(LISP 1.5 PRIME
(BY ‘ .
(CLARK WEISSMAN)))

INDEX
FUNCTION DESCRIPTIONS

Function No. Arguments Type ngige Function No. Arguments Type & Page
ABSVAL 1 function, 85 FACTORIAL 1 example, 96, 109
ADD1 1 function, 83 FIXP 1 predicate, 76
AND indefinite predicate, spécial FLOAT 1 function, 85
form, 78 FLOATP 1 predicate, 76

APPEND 2 example, 97 FUNCTION 1 special form, 137
ASSOC 2 example, 98 GENSYM 0 pseudo-function, 124
ATOM 1 predicate, 74 GET 2 function, 150
CA--AR, CD--DR 1 function, 35,57, 56 GO 1 pseudo-function, 108
CAR 1 function, 31 GREATERP 2 predicate, 77
CDR 1 function, 32 INTERSECTION 2 example INTERSECT,
COND indefinite special form, 70 104
CONS 2 function, 30 LABEL 1 special form, 98
CSET 2 pseudo-function, 118 | LAMBDA 2 special form, 39
CSETQ 2 pseudo-functién, 118 { LEFTSHIFT 2 function, 86

(macro) , (156) LENGTH 1 example LENGTHS,
DEFINE 1 pseudo-function, 66 103, 111
DELETE 2 example, 104, 112 LESSP 2 predicate, 77
DIFFERENCE 2 function, 83 ° LIST indefinite special form, 58
DIVIDE 2 function, 84 (macro), (159)
ENTIER 1 function, 85 LOGAND indefinite specialkform, 86
EQ 2 predicate, 75 LOGOR indefinite special form, 86
EQUAL 1 predicate, 75 LOGXOR indefinite épecial‘form, 86

(example), (9?) MACRO 1 pseudo-function, 152
EVAL 1 function, 61 MAP 2 functional, 138
EVALQUOTE 2 special form,. 60, MAPC 2 functional, 140

131 MAPCAR 2 functional, 139

EVENP 1 predicate, 775 MAPLIST 2 functional, 138
*EX PAND 2 function, 15% MAX indefinite special form, 84
EXPT 2 function, 84 (macro) , (159)

(Continued on inside back cover)

(LISP 1.5 PRIMER
(BY
(CLARK WEISSMAN)))

DICKENSON SERIES IN COMPUTER
AND INFORMATION SCIENCE

Fred M. Tonge, Editor

Introduction to Business Data Processing
Norman H. Carter

Principles of Data Processing
William J. Claffey

Principles of Programming the IBM 1620 Computer
William . Claffey

Autocodet Programming for the IBM 1400 Series Computers
Leeland R. O’Neal

An Introduction to COBOL Computer Programmmg for
Accounting and Business Analysis
Donald L. Raun

An Introduction to FORTRAN Computer Programming for
Business Analysis
Donald L. Raun

An Introduction to Business Data Processing and Computer
Programming
Robert W. Swanson

LISP 1.5 Primer
Clark Weissman

FORTRAN II-D on the IBM 1620: Introduction to Digital
Computer Programming
S. Thomas Cleveland

System 360/20 RPG Programming
James A. Saxon

(LISP 1.5 PRIMER
(BY
(CLARK WEISSMAN)))

Programming Systems Staff Head
Research and Technology Division
System Development Corporation

DICKENSON PUBLISHING COMPANY, INC., BELMONT, CALIFORNIA

©1967 by Dickenson Publishing Company, Inc.,
Belmont, California. All rights reserved. No part of
this book may be reproduced in any form, by mimeo-
graph or any other means, without permission in
writing from the ipublisher.

Library of Congress catalog card number: 67-20611

Printed in the United States of America

10-807978

PREFACE

1
The original LISP programming system was implemented at M.I.T, based

upon a paper by John McCarthy, '"Recursive Functions of Symbolic Expressions

and Their Computation by Machine," which was published in Communications of

the ACM, April 1960. Since then, numerous other LISP systems have been imple-
mented on a variety of computers-2’3’4’5’6 All these systems are based

upon the formal LISP language; however, they do possess differences in
implementation brought about by machine differences and technological advances
in efficient machine utilization. Earlier systems used interpreters ior
evaluating LISP expressions; more recent systems compile machine code to perform
the desired symbolic manipulations. Other technological innovations, such as
time-sharing operating systems, have also influenced the outward, user-view of
LISP systems. To transcend these and other differences between LISP systems,
various pedagogical devices are used in this manual. Hopefully, these devices
will approximate features available with specific LISP implementations. They
include: a compiler-based LISP 1.5 system, an EVALQUOTE supervisor, a full
complement of character handling primitives, MACRO capability, and a canonical

form for input and output of numbers, atoms, and symbolic expressions.

The primer starts simply with a formal definition of a symbolic expression, its
syntax and graphical representation. Two alternative machine-readable notations
are defined for representing symbolic expressions. Once the student becomes
familiar with recognizing symbolic expressions, he learns how to take them apart
into smaller elements or put them together into larger expressions using the
elementary LISP functions CAR, CDR, and CONS. The early chapters of this book
are essential to the understanding of LISP. They expose the reader to the

LISP formalism and give him an opportunity to acquire the necessary skills for
processing symbolic data. Learning these skills is analogous to learning the

rules of arithmetic.

Lambda expressions are introduced immediately after the fundamentals of symbolic
expressions. Lambda expressions are the basic functional syntax of LISP. LISP

functions are analogous to procedures used in algebraic languages, and derive

directly from the mathematics of recursive function theory. The concepts of
evaluation and quoting are established and used to explain the nature of
EVALQUOTE, the "universal" LISP function and system supervisor that can

compute the value of any computable function applied to its arguments.

Conditional expressions, predicates, and arithmetic functions add control and
computational power to the language and complete the set of basic expressions

that may be composed in LISP. At this point recursion is introduced.

Recursion is a technique for defining a computation on a given datum. The
process usually produces a partiai solution and reduces the datum to a simpler
form. The same process is then reapplied to this simpler form of the datum.
Again a partial solution and a simpler form are obtained. The process con-
tinues until some terminal datum obtains, whereupon all partial solutions are
combined in some fashion to produce the final solution. To compute recursively

the factorial of N, for example, we have
N! = N * (N-1)!

where N is the partial solution and (N-1) is the simpler form upon which we
repeat the factorial computation. This process recurs until the terminal
condition N = 0 is reached, whereppon the partial results are combined to

form the final answer; e.g.,
N * (N=1) * (N-2) * ... 3 % 2 %]

Recursion is as natural to symbolic data manipulation as iteration is to
numerical data processing. LISP is designed to make recursion easy to use,
and recursive functions are a sighificant part of the domain of LISP expres-
sions. Since numerical data is a;so allowed in LISP, iterative functions can
be defined.using the PROG feature, in which statements are evaluated in ALGOL-

like serial fashion.

Beyond Chapter 15, the primer is devoted to advanced techniques for extemnding
the domain of symbolic expressions using functional arguments, macros, property
lists, and list structures. Also, this portion of the primer describes input-

output, and delves more deeply into the nature of variables, values .and their

vi

association. The last chapter provides a review of foregoing chapters by

describing a complete LISP program that differentiates an algebraic polynomial.

LISP is not an easy language to learn because of the functional syntax and
insidious parenthetical format; this is particularly true for those experienced
with more conventional programming languages. However, LISP is consistent in
its syntax no matter how complex the expression. Careful attention to this

fact may make learning easier. The carefully graduated sets of exercises can
help in this regard. They have been selected for use with or without a computer.
They may be used on-line if a time-sharing system is at hand. Otherwise, the
solutions given in Appendix A can be used for comparison. These solutions have

been computer-checked for accuracy and correctness.

Santa Monica, California Clark Weissman

December, 1966

vii

ACKNOWLEDGMENTS

I wish to acknowledge the considerable support I received from the
System Development Corporation in preparing an earlier version of
this text for the AN/FSQ-32 computer time-sharing system.

Kudos to Dr. Daniel G. Bobrow of Bolt, Beranek and Newman and to
Michael Levitt of Systems Concepts for their perseverance in
reviewing the text and for their suggestions regarding technical
content and presentation. Thanks are extended to Robert Wills of
SDC for his editorial help and for linearizing my oft-times
"recursive" English grammar. Thanks also to Patricia Gicie for
carefully counting parentheses as she typed and retyped the many
final manuscripts.

To Dr. Stanley Kameny, Robert Saunders, Donna Firth, Jeff Barmnett,
Dr. Marvin Minsky, all my students, and others in the LISP community,
my sincere appreciation for their enthusiastic reception of the
earlier version of the primer; for their suggestions based upon
trial experience; for contributing exercises, and for checking
technical consistency.

Above all, I wish to thank my wife, Marcia, for her encouragement,
self-imposed exile and the patient care she bestowed on me during
the preparation of this manuscript.

Clark Weissman

viii

PREFACE. . .
ACKNOWLEDGMENTS . e e e e e e e e e e e e e e e
CHAPTER 1 INTRODUCTION
1.1 Purpose of This Document .
1.2 Document Conventions . e e e e e e
1.3 LISP Applications.
CHAPTER 2 SYMBOLIC EXPRESSIONS . ; e e e e e e e e e
2.1 Atomic Symbols
2.2 Dot Notation . . . AN .
2.3 Graphical Representation of Dotted Palrs .
2.4 Exercises. . . .
CHAPTER 3 SYMBOLIC EXPRESSIONS IN LIST NOTATION
3.1 List Elements. « +« . .
3.2 NIL. e . .
3.3 Transforming LlSt Notatlon Lo Dot Notatlon .
3.4 Transforming Dot Notation to List Notation .
3.5 Graphical Representation of Lists. .
3.6 Exercises. .
CHAPTER 4 NUMBERS
4.1 Integer Numbers.
4.2 Octal Numbers. . e .
4.3 Floating-Point Numbers e e .
4.4 Decimal Point or Dotted Pair Resolutlon
4.5 Exercises.
CHAPTER 5 ELEMENTARY FUNCTIONS .

TABLE OF CONTENTS

Rapport with the Supervisor.

CONS

CAR. . . .

CDR. . .

Graphical Interpretatlon of CAR and CDR
Exercises. e e e e e

ix

Page
iii

vi

wN -

25

25
26
27
27
28

29
29
30

32
33
36

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

7

10

11

LAMBDA NOTATION.

Forms and Functions.

Lambda Expressions .

Lambda Conversion. . . . « «
Parentheses. .

Dummy Variables.
Exercises. . . « + ¢ v v v v 0 0.

(o)W e N0 W) W)
oo~

ELEMENTARY FORMS
7.1 Variables.

7.2 Constants.
7.3 Simple Forms .
7.4 Exercises.

COMPOSITION OF FORMS .

8.1 Composed Forms . . . e e e e

SPECIAL FORMS. . . .

9.1 LIST ¢« v v v v v v v v v e e e e e
9.2 QUOTE.

9.3 EVALQUOTE.

9.4 Exercises.

DEFINE « . « « « .

10.1 DEFINE Syntax. « « « « .
10.2 Evaluating DEFINE.
10.3 Redefining
10.4 Exercises.

CONDITIONAL EXPRESSIONS.

11.1 Syntax of Conditional Expressions. .
11.2 Evaluating Conditional Expressions .
11.3 SELECT . . . « « « v v o + &

11.4 Exercises. . . « ¢ v « o o« o o 4 4

8.2 Evaluating Composed Forms

8.3 Nested Lambda Expressions. . .
8.4 Evaluating Nested Lambda Expre351ons .
8.5 Exercises. .

Page
38

38
39
41
43
44
45

46

46
47
47
49

50

50
51
53
54
56

58

58
59
60
64

66

66
68
68
69

70

70
70
72
73

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

PREDICATE FUNCTIONS.

12.
12.
12.
12.
12.
12.
12.

N oUW

ATOM .

EQ
EQUAL.
Arithmetic Predicates.
List Predicates.
Logical Connectives.
Exercises.

ARITHMETIC FUNCTIONS .

13.
13.
13.
13.
13.

1
2
3
4
5

General Comments . . .
LISP Arithmetic- Functions.

Logical Arithmetic Functions .

An Arithmetic Example.
Exercises. . .

RECURSIVE FUNCTIONS.

14.
14,
14.
14,
14.

1
2
3
4
5

A Recursive Example. .
Some Helpful Heuristics. . .
More Recursive Examples.
Label Notation .

Exercises.

THE PROGRAM FEATURE.

15.
15.
15.
15.
15.
15.
15.

~NOo Ut P LN e

PROG Format. .
Program Variables.
Flow of Control.
Some Cautions.
Examples .

PROG2.

Exercises.

VARIABLES AND THEIR BINDING.

16.
16.
16.
16.
16.
16.

AU pwNH

Bound Variables.
The A-List .

Free Variables .
Constants. .
Compiler Bindings.
Exercises.

xi

Page
74

74
75
75
76
77
78
79

82

82
82
86
87
88

92

93
95
97
98
99

106

106
106
107
108
109
109
111

114

114
115
116
117
118
120

CHAPTER 17 DEBUGGING, INPUT-OUTPUT, AND SUPERVISORS .

17.
17.
17.
17.
17.
17.
17.
17.
17.

CHAPTER 18

CHAPTER 19

CHAPTER 20

ooV PWLWNDHE

Program Debugging.

Diagnostic Tools .

Input -Output . .

Input -Output Pr1m1t1ves

The OBLIST .

Unusually Spelled L1teral Atoms
Character Objects. e e
Supervisors.

Exercises.

FUNCTIONAL ARGUMENIS .

18.
18.
18.
18.
18.
18.
18.

NO UL~ wN

LIST

19.
19.
19.
19.
19.
19.
19.
19.
19.

LooNTTUVD~WN -

FUNCTION .
MAP. . .
MAPLIST.
MAPCAR .
MAPC .
Cautions .
Exercises.

STRUCTURES, PROPERTY LISTS, AND MACROS.

Graphical Representation of List Structure .

Manipulating List Structure.

Examples of Modifying List Structure .

Property Lists .

Examples of Property List Functlons
Macros . .

MACRO Expan31on

MACRO Definitions of New Functlons .

Exercises.

A COMPLETE LISP PROGRAM. . .

20.
20.
20.
20.
20.

20.
20.

VW=

~N

Polynomial Syntax.
Program Strategy .

IN2PRE .

DERTIV.

SIMPLIFY .

20.5.1 SPLUS. e e e e e e
20.5.2 STIMES « « « « .
20.5.3 COLLECT. e e e e e e
20.5.4 SQUOTIENT.

20.5.5 SEXPT.

20.5.6 SMINUS .

PRE2IN .

DIFF .

xii

Page
121

121
123
124
126
127
128
129
130
134

137

137
138
138
139
140
141
141

144

144
146
147
149
151
151
152
155
156

l61

161
162
163
166
170

172
173
174
175
176
176

177
179

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

EXERCISE ANSWERS.
GLOSSARY. . . « . « . . .
REFERENCES,

INDEX TO TECHNICAL TERMS. .

xiii

Page
183

209
219

221

CHAPTER 1.
INTRODUCTION

1.1 PURPOSE OF THIS DOCUMENT

This manual has two principal goals: (1) to introduce the programming language
LISP and present a systematic exposition of symbolic computation, and (2) to
serve as a self-tutor for those wishing to acquire a practical facility with

the LISP 1.5 programming language.

LISP is an unusual language in that it is both a formal mathematical language,
and (with extensions) a convenient programming language. As a formal mathemat-—
ical language, it is founded upon a particular part of mathematical logic known
as recursive function theory. As a programming language, LISP is concerned

primarily with the computer processing of symbolic data rather than numeric data.

From childhood we are exposed to numbers and to ways of processing numerical
data, such as basic arithmetic and solutions to algebraic equations. This
exposure is based upon a well-established and rigorously formalized science of
dealing with numbers. We are also exposed to symbolic data--such as names,
labels, and words--and to ways of processing such data when we sort, alphabetize,
file, or give and take directions. Yet the processing of symbolic data is not

a well-established science. In learning an algebraic programming language, such
as FORTRAN or ALGOL, we call upon our experience with numbers to help us under-

stand the structure and meaning (syntax and semantics) of the language.

In learning a symbolic programming language such as LISP, however, we cannot call
upon our experience, because the formalism of symbolic data processing is not
part of this experience. Thus, we have the added task of learning a basic set

of formal skills for representing and manipulating symbolic data before we can

study the syntax and semantics of the LISP 1.5 programming language.

LISP is designed to allow symbolic expressions of arbitrary complexity to be
evaluated by a computer. To achieve a thorough understanding of the meaning,

structure, construction, and evaluation of symbolic expressions, is to learn

how to program in LISP. This primer seeks to develop such understanding
gradually by building new material upon older material, and by expanding the
scope of definition of prior concepts. The primer provides a practical
foundation for understanding the programming language; supplemental readings

can then augment the material presented here.

1.2 DOCUMENT CONVENTIONS

In the narrative portions of this manual, certain elements of LISP can easily
be confused with normal English. To help clarify word and phrase usage from

sample LISP code, a number of conventions are followed herein.

When reference is made specifically to LISP elements, LISP syntax, or LISF
semantics, the first occurrence of a significant term or definition is signi-
fied by the use of italics. An example, defined in the next chapter, is the

term S-expression.

Most LISP program examples, parts of programs, and function and variable names
are typed in capital letters, analogous to the form of input accepted by LISP
systems from keypunched card decks or on-line keyboards. Certain other program
examples contain a mix of capital letters and italicized letters. 1In such
cases, the italics are used to denote "meta-linguistic" variables that are not
part of the LISP language, but are used in the accompanying text to describe
legal LISP forms. An example, discussed in Chapter 6, is the form of a lambda

expression:
(LAMBDA varlist body)

where the meta-variables varlist and body aid in describing the syntax of

lambda expressions. Also the ellipsis (...) is not part of the LISP language,
but merely a device used for designating a sequence of indefinite length. Lower-
case elite letters are also used in many cases as ''pedagogic" variables or
examples of legal classes. These are used to aid in describing the semantics

of a given expression. For example, in Chapter 11, the conditional expression

(COND (pl e;) (py ey)) oo (p e)))

uses p, and e, as such pedagogic variables.

i

When a programming example is given, it is usually separated from the body of
the text and placed on a separate line without normal English punctuation,
exactly as it might be entered into the computer. At other times, explicit
references to code and function or variable names are capitalized and imbedded

in the text; all normal English punctuation may then be used.

Finally, underscoring is occasionally used to emphasize or draw the reader's

attention to a particular point.

1.3 LISP APPLICATIONS

LISP enlarges the problem-domain to which computers may be applied by extending
the nature of mathematical objects beyond numbers, to include a great variety of
structures and the processes for computing with them. As a general programming
language, LISP can be applied to a wide variety of non-numerical, mixed

numerical, and symbolic data processing problems.

The problem-domain is typically characterized by problems with "ill-defined"

data requirements. These problems have data that change dynamically in size

and content as the problem moves nearer solution. Also, the structure of the
data 1is as Important as its content. Hierarchical structures are most common;
however, linear lists of numbers, arbitrary character strings, and paired objects
are frequently required. Problems with these data characteristics encompass

iterative and recursive computational algorithms for solution.

More specifically, LISP has been applied to problems in machine checking of
mathematical proofs, inductive inference on sequences, computations in particle
physics, meta-compilers, pattern matching string transformations, programming
language syntax translation, integral and differential calculus, electrical
circuit theory, game playing, simulation, question/answering systems, lin-
guistics, information retrieval, graphics and display programming, and on-line,

interactive text editing.

The new expansion of man's view of the nature of mathematical objects, made
possible by LISP, is exciting. There appears to be no limit to the diversity
of problems to which LISP will be applied. It seems to be a truly general

language, with commensurate computing power.

CHAPTER 2.
SYMBOLIC EXPRESSIONS

All programs and data in the LISP programming language are in the form of
symbolic expressions usually referred to as S-expressions. S-—expressions are

of indefinite length and have a branching binary tree structure, so that signi-
ficant sub-expressions can be readily isolated. The bulk of available memory

in a computer is used for storing S-—expressions in list-structure form. This
type of memory organization frees the programmer from the necessity of allocating
storage for different sections of his program or data. It also makes LISP
programs and data homogeneous (i.e., programs can be treated as data and vice

versa by other programs), a unique feature of the language.

2.1 ATOMIC SYMBOLS

The most elementary type of S-expression is called an atomic symbol or an atom.
Atoms may be numeric or non-numeric. (We will discuss numeric atoms later.)

Non-numeric atoms are called literal atoms.

Definition:
A literal atom is a string of capital letters and
decimal digits of indefinite length, the first
character of which is a letter.+
Examples:
A
APPLE
PART2
EXTRALONGSTRINGOFLETTERS
A1B66X4ZZ

These symbols are called atomic because they are taken as a whole and are not
viewed as individual characters. Thus A, B, and AB are three distinct and

unrelated atomic symbols.

+Some recent LISP implementations have liberalized this definition. They accept
as literal atoms any character string that cannot be interpreted as a number.

-5-

2.2 DOT NOTATION

All non-atomic S—expressions are written in what is called dot notation. They

are built of atomic symbols and the punctuation marks:

(left parenthesis
) right parenthesis
. period or dot

These larger S—expressions (non-atomic S-expressions) are always parenthesized
and always have two parts—-a left part and a right part. A dot is used to

delimit the two halves. For example, the S-expression
(A . B)

has atomic symbol A as its left part, and atomic symbol B as its right part.

Thus, a non-atomic S-expression is always a dotted pair.

Definition:
An S-expression is either:
1. An atom, e.g., Al
2. A dotted pair of atoms, e.g., (A . B)
3. A dotted pair of S-expressions, e.g., ((A . B) . C)

The general form of a dotted pair is: a left parenthesis, an S-expression, one
or more spaces, a dot, one or more spaces, an S-—expression, and a right

parenthesis.

Notice that in this definition an S-expression is defined in terms of itself.

We speak of this as a "recursive" definition.

Examples:
ATOM
(A . B)
(A . ATOM)

(ATOM1 . (BETA . C))
(w.v) .x)
(Uw.vw. . .

2.3 GRAPHICAL REPRESENTATION OF DOTTED PAIRS

All non-atomic S-expressions are internally represented as a binary tree
structure, i.e., a tree structure with but two branches at each node. It is
often helpful to the student to '"see'" the graphical representation of this tree

structure.

We assume the following graphical symbols and their associated meanings:

Symbol Meaning

A graphical node with a left and right branch (i.e., a memory cel;

{ or ; A pointer, i.e., an internal machine address, to the next element

of the graph

atom names The unique machine address to which the atom named is assigned
and represented in the graphical structures as the atom name

itself.

First the graph of
(A . B)

is given by A B

where the left part of the dotted pair, atom A, is named in the left branch of
the node, and the right part of the dotted pair, atom B, is named in the right

branch of the node.
The graph of

(@A .B).C)

is slightly more complicated, namely

In this case, the left branch of the higher node points to the lower node,
while the right branch of the higher node contains the name of atom C. The

lower node is exactly the graph of
(A . B)

shown above because it is the same S-expression. In this example, however, it

is a sub-expression of the S-expression
(((aA.B).C)

We see here graphically the meaning of sub-expression: it is an S—-expression
at a lower level and appears in dot notation as a more deeply parenthesized

S—-expression.

Examples:

(A. (B.C))

((A.B). (€ .D)

A . (B . (€.D)

A N\
B
N\
C D
(((A.B) .C) .D)
D
/
C
4
A B
((((A.B) .C) .D) . (DD . (CC . (BB . AA))))
/ N\
D D
/L P \,
, C CccC \
B BB | AA

((((A.B) . (A.B)).((A.B).(A.B))

V4 \
, \ A B
, \ A B
A B A B

(((A.B) .(C.D) .(E.F).G.H.ID.WT.K)
1234 4 4 43 3 32 2 34 4 4 4321

(top level) Level 1

/ N\
G Level 2
/ \ N\
E F Level 3
/ \ / \
A B C D H I J K Level 4

In this example we have numbered the parentheses (a tutorial aid that is not a
legal part of S-expressions) and labeled the graph nodes according to their sub-
"expression depth. The correspondence between a parenthesis subscript and a

graph level is one-to-one and clearly illustrates the structural meaning of the

-10-

S—-expression. With more complicated S-expressions we have a deeper and larger
graph. Thus, we can see that S-expressions can be of unlimited size and com-

plexity, constrained only by the physical memory capacity of the computer.

2.4 EXERCISES

Which of the following are atomic symbols?

ATOM
AB

A1B2C3

NIL

(X)

LISP

Q32

ONE

(MY . NAME)
2TIMES

O 00 N o Bt 2w N -

=
o

Identify the dotted pairs.

11. A . B

12. X .Y . Z

13. (YOU . AND . ME)
14, X . Y)

15. (NIL . NIL)

Graph these dotted pairs.

16. (ONE . (TWO . THREE))
17. (((THREE . NIL) . TWO) . ONE)
8. ((A.B). (B. (C.D))

-11-

What S-—expressions are these structures?

19.

20.

AN
/
NIL NIL
y4
\ AN
¢ VA
G

-12-

CHAPTER 3.
SYMBOLIC EXPRESSIONS IN LIST NOTATION

Dot notation is necessary and sufficient to represent all list structures in
LISP, and, in fact, is the fundamental concept upon which the programming
language is built., However, it leaves much to be desired as a convenient
programming notation for S-expressions, particularly because of its excess of
parentheses and dots. [List notation was invented to improve this situation and

gimplify the reading and writing of S-expressions.

For example, the list
(A B CD)

is an S-expression in list notation for the same S—expression
Aa. @B. (€. (d.NL))))

wy

written in dot notation. (The atom NIL has special significance and will be

discussed shortly.)

3.1 LIST ELEMENTS

A list may have sublists, and these sublists may also have sublists. It is
usually convenient to speak of elements of a list. An element then may be an
atom, a list of atoms, or a list of lists. A list of lists is called a

list structure.

For example, (A B C) is a list with three atomic elements, A, B, and C, whereas
(A (B C)) is a list of two elements, the atom A, and the list (B C). The
second element, (B C), is a list of two atomic elements, B and C. Finally, the
list structure ((A) (B) (C)) is a list of three elements, the lists (A), (B),
and (C).

Historically, the separator for elements of lists was the comma; however, one or

more blanks or spaces are now generally used. Either is acceptable.

-13-

Thus, the two S-expressions

(A BCD)
and

(A,B,C,D)
are entirely equivalent in LISP.

The student should be cautioned that though much of the LISP programming language
is written in list notation, the basis for this form is always dot notation. In
fact, all S-expressions in list notation can be transformed into their dot-
notation equivalents, but not all S-expressions in dot notation can be transformed
into list notation. This will be evident after we examine the rules and identi-

ties required for tramslating between notations.

3.2 NIL

About the turn of the century, theoretical physics was in a dilemma. Was light
emission a wave or a particle phenomenon? Ample evidence existed to support
either school of thought. Physics resolved its dilemma by considering light as

a wavicle.

