFLG] .......................... . 
LOADD8[FILE] ................................... . 
LOADDEF[NAME;TYPE;SOURCE] ...................... . 
LOADEFS[FNS; FILE] .............................. . 
LOADFNS[FNS;FILE;LDFLG;VARS] ................... . 
LOADFROM[FILE;FNS;LDFLG] ....................... . 
LOADVARS[VARS;FILE:LDFLG] ...................... . 
LOAD? [FILE; LDFLG; PRINTFLG] ..................... . 
LOC[X] SUBR .................................... . 
LOCKMAP[PTR] ................................... . 
LOG[X] ., ....................................... . 
LOGAND[X1;X2; ... ;Xn] SUBR'" ..................... . 
LOGOR[X1;X2; ... ;Xn] SUBR'" ....................•.. 
LOGOUT[] SUBR .................................. . 
LOGXOR[X1;X2; ... ;Xn] SUBR'" ..................... . 
LOOKUPHASHFILE[KEY;VALUE;HASHFILE;CALLTYPE] 
LOWERCASE[FLG] ................................. . 
LRSII[N;M] ...................................... . 
LSH[N ;M] SU8R .................................. . 
LSUBST[NEW;OLD;EXPR] ........................... . 
L-CASE[X;FLG] .................................. . 

MAKEBITTA8LE[L;NEG;A] .......................... . 
MAKEFILE[FILE;OPTIONS;REPRINTFNS;SOURCEFILE] 
MAKEFILES[OPTIONS;FILES] ....................... . 
MAKEKEYLST[LST;DEFAULTKEY:LCASEFLG] ............ . 
MAKENEWCOM[NAME:TYPE;LISTNAME;FILE] ............ . 
MAKENEWCONNECTION[HOST;TYPE;SKT;SCRATCHCONN: 

WAITFLG] ...................... . 
MAKESYS[FILE] SUBR ............................. . 
MAP[MAPX;MAPFN1;MAPFN2] ........................ . 
MAPATOMS[FN] SU8R .............................. . 
MAPBUFFERCOUNT[ONLY] ........................... . 
MAPC[MAPX;MAPFN1;MAPFN2] ....................... . 
MAPCAR[MAPX;MAPFN1;MAPFN2] ..................... . 
MAPCON[MAPX;MAPFN1;MAPFN2] ..................... . 
MAPCONC[MAPX ;MAPFNI ;MAPFN2] .................... . 
MAPDL[MAPDLFN;MAPDLPOS] ........................ . 
MAPHASH[ARRAY;MAPHFN] .......................... . 
MAPHASHFILE[HASHFILE;MAPFN] .................... . 

FUNCTION.INDEX.9 

Page 
Numbers 

22.38 
22.46 
22.42.,32 
6.1: 3.5 

14.66,64-65 
14.66 
6.13: 23.28 
5.13 
6.10: 2.3 
6.13; 23.28 
5.13 
5.9 

13.4 
14.38; 2.9: 18.5 
21.8 
14.40 
14.40 
14.41 
24.32 
14.71 
14.40 
14.39 
14.40; 18.8 
14.40 
14.39 
13.10,10 
21.15 
13.7 
13.4 
13.4 
21.4: 2.3: 21.8 
13.4 
24.51 
23.61 
13.4 
13.4 
6.4,5 

10.4; 9.50 

10.7 
14.64-66; 17.21: 18.8 
14.66 
17.29 
14.76 

24.46 
3.11 

11.2 
10.4 
21.13 
11.2 
11.2 
11.2 
11.2 
12.12 
7.5 

24.50 



MAPLIST[MAPX;MAPFNl;MAPFN2] •••.••••••••••••••••• 
MAPPAGE[PAGE#; FILE] ••••••••••••.•••••••••••••.•• 
MAPRELATION[RELATION;MAPFN] •••.•••••••••.••••.•• 
MAPRINT[LST;FILE;LEFT;RIGHT;SEP;PFN;LSPXPRNTFLG] •• 
MAPWORO[FILEAOR; FILE] ••••••••••••••••.•••••••••• 
MAP2C[MAPX;MAPY;MAPFNl;MAPFN2] .••••••••••••••••• 
MAP2CAR[MAPX; MAPY; MAPFNl; MAPFN2] •.•••••••••••.•. 
MARKASCIIANGEO[NAME; TYPE; NEWFLG] ••••••••••••••.•• 
MASTERSCOPE[COMMAND] •••••••••••••••••••••••••••• 
MAX[Xl;X2; •.. ;Xn] * ............................ . 
MEMB[X; Y] ••••••••••••••••••••••••••••••••••••••• 
MEMBER[X; Y] •••••••••••••••••••••••••••••.•••.••• 
M.EMSTAT[PGl; PGN; FORK] ••••••••••••.•••••••••••••• 
MERGE[A; B ;COMPAREFN] •••••••••••••••••••••••••••• 
MERGEINSERT[NEW;LST;ONEFLG] ••••••••••••••••••••• 
MIN[Xl;X2; ••. ;Xn] * •••••••••••.••••••••••••••••• 
MINFS[N; TYPE] ••••••••••••••••••••••••••••••••••• 
MINUS[X] SUBR ••••••••••••••••••••••••••••••••••• 
MINUSP[X] SUBR ••••••••••••••••••••••••••.••••••• 
MISSPELLED?[XWORD;REL;SPLST;FLG;TAIL;FN] ••••.••• 
MKATOM[X] SUBR •••••••••••••••••••••••••••••••••• 
MKLIST[X] ••••••••••••••••• " ••.••••••••••••••••• 
MKSTRING[X] SUBR •••••••••••••••••••••••••••••••• 
MKSWAP[X] ••••••••••••••••••••••••••••••••••••••• 
MKSWAPP[FNAME ;CDEF] ••••••••••••••••••••••••••••• 
MKUNSWAP[X] ••••••••••••••••••••••••••••••••••••• 
MOVD[FROM;TO;COPYFLG] ••••••••••••••••••.•••••••• 
MOVO?[FROM;TO;COPYFLG] •••••••••••••••••••••••••• 
MOVEITEM[TOFILE;NAME;TYPE;FROMFILE] ••••••••••••• 
MSMARKCHANGED[NAME;TYPE;NEWFLG] ••••••••••••••••• 
MULTIFILEINOEX[FILENAMELST;MAPFIlE;NEWPAGEFlG] 

NARGS[FN] •••••••••••••••••••••••••••••••.••••..• 
NBOX[N] •••••••••••••••••••••••••.••••••••••••••• 
NCHARS[X;FLG;ROTBl] SUBR ••••••••••••••••.••••••• 
NCONC[Xl;X2; ••• ;Xn] SUBR* ••••••••••••••••••••••• 
NCONCl[lST;X] ••••••••••••••••••••••••••••••••••• 
NCREATE[TYPENAME;FROM] •••••••••••••••••••••••••• 
NEGATE[X] ••••••••••••••••••••••••••••••••••••••• 
NEQ[X;Y] ••••••••••••••••••••••••••••••••.••••••• 
NETSERVER[ARPA#;WAITFlG] •••••••••••••••••••••••• 
NETUSER[HOST; USER; PUP#; WAITFlG] ••••••••••••••••• 
NEWISWORO[SING;PlU;FORM;VARS] ••••••••••••••••••• 
NEW/FN[FN] •••••••••••••••••••••••••••••••••••••• 
NILl[] •••••••••••••••••••••••••••••••••••••••••• 
NLEFT[L;N;TAIL] ••••••••••••.•••••••••••••••••••• 
NLISTP[X] •••••••••••••••••••••••••••••••••••••.• 
NLSETQ[NLSETX] NL •••.•••••••••..•••••••••••••..• 

NOT[X] SUBR •.••••••••••••••••••••••••••••••••••• 
NOTANY[SOMEX; SOMEFNl; SOMEFN2] ••••••••••••••••••• 
NOTE [VAL; LSTFLG] •••••••••••••••••••••••••••••••• 
NOTEVERY[EVERYX; EVERYFNl; EVERYFN2] •••••••••••••• 
NTH[X; N] ••••••••.•.•..•••••.•••••••••••.•••••••• 
NTHCHAR[X;N;FLG;ROTBL] SUBR ••••••••••••••••••••• 
NTYP[DATUM] SUBR ••••••••••••••.••••••••••••••••• 
NULL[X] SUBR •••••••••••••••••••••••••••••••••••• 

FUNCTION.INDEX.10 

Page 
Numbers 

11. 2 
21.13 
20.20 
11.3 
21.14 
11.3 
11.3 
14.67 
20.19 
13.7 
5.12 
5.12 

24.44 
6.8 
6.8 

13.7 
10.13; 3.10-11 
13.6 
13.3,5 
17.18,21 
10.5: 3.2-4 

6.3 
10.4; 3.6,9; 10.8 

3.14 
3.14 
3.14 
8.3 
8.3 

14.76 
20.20 
24.30 

8.4,1-3 
24.38-39 
10.3; 14.8 
6.1,2 
6.1,2 
3.8 
5.10 
5.10 

24.47 
24.47 
23.21 
22.42 
5.10 
6.5 
5.10; 2.2 

16.12; 5.5; 16.11., 
22.43 

5.10 
5.12 

12.17 
5.12 
6.6 

10.3 
10.11 
5.10 



-,~"tj".( r t 

NUMBERP[Xl SUBR ................................ . 
NUMFORMATCODE[FORMAT;SMASHCODE] ............•.... 

OPENF[FILE: X] SUBR ............................. . 
OPENFILE[FILE:ACCESS:RECOG:BYTESIZE; 

MACHINE.DEPENDENT.PARAMETERS] .......... . 
OPENHASHFILE[FILE:ACCESS] ...................... . 
OPENP[FILE;ACCESS] SUBR ........................ . 
OPENR[A] SUBR .... : ............................. . 
OPNJFN[ FILE; TYPE] SUBR ......................... . 
OR[Xl;X2; ... ;Xn] FSUBR* ........................ . 
OUTFILE[FILE] SUBR ...... ~ .....................•. 
OUTFILEP[FILE] SUBR ............................ . 
OUTPUT[FILE] SUBR .............................. . 

PACK[X] SUBR ................................... . 
PACKC[X] SUBR .................................. . 
PACKFILENAME[FIELDNAMEl;FIELDCONTENTSl; ... ; 

FIELDNAMEn;FIELDCONTENTSn] * ....... . 
PACK*[X] SUBR* ................................. . 
PAGEFAULTS[] ................................•... 
PARSERELATION[RELATION] ........................ . 
PEEKC[FILE;RDTBL] SUBR .•........................ 
PF[fN;FROMFILES:TOFILE] NL* .................... . 
PF*[FN;FROMFILES:TOFILE] NL* ................... . 
PLUS[Xl;X2; ... :Xn] SUBR* ....................... . 
POSITION[fILE;N] SUBR .......................... . 
POSSIBILITIES[FORM##] NL ....................... . 
PP[X] NL* ...................................... . 
PPT[X] NL* .............•........................ 
PP*[X] NL* ..................................... . 
PRESCAN[FILE;CHARLST;PRESCANFN] ................ . 
PRETTYCOMPRINT[X] NL .......•.................... 
PRETTYDEF[PRTTYFNS;PRTTYFILE;PRTTYCOMS; 

REPRINTFNS;SQURCEFILE;CHANGES] ........ . 
PRETTYPRINT[FNS;PRETTYDEFLG:FNSLST] ............ . 
PRINT[X;FILE;RDTBL] SUBR ....................... . 
PRINTBELLS[] ................................... . 
PRINTBINDINGS[AT; POS] .......................... . 
PRINTDATE[FILE:CHANGES] .................•....... 
PRINTDEF[EXPR:LEFT;DEF;TAILFLG:FNSLST] ......... . 
PRINTFNS[X;PRETTYDEFLG] ........................ . 
PRINTHISTORY[HISTORY;LINE;SKIPFN;NOVALUES;FILE] 
PRINTL[ITEM:DEPTH;LMARG:RMARG:FILE] ............ . 
PRINTLEVEL[CARN;CDRN] SUBR ..................... . 
PRINTNUM[FORMAT:NUMBER:FILE] ................... . 
PRINTPARA[LMARG:RMARG:LIST:P2FLAG:PARENFLAG:FILE]. 
PRINTPROPS[AT] ........................... " ..... . 
PRINl[X;FILE] SUBR ............................. . 
PRIN2[X:FILE:RDTBL] SUBR ....................... . 
PRIN3[X: FILE] SUBR ............................. . 
PRIN4[X;FILE;RDTBL] SUBR ...................•.... 
PRODUCE[VAL] ................................... . 
PROG[VARLST;El:E2: ... :En] FSUBR* ............... . 
PROGN[Xl:X2: ... :Xn] FSUBR* .................. , .. , 
PROGl[Xl:X2: ... :Xn] FSUBR* .................... .. 
PROMPTCHAR[ID:FLG:HISTORY] ..................... . 

FUNCTION. INDEX. 11 

Page 
Numbers 

5 .. 9 
14.22 

21.12 

14.3 
24.48 
14.4,2 
10.15 
21.11 
5.11 

14.2,7-8 
14.3,2 
14.1 

10.2; 3.2-4,9 
10.3 

14.6 
10.2 
21.4 
20.19 
14.14,33 
14.44 
14.44 
13.6 
14.36 
12.16 
14.43 
23.60,22 
14.44 
24.22 
14.79 

14.78,64: 19.6 
14.43; 2.9 
14~17: 3.1,5-6: 14.18 
17.4; 14.18 
15.8 :22 .24 
14.79 
14.79,49,80 
14.79 
22.44,18,30-31 
24.20 
14.18; 2.2: 3.5 
14.20 
23.50 
22.24 
14.11; 3.2,5-6: 14.18 
14.17; 3.1~5-6; 14.18 
14.17 
14.17 
12.14 
5.4 
4.3:5.4 
5.4 

22.38,27,45 



PROPNAMES[ATM] ............•...•..........•....•. 
PSTEP[] •........................................ 
PSTEPN[N] ...................................... . 
PUTASSOC[KEY;VAl;AlST] ......................... . 
PUTD[FN;DEF] SUBR .............................. . 
PUTDEf[NAME;TYPE;DEFINITION] ................... . 
PUTDQ[FN;DEF] Nl ............................... . 
PUTDQ?[FN;DEF] NL .............................. . 
PUTHASH[ITEM;VAl;HARRAY] SUBR .................. . 
PUTHASHFIlE[KEY;VALUE:HASHFIlE] ................ . 
PUTPROP[ATM;PROP;VAl] .............•...•......... 
PUTPROPS[ATM;PROP1:VAll; ... ;PROPn;VAln] Nl-

QUOTE[X] Nl- .....•.............................. 
QUOTIENT[X;Y] SUBR ............................. . 

RADIX[N] SUBR 

RAISE[FLG;TTBL] SUBR ••...•..•.....•..•.•........ 
RAND[lOWER;UPPER] .............................. . 
RANDACCESSP[FILE] .............................. . 
RANDSET[X] ..................................... . 
RATEST[X] SUBR .•....••.....................•.... 
RATOM[FILE;RDTBl] SUBR ......................... . 
RATOMS[A;FIlE;RDTBl] ........................... . 
READ[FIlE:RDTBl;FlG] SUBR ...................... . 
READC[FIlE] SUBR ............................... . 
READFIlE[FIlE] ......•...........•........•...... 
READlINE[RDTBl;lINE;lISPXFlG] .....•............. 

.......... , .............................. . 
READMACROS[FlG] SUBR ........................... . 
READP[FIlE;FlG] SUBR ...........•................ 
READTABlEP[RDTBl] SUBR ..........•............... 
READVISE[X] Nl- ...•..............•..•.•.......•. 
REAlFRAMEP[POS;INTERPFlG] ...................... . 
REAlSTKNTH[N;POS;INTERPFLG;OlDPOS] ...•.......... 
REBREAK[ X] Nl- ..•.............•................. 
REClAIM[TYPE] .................................. . 
REClOOK[RECNAME;Tl;lOCAlDEC;PARENT;ERROR] ...... . 
RECOMPIlE[PFIlE;CFIlE;FNS] ..................... . 

RECORDACCESS[FIELO;DATUM;DEC;TYPE;NEWVAlUE] 
RECORDfIElDNAMES[RECORDNAME] .......•............ 
REHASH[OlDAR;NEWAR] SUBR ..... r •••••••••••••••••• 
REHASHFIlE[HASHFIlE] ........•................... 
RElBLK[ADDRESS;N] SUBR ......................... . 
RElINK[FN;UNlINKFLG] ...•........................ 
RElSTK[POS] SUBR ...........•...•.•.............. 
RELSTKP[X] ..................................... . 
REMAINDER[X;Y] SUBR ..•......•....••............. 
REMOVE[X;L] ............•........................ 
REMPROP[ATM; PROP] .............................. . 
REMPROPlIST[ATM:PROPS] .....•.•......•........... 
RENAME[OLD;NEW;TYPES;FILES;METHOD] ............. . 
RENAMEFILE[OLD;NEW] ............. r ••••••••••••••• 
REPLACEFIELD[DESCRIPTOR;DATUM;NEWVAlUE] ••...•... 

FUNCTION.INDEX.12 

Page 
Numbers 

7.3 
18.26 
18.32 
5.13; 23.28 
8.2; 2.3,5; 8.1-2 

14.70 
8.2 
8.2 
7.4 

24.49 
7.2 
7.2 

5.2 
13.6 

14.34: 2.2; 3.3; 14.12, 
17 

14.32 
13.8 
14.8 
13.8 
14.14 
14.12,13,33 
14.13 
14.11,12,33 
14.14,33 
14.42 

\ 

14.15; 22.36; 9.56, 
14.16; 22.12,16,27,30, 

36-37,45 
14.28 
14.15 
14.24 
19.6; 14.58; 19.6 
12.7 
12.8 
15.18,15 
10.11: 3.10 
23.35 
18.7; 14.65-66; 18.5,8, 

21 
23.36 
23.35 
7.5 

24.50 
21.6: 16.7 
18.17 
12.11,12 
12.11 
13.6 
6.3 
7.2 
7.2 

14.71 
14.5 
3.8 



RESET[] SUBR '" ................................ . 
RESETBUFS[FORM1; FORM2; ... ; FORMn] NL'" ........... . 
RESETFORM[RESETFORM;FORM1;FORM2; ... ;FORMn] NL'" 
RE3ETLST[RESETX] NL'" ........................... . 
RESETREADTABLE[RDTBL; FROM] SUBR ................ . 
RESETSAVE[RESETX] NL* .......................... . 
RESETTERMTABLE[TTBL; FROM] SUBR ................. . 
RESETUNDO[X;STOPFLG] ........................... . 
RESETVAR[VAR;NEWVALUE;FORM] NL ................. . 
RESETVARS[VARSLST;El;E2; ... ;En] FSUBR'" ......... . 
RESULTS[RETURNVALUESFLG] ....................... . 
RESUME [FROMPTR ; TOPTR; VAL] SUBR ................. . 
R.ETAPPLY[POS; FN; ARGS; FLG; INTERNALFLG] .......... . 
RETEVAL[POS;FORM;FLG;INTERNALFLG] .............. . 
RETFROM[POS;VAL;FLG] SUBR ...................... . 
RETTO[POS ;VAL; FLG] SUBR ........................ . 
RETURN[X] SUBR ................................. . 
REVERSE[L] ..................................... . 
RLJFN[JFN] ..................................... . 
RPAQ[X;Y] NL ................................... . 
RPAQQ[X; Y] NL .................................. . 
RPLACA[X;Y] .................................... . 
RPLACD[X;Y] .................................... . 
RPLNODE[X;A;D] ................................. . 
RPLNOOE2[X; Y] .................................. . 
RPLSTRING[X; N; Y] SUBR .......................... . 
RPT[RPTN; RPTF] ................................. . 
RPTQ[N;FORM1;FORM2; ... ;FORMn] NL'" .............. . 
RSH[N; M] ....................................... . 
RSTRING[FILE;ROTBL] SUBR ....................... . 

SASSOC[KEY;ALST] ............................... . 
SAVEDEF[NAME;TYPE;DEFINITION] .................. . 
SAVEPUT[ATM;PROP;VAL] .......................... . 
SAVESET[NAME;VALUE;TOPFLG;FLG] ................. . 
SAVESETQ[SETQX] NL'" ............................ . 
SAVESETQQ[SETQX;SETQY] NL .................... '" 
SCODEP[FN] SUBR ................................ . 
SCRATCHLIST[LST;Xl;X2; ... ;Xn] .................. . 
SEARCHPDL[SRCHFN;SRCHPOS] ...................... . 
SELECTQ[X;CLAUSE1;CLAUSE2; ... ;CLAUSEn;DEFAULT] NL'" 
SEPRCASE[CLISPFLG] ............................. . 
SET[X;Y] SUBR .................................. . 
SETA[A;N;V] .................................... . 
SETARG[VAR;M;X] FSUBR .......................... . 
SETATOMVAL[ATM;VAL] SUBR ....................... . 
SETBLIPVAL[BLIPTYP;IPOS;N;VAL] SUBR ............ . 
SETBRK[LST;FLG;RDTBL] SUBR ..................... . 
SETD[A;N;V] .................................... . 
SETDECLTYPEPROP[TYPE;PROP;VAL] ................. . 
SETERRORN[NUM;MESS] SUBR ....................... . 
SETFILEINFO[FILE;ATTRIB;VALUE] ................. . 
SETFILEPTR[FILE;ADR] SUBR ...................... . 
SET I NIT I A LS [ ] .................................. . 
SETUNELENGTH[N] ............................... . 
SETN[VAR; X] FSUBR .............................. . 
SETPROPUST[ATM;LST] ........................... . 

FUNCTION.INDEX.13 

Page 
Numbers 

16.11 
14.34 
5.8 
5.7 

14.24 
5.7 

14.29 
22.43: 5.9; 22.34 
5.8: 18.5 
5.8 

21.6 
12.15 
12.10 
12.9: 15.4; 17.10 
12.10: 15.4; 16.4 
12.10 
5.5 
6.4 

21.12 
5.6: 14.38: 22.33 
5.6: 14.38.78; 22.33 
5.2 
5.1 
5.2 
5.2 

10.6,8 
8.8 
8.8 

13.4 
14.12,13 

5.13 
8.6; 14.70 
7.2 

22.33,40 
22.33 
22.33 
3.14: 8.3,3 

24.36 
12.12 
6.3,4 

14.9 
5.5 

10.9: 3.5; 16.7 
8.9 
5.6 

12.4 
14.13 
10.10: 3.5 
24.65 
16.11 
14.5 
14.8,36 
14.37 
14.35 
13.10,8-9 
7.1: 2.3 



SETQ[X; V] FSUBR'" ............................... . 
SETQQ[X;V] NL .................................. . 
SETREADMACROFLG[FLG] SUBR ...................... . 
SETREADTABLE[RDTBL; FLG] SUBR ................... . 
SETSBSIZE[N] SUBR .............................. . 
SETSEPR[LST;FLG;RDTBL] SUBR .................... . 
SETSTKARG[N;POS;VALUE] SUBR .................... . 
SETSTKARGNAME[N;POS;NAME] SUBR ................. . 
SETSTKNAME[POS;NAME] SUBR ...................... . 
SETSVNONYM[NEWPHRASE; MEANING] .................. . 
SETSYNTAX[CH;CLASS;TABLE] ...................... . 
SETTEMPLATE[FN;TEMPLATE] ....................... . 
SETTERMCHARS[NEXTCHAR;BKCHAR;LASTCHAR; 

UNQUOTECHAR;2CHAR;PPCHAR] .......... . 
SETTERMTABLE[TTBL] SUBR ........................ . 
SETTOPVAL[ATM;VAL] SUBR ........................ . 
SETTYPEDESCRIPTION[TYPE;STRING] ................ . 
SETWORDCONTENTS[PTR ;N] ......................... . 
SHOULDNT [] ..................................... . 
SHOWDEF[NAME;TVPE;FILE] ........................ . 
SHOWPRINT[X;FILE;RDTBL] ., ...................... . 
SHOWPRIN2[X;FILE;RDTBL] ........................ . 
SIN[X ;RADIANSFLG] .............................. . 
SINGLEFILEINDEX[FILE;OUTPUTFILE;NEWPAGEFLG] 
SKOR[XWORD;TWORD;NCX;NCT;FLG] .................. . 
SKREAD[FILE;REREADSTRING] ...................... . 
SMALLP[N] ...................................... . 
SMARTARGLIST[FN;EXPLAINFLG:TAIL] ............... . 
SMASIiFILECOMS[FILE] ............................ . 
SOME[SOMEX;SOMEFN1;SOMEFN2] .................... . 
SORT[DATA; COMPAREFN] ........................... . 
SPACES[N; FILE] SUBR ............................ . 
SPELLFILE[FILE;NOPRINTFLG:NSFLG] ............... . 
SQRT[N] ........................................ . 
STACKP[X] SUBR ................................. . 
STKAPPLY[POS;FN;ARGS;FLG;INTERNALFLG] .......... . 
STKARG[N: POS] SUBR ............................. . 
STKARGNAME[N;POS] SUBR ......................... . 
S TKAR G~ [POS ; NARGS] ............................. . 
STKEVAL[POS; FORM; FLG; INTERNALFLG] .............. . 
STKNAME[POS] SUBR .............................. . 
STKNARGS[POS] SUBR ............................. . 
STKNTH[N;IPOS;OPOS] SU8R ....................... . 
STKNTHNAME[N;POS] SU8R ......................... . 
STKPOS[FRAMENAME;N;IPOS;OPOS] SUBR ............. . 
STKSCAN[VAR;IPOS;OPOS] SU8R .................... . 
STORAGE[FLG; GCFLG] ............................. . 
STREQUAL[X; Y] SUSR .............................• 
STRINGP[X] SUBR ................................ . 
STRPOS[PAT;STRING;START;SKIP;ANCHOR;TAIL] ...... . 
STRPOSL[A;STR;START;NEG] ....................... . 
SUBATOM[X;N;M] ................................. . 
SUBLIS[ALST; EXPR; FLG] .......................... . 
SUBPAIR[OLD;NEW;EXPR;FLG] ...................... . 
SUBRP[FN] SUBR ................................. . 
SUBSET[MAPX;MAPFNl;MAPFN2] ..................... . 
SUBST[NEW;OLD;EXPR] ............................ . 

FUNCTION.INDEX.14 

Page 
Numbers 

5.5 
5.5 

14.28 
14.24 
3.14: 16.8 

14.13 
12.8 
12.8 
12.7 
20.19 
14.25 
20.18 

14.36: 9.14: Al.3 
14.29 
5.6: 2.3 

10.13 
21.14 
16.10 
14.70 
14.18: 15.8-9,19: 22.9 
14.18: 22.18,44 
13.7 
24.31 
17.16-17 
14.16 
13.4: 3.3: 13.1 

8.4 
14.76 
5.12 
6.7 

14.17 
17.21: 14.2; 16.7,10 
13.7 
12.11 
12.9 
12.8: 15.8 
12.8 
12.9 
12.9: 15.8 
12.7 
12.8 
12.7 
12.7 
12.6 
12.8 
10.14 
10.4 
5.9; 10.4 

10.6: 14.8 
10.7 
10.6 
6.5 
6.5 
8.3,1-3 

11.2 
6.4,5 



SUBSTRING[X:N:M:OLDPTR] SU8R ................... . 
SUBSYS[FILE/FORK:INCOMFILE;OUTCOMFILE; 

ENTRYPOINTFLG] ........................... . 
SUBTYPES[TYPE] ................................. . 
SUB1[X] ........................................ . 
SUPERTYPES[TYPE] ............................... . 
SWPARRAY[N:P:V] SUBR ........................... . 
SWPARRAYP[X] SUBR .............................. . 
SYNTAXP[CHARCODE:CLASS;TABLE] .................. . 
SYSBUF[FLG] SUBR ............................... . 
SYSIN[FILE] SUBR ............................... . 
SYSOUT[FILE] SUBR .............................. . 
SYSOUTP[FILE] .................................. . 
SYSTEMTYPE[] SUBR .............................. . 

TAB[POS:MINSPACES:FILE] ........................ . 
TAILP[X;Y] ..................................... . 
TAN[X;RADIANSFLG] .............................. . 
TCOMPL[FILES] ...........................•....... 

TCONC[PTR; X] ......................... " ........ . 
TELNET[CONNECTION;TYPE;SKT;BUTTONCHAR] ......... . 
TENEX[STR: FILEFLG] ............................. . 
TERMTABLEP[TTBL] SU8R .......................... . 
TERPRI[FILE] SUBR .............................. . 
TESTMODE[FLG] .................................. . 
TESTRELATION[ITEM:RELATION:ITEM2:INVERTED] 
TIME[FORM:CNT] NL .............................. . 
TIMES[Xl;X2; ... ;Xn] SUBR •....................... 
TRACE[X] NL· ................................... . 
TRANSORSET[] ................................... . 
TRYNEXT[PLST##;ENDFORM##;VAL##] NL ............. . 
TTY#[] ..... '.' .................................. . 
TYPENAME[DATUM] SUSR ........................... . 
TYPENAMEFROMNUMBER[N] .......................... . 
TYPENAMEP[DATUM;TYPENAME] ...................... . 
TYPENUMBERFROMNAME[NAME] ......•................. 
TYPEP[DATUM.; N] .........................•........ 
TYPESOF[NAME;POSSISLETYPES;IMPOSSIBLETYPES] 

UNADVISE[X] NL· ................................ . 
UNBREAK[X] NL· ................................. . 
UNBREAKIN[FN] .........•......................... 
UNBREAKO[FN;TAIL] .............................. . 
UNDOLISPX[LINE] ................................ . 
UNDOLISPX1[EVENT;FLG;DWIMCHANGES] .............. . 
UNDONLSETQ[FORM] NL ............................ . 
UNDOSAVE[UNDOFORM;HISTENTRY] ................... . 
UNION[X; Y] ..................................... . 
UNLOCKMAP[PTR] ................................. . 
UNMARKASCHANGED[NAME;TYPE] ..................... . 
UNPACK[X;FLG;RDTBL] SUSR ....................... . 
UNPACKFILENAME[FILENAME] ....................... . 
UNSAVEDEF[NAME;TYPE;DEF] ....................... . 
UNSAVEFNS[FNS] ................................. . 
UNSET[NAME] .............................. " .... . 
UPDAT ECHANGED[] ...........•..................... 