LISP also has a dilemma, resolved in a similar fashion. The dilemma derives
from the flexibility of lists to represent data sequences of arbitrary length.
To properly manipulate lists, it is imperative that some convention exist for

recognizing the end of a list.

For example, consider the list (A B). If we remove the first element, we have
the remaining list, (B). If we again remove the first element, we have the
remaining list, (). This is the terminal point of the original list, (A B).
It is the empty list. The empty list is the LISP convention for the end of a
list, and it is defined as the atom NIL.

Like the wavicle of physics, NIL is simultaneously an atom and a list. LISP
programmers can use either "spelling", () or NIL, as they are identically
represented internally by LISP. We consider NIL, not the last element of a

list, but the terminator of a list.

~14-

3.3 TRANSFORMING LIST NOTATION TO DOT NOTATION

All non-atomic S-expressions are defined as dotted pairs. It is therefore
possible to transform a list to its equivalent form in dot notation. The

following rules and identities define the transformation.

Identity 1:

A list of one atom is a dotted pair of the atom and
NIL, with NIL always the right part of the dotted

pair, i.e.,

(atom) = (atom . NIL)
or equivalently \
(atom) = (atom . ())
Examples:
(A) £ (A . NIL)

(EXTRALONGATOM) = (EXTRALONGATOM . NIL)
(NIL) _ (NIL . NIL)
WYy WY . »

When transforming a multi-element list to its equivalent form in dot notation,

we begin by composing the dot notation equivalent for only the top-level elements
of the 1list. We then compose the dot notation equivalent for each sublist, and
so on until the list is completely transformed to dot notation. All we need then
is a rule for transforming a simple list to its dot notation equivalent, re-

peating that rule for all sublists. We can now state that rule.
Rule 1:

The first (left-most) list element, when transformed
to dot notation, is always the left part of a dotted
pair. If the first element is also the last element
of the 1list, by Identity 1, it is dotted with NIL., If
the first element is not the last element of the list,

-15-

then the right part of the dotted pair is the list
formed by removing the first element. Then apply
Rule 1 to the right part of the dotted pair.

For example, given the list

(A BC)
we apply Rule 1 and get

A . (B0)
Since

(3 ©

is the right part of the dotted pair and is itself a list, we apply Rule 1
again to get

(A . B . (©))

Again, the right part is a list (C) so we apply Rule 1 once more. We note,
however, that the list (C) satisfies Identity 1 and is equivalent to

(C . NIL)
Hence, the final S-expression is given by
(A . (B. (C.NIL)))
For another example, the list
(A (B C) D)
yields these partial expansions for each application of Rule 1.

(A . ((B C) D))
(a. (@BC) . (D))
(A. ((BC) . (D.NIL)))

~16-

Now, expanding the sublist (B C) we find

A. (B.(@©).®.NL)))
(A . (B. (C.NIL)) . (D . NIL)))

Examples:
(A B C) = (A. (B . (C.NIL)))
((A B) ©€) = ((A. (B.NIL)) . (C . NIL))
(AB(CD) = (A. (B . (. (D.NIL)) . NIL)))
) = ((A . NIL) . NIL)
- ((N1IL)) = ((NIL . NIL) . NIL)
€0)) = (NIL . NIL)
(A@B.C) = (A. ((B.C .NIL)

From the above examples you can see that Identity 1 can be stated alternatively
as: When converting from list to dot notation, the only atom that appears

adjacent to a right parenthesis is NIL.

3.4 TRANSFORMING DOT NOTATION TO LIST NOTATION

It is always possible to convert list notation to dot notation, since S-
expressions are defined by dot notation. However, we cannot always convert

dot notation to list notation. For example, we cannot transform
(A . B)

The rule that is in effect follows from Identity 1.

Rule 2:

Only those dotted pairs in which the only atom
adjacent to a right parenthesis is NIL can be

represented in list notation.

For complicated dotted pairs, the following procedure can be followed starting

with any dotted pair:

-17-

1. If the right part of the dotted pair is an atom and not NIL,

conversion to list notation is impossible.

2. If the right part of the dotted pair is non-atomic (i.e., a
list or a dotted pair) or NIL--treat NIL here as ()--then

a. delete the last right parenthesis of the dotted pair
delete the dot

c. delete the first left parenthesis of the right part; the
left part thereby becomes the first element of the list

d. repeat the procedure on the remaining dotted pairs.
For example, given the dotted pair
(A . (B . NIL))
the most nested dotted pair is
(B . NIL)
Representing NIL by () and applying the procedure above, we find
a . ()
Applying the procedure again, we get the list
(A B)
For the case
A. ((B.C . (.NIL)))
repeated application of the procedure yields these expressions:

Aa.@®B.c .M
(A . ((B.C D))
(A (B.C)D

We can reduce this list no further, as the second element of the list
(B . C)

-18-—

is a dotted pair that cannot be represented as a list. We call the expression

(A (B.C)D)

a list, but recognize that it is in mixed notation. Mixed notation is perfectly

acceptable to LISP and is quite common in LISP S-expressions.

3.5 GRAPHTCAL REPRESENTATION OF LISTS

Lists can be transformed into their equivalent dot notation; graphical repre-
sentation of dotted pairs is covered in Section 2.3. This section will review

that material, but with the introduction of NIL.

Inasmuch as NIL is an atom, we need not introduce any new graphical symbology.
However, since we use NIL as a list terminator, a diagonal slash is often used

to represent NIL, and is adbpted here. Thus the graph for

(A . NIL)

is

But
(A . NIL) = (A)
so the graph also shows a single element list,

For more complicated lists, we shall show the list, its dotted pair

equivalence, and its graph.

-19-

Examples:

List Dotted Pair
(A BC) (A . (8. (C. NIL)))
A
N\
B
\
C
((A) B C) (A . NIL) . (B . (C . NIL)))
/ N\
A B
N\
C

-20-~

List Dotted Pair

(A (B) C) (A . ((B.NIL) . (C . NIL)))
A AN
y4 AN
B C
(A B (C)) (A . (B. ((C.NIL) . NIL)))
A AN
B AN
4
C

-21-

List Dotted Pair

(a) By ©» (A . NIL) . ((B . NIL) . ((C . NIL) . NIL)))
/ AN
A
V4 AN
s V4
C
(((A B))) (((A . (B . NIL)) . NIL) . NIL)
V4
/
A
AN
B

-22—~

3.6 EXERCISES

Transform these lists to their fully expanded dot notation equivalents.

1. (ATOM)

2. ((LISP))
(((MORE YET)))

4. (HOW ABOUT THIS)
(DONT (GET (FOOLED)))

Now go the other way--dotted pairs to lists.

6. (X1 . NIL)

7. (NIL . (X1 . NIL))

8. (KNOW . (THY . (SELF . NIL)))

9. ((BEFORE . (AND . (AFTER . NIL))) . NIL)
10. (A . (((B . (C . NIL)) . NIL) . NIL))

To what S-—expressions do these graphs correspond?

11.

12.
NIL

NI L

NIL

-23-

13.

14,

].5.

NEST

-24—

CHAPTER 4.
NUMBERS

In LISP, numbers are atoms and may be used in S-expressions exactly as the

previously defined literal atoms are used. Thus,
(1 23A48B5)

or
(ALPHA . 960)

are legal S-expressions.

Since LISP systems are implemented on many different computers with varying
hardware features, the conventions for legal numbers differ widely. All imple-
mentations accept integer and octal fixed-point numbers. Systems on larger
machines also accept floating-point numbers. All octal numbers end with the
letter "Q" to distinguish them from integers. Floating-point numbers follow
scientific notation, which includes a decimal point and an optional decimal
scale factor distinguished by the letter "E". Beyond these simple, general
features, you should consult your particular LISP system reference literature

for its number conventions.

This chapter stipulates a set of syntax conventions used consistently throughout
the primer. Because of the likelihood that these conventions will clash with
those of your system, care has been taken, in the balance of the primer, to

avoid examples and exercises that depend on this pedagogy.

4.1 INTEGER NUMBERS

Fixed-point numbers are positive or negative integers, with or without a scale
factor. The scale factor is denoted by the letter "E", followed by a blank or
any positive integer. Negative scaling is illegal and not meaningful for

fixed-point numbers. Thus,

796E-17

is unacceptable for LISP.

-25-

Examples:

LISP Number Meaning
123 +123
+123E0 +123
-321E -321
-1E3 --1X103 = -1000
53E0 +53
4.2 OCTAL NUMBERS

Integers may also be represented in octal. Octal numbers are denoted by octal
digits, followed by the letter "Q", followed by a blank or any positive decimal
integer. The Q must be present. The decimal integer following Q is a scale
factor showing the power of eight. Negative scale factors are illegal and not

meaningful for octal or decimal numbers.
Thus,

75757Q-4
is unacceptable for LISP.

The largest octal number allowed is a machine-dependent characteristic. A
machine having 48 bits per word has been assumed for all LISP arithmetic in
this primer. Implementations of LISP on machines with lesser word length will

yield numerical results having fewer significant digits than given here.

Examples:
LISP Number =~ Meaning
123Q 123 x 8°
123Q2 123 x 82
777Q3 777 x 83
2Q8 2 x 88
3Q10 3 x g0

—26—

4.3 FLOATING-POINT NUMBERS

Floating-point numbers must contain a decimal point. Floating-point numbers may
be positive or negative, with an optional scale factor. The scale factor is
always denoted by the letter "E", and may be followed by a blank or any

positive or negative integer.

Examples:
LISP Number Meaning
3.14159 +3.14159
+1.0E-3 +0.001
-976.003E3 -976003.00
0.273E+2 +27.30
23.E-1 +2.30
17. +17.00
4.4 DECIMAL POINT OR DOTTED PAIR RESOLUTION

When floating-point numbers are used in S-expressions, the computer can be
confused as to the meaning of the period. 1Is it treated as a decimal point or
as the dot in a dotted pair? To eliminate confusion and avoid ambiguity, always
surround the dot with blanks when writing a dotted pair, and never surround

the decimal point with blanks when writing a floating-point number.
For instance,

(1.2.3.4)
is an illegal S—-expression. Whereas

(1.2 . 3.4)

is perfectly proper.

-27-

4.5

EXERCISES

Which of the following are S-expressions?

=
o

O 00 N O Bt
e & e e & e e s

Q. 1l

(5E . (E . NIL))
(E5 . SE)

(1.E . 1Q)

Q3

4ok

(A.9)

(B . 9.9)
(9.9.9)

(1.23 77Q3 27 27E5 0.321E-7 ALPHA Q . 32)

Convert the following to list notation, if possible.

11.
12.
13.
14,
15.

(99.9 . NIL)

(NIL . 99.9)

((PI) . 3.14159E0 . NIL)

(5. (5.5. (5Q5 . (55.0E-1 . (5E2 . NIL)))))
((13.13 . NIL) ((25Q2 . NIL) . NIL))

-28-

CHAPTER 5.
ELEMENTARY FUNCTIONS

LISP is a language for manipulation of S-expressions. Fundamental to this
manipulation is the ability to build S-expressions from smaller S-expressions
and produce sub-expressions from a given S—expression. These abilities are

possible with the elementary LISP functions CONS, CAR, and CDR.

5.1 RAPPORT WITH THE SUPERVISOR

Before we examine the elementary functions, we must understand a basic element
of the syntax of the communication language accepted by the LISP system.
Chapter 9 covers the subject in greater detail. At this juncture we will only

consider the requisite parenthesization.

When we input to the LISP system, we are communicating with a supervisor program
that always expects two inputs, both S-expressions. If we call this pair of
S—-expressions s, and SZ‘respectively, the first S-expression, S1s is always

treated by the supervisor as:

1. The name of a function, or

2, An S-expression that behaves as a function.

(We will focus on the former case here, and examine the latter case in subse-
quent chapters.) Since functions have arguments, the second S—expression, Sos

is always a list of the arguments for the function whose name is the S-expression

Sl'
Consider the trigonometric function
SIN 90°
If SIN were a LISP function, we would write

SIN (90)

where the first S-expression, S1» is SIN and the second S-expression, Sy» is

the list (90)--the list of the single argument required by SIN.

-29~

As another example, in LISP the function PLUS performs the operation of addition
of its arguments. We can compute the sum of three numbers by giving the
following pair of S-expressions to the supervisor:

PLUS (1 2 3)
S N————

51 S2

The S—-expression 81 is the name of the function PLUS. The S-expression S, is a

list with three elements (i.e., 1, 2, 3), each an argument for the function PLUS.

5.2 CONS

CONS refers to '"the construct of" and is the function that is used to build S-

expressions. It has two arguments that are both S-expressions.

Definition:

The CONS of two S-expressions is the dotted pair
of these S-expressions, with the first S-expression
being the left part, and the second S-expression

being the right part of the dotted pair.

For example, given the arguments A and B, we can CONS them by giving the

supervisor
CONS (A B)
St gt gt
1 %2

which means (A . B).
If the arguments were the lists (A) and (B), we would write

CONS ((A) (B))
N —N —

51 52

which is equivalent to

((a) . (B)) = ((A) B)

~30-

Examples:

CONS(M N)
CONS((A . B) C)
CONS(A (B C D))

M. N)
(A . B) .C)
(A. (®BCD)) = (ABCD)

]

5.3 CAR

CAR (pronounced 'car') is one LISP function used to extract a sub-expression
from an S-expression. Its meaning is "the first of." It has one argument,

a non-atomic S-expression (i.e., a dotted pair, or a list),
Definition:

The CAR of a non-atomic S-—-expression is the left
part of the S-expression when represented in dot

notation, or the first element of the S-expression

when represented in list notation. The CAR of an

atom is undefined.

For example, the CAR of the argument (M . N) would be written

CAR ((M . N))

N e N ™

51)

which is equivalent to M. Note that for this example the list s, is (M . N)),

2
a list of one element--the single argument for the function CAR.

Examples:

CAR((A . B)) = A

CAR(((A . B) . C)) = (A . B)
CAR((A B CD)) =A
CAR(((A B C) DE)) = (A B C)

CAR(FOO) = undefined for atoms

-31-

5.4 CDR

CDR (pronmounced "could-er'") is another LISP function used to extract a sub-
expression from an S-expression. Its meaning is ''the rest of'". It has one
argument, a non-atomic S-—expression similar to that accepted by CAR. CAR of
a given non-atomic S-expression yields the first element of an S-expression;

CDR yields the rest of that S-expression after the CAR is removed.
Definition:

The CDR of a non-atomic S-expression is the right
part of the S-expression when represented in dot
notation, or the balance of the S-expression after
the first element is removed when represented in

list notation. The CDR of an atom is undefined.

For example, the CDR of the argument (M . N) would be written

COR ((M . N))
N S N ————

Sl S

2
which is equivalent to N.

Do not confuse list and dot notation when evaluating the CDR. If the CAR
of list

(A B)
is removed, the remainder is still a list, i.e., (B).
If the CAR of the dotted pair

(A . B)

is removed, the remainder is the right part, B.

-32~

Thus,

CAR ((A . B))
CDR ((A . B))
CAR ((A B))
CDR ((A B))

]
> 1]
(o]

]

(3)

Examples:

CDR((A . Y)) =Y :
CDR((A . (ATOM))) = (ATOM)
COR((A B CD)) = (B CD)
CDR(F00) = undefined for atoms

Note: The CDR of a list with only one element, e.g.,
(A), is the atomic symbol NIL. For example:

CDR((A)) = () = NIL

5.5 GRAPHICAL INTERPRETATION OF CAR AND CDR

In the previous chapters we examined the graphs of LISP S-—expressions and
noted the binary tree structure of these expressions. Let us now examine the

meaning of the elementary functions that operate on these tree structures.

If someone asked for directions to get to your home, you would most naturally
couch such directions in terms of city blocks, and house numbers. In LISP,

we are faced with a similar problem--to provide the LISP system with directions
for "traveling" through the binary tree structure of an S-expression. We

couch such directions in terms of CAR and CDR, which designate the appropriate

"turn" at each binary "fork in the road".
For example, given the S~expression
((AB)CD) = ((A. (B.NIL)) . (C. (D .NIL)))

its graph is given by

-33-

\\ N\

The CAR and CDR of this S-expression yield

In

is

is

in

We

to

CAR (((AB) CD))
CDR (((A B) CD))

(A B)
(C D)

the graph we note that
(A B)

the left branch of the top node and
(C D)

the right branch. The connecting arrows of this graph were called pointers

Chapter 2.

see now that they are pointers to the CAR and CDR. We often say they point
the "CAR chain" or "CDR chain" of the structure. If we take the CAR and CDR

repeatedly at each node, we can completely 'traverse" the S-expression, and

reach any sub-expression or atom of the original S-expression. The following

graph is completely labeled according to these CAR and CDR directions, and the

"location names" of each pointer.

-34-

corereeeessssssessssssnansssssssrasnesssssenaascssss ((A B) C D)

(¢
A B 2000000000000 0000000
) e

\
(’ VOO0 ORPOCOOOP0C0CGO00CCOOIDONOBSOPOIROIVOIPOIOIINIONTN C D
) (C D)
C

<
ol BN \
B ®000000s0000000000000000 0 900000000000 0000000000000000
(B) % Q% (D)
B D

To get from the original S-expression to the atom D, we require the following

directions:

1. CDR (((AB) CD)) = (CD)
2. CDR of the output of (1), i.e.,

CDR ((C D)) = (D)
3. CAR of the output of (2), i.e.,
CAR ((D)) =D

A standard convention, more fully covered in subsequent chapters, is to define
and name a class of new functions that perform these successive CAR, CDR opera-
tions. For each function in the class, the naming convention is to concatenate
the names of all the CAR, CDR operations to be applied into one uniquely spelled
abbreviation. The abbreviation rule uses the common letters 'C'" and "R'" as

the start and end characters of the name. Various combinations of the letters
"A" (for CAR), and "D" (for CDR), constitute the balance of the spelling. The

order of the letters in combination follows directly from left to right, the

order of application of the CAR, CDR operations, from last to first. Thus,

for the above example

CAR CDR CDR

yields the name

—-35-

CADDR
and the new function may be applied; e.g.,
CADDR (((AB) CD)) =D

Much of LISP programming consists of composing "directions' of this variety.
Problems 21-31 of this chapter give us some exercise in "finding our way

home"'.

5.6 EXERCISES

Evaluate the following functions:

1. CAR((LEFT . RIGHT))
2. CDR((LEFT . RIGHT))
3. CONS(LEFT RIGHT)
4. CAR((A B C D))
5. CAR(((A) B C D))
6. CAR((A (B C D)))
7. CAR(((A . B) C D E))
8. CDR((THIS SENTENCE IS A LIST))
9. CDR((HOW (ABOUT THIS)))
10. CDR(((DOT . PAIR1) (DOT . PAIR2)))
11. CONS(CAR CDR)
12. CDR((EMPTY))
13. CDR((CAR CDR))
14. CAR(((CAR) CDR))
15. CONS(A ())
16. CONS(75Q 100)
17. CAR((1 . (2.0 . (30.0E-1 . 77Q))))
18. CDR((1 . (2.0 . (30.0E-1 . 77Q))))
19. CONS((A . B) NIL)
20. CAR((((((ALPHA))))))
Note: Problems 1, 2, and 3 above demonstrate the relationship

among CONS, CAR, and CDR. Can you state this relationship?

—36—

List from right to left the sequence of CAR-CDR LISP functions which, when

each is applied to the value of the prior function, will find the "A" in

each of the following S-expressions. For example:
CAR CDR
is the answer for the argument (C A T) by the following reasoning:
COR ((CAT)) =T
then
CAR ((AT)) =A
Q.E.D.
This sequence may be abbreviated as follows:

CAR CDR = CADR
CAR CAR CDR = CAADR
CDR CDR CAR = CDDAR

21. ((C AT))

22, ((a))
23. (MART)
24. (B . A)

25. (SMART)
26. (1 2Q 3E3 A)

27. ((A . B) (C . D))
28. ((B . A) (C . D))
29. (((C)) ((a)))

30, ((X . Y) (A . B))
31. ((X . Y) (B A))

CHAPTER 6.
LAMBDA NOTATION

In LISP 1.5, as in other programming languages, we wish to write programs that
are parameterized and that compute answers when values are assigned to the
parameters of the program. However, in LISP 1.5, we do not use the syntax and
program structure of algebraic languages. LISP programs are conceived and
written with mathematical rigor based upon the formalism of recursive function
theory. As such, procedures are functions; parameters are constants and
variables that can be passed between functions as arguments; and computation
is a process of evaluating S-expressions consisting of functions applied to

their arguments.

6.1 FORMS AND FUNCTIONS

Given the algebraic expression

X
y

evaluate the expression for the values 3 and 4.

For this problem statement, we immediately see a notational problem. Is x=3

and y=4, or vice versa? The value of the expression changes with our assumption.
To resolve this ambiguity we need a notation that explicitly states the corres-
pondence between variables and their values. LISP uses such a notation, the

lambda notation, of Alonzo Church.7

In Church's lambda notation the expression

X
y

is called a form. 1In LISP 1.5 this form would be written as
(EXPT Y X)

where the format is given in Polish prefix notation. (LISP programmers prefer
calling this format "function notation'", where the function always precedes its

arguments.)

-38-

Furthermore, in Church's lambda notation
£ = A(x,y))

is a function named f, since it provides the two necessary ingredients for a

function:

1. A form to be evaluated, and
2. A correspondence between the variables of the form and

the arguments of the function.
If we now ask the value of the function f for
£(3,4)

the previous ambiguity is resolved, as Church's lambda notation explicitly
gives the number and order of the arguments of £ and defines the correspond-

ence of 3 with x, and 4 with y such that

£(3,4) = 45 = 64
In LISP, £(3,4) could be written as

(LAMBDA (X Y) (EXPT Y X)) (3 &)

NI T TN ——— Nt ot

list form s
. 2
of
variables
e ——— e ma——
51

/

where s, is called a lambda expression. A lambda expression is a funetional
expression, i.e., an S-expression that acts like a function. We shall explore

lambda expressions more fully below.

6.2 LAMBDA EXPRESSIONS

Definition:

A lambda expression is an S-expression. This S-
expression is a list of three elements in the

following order:

-39~

1. The word LAMBDA
2. A list of literal atoms that may be used as variables

in the form. These atoms are called lambda variables
3. The form

The general syntax accepted by LISP is:
(LAMBDA varlist body)

where varlist is the list of the literal atoms used as variables (varlist may

be empty, i.e., NIL), and body is any LISP form. For example:

lambda

list of variables, i.e.,
varlist

r———————form, i.e., body

—t
(LAMBDA (J K) (CONS K J))

A lambda expression is a functional expression and may be used wherever

functions are acceptable in forms. A lambda expression acts like a function

since it specifies the correspondence between the variables in the form and
the arguments of the function. Therefore, it can be applied to arguments just

as the elementary functions CONS, CAR, and CDR were used earlier.

Examples:
A number of simple lambda expressions are described below.
They are simple because they have elementary forms; however,
they show pertinent properties of lambda expressions that
hold true for all lambda expressions.
1. (LAMBDA () 1) This is a lambda expression with no

lambda variables, i.e., varlist is
NIL. The form is the numerical

constant 1.

-40-

2. (LAMBDA (X) 1) This lambda expression has X as the
only lambda variable. Again, the form
is the numerical constant 1. This
example shows that it is not necessary

for the variable to appear in the form.

3. (LAMBDA (X ANYNAME Y2) 1) This lambda expression is analogous to
example 2, but with three lambda varia-
bles. It further shows that lambda

variables may be arbitrary literal atoms.

4, (LAMBDA (X) X) This lambda expression has X as the only
lambda variable. Also, the form is the
lambda variable ditself.

6.3 LAMBDA CONVERSION

With Church's lambda notation, both the form and the correspondence between
variables of the function and their values are made explicit by the syntax

of lambda expressions. A lambda expression is the definition of a function.

When a function is called to compute a value from a given set of arguments,
its definition is used to properly associate variables with arguments. After
pairing of variables with arguments (a process called binding of variables)
the form is evaluated with the current variable bindings. This process of
binding variables and then evaluating the form inside the lambda expression is

called lambda conversion.

The importance of lambda conversion cannot be over-stressed. It is the method
by which all lambda expressions are evaluated, and all called functions receive
their arguments. The conditions and mechanics for lambda conversion are given

below.
Conditions:

1. A lambda expression definition must exist, as either an explicit
lambda expression, or as a "built-in" function, e.g., a previously

compiled function.

—41-

2. Only literal atoms may be used as lambda variables in the definition.
(In subsequent chapters, we shall see that the literal atoms T and

NIL may not be used as lambda variables.)

3. The number of arguments in the function call must agree with the number
of lambda variables. If there are no lambda variables, i.e., varlist

is NIL, we have a function of no arguments.

Mechanics:

1. Lambda variables are paired with their corresponding arguments. The
order is important since the first lambda variable is paired to the
first argument; the second lambda variable is paired to the second

argument; etc. This pairing binds the variable to the argument.
2. The form is evaluated.

For example, consider the evaluation of the following top-level (i.e.,

supervisor level) function call:

(LAMBDA (J K) (CONS J K)) (A B)
e —— e ————— =~

S1 S2

This function call yields the same value, (A . B), as the top-level call

CONS (A B)

Nt

51 %2

However, since CONS is a built-in function, the former example more clearly

demonstrates the mechanics of lambda conversion.

When using a lambda expression at the top level, the lambda expression is

the first S-expression, 81 of the pair presented to the supervisor. Again,

the second S-expression, Sys of the pair is the 1list of arguments for 813 in
this case, the list of arguments for the lambda expression. It is important to
understand that the arguments in the list, s, are paired with the lambda varia-
bles of the lambda expression, Sl' The arguments in the list, 32, are matched

in number and position with the variables in the list of variables following

—42-

the LAMBDA. Thus, by lambda conversion, the variable J is paired with the

argument A, and the variable K with the argument B. Then the form
(CONS J K)

within the lambda expression is evaluated. The bindings of variables J and K
are retrieved to yield A and B, respectively; it is these values to which CONS

is applied to yield the dotted pair, (A . B).

Examples:

(LAMBDA (X) X) (123Q) = 123Q

(LAMBDA (ABLE) (CAR ABLE)) ((THIS IS A LIST)) = THIS
(LAMBDA () 77) NIL = 77

(LAMBDA (ONE TWO) (CONS TWO ONE)) (A B) = (B . A)
(LAMBDA (K) (CADAR K)) (((1 2 3) 45)) =2

6.4 PARENTHESES

The lambda expression
(LAMBDA (A B) (CONS A B))

uses six parentheses. They are very important. They designate scope or extent
of expressions, i.e., where they begin and where they end. Parentheses have to
be very precisely positioned. 1In order to understand them, we shall first number

them in associated pairs:

(LAMBDA (A B) (CONS A B))
1 2 22 21

The first left parenthesis (No. 1) tells the LISP system that this is the start
of an expression. The final right parenthesis (No. 1) tells the system that

this is the end of the expression.

The first left parenthesis marks the beginning of the scope of the LAMBDA, i.e.,
the extent of the expression to which LAMBDA applies. The second No. 1 paren-

thesis marks the end of the scope of LAMBDA.

—43—

The second left parenthesis No. 2 marks the beginning of the scope of CONS,

with the last parenthesis No. 2 ending that scope.

All parentheses in the S-expressions of LISP always occur in pairs of left and
right parentheses; generally, each pair marks the scope of an expression, or
bounds a list. The parentheses in LISP are never optional as they are some-

times in mathematics; they are required parts of expressions.
Note that in the example above, the sub-—expressions

(A B)
and

(CONS A B)

are both bounded by parenthesis-pairs labeled No. 2. 1If we consider the paren-
thesis numbers as '"depth'" counters or "levels', we see that these two sub-

expressions are at the same depth, namely level two. Since the only occurrences
of parentheses No. 1 completely bracket the lambda expressions, we say that the

lambda expression is at level ome.

Parenthesis counting is a good "

crutch" in that it immediately identifies sub-
expressions at the same level within a larger S—expression—--a very useful
debugging and formatting tool. In fact, LISP printouts are usually formatted or
"pretty printed" by the system, which indents sub-expressions according to their

level. This indenting scheme is also a useful aid for entering input to LISP.

6.5 DUMMY VARIABLES

Before we leave lambda expressions, note the following expressions:

(LAMBDA (A B) (CONS A B)) (Q R) (Q . R) [1]

(LAMBDA (J K) (CONS J K)) (Q R) (Q . R) [2]

The two expressions evaluate to the same value. More importantly, the systematic
substitution of J and K for A and B, respectively, in expression [1l] translates

that expression to expression [2], without changing the form or its meaning. This

44—

is a significant part of Church's lambda notation. Thus, almost any literal
atom will suffice as a variable in a lambda expression. So we speak of them

as dummy variables.

6.6 EXERCISES

For the following function calls, give the variable bindings resulting from

lambda conversion.

1. (LAMBDA (X) X) (ATOM)

2. (LAMBDA (Y) Y) ((LIST))

3. (LAMBDA (J) (CAR J)) ((THREE ELEMENT LIST))

4. (LAMBDA (K) (CDR K)) ((THREE ELEMENT LIST))

5. (LAMBDA (U V) (CONS U V)) (VERY GOOD)

6. (LAMBDA (Y X) (CONS Y X)) (ONE (THEN . ANOTHER))
7. (LAMBDA (A) (CAADR A)) ((A (B . 77Q2)))

8. (LAMBDA (VARIABLE) (CDAR VARIABLE)) (((A B)))

9. (LAMBDA (J) 3.14159) (NIL)

10. (LAMBDA () 3.14159) ()

11. (LAMBDA (U V) U) (ALPHA BETA)

12. (LAMBDA (U V) U) (BETA ALPHA)

13. (LAMBDA (U V) V) (ALPHA BETA)

14. (LAMBDA (V U) V) (ALPHA BETA)

15. (LAMBDA (FIRST SECOND) (CAR FIRST)) ((FIRST) SECOND)

-45~

CHAPTER 7.
ELEMENTARY FORMS

Computation in LISP is done by simply evaluating forms. All forms have value,
whether they be simple numerical constants, variables, or deeply nested S-
expressions. The value of a form is the result of evaluating it; the form is

evaluated only once--no more, no less.

If we view lambda conversion in LISP from a more conventional programming stand-
point, forms look like programs or "pieces'" of a program; an ALGOL "block" is

an example. Arguments look like data for these blocks. Since LISP processes
symbolic data represented as S—expressions, data in LISP are S-expressiomns.

Note a very significant point: forms are themselves S-expressions, and thus,
can be data. We speak of this fact as the "homogeneity of programs and data"

in LISP--a unique and powerful feature of LISP. By proper separation of con-
text, programs can generate other programs as data. The LISP compiler itself

is a LISP program that does just that. In Chapter 19, we shall examine MACRO,

a function that does nothing else but transform forms into other forms.

These considerations are brought up to provide motivation for discussing LISP
forms at this time. To help the beginner comprehend LISP forms, this chapter
and the next two chapters treat (in order) elementary forms, composed forms,

and special forms.

7.1 VARTABLES

All variables are elementary forms. In the preceding chapter, we encountered
lambda variables. In subsequent chapters we shall consider other variables.

Regardless of their origin, variables are elementary forms.

The process of evaluating an elementary form which is just a variable is one
of simply retrieving the binding of the variable and returning that binding
as the value of the form. With lambda variables, the binding retrieved is

the binding established by lambda conversion. In the lambda expression

(LAMBDA (X) X)

~46-

the lambda variable X is the form. If we call this function
(LAMBDA (X) X) (A)

with the argument A, by lambda conversion X is bound to A and the form is

evaluated by simply retrieving that binding.

7.2 CONSTANTS

All constants are elementary forms. Since LISP allows numerical and symbolic
data, there can be numerical and symbolic constants. All numbers are con-
stants in LISP. In addition, most LISP implementations have T and NIL as
symbolic constants for ease of programming conditional expressions (as we shall
see in Chapter 11). Apart from these cases, any S-expression may be "quoted"
to make it a symbolic constant. Quoting is performed by the special form QUOTE

described in Chapter 9.

The process of evaluating an elementary form which is just a constant is one
of simply returning that constant as the value of the form. Constants, as in

all programming languages, provide a way of representing data within programs.

7.3 SIMPLE FORMS

Simple forms in LISP consist of a left parenthesis, a function name, parameters,

and a right parenthesis. Syntactically, this looks like
(frname parameters)

where frname is the name of a built-in function, and parameters may be one or
more variables or constants. In fact, parameters may be empty (i.e., there

may be no variables or constants) if frame is a function of no arguments.
To illustrate, the simple form X2 is written in LISP as
(EXPT X 2)

where EXPT is the funame, and variable X and constant 2 are parameters. Other

examples include

-47-

(CONS T NIL)
(CAR X)

(CDR ABLE)
(NOARGFUNCTION)

The process of evaluating a simple form is as follows:
1. All parameters are evaluated: constants evaluate to themselves;

variables evaluate to their bindings.

2. The atom following the left parenthesis (i.e., frname) is assumed
to be the name of a built-in function. That function is called

with the values of the parameters as arguments.

3. The value of a simple form is the value of the function applied

to the arguments.
For the simple form
(CONS T NIL)

the parameters are the symbolic constants T and NIL, which evaluate to them-
selves. CONS is called with these values to yield the value (T . NIL).

For the lambda expression

(LAMBDA (ABLE BAKER) (CONS ABLE BAKER)) (A B)
W
51 2
lambda variables ABLE and BAKER are bound to A and B, respectively, by lambda

conversion. Then the simple form
(CONS ABLE BAKER)

is evaluated. The parameters of the simple form are variables that evaluate
to their bindings, A and B. CONS is then applied to these arguments to yield
the value (A . B).

—48-

7.4 EXERCISES

Try evaluating these lambda expressions:

1. (LAMBDA (X) X) (ATOM)

2. (LAMBDA (Y) Y) ((LIST))

3. (LAMBDA (J) (CAR J)) ((THREE ELEMENT LIST))

4. (LAMBDA (K) (CDR K)) ((THREE ELEMENT LIST))

5. (LAMBDA (U V) (CONS U V)) (VERY GOOD)

6. (LAMBDA (Y X) (CONS Y X)) (ONE (THEN . ANOTHER))

7. (LAMBDA (A) (CAADR A)) ((A (B . 77Q2)))

8. (LAMBDA (VARIABLE) (CDAR VARIABLE)) (((A B)))

9. (LAMBDA (J) 3.14159) (NIL)

10. (LAMBDA () 3.14159) ()

Note:
Problems 1 and 2 are "identity" functions in that
they always evaluate to their arguments. Problems
9 and 10 are "constant" functions thch always
evaluate to the constant specified, in this case
3.14159, regardless of the valué of the argument.
However, these arguments are required by lambda
conversion. Also, the supervisor expects a pair
of S-expressions at the top level. Further, note
that the list of variables in problem 10 is empty.
In LISP, a function with an empty variable list is
a function of no arguments. For proper LISP syntax,
we must always include the list of variables, even
when empty. In such cases, NIL is as acceptable
as ().
Evaluate:

11. (LAMBDA (U V) U) (ALPHA BETA)
12. (LAMBDA (U V) U) (BETA ALPHA)
13. (LAMBDA (U V) V) (ALPHA BETA)
14. (LAMBDA (V U) V) (ALPHA BETA)
15. (LAMBDA (FIRST SECOND) (CAR FIRST)) ((FIRST) SECOND)

49~

CHAPTER 8.
COMPOSITION OF FORMS

To apply LISP to more complex problems, we must be able to create more powerful
programs, i.e., more complex forms. This chapter takes a major step in that
direction. It generalizes the concept of a simple form by introducing

composition of forms.

8.1 COMPOSED FORMS

Recall that a simple form has the syntax
(frame parameters)

If we let args stand for zero or more elementary or composed forms, we can write

down the syntax for a composed form as
(fname args)

It follows from this syntax that, if frname is CAR and args is the elementary
form (CDR J), then

(CAR (CDR J))

is a composed form. It also follows from the recursive nature of the syntax

that, if fname is CONS and args is the composed form (CAR (CDR J)), then

(CONS (CAR (CDR J)) (CAR (CDR J)))
is a composed form. By similar reasoning, any depth of composition is possible.
Definition:

Form composition is the concatenation of forms
in such a fashion that an argument for a function
at level n is the value resulting from the

evaluation of a form at level n + 1.

~50-

8.2 EVALUATING COMPOSED FORMS

The process of evaluating a composed form is recursive. If the arguments of
the composed form are elementary forms, they are evaluated as described in
Chapter 7. If any of the arguments are themselves composed forms, the evalua-

tion process recurs on these composed forms.

In greater detail, evaluation consists of evaluating all args of the composed
form, one at a time (generally from left to right), by the following steps:
1. 1If args is a constant, the constant is returned as the value of args.

2. 1If args is a variable, its binding is retrieved and returned as the

value of args.

3. If args is a simple form, the value of the function of that form,
applied to the values of its parameters, is returned as the value

of args.

4. 1If args is a composed form, all partial results (i.e., the values of
already evaluated args) are saved, and steps 1 through 5 are applied

recursively to that args.

5. After all args are evaluated, the value of the function (i.e., frname),
applied to the values of its arguments (i.e., all the args), is

returned as the value of the composed form.

It is usually easier to evaluate composed forms than to understand the above

steps. Some examples should clear the air.
Examples:
(LAMBDA (J) (CONS (CAR J) (CAR (CDR J)))) ((A B))

By lambda conversion, lambda variable J is bound to the argument (A B), and

the composed form

(CONS (CAR J) (CAR (CDR J)))
is evaluated. This form has the syntax

(CONS arg; arg,)

~51~

where arg, is the simple form (CAR J), and arg, is the composed form

(CAR (CDR J)). Evaluating these arguments from left to right, we get
arg, = (CAR J) = A

But arg, is a composed form itself, with the syntax
(CAR arng)

where arg .y is the simple form (CDR J).

To evaluate arg,, we recur and first evaluate
arg,, = (CDR J) = (B)

Then, returning this value of the simple form arg,,, we get

arg, = (CAR arg21) =B

Now, having evaluated all arguments of the composed form, we apply CONS to

these arguments and yield
(CONS arg, argz) = (A . B)

The value of the composed form, (A . B), is the value of the original lambda

expression,
Consider another example:
(LAMBDA (X Y Z) (CONS X (CONS Y (CONS Z NIL)))) (A B C)

By lambda conversion, X, Y, and Z are bound to A, B, and C, respectively.

The composed form and its arguments have the syntax

(CONS X argl)
(CONS Y arglz)
(CONS Z NIL)

argy
argy,

Evaluation of these forms yields

-52-

‘(CONS Z NIL) = (C)
(CONS Y arglz) = (B C)
(CONS X argl) = (A B C)

argy o
arg,

and the last value, (A B C), is the value of the lambda expression.

8.3 NESTED LAMBDA EXPRESSTONS

As we have seen, composed forms are generalizations of simple forms. By

examining the syntactic structures,
(fname parameters) simple form
(frame args) composed form

we see that the generalization is achieved by allowing any composed form, args,
to appear in lieu of any parameter of a simple form. The discussion of form
composition is not complete, however, until one further generalization is

considered: the generalization of frame.

Lambda expressions are functional expressions, and functional expressions may be
used wherever functions are acceptable. We have already observed this truth

in top-level function calls; e.g.,

CAR ((A)) = A
——

——
51 %2
(LAMBDA (J) (CAR J)) ((A)) = A
™™ ———— =~~~
S1 S2

This truth holds equally well in composed forms. TFor this truth to be self
evident, consider the syntactic entity fexp, defined as either a function name,
i.e.; fname, or a functional expression. Then the syntax of the most general

composed form is given by

(fexp args)

~53—

Examples:

(CAR J) [1]
t L______.args
fexp
((LAMBDA (K) (CAR K)) J) 2]
args
fexp
(CONS (CAR J) (CDR J)) [3]
—— T
* arg 8
fexp

((LAMBDA (X Y) (CONS X Y)) ((LAMBDA (K) (CAR K)) J) (CDR J)) [4]
—— e ——

T e S

args

feap

These four forms aptly demonstrate the complexity that is possible with form
composition. Observe that forms [1] and [2] are semantically equivalent forms,
as are forms [3] and [4]. Note further that form [4] is obtained from form [3]
by substituting an equivalent lambda expression for CONS and by substituting
form [2] for form [1].

In the spirit of generality of structures in LISP, forms may be composed with
arbitrary complexity. 1In fact, by reason of constructs of the variety of form
[4], it is theoretically possible to have an infinite number of semantically

equivalent forms.

8.4 EVALUATING NESTED LAMBDA EXPRESSIONS

The rule for evaluating nested lambda expressions is exactly the same as that
for evaluating composed forms given in Paragraph 8.2 (with one addition to step
5). Since we have generalized the syntax of composed forms as given in that

paragraph, by replacing frname by fexp, step 5 should now read (with the addition

—54—

underscored):

"5. After all args are evaluated, the value of the
function (i.e., fexp), applied to the values of its
arguments (i.e., all the args), is returned as the

value of the composed form. If fexp is a lambda

expression, all lambda variables are bound by lambda

conversion to the values of its arguments (i.e., all

the args) and the value of the lambda form is the value

of the composed form."

For compiler-based LISP systems, fname and fexp are treated nearly alike. If
fexp is a lambda expression, it is first compiled and then treated exactly as
frname. The difference lies between the name of a function and the explicit
definition of that function. Nested lambda expressions are analogous to 'local

procedures'" within an ALGOL procedure.

Examples:

If J is bound to (A B), then

(CAR J) = A [1]
((LAMBDA (K) (CAR K)) J) = A [2]
((LAMBDA (K) (CAR K)) (CDR J)) =B [3]

In form [2], lambda variable K is bound to the value of J, i.e., (A B), by lambda
conversion. Then evaluating the simple form (CAR K), yields A. In form [3], K is
bound to the value of the simple form (CDR J), i.e., (B), by lambda conversion,

with the answer, B, resulting as the value of (CAR K).

(LAMBDA (J) ((LAMBDA (K) (CAR K)) (CDR J))) ((AB)) =B [4]
W/ S——
Sl Sz

This top-level function call demonstrates how variable J might be bound for

form [3] above. It is, of course, bound by lambda conversion.

—55=

8.5 EXERCISES

Evaluate the following:

1. (LAMBDA
2. (LAMBDA
3. (LAMBDA
4. (LAMBDA
5. (LAMBDA
6. (LAMBDA
7. (LAMBDA
8. (LAMBDA
9. (LAMBDA
10. (LAMBDA

(A B) (CAR (CONS A B))) (43 NUMBER)

(A) (CAR (CDR A))) ((ARG LIST))

(A) (CDR (CAR A))) (((A)))

(A B) (CDR (CONS A B))) (NUMBER 43)

(B A) (CDR (CONS A B))) (NUMBER 43)

(A B) (CAR (CDR (CONS A B)))) (A (Y))

(J) (CONS (CONS J NIL) NIL)) ((LIST))

(J) (CAR (CAR (CONS (CDR J) (CDR J))))) ((A B))
(J) (CAR (CONS 123Q3 J))) (NIL)

(J) (CONS (CAR J) (CDR J))) ((A . B))

Note that problem 10 clearly demonstrates the relationship between CAR, CDR,

and CONS.

11. CAR could be called FIRST since it finds the first element of a list.

Write a lambda expression (using only CAR and CDR) by composition of

forms which finds the third element of a list.

For the argument

((A B C) D)

compose and evaluate your own lambda expressions (using only CAR and CDR)

that evaluate exactly as the following abbreviations (see Paragraph 5.5).

12. CAAR
13. CADR
14. CDAR
15. CADAR

Evaluate the following:

16. (LAMBDA (U V) ((LAMBDA (X Y) (CONS (CAR X) (CDR Y))) U V)) ((A) (B C))
17. (LAMBDA (U V) ((LAMBDA (X Y) (CONS (CAR X) Y)) U (CDR V))) ((A) (B C))
18. (LAMBDA (W X) (CAR ((LAMBDA (Y Z) (CONS Y Z)) W X))) ((A) (B C))

-~56~

19. (LAMBDA (W X) (CDR ((LAMBDA (Y Z) (CONS Y Z)) (CAR W) (CDR X)))) ((A) (B C))
20. (LAMBDA (J) (CONS
> ((LAMBDA (X Y) (CONS Y (CONS X NIL))) (CAR J) (CADR J))
((LAMBDA (U V) (CONS (CONS V (CONS U NIL)) NIL)) (CADDR J) (CADDDR J))
)) ((A B C D))

-57-~-

CHAPTER 9.
SPECIAL FORMS

In LISP, there exists a collection of built~in forms that superficially look
like functions. They are called special forms, and are treated differently
than are functions. When they appear in the fexp position of a form, that form
is evaluated in a special manner; the manner of evaluation depends upon the

given special form. In general, special forms fall into two classes:
1. Special forms with an indefinite number of arguments.
2. Special forms that wish their arguments unevaluated so that they
may control the way their arguments are evaluated.

Some special forms, such as AND and OR (see Chapter 12) reside in both classes.

Each special form must be studied in detail to determine its rules of evaluation.
One such special form, LAMBDA, we have already learned how to evaluate. Many

of the remaining chapters are devoted to similar examination. In this chapter,
we shall consider a few iﬁportant special forms which belong to these two

classes.

9.1 LIST

LIST, the first special form we shall consider, has an indefinite number of
arguments. These arguments may be any form, i.e., elementary, composed, or
special. The arguments are evaluated; the value of LIST is a list of the values

of these arguments. It may be defined by the following identities:

(LIST) = NIL
(LIST Al) (CONS Al NIL)
(LIST Al A2) (CONS Al (CONS A2 NIL))

(LIST Al A2 ... AN) (CONS Al (CONS A2 (CONS ... (CONS AN NIL) ...)))

-58-

Examples:

(LIST 1 2) (1 2)

(CONS 1 2) 1.2

(LIST T NIL 35) = (T NIL 35)

(LIST T (LIST NIL (LIST 35))) = (T (NIL (35)))

(LAMBDA (X Y) (LIST (CONS X Y) (LIST X Y))) (A B) = ((A . B) (A B))

9.2 QUOTE

QUOTE is a special form that wishes to receive its single argument unevaluated.
The argument may be any S-expression. QUOTE returns the S-expression, still

unevaluated, as its value.

The syntax of QUOTE is given by
(QUOTE e)

where e may be any S—-expression.

Consider the following two examples:
(LAMBDA (X) (CAR X)) ((ABC)) =A
(LAMBDA (X) (QUOTIE X)) ((A B C)) =X

In both examples, the variable X is bound to the list (A B C) by lambda

conversion. In the first example, the form
(CAR X)

is evaluated by first evaluating the variable X and then applying the function
CAR to that value. In the second example, however, we see the suppression of
evaluation yielded by QUOTE. The form

(QUOTE X)

is evaluated by simply returning the argument X. We do not evaluate X as we

did in the first example. We speak of X as being quoted.

-59-

Examples:

(LAMBDA NIL (QUOTE ALPHA)) ()
evaluates to ALPHA.
(LAMBDA (X) (CONS (QUOTE ALPHA) X)) (BETA)

evaluates to (ALPHA . BETA).

(LAMBDA (J) (CONS (QUOTE J) J)) (F00)
evaluates to (J . FOO).

Since arbitrary S-expressions in LISP may look like forms, QUOTE must be used
to represent symbolic constants as data of forms. Otherwise, an attempt will
be made to evaluate the data as a form—-a situation that usually results in

an error. For example, the form
(CAR (1 2 3))

will yield an error, since the list, (1 2 3), is not quoted and obviously can-

not be evaluated as a meaningful form. The correct form should be

(CAR (QUOTE (1 2 3))) =1

9.3 EVALQUOTE

In Chapter 5 we introduced the syntax for communicating with the LISP supervisor.
We shall now examine this communication more closely and see that it is a method
of passing a pair of unevaluated arguments to a special form, called EVALQUOTE.
The reader is cautioned that the treatment given here for EVALQUOTE is pedagogical
and not the actual way it is implemented in most systems, though the effect is

the same.
Consider the following form:

(CONS (QUOTE CONS) (QUOTE (T NIL))) [1]
When evaluated, the form yields a value

(CONS T NIL) [2]

-60-

which is itself a legal form. If we evaluate form [2], we get
(T . NIL) = (T)

But, form [2] is the value of form [1], i.e., it is data, and LISP evaluates
a form only once. To evaluate form [2] would, in effect, be evaluating form [1]

twice. How then do we evaluate a computed form? EVAL to the rescue!

Let us assume there exists a primitive system function, called EVAL, that takes
one argument, the value of which must be a form. EVAL will simply evaluate
that form and return the value. (This EVAL may differ slightly from that

available in a given LISP implementation.)
The syntax of EVAL is given by
(EVAL e)
where e must evaluate to a form.
For example, the composed form
(EVAL (QUOTE (CONS T NIL)))
has the structure
(EVAL e)
where
e = (QUOTE (CONS T NIL))

The value of e is (CONS T NIL), a simple form. It is this value to which
EVAL is applied, yielding the value (T).

It is interesting to note that the value of form [1] above is exactly the value

of e in this example. Hence, the value of
(EVAL (CONS (QUOTE CONS) (QUOTE (T NIL))))

is also (T).

-61-

With EVAL now defined, let us examine EVALQUOTE.

As we saw earlier, the pair of S-expressions to the supervisor (which we called
81 and s, previously) consists of a functional expression, or function name, 81

and a list of arguments, 855 for Sl' For example,

CONS (A B)

S S

1 2

Consider the general top-level pair of S-expressions for the supervisor as

fn (arg1 arg, ... argn)
e ——m N ——
°1 2

The manner in which the supervisor evaluates this pair can be explained by

considering the evaluation of the following form:

(EVAL E)
where the binding of E is given as

E = (fn (QUOTE argl) (QUOTE argz) ... (QUOTE argn))
To evaluate this form, the variable E is evaluated yielding the value

(fn (QUOTE argl) (QUOTE argz) ... (QUOTE argn))

It. is this value to which EVAL is applied. The final value, then, is the
function fn applied to the values of its arguments. Since the arguments of fn
are quoted constants that evaluate to themselves, the final value of (EVAL E) is

the value of fn applied to arg;, arg,s «s«» argn--exactly the result we desire.

The important role played by the function EVAL and the special form QUOTE in the
operation of the supervisor leads to the name EVALQUOTE. Indeed, most LISP

supervisors are EVALQUOTE supervisors.

To illustrate the EVALQUOTE process more clearly, let us step through the
process once again, but with the EVALQUOTE pair

-62-

CONS (A B)
“N/“’W‘"

81 S
We are to evaluate the form
(EVAL E)

where the binding of E is

E = (fn (QUOTE argl) (QUOTE argz) ... (QUOTE argn))

For this EVALQUOTE pair, fn is CONS, arg, is A, and arg, is B. Therefore, the

binding of E is the form
(CONS (QUOTE A) (QUOTE B)) [3]

The value, then, of (EVAL E) is (A . B), which is the value of form [3]. Another
way of stating it is this: (EVAL E) is the double evaluation of E.

The behavior of the EVALQUOTE supervisor should be more understandable now that

we have '"'peeked" behind the scenes. EVALQUOTE quotes each argument in the list,

Sg5 before it applies the function, s This explains why it is proper to

1°
enter the pair

CONS (A B)
at the top level, and necessary to write
(CONS (QUOTE A) (QUOTE B))

as an equivalent form at all other levels. EVALQUOTE is a programming

convenience that does our quoting for us.

In Chapter 17 we shall review the above and actually define EVALQUOTE as a LISP
special form. We cannot do so now as we have not as yet acquired the recursive

or iterative programming skills necessary to construct the binding of E.

-63—

9.4 EXERCISES
Evaluate:

(LAMBDA NIL (QUOTE X)) ()
(LAMBDA (J) (QUOTE J)) (ALPHA)
(LAMBDA (J) (QUOTE (AN S EXPRESSION))) (ALPHA)
(LAMBDA (J) (CAR (QUOTE (A B C)))) (ALPHA)
(LAMBDA (J) (CDR (QUOTE (J J)))) (NOTJ)
(LAMBDA (A B) (CONS A B)) (QUOTE EXPR)
(LAMBDA (A B) (CAR (CONS (QUOTE A) B))) (ALPHA BETA)
(LAMBDA NIL (QUOTE
(NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
THE AID OF THE PARTY))) ()
9. (LAMBDA NIL (CONS (QUOTE A) (QUOTE B))) ()
10. (LAMBDA NIL (QUOTE
(LAMBDA (X) X))) ()
11. (LAMBDA (A B C) (LIST A B C)) (ONE TWO THREE)
12, (LAMBDA (A B C) (CONS A (CONS B (CONS C NIL)))) (ONE TWO THREE)
13. (LAMBDA (A B C) (LIST NIL A NIL B NIL C)) (F F F)
14. (LAMBDA (A B C) (LIST (QUOTE F) A (QUOTE F) B (QUOIE F) C)) (F F F)
15. (LAMBDA (A B C D) (LIST (LIST NIL (QUOTE F) A)
(LIST T (QUOTE T) B)
(LIST NIL (QUOTE NIL) C)
(LIST 123 (QUOTE 123) D))) (F T NIL 123)

o N SN 1Ny
° -

16. EVAL ((QUOTE X))

17. EVAL ((QUOTE J))

18. EVAL ((QUOTE (AN S EXPRESSION)))
19. EVAL ((CAR (QUOTE (A B C))))

20. EVAL ((CDR (QUOTE (J J))))

Compare your answers for problems 1-5 and 16-20.