FUNCTION.INDEX.15 

Page 
Numbers 

10 • 5; 3 .. 6: 10. 8 

21.7.8: 22.28 
24.66 
13.2 
24.66 
3.14 
3.14; 10.9 

14.25 
14.34 
14.37: 2.9 
14.36: 2.9; 14.38 
14.38 
21.9 

14.17 
5.12 

13.8 
18.5: 14.65; 18.6-7. 

21-22 
6.2.3 

24.44: 21.15 
21.9 
14.29 
14.17 
22.32 
20.19 
21.1.2 
13.6 
15.16.1.5.13.17 
24.24.21 
12.17 
24.43 
10.10 
10.11 
10.11 
10.11 
10.11 
14.7Z 

19.5.4.6 
15.17.15.18: 21.5 
15.18.18 
15.18 
22.42 
22.42 
22.43.34 
22.41.35 

6.7 
21.15 
14.67 
10.2 
14.6 
8.6: 14.71: 17.12-13 

20.21 
22.41.33 
20.20 



UPDATEFILES[PRLST: FLST] ••••••••••••••••••••••••• 
UPDATEFN[FN:EVENIFVALID] •••••••••••••••••••••••• 
USERDATATVPES[] ••••••••••••••••••••••••••••••••• 
USEREXEC[LISPXID:LISPXXMACROS:LISPXXUSERFN] 
USERLISPXPRINT[X:FILE:I:NODOFLG] •••••••••••••••• 
USERN.AME[A] ••••••.•••••••••••••••••••••••••••••• 
USERNUMBER[A:FLG] ••••••••••••••••••••••••••••••• 
U-CASE[X] ••••••••••••••••••••••••••••••.•••••.••• 
U-CASEP[X] •••••••••••••••••••••••••••••••••••••• 

VAG[X] SUBR ••••••••••••.••••••••••••••••••••••••• 
VALUEOF[X] NL· •••••••••••••••••••••••••••••••••• 
~ARIABLES[POS] •••••••••••••••••••••••••• '.' ••••• '. 
VARS[FN :USEDATABASE] •••••••••••••••••••••••••••• 
VIRGINFN[FN: FLG] •••••••••••••••••••••••••••••••• 

WAITFORINPUT[FILE] •••••••••••••••••••••••••••••• 
WHENCLOSE[FILENAME:PROPl:VALl: ••• :PROPn;VALn} • 
WHEREIS[NAME:TVPE:FILES] •••••••••••••••••••••••• 
WIDEPAPER[FLG] ••••••••••••••••••••••••••••••.••• 
WORDCONTENTS[PTR] ••••••••••••••••••••••••••••••• 
WORDOFFSET[PTR: N] ••••••••••••••••••••••••••••••• 
WRITEFILE[X: FILE] ••••••••••••••••••••••••••••••• 

XWD[Nl:N2] 

ZEROP[X] 

""[COMS] NL· 

IDELFILE[FILE] 
IRPLNODE[X;A;D] 
IRPLNODE2[X; Y] •••••••••••••••••••••••••••••••••• 
IUNDELFILE[FILE] 

FUNCTION. INDEX. 16 

Page 
Numbers 

14.63 
20.20 
3.9 

22.37 
22.30 
21.9 
21.9 
10.4: 9.50 
10.4 

13.11.10 
22.26.40: 21.8; 22.35 
12.8: 15.9 
14.39 
15.19 

14.15 
14.10: 24.34,49 
14.67; 24.34 
14.48 
21.14 
21.14 
14.42 

24.36 

13.3 

9.42.19 

24.43 
22.41.42 
22.42 
24.43 



Index of Variables & Parameters 

ABBREVLST (prettydef) .•.•..•.•..•............... 
ADDSPELLFLG (dwim) •••.•.•••.•.•.•••..•.......... 
ADVINFOLST (system) ...........................•. 
ADVISEDFNS (system) ••.•............•..•.......•. 
AFTERSYSOUTFORMS (system) •.•••.••••.•••••.••.•.. 
ALAMS (compiler) .•..•..••...........••.•..•..... 
APPROVEFLG (dwim) .....•.••..•......••........... 
ARCHIVEFLG (prog. asst.) ...................... .. 
ARCHIVEFN (prog. asst.) ......•.......••.•...•.•. 
ARCHIVELST (prog. asst.) ...................... .. 
ASKUSERTTBL (dwim) ••....•.•...•...••.•.•......•• 

BAKTRACELST (break) •••••••......•.•..•.••..•.•.. 
BEFORESYSOUTFORMS (system) ................•..... 
BLKAPPL YFNS (comp il er) .....•.................... 
BLKLIBRARY (compiler) ••••.•••..•.••...••....••.. 
BREAKCOMSLST (break) ••••.•..••.••.•...•.•....••. 
BREAKDELIMITER (break) ..•••..•.•.••.••.•..••.•.. 
BREAKMACROS (break) ••..•....•..•..•.......•..•.. 
BREAKRESETFORMS (break) •...•••.•..• , ....•..•.... 
BRKCOMS (break) •••.•••......•..••........•••••.. 
BRKDWNTYPE (system) ••.•.•..••.••.•..••....•..••• 
BRKDWNTYPES (system) •.••..•.••••..•••..••••..••• 
BRKEXP (break) •..••••••..•..••••.•.•••••••••.... 

BRKFILE (break) •••••.•.••.•••....••.•..•.••••.•• 
BRKFN (break) ••..•.•••••••••.••••••••.•••.••..•. 
BRKINFOLST (break) ., ••••••..••••••.•••..•••••..• 
BRKTYPE (break) •••••••••••••••••••••••• " ••••••. 
BRKWHEN (break) .•••••••••••.•••.•.•••••••.•..... 
BROKENFNS (break) •.•....••...••.•...•••••••••... 
BUILDMAPFLG (system) ••••••••••••••.••••••••••••• 

CHANGECHAR (prettydef) •••••.•••.•••••.••••••••.. 
CHANGESARRAY (system) ••.•••.•••••••.•••••.•••••• 
CLEANUPOPTIONS (file package) ..•.•••..•••..•.••. 
CLEARSTKLST (system) ••••••••.••.•••••••••.••.••• 
CLISPARRAY (cl isp) ••..•.••.•.••••••••••••..•.••. 
CLISPCHARRAY (clisp) ••.••.••••••••••.••••.•••••• 
CLISPCHARS (clisp) ••••••••••.••.•.•..••••••••••. 
CLISPFLG (clisp) .••••••••••..••.•••.•••••.•••••. 
CLISPfORWORDSPLST (clisp) •..••..•.•.••••.•••.... 
CLISPHELPfLG (clisp) ........................... . 
CLISPIFTRANfLG (clisp) ••••••.•••••.••••••..••... 
CLISPIFWORDSPLST (clisp) .•.••••••.•.•••.•.••.•.. 
CLISPIFYENGLSHfLG (elisp) ••.•••••.••.••.•.•••... 
CLISPIFYPACKfLG (el isp) .••...••....••••.•.••.... 
CLISPIFYPRETTYfLG (prettydef) •.••••.•••••.••..•. 
CLISPIFYUSERfN (elisp) ..•.•.••.••...•.•••....... 
CLISPINFIXSPLST (elisp) ••••••.••••••.•.•...•.••• 
CLISPI.S.GAG (el isp) .......................... .. 
CLISPRETRANFLG (clisp) ........................ .. 
CLREMPARSFLG (elisp) .•..•..•.••••.•.•••.•......• 
CL:FLG (clisp) .....••..••.•••.•••••••....•••.... 
COMMENTFLG (prettydef) ..•.•.••••••..••.•.•••...• 
COMMENTLINELENGTH (prettydef) ••••••••••••.••••.. 

VARIABLE.INDEX.1 

Page 
Numbers 

14.46,48 
17.20,8,18 
19.5 
19.4-5 
14.37.35 
18.4 
17.3-6,19,21 
22.28 
22.28,23 
22.34,39 
17.23 

15.19 
14.37 
18.14,19,21 
18.14.21 
i5.13 
15.8 
15.13-14 
15. 14: 14.29 
15.13,7-8,14-15 
21.5 
21.5 
15.4,5,8,10-12,14-15. 
16.1,3 
15.13 
16.14,6,15 
15.17-18 
15.14 ( 
15.14-15 
15.15,17; 17.21 
14.41: 18.7 

14.49; 9.25 
9.24 

14.66 
12.11 
23.57,22,60; 24.2 
23.55 
23.55 
23.56 
23.11 
23.67,53 
23.69,22 
23.10 
23.59,21,39 
23.69,39 
23.59: 14.49,65 
23.60,40 
23.66,7 
23.19 
23.59,22 
23.59,39 
23.59,39 
14.48,44-45 
14.51 



COMPILEHEAOER (compiler) ••••..•••••••••.••...••• 
COMPILETYPELST (compiler) ••.•••.••.•.•.•...•...• 
COMPILEUSERFN (compiler) •••••..•••.•..•.••••..•. 
COMPILE.EXT (compiler) ....•••...••..•.•.•....•.• 
COREVALS (system) ..•..•••••••.••••••••.••...••.• 
COUTFlLE (compiler) ••.••.••••.•••.•••••.•.•..••• 

DECLARETAGSLST (prettydef) •••.•••••••.•.•••••••• 
DEFAULTINITIALS (editor) .•••..•••••••••.•.••••.• 
DFNFLG (system) ••••.••.••••••.•••.••••...•.••.•. 

.................................................................. ' ........... .. 
DIRECTORIES (system) .•..•..•.••••••••••••••••••• 
DISPLAYTERMFLG (system) ••••..••••.••••.••••.•••• 
DONTCOMPILEFNS (compiler) •.••.•••••••••.•••••••. 
DONTMOVETOPFLG (dwim) ...•.•••••••••••••.•••.••.. 
DWIMCHECKPROGLABELSFLG (dwim) .•••••••••••••••••. 
DWIMCHECKHARGSFLG (dwim) ••.•.•••••••.••.••..••.. 
DWIMESSGAG (dwim) •••.•••••••.••••..••.•.••••.••. 
DWIMFLG (dwim) .•••••.••••••••.•••••••••••••••••• 

DWIMIFYCOMPFLG (compiler) 

DWIMLOADFNSFLG (dwim) •••••••••••..•••••.•••.•••• 
DWIMUSERFORMS (dwim) •••••••••.•.•••..•••••••.•.. 
OWIMWAIT (dwim) •.•••••••••••••••••••••••••••.•.• 

EDITCHARACTERS (system) ••.•••.••.•••.••.••••.••• 
EOITCOMSA (editor) ••.••••••.••••••.•.••••••.•••• 
EOITCOMSL (editor) ••.••••••••.••.••••••.•••..•.. 
EOITHISTORY (editor) •••••••••••••••••••.••••.••• 
EDITLOADFNSFLG (editor) ••••••.••••••••••.••••••• 
EDITQUIETFLG (editor) ••••••••••••••••••••••••••• 
EDITRDTBL (system) ••.••••••••..•••••.•..•••.•••• 
ENTRIES (compil er) ••.••••••••••••••••••••••••••• 
ERRORTYPELST (system) .•••••••.•••••••••••••..••• 

FASTYPEFLG (dwim) ..•..•..••••.••.•••••..•••.••.. 
FILELINELENGTH (file package) ••••••••••••••.•••• 
FILELST (file package) •.•.•••.••••.•.••.••.••••. 
FILEPKGCOMSPLST (prettydef) •••••••••.•••••••••.• 
FILEPKGFLG (file package) •••..••..•••••••••••.•• 
FILEPKGTYPES (file package) ••••••••••••••••••••• 
FILEPKG.SCRATCH (file package) .••••••••.••••••.• 
FILERDTBL (system) ••.••••••••••.•••••••••.••.•.• 
FIRSTCOL (prettydef) •••••••••••••••••••.•.•••..• 
FIRSTNAME (system) •••••.••••••.••••.•.•••••••••• 
FIXSPELLDEFAULT (dwim) ..•••••.•••••••••.•••••..• 
FIXSPELLREL (dwim) ••.•••..•••..•• ; ..•••.•.••.... 
FONTCHANGEFLG (prettydef) .•••..••••.•...•..•••.. 
FONTOEFS (prettydef) •••••••••••.•••••••••••••••• 
FONTDEFSVARS (prettydef) •••••••••.••.••••••••••• 
FONTESCAPECHAR (prettydef) ••..•••.•.•..•••••••.• 
FONTPROFILE (prettydef) ••.••..•.•.•••.•.•.•.••.• 
FUNNYATOMLST (clisp) ••••••••••••••••••••••••.••• 

GAINSPACEFORMS (system) ••••••••••••••••.••••.•.• 
GENNUM (system) ••••••••••••••.•••••••••••••••••• 

VARIABLE.INOEX.2 

Page 
Numbers 

18.5 
8.7; 18.4,12 

18.4,9 
18.6 
18.27 
18.33 

14.59 
9.59 
8.5; 5.6; 8.6; 14.38, 

22.33,40 
17.21 
21.15 
18.6,8,21 
17.7,9 
23.58,41 
23.58,41 
t3.58,42 
17.20; 9.56,59,61, 
17.3 
18.5; 23.58; 18.6,22, 
23.42 
17.20,16 
17.20,11,13-15; 24.33 
17.20,4-5; 22.31 

14.36 
9.56,57; 17.11,14 
9.56,57; 17.13-14 

22.34,45,36,44 
9.59 
9.15 

14.23 
18.21 
16.9: 14.2 

17.17 
14.64,48 
14.63,66; 17.21 
14.60 
14.54 
14.61 
14.72 
14.16,38,42,78 
14.48 
22.47 
17.20,4; 23.41 
17.20.19 
14.51 
14.52 
14.52 
14.51 
14.51 
23.60.39 

21.16 
10.4 



GLOBALVARS (compiler) 
GREETDATES (system) 

HELPCLOCK (system) ., ........................... . 
HELPDEPTH (system) ., ........................... . 
HELPFLAG (system) .............................. . 
HELPTIME (system) .............................. . 
HERALDSTRING (system) .......................... . 
HISTORYCOMS (editor) ........................... . 
HISTORYSAVEFORMS (prog. asst.) ................. . 
HISTSTRO (prog. asst.) ......................... . 

INITIALS (editor) .............................. . 
iNITIALSLST (editor) ........................... . 
IT (prog. asst.) ............................... . 

JSYSES (system) 

LAMBDASPLST (dwim) 

LAMS (c omp i 1 e r ) ................................ . 
LAPFLG (compiler) 
LASTAIL (editor) 
LASTPOS (break) 
LASTWORD (dwim) 

LCASELST (prettydef) ........................... . 
LCFIL (compi 1 er) ............................... . 
LINKEDFNS (system) ............................. . 
LINKFNS (compiler) ............................. . 
LISPXCOMS (prog. asst.) ....•.................... 
LISPXFINDSPLST (prog. asst.) ................... . 
LISPXHIST (prog. asst.) ........................ . 
LISPXHISTORY (prog. asst.) ..................... . 
LISPXHISTORYMACROS (prog. asst.) ............... . 
LISPXLINE (prog. asst.) ....................... .. 
LISPXMACROS (prog. asst.) ...................... . 
LISPXPRINTFLG (system) ......................... . 
LISPXREADFN (prog. asst.) ...................... . 
LISPXUSERFN (prog. asst.) ...................... . 
LISTFILESTR (file package) ..................... . 
LOADDBFLG (system) ............................. . 
LOADEDFILELST (file package) ................... . 
LOADOPTIONS (sys tern) ........................... . 
LOCALFREEVARS (compiler) ....................... . 
LOCALVARS (compiler) ........................... . 
LPARKEY (dwim) ................................. . 
LSTFIL (compiler) .........................•..... 

MACSCRATCHSTRING (system) ...................... . 
MAKEFILEFORM (file package) .................... . 
MAKEFILEOPTIONS (file package) ................. . 
MAKEFILEREMAKEFLG (file package) ............... . 
MAKESYSDATE (system) ........................... . 
MAHKLST (editor) ............................... . 
MAXLEVEL (editor) .............................. . 
MAXLOOP (editor) ............................... . 

VARIABLE.INDEX.3 

Page 
Numbers 

18.4,21; 23.41 
22.47 

16.4; 22.17.31 
16.3-4 
16.3,2.5 
16.3-4 
14.37; 3.12 
22.45 
22.27 
22.15,37 

9.59 
9.59 

22.26,18 

24.35 

17.12; 8.4; 17.13-14, 
24.33 
18.3,6 
18.2 
9.11,17.63 

15.6,7-9.11 
17.9; 9.61; 17.18.21, 
23.8 
14.46 
18.2-3 
18.17 
18.17,21-22 
14.58; 22.31 
22.12 
22.35,41,43 
22.34,36.43,45 
22.28 
22.28 
22.28; 21.8; 22.37 
22.31 
22.37; 14.15 
22.29,30,36-37 
14.51,66 
24.32 
14.63 
14.39 
18.21 
18.18 
17.5 
18.2 

21.3,12 
14.66 
14.65 
14.77,65 

3.11 
9.22,63 
9.16,18 
9.44 



MAX. FLOAT (system) ............................. . 
MAX.INTEGER (system) ........................... . 
MIN. FLOAT (system) ............................. . 
MIN.INTEGER (system) ........................... . 
MKSWAPSIZE (overl ay) ........................... . 
MODEL33FLG (dwim) .............................. . 

NILCOMS (file package) ......................... . 
NLAMA (compiler) ............................... . 
NLAML (compiler) ............................... . 
NLSETQGAG (system) ............................. . 
NOBREAKS (b reak) ............................... . 
NOCLEARSTKLST (system) ......................... . 
NOFIXFNSLST (dwim) ............................. . 
NOFIXVARSLST (dwim) ............................ . 

NOLINKFNS (compiler) ........................... . 
NORMALCOMMENTSFLG (system) ..................... . 
NOSPELLFLG (dwim) .............................. . 
NOSWAPFNS (overl ay) ............................ . 
NOTCOMPILEDFILES (file package) ................ . 
NOTLISTEDFILES (file package) .................. . 

OKREEVALST (dwim) 
OLDVALUE (system) 

PLVLFILEFLG (system) ........................... . 
PRETTYEQUIVLST (prettydef) ..................... . 
PRETTYFLG (prettydef) .......................... . 
PRETTYHEADER (prettydef) ....................... . 
PRETTYLCOM (prettydef) ......................... . 
PRETTYPRINTMACROS (prettydef) .................. . 
PRETTYPRINTYPEMACROS (prettydef) ............... . 
PRETTYTABFLG (prettydef) ....................... . 
PRETTYTRANFLG (c1 isp) .......................... . 
PRINTMSG (system) .............................. . 
PROMPTCHARFORMS (prog. asst.) .................. . 
PROMPT#FLG (prog. asst.) ....................... . 
PRXFLG (system) ................................ . 

READBUF (prog. asst.) .......................... . 
RECOMPILEDEFAULT (compiler) .................... . 
REDOCNT (prog. asst.) .......................... . 
REREADFLG (prog. asst.) ....•.................... 
RESETFORMS (system) ............................ . 
RETFNS (compiler) .............................. . 
RPARKEY (dwim) .........................•........ 
RUNONFLG (dwim) ................................ . 

SAVEDBFLG (sys tem) ............................. . 
SHALL I LOAD (system) .......................... . 
SPECVARS (compiler) ............................ . 
SPELLINGSl (dwim) .............................. . 
SPELLINGS2 (dwim) .............................. . 
SPELLINGS3 (dwtm) ........•........•............. 
STRF (compiler) ......................•.......... 
SVFLG (compiler) ..........••.......•...•......•. 

VARIABLE.INDEX.4 

Page 
Numbers 

13.6 
13.3 
13.6 
13.3 
3.14 

17.16 

14.68 
18.3 
18.3 
16.4,11 
15.17 
12.11 
23.57; 14.40; 
23.57; 14.40; 

51 
. 18.17 ,21-22 

14.45 
17.20; 23.57 
3.14 

14.64,66 
14.64,66 

17.6 
5.9 

14.19 
14.49 
14.49,64 
14.79 
14.48 
14.49 
14.49 
14.43 

23.41,43 
23.41,43. 

23.60; 14.65; 23.22-23 
16.9 
22.27,38 
22.27,38 
10.1 

22.37-38 
18.8.23 
22.13 
22.37,39 
22.28; 14.35 
18.14,19.21 
17.5 
17.19-20 

24.32 
17.13 
18.18; 5.8; 18.19,21 
17.8,9,14.18 
17.8.9.13-14,18 
17.8,9.12,18: 22.40 
18.2,3,5 
18.2-3 



SYSHASHARRAY (system) ••.••••••.••.•.•••••.•••••. 
SYSLINKEDFNS (system) ••.•••..•.•••••..••.•••...• 
SYSOUTDATE (system) ..•••••••••..••.•..••.•..•.•• 
SYSOUTFlLE (system) ..••.•...•..•.•...••.••••.... 
SYSOUTGAG (system) •..•••.•••••....•..•.•.••.••.. 
SYSOUT. EXT (system) •.•....•••••••••.••••.••••... 
SYSPRETTYFLG (system) ••••.•••...•.•...••.•.•.•.. 

SYSPROPS (system) 

TESTMODEFLG (prog. asst.) ..•...•••.••••••••.•••• 
TREATASCLISPFLG (clisp) .••••.•.•.•••••••••••...• 
TTYLINELENGTH (system) ••. '" •••••••••••..••••••• 

UCASELST (prettydef) ....•••.••..•••..•••.••..••. 
UNDOLST (editor) •••...•••..•.••.•••••.••.••.•..• 
UNFIND (editor) •••••.•••••.•.•.••••••••••••••••• 

UPFINDFLG (editor) ••.••••••.••.••••••••••••.•••• 
USEMAPFLG (system) ••••.•••••••..••.••••••••••••. 
USERMACROS (ed itor) •••••••.••••.••••••••..•.•••• 
USERNAME (prog. asst.) •...•.•••••••.•••••••.•••• 
USERWORDS (dwim) •.••••.••••••••.••••.••••••••••. 

WHEREIS.HASH (system) 

IVALUE (break.) 

#CAREFULCOLUMNS (prettydef) ••••••••••••••••••••• 
#RPARS (prettydef) ••.••••••••••••••••••.•••••••• 
#SPELLINGS1 (dwim) •••••••••••••••••••••••••••••• 
#SPELLINGS2 (dwim) •••••••••.•••••••••••••••••••• 
#SPELLINGS3 (dwim) .••••••••••••••••••••••••••••• 
#UNDOSAVES (prog. asst.) •••••••••••••••••••••••• 
#USERWORDS (dwim) ••••••••••••••••••••••••••••••• 

**COMMENT**FlG (prettydef) 

VARIABLE.INDEX.5 

Page 
Numbers 

7.4-5 
16.17 
14.37 
14.37 
14.37 
14.37 
14.18: 1&.8-9,19; 22.9. 

16.44 
7.3: 14.57 

22.32 
23.51 
14.35 

14.46 
9.54,47,55,63; 22.45 
9.23,17,27-26.30-33. 

47-48.53.63 
9.29,17-18 

14.42 
9.46: 14.56 

22.47 
17.9; 9.59,61; 17.18, 

20-21 

24.34 

15.5,14 

14.48 
14.48 

. 17.9 
17.9 
17 .9 
22.31,41,43 
17.9 

14.44; 9.41 

-::-----:-:-- -----,-. - --;--- ·'-4i---'---





• rw 

MASTER INDEX 

Names of functions are in upper case, followed by their arguments enclosed in 
square brackets [], e.g. ASSOC[KEV;ALST]. The FNTVP for SUBRs is printed in full: 
for other functions, NL indicates an NLAMBDA function, and * a nospread function. 
e.g. LISTFILES[FILES] NL* indicates that LISTFILES is an NLAMBDA nospread 
function. Words in upper case not followed by square brackets are other INTERLISP 
words (system parameters, property names, messages, etc.). Words and phrases in 
lower case are not formal INTERLISP words but are general topic references. Where 
there are multiple references for a single entry, the primary reference(s) appears 
first, and in bold-italic font. 

(A el ... em) (edit command) ..........•......... 
ABBREVLST (prettyprint variable/parameter) 
ABS[X] ......................................... . 
AC (in a lap statement) ........................ . 
AC (in an assemble statement) ............•...... 
access chain ............................•....... 
ACCESSFNS (record package) ..................... . 
act ive frame ................................... . 
ACI ............................................ . 
ADD (change word) .............................. . 
ADDBUFFER[TEMP:ERRORFLG] ....................... . 
ADDPROP[ATM;PROP;NEW;FLG] ..............•........ 
addressabl e fi 1 es ........................ " .... . 
ADDSPELL[X;SPLST;N] ............................ . 
ADDSPELLFLG (dwim variable/parameter) .......... . 
ADDSTATS[STATLST] NL* .......................... . 
ADDTOCOMS[COMS;NAME:TVPE] ...................... . 
ADDTOFILE[NAME;TVPE;FILE;NEAR] ................. . 
ADDTOFILES?[NOASKSTR] .......................... . 
ADDTOSCRATCHLIST[VALUE] ........................ . 
ADDTOVAR[VAR;Xl;X2; ... ;Xn] NL* ................. . 
ADDVARS (file package command) ................. . 
ADDl[X] ........................................ . 
ADIEU[VALIIII] * ................................. . 
advice ......................................... . 
ADVICE (file package command) .................. . 
ADVICE (property name) ......................... . 
ADVINFOLST (system variable/parameter) ......... . 
ADVISE[FN;WHEN;WHERE;WHAT] ..................... . 
ADVISE (file package command) .................. . 
ADVISED (property name) ........................ . 
ADVISEDFNS (system variable/parameter) ......... . 
ADVISEDUMP[X; FLG] ..........................•.... 
advising ....................................... . 
ADV-PROG ....................................... . 
ADV-RETURN ..................................... . 
ADV-SETQ ........................................ . 
AFTER (as argument to advise) .......•........... 
AFTER (as argument to breakin) ................. . 
AFTER (in INSERT command) (in editor) .......... . 
AFTER (in MOVE command) (in editor) ........... .. 
AFTER (prog. asst. command) .................... . 
AFTERSVSOUTFORMS (system variable/parameter) 
ALAMS ~ompiler variable/parameter) ............ . 

INDEX.l 

,,:tit. <_ Hi • r -'tV -~,--~. -

Page 
Numbers 

9.26.9 
14.46,48 
13.7 
18.28 
18.32 
12.5 
23.30-31 
12.5 
18.32,24,26 
23.37 
21.13 1 

7.2 
14.7-9 
17.18,20 
17.20,8.18 
22.46 
14.75 
14.75 
14.67 
24.36 
5.6 

14.56 
13.2 
12.17 
19.1.3 
14.68: 19.6 
19.5-6 
19.5 
19.4,3,5 
14.58: 19.6 
19.4: 8.5 
19.4-5 
19.6 
19.1-6 
19.3-4 
19.3-4 
19.3-4 
19.3-4,1 
16.16,5,17 

9.27 
9.31 

22.22,18.28 
14.37,35 
18.4 

------ -~---

. ~ ~. _:. i:, -, - ,. __ ,; >"-~ -



ALIAS (property name) .......................... . 
ali nk .......................................... . 
ALISTS (file package command) .................. . 
ALL (in event specification) ., ................. . 
ALL (use in file package PROP command) ......... . 
ALLPROP (as value of DFNFLG) ., ................. . 
ALONE (type of read-macro) ..................... . 
ALPHORDER[A;B] ................................. . 
ALREADY UNDONE (printed by system) ............. . 
ALWAYS (clisp iterative statement operator) 
ALWAYS (type of read-macro) .................... . 
AMAC (property name) ........................... . 
AMBIGUOUS DATA PATH (error message) ............ . 
AMBIGUOUS RECORD FIELD (error message) ......... . 
AMBIGUOUS (printed by dwim) .................... . 
AMONG (Masterscope path option) ................ . 
ANALYZE (Masters cope command) .................. . 
AND[Xl;X2; ... ;Xn] FSUBR· ....................... . 
AND (in event specification) ................... . 
AND (in USE command) ........................... . 
ANTILOG[X] ..................................... . 
ANY (in Decl package) .......................... . 
APPEND[Xl;X2; ... ;Xn]· ......................... . 
APPLY[FN;ARGS] SUBR ............................ . 

apply format ................................... . 
APPLY·[FN;ARG1;ARG2; ... ;ARGn] SUBR· ............ . 

approval (of DWIM corrections) ................. . 
APPROVEFLG (dwim variable/parameter) ........... . 
ARCCOS[X; RADIANSFLG] ........................... . 
ARCCOS: ARG NOT IN RANGE (error message) ....... . 
ARCHIVE (prog. asst. command) .................. . 
ARCHIVEFLG (prog. asst. variable/parameter) 
ARCHIVEFN (prog. asst. variable/parameter) 
ARCHIVELST (prog. asst. variable/parameter) 
ARCSIN[X;RADIANSFLG] ........................... . 
ARCSIN: ARG NOT IN RANGE (error message) ....... . 
ARCTAN[X; RADIANSFLG] ........................... . 
ARCTAN2[X;Y;RADIANSFLG] ........................ . 
ARG[VAR ;M] FSUBR ............................... . 
ARG NOT ARRAY (error message) .................. . 
ARG NOT LIST (error message) ................... . 
ARG NOT LITATOM (error message) ................ . 

ARGLIST[FN] .................................... . 
ARGNAMES (property name) ....................... . 
ARGS NOT AVAILABLE (error message) ............. . 
ARGS (break command) ........................... . 
ARGTYPE[FN] SUBR ............. , ................. . 
argument evaluation ............................ . 
argument list .................................. . 
arithmetic functions ........................... . 
AROUND (as argument to advise) ................. . 
AROUND (as argument to breakin) ................ . 
ARRAY[N;P;V] SUBR .............................. . 
array functions ................................ . 