21. (LAMBDA (J) (EVAL J)) ((QUOTE ABLE))
22. (LAMBDA (J) (CONS (EVAL J) J)) ((QUOTE ABLE))
23. (LAMBDA (J K) (EVAL (LIST J K))) (CAR (QUOTE (ABLE)))

—64~

24, (LAMBDA (J K) (CONS (EVAL J) (EVAL K))) ((CAR (QUOTE (CONS))) (LIST A B))
25. (LAMBDA (J) (EVAL (LIST (QUOTE CDR)
(LIST (QUOTE QUOTE) (EVAL J))))) ((QUOTE (A B)))

—65-

CHAPTER 10.
DEFINE

Evaluating lambda expressions at the top level is a one-shot proposition. If
we wish to evaluate the same expression for different arguments, we must enter
the entire doublet again. After evaluation, the state of the LISP system is as
it was prior to execution. This is desirable for many situations, including
debugging, code execution, and program formulation. However, for the majority
of cases, we would like to save the expression as part of the LISP system, give
it a function name, and use it repeatedly to build larger programs. We can do

this with the pseudo-function DEFINE.

Pseudo-functions are expressions that are used like functions, but for their
effect rather than for their value. They have "side effects" of interest, but
effects not reflected in the value of the expression. Input-output functions

are other examples of pseudo-functions.

10.1 DEFINE SYNTAX

DEFINE is a pseudo-function that takes one argument, a list of functions to be
defined. Like CAR, CDR, and all other single-argument functions evaluated at

the top level, the general syntax is:

DEFINE (e)
1 1

where the argument, e, is a list of functions to be definmed.

The format of e is:

(f, £, £, ... £)
2 17273 n;

where the fi are the definitions for the functions we wish to define. The
formats are all the same, namely a lambda expression, prefixed with a name.

This name, a literal atom, will become the function name. Thus

(name (LAMBDA varlist body))
3 4 43

-66—

is the general syntax for any of the fi function definitions, and

DEFINE ((
12
(namel (LAMBDA varlist body))
3 4 43
(na-me2 (LAMBDA varlist body))
3 4 43
(name_ (LAMBDA varlist body))
3 "y 43
)
21

is the general syntax for the complete DEFINE expression.

Note the parentheses, their depth and meaning. The No. 1 pair delimits the
second S—-expression, Sos for EVALQUOTE; pair No. 2 delimits the single argument
of DEFINE as a list; the No. 3 pairs delimit each of the n functional expressions

to be defined.

Example:
DEFINE ((

12
(THIRD (LAMBDA (X) (CAR (CDR (CDR X)))))
3 4 555 6 7 76543
(IN3 (LAMBDA (X) (CAR (CAR (CAR X)))))
3 4 555 6 7 76543
(SECONDOF1ST (LAMBDA (X) (CAR (CDR (CAR X)))))
3 4 555 6 7 76543

))

21

If we wish to define only one function, the syntax is still the same, with the

argument 1list of DEFINE containing one functional expression.

-67-

10.2 EVALUATING DEFINE

The value of the pseudo—function DEFINE is a list of the names of the functions

defined. For the example above, LISP would return
(THIRD IN3 SECONDOF1ST)

What have we really done by evaluating DEFINE? For a compiler-based LISP
system, we have compiled machine code for each of the functional expressions in
the argument list. This machine code becomes a permanent part of the LISP
system, which can be referenced by the name given in the functional expression,
and can be used to evaluate data like all other system functions. For inter-
pretive LISP systems, the functional expression defines the function, and the
expression is retained by the system for recall and interpretation when the

function is called.

10.3 REDEFINING

If, after defining a function, you find the definition to be in error or you
wish to change the function's definition (i.e., change the function's lambda
expression) for other reasons, you need only use DEFINE again with the old
function name and a new lambda expression. The new lambda expression will be
compiled and referenced under the old name. The old compiled code is discarded
and cannot be referenced again. As with list structure that is discarded and
collected later, discarded compiled code may be collected later. The general
problem of internal storage management in LISP systems is handled by a program
called the "garbage collector'. In some LISP systems, the space occupied by
the old code cannot be reclaimed and is lost to the system. Repeated redefini-

tions build up such "garbage'" and should be avoided.

Feel free to redefine programs at will. If you try various definitions on an
actual computer, be careful not to define programs whose names are system
functions, as you will redefine functions possibly used internally by the system
and thereby get into trouble. A representative set of system function names to

be avoided is listed on the inside front and back covers of this book.

—68-

10.4 EXERCISES

Define the following new functions and test them on list (A B C D E)

(FIRST (LAMBDA (X) (CAR X)))
(SECOND (LAMBDA (Y) (CADR Y)))
(THIRD (LAMBDA (Z) (CAR (CDDR Z2))))

CADDDDR
Define a function, called REVDOT, that reverses the CAR and CDR

v &~ L NN =

of any dotted pair. Try it on the following arguments:

(A . B)
) . (B))
(((FIRST)) . (LAST))

-69-

CHAPTER 11.
CONDITIONAL EXPRESSIONS

The class of functions that can be formed with what we know so far is quite
limited and not very interesting. We need functions that branch conditionally
on the value of forms and thereby allow a much larger class of functions to be
defined. The special form COND accepts an indefinite number of arguments and
conditionally evaluates these arguments based upon their values. COND thus

allows us to perform analysis of differing cases.

11.1 SYNTAX OF CONDITIONAL EXPRESSIONS

A conditional expression is a special form in LISP and has the following syntax:

(COND (p; eg) (Pz e,) ..o (r, en))

where the Py are forms that evaluate to NIL or not NIL, and the e, are forms

that can have any desired value.

COND takes an indefinite number of arguments, called clauses, each of which is
a list containing a Py and its corresponding g;; It accepts all its arguments
unevaluated; as a special form, it evaluates these arguments from left to right

under strict control as described below.

11.2 EVALUATING CONDITIONAL EXPRESSIONS

LISP evaluates the arguments of a conditional expression from left to right as

follows:

If the value of Py is not NIL,

then the value of COND is the value of eys else,
If the value of P, is not NIL,

then the wvalue of COND is the value of eys else,
I1f the value of Ps is not NIL, etc.

-70-

The entire expression is searched by evaluating the Py of each clause, until
the first P; that is not NIL is found, and then the corresponding e of that
clause is evaluated. Note that e, is never evaluated if the corresponding Py

of that clause is NIL.

If a non-NIL clause cannot be found (i.e., all p; are NIL), then the value of
the entire expression is undefined. To protect against this occurrence, LISP
programmers usually set the P, of the last clause equal to T and set the last
expression, e of that clause, equal to some terminating expression. Since T
is a symbolic constant, it always evaluates non-NIL and COND is always defined.
If nothing else proves non-NIL, then the wvalue ofben will be the value of the
conditional expression. In some LISP systems, an undefined conditional expres-
sion usually results in an error during evaluation of the expression. On other

LISP systems, an undefined conditional expression returns a value of NIL.

Examples:

1. The function NOT returns as its value the negation of its single
argument. If its argument is NIL, it returns not NIL, i.e., T.
If its argument is not NIL, it returns NIL. It can be defined in
LISP as follows:

DEFINE (((NOT (LAMBDA (J) (COND (J NIL) (T T))))))

2. Using NOT, we can define the function LN that "counts" the length
of a list. It returns either 0, 1, 2, or LOTS--depending on whether
there are none (empty list), one, two, three or more elements of the

list, respectively. For example,

DEFINE (((LN (LAMBDA (L)
(COND ((NOT L) 0)
((NOT (CDR L)) 1)
((NOT (CDDR L)) 2)
(T (QUOTE LOTS)))))))

-71-

3. The propositional connective "implies'" has the following truth table:

X Y XY
true true true
true false false
false true true
false false true

If we let T and NIL represent true and false, respectively, using

COND, we can define IMPLIES in two ways:
DEFINE (((IMPLiES (LAMBDA (X Y) (COND (X Y) (T T))))))

DEFINE (((IMPLIES (LAMBDA (X Y) (COND (X (COND (Y T) (T NIL)))
(T T)))))

The second definition demonstrates the nesting of conditionals;
however, the first definition is more elegant, since it takes full
advantage of the nature of the data by letting the variables act as

forms.

11.3 SELECT

The special form SELECT is a more general conditional form. In most LISP
systems, SELECT is used.as a "switch" to control program flow, while COND is

used as described above.
SELECT has the syntax
(SELECT p (p1 el) (p2 ey) .- (pn en) e)

where the p; are evaluated in sequence from left to right until one is found

that is equal to p.

Then the value of SELECT is the value of the corresponding e . If no such P;

is found, the value of SELECT is that of e.

The LISP function IMPLIES can be written using SELECT. Compare this definition
with those of Paragraph 11.2.

72~

DEFINE (((IMPLIES (LAMBDA (X Y) (SELECT X (Y T) Y)))))

11.4 EXERCISES
Evaluate the following:
/1. (LAMBDA NIL (COND (NIL (QUOTE FALSE)) (T (QUOTE TRUE)))) ()
2. (LAMBDA (A B C) (COND (T A) (T B) (T C))) (1 2 3)
3. (LAMBDA (A B C) (COND (NIL A) (NIL B) (NIL C))) (1 2 3)
;4. (LAMBDA (J) (CONS J (COND (J NIL) (T J)))) (T)
/5. (LAMBDA (J K) (SELECT J ((QUOTE ODD) (CAR K))

((QUOTE EVEN) (CDR K))
(QUOTE NOP))) (2 (1 2))

6. Define the function OR2 (X Y) that returns NIL as its value if both

X and Y are NIL, and returns T otherwise.

7. Define the function XOR2 (X Y) that returns T as its value if X or Y

are non-NIL, but not both, and returns NIL otherwise.

8. Define the function AND2 (X Y) that returns T as its value if X and Y

are both non-NIL, and returns NIL otherwise.

9. For the COND expression
(COND (p; e;) (p, &)) «.. (p e))

give an equivalent expression using only SELECT.

10. For the SELECT expression
(SELECT p (p1 el) (pz e2) cee (pn en) e)

give an equivalent expression using COND. Assume there exists a
function EQUAL (X Y) that returns T if X and Y are the same S~

expression.

~73-

CHAPTER 12.
PREDICATE FUNCTIONS

To perform interesting computations with conditional forms, we need a variety
of functions that test data to determine if a datum is a number, an empty list,
an atom, equal to some other datum, less than or greater than some other number,

a member of a list, etc.

The LISP world is divided on this matter into two camps: purists and pragmatists.
Purists call the test functions predicqtes, and require such functions to return
one of two values--true or false. The pragmatist argues that conditional forms,
as implemented on all LISP systems, test only for NIL. He, like the purist,
defines a predicate as a function that returns either T (true) or NIL (false).
However, he postulates that an additional class of functions exist that may have
NIL as but one value in an infinite domain of non-NIL values. Since NIL is half
the domain of predicate functions, these functions are called semi-predicates

and may be used in the predicate position of conditional expressions, e.g., the
Py of a COND clause. CDR is a perfect example of a semi-predicate.

This chapter examines a number of predicates built into most LISP systems.
12.1 ATOM

The predicate ATOM has one argument. The value of ATOM is T if the value of

the argument is an atomic symbol; otherwise, the value of ATOM is NIL.

Examples:

(ATOM T) = T

(ATOM 1.23) =T

(ATOM NIL) = T

(ATOM (QUOTE AVERYLONGSTRINGOFLETTERS)) = T
(ATOM (QUOTE (A B C))) = NIL

(ATOM (CONS T NIL)) = NIL

(ATOM (CDR (QUOTE (A)))) =T

~74=

12.2 EQ

Note:

The predicate EQ is very implementation-dependent,
based upon the canonical form of structures inter-
nally used .by a given LISP system. You are therefore
advised to consult your own particular reference

literature.

EQ is a predicate that has two arguments. The value of EQ is T if the values
of the arguments are the same pointer, i.e., the same internal address; other-
wise, the value of EQ is NIL. In all LISP implementations, literal atoms have
unique internal addresses, therefofe, EQ will be T if the values of the argu-

ments are the same literal atom.

In some recently developed systems, small numbers (e.g., 0 to 1000) are also
unique and can be successfully tested with EQ. Also, some systems store list

structure uniquely, and for these systems EQ can compare two equivalent lists.

For purposes of this text, we shall assume EQ behaves according to more conven-

tional systems and can only test literal atoms successfully.

Examples:
(EQTT) =T
(EQ T NIL) = NIL
(EQ () NIL) = T
(EQ (QUOTE A) (QUOTE B)) = NIL
(EQ (ATOM (QUOTE B)) T) =T
12.3 EQUAL

The predicate EQUAL takes two arguments. The value of EQUAL is T if the values
of its arguments are identical S-expressions; otherwise, the value of EQUAL is
NIL. EQUAL may be used to test the equality of numbers, literal atoms, and
list structures. It is more general than EQ, but commensurately more time-

consuming in its operation.

-75-

Examples:

(EQUAL T T) =T

(EQUAL NIL NIL) =T

(EQUAL 1.23 1.23) =T

(EQUAL (QUOTE (A B)) (QUOTE (A B))) =T
(EQUAL (LIST T) T) = NIL

(EQUAL 17Q 15) = T

Note:

EQUAL will accept and convert numbers of differing
types before it performs the test for equality.

For the case of floating~point numbers, they must
agree within a specified accuracy that is dependent

upon the capacity of the machine.

12.4 ARITHMETIC PREDICATES

All of the following predicates end with the letter "P", for '"predicate", as a

mnemonic aid. Their arguments must evaluate to numbers, or else they are

undefined.
(NUMBERP N) = T if N evaluates to a number of any type

= NIL if N evaluates to a non—-atomic S—-expression

= NIL if N evaluates to a literal atom
(FIXP N) = T if N evaluates to an integer or octal number

= NIL if N evaluates to a floating-point number

= Undefined if N evaluates to a non-numeric S—expression
(FLOATP N) = T if N evaluates to a floating-point number

= NIL if N evaluates to an integer or octal number

= Undefined if N evaluates to a non-numeric S-expression
(ZEROP N) = T if N evaluates to zero of any numeric type

= NIL if N evaluates to a non-zero number

= Undefined if N evaluates to a non-numeric S-—-expression

-76-

(ONEP N) = T if N evaluates to one of any numeric type
= NIL if N evaluates to a number other than one

= Undefined if N evaluates to a non-numeric S—expression

(MINUSP N) = T if N evaluates to a negative number of any numeric type
= NIL if N evaluates to a positive number / o . “Z.&=®o

= Undefined if N evaluates to a non-numeric S—expression

(GREATERP N1 N2) T if the value of N1l is greater than the value of N2,

where N1 and N2 may be any numeric types
= NIL if the value of N1 is less than or equal to the
value of N2

= Undefined if N1 or N2 evaluates to a non-numeric S—-expression

(EVENP N) = T 1f N evaluates to an even number of any numeric type
= NIL if N evaluates to an odd number

= Undefined if N evaluates to a non-numeric S—expression

(LESSP N1 N2) T if the value of N1 is less than the value of N2,

where N1 and N2 may be any numeric types

= NIL if the value of N1 is greater than or equal to the
value of N2

= Undefined if N1 or N2 evaluates to a non-numeric S—expression

12.5 LIST PREDICATES

T if the value of L is the empty list () or NIL
= NIL if the value of L is not NIL or ()

(NULL L)

(MEMBER L1 L2) T if the value of L1 is a top-level element of a list

returned as the value of L2
= NIL if the value of L1 is not an element of the value of L2
= NIL if the value of L1 is an element of a sublist of the

value of L2; e.g.,

(MEMBER (QUOTE A) (QUOTE ((A)))) = NIL

-77-

Note:

If the definition of MEMBER uses EQ rather than
EQUAL, the value of L1 must be a literal atom
if MEMBER is ever to return T. If EQUAL is used,

the value of L1 may be any S—expression.

12.6 LOGICAL CONNECTIVES

(NOT P) T if P evaluates to NIL

NIL if P evaluates to any non-NIL S-expression

Note:
NOT and NULL are synonymous functions.

(AND Xy Xy een xn) = T if the values of all x, are non-NIL

= NIL if the value of any Xy is NIL

Note:
AND is a special form and takes an indefinite
number of arguments, not a list of arguments. The
arguments of AND are evaluated in sequence from left
to right, until one is found that is false, or until
the end of the list is reached. The value of AND is
T if all arguments are non-NIL. The value of AND is
NIL if any argument is NIL; the remaining arguments
are unevaluated. Also,

(AND) = T
(OR X) Xy +ee X) = T if the value of any X, is non-NIL

I

NIL if the values of all X, are NIL

-78-

Note:

12.7

OR is a special form and takes an indefinite number
of arguments, not a list of arguments. The argu-
ments of OR are evaluated in sequence from left to
right, until one is found that is non-NIL, or until
the end of the list is reached. The value of OR is
T if any argument is non-NIL; the remaining argu-
ments are unevaluated. The value of OR is NIL if

all arguments are NIL. Also,

(OR) = NIL

EXERCISES

Evaluate these pairs for EVALQUOTE:

1.
2.
3.
4.
5.
6
7
8.

10.

11.
12,
13.
14,

(LAMBDA (J) (CONS (EQ J J) (QUOTE (F T F)))) (X)
ATOM (NIL)
NULL (NIL)
NULL ((NIL))
NULL (())
EQUAL (0 NIL)
NUMBERP (1965)
NUMBERP ((1965))
(LAMBDA (A B C) (OR (ZEROP A)
(FIXP B)
(FLOATP C))) (1 2 3)

(LAMBDA (J) (NOT (AND (ATOM J)

(NUMBERP J)

(FLOATP J)

(MINUSP J)

(NOT (ZEROP J))))) (-1.0)
GREATERP (1964 1965)
GREATERP (1965 1964)
LESSP (10Q 10)
MEMBER (HEAR (NOW HEAR THIS))

-79-

4 15. MEMBER (HEAR (NOW (HEAR THIS)))
-16. (LAMBDA (J) (OR (ONEP J) (EVENP J))) (2.0)

/ 17. The propositional connective "equivalent' has the following truth table:

X Y X EQUIV Y
true true true
true false false
false true false
false false true

If T and NIL represent true and false, respectively, define the LISP
function EQUIV using only predicates. Test it on the following
EVALQUOTE pairs:

EQUIV (T T) = T
EQUIV (T NIL) = NIL
EQUIV (NIL T) = NIL

EQUIV (NIL NIL) = T

418. The propositional connective '"implies" has the following truth table:

X Y X > Y
true true true
true false false
false true true
false false true

If T and NIL represent true and false, respectively, define the LISP
function IMPLIES using only predicates. Test it on the following
EVALQUOTE pairs:

IMPLIES (T T) =T
IMPLIES (T NIL) = NIL
IMPLIES (NIL T) =T

IMPLIES (NIL NIL) =T

-80-

19.

Define the predicate INSEQ that is T if a list of 5 elements are all
numbers in ascending or déscending order and NIL otherwise. Do not
use COND; use nested lambda expressions. Test it with these EVALQUOTE

pairs:

INSEQ ((1 234 5)) =T

INSEQ ((5 4 321)) =T

INSEQ ((1Q 2.0 99 1000Q 1000.0)) = T
INSEQ ((10Q 10 10.0 11.0 12Q)) = NIL
INSEQ ((10 9 8 7Q 7)) = NIL

Given the function DIFFERENCE that yields the difference .of two
numbers, define the predicate EQN that is T if its two arguments are
the identical atom and NIL otherwise. Do not use EQUAL. Test it with
these EVALQUOTE pairs: ‘

EQN (A A) =T

EQN (1 1.0) = NIL
EQN (77Q 77Q) = T
EQN ((A) A) = NIL

-81-

CHAPTER 13.
ARITHMETIC FUNCTIONS

Chapter 4 discusses the LISP syntax of numbers; it might pay to review that
chapter. Let us review three important points:
1. Numbers may occur in S-expressions because they are atomic symbols.
2. Numbers are constants. They do not need to be quoted.

3. Numbers should not be used as variables or function names, e.g., never

in the varlist of a lambda expression.

13.1 GENERAL COMMENTS

All the arithmetic functions must be given numbers as arguments, or S-exXpres-
sions that evaluate to numbers; otherwise an error condition will result for

most implementations of LISP.

The numerical arguments to arithmetic functions may be any type of number, i.e.,
integer, octal, or floating-point. An arithmetic function may be given some
fixed-point (i.e., integer or octal) and some floating-point arguments at the
same time. If all of the arguments for a function are fixed-point numbers,

then the value will be a fixed-point number. (Integer and octal arguments
always yield an integer value,) If at least one argument is a floating-point

number, then the value of that function will be a floating-point number.

13.2 LISP ARITHMETIC FUNCTIONS

In much of the published LISP literature, functions are presented as top-level
calls to EVALQUOTE, as this style is analogous to mathematical convention. 1
have avoided that style until now as it confuses the issue of variables and
constants, particularly since EVALQUOTE quotes its arguments. By writing
functions as simple forms, we know that the arguments of the form are evaluated
before the function is applied. For example, the atoms A and B are constants

in the top-level expression

CONS (A B)

-82-

whereas A and B are variables in the simple form
(CONS A B)

With the introduction of arithmetic functions below, we have the opportunity
to adopt the more conventional style; we cannot confuse the "pedagogic

variables" of definition with the numbers actually required by the functions.

PLUS (x + X, + ... + X

1 X9 ore xn) =X 9

PLUS is a special form of an indefinite number of arguments, the value of which

is the algebraic sum of the arguments.

DIFFERENCE (x y) = x - y

DIFFERENCE has for its value the algebraic difference of its arguments.

MINUS (x) = —x

MINUS has for its value the negative of its argument.

= * * *
TIMES (x1 ces xn) X X “oe X

) 1 %2 n

TIMES is a special form of an indefinite number of arguments, the value of

which is the product (with correct sign) of its arguments.

ADD1l (x) =x + 1

ADD1 adds one to its argument and returns the sum as its value. The value is

fixed-point or floating-point according to the argument type.

SUB1 (x) =x-1

SUB1 subtracts one from its argument and returns the difference as its value.

The value is fixed-point or floating-point according to the argument type.

-83-

MAX (xl Xy oo Xn)
MAX chooses the largest of its arguments for its value. Note that
MAX (3 1q 2.0) = 3.0

yields a floating-point number, since at least one argument was floating-point.

MIN (x . X))

1 %2 n

MIN chooses the smallest of its arguments for its value.

QUOTIENT (x y) =x / ¥y

QUOTIENT computes the quotient of its arguments. For fixed-point arguments,
the value is the number-theoretic quotient, e.g., QUOTIENT (5 2) = 2. An

out-of-range result will cause a LISP error.

REMAINDER (x y)

REMAINDER computes the number-theoretic remainder for fixed-point arguments
(e.g., REMAINDER (5 2) = 1), and the floating-point residue for floating-point

arguments.

DIVIDE (x y)

DIVIDE returns as its value a list of the QUOTIENT and the REAMINDER of its

arguments. It could be defined by:

(DIVIDE (LAMBDA (X Y) (LIST (QUOTIENT X Y) (REMAINDER X Y))))

EXPT (x y) = x°

If both x and y are fixed-point numbers, x7

is computed by iterative multipli-
cation. Otherwise, the yth power of x is computed by using logarithms. The

first argument, x, cannot be negative if y is not an integer.

—84—

SQRT (x) = \]le

SQRT is a LISP function, the value of which is the square root of the absolute

value of the argument. The value is always given as a floating-point number.

RECIP (x) =1/ x

RECIP computes and returns as its value the reciprocal of its argument. The

reciprocal of any fixed-point number is defined to be zero.

ABSVAL (x) = | x |

ABSVAL returns as its value the absolute value of its argument. If x is

positive, it returns x. If x is negative, it returns the value of MINUS(x).

FLOAT (x)

FLOAT is a LISP function, the value of which is the floating-point equivalent
of its argument. It could be defined by:

(FLOAT (LAMBDA (X) (PLUS X 0.0)))

ENTIER (x)

ENTIER is a LISP function, the value of which, for positive numbers, is the
largest integer less than or equal to its argument. For negative numbers it is

MINUS the ENTIER of the magnitude of the argument. For example:

ENTIER (93.75)
ENTIER (-3.75)
ENTIER (0.35) = 0
ENTIER (-0.35) = 0

93
-3

Whereas FLOAT converts a fixed-point number to a floating-point number, ENTIER

converts a floating-point number to a fixed-point number.

-85-

13.3 LOGICAL ARITHMETIC FUNCTIONS

The following functions operate on full machine words. The only acceptable
arguments are fixed-point numbers. These may be entered as octal or decimal

integers, or they may be the result of a previous computation.

LOGOR (x . Xn)

1 %2
LOGOR is a special form of an indefinite number of arguments, the value of
which is the logical OR of all its arguments.

LOGXOR (x1 Xy oon xn)

LOGXOR is a special form of an indefinite number of arguments, the value of

which is the logical exclusive OR of all its arguments.

LOGAND (x1 Xy oo xn)

LOGAND is a special form of an indefinite number of arguments, the value of

which is the logical AND of all its arguments.

LEFTSHIFT (x n) = x * 2"
LEFTSHIFT shifts its first argument left by the number of bits specified by
its second argument. If the second argument is negative, the first argument

will be shifted right.
Note:

Various other numerical functions can be found on
particular LISP systems. They are not standard, so
they are not described here. Logarithmic and trigo-
nometric functions are typical classes not covered

here.

—86-

13.4 AN ARITHMETIC EXAMPLE

The power series expansion for SIN is given8 by:

3 5 7 9

X X X
SIN x = x - 37 + ST 7T +

|

where x is in radians.

Iif c, = 1

. = =% = -1.666666667E-1
3 3!)

=1 _ 5.333333333E-3
€5 = 51 :
¢, =TT = -1.984126984E~4
7571 .

=L 2.755731922E-6
€9 = 91 :

we can approximate the power series as:

_ 3 5 7 9
SIN x = clx + c3x + c5x + c7x + c9x

The LISP function SIN (x), where x is in radians, can now be defined in terms

of this power series approximation.

DEFINE ((
(SIN (LAMBDA (X) (PLUS X (TIMES -1.666666667E-1 X X X)
(TIMES 8.333333333E-3 X X X X X)
(TIMES -1.984126984E-4 X X X X X X X)
(TIMES 2.755731922E-6 X X X X X X X X X))))))

If we factor out x2 and write the power series in the form

_ 2 2 2 2
SIN x = x(c, + x (c3 + x (c5 + x (c7 + cgX NN

1

a more computationally efficient LISP program for SIN can be defined by using

. 2
a nested lambda expression, as we need to compute X~ only once.

-87-

DEFINE ((

(SIN (LAMBDA (X) ((LAMBDA (XSQ) (TIMES X (PLUS 1 (TIMES XSQ (PLUS -1.6666667E-1
(TIMES XSQ (PLUS 8.333333333E-3 (TIMES XSQ (PLUS -1.984126984E-4
(TIMES XSQ 2.755731922E-6)))))))))) (TIMES X X))))))

13.5 EXERCISES

Evaluate:

PLUS (1234567 89 10)
DIFFERENCE (99 3.14159)
TIMES (2 22222222 2)
ADD1 (77777Q)

SUBL (1.0)

MINUS (-0)

MAX (10 12Q 10.000000001)
MIN (10 12Q 9.999999999)
QUOTIENT (55 3)

QUOTIENT (55.0 3Q)

11. REMAINDER (55 3)

12. REMAINDER (55 3.0)

13. DIVIDE (55 3)

14. DIVIDE (55 3.0)

15. DIVIDE (55 3Q)

16. ENTIER (123.4)

17. ENTIER (-123.4

18. ENTIER (0.7)

19. ENTIER (-0.7)

20. SQRT (25)

21. RECIP (3.0)

22. RECIP (3)

23. FLOAT (123456789)

24. ABSVAL (-3.14159)

25. LOGOR (77777Q 12345Q)

26. LOGOR (70707Q1l 12345Q)
27. TLOGXOR (77777Q1 12345Q)

O 0N YW N

=
o

-88-

28. LOGXOR (70707Ql 12345Q)
29. LOGAND (77777Q 12345Q)
30. LOGAND (70707Ql 12345Q)
31. LEFTSHIFT (7Ql 1)
32. LEFTSHIFT (7Ql -1)

Define the following functioms:

33, TRIPLE (X) = X + X + X

34. CUBE (X) = X°

35, SIMPLEINTEREST (PRINCIPAL RATE YEARS) = P(l + YR)
36. ANNUALCOMPOUND (P R Y) = P(l + R)~

37. TIMECOMPOUND (P R Y T) = P(1 + R/T)™>

38. The value of a two-by-two determinant is defined by:

211 212
. = (ay a5, = ag, ay9)
21 2322

Define the LISP function

TWOBY (all aj, 851 322)

39. The value of a three-by-three determinant is defined by:

211 412 13
872 823 471 823 871 222
a,, a,., a _ _
21 722 23| = all a12 + al3
. N 839 433 831 233 23y 232
31 232 233
Define the LISP function
THREEBY (all 815 «++ a3y a33)

40, Given the three simultaneous equations

-89-

a7 Y T agyuy taj3uy =0y
891 Up ¥ 85y Uy Fayyug=cy
333 Uy tazy uy tazguz = cy

we can solve for any variable U by dividing two determinants. The
denominator determinant, D, is as defined in problem 39. The numerator

determinant is similar, but with the c, terms replacing the coeffi-

k
cients of the u variables. For example:
411 ©1 %13
871 €2 223
831 ©3 233
u, = D

Define the LISP function

SOLVE (a eee a

11 %12 32 333 ©1 2 ©3)
which computes the value of all variables u, for three simultaneous
equations in three variables. (Hint: Use your definition of THREEBY

and QUOTIENT.)

Try these equation sets:

1. Zul +u, --2u3 = -6
uy + u, + uy = 2
-uy --2u2 + 3u3 = 12
.2. 2u1 + u, —2u3 =5
2u1 + u, + 3u3 =6
-u

—2u2 + 3u, = 12

1 3

-90-

15ul + lSu2 + 15u, = 15

3
7u1 +u, —lOOu3 = ~100
-50ul + u, + ug = ~-16
ug + 2u2 - 2u3 = =12
u; +ou, + uy = 6
-2ul -u, + 3u3 = 2
—2ul + 2u2 + uy = -24

u1 + u, + u3 = 29

3ul -u, - 2u3 =9

~91-

CHAPTER 14.
RECURSIVE FUNCTIONS

The functions we have thus far defined have used lambda expressions, composition
of forms, and conditional expressions. A still wider class of functions can be

defined using these methods and the method of recursion.

It takes time and practice to think recursively, particularly if you have pro-
gramming experience with the linear flow of control common with algebraic
languages. You cannot be taught to think recursively, but you can learn to
think recursively. To help you learn, I give some helpful heuristics, examples,

and more examples.

Recursive functions may be defined in a manner similar to other functions

using form composition. When we construct a form, such as
(CONS X Y)

we are making an explicit call upon the function CONS. CONS, in this case, is
an already existing function. 1In a recursive function definition, for (say)
function £, we likewise make explicit calls upon functions; however, one or
more such calls are made upon the function f itself. The only apparent differ-
ence between calls upon CONS and calls upon f is that f is the function being
described. But LISP doesn't mind. In most algebraic languages, the programmer
is cautioned not to write subroutines that call upon themselves, since that is
recursion and most algebraic languages cannot handle recursion. In LISP we do
it all the time. TFor example, it is syntactically and semantically proper to

write

(EXAMPLE (LAMBDA (L) (COND ((NULL L) NIL) ‘
(T (CONS (CAR L) (EXAMPLE (CDR 1)))))))

We note that in this "do-nothing' function definition (i.e., EXAMPLE returns as
its value a copy of the input list L), EXAMPLE makes an explicit call upon itself.

EXAMPLE is thereby a recursive function.

-92-

Recursive definitions always define an idea in one or more special starting or
finishing cases, and then define the idea in the general case in terms of a
preceding or adjacent case. Let's see how this statement applies to a LISP

problem.

14.1 A RECURSIVE EXAMPLE

Problem: given any list, such as

(A B C)
define the predicate

ATOMLIST (%)

which is T 1f all elements of % are atoms, and NIL otherwise. How shall we

proceed? Essentially, we wish to perform the test

If ATOM A , then _
If ATOM B , then
If ATOM C , then T;
Else NIL
Else NIL'
Else NIL

which, as a LISP function, would be defined by

(ATOMLIST (LAMBDA (A B C)
(COND ((ATOM A) (COND ((ATOM B) (ATOM C))
(T F)))
(T F))))

But this is not a solution to our problem. We are not given A, B and C
explicitly, but rather list £, which can have any number of elements. We

must do
(ATOM (CAR L))

to test an element of 2. Thus, we could write

-93-

(ATOMLIST (LAMBDA (L) (COND ((ATOM (CAR L))
(COND ((ATOM (CADR L)) (ATOM (CADDR L)))
(T ¥))) (T F))))

But this last definition solves the problem when we know list & has exactly
three elements. How about the general case where we do not know the length
of list %, or even when we do know, but where % is very long? We don't want

to write
(CADDDDDDDDDDDDDDDDDDDR L)

even if we could, for a 20-element list.

The proper strategy is to test the first element of the list with the expression
(ATOM (CAR L))

If it is NIL, we exit NIL. If it is T, we need to test the second list element.
If it proves T, then we test the third element, etc. But note, if after we
test the first element, we remove the first element from the list, then the
second element becomes the first element of the new list and we can apply the

same test to the new list. The new list is
(CDR L)
and the test is applied recursively. Thus, we can write

(ATOMLIST (LAMBDA (L)
(COND ((ATOM (CAR L)) (ATOMLIST (CDR L))) (T F))))

which is recursive. What we have done is to first examine the (CAR L). If it
is an atom, we reduce the list % by taking the (CDR L) to get a new list. Then
we test this new list with ATOMLIST. If we ever find a non-atomic element, the

conditional will return NIL.

This last definition almost works, but not quite. It fails because we haven't
set up a terminal condition. As it stands now, unless we exit NIL because some
element of the list was non-atomic, we will recur again and again, reducing £

each time until % no longer has elements but is NIL. And then we would try

-94—

recurring once more and try to take the CDR of NIL. There's the rub: (CDR NIL)
is undefined. To exit properly, we must test for the terminal condition. In

this case
(NULL L)
will suffice. Thus our final, correct recursive definition for ATOMLIST is:

DEFINE ((

(ATOMLIST (LAMBDA (L) (COND ((NULL L) T)
((ATOM (CAR L)) (ATOMLIST (CDR L)))
(T F))))))

Note that if we ever encounter the null condition, ATOMLIST is T since all prior
elements must have tested true. We perform the null test first to allow & to

be completely general, including the empty list, NIL. Note then that

ATOMLIST (NIL) = T

14.2 SOME HELPFUL HEURISTICS

The following heuristics can be used as aids in defining recursive functions:

1. Start with a trivial case, or a terminal case in which the rule for

computation is known. Some typical trivial or terminal cases are:

for S-expressions, atoms;
for lists, NIL;

for numbers, 0,1.
2. For the non-trivial, non-terminal case, try to reduce the expression
to a case "mearer" the trivial case.

3. Combine the trivial or terminal case with the other, using the trivial

or terminal case first in a conditional expression.

4. Always check your definition by trying several simple--but not all

trivial--examples.
Let's try these heuristics on the recursive definition of FACTORIAL, where

-95-

UNDEFINED, for n < 0
1, for n=0

n* (n-1)!, forn >0

n!

[]

1. The argument of FACTORIAL is a number. Therefore, the trivial case

is for n = O.
2. In the trivial case where n = 0, then
FACTORIAL (N) = (COND ((ZEROP N) 1))

3. If n is not zero, then we can break n! into the product of two parts,

n and (n-1)!, since (n-1)! moves us nearer the trivial case (2). Thus,
FACTORIAL (N) = (TIMES N (FACTORIAL (SUB1l N)))

4. Now, combining the two cases (2) and (3) conditionally with the

trivial case first, we get

DEFINE ((
(FACTORIAL (LAMBDA (N) (COND ((ZEROP N) 1)
(T (TIMES N (FACTORIAL (SUB1 N)))))))))

Let's trace through this example for n = 3.

Arguments of FACTORIAL = 3, descend (recursion)
Arguments of FACTORIAL = 2, descend (recursion)
Arguments of FACTORIAL = 1, descend (recursion)
Arguments of FACTORIAL = 0, terminal condition
Value of FACTORIAL = 1, ascend
Value of FACTORIAL = 1, ascend
Value of FACTORIAL = 2, ascend
Value of FACTORIAL = 6, cémplete

What we have effectively done in this example is to create

FACTORIAL (3) = (TIMES 3 (TIMES 2 (TIMES 1 1)))

-96—

In general, we will descend as deep as is necessary to reach the terminal case

and the effective computation will be

FACTORIAL (n) = (TIMES n (TIMES n-1 ... (TIMES 2 (TIMES 1 1)) ...))

14.3 MORE RECURSIVE EXAMPLES

The following function definitions are pedagogical devices. Although these
functions are available in LISP, these definitions may not exactly replicate

those in a given system.
1. The function EQUAL (x y) that we saw in Chapter 12 can be defined by:

DEFINE (((EQUAL (LAMBDA (X Y)
(COND ((ATOM X) (EQ X.Y))
((ATOM Y) NIL)
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
(T NIL))))))

This definition uses EQ and hence does not handle numbers.

2. The function APPEND has two arguments, both lists. The value is a

list formed by appending the second list to the first. For example:

APPEND ((AB) (DEF)) = (ABDETF)

DEFINE (((APPEND (LAMBDA (X Y)
(COND ((NULL X) Y)
(T (CONS (CAR X) (APPEND (CDR X) Y))))))))

3. The function LAST has one argument, a list. The value is the last

top-level element of the list.

DEFINE (((LAST (LAMBDA (L)
(COND ((NULL L) NIL)
((NULL (CDR L)) (CAR L))
(T (LAST (CDR L))))))))

-97-

4. Given a list of pairs of the format
((al bl) (a2 bz) .es (an bn))

the function ASSOC (E L) searches the list L for a pair, the first
element of which is equal to E. If such a pair is found, it is

returned as the value of ASSOC. Otherwise, the value is NIL, e.g.,
ASSOC (AA ((A B) (C D) (AA F00))) = (AA FO00)

DEFINE (((ASSOC (LAMBDA (E L)
(COND ((NULL L) NIL)
((EQUAL E (CAAR L)) (CAR L))
(T (ASSOC E (CDR L))))))))

5. The predicate MEMBER described in Chapter 12 can be defined by:

DEFINE (((MEMBER (LAMBDA (A X)
(COND ((ATOM X) (EQUAL A X))
((EQUAL A (CAR X)) T)
(T (MEMBER A (CDR X))))))))

This definition uses EQUAL, and thus allows the value of A to be

any S-—-expression.

14.4 LABEL NOTATION

Earlier we saw that we could compose and evaluate top-level lambda expressionms.
These were temporary lambda expressions. If we named them, we could with DEFINE
make them permanent functions. Recursive expressions point up an inadequacy in
lambda notation that requires ﬁs to define as permanent, recursive functions that
we wish to use as temporafy functions. This difficulty stems from the inability
to call the function from within itself, since the lambda expression is not
named. (When a function is recursive, it must be given a name.) To resolve

this difficulty and thereby allow composition and evaluation of temporary re-

cursive functions, we use the special form LABEL.

To write temporary functions that can call themselves recursively, we write

-98-

(LABEL name lambda-expression)

where '"'name" is any literal atom you choose as the name for the given lambda

expression.

Example:

(LABEL DUMMY (LAMBDA (X)
(COND ((ATOM X) X)
(T (DUMMY (CAR X))))))) (argument list)

Label notation, as this is called, creates temporary expressions that, like the
temporary lambda expressions seen earlier, may be evaluated at the top level.
Also, like temporary lambda expressions, the expression must be entered again
each time it is applied to a different argument list., In fact, that is the
meaning of '"temporary expression' as used here. Of course, we can always use
DEFINE to create permanent functions rather than repeatedly using LAMBDA or
LABEL. 1In practice, temporary lambda expressions are used frequently, but LABEL

is seldom used, the preference being to attach the name by use of DEFINE.

14.5 EXERCISES

1. Evaluate

(LABEL NAME (LAMBDA (X) (COND ((ATOM X) X) (T (NAME (CDR X))))))

for the following arguments:

S

e (A . B)

v’; (X .Y). X.2z)
7 (A BC)
? (A (C . E))

©

2. Evaluate

(LABEL MATCH (LAMBDA (X Y)
(COND ((OR (NULL X) (NULL Y)) (QUOTE NO))
((EQ (CAR X) (CAR Y)) (CAR X))
(T (MATCH (CDR X) (CDR Y))))))
-99-

3.

for the following arguments:

@) X

(A BE) (JOE)

/ " (KAY) (EVE)

t//& (ELLIN) (HELEN)

Define
(TWIST (LAMBDA (S)
(COND ((ATOM S) S)
(T (CONS (TWIST (CDR S))
(TWIST (CAR S)))))))
Evaluate

v 4) TWIST (A)

4} TWIST ((a . B))

/ ~ TWIST (((A . B) . C))
; TWIST ((A B C))
»y TWIST (((A . B)))

Let us plan how to define, recursively, the function
SIM (xy) =x+y
using only the functions ADD1 and SUBl, and the predicate ZEROP.

The trivial case is y = 0. Then the value of SUM would be the

value of x.

We can reduce the general case, y + 0, to the trivial one by reducing
y by 1, increasing x by 1, and recurring on these values. This gives

rise to the following definition:

(SUM (LAMBDA (X Y)
(COND ((ZEROP Y) X)
(T (SUM (ADD1 X) (SUBL Y))))))

-100-

Using this definition, show the arguments and values of SUM each time

it is entered for
SM (1 2)

Define recursively, using only the functions ADD1, SUBl, and ZEROP
PROD (x y) =x *y

Hint:

If y = 0, then the product is trivially zero. If not,
then the product is the SUM of x and the PROD of x and
y-1.

We know that division is essentially repeated subtraction, and that
the remainder in division is the residue when subtraction is no

longer possible. Therefore, define recursively
REMXY (x vy)
which yields the remainder resulting from the division of x by y.

Define the recursive function COUNT having one argument. The
argument may be any S-expression. The value of COUNT is the number

of atoms in the argument.

The Fibonacci series is a sequence of integers. The first two terms
are 1 and 1, respectively. After that, each term of the series is

the sum of the preceding two terms.
The Fibonacci series begins as
e 14
1, 1, 2, 3, 5, 8, 13, 21, ...

Define the function FIBB(N) that returns as its value the Nth

term of the series.

-101-

9. The greatest common divisor (G.C.D.) of two whole numbers is the
largest number that will exactly divide both of them. Euclid gave
an algorithm, which can be stated in Engldish.

The G.C.D. of x and y is:
If x is greater than y, then find the G.C.D. of y and x. Else,
if the remainder of y divided by x is zero, then the value is x.

Else, the value is the G.C.D. of x and the remainder of y divided

by x.

Use this algorithm to define GCD (x y); e.g.,

GCD (7 7) =7
GCD (19 7) =1
GCD (28 35) =7

10. Define
AMONG (a %)

which is a predicate that is T if and only if the atom a is among

the top-level elements of list 2.

AMONG (X (AB X)) =T
AMONG (X (A B (X))) = NIL

11. Define
INSIDE (a e)

which is a predicate that is T if and only if the atom a appears

anywhere at any level in the S-expression e.

INSIDE (X (AB X)) =T
INSIDE (X (A (X) B)) =T
INSIDE (X (A . (B . X))) =T

-102-

12. Definé
COPYN (x n)
which will put n copies of x on a list; e.g.,
COPYN ((A B) 3) = ((A B) (A B) (A B))

Most LISP systems have functions LENGTH, UNION, INTERSECTION, REVERSE, and
SUBST available as built-in functions. If you err in redefining such functions
to the computer, you can "crash" the system. For that reason, I have avoided
name clashes in the following problems, but realize the direct correspondence
between these names and LENGTHS, UNIONS, INTERSECT, REVERSAL, and REPLACE,

respectively.
13. Define
LENGTHS (&)
which counts the number of top-level elements of a list, e.g.,
LENGTHS ((A B (C D) E)) = 4
14. Define
UNIONS (x y)

which returns a list that contains every element that is in one list
or the other or both. The order in which the elements are presented
is first, all the elements that are in the first list, x, and not in
the second list, y, and second, all elements in the second list, vy,

whether or not they are in list x.
Hint:
Use the function MEMBER.

UNIONS ((UV W) (WXY)) = (UVWIXY)
UNIONS ((ABC) (BCD)) = (ABCD)

-103-

15.

16.

17.

18.

19.

Define

INTERSECT (x y)

which returns a list of elements common to both list x and list y.

INTERSECT ((A B C) (B C D))
INTERSECT ((A B C) (D E F))

(8 C)
NIL

Define
REVERSAL (%)
which reverses the order of top-level elements of the list ¢; e.g.,
REVERSAL (((A B) D (D E) G)) = (G (D E) D (A B))
Hint:
Use APPEND as given in the earlier examples.
Define
PAIRS (21 &2)

which produces a list of dotted pairs of the elements of two lists

of equal length; e.g.,

PAIRS ((ONE TWO THREE) (1 2 3)) = ((ONE . 1) (TWO . 2) (THREE . 3))
Define

DELETE (a %)

which produces a new list in which all references to the atom a have

been deleted from the top level of list &; e.g.,
DELETE (Y (X Y Z)) = (X Z)
Define the predicate

INSEQ (&)

-104~

which is T if list % contains a numerical sequence in proper ascending

or descending order, and NIL otherwise.

Hint:
Use an auxiliary function INSEQA that tests ascending
order only. Use INSEQA with REVERSE (a system function
analogous to REVERSAL above) to test descending order.
INSEQ (1 2 3 4) =T
INSEQ (40 30 2 1) =T
INSEQ (1 23 24 27 26 30) = NIL
INSEQ (10.0 9 8 7.4 2.3) =T
INSEQ (A B C D E) = NIL
20. Define

REPLACE (a b x)

which is a function that replaces the atom b by the atom a for every

occurrence of b in x. a, b, and x are S-expressions.

REPLACE (AB (ABCD)) = (AACD)
REPLACE (TWO TO (WE TO HAVE TO CATS)) = (WE TWO HAVE TWO CATS)

~-105-

CHAPTER 15.
THE PROGRAM FEATURE

The LISP 1.5 program feature, which is called by the special form PROG, allows
us to write an ALGOL-like program containing statements to be executed. It
provides the capability to perform iteration by allowing looping and the use of

temporary variables.

15.1 PROG_FORMAT

As you recall, a lambda expression has the following syntax:
(LAMBDA varlist body)

The PROG form becomes the body or part of the body of a lambda expression. Like

all forms, it is an S-expression; it has the structure
(PROG varlist statements)

The list of variables, varlist, as with lambda expressions, contains the
variables of the PROG required by the statements. The statements are themselves

S—-expressions.
Thus, the complete lambda expression with the PROG form has the structure

(LAMBDA (lambda-variables) (PROG (program-variables) statements))

15.2 PROGRAM VARTABLES

We usually call the variables associated with the lambda expression lambda

variables, and those associated with the PROG, program or prog variables. The
list of program variables, just like the list of lambda variables, must always
be present in the structure of the expression. If we have none, then the list

is entered as NIL or ().

As with lambda variables, program variables are also dummy variables; we usually

think of dummy variables as being either lambda or program variables.

-106-

Unlike lambda variables, which have no value until lambda conversion, program
variables always have value NIL until they are changed or set by statements
within the PROG.

Two functions are used to set dummy variables (i.e., lambda or program variables),
SET and SETQ.

SET is a function of two variables, and has the form:

(SET vy V2)
which can be read as '"set the value of vy equal to the value of v2". Both
variables vy and v, can be (and usually are) S—expressions themselves. They

are evaluated and the value of vy must be a literal atom. The value of v, is

bound to the value of vy If we wish to set a specific program variable, we

must always use QUOTE, e.g.;
(SET (QUOTE PI) 3.14159)

SETQ is like SET, but for convenience, SETQ always quotes its first argument.
The "Q" in the name "SETQ" is to remind us of this fact, e.g.,

(SETQ PI 3.14159)

SET and SETQ return as their values the value of the second argument, Vo

15.3 FLOW OF CONTROL

Within the PROG form, the fldw of control is like that of FORTRAN or ALGOL.
Each program statement is a form, and the sequence of statements is a sequence
of forms. The simplest S—expressions are literal atoms, and these are used as

statement labels or names for the statements that follow. For example,

(SETQ PI 3.14159)
LOC1 (SETQ R N)
(SETQ AREA (TIMES R PI R))

has atomic symbol LOCl as a name for the statement

(SETQ R N)

-107-

Statements are normally executed in sequence. Executing a statement means
evaluating the form. Program statements are often executed for their effect
rather than for their value, as with SETQ above. The GO statement is a perfect
example of execution for effect rather than value. GO is a function used to
cause a transfer to a named statement. It is a function of one argument that

is not evaluated--that argument being a statement label, e.g.,
(GO LOC1)

To exit from a PROG, we use RETURN. RETURN is a function of one argument, and
the argument is evaluated. The value of the argument is returned as the value
of the PROG. A RETURN statement terminates the PROG form and no further

statements are executed.

We can also exit from a PROG without the RETURN statement by just "running out"
of statements. In that case, the value of the PROG is always NIL.

PROG statements can be constructed from any of the expressions available in
LISP. They may be conditional or recursive expressions. They may even be

lambda or program expressions, thereby allowing nesting of program expressions.

15.4 SOME CAUTIONS

Conditional expressions as program statements have a useful peculiarity. If
there are only NIL clauses, instead of an error indication (which would other-
wise occur on some systems), the program continues with the next statement. In
other words, the program 'falls through" the conditional expression if there are
no true conditions. This peculiarity is true only for conditional expressions
that are statements of a PROG. Nested conditional forms used in the PROG

expression behave in the normal manner (see Chapter 11).

For some LISP systems, GO may be used only as a statement of a PROG or
immediately inside a COND that is a statement of a PROG. Most implementations

have removed this restriction.

If we nest a PROG within a PROG, within a PROG, etc., the GO, RETURN, SETQ,
etc., will have a scope local to the most recent PROG. For example, GO cannot

transfer to a statement label within another higher- or lower-level PROG.

-108-

Similarly, RETURN takes you "up" one level to the next higher expression. In
certain special cases, SETQ may be used on variables defined by a higher-level
PROG. These variables are then called free variables and require special

attention. We will discuss variables and their bindings in the next chapter.

15.5 EXAMPLES

In the last chapter we saw the recursive definition of FACTORIAL. Let's

contrast that expression with one using the program feature.

FACTORIAL--recursive definition

DEFINE ((
(FACTORIAL (LAMBDA (N)
(COND ((ZEROP N) 1) (T (TIMES N (FACTORIAL (SUBL N)))))))

))
FACTORIAL~--program feature
DEFINE ((
(FACTORIAL (LAMBDA (N) (PROG (Y),
(SETQ Y 1)
TAGL (COND ((ZEROP N) (RETURN Y)))
(SETQ Y (TIMES N 'Y))
(SETQ N (SUB1 N))
(GO TAGL))))
))

In these examples, the recursive definition appears to be simpler than the

one using the program feature. In other problems it may be otherwise. The
choice of whether to use the program feature or to use "pure LISP" in writing a
program, depends in large measure on the problem. Style in programming is often,

however, the stronger influence--as noted by Fisher Black.9

15.6 PROG2

The function PROG2 is distantly related to PROG. It is a function of two argu-
ments that evaluates both its arguments in order, i.e., argument one first,

argument two second. PROG2 has as its value the value of its second argument.

-109-

Thus,

(LAMBDA (X Y) (PROG2 (CONS X Y) Y)) (A B) =B
The utility of PROG2 can be seen in the following example.

Example:

Given a list of numbers, define the function SORT,
which sorts these numbers into odd or even and

returns a list of two sublists of the form:

((odd-count list-of-odd-numbers) (even-count list-of-even-numbers))

SORT ((1 23 45)) =3 (G31) (2 ¢ 2))
SORT ((1357 9)) ((5 (975 31)) (0NIL))
SORT ((2 4 6 8 10)) = ((0 NIL) (5 (10 8 6 4 2)))

DEFINE ((
(SORT (LAMBDA (X) (PROG (ODD EVEN ODDCNT EVENCNT L)
(SETQ L X) (SETQ ODDCNT 0O) (SETQ EVENCNT O)
LOOP (COND ((NULL L) (RETURN (LIST (LIST ODDCNT ODD)
(LIST EVENCNT EVEN))))
((EVENP (CAR L))
(SETQ EVEN (PROG2 (SETQ EVENCNT (ADD1 EVENCNT))
(CONS (CAR L) EVEN))))
(T (SETQ ODD (PROG2 (SETQ ODDCNT (ADD1 ODDCNT))
(CONS (CAR L) 0DD)))))
(SETQ L (CDR L))
(GO LOOP))))))

Note:
The conditional clause

(T (SETQ ODD (PROG2 (SETQ ODDCNT (ADD1 ODDCNT))
(CONS (CAR L) ODD))))

could have been written

-110-

(T (PROG2 (SETQ ODDCNT (ADD1 ODDCNT))
(SETQ ODD (CONS (CAR L) 0DD))))

I chose the former method to emphasize the return of the value of the last argu-

ment.

In fact, some systems generalize PROG2 to PROGN, a special form of an

indefinite number of arguments that returns the value of the last argument.

PROGN can be defined as a macro (see Chapter 19) in terms of PROG2.

15.7

3.