INDEX.2 

Page 
Numbers 

15.15,18 
12.5 
14.56 
22.12 
14.57 
8.5; 5.6; 14.38; 22.40 

14.27 
6.8 

22.18,43 
23.12 
14.27 
18.24-25 
23.34 
23.34 
17. 7 
20.15 
20.9 
5.11 

22.12 
22.13 
13.7 
24.60 
6.1 
8.7; 2.3; 11.1; 16.1, 

18.14 
2.3 
8.8; 2.3; 11.1; 16.1, 

18.14 
17.3-6,19 
17.3-6,19,21 
13.8 
13.8 
22.23 
22.28 
22.28,23 
22.34,39 
13.8 
13.8 
13.8 
13.8 
8.9; 4.2 

16.7; 10.9-10 
16.5; 5.2,13; 6.3 
16.6; 4.1; 5.4-6, 

7.1-3; 8.2; 14.3 
B.4; 2.2; 8.1-3; 15.9 
8.5 
8.4 

15.9,6 
8.3,1-3 
4.1-2 
B.l; 4.1 

13.2-8 
19.3,4 
15.16,5,17 
10.8: 3.5 
10.8-10 



array header .•....•••••••••••.••••.••.•..•••.••• 
array pointer •..•.••••.•••.....•••••••••..•.•.•• 
ARRAY (file package command) •.•••••••••.••••..•• 
ARRAYBEG[A] SUBR .•••..•.••••••••••.•••.•••.••.•. 
ARRAYBLOCK (record package) •••••••••••••••.••••• 
ARRAYP[X] SUBR ..•••••••••••••••••••••••••••••••• 
ARRAYRECORD (record package) ••••••••••..•.•••••. 
arrays •••••.•.•...•.•••••••••••••••••••.•••••••• 
ARRAYS FOULED (error message) , •••••...•••••••••• 
ARRAYS FULL (error message) ••..•.••...•.•••••••• 
ARRAYSIZE[A] .• , •..•••.•.••.••...•••••••.•••••••. 
ARRAYTYP[ARRAY] ••••••••.•.•••••••••••••••.•••••. 
AS (clisp iterative statement operator) ••••••••• 
ASKUSER[WAIT;DEFAULT;MESS;KEYLST;TYPEAHEAD; 

LISPXPRNTFLG; OPTIONSLST; FILE] ••••••.•.••. 
ASKUSERTTBL (dwim variable/parameter) ••••.••••.• 
ASSEMBLE ••••.••.•••••••...••.••••••••••.•..•.••. 

ASSEMBLE macros ••••••••••••••••••••••••••••••••. 
ASSEMBLE statements ••••.•••••••••••••••••••••.•. 
ASSERT (in Decl package) ...................... .. 
assignments (in clisp) ........................ .. 
assignments (in patter'n match compiler) .•.•••••• 
ASSOC[KEY;ALST] ••••••••••••••••••••••••••••••••• 
association list •••••••••••••••••••••••••••••••• 
ASSOCRtCORD (record package) •••••••••••••••••••• 
ATOM[X] SUBR •••••••.•••.•••••••••••••••••••••••• 
atom hash table ................................ . 
ATOM HASH TABLE FULL (error message) ••.••••••••• 
ATOM TOO LONG (error message) •••••••••••••••.•.. 
ATOMRECORD (record package) ••••••••••••••••••••• 
atoms •••••••.•..••••.•••••..•••••.•.•...•.•.•••• 
ATTACH[X;L] •••......•.•.•••••••••••••••••••••.•• 
ATTEMPT TO BIND NIL OR T (error message) •.•.•••. 
ATTEMPT TO RPLAC NIL (error message) ••.••••••••• 
ATTEMPT TO SET NIL (error message) •••••••••••••• 
ATTEMPT TO USE ITEM OF INCORRECT TYPE 

(error message) •••••••••••••••••••••••••••• 
AUTOCOMPLETEFLG (askuser option) ••••.••••••••••• 
AU-REVOIR[VAL##] '" ., ••••••••••••••••••.••••••••• 
AVOIDING (Masterscope path option) •••••••••••••• 
a-l ist .•.•••••••••••.••••••••••••••••••••••••••• 
AOOOn (gensym) ••.•.••••••••••••••••••••.•••••••. 

(8 el ••• em) (edit command) ••••••••••..••••.••• 
BACKTRACE[IPOS;EPOS;FLAGS;FILE;PRINTFN] SUBR 
backtrace ••••••••.•••••••••••••••••••••.•••••••. 

backtrack i ng •••••••••••.•••••••••••••••••••••••• 
BAD ARGUMENT - FASSOC (error message) ••••••••••• 
BAD ARGUMENT - FGETD (error message) •••.•••••••• 
BAD ARGUMENT - FLAST (error message) •••.•••••••• 
BAD ARGUMENT - FLENGTH (error message) ••.••••••• 
BAD ARGUMENT - FMEMB (error message) •••••••••••. 
BAD ARGUMENT - FNTH (error message) ••••.•••••••• 
BAD FILE NAME (error message) ••••••••••.•••••••• 
BAD FILE PACKAGE COMMAND (error message) •••••••• 

INDEX.3 

--~-.f ~-.o. __ ~- -- --------

Page 
Numbers 

3.5; 10.8 
3.5 

14.59 
10.9 
23.30 
5.10; 10.9; 3.14 

23.28 
3.5,1,9-10; 5.10 
3.10 

16.7; 10.8 
10.9 
10.9 
23.16 

17.22,29,23-28,30 
17.23 
18.24-27; 4.2; 13.10, 
18.31-33 
18.25 
18.24-26 
24.59 
23.8 
24.5 
5.13 

12.1 
23.28 
5.9 

10.10 
16.6 
16.6; 10.2,6 
23.30 
3.1,9 
6.3 

16.8; 4.1; 5.4 
16.5; 5.2; 6.3; 7.1 
16.6; 5.5 

16.8 
17.28 
12.17 
20.15 
8.8 

10.4 

9.26,9 
12.11 
16.8; 2.6; 12.2-3, 
15.9,19 
12.4 
6.13; 2.2 
8.2 
6.6; 2.2 
6.6; 2.2 
6.12; 2.2 
6.6; 2.2 

16.8 
14.60 



BAD PROG BINDING (compiler error message) ...... . 
BAD SETQ (compiler error message) .............. . 
BAD SYSOUT FILE (error message) .............. ~ .. 
BAKTRACE[IPOS;EPOS;SKIPFN;FLAGS;FILE] .......... . 
BAKTRACELST (break variable/parameter) ......... . 
bas i c frame .....................••.............. 
BCOMPL[FILES;CFILE;NOBLOCKSFLG] ............•.... 

BEFORE (as argument to advise) ................. . 
BEFORE (as argument to breakin) ..•.............. 
BEFORE (in MOVE command) (in editor) ........... . 
BEFORE (prog. asst. command) ................... . 
BEFORESYSOUTFORMS (system variable/parameter) 
bell (in history event) ........................ . 
bell (printed by system) ....................... . 

bells (printed by dwim before an interaction) 
bells (printed by system) ...................... . 
(BELOW com x) (edit command) ................... . 
(BELOW com) (edit command) ..................... . 
BETWEEN (record field type) .................... . 
(BF pattern T) (edit command) ................•.. 
BF (edit command) ....•.......................... 
(BI n m) (edit command) ......•.................. 
(BI n) (edit command) ...............•........... 
BIND (clisp iterative statement operator) ...... . 
BIND (Masterscope relation) ................•.... 
BIND (Masterscope template) .................... . 
(BIND. coms) (edit command) ................... . 
bindings in a basic frame ............•.......... 
BINDS (as value of INFO property) ....•.......... 
BIT[BIT#;WORD] ................................. . 
BITS (as a field specification) ................ . 
BITS (record field type) ....................... . 
(BK n) (n a number. edit command) .............. . 
BK (edit command) ..•.......•........•........... 
BKLINBUF[X] SUBR .....................•.......... 
BKSYSBUF[X] SUBR ........•....•........•......... 
blink .......................................... . 
bl ip functions ................................. . 
bl ips ....................•...................... 
BLIPSCAN[BLIPTYP;IPOS] SUBR •..............•..... 
BLIPVAL[BLIPTYP;IPOS;FLG] SUBR ............••.... 
BLKAPPLY[FN;ARGS] SUBR ......................... . 
BLKAPPLYFNS (compiler variable/parameter) ...... . 
BLKAPPLY*[FN;ARG1;ARG2; ... ;ARGn] SUBR* ......... . 
BLKLIBRARY (compiler variable/parameter) ....... . 
BLKLIBRARYDEF (property name) .................. . 
block compi ler ...................•......•....... 
block compiling ................................ . 
block declarations ...............•.............. 
block 1 ibrary ....................•.............. 
BLOCKCOMPILE[BLKNAME;BLKFNS;ENTRIES;FLG] ....... . 
BLOCKED (printed by editor) ..........•......•... 
BLOCKS (file package command) ....•......••...... 
(BO n) (edit command) ...•......••....•.......... 
BOTH (Masterscope template) .•...•........•...... 

INDEX.4 

Page 
Numbers 

18.35 
18.34 
16.7 
15.19 
15.19 
12.5.1.8 
18.22: 14.65; 18.19-21. 

23 
19;3.4 
15.16,5.17 

9.31 
22.22.18.28 
14.37 . 
22.26.18.34.39 
10.13; 14.19; 16.2. 
A1.1 
17.4 
A1.1 

9.20 
9.21 

23.29 
9.18 
9.18.8 
9.34.6 
9.34 

23.13 
20.5 
20.17 
9.46 

12.8 
23.40 
24.36 
3.8 

23.29 
9.13 
9.12.7.13 

14.34 
14.34: 21.9 
12.5 
12.4 
12.4 
12.4 
12.4 
18.14 
18.14.19,21 
18.14 
18.14.21 
18.14: 22.42.46 
18.19-23 
18.13-23 
18.20: 14.58: 18.21-22 
18.14 
18.19.20 

9.55 
14.68: 18.20-21 
9.34.6 

20.17 



BOTTOM (as argument to advise) ................. . 
BOUNDIN (in Decl package) ...................... . 
BOUNDP[VAR] .............•..........•.•.••..•.... 
box ............................................ . 
BOXCOUNT[TYPE; N] SUBR .......................... . 
boxed numbers ...........•...•.•............•.•.. 
BOXED (edita parameter) ....................•.... 
box ing ......................................... . 
Boyer-Moore fast string searching algorithm 
BR (exec command) .............................. . 
BREAK[X] Nl· ................................... . 
break characters ............................... . 
break commands ................................. . 
break expression .............................•.. 
BREAK INSERTED AFTER (typed by break;n) ........ . 
break package ..................•................ 
BREAK WITHIN A BREAK (printed by system) ....... . 
BREAK (error message) .......................... . 
BREAKCHECK[ERRORPOS;ERXN] ...................... . 
BREAKCOMSlST (break variable/parameter) ........ : 
BREAKDElIMITER (break variable/parameter) ...... . 
BREAKDOWN[FNS] NL· ............................. . 
BREAKIN[FN;WHERE;WHEN;BRKCOMS] Nl .............. . 
breaking clisp expressions ........•............. 
BREAKLINKS[] ...................................• 
BREAKMACROS (break variable/parameter) ......... . 
BREAKREAD[TYPE] ................................ . 
BREAKRESETFORMS (break variable/parameter) 
BREAKO[FN;WHEN;COMS;BRKFN;TAIl] ...........•..... 
BREAKl[BRKEXP;BRKWHEN;BRKFN;BRKCOMS;BRKTYPE] Nl 

BRECOMPIlE[FILES;CFILE;FNS;NOBLOCKSFlG] 

BRKCOMS (break variable/parameter) ............. . 
BRKDWNRESULTS[RETURNVALUESFLG] ................. . 
BRKDWNTYPE (system variable/parameter) .•........ 
BRKDWNTYPES (system variable/parameter) ........ . 
BRKEXP (break variable/parameter) .••••.......... 

BRKFIlE (break variable/parameter) ............. . 
BRKFN (break variable/param.ter) ............... . 
BRKINFO (property name) .............•........... 
BRKINFOLST (break variable/parameter) .......... . 
BRKTYPE (break variable/parameter) ...•.......... 
BRKWHEN (break variable/parameter) •............. 
BROADSCOPE (property name) ..................... . 
(BROKEN) (printed by system) .........••......... 
BROKEN (printed by system) ...•.................. 
BROKEN (property name) ......................... . 
BROKENFNS (break variable/parameter) ........... . 
BROKEN-IN (property name) ...............•....... 
BT (break command) .............•................ 
BTV (break command) ................•............ 
BTVI (break command) ........................... . 
BTV· (break command) .........•............•..•.. 
BTV+ (break command) ........... ~ ............... . 
BUILDMAPFLG (system variable/parameter) ........ . 

INDEX.5 

Page 
Numbers 

19.3-4 
24.58 
8.7 

13.10 
21.3 
13.1 
24.12 
13.1,2,8-10 
14.9 
24.41 
15.16,1,5,17 
14.26,13-15,33 
15.5-13 
15.4.11 
15.17 
15.1-21 
15.4,14 
16.6 
16.3,2.4-5.9-10; 17.10 
15.13 
15.8 
21.4-6 
15.16-17,1-2.5.15,18 
15.1 
24.43 
15.13-14 
15.18 
15.14: 14.29 
15.16,16-18 
16.3,14.1-2.4~13,15-17. 
16.1-2.4.10; 17.21 
18.23: 14.65-66. 
18.19-22 
15.13,7-8.14-15 
21.4 
21.5 
21.5 
16.4,5.8,10-12.14-15, 
16.1,3 
15.13 
16.14,6,15 
15.15.17-18 
15.17-18 
15.14 
15.14-15 
23.54 
16.3 
15.3 
15.16: 8.5 
15.15.17; 17.21 
16.17: 8.5; 15.18 
15.8; 2.6; 15.6 
16.9,6 
15.9 
16.9,6 
15.9 
14.41: 18.7 

---- - ----~---

~, . "", ", 



BY (clisp iterative statement operator) ........ . 
BY (in REPLACE command) (in editor) .... , ....... . 
BY (Masterscope set specification) ............. . 

C (in an assemble statement) ........•........... 
C (makefile option) ........................... .. 
CALL DIRECTLY (Masterscope relation) ........... . 
CALL FOR EFFECT (Masterscope relation) ......... . 
CALL FOR VALUE (Masterscope relation) .......... . 
CAll INDIRECTLY "(Masterscope relation) ......... . 
CAll SOMEHOW (Masters cope relation) ............ . 
CAll (Masterscope relation) .................... . 
CAll (Masterscope template) .................... . 
CAllS[FN;USEDATABASE] .......................... . 
CAlLSCCODE[FN] ................................. . 
CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME 

(compiler error message) .................. . 
CAN'T - AT TOP (printed by editor) ............. . 
CAP (ed i t comman d) ............................. . 
CAR[X] SUBR .................................... . 
car of NIL ..................................... . 
carriage w r9turn ................................ . 

carriage-return (edita command) ................ . 
CAUTIOUS (DWIM mode) ........................... . 
CBOX[X;Y] ...................................... . 
CCODEP[FN] SUBR ............................•.... 
CDR[X] SUBR .................................... . 
CEXPR (fu~ction type) .......................... . 
CEXPR· (function type) ......................... . 
CFEXPR (function type) ..........••.•.....•...... 
CFEXPR· (function type) ........................ . 
CHANGE (change word) ........................... . 
(CHANGE @ TO ... ) (edit command) ............... . 
CHANGECAllERS[OLD;NEW;TYPES;FIlES;METHOD] ...... . 
CHANGECHAR (prettyprint variable/parameter) 
CHANGEFONT[FONTClASS] .......................... . 
CHANGENAME[FN;FROM;TO] ......................... . 
CHANGEPROP[X;PROP1;PROP2] ...................... . 
CHANGESARRAY (system variable/parameter) ....... . 
CHANGESlICE[N;HISTORY;l] ....................... . 
CHANGETRAN (i n record package) ................. . 
changing record declarations ................... . 
CHARACTER[N] SUBR .................•............. 
character atoms ...................•............. 
character codes .... , ........................... . 
CHARDElETE (syntax class) ...................... . 
CHCON[X;FLG;RDTBl] SUBR ........................ . 
CHCON1[X] SUBR ................................. . 
CHECK (Masters cope command) .................... . 
CHECKCONNECTION[CONNECTION] .................... . 
CHECKNIl[] ..................•................... 
CHOOZ[XWORD;REl;SPlST:TAIl:FN;TIEFlG;NDBlS;ClST] .. 
CIRCLMAKER[LIST] ............................... . 
CIRCLPRINT[LIST;PRINTFLG;RLKNT] ................ . 
cjsys package .•....................•............ 
CL (ad; t command) ......•..•.•..•.. , ..•... , .•.... 

INDEX.6 

Page 
Numbers 

23.15,14,17 
9.27 

20.7 

18.26 
14.65 
20.5 
20.5 
20.5 
20.5 
20.4 
20.4 
20.17 
20.18 
20.18 

18.34,20 
9.12,3 
9.50 
5.1 
2.3 
2.4; 3.1; 14.11-12, 

15-17,30 
24.11,10 
17.3,17,21; 23.3,52 
24.37 
8.3: 3.13-14; 8.1-3 
5.1 
4.2: 8.3 
4.2: 8.3-4 
4.2: 8.3-4 
4.2: 8.3-4 

23.38 
9.27 

14.71 
14.49: 9.25 
14.62.50 

9.64; 15.18 
7.3 
9.24 

22.40.7 
23.36-38 
23.35 
10.3 
10.2 
10.3 
14.30-31 
10.3 
10.3 
20.11 
24.47 
22.38 
17 .16 
24.19 
24.18,17 
24.35-36 
9.62: 23.60 



CLDISABLE[OP] •..•.•..•...•.•..•••.•••......•••.. 
CLEANPOSLST[PLST] ........•.•..••......•......... 
CLEANUP[FlLES] NL * ............................. . 
CLEANUPOPTIONS (file package variable/parameter) .. 
CLEARBUF[FILE; FLG] SUBR ••..•..•....•.........•.. 
clearing input buffer •.••..•..••...•.....•...... 
clearing output buffer ........................ .. 
CLEARMAP[FILE;PAGES;RELEASE] •..••....•..•....... 
CLEARSTK[FLG] SUBR· .•.•..•.•....•.•.•.••...•...•• 
CLEARSTKLST (system variable/parameter) .•.•....• 
clink .•.•....•••••••••••...••....••..••.•••...•• 
CLISP ••.•.•..••.•.•••••.•..••...•....••..•.....• 

CLISP and compiler •••••.•.•••...•.....•.•.••..•. 
(CLISP declarations. form) ••....•...••.•••..... 
CLISP interaction with user .•....•...••.••.••.•• 
CLISP internal conventions ••.....•.••••.••••.••• 
CLISP ope rat i on ••••••••••.••••.......•..•••••.•• 
CLISP (Masters cope template) ...•...•.••.•.•••••. 
CLISPARRAY (clisp variable/parameter) ••.•••...•• 
CLISPBRACKET (property name) ..•....•.••.••...•.. 
CLISPCHARRAY (clisp variable/parameter) .•.•...•. 
CLISPCHARS (clisp variable/parameter) ••..••.•.•. 
CLISPDEC[DECLST] ••••.••.•............•...•.•.•.. 
CLISPFLG (cl isp variable/parameter) ..••.•••..••. 
CLISPFONT •••.••.•..•.•....•........•....•..••... 
CLISPFORWORDSPLST (clisp variable/parameter) 
CLISPHELPFLG (clisp variable/parameter) .••..•... 
CLISPIFTRANFLG (clisp variable/parameter) ..•...• 
CLISPIFWORDSPLST (clisp variable/parameter) 
CLISPIFY[X; L] •...•••.•..•.•...•..•...••.•••..... 

CLISPIFY (makefile option) •......•.............. 
CLISPIFYENGLSHFLG (clisp variable/parameter) 
CLISPIFYFNS[FNS] NL * " ......................... . 
CLISPIFYPACKFLG (clisp variable/parameter) 
CLISPIFYPRETTYFLG (prettyprint variable/parameter) 
CLISPIFYUSERFN (cl isp variable/parameter) ...... . 
CLISPINFIX (property name) .....••.............•. 
CLISPINFIXSPLST (clisp variable/parameter) 
CLISPI.S.GAG (clisp variable/parameter) .......•• 
cl i sprecordtypes .•.•.•..•.......•..••.........•• 
CLISPRETRANFLG (cl isp variable/parameter) ....•.• 
CLISPTRAN[X; TRAN] •......•.••..•••.•••.•.•.....•• 
CLISPTYPE (property name) •.•..•••.••............ 
CLISPWORD (property name) .•...••••••....•....... 
CLISP% .••.••.•..••••..•.•..••.•••..•....••.•..•. 
CLISP: (edit command) .......................... . 
CLOCK[N] SUBR ••.••.••.....•••.....•••...••.•.•.. 
CLOSEALL[] ...•..•...•.....•........••...•..•.••. 
CLOSECONNECTION[CONNECTION] ••.....•.•.•.•..••••. 
CLOSEF[FILE] .•..••.•.•.••.•.•.•....••...••.••••• 
CLOSEF?[FILE] •..••.•••••..•.......•••.•.••.•.•.. 
CLOSEHASHFILE[HASHFILE] ••••••..•.••.•......•.••. 
CLOSER[A;X] SUBR ••...••...•.•....•.••...•..•.••. 
closing and reopening files .................... . 
CLREMPARSFLG (clisp variable/parameter) .....•••• 

INDEX.7 

Page 
Numbers 

23.59 
12.17 
14.66 
14.66 
14.34: 22.26 

2.4; 14.19,32 
2.4; 14.19 

21.14 
12.11 
12.11 
12.5 
23.1: 11.3; 17.11-14, 
23.2-61 
18.4-5 
23.22 
23.52 
23.53 
23.51-52 
20.17 
23.57,22,60; 24.2 
23.55 
23.55 
23.55 
23.58,24 
23.56 
14.50 
23.11 
23.57,53 
23.59,22 
23.10 
23.38,58: 14.65; 23.25, 

39-40 
14.65: 23.40,60 
23.59,21,39 
23.59 
23.59,39 
23.59: 14.49,65 
23.60,40 
23.54 
23.66,7 
23.19 
23.31 
23.59,22 
23.57 
23.53-54 
23.54: 17.12 
23.23,60 
23.60,22 
21.3 
14.6,10 
24.46 
14.5 
14.5 
24.49 
10.15 
14.9-11 
23.69,39 



CLRHASH[HARRAV] SUBR .......................•.... 
CL:FLG (clisp variable/parameter) .............. . 
CNDIR[DIR; PASSWORD] ............................ . 
CNTRLV (syntax class) .......................... . 
CODE (property name) ........................... . 
COLLECT (clisp iterative statement operator) 
collecting (printed by system) .............•.... 
COM (as suffix to file name) ................... . 
commands that move parentheses (in editor) 
comment pointers ............................... . 
COMMENT USED FOR VALUE (compiler error message) 
COMMENTFLG (prettyprint variable/parameter) 
COMMENT FONT .................................... . 
c"OMMENTLINELENGTH (prettyprint variable/parameter) 
comments (in 1 istings) ......................... . 
COMMENTl[L;INBLOCKFLG] ......................... . 
compacting ..................................... . 
COMPARE[NAMEl;NAME2;TVPE;SOURCEl;SOURCE2] ..•.... 
COMPAREDEFS[NAME;TVPE;SOURCES] ................. . 
COMPARELISTS[X;V] ................•.............. 
COMPILE[X: FLG] ................................. . 
compiled code .................................. . 
compiled file .................................. . 
compiled functions ...•....................•..... 
COMPILED ON .................................... . 
COMPILEFILES[FILES] Nl· ........................ . 
COMPILEHEADER (compiler variable/parameter) 
COMPILEIGNOREDECL (Decl package parameter) 
compiler ....................................... . 
compiler error messages .....•................... 
compiler functions ......•....................... 
compiler macros ..................... c ••••••••••• 

compiler printout .............................. . 
compiler questions ............................. . 
compi ler structure ............................. . 
COMPILETVPELST (compiler variable/parameter) 
COMPILEUSERFN (compiler variable/parameter) 
COMPILEUSERFN (use by clisp) ................... . 
COMPILE.EXT (compiler variable/parameter) ...... . 
COMPILEl[FN;DEF;COREFLG] •....................... 
compiling by datatype .......................... . 
compi 1 ing CLISP ................................ . 
compiling files ................................ . 
comp i 1 i ng FUNCTION ............................. . 
comp i 1 i ng NLAMBDAs ............................. . 
COMPLETEON (askuser option) .................... . 
COMPSET[FILE;FLG;FILES] ..........••...........•. 
computed macros ................................. . 
(COMS xl ... xn) (edit command) .......•......... 
COMS (file package command) .................... . 
(COMSQ. coms) (edit command) .................. . 
CONCAT[X1; X2; ... ; Xn] SUBR· ..................... . 
CONO[C1;C2; ... ;Cn] FSUBR* ...................... . 
cond cl ause ........................... , ........ . 
CONFIRMFLG (askuser option) ..•.................. 
conjunctions (in Masterscope) .................. . 
CONN (exec command) ............•................ 

INDEX.S 

Page 
Numbers 

7.4 
23.59,39 
24.43 
14.30 
8.6: 3.14 

23.12 
10.11 
18.6,22 

9.33-35 
9.53; 14.45 

18.34 
14.48,44-45 
14.50 
14.51 
14.44-46 
14.80 
3.10 

14.71 
14.72 
6.9 

18.5 
10.8 
18.6.7 

4.2 
18.5 
14.66 
18.5 
24.60 
18.1: 4.2; 18.2-36 
18.33-36 
18.6,6~8.19-20.22-23 
18.10-12 
18.33 
18.2-3 
18.23 
8.7; 18.4.12 

18.4,9 
23.42 
18.6 
18.5 
18.12 
23.42: 18.4-5 
18.6,7.22 
18.13 
18.3-4 
17.27 
18.2 
18.10 
9.43 

14.57 
9.43 

10.6: 3.6; 10.8 
6.3: 4.3 
5.3 

17.26 
20.9 
24.42 



CONS[ X; Y] SUBR ................................. . 
cons algorithm ................................. . 
CONSCOUNT[N] SUBR ..................•............ 
CONSTANT[X] .........•..........•................ 
constants in compiled code ..................... . 
constructing lists (in clisp) .•.•.......•....... 
CONTAIN (Masters cope relation) .................. . 
context switching .............................. . 
CONTIN (prog. asst. command) ................... . 
CONTINUE SAVING? (printed by system) ........... . 
CONTINUE WITH T CLAUSE (printed by dwim) ....... . 
CONTINUE (TENEX command) ....................... . 
continuing an edit session ..................... . 
CONTROL[FLG;RDTBL] SUBR ........................ . 
control chain .................................. . 
control character echoing .....•.............•... 
control characters ••......•........... " .... '.' ..•. 
control-A ..........................•............ 

control-A (TOPS-20) (edit command) .•.........•.. 
control-B ............••..••..........•.......... 
control-C ..........................•............ 
control-D ...............................•..•.... 

control-E 

control-E (typed to edita) ..................... . 
control-F (in fi le name) ...................... .. 
control-G (use in history list) ............•.... 
control-H ......................•..•..•.......... 

control-L 
control-L 
control-N 
control-O 
control-P 
control-Q 

control-R 
control-S 
control-T 
control-U 
control-U 
control-V 

(TOPS-20) (edit command) ............. . 
(TOPS-20) ............................ . 

(TOPS-20) 

control-W ................•...................... 
control-X (edit command) ...................... .. 
control-X (TOPS-20) ............................ . 
control-Y (as a read-macro) .................... . 
control-Z (edit command) ....................... . 
control-Z (TOPS-20) ............................ . 
COPY[X] ........................................ . 
copy ................•.•.......••.............•.. 
COPY (DECLARE: option) •...••................•.•• 

INDEX.9 

Page 
Numbers 

6.1: 3.5,9 
5.1 
5.1; 10.14; 21.3 

18.11 
18.11 
23.10 
20.5 
12.6 
22.26: 21.8; 22.28 
22.41.31 
17.6 
2.3,9; 21.4; Al.l 
9.48-49 

14.33: 2.4: 14.12,14,32 
12.5 
14.30 
A1.1: 2.3-4; Al.2-4 
2.4: 14.32,11-14,29-31, 

33; A1.2 
9.14: A1.3 

16.2.3,5-6; 21.3; Al.1 
2.3: Ai. 1: 21. 7 
2.3: A1.1: 9.47, 

14.34-35; 15.4,14, 
16.2,4,11; 18.4-5, 
21. 3; 22.26 
16.2: 9.2; 14.34; 15.4, 

17; 16.10; 17.4-5,10, 
21.3; 22.26: Al.l 
24.10 
14.2 
22.26.18 
16.2: 10.14: 14.34, 
15.14; A1.1 
23.46 
9.14: A1. 3 
2.4: 22.27: Al.2 
2.4: 14.19: A1.2 

14.19.34: 15.9: Al.2 
2.4: 14.32.11-14.29-31. 

33; A1.2 
Al.2: 14.30 
10.13: 14.34: Al.2 
A1.2 
2.4: 22.27,37: Al.2 
2.4: 14.30; Al.2 

A1.2: 2.4; 14.11,13-14, 
30 

2.4: 14.12: Al.2 
9.14: 14.36: Al.3 

10.13: A1.2 
14.27.36: A1.3 

9.14: 14.36; Al.3 
2.4: 14.14,32; Al.1 
6.4 
6.4.1.5 

14.59 



COPYAll[X] ..................................... . 
COPYAllBYTES[FROMFIlEjTOFIlEjBYTESIZE] ......... . 
COPYARRAY[AR] .................................. . 
COPYBYTES[SRCFIl j DSTF Il j START j END] ............. . 
COPYDEF[OLDjNEWjTYPEjSOURCEjOPTIONS] ........... . 
COPYHASHFILE[HASHFILEjNEWNAMEjFNjVTYPE] ........ . 
COPYING (record package) ....................... . 
COPYREADTABLE[RDTBL] SUBR ...................... . 
COPYSTK[POSljPOS2]SUBR ........................ . 
COPYTERMTABLE[TTBL] SUBR ....................... . 
COPYWHEN (DECLARE: option) ..................... . 
COREVAL[X] NL .................. , ............... . 
COREVAL (property name) ........................ . 
COREVAlS ....................................... . 
COREVALS (system variable/parameter) ........... . 
COROUTINE[CALLPTR##jCOROUTPTR##jCOROUTFORM##; 

ENDFORM##] NL ......................... . 
coroutines ..................................... . 
COS[X j RADIANSFLG] .............................. . 
COUNT[X] ....................................... . 
COUNT (clisp iterative statement operator) 
COUNTDOWN[X; N] ................................. . 
COUTFILE (compiler variable/parameter) ......... . 
COVERS[HI;LO] .................................. . 
CQ (in an assemble statement) .................. . 
CREATE NOT DEFINED FOR THIS RECORD (error message) 
CREATE (Masterscope relation) .................. . 
CREATE (Masterscope template) .................. . 
CREATE (record package) ........................ . 
CREATEHASHfILE[FILE;VALUETYPEjITEMLENGTH; 

#ENTRIES] ........................ . 
CTRLV (syntax class) .......................... .. 
curly brackets (use with ftp package) .......... . 
current declaration context .................... . 
current expression (in editor) ................. . 
CURRENTFN (transor variable) ................... . 
CV (assemble macro) ............................ . 
CV2 (assemble macro) .......................... .. 