EXERCISES

Using PROG, define the function
NEGCNT (%)
which counts the number of negative numbers at the top level of list &.
The discriminant b2—4ac, of a second degree equation of the form
2 2
ax + bxy + cy +dxt+tey+ £ =20

can be used to determine the type of curve represented by the equation,

according to the following schedule:

1. A parabola if discriminant = 0
2, An ellipse if discriminant < 0

3. A hyperbola if discriminant > 0
Define
CURVE (a b c¢)

which evaluates to PARABOLA, ELLIPSE, or HYPERBOLA as a function of

the numerical values of arguments a, b, and c.
The recursive definition for LENGTHS is:

DEFINE ((
(LENGTHS (LAMBDA (M)
(COND ((NULL M) 0)
(T (ADD1 (LENGTHS (CDR M)))))))))

Define LENGTHS using PROG.

-111-

4, The recursive definition for LAST is:

DEFINE ((
(LAST (LAMBDA (L)
(COND ((NULL L) NIL)
((NULL (CDR L)) (CAR L))
(T (LAST (CDR L))))))))

Define LAST using PROG.

Define the following functions using PROG. (See Chapter 14, problems 16, 17,
and 18,)

5. REVERSAL
6. PAIRS
7. DELETE

8. Each different arrangement of all or a part of a set of things is
called a "permutation'". The number of permutations of n different

things taken r at a time is
P(n,r) = n! / (n-r)!

Define, with and without PROG (using FACTORIAL),
PERMUT (n r) = n! / (n-r)!

9. Each of the groups or relations which can be made by taking part or
all of a set of things, without regard to the arrangement of the
things in a group, is called a "combination'". The number of combi-

nations of n different things taken r at a time is
C(n,r) =n! / r! (n-r)!
Define, with and without PROG

COMBIN (n r) =n! / r! (n-x)!

-112-~

10. An interesting way to obtain the combinations of n different things
taken r at a time is to construct Pascal's triangle. The triangle
looks like this:

x =0
n=0 - 1 L r=1
n=1 - 1 1 =2
n=2 - 1 2 1 L r=3
n=3 - 1 3 3 1 L r=b
n=4 - 1 4 6 4 1 © =5
n=5 > 1 5 10 10 5 1

Given the pseudo-function PRINT, which takes one S-expression as its

argument and prints the value of that argument, e.g.,
«ess (PRINT (LIST (QUOTE A) (QUOTE B) 3 (QUOIE C))) = (A B 3 C)

and ignoring the triangular format, use your definition for COMBIN to

define
PASCAL (n)

which prints Pascal's triangle to depth n, e.g.,
PASCAL (5) =

(1)

11D

(121)
(1331)
(14641)
(1510105 1)
NIL

-113-

CHAPTER 16.
VARIABLES AND THEIR BINDING

So far, for the sake of convenience, I have been intentionally vague in describing
the mechanisms used by LISP to bind variables. This chapter attempts to clarify

what we have been doing in this regard.

A variable is a symbol that is used to represent an argument of a function. Thus,
one might write a + b, where a = 341 and b = 216. 1In this situation, no con-
fusion can result, and all will agree that the answer is 557. In order to arrive
at this result, it is necessary to substitute the actual numbers for the varia-

bles, and then add the two numbers (on an adding machine, for instance).

One reason why there is no ambiguity in this case is that "a" and "b" are not
acceptable inputs for an adding machine, and it is therefore obvious that they
merely represent the actual arguments. In LISP, the situation can be much more
complicated. An atomic symbol may be either a variable or a constant. To
further complicate the situation, an argument may be an arbitrary symbolic con-
stant that superficially looks like an expression to be evaluated. The
intuitive approach is no longer adequate. In the examples so far, we have seen
functions applied to specific arguments to get specific results. We have also

provided for arbitrary arguments by means of bound variables in LAMBDA and PROG

expressions.
16.1 BOUND VARIABLES
Rule:

An atom is always evaluated. If you wish to suppress
evaluation, quote it. Some atoms, such as T, NIL, and

numbers in particular, are permanent constants.

The implication of this rule is that all non-quoted atoms are bound variables.
But what does this mean? It means that all non-quoted literal atoms are con-
sidered to be variables that have values, and we say that a value is "bound to

the variable'". This value can be any S-expression. The binding is in actuality

-114-

an association of data internal to the LISP system that is recognized and
manipulated by the LISP system when an expression is evaluated. To understand
bound variables adequately, we must examine more closely how these associations
are constructed internal to LISP. The methods for binding depend upon the
nature of the LISP system. Interpreters bind variables differently than do
compilers. Lambda and program variables are examples of bound variables. In

the expression
(LAMBDA (A B C) (PROG (X Y Z) ...))

the lambda variables A, B, C, and the program variables, X, Y, Z are all bound

variables.

16.2 THE A-LIST

In some interpretive LISP systems, whenever a lambda or program expression is
encountered, the variables to be bound are placed on the association list or

a-1list. The a-list is a list of dotted pairs of the form
((ul . vl) (u2 . v2) ves (un vn))
where u, is the name of a variable and 7 is its value, or binding.

Lambda or program variables are paired with their values and the pairs are
appended to the front (leftmost) end of the existing a-list, with older bindings
further back. When we exit from a function, the bindings for that expression
are removed, and the a-list is shortened. The bindings for a particular ex-

pression are its context.

During form evaluation, all references to dummy variables are references to the
a-list, The a-list is searched, front to back, for the first occurrence of the
variable. (The function ASSOC is useful for this purpose.) The CDR of the
pair is then the value of the variable. If a function is recursive, there will
be multiple occurrences of its variables on the a-list, each representing the
context of the function at some prior call. During evaluation, only the first
occurrence of the variable is used, corresponding to the current context of the

function.

-115-

16.3 FREE VARTABLES

An expression to be evaluated has a context given by the current bindings of all
its variables. Since the value of the expression depends upon the current
bindings, the value of the expression depends upon its context. Change the

context and you (probably) change the value of the expression.

On the other hand, variables are defined by expressions; their scope of defini-
tion, in which a given binding may be retrieved, is restricted to the expression
in which they were defined. Outside that scope, the binding, or even the
variable itself, does not exist. For lambda variables, the scope is the body

of the lambda expression. TFor program variables, the scope is the statements

of the program expression,

Frequently, however, an expression may reference a variable it has not defined.

If this reference is to be meaningful, the variable must be defined and bound at
some higher level such that its scope encompasses the immediate expression. We

speak of such references as ''free references" and call the variables free

variables.

Examine the expression

(LAMBDA (PI J) ((LAMBDA (R) (TIMES 2 PI R)) J)) (3.14159 2)
_/-N

\’\CN
€1

PI is a free variable in the innermost lambda expression, Cye

After bindings have been established by lambda conversion, the a-list looks as

follows during the evaluation of the innermost lambda expression.

((R. 2) (PT . 3,14159) (J . 2) ...)
N NN T e

€ €1

The contexts for expressions 1 and c, are noted.

-116-

When the form
(TIMES 2 PI R)

is evaluated, the a-list is searched for the values of variables R and PI. R
is found in the current context, labeled Cys but PI is found at a higher context
level, labeled .

complete a-list, independent of context, until the first occurrence of the

Thus, free variables are evaluated by searching through the

variable is encountered. If a free variable has not been bound at some higher

level, no association will be found on the a-list and an error will result,

16.4 CONSTANTS

Quoting data is one way to realize constants in a form. Using free variables is
another method. But what if we wish to use names for constant data, for clarity
in programming or for the simple, practical reason that the name may be shorter
than the data and hence easier to write? When a variable always has a certain
value, irrespective of the current a-list, we call it a constant. This is

accomplished by means of value cells also called special cells.

Every literal atom has a value cell that may contain the binding to a constant.
For conventional LISP interpretive systems, the value cell is on the atom's
property list (see Chapter 19) under the indicator APVAL (for "apply value").
For compiler-based systems, and some more recent interpretive systems, the value

cell is part of the atomic structure of a literal atom (see Chapter 19).

When a constant is used, it is used as a free variable and the binding is
retrieved from the value cell, not the a-list. The internal mechanism which
tells LISP when to examine the value cell and when to search the a-list is
extremely implementation-dependent and beyond the scope of this text. In fact,
on recent systems there is no a-list at all, but some other more efficient
storage mechanism. Our primary concern here is to learn how to establish

bindings in the value cell,

Lambda conversion establishes bindings on the a-list (or equivalent repository
with more recent systems), not in the value cell. Value cell bindings are

often called "zero-level" bindings since they are established at the top-most

-117-

level of LISP. They are also called '"global" bindings since the scope of the
bindings encompasses all levels of expressions. Zero-level bindings can be

established on most systems with the pseudo-functions CSET and CSETQ.
CSET acts like a function of two variables of the form

(CSET v, v

1 2)

Both vy and v, are evaluated; vy must evaluate to a literal atom. The value of

v, is placed in the value cell of the literal atom value of V- For example,

2
(CSET (QUOTE PI) 3.14159)
will bind the number 3.14159 to the atom PI.
CSETQ is like CSET except that it quotes its first argument, e.g.,
(CSETQ PI 3.14159)
Both CSET and CSETQ return the value of Ve
Note that CSET at the top level is

CSET (PI 3.14159)

since EVALQUOTE quotes its arguments. We cannot use CSETQ at the top level
because a double quote would occur (once by EVALQUOTE, once by CSETQ itself)
for vy and it would not then evaluate to the manditory literal atom.

16.5 COMPILER BINDINGS

The binding of variables on an a-list is adequate for interpreters where the
lambda expression is saved and evaluated each time; but it is inadequate for
compiled functions since the symbolic expressions are translated into machine
code and discarded. Compiled functions also run one or two orders of magnitude
faster than interpreted functions by eliminating the costly a-list searches

during evaluation.

There are two types of variables in compiled functions: special variables and

ordinary variables.

-118-

Accordingly, variables may be bound in one of two places, in the value cell,
or on an internal last-in-first-out (LIFO) stack or table referred to as the

push-down 1list.

If a variable is an ordinary one, a storage location is reserved for it on the
push-down list when the expression in which it is defined is evaluated. Other
functions cannot find this private cell, making it impossible to use it as a
free variable on most systems. Ordinary variables are lambda and program
variables, i.e., dummy variables. After the parent expression is evaluated
and evaluation moves to a higher-level expression, the reserved location is
released, and its contents are lost, analogous to releasing context on an

a-list.

Special variables are used for constants and free variables. Such variables
have indicators associated with their names (in some implementation-dependent
manner) designating them as special variables. When a function uses a variable

freely, the quantity in the value cell is the value of the variable.

Free variables must be bound in the value cell if the proper binding is to be
retrieved during evaluation. To convey this information to the LISP compiler,
you must declare free variables as special cases before compilation. In most

systems, declarations are made with the pseudo-function SPECIAL.

SPECIAL is a pseudo-function of one argument, a list of all the variables used

free in the functions being defined. Thus,
SPECIAL ((PI DOG))

declares the atoms PI and DOG as special cases; any time PI or DOG is used as a
free variable, values will be bound and retrieved from that atom's value cell.
You may ''un-special' any special variable with the function UNSPECIAL. UNSPECIAL

is the inverse of, but in the same form as, SPECIAL. Thus,
UNSPECIAL ((PI DOG))

removes the special status from the atoms PI and DOG.

-119-

16.6 EXERCISES

This chapter has no exercises because of the different treatment given variables
by different implementations. The areas of common treatment, such as dummy
variables, have been covered by previous chapters. For more information and

exercises, consult the LISP expert for your system.

-120-

CHAPTER 17.
DEBUGGING, INPUT-OUTPUT, AND SUPERVISORS

LISP, like many current programming languages, suffers from a lack of
standardization in the areas of debugging and input-output. I don't wish

to imply that LISP is weak in these areas. On the contrary, LISP systems
have extremely powerful debugging aids. This chapter presents the more
common features available on most systems, though even here minor differences
in definitions appear across various implementations. In addition, more
recent systems have capitalized on new technological advances (such as time-
sharing and interactive on-line operation), and have extended these features
in interesting and exciting ways, so that the reader is encouraged to explore

these areas with his own system.

17.1 PROGRAM DEBUGGING

Errors that fault a LISP program generally fall into two broad categories:
syntax errors, and semantic errors. Often, the symptoms of failure fall in
one category, whereas the cause of failure stems from errors in the other
category. A perfect example is the poorly formed conditional expression,

which--even though parentheses may balance out--is incorrectly structured.

Elaine Gord]'0 has noted some problem areas in LISP debugging based on her
experience. From this experience--and from my own--I have compiled the

following checklists of high-probability error sources in LISP.

Syntactic Error Sources

1. READ balks because of an insufficient number of right

parentheses.

2. READ balks because an S-~expression begins with a right
parenthesis--a symptom of an excess of right parentheses

in the prior S-expression read.

3. READ balks because an S-expression written in dot-notation
has "too many dots'"--a symptom of a poorly formed S-

expression.

~-121-

Semantic

READ balks because of an illegally spelled atom. Check the
legal syntax of numbers and literal atoms allowed by your
system. Watch out for the classic error of interchanging
the numbers zero and one, and the letters '"0" and "“I'".

Also, if the S-expression being read was originally produced
by a LISP printout on card, tape, or disc, any unusually
spelled literal atoms previously entered as strings (see
Paragraph 17.6) have probably been stripped of the string
quoting apparatus and printed as a literal string. You
cannot re-read such strings without restoring the string

quoting apparatus.

A run-time error occurs due to poorly structured forms. Check
your parentheses according to the legal syntax for LAMBDA and
PROG expressions, for COND and SELECT, for DEFINE, and other

special forms.

A run-time error occurs due to poorly delimited atoms. The
characters blank, comma, left and right parenthesis always
terminate the name of an atom (other terminators may also exit
on given systems). Check that all atoms have been properly
delimited. Particularly, check the local system conventions

for atom composition across card (or line) boundaries.

Error Sources

Check syntax error possibilities.

Undefined functions may not have been defined through over-
sight. Otherwise, check your spelling and the proper system

spelling for the function you want.

Watch out for duplicate names. You may have duplicate names
for dummy variables (if they are in different LAMBDA or PROG
forms) , but not for CSET variables or functions. Beware

particularly of names used internally by the system. Check

with your local LISP expert for all system names (both

-122-

variables and functions) that may clash with user names.

4. Lambda conversion errors result when an improper number of
arguments are supplied to the function. Furthermore, the

order of the arguments may be in error.

5. Wrong arguments cause errors. Check that the arguments are
of the proper type and form. If the function expects numbers,
don't give it lists. Also, functions that use CAAR, CADR,

etc., presuppose a list containing lists as elements.

6. Familiarize yourself with the differences between CONS, LIST,
APPEND, and other list-making functions. You may have selected

the wrong function and not produced the desired value.

7. Watch your predicates in conditional expressions. Are they
the negation of what you really want? Is the conditional

expression checking for all cases, and in the proper order?

8. Terminating conditions of recursive functions are very
important. Check that you have the right conditions, the
proper number of them, and have situated them in the proper

place in the recursive function definition.

17.2 DIAGNOSTIC TOOLS

LISP provides a number of user-oriented tools for diagnosis of run-time errors,
besides the normal system diagnostics. System-detected errors usually yield
an error message related to the immediate cause of failure, followed by a

short listing of the program flow leading to the immediate trapped function.
The listing is called a 'backtrace', and usually consists of the function
names of the program hierarchy involved in the error. This information is
gathered by the system as it "unwinds" the program hierarchy built up during
evaluation, so as to reach the top level again. Some systems may also list

the calling parameters of each function at the moment of error, and may even

allow conditional user control of the unwinding process.

-123-

Some standard LISP diagnostic tools are listed below:

TRACE (L) TRACE has one argument, L, a list of functions to be
traced. After TRACE has been evaluated, the arguments,
values, and name of each function are printed each time

the function is entered and exited.

UNTRACE (L) UNTRACE has one argument, L, a list of functions currently
being traced. UNIRACE removes the tracing from all

functions in list L.

GENSYM () GENSYM has no arguments. Its value is a new, distinct,
and freshly created literal atom with a print name (on
most systems) of the form GOOOOl, GO0O0O0O2, ..., G99999.
This function is useful in debugging and general LISP
programming for creating a literal atom when one is
needed; each one is guaranteed to be unique. GENSYM
names --if printed on cards, tape, or disc and subsequently
read back into the system--will not correspond to an
internal, existing GENSYM name. This is necessary to

guarantee their uniqueness.

Other non-standard diagnostic tools, that allow even greater control of
program execution are usually present in a given LISP system. These tools
include user access to the error message and unwind control; conditional
traps on CONS usage; and various breakpoint traps and traces. The literature

for your system probably explains their operation and should be consulted.

17.3 INPUT-OUTPUT

Input and output in LISP are handled principally by the two pseudo-functions
READ and PRINT, which read and print one S-expression, respectively. These

functions are, in turn, defined in terms of more primitive machine-dependent
functions. I have put together in this chapter a set of basic input-output

functions that are representative of those found on most systems, even if

their names and operations are not exactly those of your system.

-124-

READ ()

PRINT (S)

READ is a pseudo-function of no arguments. Its evaluation
causes the next S-expression to be read from the input
device and structured internally as a LISP S-expression.

All literal atoms seen by READ, which are already structured
internally, are references to those structures. All new
atoms (ones not seen before) cause new internal structures
to be created as their reference. READ returns as its

value the S-expression read. (The value, like all LISP
values, is a pointer to the internal representation of

the S-expression.)

PRINT is a pseudo-function of one argument, an S-expression.
Its evaluation causes that S-expression to be printed on
the output device and the argument to be returned as its
value. Since the argument seen by PRINT is a pointer to
the internal representation of the S-expression, PRINT
computes a '"print name' for the S-expression based upon

the print names of all atoms in the S-expression and upon
the structure of the S-expression. The print name of the
S-expression is exactly the list notation used throughout
this text. A definition of PRINT is given below. It

uses primitives discussed in the next paragraph.

(PRINT (LAMBDA (X) (PROG ()
(PRIN X)
(TERPRI)
(RETURN X))))

(PRIN (LAMBDA (X) (PROG (J)
(COND ((ATOM X) (GO D)))
(SETQ J X)

(PRIN1 LPAR)

A (PRIN (CAR J))

(COND ((NULL (CDR J)) (GO C)))
(PRIN1 BLANK)
(COND ((ATOM (CDR J)) (GO B))).

-125-

(SETQ J (CDR J))
(GO A) |

B (PRINL PERIOD)
(PRINL BLANK)
(PRINL (CDR J))

C (PRINL RPAR)
(RETURN X)

D (PRINL X)
(RETURN X))))

The definition of PRIN above shows that PRIN is the work horse of PRINT. It
does the recursive computation for putting atom print names, left and right
parentheses, and '"dots" into the print line. PRIN calls upon the primitive
PRIN1 to do the actual print line manipulations.

17.4 INPUT-OUTPUT PRIMITIVES

Most LISP systems use buffered I/0. The primitives listed here are responsible

for much of the internal I/0 buffer management. The read line and print line

correspond to the internal buffers.

RATOM () RATOM is a pseudo-function of no arguments used by READ.
Its evaluation causes the read line to be examined and
the characters therein to be parsed into an atom. If
the string of characters corresponds to number syntax, a
numerical atom is formed. 1If the character string obeys
literal atom syntax, a literal atom is formed. If neither,

an error results.

The value of RATOM is the atom read (i.e., the pointer to

the internal atomic structure)
controls are advanced over the
RATOM is sufficiently flexible
to specify the syntax of atoms

parsing.)

-126-

and the internal buffer
atom read. (In some systems,
to allow knowledgeable users

and thereby control the

READCH () READCH is an invention for this text, but corresponds to
a pseudo-function of no arguments available on most systems.
(Some systems achieve the effect of READCH by flexible
control over RATOM.) 1Its evaluation causes the next
character in the read line to be returned as a literal
atom. No syntax check is made, hence all single characters

are acceptable literal atoms.

TEREAD () TEREAD, meaning "TERminate READ", is a pseudo-function of
no arguments that clears the read line regardless of its

current contents. The value of TEREAD is NIL.

PRIN1 (A) PRIN1 is a pseudo-function of one argument, an atom. Its
evaluation causes the internally stored print name of the
argument to be entered into the print line. The internal
buffer controls are advanced just beyond the atom printed.
The contents of the buffer are not normally transferred to
the output device, except when the buffer overflows. The
argument A must evaluate to an atom which is the value of

PRINL.

TERPRI () TERPRI, meaning "TERminate PRInt line", is a pseduo-
function of no arguments used by PRINT that dumps the
current print line on the external output device and then
clears the print line. A blank line is printed if the

print line is clear. The value of TERPRI is NIL.

17.5 THE OBLIST

RATOM is a machine-language routine that converts character strings into
internal atomic structure. When a non-numeric character string is read, it
must be compared with the character representation of all literal atoms seen
so far, to determine whether this string is a new atom or a reference to one

seen before.

=127~

There must be rapid access to all the atoms in the system. There exists, there-
fore, a list called the object list, or OBLIST, of all literal atoms. To speed
up the search for comparisons, the OBLIST is usually organized as a list of a
hundred or so sublists or "buckets'". The atoms are distributed among the
buckets by a computation upon their Hollerith print names (hash coding), which

yields a reasonably uniform and random distribution of atoms among the buckets.

Thus, literal atoms in all LISP systems are unique, and have unique locat:ions
(addresses) in the system. In some more recent systems, small numbers are
uniquely represented internally by the address resulting from adding a constant
displacement to their numerical values. The uniqueness of atoms permits rapid

testing for equivalent structures by EQ and EQUAL.

17.6 UNUSUALLY SPELLED LITERAL ATOMS

The syntax for literal atoms given in Chapter 2 notes that a literal atom is
any sequence of letters and digits, where the first character must be a letter.
We speak of such atoms as being ''properly spelled', and now appreciate that

this spelling is the normal syntax accepted by RATOM.

Often, however, with extended character sets we wish to compose literal atoms
out of other than capital letters and digits. Such atoms are said to be
"unusually spelled". To use them, without modifying RATOM, we must use a string
quoting convention. Historically, this convention is called the $$-artifact.

We shall use and explain it here, even though more streamlined string quoting

apparatus exists on many current systems.

Any character string preceded by $$ will alert RATOM to the occurrence of an
unusually spelled literal atom. RATOM treats the character immediately follow-
ing the $$ as a "bracket" and then builds a literal atom out of all characters
preceding the next occurrence of the bracket character. The bracket character
may be any character. All characters between the "ad hoc" brackets will be
taken as the print name for a literal atom. Note that if the characters are

digits, no conversion takes place and the atom is literal, not numeric; i.e.,

EQUAL ($$*123*% 123) = NIL

-128-

Some examples are shown below.

$$-Artifact Atom Formed Bracket Character
1. $$*NOW IS THE TIME* NOW IS THE TIME *
2. $$81238 123 (in Hollerith $
not binary)

3. S*ATOM* ATOM *
4, $$B B space B
5. 88.(C. «

6. $$(..(. (

In example 3 above, $$*ATOM* is internally equivalent to the atom, ATOM. Thus,
bindings for $$*ATOM* are bindings for ATOM; e.g.,

CSET ($$*ATOM* 123) = 123
(LAMBDA NIL ATOM) () = 123
EQUAL ($$*ATOM* ATOM) = T

17.7 CHARACTER OBJECTS

It is assumed here that every single character has a corresponding one-character
literal atom already in the system. Thus, character "A" corresponds to the
literal atom "A"; character "/" to the literal atom "/"; and character "7" to
the literal atom "7". However, RATOM does not always read characters as literal
atoms. It obeys the syntax of atoms that says literal atoms begin with a letter,
etc. Thus, the character "7", if it were surrounded by blanks, would be read

by RATOM or READ as a number, not as a literal atom. READCH, however, would
read "7" as a literal atom. For RATOM or READ to read "7" as a literal atom,

the $$-artifact must be employed; e.g., $$%7%,

- An alternative to the $$-artifact is the use of character objects. A character
object is a literal atom, the value of which is another literal atom with a
special print name, that print name being some special character. The
character object's print name is the English name for that character. The
collection of character objects available depends upon the LISP implementation;

however, the following are typical examples:

-129-

Character Object Print Name of Value

LPAR C
RPAR)
BLANK space
PERIOD .
SLASH /
EQSIGN =
UPARROW 4
DOLLAR $
STAR *
PLUSS +
DASH -

The user may define any others he may choose. For example,
CSET (COMMA $$%,%)T

binds the literal atom $$*,* as the value (i.e., the zero-level binding) of

the literal atom COMMA. Then the value of COMMA will print as the character ",".

17.8 SUPERVISORS

In Paragraph 9.3 we examined the action of EVALQUOTE without being able at that

time to examine its definition. We have now acquired all the necessary knowledge
to define EVALQUOTE. This definition will work on all LISP systems, if the
system can duplicate the function EVAL as defined in this text. In practice,
EVALQUOTE requires more system housekeeping than is shown here; to give atten-
tion to system housekeeping chores, however, would not be germane to our

discussion.

+Some LISP systems permit constants such as these to be defined by SET

rather than, or in addition to, CSET.

=130~

(EVALQUOTE (LAMBDA () (PROG (S1 S2 ARGS)
A (TEREAD)
(SETQ ARGS NIL)
(SETQ S1 (READ))
(SETQ S2 (READ))
B (COND ((NULL S2) (GO C)))
(SETQ ARGS (CONS (LIST (QUOTE QUOTE) (CAR S2)) ARGS))
(SETQ S2 (CDR S2))
(GO B)
Cc (PRINT (EVAL (CONS S1 (REVERSE ARGS))))
(GO 4))))

This function has no arguments and no value., It picks up its parameters and
returns its value by doing explicit I/0 with READ and PRINT. The program varia-
bles S1 and S2 are bound to the values of the two READ calls. These values are

exactly the s, and s, pairs for EVALQUOTE described earlier in the text. For

1
example,

FOO (A B C)

The binding of ARGS (just below statement B) is the key to the program. It
builds a list in which each element of S2 is quoted. For the above example,
it builds the list

((QUOTE C) (QUOTE B) (QUOTE A))

adding one quoted element for each loop iteration. The iteration is terminated
by the COND when the repeated CDR of S2 results in S2 being NIL. At that point

we transfer to statement C and evaluate a computed form. The computed form for

the example above is
(FOO (QUOTE A) (QUOTE B) (QUOTE C))

Note how the form is computed. The list bound to ARGS is reversed to properly
order the quoted arguments. Then the value of S1, the function to be applied,
is inserted at the head of the reversed list by CONS. This computed form is
evaluated by EVAL, the value is printed by PRINT, and control transfers to

statement A.
-131-

At statement A we do a TEREAD to clear the read line and re-initialize ARGS.
It is this initial TEREAD that permits us to enter at the top level many right
parentheses to balance the EVALQUOTE pair without counting. It also accounts

for the inability to evaluate more than one EVALQUOTE pair per line.

The program definition appears to be in error because it will loop continuously.
It is not an error, as we wish the supervisor to loop continuously, evaluating
one EVALQUOTE pair for each iteration. That is what the supervisory program is

supposed to do.

Another kind of supervisor not normally found at the top level of most LISP

systems is one that will evaluate forms. Using EVAL, SUP3 will do just that.

DEFINE ((
(SUP3 (LAMBDA () (PROG ()
TAG1l (TEREAD)
(PRINT (EVAL (READ)))
(GO TAG1))))))

We can now comprehend some straightforward but unexpected top-level phenomena

caused by the operation of EVALQUOTE, the top-level supervisor.

1. Composition of forms cannot be used directly at the top level except

within a lambda expression. TFor example, if we write
(CAR (QUOTE (A B ©)))

we do not have a pair of S-expressions for EVALQUOTE. We could

evaluate this form with our SUP3 supervisor, however.

2. Bound variables are never evaluated at the top level except within a

lambda expression, because all arguments are quoted, e.g.,

CSET (PI 3.14159)
CAR ((PI)) =PI

The result is PI, not 3.14159, since the argument of CAR really is
(QUOTE (PI)). But

-132-

(LAMBDA NIL PI) NIL = 3.14159

since here PI is used free and will be evaluated. This is why top-

level lambda expressions are so important.

If more than one pair of S-—expressions is presented to EVALQUOTE, only

the first pair of S-expressions will be evaluated by some systems; e.g.,
CAR ((A B C)) CDR ((A B C))
yields A. The CDR expression might not be seen by EVALQUOTE.

For systems that behave this way, the user may end a top-level expres-
sion with more right parentheses than are necessary, as EVALQUOTE stops
reading as soon as the parentheses count out correctly in the second

argument. For example,

CAR ((ABC)N =A

If less than one pair of S-expressions is given to EVALQUOTE, it will
demand more input. This is a useful debugging tool and usually means
one or more right parentheses are missing in the entered pair of

expressions.

An expression evaluated at the top level that explicitly PRINTS its
value may have the value of the expression output twice--once by the
explicit call to PRINT, and once by EVALQUOTE, which always prints the

value of the expression, e.g.,
PRINT (ABCD)
yields

ABCD
ABCD

=133~

17.9 EXERCISES

Some of these exercises require an interactive LISP in which the user in on-

line with the computer.
Evaluate the following in order:

1. PRINT ((LIST))
2. TERPRI NIL
TERPRI NIL
3. (LAMBDA (X Y) (PROG ()
(PRIN1 X) (PRIN1 BLANK) (PRIN1 Y) (TERPRI))) (ATOM1 ATOM2)
4. READ NIL
then enter:
(NOW HEAR THIS)
5. (LAMBDA (J) (CONS (READ) J)) ((ANYTHING))
then enter:
(INPUT)
6. (LAMBDA NIL (PROG (PI R)
(SETQ PI 3.14159)
TAG (SETQ R (READ))
(COND ((EQUAL (QUOTE END) R) (RETURN R)))
(PRINT (TIMES 2 PI R))
(GO TAG))) NIL
Enter a number for R. The program returns the computation of

2 * PI # R and then reads again.
You can stop the loop by entering

END

7. (LAMBDA () (LIST LPAR RPAR BLANK PERIOD SLASH EQSIGN DOLLAR STAR
(QUOTE $$* NOW HEAR THIS *) (QUOTE §$$+ -533.17+))) ()
8. CDR ((A B C)) CDR ((1 2 3)) entered on one line.

~134-

10.
11.

12.

13.

1. CSET(PERCENT $$*7%)

2, (LAMBDA () PERCENT) ()

3. (LAMBDA (J) J) (PERCENT)

CAR ((A B €))))))))INN

Define EVALQUOTE given in the text as SUP2 to avoid a name clash
with a possible EVALQUOTE in your system. Try SUP2 with these cases:

SUP2() = = = = = = = = = = = to start SUP2 looping
1. CAR ((A B C))

CDR ((A B C))

. CONS (A B)

CSET (PT 3.14159)

(LAMBDA () PI) ()

(S N I G)

Define SUP3 as given earlier and try it with these cases:

SUP3()

1. (CAR (LIST (QUOTE (A))))

2. (CONS (QUOTE A) (QUOTE B))
3. (CSETQ K 3.14159)

4. (CONS K NIL)

5. (PROG (X) (PRIN1 (QUOTE X))

(PRIN1 $$* *) (PRIN1 (QUOTE SQUARE)) (TERPRI) (TERPRI)
(SETQ X 0)

TAGl (COND ((EQUAL X 10) (RETURN (QUOTE END))))
(PRIN1 X) (PRIN1 $$* *) (PRIN1 (TIMES X X)) (TERPRI)
(SETQ X (ADD1 X))
(GO TAGl1))

Define SUP4, a supervisor that reads S-expression pairs in reverse

order from that accepted by EVALQUOTE, i.e., s, followed by s

2 1

Try these pairs:

. ((ABC)) CAR
((A B C)) CDR
(A B) EQ

(1 2 3 4) PLUS

N W =

-135-

14.

15.

5. (K 3.14159) CSET
6. NIL (LAMBDA () K)

Define SUP5, a supervisor that evaluates pairs like SUP2, but also:

. Saves the symbolic pairs.
. Prints the pair for inspection after input, like an echo.
Queries your acceptance or rejection of the printed pair.

. If you answer NO, it loops for another pair.

v &~ W N

. If you answer YES, SUP5 prints the pair, followed by an equal
sign, followed by the value of the pair, and then loops for

another pair.

Write a program that prints a table of the following values for a

range of X specified at program rumn time.

X XSQUARE SQRTX RECIPX FACTORIALX

-136-

CHAPTER 18.
FUNCTIONAL ARGUMENTS

Mathematically, it is possible to have functions as arguments of other functions.

For example, in arithmetic one could define a function
OPERATE (op a b)

where op is a functional argument that specifies which arithmetic operation is

to be performed on a and b. Thus,

OPERATE (+ 3 4)
OPERATE (* 3 4)

7
12

In LISP, functional arguments are extremely useful and further expand the class
of LISP functions. We call the class of functions that take this type of

argument functionals.

18.1 FUNCTION

When arguments are transmitted to a function, they are always evaluated, except
when they are transmitted to a special form which controls how its arguments are
evaluated. When we use functions or functional expressions as arguments, we
wish to transmit these arguments unevaluated. The special form FUNCTION is used
for this purpose in LISP. FUNCTION acts very much like QUOTE, and in fact in
some LISP systems, FUNCTION and QUOTE are often interchangeable. FUNCTION is
used with functional arguments to signal that a function is being transmitted as

an argument.

FUNCTION is a special form that takes one argument, a function name or a lambda

expression. It has the form
(FUNCTION fexp)

where fexp is either the name of a function, or is a lambda expression.

We can see the application of functionals by examining a particularly powerful
class of functions prefixed with the name MAP. These functions are generally

alike, in that they all apply a functional argument to a list.

-137-

18.2 MAP

MAP is a function of two arguments of the form
MAP (X FN)

where the first argument, X, must be a list, and the second argument, FN, must
be a function of one argument. MAP applies the function FN to 1list X and to
successive CDR segments of the list X, until X is reduced to a single atom

(usually NIL) which is returned as the value of MAP. MAP is defined by

DEFINE ((
(MAP (LAMBDA (X FN) (PROG ()
TAGL1 (COND ((ATOM X) (RETURN X)))
(FN X)
(SETQ X (CDR X))
(GO TAG1))))))

Example:

(LAMBDA (L) (MAP L (FUNCTION PRINT))) ((THIS IS (A LIST)))
yields

(THIS IS (A LIST))
(IS (A LIST))

((A LIST))

NIL

In this example, PRINT is the functional argument. Each line of output repre-
sents the application of PRINT to successive CDR segments of the list (THIS IS
(A LIST)). The final NIL is the value of MAP.

18.3 MAPLIST

MAPLIST is a function that performs almost exactly as does MAP, except MAPLIST

returns as its value a list of the values of the repeated evaluation of FN

applied to X

-138-

MAPLIST is a function of two arguments of the form
MAPLIST (X FN)

where the first argument, X, must be a list, and the second argument, FN, must
be a function of one argument. The value of MAPLIST is a new list of the values
of FN applied to the successive CDR segments of list X. That is, the value of
MAPLIST (X FN) can be expressed as the value of the form

(LIST (FN X) (FN (CDR X)) (FN (CDDR X)) ... (FN (CD...DR X)))
A definition for MAPLIST can be given as

DEFINE ((
(MAPLIST (LAMBDA (X FN)
(COND ((NULL X) NIL)
(T (CONS (FN X) (MAPLIST (CDR X) FN)))))))
Examples:

DEFINE ((
(SQUARECAR (LAMBDA (X) (TIMES (CAR X) (CAR X))))))

(LAMBDA (J) (MAPLIST J (FUNCTION SQUARECAR))) ((1 2 3 4 5)) = (1 4 9 16 25)
(LAMBDA (J) (MAPLIST J (FUNCTION CDR))) ((A B C)) = ((B C) (C) NIL)
In these examples, SQUARECAR and CDR are functional arguments.

18.4 MAPCAR

The function MAPCAR is a function like MAPLIST, in that it lists the values of
functional argument FN successively applied to each element of list X. It
differs from MAPLIST, in that it applies FN to each element of the list X; i.e.,
the CAR of what FN is applied to in MAPLIST. MAPCAR is defined by

-139-

DEFINE ((
(MAPCAR (LAMBDA (X FN)
(COND ((NULL X) NIL)
(T (CONS (FN (CAR X)) (MAPCAR (CDR X) FN))))))))

Examples:

(LAMBDA (J) (MAPCAR J (FUNCTION ADD1))) ((0 12 3)) = (123 4) I[1]

(LAMBDA (J) (MAPCAR J (FUNCTION (LAMBDA (L) {2]
(COND ((NUMBERP L) (TIMES L L))
(TL)))) ((A1B2C3))=(A1B4&CY)

In example [1], ADDl is the functional argument, and the lambda expression adds
one to each element in a list of numbers. In example [2], we have a lambda expres-
sion as the functional argument. The result is the input list with each numerical

element replaced by its square.

18.5 MAPC

MAPC is a function of two arguments of the form
MAPC (X FN)

where X is a list and FN is a function of one argument. MAPC is like MAPCAR
in its effect, but like MAP in its value. MAPC applies FN to each element of X,
and returns as its value the terminal element of the S-expression X (usually NIL).

It is defined by

DEFINE ((
(MAPC (LAMBDA (X FN) (PROG ()
A (COND ((ATOM X) (RETURN X)))
(FN (CAR X))
(SETQ X (CDR X))
(GO A))))))

-140-

Example:

yields

18.6

Most functionals (i.e., functions that take functional arguments) cannot be used
at the top level, since the special form FUNCTION must be evaluated.
know, EVALQUOTE quotes arguments when transmitting them, thus FUNCTION would not

(LAMBDA (L) (MAPC L (FUNCTION PRINT))) ((THIS IS (A LIST)))

THIS

IS

(A LIST)
NIL

CAUTIONS

be evaluated. Therefore, use functionals only in lambda expressions.

18.7

EXERCISES

Evaluate the following:

(LAMBDA (L) (MAP L (FUNCTION PRINT))) ((TRY THIS SIMPLE CASE FIRST))

(LAMBDA (L) (MAPC L (FUNCTION PRINT))) ((NOW THIS ONE))
(LAMBDA (L) (MAPCAR L (FUNCTION PRINT))) ((AND LASTLY THIS ONE))

(LAMBDA (J) (MAPLIST J (FUNCTION
(LAMBDA (K) (SUBSTT(QUOTE ONE) 1 K))))) ((1231415))

(LAMBDA (J) (MAPLIST J (FUNCTION
(LAMBDA (K) (MAPCAR K (FUNCTION LENGTH))))))
((a) (1 2) (ABC) (1234)))

(LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J) (CONS (CAR J)
(CAR J)))))) ((A B CDE))

(LAMBDA (L) (MAPCAR L (FUNCTIONV(LAMBDA (@))
(CONS J (QUOTE X)))))) ((A B CDE))

.[.

SUBST is a built-in system function equivalent to function REPLACE, given as

exercise 20 of Chapter 14.

-141-

As we

8.

Note:

Try

10.

SPECIAL ((Y))
DEFINE ((
(YDOT (LAMBDA (L Y) (MAPCAR L (FUNCTION (LAMBDA (J)
(CONS J Y))))))))
UNSPECIAL ((Y))

If we consider the functional argument here as a
separate function, it is evident that it contains
a bound variable J, and a free variable Y. This
free variable requires a SPECIAL declaration, even

though it is bound in YDOT.

\;’j /7[\ YDOT ((A B CD E) 2)

M/IWN YDOT ((ABCDE) (L2345))

MAPCAR is a function of two arguments in which the second argument is
a function that takes one argument. Define functional MAPCAR2 as a
function of three arguments in which the first two arguments are lists

of equal length and the last argument is a function that takes two

arguments; e.g.,

(LAMBDA (A B) (MAPCAR2 A B (FUNCTION DIFFERENCE))) ((5 6 7 8) (1 2 3 4))
= (4 4 4 4)

(LAMBDA (A B) (MAPCAR2 A B (FUNCTION CONS))) ((ONE TWO THREE) (1 2 3))
= ((ONE . 1) (TWO . 2) (THREE . 3))

Define a function using functionals called
TYPE (x)

where x is a list of items. The value of TYPE is a list of type~-
descriptors of each top-level element of x according to the following

schedule:

-142-

if fixed-point number, FIX

if floating-point number, FLT
.if literal atom, ATOM

if dotted pair of atoms, DOTPAIR
if none of the above, LIST

For example,

TYPE ((1.0 (A . B) (1 2 3) Al12 46)) = (FLT DOTPAIR LIST ATOM FIX)

-143-

CHAPTER 19.
LIST STRUCTURES, PROPERTY LISTS, AND MACROS

Previous chapters of this text have discussed how computation may be performed
with symbolic expressions. This chapter completes the discussion by focusing on
additional features of LISP for manipulating and using list structures, property

lists, and macros.

19.1 GRAPHICAL REPRESENTATION OF LIST STRUCTURE

In Chapter 3 we noted that the graphs of lists were in the form of binary trees.
List structure is also of that form. Rather than representing the graph in a
vertical format, however, it is conventional to represent the graph in a hori-
zontal format that displays more clearly the level of sublists. For example,

the list
(A B C)

was shown as the vertical graph

CAR CDR
A

The entirely equivalent horizontal graph is given by

CAR __CDR

A — B ——-—Cl;l

~1b44-

Similarly, the list

(A) (B) (€))

is the graph

Ny e N L

List structure in LISP is completely general and may be twisted, knotted,

threaded, re-entrant or circular as the user desires. For example,

Lﬁ- A ~+— > B 1 C

is the graph of a circular list (i.e., the tail points back to the head) that
can occur in LISP as the result of computation. Of course, its printed repre-

sentation is infinite in length, and is of the form
(ABCABCA...)

Unless the LISP system provides special input—output mechanisms, such structures
cannot be read or printed; however, they are perfectly proper structures and may

find useful application.

Another interesting list structure is one that references a common sub—expression.

For example, the S—expression
((JOHN . DOE) MARY (JOHN . DOE))

might represent the graph

-145-

T PIMAR -
] Y

JOHN | DOE
19.2 MANIPULATING LIST STRUCTURE

CONS is the principal function we have examined that manipulates list structure;
but CONS does not change existing structures: it creates new ones. Other
functions already treated, such as APPEND and SUBST, do not change structures,
but make modifications by copying their arguments. Copying is costly and in-
convenient. Complete generality in manipulating list structure is provided in
LISP by means of the pseudo-functions RPLACA and RPLACD, which change list

structure permanently. As such, they must be used with caution. They can cause

permanent damage to the system if used incorrectly. They may also cause infinite
search or printing of circular lists created unintentionally. Functions useful

for manipulating list structures are given below:

RPLACA (X Y) RPLACA replaces the CAR of X by Y. 1Its value is X, but
X is now a different structure from what it was before.
The value of RPLACA can be described by the value of the

form
(CONS Y (CDR X))

However, the effect is quite different; there is no CONS

involved, only pointers are changed.

RPLACD (X Y) RPLACD replaces the CDR of X by Y. Its value is X, but
X is now a different structure from what it was before.
The value of RPLACD can be described by the value of the

form

(CONS (CAR X) Y)

-146-

NCONC (X Y)

19.3

However, the effect is quite different; there is no CONS

involved, only pointers are changed.

This function is similar to APPEND in effect. But

NCONC does not copy list structure; it achieves the effect
by modifying the list structure X, and making the last
element of the structure point to the list Y. The value
of NCONC is the list X, but since X has been modified,

the value is the concatenated list of X and Y.

EXAMPLES OF MODIFYING LIST STRUCTURE

Assume the variables X and Y are bound to the lists (A B C) and (D E F),

respectively.

X

CAR

These lists have the graphs

-

A

Y

CDR
4 3 4
i I 4 F

Evaluating the form

(RPLACA X Y)
yields the graph
X
CAR CDR
- B = S
Y
> D —» +— F

-147-

Evaluating the form

(RPLACD X Y)
yvields the graph
X
CAR _CDR
Y
—» D +—» — F

with the old CDR (X), i.e., list (B C), removed from the new structure.

Evaluating the form

(RPLACA X (CDR X))

yields the graph
X
CAR _CDR
+— 8 +— ¢

Evaluating the form

(NCONC X Y)
yields the graph
X
Lol A - B 4— 3 ¢
Y

~148

Evaluating the form

(NCONC X X)
yields the circular list
X
LA T/ B -+ C
19.4 PROPERTY LISTS

What is the best way to organize a highly structured, yet indefinite collection
of properties for a group of mathematical objects-—a restricted dictionary of
English words, for example? One simple solution is to have the data organized
like an a-list, i.e., a list of pairs. One element of each pair could be a
literal atom that represents the mathematical object; the other element of the
pair could be the list of properties. Then functions like ASSOC could be used

to search the list for desired information, using the literal atoms as indices.

An alternative solution is to directly "attach" the properties of interest to
each atom. The attachment is achieved by means of a property list or p-list
that is associated with each literal atom. For many applications, the use of
property lists often improves the speed and flexibility of problem solution by,
replacing costly list searches with dictionary-like lookup on the property list.

For most LISP systems, literal atoms are represented internally in memory as
list structures. Part of the structure is the BCD array for the print name of
the atom; another part is the value cell for holding variable bindings. Other
parts may be used by the system. Usually, the "CDR chain'" of the structure is
the property list.

The property list is provided for the user and is initially empty. (Soﬁe LISP
systems use the property list for system features and it may have initial preset
information.) Inasmuch as the property list is a general list, it may be used

in any manner desired. However, a collection of system functions is available

-149~

for manipulating property lists.

ELLIN
l*' CAR__CDR
i SEX ——» F

OTHER DATA

PARENTS —_— ———p1 AGE ~—»] 6

CLARK —-—-Pl!ARClA

Before we examine the property list functions, note the atomic structure dis-

played above for the literal atom ELLIN. The property list 'hangs" from the CDR
of the structure. This is the convention adopted here and one that is similar
to many LISP implementations. The property list is structured as a list of
alternating indicators and properties; e.g., (SEX F PARENTS (CLARK MARCIA)

AGE 6). Indicators+ and properties are general S-expressions.
Several property list functions and their definitions are given below:

GET (X Y) "GET is a function that searches the list X for an
indicator EQUAL+ to Y. If such an indicator is found,
its property--the next list element (i.e., the CAR of
the rest of the list)--is returned as the value of GET.

Otherwise, the value of GET is NIL,

PUT X Y Z) This function puts on the property list of the literal
atom X the indicator Y followed by the property Z. Any
previous property of Y is replaced by Z. The value of
PUT is Y.

+Some systems use EQ rather than EQUAL in property list search functions, thereby
requiring literal atoms as indicators.

-150-

PROP (X Y FN) The function PROP searches the list X for an indicator
EQUAL+ to Y. If such an indicator is found, the value
of PROP is the rest of the list beginning immediately
after that indicator. Otherwise, the value is FN (),

where FN is a function of no arguments.

REMPROP (X Y) This function removes all occurrences of the indicator
Y and its property from the property list X. The
value of REMPROP is NIL.

19.5 EXAMPLES OF PROPERTY LIST FUNCTIONS

Assume the property list for ELLIN given in Paragraph 19.4. We may evaluate the

following expressions:

(GET (QUOTE ELLIN) (QUOTE AGE)) = 6
(LAMBDA (X Y) (PROP X Y (FUNCTION (LAMBDA () NIL))))
(ELLIN PARENTS) = ((CLARK MARCIA) AGE 6)
(LAMBDA (X Y Z) (PUT X Y Z))
(ELLIN SISTERS (HILLARY WENDY)) = SISTERS

After evaluation of this last example, the property list of ELLIN is augmented
by the indicator SISTERS and the property (HILLARY WENDY).

(REMPROP (QUOTE ELLIN) (QUOTE SEX)) = NIL

The result of this form is the deletion of the indicator SEX and the
property F from the p-list ELLIN.

19.6 MACROS

In a compiler-based LISP system, we must be concerned with both compile-time and

run—time activities of the system. When EVALQUOTE evaluates DEFINE, we are talking
about run—-time for the pseudo-function DEFINE. If we are defining a function,
for example, LAST, we are talking about compile-time for LAST. 1In other words,

one function's run-time is another function's compile-time.

TSome systems use EQ rather than EQUAL in property list search functions, thereby
requiring literal atoms as indicators.

=151~

As we have already seen, functions can be compiled by DEFINE or by top-level
evaluation of a lambda expression. In the latter case, evaluation means first
compile and then run the compiled code with the supplied arguments. This is
often called "compiling at run-time'. This distinction is significant because

it enables compiled code to operate where previously an interpreter was necessary.
In particular, it affects the code that is compiled for a function that enables

that function to retrieve the correct binding for variables at run-time.

A classic problem for compilers is this: How do you define a function of an
indefinite number of arguments, such as PLUS? The key to the answer is that

the arguments are only indefinite when you define the function, not when you run
it. 1If you could delay compilation until run—-time, at which time the number of
arguments is definite, you could resolve this dilemma. In essence, this is what
an interpreter does. To resolve this problem in LISP, we make use of macros via

the pseudo-function MACRO.11

19.7 MACRO EXPANSION

The function MACRO takes an argument list in the same format as DEFINE, e.g.,

MACRO (((name; (LAMBDA varlist body))

(name, (LAMBDA varlist body))

(name_ (LAMBDA varlist body))))

As with DEFINE, MACRO compiles each of these definitions. Now watch closely,
for here comes the difference. When a macro function (defined by MACRO) is
used in a lambda expression, either at the top level or within a DEFINE, the
macro function is executed before the lambda expression (of which it is part)
is compiled. The argument for the macro is the form in which it is used. 1In
other words, the macro function is run before compile-time for its effect on
the lambda expression. What does this buy us? That depends on the macro, but
essentially it allows us to expand elements of the lambda expression before it
is compiled, by substituting (for all occurrences of the macro function and

its arguments) other expressions tailored to the particular use of the macro

-152-

in the lambda expression. We call this macro expansion. For example, it permits
us to define a "special form" of an indefinite number of arguments by converting
that special form to a composition of nested functions each having two arguments--
the nesting being determined by examination of the particular use of the special

form in the given lambda expression.
Take, for example,

(PLUS x., X

1 Xo e xn)

Here we have a special form of an indefinite number of arguments. But when we
use PLUS, we always have a fixed number of arguments. Given a function #*PLUS,

which takes the sum of its two arguments, we can expand

(PLUS x (*PLUS X, (*PLUS X, (*PLUS Xy x4)))

1% ¥3 %) =
Thus, the macro definition of PLUS involves a body of code the sole purpose of
which is to substitute *PLUS an appropriate number of times in the proper places
wherever PLUS appears in a lambda expression being compiled. Then, after compila-
tion, there is no trace of PLUS, but many occurrences of *PLUS. The operating
code, however, works exactly as desired. Let's examine the macro definition

for PLUS to see how this works.

MACRO ((
(PLUS (LAMBDA (L) (*EXPAND L (QUOTE *PLUS))))))

Here 1., the argument for the macro PLUS, is the form
(PLUS X; X,y Xgq xA)
*EXPAND is a system function used exclusively for expanding macros. It has

the form
(*EXPAND form fn)

where form is the expression to be expanded, as L above, and fn is the system

function, a function of two arguments, to be used in the expansion. For

-153-

form = (PLUS X X, Xq x4)

fn = *PLUS
we get

(*EXPAND form fn) = (*PLUS X, (PLUS X, 4))

Note that *EXPAND just expands the form by one *PLUS when it is executed. When

we then attempt to compile the new form
(*PLUS X, (PLUS X, X x4))
*EXPAND is called again to expand the inner PLUS,

form = (PLUS X, X x4)

fn = *PLUS
thereby yielding

(*PLUS X (*PLUS X, (PLUS Xg x4)))

By repeated application of *EXPAND each time the macro PLUS is encountered, we
eventually arrive at the complete expanded form for PLUS regardless of the

number of arguments, X .
The definition for *EXPAND is straightforward and noted here for reference.

DEFINE ((
(*EXPAND (LAMBDA (FORM FN)
(COND ((NULL (CDDR FORM)) (CADR FORM))
(T (CONS FN
(CONS (CADR FORM)
(CONS (CONS (CAR FORM) (CDDR FORM)) NIL)))))))))

Note how nicely *EXPAND works for the last term of the expansion

(*PLUS X (*PLUS X, (*PLUS Xq (PLUS x4))))

-154-

When entered because macro PLUS was encountered,

form = (PLUS x4)

fn = *PLUS

(CDDR form) = NIL

(CADR form) = X,
Thus, the form

(PLUS x4)

gets replaced by just Xy yielding the final expanded expression
* * %
(*PLUS X, (*PLUS X, (*PLUS Xq x4)))

It should now be clear how elegant this macro system is. To solve the knotty
problem of special forms of an indefinite number of arguments, all we need are
four things:

1. *EXPAND~--a single LISP function easily defined in LISP.

2. A function like the macro to be defined, but of just two arguments.

Such a two-argument function is easily defined in LISP,
3. A macro definition of the special form.
4. MACRO recognition by the compiler.
Macros must be defined before they are used. Once defined, macros may be used

within other macro definitions, thereby providing complete generality of MACRO.

Since a macro must be defined before it can be used, macro definitions cannot
be recursive; i.e., a macro cannot call itself.

19.8 MACRO DEFINITIONS OF NEW FUNCTIONS

MACRO has utility in areas other than expansion of special forms. It can be
used to define functions not already in the system. Take, for example, the

pseudo-function CSETQ. Assuming we have CSET, we can define CSETQ by

-155-

MACRO ((
(CSETQ (LAMBDA (FORM) (LIST (QUOTE CSET)
(LIST (QUOTE QUOTE) (CADR FORM)) (CADDR FORM))))

))

Then whenever the form

(CSETQ A B)

is encountered,

(CSET (QUOTE A) B)

will be substituted and compiled.

19.9 EXERCISES

For the lists

i
]

((CAT) (DOG) (FOX))

and

Y

(12 3.0)
evaluate the following forms; i.e., show the resulting graphs.