D (edit command') ............................... . 
DA (exec command) .............................. . 
DATA TYPES FULL (error message) ................ . 
databasefns package ............................ . 
DATATYPE (record package) ...................... . 
data-paths (in records in clisp) ............... . 
data-types ..................................... . 
DATE[FORMATBITS] SUBR .......................... . 
DATEfORMAT[KEYWORDl;KEYWORD2; ... ;KEYWORDn] 
dateformat package ............................. . 
DATUM OF INCORRECT TYPE (error message) ........ . 
DATUM (use in changetran constructs) ........... . 
DCHCON[X; SCRATCHLIST; FLG; RDTBl] ................ . 
DDT[] SUBR ..................................... . 
debugging ...................................... . 
Decl package ................................... . 
DECL (i n Decl package) ......................... . 
declaration fault (in Decl package) ............ . 

INDEX.I0 

Page 
Numbers 

6.4: 23.33 
24.43 
10.10 
14.9 
14.70 
24.50 
23.33 
14.24 
12.11 
14.29 
18.7: 14.59 
21.3 
18.27,28-29; 24.10-11 
18.27 
18.27 

12.15 
12.15,4,13 
13.7 
6.6 

23.12 
6.7 

18.33 
24.65 
18.26 
23.30 
20.5 
20.17 
23.31-33 

24.48 
14.30 
24.45 
24.66 
9.2,3,6,8-14,16-23 

24.24 
24.36 
24.36 

9.54 
24.41 
16.8 
24.31-32 
23.29 
23.34,26 
3.1,2-7,9 

21.2 
24.40 
24.40-41 
3.8 

23.38 
10.3 
24.9 
16.1: 2.6; 12.2 
24.53-68 
24.59 
24.54 



DECLARATION NOT SATISFIED (error message) ...... . 
declarations (in clisp) ........................ . 
declarations (in pattern match compiler) ....... . 
DECLARE ........................................ . 
DECLARE AS LOCALVAR (Masterscope relation) 
DECLARE AS SPECVAR (Masters cope relation) ...... . 
DECLARE (clisp iterative statement operator) 
DECLAREDATATYPE[TYPENAME;FIELDSPECS;FLG] ....... . 
DECLARETAGSLST (prettyprint variable/parameter) 
DECLARE:[X] NL· ................................ . 
DECLARE: (clisp iterative statement operator) 
DECLARE: (file package command) ................ . 
DECLARE: (in compil er) ................... , ..... . 
o"ECLOF[FORM] ................................... . 
DECLOF (property name) ......................... . 
DECLTYPE[TYPENAME;TYPEEXPRESSION;PROP1;VAL1; ... : 

PROPn :VALn] ............................ . 
DECLTYPES (file package command) ............... . 
decltypes (in Decl package) .................... . 
DEFAULTFONT .................................... . 
DEFAULTINITIALS (editor variable/parameter) 
DEFAULTMAKENEWCOM[NAME:TYPE;LISTNAME:FILE] 
DEFERREDCONSTANT[X] ............................ . 
DEFEVAL[TYPE; FN] ..............................•. 
DEFINE[X; TYPE-IN] .............................. . 
DEFINED, THEREFORE DISABLED IN CLISP 

(error message) ........................... . 
DEFINEQ[Xl;X2; ... ;Xn] Nt· ..•.................... 
defining file package commands ................. . 
defining file package types .................... . 
defining new iterative statement operators 
DEFLIST[L; PROP] ................................ . 
DEFPRINT[TYPE: FN] ....••......................... 
DEL (exec command) ............................. . 
DELDEF[NAME;TYPE] .............................. . 
DELHE (edit command) ..•........................ 
(DELETE. @) (edit command) ...............•..... 
DELETECHAR (syntax class) ........•.............. 
DELETECONTROL[TYPE:MESSAGE;TTBL] ............... . 
DELETELINE (syntax class) ...................... . 
DELFILE[FILE] .................................. . 
DELFROMCOMS[COMS;NAME:TYPE] .................... . 
DELFROMFILES[NAME;TYPE:FILES] .................. . 
DELNOTE (transor command) ...................... . 
DELPAGE[PAGE#;HASHFILE] ........................ . 
DELVER (exec command) .........•................. 
DESCRIBE (Masterscope command) ................. . 
DESTINATION IS INSIDE EXPRESSION BEING MOVED 

(printed by editor) ....................... . 
destructive functions ...•....................... 
DET (exec command) ........•..................... 
DETACH[] ....................................... . 
DETACHEDP[] .................................... . 
determiners (in Masterscope) ................... . 
DFNFLG (system variable/parameter) ............. . 

DIFFERENCE[X;Y] 

INDEX .11 

Page 
Numbers 

24.54 
23.24.8.10.25 
24.6 
18.10; 14.58: 18.21 
20.6 
20.6 
23.17 
3.7; 23.29 

14.59 
14.59 
23.16 
14.58.59 
18.6.6 
24.66 
24.66.66 

24.63 
24.65 
24.53 
14.50 
9.59 

14.72 
18.12 
8.7 
8.6; 2.5 

23.11 
8.6; 2.5-6 

14.73-75 
14.72-73 
23.19-21 

7.3 
14.22 
24.42 
14.70 
9.26.9.24 
9.28 

14.30,29 
14.31 
14.30,29 
14.5 
14.76 
14.75 
24.28 
24.52 
24.42 
20.11 

9.31 
6.3-4 

24.41 
24.43 
24.43 
20.8 
8.6: 5.6: 8.6; 14.38. 

22.33.40 
13.6 



DIFFERENT EXPRESSION (printed by editor) ....... . 
DIR (prog. asst. command) ...................... . 
DIRECTORIES (system variable/parameter) ........ . 
DIRECTORY[FILEGROUP;COMMANDS;DEFAULTEXT: 

DEFAULTVERS; LISPXPRNTFLG] ............. . 
disabling CLISP operators ...................... . 
DISMISS[N] ..................................... . 
DISPLAYTERMFLG (system variable/parameter) 
DISPLAYTERMP[] ................................. . 
DLAMBDA (in Decl package) ...................... . 
DMPHASH[ARRAYNAME1; ... ;ARRAYNAMEn] NL* ......... . 
DO (clisp iterative statement operator) ........ . 
DO (edit command) .............................. . 
DOBE[] ......................................... . 
DOCOLLECT[ITEM;LST] ............................ . 
DOCOPY (DECLARE: option) ....................... . 
DOEVAL@COMPILE (DECLARE: option) ................ . 
DOEVAL@LOAD (DECLARE: option) .................. . 
DONTCOMPILEFNS (compiler variable/parameter) 
DONTCOPY (DECLARE: option) ..................... . 
DONTEVAL@COMPILE (DECLARE: option) ............. . 
DONTEVAL@LOAD (DECLAR~: option) ................ . 
DONTMOVETOPFLG (dwim variable/parameter) ....... . 
dot notat ion ................................... . 
DOTHESE (transor command) ...................... . 
DOTHIS (transor command) ....................... . 
dotted pair .................................... . 
DPROG (i n Dec 1 package) ....................... .. 
DREMOVE[X;L] ................................... . 
DREVERSE[L] .................................... . 
DRIBBLE[FILE;APPENDFLG;THAWEDFLG] .............. . 
DRIBBLEFILE[] SUBR ............................. . 
DSK (exec command) ............................. . 
DSKSTAT[DIR;PRINTIFOVER;PRINTSYS;PRINTDEL: 

PRINTOLD] ................... ' ............ . 
DSUBLIS[ALST; EXPR; FLG] ......................... . 
DSUBST[NEW;OLD;EXPR] ........................... . 
DUMMYFRAMEP[POS] ............................... . 
DUMP (transorset command) ...................... . 
DUMPDATABASE[FNLST] ............................ . 
DUMPDB[FILE] ................................... . 
dumping circular lists ......................... . 
dumping unusual data structures ................ . 
DUNPACK[X ; SCRATCHLIST ; FLG; RDTBL] ............... . 
DW (edit command) ........................ ' ...... . 
DWIM[X] ........................................ . 
DWIM ........................................... . 
DWIM interaction with user ..................... . 
DWIM variables ................................. . 
DWIM (prog. asst. command) ..................... . 
DWIMCHECKPROGLABELSFLG (dwim variable/parameter) .. 
DWIMCHECKUARGSFLG (dwim variable/parameter) 
DWIMESSGAG (dwim variable/parameter) ........... . 
DWIMFLG (dwim variable/parameter) .............. . 

DWIMIFY[X;QUIETFLG;L] 

INDEX.12 

Page 
Numbers / 

9.55 
21.11: 22.28 
17.21 

21.10 
23.59 
21.3 
21.15 
21.16 
24.56,54 

7.5 
23.12 
9.62: 22.45 

14.18 
6.3 

14.59 
18.7: 14.59 
14.59 
18.6,8,21 
18.7: 14.59 
14.59 
14.59 
17.7,9 

2.1 
24.29 
24.29 
5.1 

24.55,57 
6.3 
6.4 

21.15 
21.15 
24.42 

24.43 
6.5 
6.4,5 

12.7 
24.26 
20.20 
24.32 
14.22 
14.22 
10.3 
9.63; 17.18; 23.61 

17.17,3 
17.1-30: 2.6; 16.1 
17.3 
17.15 
22.20-21 
23.68,41 
23.68,41 
23.68,42 
17.20: 9.56,59,61, 
17.3 
17.17: 23.40,67,41-42, 

51,58 



dwimify (printed by dwim) ...................... . 
DWIMIFYCOMPFLG (compiler variable/parameter) 

DWIMIFYFNS[FNS] NL'" ........................... .. 
DWIMLOADFNSFLG (dwim variable/parameter) ....... . 
DWIMLOADFNS?[] ................................. . 
DWIMUSERFORMS (dwim variable/parameter) ........ . 
DWIMWAIT (dwim variable/parameter) ............. . 

(E x T) (edit command) ........................ .. 
(E x) (edit command) .......................... .. 
E (edit command) ............................... . 
E (file pack.age command) ....................... . 
E (in a floating point number) ................. . 
E (in an assemble statement) ................... . 
E (use in comments) ............................ . 
EACltTIME (cl isp iterative statement operator) 
ECHOCONTROL[CHAR;MODE;TTBL] .................... . 
echoing ........................................ . 
ECHOMODE[FLG;TTBL] SUBR ........................ . 
edit chain ..................................... . 
edit commands that search ...................... . 
edit commands that test ........................ . 
ed i t macros .................................... . 
EDIT WHERE (Masterscope command) ............... . 
EDIT (break. command) ........................... . 
EDIT (Masterscope command) ..................... . 
EDIT (printed by editor) ....................... . 
EDIT (transorset command) ...................... . 
EDITA[EDITARRY; COMS] .......•.................... 
EDITCALLERS[ATOMS;FILES;COMS] .................. . 
EDITCHARACTERS (system variable/parameter) 
EDITCOMSA (editor variable/parameter) .......... . 
EDITCOMSL (editor variable/parameter) .......... . 
EDITDATE[OLDATE;INITLS] ........................ . 
EDITDATE?[COMMENT] ............................. . 
EDITDEF[NAME;TYPE;SOURCE;EDITCOMS] ............. . 
EDITDEFAULT .................................... . 

EDITE[EXPR;COMS;ATM;TYPE;IFCHANGEDFN] .......... . 
EDITF[NAME;COM1;COM2; ... ;COMn] NL'" ............. . 
EDITFINDP[X;PAT;FLG] ........................... . 
EDITFNS[NAME;COM1;COM2; ... ;COMn] NL'" ........... . 
EDITFPAT[PAT; FLG] .............................. . 
EOITHISTORY (editor variable/parameter) ........ . 
editing arrays ................................. . 
editing compiled code .......................... . 
EOITL[L;COMS;ATM;MESS;EOITCHANGES] ............. . 
EDITLOADFNSFLG (editor variable/parameter) 
EDITLOAOFNS?[FN;STR;ASKFLG;FILES] .............. . 
EOITLO[L;COMS;MESS;EDITLFLG] ................... . 
EDITP[NAME;COM1;COM2; ... ;COMn] NL'" ............. . 
EDITQUIETFLG (editor variable/parameter) ....... . 
EOITRACEFN ..................................... . 
EDITROTBL (system variable/parameter) .......... . 
EDITREC[EDITRECX] NL'" .......................... . 
EOITUSERFN[COM] ................................ . 

INDEX.13 

Page 
Numbers 

23.42 
18.5; 23.58; 18.6,22, 
23.42 
23.58,41 
17.20,16 
17.16 
17.20,11,13-15; 24.33 
17.20,4-5; 22.31 

9.42 
9.42 
9.41,7,42; 22.45 

14.57 
3.4; 14.12 

18.26 
14.49 
23.16,17 
14.30 
14.30 
14.30 
9.3,5.8-14.16-23 
9.14-22 
9.43 
9.45-46 

20.11 
15.10,6.11-12 
20.11 
9.62 

24.26 
24.8-15 
9.60 

14.36 
9.56.57; 17.11,14 
9.56,57; 17.13-14 
9.59 
9.59 

14.70 
9.56,57-58; 17.3, 

22.45 
9.61,1,61 
9.58,1,59,61 
9.63 
9.69,60 
9.63 

22.34,46,36,44 
24.8-15 
9.64; 15.18; 24.8-15 
9.62 
9.59 
9.64 
9.63 
9.61,1 
9.15 
9.64,65 

14.23 
23.35 
9.56 



EDITV[NAME;COM1;COM2; ... ;COMn] NL* ............. . 
EDIT-SAVE (property name) ...................... . 
EDIT4E[PAT;X;CHANGEfLG] ......•.................. 
EF (edit command) .............................. . 
EfFECT (Masterscope template) .................. . 
element patterns (in pattern match compiler) 
ELT[A;N] SUBR .................................. . 
EL TD[A; N] SUBR ................................. . 
(EMBED @ IN ... ) (e'dit command) ...•............. 
END Of FILE (error message) .................... . 
ENDCOLLECT[LST;TAIL] ........................... . 
ENDFIL£[FILE] .................................. . 
end-of-line .................................... . 
eOn g 1 ish ph r a s e s 'i n c 1 i ~ p ....................... . 
ENTRIES (compiler variable/parameter) .......... . 
entries (to a block) .......................... .. 
ENTRY#[HIST;X] ..................•............... 
ENVAPPLY[FN;ARGS;APOS;CPOS;AFLG;CfLG] SUBR 
ENVEVAL[FORM;APOS;CPOS;AFLG;CFLG] SUBR ......... . 
EOL (syntax class) ............................. . 
EP (edit command) .............................. . 
EQ[X: Y] SUBR ...........•......•...........•..... 
eq .. , .................•.......•................. 
EQLENGTH[X ;N] .••...•.••...••••.•.•••••••..•••••. 
EQMEMB[X; Y] ••.•••••••••••••••.•••••••••.•••••••• 
EQP[X; Y] SUBR .................................. . 

EQUAL[X; Y] SUBR ................................ . 
equal ........................•.................. 
EQUALALL[X ;Y] .................................. . 
EQUALN[X;Y;DEPTH] ........................•...... 
ERASE (Masterscope command) .................... . 
ERASE (transorset command) ............•......... 
ERROR[MESS1;MESS2;NOBREAK] ..................... . 
error correction ..........•..................... 
error handl ing ................................. . 
error number .' .................................. . 
error types .................................... . 
ERROR (error message) .......................... . 
ERRORMESS[U] ........•........................... 
ERRORN[] SUBR ...........•...•..........•........ 
errors in compiler ......•.•..................... 
errors in iterative statements ................. . 
errors (in editor) ............................. . 
ERRORSET[fORM;FLG] SUBR .•....................... 

ERRORSTRING[N] SUBR .........................•... 
ERRORTYPELST (system variable/parameter) ....... . 
ERRORX[ ERXM] .......•............................ 
ERROR I [] SUBR .................................. . 
ERSETQ[ERSETX] NL .............................. . 
ERSTR[ERN] .........•............................ 
ESC (type of read-macro) ....................... . 
ESCAPE[FLG] SUBR ...........•.................... 
escape character ............................... . 
ESCAPE (syntax cl ass) ........•........•......... 
ESCQUOTE (type of read-macro) .........•.•....... 

INDEX.14 

Page 
Numbers 

9.61,1 
9.47-48 
9.63 
9.50 

20.16 
24.2-4 
10.9: 3.5; 16.7 
10.10: 3.5 

9.31 
16.6; 14.7,11 

6.3 
14.42 
14.11; 3.1; 14.8,17 
23.21 
18.21 
18.13,19-20 
22.40 
12.9 
12.9 
14.30 
9.50 
6.10; 2.2 
2.2 
6.6 
5.12 
6.10: 13.3.6; 3.3, 

13.1,4 
6.10; 2.2; 13.1 
2.2 
5.11 
5.11 

20.10 
24.26 
16.10.4,6,9 
17.1-30 
16.1-12 
16.4 
16.4-9 
16.6 
16.11,4 
16.11,4 
18.33-36 
23.18 
9.2 

16.11; 7.5; 16.3-4,10, 
17.10 
16.11 
16.9; 14.2 
16.10 
16.10: 15.5; 16.10 
16.12; 5.5; 16.11 
21.8 
14.27 
14.14.14 
14.11; 2.4; 3.1 
14.25 
14.27 



ESUBST[NEW;OLD;EXPR;ERRORFLG;CHARFLG] •..•••..•.. 
EV (edit command) ..••..•••.••.••••••••••.••..••. 
EVAL[X] SUBR •.•• '.' .•..•••••.•.••••.••••.••.•.•.. 
eval format .•••••....•••...•...•..•••.•.•••••... 
EVAL (break command) •.••••.•...•••.••.•.••.•.•.. 
EVAL (edit command) •••..••••.••.••.••••.•••.•.•. 
EVAL (Masterscope template) .•..•.....•.•••..•.•. 
EVALA[X; A] SUBR •.•.•••..•.•••••••..•••.•••...••• 
EVALQT[LISPXID] .••••••••...• " •.•.•.•.•••.•••••. 
EVALV[X; POS] SUBR •.••.••••.••.•••••.•••••..••••. 
EVAL@COMPlLE (DECLARE: option) " ••.••...•..•...• 
EVAL@COMPlLEWHEN (DECLARE: opt ion) .•••......•... 
EVAL@LOAD (DECLARE: option) ••.•••.•••••.•••••••. 
EVAL@LOADWHEN (DECLARE: option) •••••••••••••••.. 
event address ••.••.••••••••••••••••••..•••••.... 
event number •.•.•••.••••••••.••••..•.•..••..•... 
event spacification ••..•..••••••••••••••••.•.•.. 
EVERY[EVERYX; EVERYFN1; EVERYFN2] ••.••.••.•..•.•.• 
(EXAM. x) (edit command) ..................... .. 
exec package •••.•••.•••••.••••.•.••..••.• " .•.•. 
EXEC (prog. asst. command) ••••.••.••••..•.•••.•. 
EXIT (transorset command) ••.••..•••••••.•••••••• 
EXP (exec command) ••••••••••...•.••••••..••.•••. 
EXPANDMACRO[FORM;QUIETFLG] .••••..••••••.••.••••• 
EXPLAINDELIMITER (askuser option) ••••...•..•.•.. 
EXPLAINSTRING (askuser option) ••••••..•.•..•.... 
EXPR (function type) •••••••••.•••.••.••••.•••••. 
EXPR (property name) ........................... . 

EXPRESSIONS (file ~ackage type) •••••••..••••..•• 
EXPRP[FN] SUBR ••••.•.•••••••••.•••••.••.••.••••. 
exprs •.•••.•••.•••••••••.••••••••••••••.•••••.•• 
EXPR· (function type) ••.•.•••.••••••••..••.••••• 
EXPT[M; N] •..•.•..•.•.••••••••.••.••••••.•..••••• 
EXPUNGE[DIR] ••.••.•.•.•.•••...••.•••.••.•••..••• 
(EXTRACT (H from. @2) (edit command) ••.••••••.• 

(F pattern N) (edit command) •••••••••••.••..•••. 
(F pattern n) (n a number, edit command) ........ 
(F pattern T) (edit command) .•..•••..•....•.•••. 
(F pattern) (edit command) ......••..•••.•.••.•.. 
F pattern (edit command) •.••••••••••••.••.••.••• 
F (edit command) •••.••••.••••••••.••••••••.•.... 
F (in event address) ........................... . 
F (response to compiler question) ••••.••••.•..•. 
fa 1 se ...•...••••..•••••••.•.•.••.••••.••••.•.••• 
FASSOC[KEY;ALST] .•••.••••••.•••••.••••.•••••..•. 
fast symbol ic dump .••••.•.•••••.•.....•.•••...•. 
FAST (makefile option) ......................... . 
FASTYPEFLG (dwim variable/parameter) •••••••...•. 
FAULT IN EVAL (error message) .................. . 
FAULTAPPLY[FAULTFN;FAULTARGS] ••••.••.....•..•.•. 
FAULTEVAL[FAULTX] NL· ••••.••••••.••••••.•••••... 
FBOX[N] .•.•...••.••••••..••.•••••••••••.•..••... 
FBOX (record declaration) ...................... . 
FC .....•..••••.•••••.••••••••••••.••..•.•••••••• 
FCHARACTER[N] SUBR •••••.•..••••••.•••••••••••••• 

INDEX.15 

Page 
Numbers 

9.63: 6.5; 22.13 
9.50 
8.6: 2.3,6: 4.1: 16.11 
2.3 

15.5,13-14,17; 16.2-3 
9.42 

20.16 
8.8 
2.3: 5.7; 15.4 

12.10 
18.7; 14.59 
18.7: 14.59 
14.59 
14.59 
22.10-11 
22.7,10,17,27,40 
22.10-12,16-17 

5.11 
9.44 

24.41-44 
22.24; 21.8; 22.28 
24.26 
24.42 
18.11 
17.28 
17.27 
4.2: 8.3 
8.5,6; 9.58-60; 14.38, 

17.12-13; 18.5,14 
22.23 
8.3.1-2,4 
4.1 
4.2: 8.3-4 

13.7 
24.43 
9.30 

9.17 
9.17 
9.17 
9.18 
9.17 
9.17.4-5 

22.10 
18.1-3 
5.3 
5.13; 2.2 

14.49 
14.64 
17.17 
16.6 
16.1: 17.3,10,14; 18.17 
16.1,6; 17.3,10,14 
24.38 
24.38 
14.57 
10.3 



FDIFFERENCE[X; Y] ............................... . 
FETCH (Masterscope relation) ................... . 
FETCH (Masterscope template) ................... . 
FETCH (use in records in clisp) ................ . 
FETCHFI ELD[DESCR I PTOH; DATUM] ................... . 
FEXPR (function type) .......................... . 
FEXPR'" (function type) ......................... . 
FFETCH (use in records in clisp) ............... . 
FFILEPOS[PATTERN;FILENAME;FILESTART;FILEEND;SKIP; 

TAIL; CASEARRAy] ........................ . 
FGETD[X] ....................................... . 
FGREATERP[X; Y] SUBR ............................ . 
FI (exec command) .............................. . 
FIELDLOOK[FIELDNAME] ........................... . 
FIELDS OF (Masterscope set specification) ...... . 
FILDIR[FILEGROUP;FORMATFLG] .................... . 
file attributes ................................ . 
file command list .............................. . 
FILE DATA ERROR (error message) ................ . 
f i 1 e map s ...................................... . 
file names ..................................... . 
FILE NOT COMPATIBLE (error message) ............ . 
FILE NOT FOUND (error message) ................. . 
FILE NOT OPEN (error message) .................. . 
file package ................................... . 
fi 1 e package commands .......................... . 
fi 1 e package funct ions ......................... . 
f i 1 e package types ............................. . 
file pointer ................................... . 
FILE SYSTEM RESOURCES EXCEEDED (error message) 
FILE WONT OPEN (error message) ................. . 
FILE WON'T OPEN (error message) ................ . 
FILE (edita parameter) ......................... . 
FILE (property name) ........................... . 
FILECHANGES (property name) .................... . 
FILECOMS[FILE; X] ............................... . 
fileCOMS (in file package) ..................... . 
FILECOMSLST[FILE;TYPE;FLG] ..................... . 
FILECREATED[X] Nl'" ............................. . 
FILEDATE[FIlE ;CFlG] ............................ . 
FIlEDATES (property name) ...................... . 
FILEDEF (property name) .•....................... 
F ILEFNSLST[FILE] ............................... . 
FIlEGROUP (property name) ...................... . 
FILElINElENGTH (file package variable/parameter) .. 
FII_ELST (file package variable/parameter) ...... . 
FILEMAP DOES NOT AGREE WITH CONTENTS OF file-name 

(er ror message) ........................... . 
FIlEMAP (property name) ................. ~ ...... . 
FILENAMEFIELD[FILENAME; FIElDNAME] .............. . 
FILEPKGCHANGES[N] '" ............................ . 
FILEPKGCOM[COMNAME;PROP1;VAl1; ... ;PROPn;VALn] '" 
FILEPKGCOMS (file package command) ............. . 
FILEPKGCOMSPLST (prettyprint variable/parameter) .. 
FIlEPKGFLG (file package variable/parameter) 
FILEPKGTYPE[TYPE;PROP1;VAL1; ... ;PROPn;VAln] '" 
FIlEPKGTYPES (file package variable/parameter) 

INDEX.16 

Page 
Numbers 

13.5 
20.5 
20.16 
23.26 
3.8 
4.2: 8.3-4 
4.2: 8.3-4 

23.26 

14.9 
8.2 

13.5 
24.42 
23.35 
20.1 
21.8 
14.4-5 
14.56 
24.45 
14.41-42 
14.2,3,6-7 
14.36 
16.7: 14.2-3,38 
16.6: 14.2,5; 21.11 
14.54-81 
14.56-61,73-75 
14.64-69,75-76 
14.S5-56,61-62,72-73 
14.7-8 
16.7: 14.3 
14.3 
16.6: 14.1-2 
24.13 
14.63-64 
14.63,64,71 
14.76 
14.39,54,63-65,76 
14.76 
14.79.60; 18.5 
14.79 
14.63,64,77,79 
17.12,14 
14.76 
14.66 
14.64,48 
14.63,66; 11.21 

14.42 
14.41 
14.6 
14.61 
14.73 
14.68,60 
14.60 
14.54 
14.72 
14.61 



FILEPKG.SCRATCH (file package variable/parameter). 
FILEPOS[PATTERN:FILENAME:FILESTART:FILEEND:SKIP: 

TAIL:CASEARRAY] ..........•............... 
FILERDTBL (system variable/parameter) .......... . 
files .......................................... . 
FILES?[] ...........................•............ 
FILETYPE (property name) ...................•.... 

filevar (in file package) ...................... . 
FILE: (compiler question) ...................... . 
FINALLY (clisp iterative statement operator) 
FINDCALLERS[ATOMS:FILES] ....................... . 
~INDFILE[FILE: NSFLG] ........................... . 
FIRST (as argument to advise) ...............•... 
FIRST (clisp iterative statement operator) 
FIRST (DECLARE: option) ........................ . 
FIRST (type of read-macro) ..................... . 
FIRSTCOL (prettyprint variable/parameter) ...... . 
FIRSTNAME (system variable/parameter) .......... . 
FIX[X] ......................................... . 
FIX format (in printnum package) ...•.•.......... 
FIX (prog. asst. command) ...................•... 
fixed number of arguments ..............••....... 
FIXEDITDATE[EXPR] .............................. . 
FIXP[X] .....................•..•.•.........••... 
FIXP (as a field specification) ..........•...... 
FIXP (record field type) .............•.......... 
FIXSPELL[XWORD:REL:SPLST:FLG;TAIL;FN;TIEFLG; 

DONTMOVETOPFLG;CLST:APPROVALFLG] ....... . 
FIXSPELLDEFAULT (dwim variable/parameter) ...... . 
FIXSPELLREL (dwim variable/parameter) .......... . 
FLAG (record field type) ...............•........ 
FLAST[X] .....•.................................. 
FLENGTH[X] ................•..................... 
FLESSP[X;Y] .....•..........•............•....... 
FLOAT[X] ..........................••............ 
FLOAT format (in printnum package) ............. . 
floating point arithmetic ...................... . 
floating point numbers ...............•.......... 

FLOATING (record field type) ...•................ 
FLOATP[X] SUBR ................................. . 
FLOATP (as a field specification) .............. . 
FLOATP (record field type) ..................... . 
FLTFMT[FORMATBITS] ...........•.................. 
FLUSHRIGHT[POS;X;MIN;P2FLAG:CENTERFLAG;FILE] 
FMAX[Xl;X2; ... ;Xn] ............................. . 
FMEMB[X ;Y] ..................................... . 
FMIN[Xl;X2; ... :Xn] ........•.......••.........•.. 
FMINUS[X] ...................................... . 
FN (transorset command) ...•........•............ 
FNCHECK[FN:NOERRORFLG:SPELLFLG:PROPFLG;TAIL] 
FNS (file package command) .............•........ 
FNTH[X; N] .........................•............. 
FNTYP[FN] ........................•.............. 
(fnl IN fn2) .................................... . 
(fnl NOT FOUND IN rn2) .............••........... 

INDEX.17 

Page 
Numbers 

14.72 

14.8 
14.16,38,42,78 
14.1-11 
14.67,64 
14.64; 18.6; 23.40,42, 

60 
14.60,39,76 
18.2 
23.16.17 

9.61 
17.21 
19.3-4 
23.16.17 
18.7 
14.27 
14.48 
22.47 
13.4 
14.20 
22.14.15,18 

4.1 
9.59 

13.4 
3.7 

23.29 

17.18.19,21 
17.20,4; 23.41 
17.20.19 
23.29 
6.6: 2.2 
6.6: 2.2 

13.5 
13 .6~ 
14.20 
13.5-6 
3.4,1,3,9; 13.1,3,9, 

14.12 
23.29 
13.6 
3.8 

23.29 
14.36; 3.4 
23.50 
13.6 
6.12: 2.2 

13.6 
13.5 
24.25 
17.20; 8.4; 17.21 
14.56 
6.6; 2.2 
8.3; 4.2; 8.1-2,4,6 

15.15,18; 19.4 
15.15 



fnl-IN-fn2 ..................................... . 
font package ................................... . 
FONTCHANGEFLG (prettyprint variable/parameter) 
FONTDEFS (prettyprint variable/parameter) ...... . 
FONTDEFSVARS (prettyprint variable/parameter) 
FONTESCAPECHAR (prettyprint variable/parameter) 
FONTNAME [NAME] ................................. . 
FONTPROFILE (prettyprint variable/parameter) 
FONTSET[NAME] .................................. . 
FOR (cl isp iterative statement operator) ....... . 
FOR (in INSERT command) (in editor) ............ . 
FOR (in USE command) ........................... . 
FOR (Masters cope command) ...................... . 
FORCEOUT[CONNECTION/FILE] ...................... . 
FORGET (prog. asst. command) ................... . 
fork handle .................................... . 
forks .......................................... . 
format and use of history 1 ist ................. . 
format characters .............................. . 
format of keylst (for askuser) ................. . 
FPLUS[Xl;X2; ... ;Xn] SUBR'" ...................... . 
FQUOTIENT[X;Y] SUBR ............................ . 
frame extension ................................ . 
frame name ..................................... . 
frames ......................................... . 
FRAMESCAN[ATOM;POS] SUBR ....................... . 
FREE (in Decl package) ......................... . 
FREELY (use in Masterscope) .................... . 
FREEVARS[FN;USEDATABASE] ....................... . 
free-list ...................................... . 
FREMAINDER[X; Y] SUBR ........................... . 
FREPLACE (use in records in clisp) ............. . 
FROM (clisp iterati\le statement operator) ...... . 
F~OM (in event specification) .................. . 
FROM (in EXTRACT command) (in editor) .......... . 
FROM (Masterscope path option) ................. . 
FRPLACA(JC ; Y] SUBR .............................. . 
FRPLACD[X; Y] SUBR .............................. . 
FRPLNODE[X;A;D] ................................ . 
FRPLNODE2[X;Y] ................................. . 
FRPTQ[N; FORMl; FORM2; ... ; FORMn] Nl'" ............. . 
(FS . patterns) (edit command) ................. . 
FSUBR (function type) .......................... . 
FSUBR'" (function type) ......................... . 
FTIMES[XI ;X2; ... ;Xn] SUBR'" ..................... . 
FTP[HOST;FILE;ACCESS;USER;PASSWORD;ACCOUNT: 

BYTESIZE] .......................... " ....... . 
ftp package .................................... . 
f u 1 1 f i 1 e name ................................. . 
FULLNAME[X;RECOG] .............................. . 
FUNARG ......................................... . 
FUNARG (function type) ........................ .. 
FUNCTION[FN; ENV] Nl ............................ . 

function definition and evaluation ............. . 
function definition cell ...................... .. 
function objects ............................... . 

INDEX.18 

Page 
Numbers 

15.15.18; 19.4 
14.49-52 
14.51 
14.52 
14.52 
14.51 
14.52 
14.51 
14.52 
23.13 
9.27 

22.13 
20.12 
24.47 
22.23,40 
21.8 
21.6 
22.34-35 
14.25 
17.24 
13.5 
13.5 
12.5 
12.5 
12.5 
12.8 
24.58 
20.5 
20.19 
3.9-10 

13.5 
23.26 
23.14,15-16 
22.11 
9.30 

20.15 
5.2 
5.2 
5.2 
5.2 
8.8 
9.18 
4.2; 8.3-4 
4.2; 8.3-4 

13.5 

24.45 
24.44 
14.2-3 
14.3 
11.3-4,1.5; 18.13 

8.3 
11.1; 12.10; 11.3-4, 
18.13 
8.1-9 
8.1; 2.3.5: 18.15 

11.4; 16.1 



function types ................................. . 
FUNCTION (Masterscope template) ........•........ 
funct ional arguments .......................... ' .. 
FUNNYATOMLST (clisp variable/parameter) ........ . 
F/L (as a dwim construct) ...................... . 
(F; expression flg) (edit command) ............. . 

GAINSPACE[] .................................... . 
GAINSPACEFORMS (system variable/parameter) 
garbage collection ............................. . 
garbage collection message ..................... . 
GCD[X ;V] ....................................... . 
GCGAG[MESSAGE] ................................. . 
GCMESS[MESSAGE#;STRING] SUBR ................... . 
GCTRP[N] SUBR .................................. . 
GCTRP (printed by system) ...................... . 
GDATE[DATE;FORMATBITS;STRPTR] .................. . 
general ized NTH command (in editor) ............ . 
GENERATE[HANDLE;VAL] ........................... . 
GENERATOR[FORM##;COMVAR##] NL .................. . 
generator handle ....................•........... 
generators ..................................... . 
generators for spelling correction ............. . 
GENNUM (system variable/parameter) ............. . 
GENSYM[CHAR] ................................... . 

GEQ[X ;V] ....................................... . 
GETATOMVAL[ATM] SUBR ........................... . 
GETBLK[N] SUBR ................................. . 
GETBRK[RDTBL] SUBR .............•................ 
GETCOMMENT[X;DESTFL;DEF] ....................... . 
GETCONTROL[TTBL] ............................... . 
GETD[X] SUBR ................................... . 
GETD (ed it command) ............................ . 
GETDECLTYPEPROP[TYPE;PROP] ..................... . 
GETDEF[NAME;TVPE;SOURCE;OPTIONS] ............... . 
GETDELETECONTROL[TYPE; HBL] .................... . 
GETDESCRIPTORS[TVPENAME] ....................... . 
GETECHOMODE[TTBL] .............................. . 
GETEOFPTR[FILE] SUBR ........................... . 
GETFIELDSPECS[TVPENAME] ........................ . 
GETFILEINFO[FILE;ATTRIB] ...........•............ 
GETFILEMAP[FILE; FL] ............................ . 
GETFILEPTR[FILE] SUBR .......................... . 
GETHASH[ITEM;HARRAV] SUBR ...................... . 
GETHASHFILE[KEV;HASHFILE] ...................... . 
GETLIS[X;PROPS] .............................••.. 
GETPAGE[HASHFILE;N] ............................ . 
GETPASSWORD[DIRECTORVNAME] ..................... . 
GETPNAME[FILEADR;HASHFILE] ..................... . 
GETPROP[ATM;PROP] .............................. . 
GETPROPLIST[ATM] ........................•....... 
GETRAISE[TTBL] ................................. . 
GETREADTABLE[RDTBL] SUBR ....................... . 
GETRELATION[ITEM;RELATION;INVERTED] ............ . 
GETSEPR[RDTBL] SUBR ............................ . 
GETSYNTAX[CH;TABLE] ..•.....•............•.....•. 

INDEX.19 

Page 
Numbers 

4.1-2 
20.16 
11.1: 2.3: 8.8: 18.13 
23.60,39 
17.12 
9.18 

21.16 
21.16 
3.9-11: 10.8,11,13-14 

10.11-12 
13.5 
10.11 
10.12 
10.14: 21.4 
10.14 
21.2 
9.21,33,40 

12.14 
12.14 
12.14 
12.13 
17.9; 24.51 
10.4 
10.3: 3.2: 10.4; 15.15, 
18.13: 19.3-4 
13.6 
5.6 

21.6; 16.7 
14.14 
14.45 
14.33 
8.2: 2.3,5; 8.1,6 
9.53 

24.65 
14.69 
14.31 
3.8 

14.31 
14.8 
3.8 

14.4 
14.41 
14.7 
7.4; 23.22 

24.49 
7.3 

24.52 
24.44 
24.52 
7.1 
7.1; 2.3 

14.32 
14.24 
20.19 
14.14 
14.25 

- ------- ------ > --- ----~---

-~'-': 



GETTEMPLATE[FN] ................................ . 
GETTERMTABLE[TTBL] SUBR .....................•... 
GETTOPVAL[ATM] SUBR ............................ . 
GETTYPEDESCRIPTION[TYPE] ....................... . 
GETVAL (edit command) .......................... . 
GET* (ed it command) ............................ . 
GLC[X] SUBR .................................... . 
global variables ............................... . 
GLOBALVAR (property name) ...................... . 
GLOBALVARS (compiler variable/parameter) ....... . 
GLOBALVARS (file package command) .............. . 
GNC[X] SUBR .................................... . 
G.O[X] FSUBR* ................................... . 
(GO 1 abel) (edit command) ...................... . 
GO (break command) ............................. . 

GO (use in iterative statement ;n clisp) ....... . 
GREATERP[X; Y] SUBR ., ........................... . 
GREET[NAME; FLG] ................................ . 
GREETDATES (system variable/parameter) ......... . 
greeting and user profiles ..................... . 
GTJFN[FILE;EXT;V;FLAGS] ........................ . 

handl~e ......................................... . 
HARRAY[N] SUBR ................................. . 
HARRAYP[X] ..................................... . 
HARRAYSIZE[HARRAV] ............................. . 
HASDEF[NAME;TVPE;SPELLFLG] ..................... . 
hash arrays .................................... . 
hash 1 ink functions .......................•..... 
hash links ..................................... . 
hash overflow .................................. . 
hCl.sh package ..•................................. 
HASH TABLE FULL (error message) ................ . 
HASHFILENAME[HASHFILE] ......................... . 
HASHFILEP[X] .................................•.. 
HASHFILEPROP[HASHFILE;PROP] .................... . 
HASHFILESPLST[HASHFILE] ........................ . 
HASHLINK (record package) ...................... . 
hash-address ................................... . 
hash-array ..................................... . 
hash- item ...................................... . 
hash-l ink ...................................... . 
hash-value ..................................... . 
HCOPVALL[X] .................................... . 
HELP[MESSl ;MESS2] .......•....................... 
HELP (Masterscope command) ..................... . 
HELPCLOCK (system variable/parameter) .......... . 
HELPDEPTH (system variable/parameter) ..•...•.... 
HELPFLAG (system variable/parameter) ........... . 
he 1 psys package ................................ . 
HELPTIME (system variable/parameter) ........... . 
HELPI (printed by system) ...................... . 
HERALD[STRING] SUBR ............................ . 
HERALDSTRING (system variable/parameter) ....... . 
HERE (in edit command) ........................ .. 
history commands ..............•...•............. 

INDEX.20 

Page 
Numbers 

20.18 
14.29 
5.5: 2.3 

10.13 
9.42 
9.53: 14.45 

10.5,8 
18.5; 23.41 
18.4: 23.41 
18.4,21; 23.41 
14.59 
10.5,8 

5.5 
9.19 

15.5,4,6,13-14, 
16.2-3· 
23.17 
13.6 
22.47 
22.47 
22.46 
21.12 

3.12 
7.4; 10.9 
7.4; 10.9 
7.4; 10.9 

14.72 
3.1 
7.4-5 
7.3-5 
7.5 

24.47-53 
16.7: 7.5 
24.49 
24.49 
24.49 
24.51 
23.28 
7.3 
7.3-5 
7.3-5 
7.3-5 
7.3-5 
6.4; 14.23 

16.10 
20.12 
16.4: 22.17,31 
16.3-4 
16.3,2,5 
20.22-27 
16.3-4 
16.10 
3.11 

14.37: 3.12 
9.28 

22.9-23 



history commands applied to history commands 
history commands that fail ..................... . 
history 1 ist ................................... . 

HISTORYCOMS (editor variable/parameter) ........ . 
HISTORYFIND[LST;INDEX;MOD;EVENTADDRESS; 

LISPXFINDFLG] ....................... . 
HISTORYMATCH[INPUT;PAT;EVENT] .................. . 
HISTORYSAVE[HISTORY;ID;INPUTl;INPUT2;INPUT3; 

PROPS] .............................. . 
HISTORYSAVEFORMS (prog. asst. variable/parameter). 
HISTSTRO {prog. asst. variable/parameter} ...... . 
HORRIBLEVARS (file package command) ............ . 
HOST (as a file name field) .................... . 
HOSTNAME[HOSTN] ................................ . 
HOSTNUMBER[] ................................... . 
HPRINT[EXPR; FILE ;UNCIRCULAR] ................... . 
HREAD[FILE] .................................... . 

(I c xl ... xn) (edit command) ................ .. 
IBOX[ N] ........................................ . 
IBOX (record dec 1 arat ion) ...................... . 
IDATE[D] ....................................... . 
IDIFFERENCE[X;Y] ............................... . 
IEQP[N;M] SUBR ................................. . 
(IF x comsl coms2) (edit command) .............. . 
(IF x comsl) (edit command) ................... .. 
(If x) (edit command) .......................... . 
IF (Masterscope template) ...................... . 
IFPROP (file package command) .................. . 
IF-THEN-ELSE statements ........................ . 
IGEQ[X; Y] ...................................... . 
IGNOREDECL (fi le package command) .............. . 
IGNOREMACRO (in compiler) ...................... . 
IGREA TERP[X; Y] SUBR .............•............... 
ILEQ[X; Y] ...................................... . 
ILESSP[X;Y] .................................... . 
ILLEGAL ARG {error message} .................... . 

ILLEGAL DATA TYPE NUMBER (error message) ....... . 
ILLEGAL DATA TYPE (error message) .............. . 
ILLEGAL EXPONENTIATION (error message) ......... . 
ILLEGAL GO (compiler error message) ............ . 
ILLEGAL INSTRUCTION (error message) ............ . 
ILLEGAL OR IMPOSSIBLE BLOCK (error message) 
ILLEGAL READTABLE {error message} .............. . 
ILLEGAL RETURN (compiler error message) ........ . 
ILLEGAL RETURN (error message) ................. . 
ILLEGAL STACK ARG {error message} .............. . 
ILLEGAL TERMINAL TABLE (error message) ......... . 
IMAX[Xl;X2; ... ;Xn]· ........................... . 
IMIN[Xl;X2; ... ;Xn]· ........................... . 
IMINUS[X] ...................................... . 
IMMED (type of read-macro) ..................... . 
IMMEDIATE (type of read-macro) ................. . 
implementation of REDO, USE, and FIX ........... . 
implementation of structure modification commands 

{in editor} ............................... . 

INDEX.21 

Page 
Numbers 

22.16 
22.17 
22.4: 9.48,54; 22.5-12, 

34-35 
22.45 

22.39,39 
22.40 

22.38,9,27,34-35,39,45 
22.27 
22.15,37 
14.59,23 
24.45 
21.9 
21.9 
14.23 
14.23 

9.42 
24.38 
24.38 
21.2 
13.2 
13.3 
9.43 
9.44 
9.43 

20.17 
14.57,60 
23.10 
13.3 
24.60 
18.10 
13.3 
13.3 
13.3 
16.7: 8.2; 10.2; 12.8, 
14.3,30; 22.41 
16.8 
3.8 

13.7 
18.35 
16.5 
16.7: 21. 6-7 
16.8: 14.24,30 
18.34 
16.5: 5.5 
16.6: 12.6 
16.8: 14.29-30 
13.3 
13.3 
13.2 
14.28 
14.28 
22.15-16 

9.25-26 



implicit progn ................................. . 
IN (clisp iterative statement operator) ........ . 
IN (in EMBED command) (in editor) .....•.......•. 
IN (i n USE command) ............................ . 
IN (Masterscope set specification) ............. . 
IN (printed by system) ., ....................... . 
INCORRECT DEFINING FORM (error message) ........ . 
incorrect number of arguments .................. . 
indefinite number of arguments ................. . 
INFILE[FIlE] SUBR .......•....................... 
INFIlECOMS7[NAME;TYPE;COMS;ONFILETYPE] ......... . 
INFILEP[FILE] SUBR •.........................•.•. 
infix operators (in clisp) ................. _ ... .. 
INFIX (type of read-macro) ........•...........•• 
INFO (p roperty name) ......•........•.......•.... 
INIT (use in record declarations) ......•...•..•. 
INITIALS (editor variable/parameter) ...•........ 
INITIAlSlST (editor variable/parameter) ..•....•• 
INITRECORDS (file package command) ............. . 
INPUT[FILE] SUBR ....•.........................•. 
input buffer ..••.....................•....••.... 

input functions •••.•....•....................... 
inputting numbers ...........................•... 
input/output ............. " ..................... . 
INREADMACROP[] SUBR ..•.....................•.... 
(INSERT ... AFTER . 8) (edit command) •...•..•••. 
(INSERT ... FOR. 8) (edit command) ........... .. 
INSIDE (clisp iterative statement operator) 
INSTRUCTIONS (in compiler) .................•...• 
integer arithmetic •.....•.........•........•.... 
INTEGER (record field type) .................... . 
integers ...•......•.......................•....• 
interfork communication ........................ . 
interpreter .................................... . 
INTERRUPT[INTFN; INTARGS; INTYPE] ................ . 
interrupt characters .••..•...........•....•.•... 
INTERRUPTABLE[FLG] SUBR ....................•.... 
INTERRUPTABlEP[] SUBR ..........................• 
INTERRUPTCHAR[CHAR;TYP/FORM;HARDFLG] ..........•. 
INTERRUPTED BEFORE (printed by system) ......... . 
INTERSECTION[X ;Y] .............................. . 
IN? (break command) ............................ . 
IOFILE[FILE] SUBR .............................. . 
IPLUS[Xl;X2; ... :Xn] SUSR· ..••................... 
IQUOTIENT[X;Y] SUSR ..•....... ~ .........•..•..... 
IREMAINDER[X ;Y] SUSR .....•.•.................... 
IT (prog. asst. variabl a/parameter) ............ . 
itarative statements (in clisp) ................ . 
ITIMES[Xl:X2; ... ;Xn] SUSR· .•................•.•. 
I. S. OPR[NAME; FORM; OTHERS; EVAlFlG] .........••...• 
i-.s.oprs ....................................... . 
I.S.OPRS (file package command) ................• 
i.s.type ..•.........•..................... ' ..... . 

JFN .......••.••••••.•......•............••...... 
JFNS[JFN;AC3;STRPTR] ..•.•.•..•..........•.•....• 

INDEX.22 

Page 
Numbers 

4.3: 12.2-3 
23.13,15.17 
9.31 

22.13 
20.6 
16.3 
8.5 
4.2 
4.2 

14.1,7 
14.75 
14.2,2 
23.6-8 
14.26 
23.~9: 4.1; 23.40 
23.31 
9.59 

. 9.59 
14.68; 23.21 
14.1 
14.32: 10.13: 14.15.19. 

34; 15.14; 16.2.4 
14.11-16 
14.12 
14.1-81 
14.28 
9.27 
9.27 

23.14 
18.10 
13,.2-5 
23.29 
3.3 

21.6 
8.6; 16.1 

16.2: 10.14 
16.12: 2.4; A1.2 
16.13 
16.13 
16.12 
16.2 
6.7 

15.11,6.12; 16.1 
14.4,7-8 
13.2 
13.3 
13.3 
22.26,18 
23.11-21 
13.2 
23.19 
2-3.11-21 
14.68; 23.21 
23.13,19 

21.11-12 
21.12 



JOB#[] ......................................... . 
JOIN {clisp iterative statement operator} ...... . 
JOINC (edit command) ........................... . 
JS[JSYSNAME;AC1;AC2;AC3;RESULT] ................ . 
JS (assemble macro) ...•..•.................•.... 
JSYS[N;AC1;AC2;AC!;RESULTAC] SUBR .............. . 
JSYS ........................................... . 
JSYS ERROR (error message) ..•................... 
JSYSERROR[ERRORN] .......................•....... 
JSYSES {system variable/parameter} ............. . 

keyboard layouts ..............................•. 
KEYLST (askuser option) ..•.•.•..•..•...•........ 
KEYSTRING {askuser option} ..•.•....•••.....•.... 
KFORK[ FORK] ........•......••......•............. 
KNOWN {Masterscope set specification} ...••...•.. 
KWOTE[X] .............•.......•..............•... 

LABELS (use with clispify) ..............•....•.. 
LAMBDA ............................•............. 
LAMBDACOMS (transor parameter) ................. . 
LAMBDAFONT .. ; ....•.........•.....•...•.......... 
LAMBDASPLST (dwim variable/parameter) •..•....... 

lambdatran package ............................. . 
LAMBDATRANFNS (lambdatran parameter) ........... . 
LAMS (comp; I er v ar i ab Ie/parameter) ............. . 
LAP ••••••••••••••••••••••••••••••••••••••••••••• 
LAP macros ........•..•...••....•................ 
LAP op-defs ...........•.•....................... 
LAP statements .......•..........•...•............ 
LAPFLG (compiler variable/parameter) .•..•..••.•• 
large integers ..........................•....... 
LAST[X] ......•.......•.......................... 
LAST (as argument to advise) ................... . 
LASTAIL (editor variable/parameter) ............ . 
LASTC[FILE] SUBR ............................•... 
LASTN[L;N] ............................•....•.•.• 
LASTPOS (break variable/parameter) ...•.......... 
LASTVALUE (property name) ...................... . 
LASTWORD (dwim variable/parameter) ............. . 

It ••• " •••••••••••••••••••••••••••••••••••••• 

LBOX[Xl;X2; ... ;Xn] .•............•.......•....... 
(LC . @) (edit command) ....••....•...•.•........ 
LCASELST (prettyprint variable/parameter) ...... . 
LCFIL (compiler variable/parameter) ............ . 
(LCL . 8) (edit command) ....................... . 
LCONC[PTR;X] .........•.•.......•.•.•••.•........ 
LD (exec command) ..•...••••.............•..••..• 
LDIFF[X ;V; Z] .....•...•••.......••.........••...• 
LDIFFERENCE[X;Y] ........•............•.••....... 
LDIFF: NOT A TAIL {error message} ..........•.•.. 
LEFTBRACKET (syntax class) ........•............. 
LEFTPAREN (syntax class) •.•..•.........••....... 
LENGTH[X] ............•..•...............•....... 
LEQ[X ;Y] ...........•............................ 
LESSP[X; Y] ..••.•..•••...•.••••...••••...•.••...• 

INDEX.23 

Page 
Numbers 

24.43 
23.12 
9.51 

24.35 
24.36 
21.9 
14.35; 21.8.11~12 
16.6: 21.9 
24.36 
24.35 

17 .5.16 
17.26 
17 .27 
21.8.8 
20.8 
5.3 

23.39 
4.1.2-3; 8.2-3.6 

24.29 
14.50 
17.12: 8.4~ 17.13-14. 
24.33 
24.32.-34 
24.33 
18.3.6 
18.27,2.23.28-29 
18.29.25 
18.24-25 
18.2.7-29 
18.2 
3.3.1.9; 5.10; 13.1,9 
6.5 

19.3-4 
9.11.17 .63 

14.15 
6.6 

16.6.7-9.11 
9.48 

17.9: 9.61; 17.18.21. 
23.8 
24.37 
9.19 

14.46 
18.2-3 
9.19 
6.2.3 

24.41 
6.7 
6.7 
6.7 

14.25 
14.25 
6.6 

13.7 
13.6 



(L1 n) (edit command) .......................... . 
LIKE (Masterscope set specification) ........... . 
LINBUF[FLGJ SUBR ............................... . 
1 ine buffer ................... '.' .•.......... " .. 
LINEDELETE (syntax class) ...................... . 
LINELENGTH[N] SUBR ..................•........... 
LINELENGTH (Masterscope path option) ........... . 
line-buffering ..............................•... 

1 ine-feed ...............•....................... 
line-feed (edit command) ....................... . 
line-feed (edita command) ...........•........... 
lINK (exec command) ...................•......... 
linked function calls ....•.......••............. 
lINKEDFNS (system variable/parameter) .•......... 
LlNKFNS (compiler variable/parameter) .......... . 
LINKTOTTY[TTYfI] ............ " ................... . 
LINKTOUSER[USER] .....•... " ...........•....•..... 
LlSPFN (property name) ......•.............•..•.. 
lISPX[lISPXX;lISPXID;LISPXXMACROS;lISPXXUSERFN; 

lISPXFlG] ..... , ..........•.•............... 

lISPXCOMS (prog. asst. variable/parameter) 
LlSPXEVAl[LlSPXFORM; LISPXIO] .........•....•..... 
lISPXFIND[HISTORY;lINE;TYPE;BACKUP;QUIETFlG] 
lISPXFINDSPLST (prog. asst. variable/parameter) 
lISPXHIST (prog. asst. variable/parameter) 
lISPXHISTORY (prog. asst. variable/parameter) 
lISPXHISTORYMACROS 

(prog. asst. variable/parameter) .......... . 
lISPXlINE (prog. asst. variable/parameter) 
LISPXMACROS (file package command) ............. . 
lISPXMACROS (prog. asst. variaole/parameter) ... . 
lISPXPRINT[X;Y;Z;NODOFlG] ...............•....... 
lISPXPRINTDEF[EXPR;FILE;lEFT;DEF;TAIl;NODOFlG] 
lISPXPRINTFLG (system variable/parameter) ...... . 
lispxprinting functions ........................ . 
lISPXPRIN1[X;Y;Z;NODOFlG] ...................... . 
LISPXPRIN2[X;Y;Z;NODOFlG] ........•.............. 
lISPXREAD[FIlE;RDTBl] .•......................... 
LISPXREADFN (prog. asst. variable/parameter) 
LlSPXREADP[FlG] .........••.•.......•............ 
LISPXSPACES[X;Y;Z;NODOFlG] .....................• 
LlSPXSTATS[RETURNVAlUESFlG] ..•.................. 
lISPXSTOREVAlUE[EVENT;VAlUE] ...•..•........•.... 
LlSPXTAB[X;Y;Z;NODOFLG] ........................ . 
lISPXTERPRI[X;Y;Z;NODOFlG] ••...............•.... 
lISPXUNREAD[lST;EVENT] ..•.....•................. 
lISPXUSERFN (prog. asst. variable/parameter) 
LISPXWATCH[STAT; N] ......•.••.........•.......... 
LISPX/[X; FN;VARS] ..........•.................... 
LIST[X1;X2; ... ;Xn] SUBR· ....................... . 
list manipulation and concatenation ............ . 
list nodes .•.................................... 
LIST (makefile option) .•••.......•••.•.......... 

INDEX.24 

Page 
Numbers 

9.34.6 
20.7 
14.34 
14.32.34 
14.30-31 
14.36,48: 2.2: 3.5 
20.15 
14.32: 2.4; 14.12,14-15, 

33 
14.11: 3.1; 14.17 
9.14: 14.36; Al.3 

24.12 
24.41 
18.15-18 
18.17 
18.11,21-22 
24.43 
24.43 
23.54 

22.9.35-36: 9.41,48, 
17.3.8-9.21; 22.13, 

15-17.25.28-32,34, 
37-38,45 

14.58; 22.31 
22.38 
22.39.45 
22.12 
22.35.41.43 
22.34.36.43,45 

22.28 
22.28 
14.58 
22.28: 21.8; 22.37 
22.30.34 
22.30 
22.31 
22.30 
22.30 
22.30 
22.37.9.16.25.27,36,45 
22.31: 14.15 
22.38.45 
22.30 
22.46 
22.39 
22.30 
22.30 
22.38 
22.29.30,36-37 
22.46 
22.42.32 
6.1: 3.5 
6.1-9 
3.6.9 

14.65 



LIST (property name) ........................... . 
LISTFILES[FILES] NL· ........................... . 
LISTFILESTR (file package variable/parameter) 
LISTFILES1[FILE] ............................... . 
LISTGET[LST; PROP] .............................. . 
LISTGET1[LST; PROP] ............................. . 
LISTING? (compiler question) ................... . 
LISTP[X] SUBR .................................. . 
listp checks (in pattern match compiler) ....... . 
LISTPUT[LST;PROP;VAL] .......................... . 
LISTPUT1[LST;PROP;VAL] ................•....•.... 
lists .............................•.....•....... 
LITATOM[X] SUBR ................................ . 
1 iteral atoms .................................. . 

LITS (edita paramete.r) .•••........•............. 
LLSH[N;M] SUBR .................................. . 
(LO n) (edit command) .......................... . 
LOAD[FILE;LDFLG;PRINTFLG] .....•................. 
LOADAV[] ....................................... . 
LOADBLOCK[FN;FILE;LDFLG] •.•................•.... 
LOADCOMP[FILE; LDFLG] .•.................•........ 
LOADCOMP?[FILE;LDFLG] .......................... . 
LOADDB[FILE] ...................•................ 
LOADDBFLG (system variable/parameter) ......•.... 
LOADDEF[NAME;TYPE;SOURCE] .......•..........•.... 
LOADEDFILELST (file package variable/parameter) 
LOADEFS[FNS;FILE] .....•.................•....... 
LOADFNS[FNS;FILE;LDFLG;VARS] .................•.. 
LOADFROM[FILE;FNS;LDFLG] ...........•............ 
LOAOOPTIONS (system variable/parameter) ........ . 
LOADVARS[VARS; FILE; LDFLG] ...................... . 
LOAD?[FILE;LDFLG;PRINTFLG] ........•............. 
LOC[X] SUBR .......................•........•.... 
local record declarations (in cl isp) •...•...•... 
local variables ...........•..................... 
LOCAL (in Decl package) ........................ . 
LOCALFREEVARS (compiler variable/parameter) 
LOCALLY {use in Masterscope} ................... . 
LOCALVARS (compiler variable/parameter) ........ . 
LOCALVARS (f il e pack.age command) ............... . 
location specification (in editor) ............. . 
LOCATION UNCERTAIN (printed by editor) ......... . 
LOCKMAP[PTR] ...............•.......•....••...... 
LOG[X] ........•...........•..................... 
LOGAND[X1;X2; ... ;Xn] SUBR* ...........•......•... 
LOGIN (property name) .......................... . 
LOGOR[X1;X2; ... ;Xn] SUBR* ...................... . 
LOGOUT[] SUBR ....•.........•.•...........•...... 
LOGXOR[X1;X2;.~.;Xn] SUBR* ...•....•.•........... 
LOOKUPHASHFILE[KEY;VALUE;HASHFILE;CALLTYPE] 
lower case ......•............................... 
lower case comments ............................ . 
lower case in clisp ..•••.........•.....•........ 
lower case input ............................... . 
(LOWER x) (edit command) ..•.............•....... 
LOWER (edit command) .................•.......... 

INDEX.25 

Page 
Numbers 

8.6 
14.66,64-65 
14.51,66 
14.66 
5.13; 23.28 
5.13 

18.1-2 
5.10: 2.3 

24.2 
5.13: 23.28 
5.13 
3.4: 2.3; 3.1; 5.10 
5.9 
3.1,2; 5.9; 10.7, 

14.12 
24.12 
13.4 
'9.34,6 
14.38: 2.9; 18.5 
21.8 
14.40 
14.40 
14.41 
24.32 
24.32 
14.71 
14.63 
14.40 
14.39 
14.40: 18.8 
14.39 
14.40 
14.39 
13.10.10 
23.25 
5.4 

24.56 
18.21 
20.5 
18.18 
14.59 
9.19,43 
9.11 

21.15 
13.7 
13.4 
24.45 
13.4 
21.4; 2.3; 21.8 
13.4 
24.51 
10.4 
14.45-46 
23.61 
14.32 
9.50 
9.50 



lOWERCASE[FLG] ..•.. ; ........................... . 
(lP. coms) (edit command) ..................•... 
lPARKEY (dwim variable/parameter) .......•....... 
(lPQ . coms) (edit command) .................... . 
lRSH[N;M] ...•...................•............... 
lSH[N;M] SUSR ...........................•....... 
lSTFIl (compiler variable/parameter) ........... . 
lSUBST[NEW;OlD;EXPR] ........................... . 
L-CASE[X;FlG] .................................. . 

M (edit command) •............................... 
mach; ne instructions ........................... . 
MACRO (Masterscope template) .......•............ 
MACRO (property name) .......................... . 
MACRO (type of read-macro) .....................• 
MACROCHARS (askuser option) .................... . 
MACROS (fi le package command) .................. . 
macros (in compiler) ........................... . 
macros (in editor) ......................•....... 
macrotran package .............................. . 
MACSCRATCHSTRING (system variable/parameter) 
(MAKE argname exp) (edit command) ....•......•..• 
MAKEBITTABLE[L;NEG;A] .......................... . 
MAKEFIlE[FIlE;OPTIONS;REPRINTFNS:SOURCEFIlE] 
makefile and clisp .......................•...... 
MAKEFIlEFORM (file package variable/parameter) 
MAKEFILEOPTIONS (file package variable/parameter). 
MAKEFIlEREMAKEFLG 

(file package variable/parameter) ......... . 
MAKEFILES[OPTIONS;FILES] ...........•............ 
(MAKEFN (fn . actualargs) arglist 01 n2) 

(edit command) .....................•..•.... 
MAKEKEYLST[LST;DEFAULTKEY;LCASEFLG] .....•••....• 
MAKENEWCOM[NAME;TYPE;LISTNAME;FILE] ..........••. 
MAKENEWCONNECTION[HOST;TYPE;SKT;SCRATCHCONN; 

WAITFLG] ...................... . 
MAKESYS[FILE] SUBR ....................•......... 
MAKESYSDATE (system variable/parameter) .....••.. 
manipulating file names ...........•.•.•.•.•.••.• 
MAP[MAPX;MAPFN1;MAPFN2] ........................ . 
MAPATOMS[FN] SUBR .............................. . 
MAPBUFFERCOUNT[ONLY] .......•.......••........... 
MAPC[MAPX;MAPFN1~MAPFN2] ....................... . 
MAPCAR[MAPX;MAPFN1;MAPFN2] .....................• 
MAPCON[MAPX: MAPFN1; MAPFN2] ..................... . 
MAPCONC[MAPX :MAPFN1 ;MAPFN2] ...................•. 
MAPDL[MAPDLFN;MAPDLPOS] ........................ . 
MAPHASH[ARRAY;MAPHFN] •.......................... 
MAPHASHFILE[HASHFILE; MAPFN] ..••..............••. 
MAPLIST[MAPX ;MAPFN1 ;MAPFN2] .................... . 
MAPPAGE[PAGEII;FILE] ........•.................... 
MAPRELATION[RElATION;MAPFN] .................... . 
MAPRINT[LST;FILE;lEFT;RIGHT:SEP;PFN;lSPXPRNTFlG] .. 
MAPWORD[FILEADR; FILE] .......................... . 
MAP2C [MAPX :MAPY; MAPFNl; MAPFN2] ...•...••....•..•• 
MAP2CAR[MAPX:MAPY:MAPFNl;MAPFN2] ...•..•...•.•..• 
margins (for prettyprint) ....•..••.•..•.....•... 

INDEX.26 

Page 
Numbers 

23.61 
9.44 

17 .5 
9.44 

13.4 
13.4 
18.2 
6.4,5 

10.4; 9.50 

9.45 
18.21,28-29; 24.10 
20.17 
18.10.9,12 
14.26 
17.28 
14.59 
18.10-12 
9.45-46 

18.12; 17.15; 18.24 
21.3,12 
9.54 

10.7 
14.64-66; 17.21; 18.8 
23.60,23 
14.66 
14.65 

14.71,65 
14.66 

9.53 
17 .29 
14.76 

24.46 
3.11 
3.11 

14.6-7 
11.2 
10.4 
21.13 
11.2 
11.2 
11.2 
11.2 
12.12 
7.5 

24.50 
11.2 
21.13 
20.20 
11.3 
21.14 
11.3 
11.3 
14.79 



(MARK atom) (edit command) ..................... . 
MARK (edit command) ............................ . 
MARKASCHANGED[NAME;TYPE;NEWFLG] ................ . 
MARKLST (editor variable/parameter) ............ . 
MASK (edita parameter) ......................... . 
Mastel'scope .................................... . 
MASTERSCOPE[COMMAND] ........................... . 
Masterscope commands ........................... . 
MATCH (use in pattern match in clisp) .......... . 
MAX[X1;X2; ... ;Xn] '" ............................ . 
MAXLEVEL (editor variable/parameter) ........... . 
MAX LOOP EXCEEDED (printed by editor) ........... . 
MAX LOOP (ed itor val' i ab 1 e/parameter) ............ . 
MAX.FLOAT (system variable/parameter) .......... . 
MAX.INTEGER (system variable/parameter) ........ . 
(MBD e1 ... em) (edit command) ................. . 
MEMB[X;Y] ...................................... . 
MEMBER[X; Y] .... < •••••••••••••••••••••••••••••••• 

MEMSTAT[PG1;PGN;FORK] .......................... . 
MERGE [A; B; COMPAREFN] ........................... . 
MERGEINSERT[NEW;LST;ONEFLG] .................... . 
meta-LISP notation ............................. . 
MIN[X1;X2; ... ;Xn] '" ............................ . 
MINFS[N;TYPE] .................................. . 
MINUS[X] SUBR .................................. . 
MINUSP[X] SUBR ................................. . 
MIN.FLOAT (system variable/parameter) .......... . 
MIN.INTEGER (system variable/parameter) ........ . 
MISSING OPERAND (dwim error message) ........... . 
MISSING OPERATOR (clisp error message) ......... . 
MISSPELLED?[XWORD;REL;SPLST;FLG;TAIL;FN] ....... . 
mixed arithmetic ............................... . 
MKATOM[X] SUBR ................................. . 
MKLIST[X] ...................................... . 
MKSTRING[X] SUBR ............................... . 
MKSWAP[X] ...................................... . 
MKSWAPP[FNAME; CDEF] ............................ . 
MKSWAPSIZE (Overlay variable/parameter) ........ . 
MKUNSWAP[X] .................................... . 
MODEL33FLG (dwim variable/parameter) ........... . 
MODIFIER (use with interative statement operators) 
MOVD[FROM;TO;COPYFLG] .......................... . 
MOVD?[FROM;TO;COPYFLG] ......................... . 
(MOVE CH TO com. @2) (edit command) ........... . 
MOVEITEM[TOFILE;NAME;TYPE;FROMFILE] ............ . 
MSMARKCHANGED[NAME;TYPE;NEWFLG] ................ . 
MSPRINTFLG (Masterscope parameter) ............. . 
MULTIFILEINDEX[FILENAMELST;MAPFILE;NEWPAGEFLG] 
multifileindex package ........................ .. 
MULTIPLY DEFINED TAG (compiler error message) 
MULTIPLY DEFINED TAG, ASSEMBLE 

(compiler error message) .................. . 
MULTIPLY DEFINED TAG, LAP (compiler error message) 

(N e1 ... em) (edit command) .................. .. 
(n e1 ... em) (n a number, edit command) ....... . 
(n) (n a number, edit command) ................. . 

INDEX.27 

Page 
Numbers 

9.22 
9.22 

14.67 
9.22,63 

24.14 
20.1-22 
20.19 
20.9-12 
24.2 
13.7 
9.16,18 
9.44 
9.44 

13.6 
13.3 
9.30 

.5.12 
5.12 

24.44 
6.8 
6.8 
2.1 

13.7 
10.13: 3.10-11 
13.6 
13.3,5 
13.6 
13.3 
23.51 
23.51 
17.18,21 
13.6-7 
10.5: 3.2-4 

6.3 
10.4: 3.6,9; 10.8 

3.14 
3.14 
3.14 
3.14 

17.16 
23.21 
8.3 
8.3 
9.31-33 

14.76 
20.20 
20.3 
24.30 
24.30-31 
18.35 

18.35 
18.35 

9.24 
9.24,4 
9.24,4 



n (n a number, edit command) ..............•..... 
n (n a number, printout command) ............... . 
NAME (prog. asst. command) ..................... . 
NAMES RESTORED (printed by system) ............. . 
NAMESCHANGED (property name) ................... . 
NARGS[FN] ....................................... . 
NBOX[N] ......•.................................. 
NCHARS[X:FLG:RDTBL] SUBR .................•...... 
NCONC[Xl:X2: ... :Xn] SUBR· ...................... . 
NCONCl[LST:X] ...•..........•.................... 
NCREATE[TYPENAME;FROM] ..................•.•...•. 
NDIR (exec command) .................•........... 
NEEDUNSAVE (Masterscope paramater) •..•.......... 
NEGATE[X] ...........•....•......•............... 
NEGATE (edit command) .......................... . 
NEQIX ;Y] .....••......•.....•..........•.••••.... 
net package ....•.......•.•.•.................... 
NETSERVER[ARPAfI;WAITFLG] ....•................... 
NETUSER[HOST;USER;PUPfI;WAITFLG] .........•....... 
NEVER (clisp iterative statement operator) 
NEW (makefile option) ................•.......... 
NEWISWORD[SING;PLU;fORM;VARS] ............•..•..• 
NEW/FN[FN] ......................•.... '.' .......•. 
(NEX x) (edit command) ........................ .. 
NEX (edit command) ............•....•..•.....•... 
NIL ............•...........•....•.........•...•. 
NIL (edit command) ••...........••.....•.......•. 
NIL (Masterscope template) .••...•.•...•...••..•. 
NIL (use in block declarations) ...............•. 
NILCOMS (file package variable/parameter) •.....• 
NILL[] ..........•..........•........•..•....•..• 
NLAM (transor command) ......•..•..•..........•.. 
NlAMA (compiler variable/parameter) .....•....... 
NLAMBOA .......•..........................•...... 
NLAML (compiler variable/parameter) .......•..... 
NLEFT[L;N:TAIL] .....•......•.................... 
NLISTP[X] .•.......•..............•.............. 
NLISTPCOMS (transor parameter) ....•...•...•••... 
NLSETQ[NLSETX] NL ...........•••......•..•.•..... 

••••••••• 1 ••••••••••••••••••••••••••••••••••• 

NLSETQGAG (system variable/parameter) .......... . 
NO BINARY CODE GENERATED OR LOADED 

(compiler error message) .....•...•......... 
(NO BREAK INFORMATION SAVED) ................... . 
NO DO, COLLECT, OR JOIN (error message) ...•..... 
NO FILE PACKAGE COMMAND FOR (error message) 
NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT 

(compiler error message) •............•..... 
NO PROPERTY FOR (error message) •.....•.•......•. 
NO USERMACRO FOR (error message) ..............•. 
NO VALUE SAVED: (error message) .....•........... 
NOBINO ..................•..........•............ 

nobox package .................................. . 
NOBREAKS (break variable/parameter) ....•........ 
NOCASEFLG (askuser option) ....•..•...•..•.••..•. 

INDEX.28 

Page 
Numbers 

9.11,2 
23.45 
2Z .. 21,18.22 
15.19 
15.15 
8.4,1-3 

24.38-39 
10.3; 14.8 
6.1,2 
6.1,2 
3.8 

24.42 
20.21 
5.10 
9.51 
5.10 

24.46-47 
24.47 
24.47 
23.12 
14.65 
23.21 
22.42 
9.21 
9.21 
2.2 
9.62,43 

20.16 
18.22 
14.68 
5.10 

24.28 
18.3 
4.1,2-3; 8.2-3 

18.3 
6.5 
6.10; 2.2 

24.29 
16.12: 5.5; 16.11. 
22.43 
16.4,11 

18.35 
15.18 
23.19 
14.58 

18.34 
14.57 
14.58 
22.41 
3.3; 16.1: 2.6, 
5.6; 8.7; 9.61; 12.10. 

14.38; 22.33.40 
24.37-40 
15.17 
17 .27 



NOCLEARSTKLST (system variable/parameter) ...... . 
NOCLISP (makefile option) ...................... . 
NOECHOFLG (askuser option) ..................... . 
NOESC (type of read-macro) ..................... . 
NOESCQUOTE (type of read-macro) ................ . 
NOFIXFNSLST (dwim variable/parameter) .......... . 
NOFIXVARSLST (dwim variable/parameter) ......... . 

NOLINKDEF ...................................... . 
NOLINKFNS (compiler variable/parameter) ........ . 
NONE (in Decl package) ......................... . 
NONE (syntax class) ............................ . 
NONIMMED (type of read-macro) ...........•....... 
NON IMMEDIATE (type of read-macro) .............. . 
NON-ATOMIC CAR OF FORM (compiler error message) 
NON-NUMERIC ARG (error message) ................ . 
NOPACKCALLSFLG (Masterscope parameter) ......... . 
NORAISE (TENEX command) ........................ . 
NORMALCOMMENTSFLG (system variable/parameter) 
NOSAVE ...............•.......................... 
NOSPELLFLG (dwim variable/parameter) ........... . 
nospread functions ............................. . 
NOSWAPFNS (Overlay variable/parameter) ......... . 
NOT[X] SUBR ....... , ............................ . 
NOT A BINDABLE VARIABLE (compiler error message) .. 
NOT A FUNCTION (error message) ................. . 
NOT A HASHFILE (error message) ................. . 
NOT BLOCKED (printed by editor) .........•....•.. 
(NOT BROKEN) ................................... . 
NOT COMPILEABLE (compiler error message) ••...... 
NOT DUMPED (error message) ..................... . 
NOT EDITABLE (error message) ................... . 
NOT FOUND (compiler error message) ............. . 
NOT FOUND (error message) ...................... . 
(NOT FOUND) (typed by break) ................... . 
(NOT FOUND) (typed by breakin) ................. . 
(NOT FOUND) (value of unsavedef) .........•...... 
NOT FOUND, SO IT WILL BE WRITTEN ANEW 

(error message) ........................... . 
NOT IN FILE - USING DEFINITION IN CORE 

(compiler error messige) ...........•....... 
NOT ON BLKFNS (compiler error message) ......... . 
NOT ON FILE. COMPILING IN CORE DEFINITION 

(compiler error message) .................. . 
(NOT PRINTABLE) ................................ . 
NOTANY[SOMEX ;SOMEFN1; SOMEFN2] .................. . 
NOTCOMPILEDFILES (file package variable/parameter) 
NOTE[VAL; LSTFLG] ............................... . 
NOTE (transor command) ......................... . 
NOTEVERY[EVERYX;EVERYFN1;EVERYFN2] ............. . 
NOTE: BRKEXP NOT CHANGED. (typed by break) 
NOTFIRST (DECLARE: option) ..................... . 
(NOTHING FOUND) ......................... 0 ••••••• 

NOTHING SAVED (printed by editor) .............. . 
NOTIIING SAVED (pri nted by system) .............. . 
noticing files ................................. . 
NOTLISTEDFILES (file package variable/parameter) .. 

INDEX.29 

Page 
Numbers 

12.11 
14.65: 23.23,60 
17. 27 
14.27 
14.27 
23.57: 14.40; 23.41,43 
23.57: 14.40; 23.41,43. 

51 
18.17 
18.17,21-22 
24.60 
14.30 
14.28 
14.28 
18.34 
16.6: 13.2,5-6; 16.3 
20.18 
14.32 
14.45 
22.41 
17.20; 23.57 
4.2: 8.1 
3.14 
5.10 

18.35 
8.5-6; 19.4 

24.48 
9.55 

15.18 
18.34,5.21 
14.65 
9.59.61 

18.34 
14.66 
15.7 
15.16-17 
8.6 

14.79 

18.33 
18.34,14.20 

18.21 
14.43 
5.12 

14.64,66 
12.17 
24.28,26 

5.12 
15.11 
18.7 
8.6 
9.55 

22.31,18 
14.63 
14.64,66 



NOTRACE (Masterscope path option) •••.•..••••.... 
NOT-FOUND: •••••....•.•..•..•..•.••••.•....•.•... 
NTH[X ;N] •.••••••••••.•.•...••••••..•••.•.•.•..•. 
(NTH n) (n a number, edit command) ••.•.•.•••.... 
(NTH x) (edit command) ........................ .. 
NTHCHAR[X; N; FLG; RDTBL] SUBR •••••.•••••••••••.•.. 
NTYP[DATUM] SUBR •.••....••••..•.••.•••••..•..... 
NULL[X] SUBR ••••••••••••••••.•.••••..•••••••••.. 
null string .................................... . 
null-check •••.••••••.•.•.••.•.•••••••••..•••.... 
NUMBERP[X] SUBR •••.•••.••..•••..••••••••.•.•..•. 
numbers .•..••...•..•.•..•••..••••••.••.....•.•.. 

NUMFORMATCODE[FORMAT;SMASHCODE] .••••.••••••••.•. 
(NX n) (n a number, edit command) •...•••.....••• 
NX (edit command) .••••.•.••••••••...••.•.••...•. 

OCCURRENCES (printed by editor) •..•.....•.•.•••. 
octal ••••.•••••••••••••.••••••••••••.••.•••••.•. 
OK TO REEVALUATE (printed by dwim) •.••••.••••••• 
OK (break command) •••.••••.••••••.•••••.•••.•... 

OK (edit command) .•.••.••.••••••••••••.•••••.... 
OK (edita command) ............................. . 
OKREEVALST (dwim variable/parameter) •••.•••••.•• 
OLD (cl isp iterative statement operator) •••..•.. 
OLDVALUE (system variable/parameter) •••.••.•.••• 
ON PATH (Masters cope set specification) .•.•...•. 
ON (clisp iterative statement operator) .•••••... 
OPCODE (in a lap statement) •••.••••••••••••••••• 
OPCOOE? - ASSEMBLE (compiler error message) 
OPO (property name) ••••.•••••..••••.•••.•••••... 
open functions •••••.••••••••••.•••••••.•.••.•... 
open macros •••..•••••••••••.••.•••••.•••••.••••. 
OPENF[FILE;X] SUBR ...•..•••••.••••••.••.••••.••• 
OPENFILE[FILE;ACCESS;RECOG;BYTESIZE: 

MACHINE.DEPENDENT.PARAMETERS] .•••••••..• 
OPENHASHFILE[FILE;ACCESS] •••••••••••••••••••.••• 
opening files .•.•••••••••••••.••••••••••••••..•• 
OPENP[FILE ;ACCESS] SUBR .•••.••.••.••.•••..•..••• 
OPENR[A] SUBR ., ••••.•••••••.•..•••••..•••••..•.. 
OPNJFN[FILE;TYPE] SUBR ••••••••••••••••••••••••.. 
OR[Xl;X2; ... ;Xn] FSUBR* ........................ . 
order of precedence of CLISP operators .••••••.•• 
(ORF . patterns) (edit command) .••.•.•.••.•.•••. 
ORG (edi ta parameter) •••••••••••••••.••••.••••.. 
ORIG (used ai a readtable) •.••.••.•.•••.•••.•••• 
ORIGINAL (break command) ••.•.....••..•..•.••.... 
ORIGINAL (clisp iterative statement operator) 
ORIGINAL (fil e package command) ••••.•••••••••••. 
(ORIGINAL. coms) (edit command) .•••.••.••..•••• 
(ORR comsl .,. comsn) (edit command) .••.••...... 
OUTFILE[FILE] SUBR ••••.•••.••.••••••.••.•••..••• 
OUTFILEP[FILE] SUBR ••••••..••..•.••..•.••••••.•• 
OUTOF (clisp iterative statement operator) 
OUTPUT[FILE] SUBR ••.•••••••••••.••••••••••••.••• 
output buffer ••••••••••••••••••••••.••••••••••.. 

INDEX.30 

Page 
Numbers 

20.15 
14.39 
6.6 
9.14 
9.21 

10.3 
10.11 
5.10 

10.5 
2.2: 6.5-7 
5.9 

13.1: 5.9; 13.2-11, 
14.12 
14.22 
9.12 
9.12,6 

9.44 
14.12: 3.3,5: 14.17 
17.6 
15.5,4,11,13-14, 
16.2-3 
9.47,51,62 

24.12 
17.6 
23.13,5,14 

5.9 
20.8 
23.13,15 
18.28 
18.35,24 
18.25,24,28-29; 24.10 
18.9-10 
18.10 
21.12 

14.3 
24.48 
14.1-4 
14.4,2 
10.15 
21.11 
5.11 

23.9 
9.18 

24.11 
14.24 
15.13 
23.17,20 
14.60 
9.45-46 
9.44 

14.2,7-8 
14.3,2 
23.16: 12.15 
14.1 
14.19 



OUTPUT FILE? (compiler question) ............... . 
output funct ions ............................... . 
OUTPUT (Masterscope command) ................... . 
overflow ....................................... . 
overl ays ....................................... . 

(P m n) (edit command) ......................... . 
(P m) (edit command) ........................... . 
P (edit command) ............................... . 
P (file package command) ....................... . 
PACK[X] SUBR ................................... . 
PACKC[X] SUBR .................................. . 
PACKFILENAME[FIELDNAME1;FIELDCONTENTS1; ... ; 

FIELDNAMEn;FIELDCONTENTSn] * ....... . 
PACK*[X] SUBR* ................................. . 
page ........................................... . 
page mapping ................................... . 
PAGEFAULTS[] ................................... . 
parentheses counting (by READ) ................. . 
PARENTHESIS ERROR (error message) ............•.. 
PARSERELATION[RELATION] ........................ . 
passwords package .............................. . 
path options (in Masterscope) .................. . 
paths (in Masterscope) ......................... . 
PATLISTPCHECK (in pattern match compiler) ...... . 
pattern match compiler .....•..•................. 
pattern match (in editor) .•..................... 
(pattern .. @) (edit command) .................. . 
PATVARDEFAULT (in pattern match compiler) ...... . 
PB (break command) ............................. . 
PB (prog. asst. command) ....................... . 
PEEKC[FILE;RDTBL] SUBR ......................... . 
permanent fi les ................................ . 
permstatus package ............................. . 
PF[FN;FROMFILES:TOFILE] NL* .................... . 
PF*[FN;FROMFILES;TOFILE] NL* ................... . 
PL (prog. asst. command) ...................... .. 
place-markers (in pattern match compiler) .....•. 
PLUS[Xl;X2; ... ;Xn] SUBR* ..................•..... 
PLVLFILEFLG (system variable/parameter) ........ . 
pmap package ................................... . 
pnames . I •••••••••••••••••••••••••••••••••••••••• 

pointer ........................................ . 
POINTER (as a field specification) ............•. 
POINTER (record field type) .................... . 
POP (change word) ..............•................ 
POSITION[FILE: N] SUBR .............•............. 
POSSI~ILITIES[FORM##] NL ....................... . 
possibil ities 1 ists ........................... .. 
POSSIBLE NON-TERMINATING ITERATIVE STATEMENT 

(error message) ........................... . 
POSSIBLE PARENTHESIS ERROR (error message) 
PP[X] NL* ...............•....................... 
PP (edit command) .............................. . 
PPE (Masterscope template) ..................... . 
PPT[X] NL* ..................................... . 
PPT (edit command) ...•.••..•...•................ 

INDEX.31 

--- -;-~--

Page 
Numbers 

18.1,3 
14.17-19 
20.12 
13.2,5 
3.12-14 

9.40 
9.40 
9.40,2 

14.57 
10.2; 3.2-4,9 
10.3 

14.6 
10.2 
3.9 

21.13-15 
21.4 
14.12,32 

5.2 
20.19 
24.44 
20.15 
20.14-15 
24.2 
24.1-8 
9.14,15-16,63 
9.21 

24.3,5-6 
15.8 
22.24 
14.14,33 
24.34 
24.34 
14.44 
14.44 
22.23 
24.6 
13.6 
14.19 
21.13-15 
3.2,1,9; 10.1-3,7 
3.1 
3.7 

23.29 
23.38 
14.36 
12.16 
12.16 

23.19 
23.41 
14.43 
9.40,2 

20.16 
23.60,22 

9.41: 23.22,60 



PPV (edit command) ............................. . 
PP"'[X] NL'" ..................................... . 
PP'" (edit command) ............................. . 
precedence rul es (for CLISP operators) ......... . 
predi cates ..................................... . 
prefix operators (in clisp) .................... . 
PRESCAN[FlLE; CIIARLST; PRESCANFN] ................ . 
PRETTYCOMFONT .................................. . 
PRETTYCOMPRINT[X] NL ........................... . 
PRETTYOEF[PRTTYFNS;PRTTYFILE;PRTTYCOMS; 

REPRINTFNS;SOURCEFILE;CHANGES] ........ . 
PRETTYEQUIVLST (prettyprint variable/parameter) 
PRETTYFLG (prettyprint variable/parameter) 
PRETTYHEAOER (prettyprint variable/parameter) 
PRETTYLCOM (prettyprint variable/parameter) 
PRETTYPRINT[FNS; PRETTYOEFLG; FNSLST] ............ . 
pret typr i nt ing by system functions ............. . 
PRETTYPRINTMACROS (prettyprint variable/parameter) 
PRETTYPRINTYPEMACROS 

(prettyprint variable/parameter) .......... . 
PRETTYTABFLG (prettyprint variable/parameter) 
PRETTYTRANFLG (clisp variable/parameter) ....... . 
primary input file ............................. . 
primary output file ............................ . 
primary readtabl e .............................. . 
primary terminal table ......................... . 
PRINT[X;FILE;ROTBL] SUBR ....................... . 
print name ..................................... . 
PRINTBELLS[] ................................... . 
PRINTBINDINGS[AT;POS] .......................... . 
PRINTOATE[FILE;CHANGES] ........................ . 
PRINTDEF[EXPR;LEFT;DEF;TAILFLG;FNSLST] ......... . 
PRINTFNS[X;PRETTYOEFLG] ........................ . 
PRINTHISTORY[HISTORY;LINE;SKIPFN;NOVALUES;FILE] 
printing circular lists ....................... .. 
printing numbers ............................... . 
PRINTL[ITEM;OEPTH;LMARG;RMARG;FILE] ............ . 
printlevel ..................................... . 
PRINTLEVEL[CARN;CDRN] SUBR ..................... . 
PRINTMSG (system variable/parameter) ........... . 
PRINTNUM[FORMAT;NUMBER;FILE] ................... . 
pri ntnum package ............................... . 
pri ntout package ............................... . 
PRINTOUTMACROS (printout parameter) ............ . 
PRINTPARA[LMARG;RMARG;LIST;P2FLAG;PARENFLAG;FILE]. 
PRINTPROPS[AT] ................................. . 
PRIN1[X;FILE] SUBR ............................. . 
PRIN2[X;FILE;RDTBL] SUBR ....................... . 
prin2-pnames ................................... . 
PRIN3[X; FILE] SUBR ............................. . 
PRIN4[X;FILE;RDTBL] SUBR ....................... . 
private pages .................................. . 
PRNTL (prog. asst. command) .................... . 
PRODUCE[VAL] ................................... . 
PROG[VARLST:E1;E2; ... ;En] FSUBR* ............... . 
PROG label ..................................... . 
PROGN[X1;X2; ... ;Xn] FSUBR* ..................... . 

INDEX.32 

Page 
Numbers 

9.41; 14.80 
14.44 
9.41 

23.7 
5.9; 2.2 

23.8 
24.22 
14.50 
14.79 

14.78.64; 19.6 
14.49 
14.49,64 
14.79 
14.48 
14.43; 2.9 
14.18 
14.49 

14.49 
14.43 
23.60; 14.65; 23.22-23 
14.1,5,11 
14.1.5,17 
14.23.11,17,30 
14.29-30 
14.17; 3.1,5-6: 14.18 
10.1 
17.4; 14.18 
15.8; 22.24 
14.79 
14.79,49,80 
14.79 
22.44,18,30-31 
24.15-21 
14.20-22 
24.20 
14.18-19 
14.18: 2.2: 3.5 
16.9 
14.20 
14.20-22 
23.43-51 
23.49 
23.50 
22.24 
14.17: 3.2,5-6; 14.18 
14.17: 3.1,5-6; 14.18 
10.1-3 
14.17 
14.17 
3.11 

24.20 
12.14 
5.4 
5.4 
4.3; 5.4 



programmer's assistant .........••............•.. 
programmer's assistant and the editor ...•..•.... 
programmer's assistant commands .. , ...•..•....... 
PROGl[Xl;X2; ... ;Xn] FSUBR* .•....•......•.•.••... 
prompt character ....•.....•..••.•.•.....•....... 

PROMPTCHAR[ID;FLG;HISTORY] ..................... . 
PROMPTCIIARFORMS (prog. asst. variable/parameter) .. 
PROMPTCONFIRMFLG (askusel' option) ..•.....•.•.... 
PROMPTON (askuser option) ....•.•...••.•••...••.. 
PROMPT#FLG (prog. asst. variable/parameter) 
PROP (as value of DFNFLG) ..........•...•..•.•... 
PROP (file package command) ........•...••...••.. 
PROP (Masterscope template) .•..••.•....•••...... 
PROP (printed by editor) .....•..••..•........... 
proper tai 1 ......•.•.••.••••••.•..•..••.•.....•• 
property 1 ist •..••...••...••..•••.•.....•....•.. 
property name •.•.•.•.••...••.•.....•••.••.•...•. 
property val ue •.••...••.•..•.••.•.•..•••••.•.••. 
PROPNAMES[ATM] •.••...••.••••..•.•.......•..•.•.. 
PROPRECORD (record package) •.•.......•••••...••• 
PROPS (file package command) .•.•.•.•.•••••.•.••. 
PROTECTION VIOLATION (error message) .•.•.•.....• 
PRXFLG (system variable/parameter) ••••••••..•••• 
pseudo-carriage return •••.•....••.••.•.••••..••• 
PSTEP[] .....•.•.•.•..•..•.••...••.••..••••.•.••. 
PSTEPN[N] ..••.•..•.•..•.••••.••••..•••••..•••••. 
PUSH (change word) ...••••.••.•....•.••••.•...•.• 
pushdown 1 ist ••••••••.••••••.•.••••.••...•••.•.• 

PUSHLIST (change word) ....•....•......•..•...••• 
PUSHNEW (change word) ••••..•.•.•••••.••.••••.••. 
PUTASSOC[KEY;VAL;ALST] •.••••••.•••••.•••.••.•••. 
PUTD[FN;DEF] SUBR ....••••.•••••.•.•••••......•.. 
PUTDEF[NAME;TYPE;DEFINITION] .•.••.•••.••••.••••• 
PUTDQ[FN;DEF] NL ••••.••..•••.•.•..••••••••••.••• 
PUTDQ?(FN;DEF] NL .•...•••.••••.••.•••••.•..•..•• 
PUTHASH[ITEM;VAL;HARRAY] SUBR ...•.•.••••••.••••• 
PUT HASH F I LE[KEY; VALUE; HASHFILE] •.•••••.....••.•. 
PUTPROP[ATM; PROP ;VAL] ••.•.••.•..••••..•••••••••• 
PUTPROPS[ATM;PROP1;VAL1; ... ;PROPn;VALn] NL* 

Q (edit command) ............................... . 
Q (following a number) ......................... . 
QU (exec command) .•.•••.•..............••....... 
QUIT (TENEX command) •.•.••••.•.•..•••••••..••.•. 
QUOTE[X] NL * ...•••••..•.••••.••••.•.•••....••••. 
QUOTIENT[X;Y] SUBR .•.••••.••....•.•••......••••• 

R (edit command) ............................... . 
radix ...•.•..•••••..•••.••••.••••.•..••....•.... 
RADIX[N] 'SUBR .•...••.•..•.•.•..•...•..•..•.•.... 

RAISE[FLG; TTBL] SUBR .•••..••.•.•.•••••.•...•.... 
(RAISE X) (edit command) •..•.•..•.•.•••..•••...• 
RAISE (edit command) ........................... . 
RAISE (TENEX command) ••••..•.••••.•••.••••••..•. 

INDEX.33 

Page 
Numbers 

22.1-36 
22.45 
22.9-27 
5.4 
2.3,5-6; 9.1; 15.3. 

22.9.27,38 
22.38,27,45 
22.27,38 
17.27 
17.27 
22.27,38 

8.5 
14.57,60 
20.16 
9.58 
5.12 
7.1: 2.3; 7.2-3 
7.1,3 
7.1,3 
7.3 

23.28 
14.57 
16.8 
10.1 
22.15 
18.26 
18.32 
23.37 
12.2: 2.6; 4.2; 12.1, 

3-4 
23.37 
23.37 
5.13: 23.28 
8.2: 2.3,5; 8.1-2 

14.70 
8.2 
8.2 
7.4 

24.49 
7.2 
7.2 

9.54 
14.12: 3.3; 14.17,34 
24.41 
21.7,8 

5.2 
13.6 

9.38,5 
10.1-2 
14.34: 2.2; 3.3; 14.12. 

17 
14.32 
9.50 
9.50 

14.32 



RAND[LOWER; UPPER] ..... " ....................... . 
RANDACCESSP[FlLE] .............................. . 
random numbers ... " ............................. . 
RANDSET[X] ..................................... . 
RATEST[X] SUBR ................................. . 
RATOM[FILE;RDTBl] SUBR ...•........•............. 
RATOMS[A;FILE;RDTBl] ........................... . 
(RC x y) (edit command) ........................ . 
RC (makefile option) ........................... . 
(RC1 x y) (edit command) ....................... . 
READ[FIlE;RDTBL:FLG] SUBR ...................... . 
READBUF (prog. asst. variable/parameter) ....... . 
READC[FILE] SUBR ., ............................. . 
READFIlE[FILE] ..•.•.....•.....•.................. 
reading from strings ........................... . 
READLINE[RDTBl;lINE;LISPXFlG] .................. . 

READMACROS[FlG] SUBR ................•........... 
READP[fIlE;FlG] SUBR ........................... . 
READTABlEP[RDTBl] SUBR ......................... . 
readtab 1 es ....•................................. 
READVICE (property name) ....................•... 
READVISE[X] Nl· ................................ . 
read-macro characters .......................... . 
READ-MACRO CONTEXT ERROR (error message) ....... . 
read-macro opt ions ............................. . 
REAlFRAMEP[POS;INTERPflG] ..............•........ 
REAlSTKNTH[N;POS;INTERPFLG:OlDPOS] ............. . 
REANALYZE (Masterscope command) ................ . 
REBREAK[X] Nl· ..•............................... 
REClA 1M [TYPE ] ................•.................. 
RECLOOK[RECNAME;Tl;LOCAlDEC:PARENT;ERROR] ...... . 
RECOMPIlE[PFIlE;CFIlE;FNS] ..................... . 

RECOMPIlEDEFAULT (compiler variable/parameter) 
reconstruction (in pattern match compiler) 
record declarations (in clisp) ................. . 
record package (in clisp) ..............•........ 
RECORD (Masterscope template) .................. . 
RECORD (record package) ........................ . 
RECORDACCESS[fIELD;DATUM;DEC;TYPE;NEWVAlUE] 
RECORDFIElDNAMES[RECORDNAME] ................... . 
RECORDS (f il e package command) ................. . 
record-type (record package) ................... . 
(REDEFINED) (printed by system) ................ . 
REDEFINE? (compiler question) ..................• 
REDO N TIMES (prog. asst. command) ............. . 
REDO (prog. asst. command) .................... .. 
REDOCNT (prog. asst. variable/parameter) ....... . 
REFERENCE (Masterscope relation) ............... . 
REHASH[OlDAR; NEWAR] SUBR ....................... . 
REHASHFIlE[HASHFIlE] ........................... . 
relations (in Masterscope) .....•.........•....•. 
RELBlK[ADDRESS;N] SU8R ...•...................... 
releasing stack pointers .•..•...............•... 
RELINK[fN ;UNLINKFlG] .•..•.•..•.................. 

INDEX.34 

Page 
Numbers 

13.S 
14.S 
13.S 
13.S 
14.14 
14.12,13,33 
14.13 
9.39 

14.65 
9.39 

14.11,12,33 
22.37-38 
14.14,33 
14.42 
14.11 
14.15: 22.35: 9.56, 
14.16; 22.12,16,27,30, 

36-37,45 
14.28 
14.15 
14.24 
14.23,11,17,24-29 
19.5-6 
19.5: 14.5S; 19.6 
14.25-29 
16.8: 14.28 
14.27 
12.7 
12.S 
20.9 
15.18,15 
10.11: 3.10 
23.35 
18.7: 14.65-66: 18.5,S, 

21 
lS.8,23 
24.7 
23.27,25,28-32 
23.25-36 
20.17 
23.28 
23.36 
23.35 
14.68: 23.27,29 
23.27 
8.5: 14.38 

18.3 
22.12 
22.12,15,18 
22.13 
20.5 
7.5 

24.50 
20.4-6 
21.6: 16.7 
12.12 
18.17 



re1 inking .....•................................. 
relocation information (in arrays) ..... L •••••••• 

RELSTK[POS] SUBR ............................... . 
RELSTKP[X] ..................................... . 
REMAINDER[X; Y] SUBR ............................ . 
REMAKE (makefile option) ....................... . 
remaking a file ................................ . 
REMARK (transor command) ....................... . 
REMEMBER (prog. asst. command) ................. . 
REMOVE[X;L] .................................... . 
REMPROP[ATfvI;PROP] .............................. . 
REMPROPLIST[ATM;PROPS] ......................... . 
R~NAME[OLD;NEW;TYPES;FILES;METHOD] ............. . 
RENAMEFILE[OLD;N£W] ..•.......................... 
REPACK (edit command) .......................... . 
(REPACK @) (edit command) .•..................... 
REPEAT (prog. asst. command) ......•............. 
REPEATUNTIL (clisp iterative statement operator) .. 
REPEATWHILE (clisp iterative statement operator) .. 
REPLACE UNDEFINED FOR FIELD (error message) 
REPLACE (Masterscope relation) ................. . 
REPLACE (Masterscope template) ................. . 
REPLACE (use in records in c1isp) .............. . 
(REPLACE @ WITH ... ) (edit command) ............ . 
REPLACEFIELD[OESCRIPTOR;DATUM;NEWVALUE] ....•.... 
replacements (in pattern match compiler) ....... . 
REREADFLG (prog. asst. variable/parameter) 
RESET[] SUBR ................................... . 
RESET .......................................... . 
RESET (printed by system) ...................... . 
RESETBUFS[ FORM1; FORM2; ... ; FORMn] NL. . .......... . 
RESETFORM[RESETFORM;FORM1;FORM2; ... ;FORMn] NL· 
RESET FORMS (system variable/parameter) ......... . 
RESETLST[RESETX] NL· ........................... . 
RESETREADTABLE[RDTBL;FROM] SUBR ..........•...... 
RESETSAVE[RESETX] NL· .......................... . 
RESETTERMTABLE[TTBL:FROM] SUBR ................. . 
RESETUNDO[X:STOPFLG] ........ ~ ...•............... 
RESETVAR[VAR;NEWVALUE;FORM] NL ................. . 
RESETVARS[VARSLST;E1;E2: ... :En] FSUBR •.......... 
restoring input buffers .. : ..................... . 
RESULTS[RETURNVALUESFLG] ....................... . 
RESUME[FROMPTR;TOPTR;VAL] SUBR ................. . 
RETAPPLY[POS;FN:ARGS;FLG:INTERNALfLG] .......... . 
RETEVAL[POS;FORM;FLG:INTERNALfLG] .............. . 
RETFNS (compiler variable/parameter) ........... . 
RETFROM[POS:VAL:fLG] SUBR ...................... . 
RETRIEVE (prog. asst. command) ................. . 
RETRY (prog. asst. command) ........•............ 
RETTO[POS;VAL:FLG] SUBR ........................ . 
RETURN[X] SUBR ................................. . 
RETURN (askuser option) .................. , ..... . 
RETURN (break command) ......................... . 

RETURN (Masterscope template) .................. . 
RETURN (use in iterative statement in clisp) 
RETURNS (in Decl package) ..•............•....... 

INDEX.35 

Page 
Numbers 

18.17-18 
3.5 

12.11,12 
12.11 
13.6 
14.65 
14.77 
24.26 
2.2..2.3: 14.67 

6.3 
7.2 
7.2. 

14.71 
14.5 
9.51 
9.51 

22;13 
23.14 
23.14 
23.30 
20.5 
20.17 
23.26 
9.27 
3.8 

24.6 
22.37,39 
16.11 
5.7 

22.33,40 
14.34 
5.8 

22..2.8: 14.35 
5.7 

14.24 
5.7 

14.2.9 
2.2.43: 5.9: 22.34 
5.8: 18.5 
5.8 

22.26 
21.6 
12.15 
12.10 
12.9: 15.4; 17.10 
18.14,19,21 
12.10: 15.4: 16.4 
2Z. 22,18,28 
22.17,18 
12.10 
5.5 

17.27 
16.6: 2.9; 15.4,14, 
16.1.3 
20.16 
23.17 
24.68,55.58 

------- ---~---
' .. '~: - ~ . 



RETYPE (syntax class) ...............•........... 
reusing stack pointers ......................... . 
REUSING (record package) ....................... . 
REVERSE[L] ..................................... . 
REVERT (b reak command) ......................... . 
(RI n m) (edit command) ........................ . 
RIGHTBRACKET (syntax class) .................... . 
RIGHTPAREN (syntax class) ...................... . 
RLJFN[JFN] ..................................... . 
(RO n) (edit command) ...•....................... 
root name of the fi 1e .......................... . 
RPAQ[X; Y] NL ................................... . 
RPAQQ[X; Y] NL .................•......•.......... 
RPARKEY (dwim variable/parameter) ....•....•..... 
RPLACA[X; Y] .................................... . 
RPLACD[ X: Y] .............................••....... 
RPLNODE[X ;A:D] ................................. . 
RPLNODE2[X :Y] .................................. . 
RPLSTRING[X;N:Y] SUBR ..........••............... 
RPT[RPTN: RPTF] ................................. . 
RPTQ[N;FORM1:fORM2: ... : FORMn] NL* .............. . 
RSH[N; M] .............................•.......... 
RSTRING[FILE:RDTBL] SUBR ....................... . 
RUN (TENEX command) ............................ . 
running other subsystems from within Interlisp 
RUNONFLG (dwim variable/parameter) ............. . 
run-on spellin~ corrections ....•................ 
(R1 x y) (edit command) ...................•..... 

(S var. @) (edit c'ommand) ..................... . 
S (response to compiler question) .............. . 
SASSOC[KEY:ALST] ............................... . 
SATISfIES (in Decl package) .................... . 
SAVE EXPRS? (compiler question) ................ . 
SAVE (edit command) ................•..•......... 
SAVEDBFLG (system variable/parameter) .......... . 
SAVEDEF[NAME;TVPE;DEFINITION] .....•........•.... 
SAVEPUT[ATM;PROP:VAL] .......................... . 
SAVESET[NAME;VALUE:TOPFLG;fLG] : ............•.... 
SAVESETQ[SETQX] NL* ............••..•............ 
SAVESETQQ[SETQX:SETQY] NL ...................... . 
SCODEP[FN] SUBR ...••.•..•..•.....•...•.•........ 
SCRATCHCOLLECT-

(clisp iterative statement operator) .•..... 
SCRATCHLIST[LST;X1;X2; ... ;Xn] .................. . 
scratchl ist package ....•.•........•............. 
search algorithm (in editor) .....••............. 

,searching file's .................•.•............. 
searching strings .......................•....... 
SEARCHING ... (typed by breakin) .........•.•..... 
SEARCHPDL[SRCHFN;SRCHPOS] .•..................... 
second pass (of the compiler) .....•............. 
segment patterns (in pattern match compiler) 
SELECTQ[X;CLAUSEl;CLAUSE2; ... :CLAUSEn;DEFAULT] NL* 
SEPARATE (Masterscope path option) ............. . 
separator characters .......•........•.•......... 
SEPRCASE[CLISPFLG] ...........•.••.••.•.......... 

INDEX.36 

Page 
Numbers 

14.30 
12.13 
23.33 
6.4 

15.12 
9.34,6 

14.25 
14.25 
21.12 
9.34,6 

14.54 
5.6; 14.38: 22.33 
5.6; 14.38,78; 22.33 . 

17 .5 
5.2 
5.1 
5.2 
5.2 

10.6,8 
8.8 
8.8 

13.4 
14.12,13 

3.11 
21.7 
17.19-20 
17.19,4 

9.39 

9.23 
18.2-3 
5.13 

24.54 
18.3 
9.47,49,62 

24.32 
8.6: 14.70 
7.2 

22.33,40 
22.33 
22.33 
3.14; 8.3,3 

24.37 
24.36 
24.36 
9.16-17 

14.8-9 
10.6-7 
15.17 
12.12 
18.23 
24.4-5 
6.3,4 

20.15 
14.26,13-15,33 
14.9 



SET[X;Y] SUSR , .............. , .................. . 
set specifications (in Masterscope) ............ . 
SET (Masterscope relation) .................•.... 
SET (Masters cope template) ..................... . 
SETA[A:N;V] .................................... . 
SETARG[VAR;M;X] FSUBR .......................... . 
SETATOMVAL[ATM;VAL] SUBR ....................... . 
SETBLIPVAL[BLIPTYP;IPOS;N;VAL] SUBR ............ . 
SETBRK[LST;FLG;RDTBL] SUBR ..............•....... 
SETD[A;N;V] .................................... . 
SETDECL TYPEPROP[TYPE; PROP ;VAL] ................. . 
SETERRORN[NUM;MESS] SUBR ....................... . 
SETFILEINFO[FILE;ATTRIB;VALUE] ................. . 
SETFILEPTR[FILE;ADR] SUBR ...................... . 
SETFN (property name) ......................... .. 
SETINITIALS[] .................................. . 
SETLINELENGTH[N] .......................... '.' ... . 
SETN[VAR; X] FSUBR , ... , ......................... . 
SETPROPLIST[ATM;LST] .................... ,.,., .. . 
SETQ[X; Y] FSUBR'" ............................... . 
SETQ (in an assemble statement) ................ . 
SETQQ[X; Y] NL ........................•.......... 
SETREADMACROFLG[FLG] SUBR ., .... , ............... . 
SETREADTABLE[RDTBL;FLG] SUBR ................... . 
sets (i n Masterscope) ......................... .. 
SETSBSIZE[N] SUBR .............................. . 
SETSEPR[LST;FLG;RDTBL] SUBR .................... . 
SETSTKARG[N;POS;VALUE] SUBR .................... . 
SETSTKARGNAME[N;POS;NAME] SUBR ................. . 
SETSTKNAME[POS;NAME] SUBR ...................... . 
SETSYNONYM[NEWPHRASE; MEANING] •.................. 
SETSYNTAX[CH; CLASS; TABLE] ...................... . 
SETTEMPLATE[FN;TEMPLATE] ....................... . 
SETTERMCHARS[NEXTCHAR;BKCHAR;LASTCHAR: 

UNQUOTECHAR;2CHAR;PPCHAR] .......... . 
SETTERMTABLE[TTBL] SUBR .................... , ... . 
SETTOPVAL[ATM; VAL] SUBR ........................ . 
SETTYPEDESCRIPTION[TYPE;STRING] ................ . 
SETWORDCONTENTS[PTR;N] ......................... . 
SHALL I LOAD (system variable/parameter) ....... . 
s hallow bin din g ................... , ............ . 
shared pages ................................... . 
shared system .................................. . 
sharing ........................................ . 
SHOULD BE A SPECVAR (compiler error message) 
SHOULDNT[] ..................................... . 
SHOULDN'T HAPPEN (error message) ............... . 
SHOW PATHS (Masterscope command) ............... . 
SHOW WHERE (Masterscope command) ............... . 
SHOW (transorset command) ...................... . 
(SHOW. x) (edit command) ...................... . 
SHOWDEF[NAME; TYPE; FILE] ........................ . 
SHOWPRINT[X; FILE; RDTBL] ........................ . 
SHOWPRIN2[X; FILE; RDTBL] ........................ . 
SIDE (propel'ty name) ........................... . 
SIN[X; RADIANSFLG] .............................. . 
SINGLEFILEINDEX[FILE;OUTPUTFILE;NEWPAGEFLG] 

INOEX.37 

Page 
Numbers 

5.5 
20.6-8 
20.4 
20.16 
10.9: 3.5; 16.7 
8.9 
5.6 

12.4 
14.13 
10.10; 3.5 
24.65 
16.11 
14.5 
14.8,36 
23.54 
14.37 
14.35 
13.10,8-9 
7.1: 2.3 
5.5 

18.26 
. 5.5 
14.28 
14.24 
20.6-8 
3.14; 16.8 

14.13 
12.8 
12.8 
12.7 
20.19 
14.25 
20.18 

14.36: 9.14; Al.3 
14.29 
5.6: 2.3 

10.13 
21.14 
17.13 
12.1; 5.6; 18.4 

3.11 
3.11 
3.11 

18.34 
16.10 
16.10 
20.10 
20.11 
24.26 
9.44 

14.70 
14.18: 15.8~9.19: 22.9 
14.18: 22.18,44 
22.35.41,43.45 
13.7 
24.31 



singlefileindex package .............•........... 
single-stepping a program ...................... . 
SKOR[XWORD;TWORD;NCX;NCT;FLG] .................. . 
SKREAD[FILE;REREADSTRING] ..........•............ 
small integers ................................. . 
SMALLP[N] ...................................... , 
SMARTARGLIST[FN;EXPLAINFLG;TAIL] ............... . 
SMASH (Masterscope relation) ................... . 
SMASH (Masterscope.template) ................... . 
SMASHFILECOMS[FILE] ..........•.................. 
SOME[SOMEX;SOMEFNl;SOMEFN2] .................... . 
SORRY, I CAN'T PARSE THAT (error message) ...... . 
SORRY, NO FUNCTIONS HAVE BEEN ANALYZED 
. (error message) ........................... . 

SORRY, THAT ISN'T IMPLEMENTED (error message) 
SORT[DATA;COMPAREFN] ........................... . 
SP (in an assemble statement) .................. . 
space ........•..............•................... 
SPACES[N;FILE] SUBR ..............•.............• 
spaghetti stacks ................................ . 
SPECIAL (in Decl package) ......•................ 
SPECVARS (compiler variable/parameter) ......... . 
SPECVARS (file package command) ................ . 
SPELLFILE[F ILE; NOPRINTFLG; NSFLG] ......•......... 
spelling completion .....................•........ 
spelling correction ............................ . 

spelling correction on file names .............. . 
spelling correction on hash files .•............. 
spelling correction protocol ................... . 
spell ing corrector ............................. . 
spelling lists .....•......................•..... 

SPELLINGSI (dwim variable/parameter) ........... . 
SPELLINGS2 (dwim variable/parameter) ........... . 
SPELLINGS3 (dwim variable/parameter) ........... . 
SPLICE (type of read-macro)' .................... . 
(SPLITC x) (edit command) ........•.............. 
spread funct ions ..... " .......................... . 
spreading arguments ............................ . 
SQRT[N] •........................................ 
SQRT OF NEGATIVE VALUE (error message) ......... . 
square brackets (inserted by prettyprint) ...... . 
square brackets (use in input) ...•.•.......•.... 
SRCCOM ......................................... . 
ST (response to compiler question) ............. . 
stack descriptor ............................... . 
stack functions ....•....................•....... 
STACK OVERFLOW IN GC - COMPUTATION LOST 

(error message) ........................... . 
STACK OVERFLOW (error message) ................. . 
stack pointer ..................................• 
STACK POINTER HAS BEEN RELEASED (error message) 

INDEX.38 

Page 
Numbers 

24.31 
9.42 

17.16-17 
14.16 
3.3.1; 5.10; 13.1 

13.4: 3.3; 13.1 
8.4 

20.4 
20.16 
14.76 
5.12 

20.20 

20.20 
20.20 
6.7 

18.26 
3.1 

14.17 
12.4-13 
24.56 
18.18: 5.8; 18.19,21 
14.59 
17.Z1: 14.2; 16.7,10 
17.7 
17.7: 9.56-57,59,61, 
14.59-60; 15.13, 
17.8-10; 22.12,31, 
23.7,10-11,55 
17 .21 
24.51 
17.4-5 
17.7,2,8-10,16-17 
17.8: 9.56-57,59, 
14.59-60; 15.13; 17.9, 

12-14; 22.12,31, 
23.7,10-11,55 
17.8,9,14,18 
17.8,9,13-14,18 
17.8,9,12,18; 22.40 
14.26 
9.51 
4.Z: 8.1 
4.2 

13.7 
13.7 
14.48 
2.4 
6.9 

18.1-3 
12.6 
12.6-12 

16.5 
16.6: 12.12 
12.5 
12.6 



STACK PTR HAS BEEN RELEASED (error message) 
STACKP[X] SUBR ................................. . 
statistics ..................................... . 

, STF (response to compiler question) ........... .. 
STKAPPLY[POS;FN;ARGS;FLG;INTERNALFLG] .......... . 
STKARG[N;POS] SUBR ............................. . 
STKARGNAME[N; POS] SUBR ......................... . 
STKARGS[POS;NARGS] ............................. . 
STKEVAL[POS;FORM;fLG;INTERNALFLG] .............. . 
STKNAME[POS] SUBR .............................. . 

. STKNARGS[ paS] SUBR ..................•........... 
STKNTH[N;IPOS;OPOS] SUBR ....................... . 
STKNTHNAME[N; POS] SUBR .... , .................... . 
STKPO~[~RAMENAME;N;IPOS;OPOS] SUBR ............. . 
STKSCAN[VAR;IPOS;OPOS] SUBR .................... . 
STOP (at the end of a file) ................•.... 
STOP (ed i t command) .........•................... 
STORAGE[FLG;GCFLG] ............................. . 
storage allocation ............................. . 
STORAGE FULL (error message) ................... . 
STREQUAL[X;Y] SUBR ........................... i •• 

STRF (compiler variable/parameter) ............. . 
string characters .............................. . 
string functions ................•....•.......... 
string pointers ................................ . 
string storage ..................•...•........... 
STRINGDELIM (syntax class) ..................... . 
STRINGP[X] SUBR ............... " ............... . 
strings ...................•..................... 
STRPOS[PAT;STRING;START;SKIP;ANCHOR;TAIL] ..•.... 
STRPOSL[A;STR;START;NEG] ....................... . 
structure modification commands (in editor) 
structure modification (the changetran package) 
SUBATOM[X;N;M] ................................. . 
subdeclarations (record package) ............... . 
SUBLIS[ALST; EXPR; FLG] •.......................... 
SUBPAIR[OLD;NEW;EXPR;FLG] ...................... . 
SUBR (function type) ........................... . 
SUBR (property name) ..........•................. 
SUBRP[FN] SUBR ................................. . 
subrs .......................................... . 
SUBR* (function type) .......................... . 
SUBSET[MAPX;MAPFN1;MAPFN2] ..................... . 
SUBST[NEW;OLD;EXPR] ............................ . 
substitution macros ............................ . 
SUBSTRING[X;N;M;OLDPTR] SUBR ................... . 
SUBSYS[FILE/FORK;INCOMFILE;OUTCOMFILE; 

ENTRYPOINTFLG] ........................... . 
SUBTYPES[TYPE] ........ ' ......................... . 
subtypes (in Decl package) ..................•... 
SUB1[X] ........................................ . 
SUCHTHAT (in event address) .................... . 
SUM (clisp iterative statement operator) ....... . 
SUPERTYPES[TYPE] ............................... . 
super types (in Decl package) ..•.......•......... 
(SURROUND @ IN ... ) (edit command) ............. . 
SUSPICIOUS PROG LABEL (error message) ......•.•.. 

INDEX.39 

Page 
Numbers 

16.7 
12.11 
22.46 
18.2-3 
12.9 
12.8: 15.8 
12.8 
12.9 
12.9: 15.8 
12.7 
12.8 
12.7 
12.7 
12.6 
12.8 
14.38,42, 
9.47.51,62; 15.16 

10.14 
3.9 

16.7 
10.4 
18.2.3,5 
3.7.1,6,9; 10.7 

10.4-7 
3.7,1,9; 10.5,7-8 

10.7-8 
14.25 
5.9; 10.4 
3.6: 5.9; 14.11 

10.6: 14.8 
10.7 
9.24-40 

23.37 
10.6 
23.32 
6.5 
6.5 
4.2: 8.3-4 
8.6 
8.3.1-3 
8.1: 2.2 
4.2: 8.3-4 

11.2 
6.4,5 

18.11 
10.6: 3.6; 10.8 

21.7,8; 22.28 
24.66 
24.60 
13.2 
22.11 
23.12, 
24.66 
24.60 
9.31 

23.41 



SVFLG (compiler variable/parameter) ............ . 
(SW n m) (edit command) ........................ . 
SWAP (change word) ......•..................... ' .. 
(SWAP @1 @2) (edit command) .................... . 
SWAPBLOCK TOO BIG FOR BUFFER (error message) 
SWAPC. (edit command) ........................... . 
swappable array ................................. . 
swapping buffer ........•..............•......... 
SWPARRAY[N;P;V] SUBR .....•...................... 
SWPARRAYP[X] SUBR .............................. . 
SY (prog. asst. command) ...•.................... 
symbolic file input ............................ . 
SYMLST (edita parameter) ....................... . 
synonyms ....................................... . 
syntax cl asses ................................. . 
SYNTAXP[CHARCODE;CLASS;TABLE] .................. . 
SYSBUF[FLG] SUBR .. , ............................ . 
SYSHASHARRAY (system variable/parameter) ....... . 
SYSIN[FILE] SUBR .......•..........•............. 
SYSLINKEDFNS (system variable/parameter) ....... . 
SYSLOAD (load option) .......................... . 
SYSOUT[FILE] SUBR ... , .~+ •••••••••••••••••••••••• 

SYSOUTDATE (system variable/parameter) ......... . 
SYSOUTFILE (system variable/parameter) ......... . 
SYSOUTGAG (system variable/parameter) .•.....•... 
SYSOUTP[FILE] .................................. . 
SYSOUT.EXT (system variable/parameter) ......... . 
SYSPRETTYFLG (system variable/parameter) ....... . 

SYSPROPS (system variable/parameter) ..•......... 
SYSTEMFONT .......................•........•....• 
SYSTEMTYPE[] SUBR ....•...........••.......•...•. 

T FIXED (printed by dwim) ...................... ; 
T (printout command) ....•......................• 
TAB[POS;MINSPACES;FILE] ......•.................. 
tab (edita command) ....................•........ 
tail of a list ....................•........•.... 
TAILP[X;Y] ...........••.....•.........•...••...• 
TAN[X;RADIANSFLG] .............•................. 
TCOMPL[FILES] ..........................•........ 

TCONC[PTR; X] .................•.................. 
TELNET[CONNECTION;TYPE;SKT;8UTTONCHAR] ......... . 
te 1 net package .........•..................•.•... 
TEMPLATES (fil e package command) ..........•.•..• 
templates (in Masterscope) ......•..•....••...... 
TENEX[STR; FILEFLG] ............................. . 
TENEX ........................................... . 

terminal 

terminal initiated breaks ..•.................... 
terminal syntax classes .......•.•..............• 
terminal tables ............................•.... 
TERMTABLEP[TTBL] SUBR ...•.......•....•...•...... 
TERPRI[FILE] SUBR ..•...........................• 

INOEX.40 

Page 
Numbers 

18.2-3 
9.39-40 

23.38 
9.40 

16.8 
9.51 
3.U 
3.13 
3.14 
3.14; 10.9 

22.28 
14.38-42 
24;13 
17.7 
14.24-30 
14.25 
14.34 
7.4-5 

14.37: 2.9 
18.17 
14.38.39: 17.13 
14.36: 2.9; 14.38 
14.37 
14.37 
14.37 
14.38 
14.37 
14.18: 15.8-9,19; 22.9. 

18,44 
7.3: 14.57 

14.50 
21.9 

17 .6 
23.46 
14.17 
24.11 
5.12 
5.U 

13.8 
18.6: 14.65; 18.6-7. 

21-22 
6.2.3 

24.44: 21.15 
24.44 
14.58 
20.16-18 
21.9 
2.1.3.5.9; 3.1,4,11. 

13.10; 14.8; 21.11-12 
9.41; 14.1.5.11-12~15, 

32.44 
16.2 
14.30 
14.29-33 
14.29 
14.17 



TEST (edit command) ............................ . 
TEST (Masterscope relation) .................... . 
TEST (Masterscope template) .................... . 
TEST (transorset command) ...................... . 
TESTMODE[FLG] ........... , ...................... . 
TESTMODEFLG (prog. asst. variable/parameter) 
TESTRELATION[ITEM;RELATION;ITEM2;INVERTED] .•.... 
THE (in Decl package) .......................•... 
THEN (in Decl package) ........................ .. 
THERE IS (clisp iterative statement operator) 
THOSE (Masterscope set specification) .......... . 

,THRU (edit command) ............................ . 
THRU (in event specification) .................. . 
TIME[FORM;CNT] NL .............................. . 
time stamp package ............................. . 
TIMES[Xl;X2; ... ;Xn] SUBR* ...................... . 
time-slice (of hiatory list) ................... . 
TO (clisp iterative statement operator) ........ . 
TO (edit command) .............................. . 
TO (in event specification) .................... . 
TO (Masterscope path option) ................... . 
too few arguments ...............•............... 
too many arguments ..............•............... 
TOO MANY FILES OPEN (error message) ............ . 
TOO MANY USER INTERRUPT CHARACTERS (error message) 
top level value ................................ . 
TOP (as argument to advise) .................... . 
TRACE[X] 'NL* ................................... . 
translation notes (in transor package) ......... . 
transl at ions (in cl isp) ....................... .. 
transor package ................................ . 
transor sweep .................................. . 
TRANSORSET[] ................................... . 
TRAP AT LOCATION (error message) ............... . 
TREAT AS CLISP ? (printed by dwim) ............. . 
TREATASCLISPFLG (clisp variable/parameter) 
TREATED AS CLISP (printed by dwim) ............. . 
true ........................................... . 
TRUSTING (DWIM mode) ........................... . 
TRYNEXT[PLST##;ENDFORM##;VAL##] NL ............. . 
TTYLINELENGTH (system variable/parameter) ...... . 
TTY#[] ......................................... . 
TTY: (edit command) .••.......................... 
TTY: (printed by editor) ....................... . 
TY (exec command) .............................. . 
type declarations .............................. . 
type description ............................... . 
type names .•...................•................ 
type numbers ................................... . 
TYPE (Masterscope relation) ........•............ 
typed definitions .............................. . 
TYPENAME[DATUM] SUBR ........................... . 
TYPENAMEFROMNUMBER[N] .......................... . 
TYPENAMEP[DATUM;TYPENAME] ...................... . 
TYPENUMBERFROMNAME[NAME] ....................... . 
TYPEP[DATUM; N] ................................. . 
TYPERECORD (record package) ........•.........•.. 

INDEX.41 

~--~--~,~----~--~--~.---------

~~.-""~!..: .... ..-r_"'~,....),.---"';->;;. ~, =~_o':,"*-._ . .::,--_~,-t,. 

Page 
Numbers 

9.55 
20.5 
20.16 
24.26 
22.32 
22.32 
20.19 
24.59 
24.57 
23.12 
20.8 
,9.35-38 

22.11 
21.1,2 
9.59: 8.5 

13.6 
22.7,40 
23.14,15-16 

9.35-38 
22.11 
20.15 
4.2 
4.2 

16.6 
16.8 
5.6 

19.3-4 
16.16,1.5.13.17 
24.22-24 
23.22-23 
24.21-29 
24.28 
24.24,21 
16.6: 21.9 
23.51 
23.51 
23.51 
2.2: 5.3 

17.3,2.17; 23.3~51-52 
12.17 
14.35 
24.43 
9.49,44.47; 15.16 
9.49 

24.42 
24.53-68 
10.13 
10.10-11 
10.10-11 
24.67 
14.55-56 
10.10 
10.11 
10.11 
10.11 
10.11 
23.28 



types (in Masterscope) ......................... . 
typescript files ...•...•........•.•.•••..••..•.. 
TYPESOF[NAME;POSSIBLETYPES;IMPOSSIBLETYPES] 
TYPE-AHEAD (prog. asst. command) ..•......•...... 
TYPE? NOT IMPLEMENTED FOR THIS RECORD 

(error message) .•....•••••.....••.•..•.•... 
TYPE? (record package) •...•••••.•.........•...•. 
TYPE? (use in record declarations) ......•.•..•.• 

U (value of ARGLIST) •..•••.•...•.....•..•.••..•. 
UB (break command) •..........••....•....••.•...• 
UCASELST (prettyprint variable/parameter) ...... . 
UGLYVARS (file package command) .••.......•...... 
UNABLE TO ALLOCATE PMAP BUFFER (error message) 
UNABLE TO DWIMIFY (error message) •...•....•..... 
UNADVISE[X] NL>II ••..•.•..••.••..•....••.••....... 
UNADVISED (printed by system) .•........••..•..•. 
UNARYOP (property name) ••......•.•.....••....... 
UNBLOCK (edit command) •.••.•••.•.•..••.••.••...• 
unbound atom •.••...•....••.•..•.•....•..•..•.... 
unboxed numbers .•..•.•..•..•..•.•..•...•..•..•.. 
unboxed numbers (in arrays) ..••...•.••.....•..•. 
unboxing .••.•.....•••....•••.••..•.••...•.•...•. 
UNBREAK[X] NL>II •••....••.•.••.•••••.....•.....•.. 
(UNBREAKABLE) •.•.•••.•...•.....•.•.•••.•••••...• 
UNBREAKIN[FN] ....•••••.......•......••.......... 
UNBREAKO[ FN; TAIL] •.•...•••.•....•.••........••.• 
UNBROKEN (printed by system) .•..•.••.•....••..•. 
UNBROKEN (typed by advise) ••.........•..•..•..•• 
UNBROKEN (typed by compiler) ••.••..•••.••••••••• 
UNO (exec command) •.•••••.••.•.•.••.••...••....• 
undefined function .••....•.....••••.•...•.•..... 
UNDEFINED OR ILLEGAL GO (error message) •.•...•.• 
UNDEFINED TAG (compiler error message) ..•....•.. 
UNDEFINED TAG. ASSEMBLE (compiler error message) •• 
UNDEFINED TAG, LAP (compiler error message) 
UNDEFINED USER INTERRUPT (error message) •.••••.• 
UNDO (edit command) ••.•••.••..•.••.....•••••.•.. 
UNDO (prog. asst. command) .•.••.•.•.•..•••..•... 

undoing .•.•......•.••••••..•....•.••••.•.•...... 
undoing DWIM corrections ••.•.................... 
undoi ng out of order ..•••..•.••.••.............. 
undoing (in editor) ............................ . 
UNDOLISPX[LINE] .•.....•....•••..•.........•••... 
UNDOLISPX1[EVENT;FlG;DWIMCHANGES] ••....•..•..... 
UNDOLST (editor variable/parameter) •....••.•.•.• 
UNDONE (printed by editor) •...•.•......•.•..•... 
UNDONE (printed by system) ••.•.•••...•....•..... 
UNDONLSETQ[FORM] NL ...•••.••.•..••..•••...••••.. 
UNDOSAVE[UNDOFORM;HISTENTRY] .•.•..........••.... 
UNFIND (editor variable/parameter) ••.•.••....... 

UNION[X: Y] ...................••.•........••.•... 
UNLESS (clisp iterative statement operator) 
UNlOCKMAP[PTR] •.•.••.••••••.•..••••••••.••.•.•.• 
UNMARKASCHANGED[NAME: TYPE] ••.••••••..•..•••••... 

INDEX.42 

Page 
Numbers 

20.8-9 
21.15 
14.72 
22.25 

23.34 
23.33,28,34 
23.32 

8.4 
15.6 
14.46 
14.59,23 
21.13 
23.42 
19.5,4,6 
15.19 
23.54 
9.55 

16.1; 8.7; 17.10-14 
13.10 
3.5; 10.8 

13.1,2,10 
15.17,15,18; 21.5 
15.17 
15.18,18 
15.18 
15.19 
19.4 
18.5 
24.42 
16.1; 17.10-14 
16.5: 5.5 
18.35 
18.35 
18.35 
16.12 
9.54,7; 22.45 

22.18; 17.3; 22.12,33, 
42,45 

22.31,4,32-33,40-43,45 
22.18: 23.42 
22.33,18 

9.54,7,24,55; 22.45 
22.42 
22.42 
9.54.47,55,63; 22.45 
9.54 

22;18,43 
22.43,34 
22.41,35 

9.23,17,27-28,30-33, 
47-48,53,63 

6.7 
23.14 
21.15 
14.67 



UNPACK[X;FLG;RDTBL] SUBR ....................... . 
UNPACKFILENAME[FILENAME] ....................... . 
unreading ...................................... . 
UNSAVED (printed by dwim) ...................... . 
UNSAVEDEF[NAME;TYPE;DEF] ....................... . 
UNSAVEFNS[FNS] ................................. . 
UNSET[NAME] .................................... . 
UNTIL (clisp iterative statement operator) 
UNTIL (use with REDO) .......................... . 
UNUSUAL CDR ARG LIST (error message) ........... . 
UP (edit command) ............................. .. 
UPDAtECHANGED[] ................................ . 
UPDATEFILES[PRLST;FLST] ........................ . 
UPDATEFN[FN; EVENIFVALID] ....................... . 
updating files ................................. . 
UPFINDFLG (editor variable/parameter) .......... . 
USE AS A CLISP WORD (Masterscope relation) 
USE AS A FIELD (Masterscope relation) .......... . 
USE AS A PROPERTY (Masterscope relation) ....... . 
USE AS A RECORD (Masterscope relation) ......... . 
USE (Masterscope relation) ..................... . 
USE (prog. asst. command) ...................... . 
USED AS ARG TO NUMBER FN? (compiler error message) 
USED BLKAPPLY WHEN NOT APPLICABLE 

(compiler error message) .................. . 
USEDFREE (clisp declaration) ................... . 
USEDIN (in Decl package) ....................... . 
USEMAPFLG (system variable/parameter) .......... . 
USER BREAK (error message) ..................... . 
user defined printing, ......................... .. 
user interrupt characters ...................... . 
USERDATATYPES[] ................................ . 
USEREXEC[LISPXID;LISPXXMACROS;LISPXXUSERFN] 
USERFONT ....................................... . 
USERLISPXPRINT[X; FILE; Z; NODOFLG] ............... . 
USERMACROS (editor variable/parameter) ......... . 
USERMACROS (file package command) .............. . 
USERNAME[A] .................................... . 
USERNAME (prog. asst. variable/parameter) ...... . 
USERNUMBER[A; FLG] .............................. . 
USERRECORDTYPE (property name) ................. . 
USERSYMS (edita parameter) ..................... . 
USERWORDS (dwim variable/parameter) ............ . 

.... \ ..................................... ,. ................................. .. 
USE-ARGS (property name) ....................... . 
USING (record package) ......................... . 
U-CASE[X] ...................................... . 
U-CASEP[X] ..................................... . 
U.B.A. breaks .................................. . 
U.B.A. (error message) ......................... . 
U.D. F. breaks .................................. . 
U.D.F. T FIX? (printed by dwim) ................ . 
U.D.F. T (printed by dwim) .................... .. 
U.D. F. (error message) ........................ .. 

VAG [X] SUBR 
value cell 

INDEX.43 

Page 
Numbers 

10.2 
14.6 
22.9,15,38 
17.12-13 
~.6; 14.71; 17.12-13 

20.21 
22.41,33 
23.14 
22.12 
16.7 
9.10,9,11,17,28 

20.20 
14.63 
20.20 
14.63 
9.29,17-18 

20.5 
20.5 
20.5 
20.5 
20.4 
22.13-14,15,18 
18.34 

18.34 
23.41,43 
24.56,58 
14.42 
16.8 
14.22 
16.12: 2.4 

3.9 
22.37 
14.50 
22.30 
9.46; 14.58 

14.58: 9.46,56 
21.9 
22.47 
21.9 
23.31 
24.13 
17.9; 9.59,61; 17.18, 

20-21 
22.34 
23.33 
10.4: 9.50 
10.4 
15.9 
16.1: 2.6; 16.3; 17.10 
15.10 
17.5 
17.6 
16.1,3; 17.2,10 

13.11,10 
12.1: 3.2; 5.6; 16.1 



val ue of a break ............................... . 
val ue of a property ................... , ........ . 
VALUE OUT OF RANGE EXPT (error message) ........ . 
VALUE (property name) .......................... . 
VALUEOF[X] NL * ................................. . 
variable bindings .............................. . 

VARIABLES[POS] ............................... , .. 
VARS[FN;USEDATABASE] ........................... . 
VARS (file package command) .................... . 
VARTYPE (property name) ........................ . 
version numbers ................................ . 
V.IRGINFN[FN; FLG] ............................... . 

WAITFORINPUT[FILE] ............................. . 
WHEN (clisp iterative statement operator) ...... . 
WHENCLOSE[FILENAME;PROP1;VALl; ... ;PROPn;VALn] * 
whenclose package .............................. . 
WHERE (clisp iterative statement operator) 
WHEREIS[NAME;TYPE;FILES] ....................... . 
whereis package ................................ . 

WHEREIS.HASH (system variable/parameter) ....... . 
WHILE (clisp iterative statement operator) 
WHILE (use wi th REDO) .......................... . 
WIDEPAPER[FLG] ................................. . 
WITH (in REPLACE command) (in editor) .......... . 
WITH (in SURROUND command) (in editor) ......... . 
WORDCONTENTS[PTR] .............................. . 
WORDOFFSET[PTR;N] .............................. . 
WORLD (as argument to RELINK) .................. . 
WRITEFILE[X; FILE] .............................. . 

(XTR . @) (edit command) ...................... .. 
XWD[Nl;N2] ..................................... . 

ZEROP[X] 

[ .............................................. . 
[.] (inserted by prettyprint) .................. . 

{} (use with ftp package) 

(change character) 

- (cl isp operator) ............................. . 
- (in pattern match compiler) .................. . 

(in pattern match compiler) .................. . 
(use in history commands) .................... . 

I (use with <.> in clisp) ...................... . 
!E (edit command) .............................. . 
IEVAL (break command) .......................... . 
IF (edit command) .............................. . 
IGO (break command) ............................ . 
IN (edit command) .............................. . 
INX (edit command) ............................. . 

INDEX.44 

Page 
Numbers 

15.4: 16.1 
7.1 

13.7 
5.6; 22.33.40-41 

22.26,40: 21.8; 22.35 
12.1: 2.6; 11.3-4. 
12.2-4 
12.8; 15.9 
14.39 
14.56 
14.62 
14.2 
15.19 

14.15 
23.14 
14.10: 24.34.49 
14.9-11 
23.20 
14.67; 24.34 
24.34: 9.64; 14.40.67. 

69; 24.35 
24.34 
23.14 
22.12 
14.48 
9.27 
9.31 

21.14 
21.14 
18.17 
14.42 

9.29 
24.36 

13.3 

3.1 
14.48 

24.45 

14.49; 

23.9 
24.4 

24.4-6 
22.13 
23.10 

9.25 

9.62; 22.45 
15.5 
9.62; 22.45 

15.6,14 
9.62; 22.45 
9.13 



10K (break command) ............................ . 
I UNDO (ed it cornman d) ........................... . 
IVALUE (break variable/parameter) .............. . 
IVALUE (use with advising) ..................... . 
II (use with <,> in clisp) .................... .. 
10 (edit command) .............................. . 

" 
"" (use in askuser) ............................ . 
"<c.r.>" (use in history commands) ............. . 

# (fOllowed by a number) ...................... .. 
# (printout command) .......................... .. 
#CAREFULCOLUMNS (prettyprint variable/parameter) .. 
#n (n a number, in pattern match compiler) 
#RPARS (prettyprint variable/parameter) ........ . 
#SPELLINGS1 (dwim variable/parameter) .......... . 
#SPELLINGS2 (dwim variable/parameter) .......... . 
liSPELLINGS3 (dwim variable/parameter) .......... . 
liUNDOSAVES (prog. asst. variable/parameter) 
liUSERWORDS (dwim variable/parameter) ........... . 
#1i[COMS] NL* ................................... . 
#ti (in INSERT, REPLACE, and CHANGE commands) 
#ti (printed by system) ........................ .. 
#0 ............................................. . 

$ (dollar) (edita parameter) ................... . 
$ (dollar) (in pattern match compiler) ......... . 
$ «esc» ...................................... . 
$ «esc» (in clisp) .......................... .. 
$ «esc» (in edit pattern) •...•......••...••... 
$ «esc» (in R command) (in editor) ........... . 
$ «esc» (in spelling correction) ............. . 
$ «esc» (prog. asst. command) ................ . 
$ «esc>, in R command) (in editor) ....•........ 
$ «esc>, use in askuser) ...................... . 
$BUFS «esc>BUFS) (prog. asst. command) ........ . 
$C «esc>C) (edita command) .................... . 
$n (in pattern match compiler) ...•.............. 
$0 «esc)O) (edita command) .................... . 
$W «esc)W) (edita command) .....•............... 
$$ (two <esc>s) (in edit pattern) ............•.. 
$1 (in pattern match compiler) ................. . 

% (escape character) 

% (use in comments) 
%% (use in comments) 

& (in edit pattern) ........................... .. 
& (in pattern match compiler) .................. . 
& (printed by editor) .......................... . 
& (printed by system) .......................... . 
& (use in askuser) ............................. . 

, (as a read-macro) 

INDEX.45 

Page 
Numbers 

15.5,14 
9.55 

15.5,14 
19.1.3 
23.10 
9.12 

3.6.1; 14.11-12,14 
17.29 
22.15.37 

14.17; 3.5; 10.9 
23.49 
14.48 
24.6 
14.48 
17.9 
17.9 
17.9 
22.31,41,43 
17.9 
9.42.19 
9.28 

14.32: 2.4; 14.11,31,33 
12.12 

24.12 
24.4 
14.2 
23.8-9 
9.8.15 
9.38 

17.7.18 
22.19-20 
9.39 

17.28 
22.26: 9.5; A1.1 
24.14 
24.4 
24.12 
24.13.14-15 

9.15 
24.3 

14.11: 2.4; 3.1,6, 
14.12-14,17,33 
14.46 
14.45-46 

9.8,14 
24.3 
9.2 

14.19 
17.28 

17.10 
14.26: 2.5 



, (cl isp operator) ............................. . 
, (edita command) ............................. .. 
, (in a lap statement) ........................ .. 
• (in pattern match compiler) .................. . 
, (Masterscope set specification) .............. . 

() 

* (as a prettyprint macro) ..................... . 
* (as a read-macro) •..................••......•. 
* (in a lap statement) ........................ .. 
* (in an assemble statement) ................... . 
* (in MBD command) (in editor) ................ .. 
* (in pattern match compiler) .................. . 
* (printed by editor) ......................... .. 
* (use in comments) .......................•..... 
* (use in file package command) ...•..•....•..... 
(* . x) (edit command) ........................ .. 
*ANY* (in edit pattern) ........................ . 
"'ARCHIVE'" (property name) ...................... . 
>l<ARGVAL* (as a blip on the stack) ............. .. 
·ARGI (as a blip on the stack) ................. . 
*ERROR· (property name) ..•...................... 
*FN· (as a blip on the stack) .................. . 
·FORM* (as a blip on the stack) ................ . 
"'GROUp· (property name) ........................ . 
"'HISTORY* (property name) ..•.................... 
*LISPXPRINT* (property name) ........•........... 
*PRINT* (property name) ....••....•..•....•...... 
*TAIL* (as a blip on the stack) ................ . 
"BREAK** (in backtrace) ...................... .. 
"COMMENT"'* (printed by editor) ................ . 
**COMMENT** (printed by system) .......•.•.•..... 
**COMMENT**FLG (prettyprint variable/parameter) 
.... EDITOR .. (in backtrace) ...................... . 
.... TOP .. (in backtrace) ......................... . 
."'*** (in compiler error messages) ............. . 

, (edita command) .............................. . 
, (printout command) •........................... 

- (in argument list, in manual) ......••...•..... 
(-n el ... em) (n a number, ed it command) ...... . 
-n (n a number, edit command) .......•........... 
-n (n a number, printout command) .............. . 

(in edit pattern) ........................... . 
(in pattern match compiler) ................. . 
(printed as part of a list structure) ....... . 
(printed by editor) ......................... . 

-) (break command) ............................. . 
-) (in pattern match compiler) .•................ 
-) (printed by dwim) .•..••.•.....•...•.......... 
-) (printed by editor) ......................... . 

INDEX.46 

Page 
Numbers 

23.8 
24.13,10 
18.28 
24.3 
20.6 

3.1 

3.4 

3.1 

14.45 
14.45 
18.29 
18.26 
9.30 

24.4 
9.1 

14.44,48 
14.60 
9.53 
9.14 

22.28,23 
12.4 
12.3 
22.34,19 
12.4 
12.4 
22.34,35,39 
22.34,35 
22.31,34 
22.34 
12.4 
15.8 
9.40 

14.44 
14.44; 9.41 
15.8 
15.8 
18.33 

24.10 
23.45 

2.3 
9.24,4 
9.11,2 

23.45 
9.8,15 

24.4 
14.19 
9.2 

15.10 
24.7 
17.4,2-3,5 

9.3-9 



notat ion ...•...•.••••.•••..•.•....•.•.•.••.•.• 
(edita parameter) ........................... .. 
(in a floating point number) ••••..•.•.•....... 
(in pattern match compiler) .• , .•••..•..••..•.. 
(printed by Masterscope) ••....•..•..•.•.•..... 

· (use in Masterscope) .....••.•..••....•...••.•. 
.BASE (printout command) ....................... . 
.CENTER (printout command) •.•.•.•..•..••...••... 
.CENTER2 (printout command) .•...•...•.•.•..••... 
· F (pri ntout command) .......................... . 
.FONT (printout command) ...................... .. 
:FR (printout command) ........................ .. 
· FR2 (pri ntout command) ....................... .. 
· I (pri ntout command) ......................... .. 
.N (printout command) .......................... . 
.PAGE (printout command) ....................... . 
.PARA (printout command) ....................... . 
.PARA2 (printout command) .•..•.••..•..•.•....••. 
.PPF (printout command) ....................... .. 
· PPFTL (printout command) .•.••••...••....•....•. 
.PPV (printout command) ••...•..•••....•.•....••. 
.PPVTL (printout command) .•.•.•.•.•••..•••...••. 
.P2 (printout command) ......................... . 
. RESET (printout command) •..••.••...•.•.•.•.•••. 
.SKIP (printout command) •.•••••.•..•....•••.••.. 
.SP (printout command) ........................ .. 
.SUB (printout command) ....................... .. 
.SUP (printout command) .•••.•••..••••...••.••••. 
· TAB (printout command) ••..••...........•....••. 
· TABO (printout command) •.•.••••....•..•••.•..•. 

(edit command) •.•.•.•..••.•.•••••..•.•...•••. 
•• (in edit pattern) .......................... .. 
.. (Masterscope templ ate) ..••.••.•••••.•••..•••. 

(in edit pattern) •.•••••••••.••.•.•.•.•.•••. 
(printed by dwim) .•••.•••.•....•.......•.••. 
(printed by editor) ........................ . 
(printed following a carriage-return) •..•••. 
(prog. asst. command) •••.•....•...........•. 

I functions ..••.•.•••••••.••••....••..••........ 
I (edita command) ............................. .. 
IDELFILE[FILE] ••••.•.••.•••.•••.•..••..••....•.. 
IREPLACE ••...••..•••..•••••.•.•....••...•.....•• 
IRPLNODE[X;A;D] ••••..•..••••.••.•.•••..••.•.•..• 
IRPLNODE2[X; Y] ..••••.•.•.•••.•..••.•..••.•.•••.. 
IUNDELFILE[FILE] •.••...••.••..•....•.•..•....... 

o (edit command) 

(2ND 

(3RD 

@) (edit command) 

@) (edit command) 

7 (instead of ') 

8 (instead of left parenthesis) 

INDEX.47 

Page 
Numbers 

3.4 
2.1 

24.12 
3.4 

24.5 
20.3 
20.3 
23.46 
23.48 
23.48 
23.49 
23.46 
23.48 
23.48 
23.48 
23.49 
23.46 
23.47 
23.47 
23.47 
23.47 
23.47 
23.47 
23.47 
23.45 
23.46 
23.45 
23.46 
23.46 
23.45 
23.45 
9.21 
9.15 

20.17 
9.15-16 

17.3-4 
9.9-10 

14.16; 22.36 
22.17,18 

22.32,42 
24.11,10 
24.43 
23.26 
22.41,42 
22.42 
24.43 

9.12.3 

9.20 

9.20 

17.11 

17.6; 9.57; 17.1.11. 
13-14 



9 (instead of right parenthesis) 

(: e1 ... em) (edit command) ................... . 
(clisp operator) ........•..•.................. 
(edita command) .•........•••...•......•....... 
(printed by system) .......................... . 

(edita command) .........•••................... 
(prog. asst. command) ...•.....•............... 

<de 1> '" ....................................... . 
<del) (TOPS-20) ................................ . 
<esc> (in spelling correction) .........•........ 
<esc> (prog. asst. command) ........ , ........... . 
<esc)BUFS (prog. asst. command) ...•............. 
<,) (use in clisp) ............................. . 

(break command) ...•...•......................• 
(edita command) .............................. . 
(in a lap statement) ........................ .. 
(in event address) ...•.....•....•.•........... 
(in pattern match compiler) ...•...•...•.••.... 

= (printed by dwim) ............................ . 
(printed by editor) .......................... . 
(use with @ break command) ................... . 

=E (printed by editor) ......................... . 
=EDITF (printed by editor) ......••...••..•...... 
=EDITP (printed by editor) ..................... . 
=EDITV (printed by editor) ..•.•..•••....•....••. 
-- (in edit pattern) ....•••••••••••.••••.....••• 
== (in pattern match compiler) ............•..... 
=) (in pattern match compiler) .................• 

1 (edit command) •.....••....•..••.•...•......... 
1 (edita command) .............................. . 
1 (printed by dwim) ........................... .. 
1 (printed by editor) ......................... .. 
1 (printed by Masterscope) ••.•..••..••...••••..• 
1 (printed by system) .......................... . 
1 (prog. asst. command) ........................ . 
1= (break command) .••.•.•••......•.•.•..•.•..••• 
1= (edi t command) ..•...•.....•.•.•.......... " .. 
11 (prog. asst. command) ....................... . 

@ (break command) ............••................. 
@ (edita command) .............................. . 
@ (in a lap statement) ......................... . 
@ (in event specification) .................... .. 
@ (in pattern match compiler) ................. .. 
@ (location specification) (in editor) ..•....•.. 
@ (Masterscope set specification) .••..........•. 
@ (Masterscope template) ...................... .. 
(@1 nlRU) (edit command) ....................... . 
(@1 nlRu @2) (edit command) .................... . 
(@1 TO) (edit command) ........................ .. 
(@1 TO @2) (edit command) ••.••........•......... 

INDEX.48 

Page 
Numbers 

17.5,1,11,13 

0.26,9 
23.8 
24.13 
15.3: 2.6 

24.15 
22.24 

2.4: 14.14,32; Al.l 
2.4; 14.30; Al.2 

17.7,18 
22.19-20 
22.26; A1.1 
23.10 

15.9 
24.12 
18.28 
22.10 
24.3 
17.4-5 
9.8 

15.6 
9.57 
9.61 
9.59 
9.59 
9.15 

24.3 
24.7 

9.40,2 
24.12 
17.4-5 
9.2 

20.16 
16.3 
22.24; 2.5 
15.6-8 
9.41; 2.5 

22.17,18 

15.6,7,11 
24.10 
18.28 
22.39 
24.3,5 
9.19 

20.6 
20.17 
9.37 
9.35 
9.37 
9.35 



l 
~ 

@@ (in event specification) 

(\ atom) (edit command) ...........•............• 
\ (edit command) ............................... . 
\ (in event address) .......................... .. 
\ (printed by system) .......................... . 
\P (edit command) .............................. . 
\\ (printed by system) ........................ .. 

] (use in input) 

l' (break command) .•..•.......................... 
l' (edit command) .............................. .. 
l' (edita command) .............•...•..••......... 
l' (use in comments) ............................ . 

+- operator (in clisp) ......................... .. 
(+- pattern) (edit command) ...................•.. 
+- (edit command) ..........•......•......•....... 
+- (in event address) .......................•.... 
+- (in pattern match compiler) ......•.........•.. 
+- (printed by system) .......................... . 
+- (use in record declarations) ................. . 
+-+- (ed it command) ..........•..•.....•......•.... 

INDEX.49 

Page 
Numbers 

22.12,23,39 

9.22 
9.23,8,27 

22.10 
2.4; 14.11,31-32 
9.23,8,41 

14.12; 2.4 

2.4; 3.1; 14.15 

15.6,14; 16.1-2,4 
9.12.3 

24.12 
14.46 

23.8-9 
·9.20 

9.22 
22.10 
24.5 
2.3,5; 15.3 

23.31 
9.22 





• 


	Table of Contents
	1 Introduction
	2 Using Interlisp
	3 Data Types, Storage Allocation, Garbage Collection, and Overlays
	4 Function Types and Implicit PROGN
	5 Primitive Functions and Predicates
	6 List Manipulation and Concatenation
	7 Property Lists and Hash Links
	8 Function Definition and Evaluation
	9 The Interlisp Editor
	10 Atom, String, Array, and Storage Manipulation
	11 Functions with Functional Arguments
	12 Variable Bindings, Push Down List Functions, and the Spaghetti Stack
	13 Numbers and Arithmetic Functions
	14 Input/Output Functions
	15 Debugging - The Break Package
	16 Error Handling
	17 Automatic Error Correction - The DWIM Facility
	18 The Compiler and Assembler
	19 Advising
	20 Masterscope and Helpsys
	21 Miscellaneous
	22 The Programmer's Assistant
	23 CLISP - Conversational LISP
	24 LISPUSERS Packages
	Appendix 1 Control Characters
	Index of Functions
	Index of Variables & Parameters
	Master Index