1. (NCONC X (NCONC X Y))
2. (RPLACD (RPLACA (CDR Y) (CONS (CADR Y) (CDDR Y))) NIL)
3. Define NCONC

4., Define the function REVLIST which reverses a list without copying.

The effective value is like that returned by the function REVERSE.

5. A "blam" list is a list in which both the CAR and CDR point to the
successor element of a list. (The list is useful for debugging the
LISP garbage collector and for showing the generality of LISP list

structure.) A three-element "blam" list has the graph

-156-

K e B

Define the BLAM function of one argument, a list, that modifies the

list into a "blam" 1list. Do not use CONS.

Assume we are building a program to play contract bridge. The four players in
the game are represented by the literal atoms NORTH, SOUTH, EAST, and WEST.

The property list of each player has the indicator HAND and a list of 13 literal
atoms (as the cards) for the property. Further assume each card has two indi-
cators--SUIT and RANK~-and the appropriate property for each. Use the properties
SPADE, HEART, DIAMOND, and CLUB for the indicator SUIT, and the integers 14, 13,
12, etc. corresponding to Ace, King, Queen, etc. as the properties of the
indicator RANK.

6. Define the function
SUITS (player)

that: (1) separates the cards of a given hand into the four suits;
(2) adds to the property list for that player the indicators SPADES,
HEARTS, DIAMONDS, CLUBS and; (3) adds to the property list for that
player the list of cards in each suit as the properties of these

indicators.

7. Define the function
LONGSUIT (player)

that returns as its value a dotted pair whose CAR is the name of the
longest suit, and whose CDR is the length of that suit. Assume
function SUITS above has already sorted the hand. For suits of equal
maximum length, SPADES > HEARTS > DIAMONDS > CLUBS.

8. Define the function

POINTS (player)
-157-

10.

that returns as its value the point-count of the given hand. Assume

function SUITS has already sorted the hand; assume the following point

system:
Ace (rank 14) 4 points
King (rank 13) and suit length > 1 3 points
Queen (rank 12) and suit length > 2 2 points
Jack (rank 11) and suit length > 3 1 point
Void (suit length = 0) 3 points
Singleton (suit length = 1) 2 points

Define the predicate
STOPPERS (player)

that is T if the hand contains one of the following combinations for
each suit: ACE, or KING and length > 1, or QUEEN and length > 2;
and NIL otherwise. Assume function SUITS has already sorted the hand.

Define the predicate
BALANCED (player)

that is T if there are at least three cards in each suit of the hand,
and NIL otherwise. Assume function SUITS has already sorted the hand.
Use all your functions from problems 5-10 on an unsorted hand to

define the function
OPENBID (player)

that returns an opening bid in contract bridge according to the follow-

ing schedule (with apologies to Charles Goren).

Condition Bid

If points <13, and the longest suit <7 cards, then: PASS

If 12 <points <20, and either stoppers = NIL, or

balanced = NIL, where <suit> = longest suit, then: (1 <suit>)
If 15 <points <20, and stoppers = T, and

balanced = T, then: (1 NO TRUMP)

-158-

11.

12.

130

14.

Condition Bid

If points >20, and either stoppers = NIL, or

balanced = NIL, where <suit> = longest suit, then: (2 <suit>)
If points >20, and stoppers = T, and

balanced = T, then: (2 NO TRUMP)
If 6 <points <13, and Iongest suit >6 cards,

where <suit> = longest suit, then: (3 <suit>)

*TIMES exists as a function of two arguments, the value of which is
the product of its arguments. Define a macro function PROD, using

*TIMES and *EXPAND such that
- 7 *
PROD (x; X, ... xn) = (*TIMES x) (*TIMES Xy e (*TIMES X1 xn) cee)

*MAX and *MIN exist as functional counterparts of MAX and MIN, but
having only two arguments. Define the macros MAXIMUM and MINIMUM.

In the last chapter, dealing with functional arguments, we saw that
we must always use the special form FUNCTION, when we wish to quote a
functional expression appearing as an argument of another functional

expression; e.g.,

(LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J) (LIST J))))) [1]
Define the macro FLAMBDA, which when used as in form [2],

(LAMBDA (L) (MAPLIST L (FLAMBDA (J) (LIST J)))) [2]

will expand form [2] to form [1].

If you define LIST as a macro and it's wrong, you can wreck the system.

Therefore, define LIST1 as a macro that does exactly what LIST does.
Hint: Remember that

(CONS X 1 xn) = (xn_1 . xn)
so the macro must produce

(CONS X NIL)

=159~

15.

16.

as its last expansion. In other words, we want
LIST1 (ABC) = (ABC)
and not

(AB . O

When printing multi-word messages in LISP, we always print the

message as a parenthetical expression, i.e., a list; e.g.,
(NOW HEAR THIS)

Define a macro PRINTQ that is a special form of an arbitrary number
of arguments that quotes its arguments and prints them (on one line

if they will fit) without parenthesization; e.g.,
(LAMBDA () (PRINTQ NOW HEAR THIS)) () = NOW HEAR THIS
Hint:

Define PRINTQ as a macro that uses an auxiliary
function PRINTQl, which in turn uses PRIN on each

argument of PRINTQ.

Paragraph 15.6 describes PROG2, a function of two arguments.
Define the macro PROGN as a generalization of PROG2 for an

indefinite number of arguments.

-160-

CHAPTER 20.
A COMPLETE LISP PROGRAM

In this concluding chapter we examine a collection of function definitions that
constitute a LISP program which differentiates an algebraic polynomial. Assuming
an on-line, interactive LISP system, the program reads the polynomial as an
"infix" algebraic expression, and prints the derivative as an infix algebraic
expression., The polynomial is constructed from the four arithmetic operators

and exponentiation (with constant powers).

The treatment for other operators, such as logarithmic and trigonometric opera-
tors would not be significantly more difficult, but would require expanding the
descriptive text without contributing more instructive material to the chapter.
The formal syntax of the algebraic expression is listed below as a series of
syntax equations in Backus Normal Form (BNF).12 For those not familiar with
this formal language for describing the syntax of formal languages, the English

language interpretation of each equation is given.

20.1 POLYNOMIAL SYNTAX
Syntax Equation English Interpretation
<digit> ::= 0|1|2|...|9 A digit is one of the ten numerals
0 to 9.
<variable> ::= A|B|C|...|Z A variable is one of the 26 letters
A to Z.

<constant> ::= <digit> <constant>|<digit> A constant is an indefinite string of

digits.

<mul> ::= *|<empty> Multiplication is explicitly noted
by the character "*'", or implied by

its absence.

<primary> ::= <variable>|<constant>|(<expression>)
A primary is either a variable, or
a constant, or a parenthesized

expression.

-161-

Syntax Equation English Interpretation

<secondary> ::= <primary>+<constant> |<primary>
A secondary is either a primary raised
to a constant power (explicitly noted

by the character '"4"), or a primary.

<term> ::= <secondary>/<term>|<secondary> <mul> <term>|<secondary>
A term is either a secondary divided
by a term (explicitly noted by the
character "/"), or a secondary
(explicitly or implicitly multiplied

by a term), or a secondary.

<expression> ::= <expression> + <term>|<expression> - <term>|<term>
P P
An expr’ession is an indefinite sum or

difference of terms.

These syntax equations allow implicit multiplication by limiting variables to
one letter. They allow exponentiation to constant powers, and admit only
integer constants of a magnitude within the computer's capacity. Though unary
minus is excluded and the other operators are restricted to two operands, the
remaining legal constructions allow for a rich set of algebraic expressions,

some examples of which are noted below.

3X43 + 2X42 - X + 7

(A+B) (A-B)

3(A+ B)43 + 2(A + B)42 + (A + B)
3427(A + B)42/A%3 + (A/B)+4

20.2 PROGRAM STRATEGY

The problem of symbolic differentiation in LISP is easily solved if the
expression to be differentiated is represented as an S-expression in prefix

notation. Some examples are shown below.

-162-

Infix Notation S~-Expression

A+ B (PLUS A B)
AX+3 + BX42 - 3X (PLUS (TIMES A (EXPT X 3))
(DIFFERENCE (TIMES B (EXPT X 2))
(TIMES 3 X)))

With this knowledge, the strategy is to translate the given expression into the
desired prefix form, differentiate that form, and translate the resulting form
back to infix notation. Though it is not obvious at this point, the solution
also requires a program to perform algebraic simplification of the symbolic
results of differentiation, and a supervisory program to control program

execution and to perform input-output.

This overall strategy results in a complete LISP program structured as a
hierarchy of sub-programs under the control of a supervisor program named DIFF,
There are four principal sub-programs: IN2PRE, DERIV, SIMPLIFY, and PRE2IN.
Each is a supervisor that controls further program hierarchies, and is itself
a complete program. The balance of the chapter is devoted to describing these

programs and their interaction with the supervisor DIFF.

20.3 IN2PRE

Many algorithms exist for translating from infix to prefix notation,ls’14 a

technique well understood by compiler writers. The approach taken here, for

its simplicity of exposition, is to use each of the BNF equations of Paragraph
20.1 as a basic specification for a LISP function. The set of functions defined
satisfy the specifications of the syntax equations, and concurrently parse and

translate the infix expression.

We have then, seven functions--DIGIT, VARIABLE, CONSTANT, PRIMARY, SECONDARY,
and EXPRESSION--each corresponding to its like-named syntax equation. (We

need only seven functions as the specification for mul can be subsumed by the
function TERM.) There is also a function, NUMBER, that converts the indefinite
string of digits collected by CONSTANT into a LISP number.

=163~

The function IN2PRE is a supervisory program that controls the translation and
provides diagnostic information. It takes one argument, a list of all the
non-blank characters, in order, from the infix expression. This list is

supplied by the calling function DIFF.

Closer examination of the seven principal syntax equations shows that they only
state whether a given string of characters satisfies the specification. 1In
LISP, the seven corresponding functions can best accomplish this task if they
are predicates. However, we want them to do more than just recognize legal
syntax. We want them also to translate into prefix form that part of the input
that satisfies the specifications, and to return the translation together with
the untranslated portion of the input. If this is not enough of a problem, we
also wish to avoid explicitly having to "backup" or restore the input string to
its initial state when a given specification is not satisfied. We encounter
this problem when the specification requires looking ahead into the string of

characters before it can determine if the syntax equation is satisfied.

The solution to all these problems is to make the seven functions semi-predicates.
Each of the seven functions, then, returns the value NIL (false) if the current
state of the input does not satisfy the specifications of that function. If

the specification is satisfied, the characters meeting the specifications are
removed from the input list and replaced by their translated prefix form and

the resulting list is returned as the value of the function (true). For example,

if the function SECONDARY were called with the argument
A+3+7)

it would return the value
((EXPT A 3) + 7)

and since this value is non-NIL, it satisfies the conditional expression. The
calling function--in this case TERM--knows that the CAR of the returned list is
the translated secondary, and that the CDR is the remaining untranslated string

of characters.

~164-

By using semi-predicates we satisfy the predicate nature of the syntax equations
and simultaneously avoid explicit backup; backup being satisfied by properly

binding and transmitting arguments between functions in the program hierarchy.

The complete listing of the function definitions for IN2PRE are given below.
Note that the free variables DIGITS and ALPHA must be declared special before
compilation of the functions DIGIT and CONSTANT, and that DIGITS and ALPHA must

be bound before execution of IN2PRE. The proper bindings are given by:

CSET (DIGITS

(($8508 0) (89818 1) ... (88595 9)))
CSET (ALPHA (A B C ... Z))

The reason for these bindings will become clearer after the discussion of the

supervisor program DIFF.

(IN2PRE (LAMBDA (E) 001
(PROG (X) 002
(SETQ X (EXPRESSION E)) 003
(COND ((NULL X) (PRINT (QUOTE (POORLY FORMED EXPRESSION)))) 004

(T (RETURN X)))))) 005

(DIGIT (LAMBDA (E) 006
(PROG (X) 007
(SETQ X (ASSOC (CAR E) DIGITS)) 008
(COND ((NULL X) (RETURN NIL)) 009

(T (RETURN (CONS (CADR X) (CDR €)))1)))) 010

(VARIABLE (LAMBDA (E) 0ol1
(COND ((MEMBER (CAR E) ALPHA) E) 012

(T NILD)) 013

(CONSTANT (LAMBDA (E) Ol4
(PROG (X Y) 015
(COND (INULL (SETQ X (DIGIT E))) (RETURN NIL))) olé

A (SETQ Y (CONS (CAR X) Y)) o017
(SETQ E (CDR E)) ols8
(COND ((OR (NULL E) (NULL {SETQ X (ODIGIT £)))) 019
(RETURN (CONS (NUMBER (REVERSE Y)) E)))) 020

(GO A)))) 021
(NUMBER (LAMBDA (E) 022
(PROG (X) 023
(SETQ X 0) 024

A (COND ((NULL E) (RETURN X))) 025
(SETQ X (PLUS (TIMES X 10) (CAR E))) 026
(SETQ E (CDR E)) 027

(GO A)))) 028
(PRIMARY {LAMBDA (E) 029
(PROG (X) 030
(COND ((SETQ X (VARIABLE E)) (RETURN X)) 031
((SETQ X (CONSTANT E)) (RETURN X)) 032

(INOT (EQ (CAR E) LPAR)) (RETURN NIL)) 033

((NCOT (SETQ X (EXPRESSION (COR E)))) (RETURN NIL)) 034

({NULL (CDR X)) (RETURN NIL)) 035

((EQ (CADR X) RPAR) (RETURN {CONS (CAR X) (CDDR X)))) 036

(T NILDD) D) 037

-165-

(SECONDARY (LAMBDA (E)
(PROG (X Y) 035

{COND ((NULL (SETQ X (PRIMARY E))) (RETURN NIL)) 040

CINULL (COR X)) (RETURN X)) oas
(EQ (CADR X) UPARROW)) (RE
(ISETQ ¥ (CONSTANT (CODR X3)) | ETURN X3) 9%
URN (CONS (LIST ('
(' RETURN (CONS (LIST (QUOTE EXPT) (CAR X) (CAR Y)) (COR ¥)))) 044
(TERM (LAMBDA (E) 046
(PROG (X Y 2) 047
(SETQ X (SECONDARY E)) 048
(COND ({OR (NULL X) (NULL (CDR X)1) (RETURN X))) 049
(SETQ Z (CDDR X)) 050
(SETQ Y (QUOTE QUOTIENT)) 051
(COND ((EQ (CADR X) SLASH) (GO A))) 052
(SETQ Y (QUOTE TIMES)) 053
(COND ((EQ (CADR X) STAR) (GD A))) 054
(SETQ Z (CDR X)) 055
A (COND ((SETQ Z (TERM Z)) 056
(RETURN (CONS (LIST ¥ (CAR X) (CAR Z)) (CDR 2)))) 057
(T (RETURN X))1))) 058
(EXPRESSION (LAMBDA (E) 059
(PROG (EXP X Y OP) 060
(COND ((NULL E) (RETURN NIL)) 061
((NULL (SETQ X (TERM E))) (RETURN NIL))) 062
(SETQ EXP (CAR X)) 063
E (COND ((NULL (COR X)) (RETURN EXP)) 064
({(EQ (CADR X) PLUSS) (SETQ OP (QUOTE PLUS))) 065
({EQ (CADR X) DASH) (SETQ OP (QUOTE DIFFERENCE))) 066
(T (RETURN (CONS EXP (COR X))))) 067
(COND ((NULL (SETQ Y (TERM (CDDR X)1)) (RETURN NIL))) 068
(SETQ EXP (LIST OP EXP (CAR Y))) 069
(SETQ X Y) 070
(GO E)))) 071
20.4 DERIV

DERIV is a compact, recursive function that completely differentiates the prefix
expression returned by IN2PRE, with respect to a given variable. Listed below
are the seven necessary and sufficient differentiation rules satisfied by DERIV.
The line numbers to the right of each rule show the correspondence between the

rule and its coded form in the function DERIV listed below.

~166-

Differentiation Rules Line No.

1, &
2, U
3. &
4 &
5. &=
6. &
7. &

=0 ; if u # f(x) 73
=1; if u=x 73
w+v) =4 28 74
(u-v) = %ﬁ'- %% 74
(wv) = v %§'+ u %% 76
(u/v) = (v %% - u %ﬁ)y / v2 80
(un) -1 un—l du |

s if n = constant 86
dx

(DERIV (LAMBDA (E X)

{COND

({ATOM E) (COND ((EQ E X) 1) (T 0)))

((OR (EQ (CAR &) (QUOTE PLUS)) (EQ (CAR E) (QUOTE DIFFERENCE)))

(LIST (CAR E) (DERIV (CADR E) X) (DERIV (CALDR E)} X)))
((EQ (CAR E) (QUOTE TIMES))
(LIST (QUOTE PLUS)
(LIST (CAR E) (CADDR E) (DERIV (CADR E) X))
(LIST (CAR E) (CADR E) (LERLIV (CADDR E) X))
((EQ (CAR E) (QUOTE QUOTIENT))
(LIST (CAR E)
(LIST (QUOTE DIFFERENCE)
{(LIST (QUOTE TIMES) (CADDR E) (DERIV (CADR E) X))
(LIST (QUUGTE TIMES) (CALR E) (DERIV (CAUDR E) X)))
(LIST (QUOTE TIMES) (CADDR E) (CADDR E))))
((EQ (CAR E) (QUOTE EXPT})
(LIST (QUOTE TIMES)
(LEST (QUOTE TIMES) (CAUDR E)
(COND ((EQUAL (CADDR E) 2) (CADR E))
(T (LIST (CAR E) (CADR E) (SuBl (CADDR E}) D))
(DERIV (CADR E) X)))
(T NIL))))

-167~

072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

The structure of the function DERIV is simple. It is one conditional expres-
sion with six conditional clauses; each clause satisfies one or two differentia-
tion rules. Since the rules are determined by the arithmetic operation, and a

non-atomic prefix expression always has the form

(operator argument_ argument

1 2)

the predicates in each clause determine if the given expression satisfies its

rule by examining the expression’s operator (the CAR of the expression.) (For
atomic expressions, rules 1 and 2 are detected by the predicate ATOM.) If the
predicate is true, the clause applies its rule by simple evaluation or by using

recursive calls upon DERIV.
For example, if the original infix expression were
3X42 + 2X
IN2PRE would return the prefix expression
(PLUS (TIMES 3 (EXPT X 2)) (TIMES 2 X))

for DERIV. If this expression is differentiated with respect to X, the second
clause (line 74) would be satisfied, and rule 3 would be applied, yielding the

expression
(PLUS (DERIV argument | X) (DERIV argument, X))
This expression is not completely evaluated. For

argument

1 (TIMES 3 (EXPT X 2))
argument2 (TIMES 2 X)

the recursive call to DERIV, for each of these arguments, would invoke rule 5

(line 76), resulting in the incompletely evaluated expressions

(PLUS (TIMES (EXPT X 2) (DERIV argument . X))
(TIMES 3 (DERIV argument12 X)))

and

~-168-

(PLUS (TIMES X (DERIV argument21 X))
(TIMES 2 (DERIV argument22 X)))

Again, for

(EXPT X 2)
X

argument_ . = 3, argument

11
21 2,

12
22

argument argument

recursive calls to DERIV are required, invoking rules 1 and 2 (line 73) for

arguments 11, 21, and 22, and rule 7 (line 86) for argument 12. DERIV yields

a value of zero for arguments 11 and 21, one for argument 22, and

(TIMES (TIMES 2 X) (DERIV argument X))

121
for argument 12,
The final recursive call to DERIV with
argumentlZIJf X
invokes rule 2 and returns a value of one.

Thus, the complete symbolic differentiation yields the expression

(PLUS (PLUS (TIMES (EXPT X 2) 0)
(TIMES 3 (TIMES (TIMES 2 X) 1)))
(PLUS (TIMES X 0) (TIMES 2 1)))

When simplified, this expression is reduced to its algebraic equivalent
(PLUS (TIMES 6 X) 2)

or in infix notation
6X + 2

The need for algebraic simplification is obvious from this simple example.
we shall achieve simplification is the subject of the next function to be

considered--SIMPLIFY.

~-169-

How

20.5 SIMPLIFY

Arithmetic simplification of symbolic expressions is an art, and the subject of

15,16 I have used a straight-

many learned papers in the programming literature.
forward approach, one that yields a simpler expression, but not necessarily

the simplest expression. This is because SIMPLIFY does not look for common
factors among the arguments of the various sub-expressions. It is also "blind"
to simplifications that are possible between arguments of adjacent nested
operators. However, it does satisfy a host of rules which simplify the majority

of expressions allowable in this problem.

The hardest part of this problem was determining which of a large number of
individual rules should be treated by SIMPLIFY. Brevity was my guiding light,
and yet SIMPLIFY is the largest of the five parts of the complete program.

SIMPLIFY is a supervisory program that parcels the task of simplification among
five sub-functions--SPLUS, STIMES, SQUOTIENT, SEXPT, and SMINUS--according to
the given arithmetic operator involved. There is no function SDIFFERENCE, since

SIMPLIFY transforms an expression of the form
(DIFFERENCE a b)
into an expression of the form
(PLUS (MINUS b) a)

The function SMINUS satisfies the simplification requirements of the unary
operator MINUS that is generated by SIMPLIFY. Unary MINUS is not a legal

operator in the construction of the input polynomial.

The hierarchical sub-functions called by SIMPLIFY all adhere to a number of

principles:

-170-

1. Each function assumes its arguments are in simplest form
by earlier evaluation of SIMPLIFY on these arguments

(lines 96 and 99).

2. Expressions with constant arguments are always simplified

by arithmetic evaluation of the expression using EVAL.

3. Except for comstants, MINUS is always factored out of the

arguments of an expression.

4, SPLUS and STIMES always return their value in a standard
form, i.e., the first argument is always the constant, if

there is one.

5. The input expression is returned unchanged, if all

simplification rules fail.

(SIMPLIFY (LAMBCA (E) 093
(PROG (A B C D) 094
{COND ((ATOM E) {(RETURN E))) 095
(SETQ A (SIMPLIFY (CADR E))) 096
(COND ((EQ (SETQ C (CAR E)) (QUQATE MINUS}) 097
(RETURN (SMINUS (LIST € AN 098

(SETQ B (SIMPLIFY (CADDR E))) 099
(COND ((EQ C (QUOTE DIFFERENCE)) 100
(RETURN (SPLUS (LIST (QUOTE PLUS) 101

(SMINUS (LIST (QUOTE MINUS) B)) A)})))) 102

(SETQ D (LIST C A 8B)) 103
(RETURN (SELECT C ((QUOTE PLUS) (SPLUS D)) 104
((QUOTE TIMES) (STIMES D)) 105

((QUOTE QUOTIENT) (SQUOTIENT D)) 106

{{QUOTE EXPT) (SEXPT D)) 107

b 1)) 108

-171-

20.5.1 SPLUS

For an expression of the form
(PLUS a b)

the following simplification rules are used by SPLUS. Higher-numbered rules

assume prior rules failed.

Rule Value Line No.
1. a and b = constant a+b 111
2. a=20 b 115
3. b=20 a 112
4., b = constant, a # constant (PLUS b a)+ 113
5. a=5b» (TIMES 2 a)+ 116
6. a = (MINUS al)
b = (MINUS b,) (MINUS (PLUS a, bl)*) 121
7. a = (MINUS al), b = a; 0 125
8. a= (MINUS a)), b # constant (PLUS b a)" 126
9. b = (MINUS bl), a= b1 0 128
10. b= (MINUS b)), a # constant (PLUS a b)’ 129
11. all else (PLUS a b)? 130
(SPLUS [LAMBDA (E) 109
{COND ((NUMBERP (CADDR E)) 110
(COND ((NUMBERP (CADR E)) (EVAL E)) 11l
(({ZERQOP (CADDR E)} (CADR E)) 112
{T (COLLECT (LIST (CAR E) (CADDR E) {CADR E)))})) 113
114
((AND (NUMBERP (CADR E)) (ZERGP (CADR E))) (CADDR E)) 115
({(EQUAL (CAOR E) (CADDR E)) 116
(COLLECT (LIST (QUOTE TIMES) 2 (CADR EN))) 117
((AND (NOT (ATOM (CADR E))) (EQ (CAADR E) (QUOTE MINUS))) 118
(COND { (AND (NOT (ATOM (CADDR E))) 19
(EQ (CAADDR E) (QUOTE MINUS))) 120
{LIST (QUOTE MINUS) 121
(COLLECT (LIST (CAR E) 122
{CADADR E) 123
{CADR (CADDR E}1)))) 124
{ (EQUAL (CADADR E) (CADDR E)) 0) 125
{T (COLLECT (LIST (CAR E) [CADDR E) {CADR E)})))) 126
{(AND (NOT (ATOM (CADUR E))) (EQ (CAADDR E) (QUOTE MINUS))) 127
{COND ((EQUAL (CADR (CADUR E)) (CADR E)) 0) 128
(T (COLLECT E)))) 129
{T (COLLECT E))))) 130

T .
The expression is further simplified by the function COLLECT, which is described
later.

-172-

20.5.2 STIMES

For an expression of the form
(TIMES a b)

the following simplification rules are used by STIMES. Higher-numbered rules

assume prior rules failed.

Rule Value Line No.
l. a and b = constant a*b 133
2, a=20 0 138
3, a=1 b 139
4. a = constant, b # constant (TIMES a b)-r 140
5. b=20 0 134
6. b=1 a 135
7. b = constant, a # constant (TIMES b a)t 136
8. a=hb (EXPT a 2)71 141
9. a = (MINUS a))
b = (MINUS b,) (TIMES a, bl)T 144
10. a = (MINUS al), b = al (MINUS (EXPT b 2)) 147
11. a = (MINUS al), b # constant (TIMES b a)'r 149
12. b = (MINUS bl), a= bl (MINUS (EXPT a 2)) 151
13. b= (MINUS b)), a # constant (TIMES a by T 153
14. all else (TIMES a b)* 154
(STIMES (LAMBDA (E) 131
(COND ((NUMBERP (CADDR E)) 132
(COND { (NUMBERP (CADR E)) (EVAL E)) 133
({ZEROP (CADDR E)) 0) 134
((ONEP (CADDR E)) (CADR E)) 135
(T (COLLECT (LIST (CAR E) (CAODR E) (CADR E€)))))) 136
{ (NUMBERP (CADR E)) 137
{COND { (ZEROP (CADR E)) 0) 138
((ONEP (CADR E)) (CADUR E)) 139
(T (COLLECT E)})) 140
((EQUAL (CADR E) (CADDR E)) 141
(SEXPT (LIST (QUOTE EXPT) (CADR E) 2))) 142
((AND (NOT (ATOM (CADR E))) (EQ (CAADR E) (QUOTE MINUS))) 143
(COND ((AND (NOT (ATOM (CADDR E))) 144
(EQ (CAADDR E) (QUOTE MINUS))) 145
(COLLECT (LIST (CAR E) (CADADR E) (CAUR (CADDR E))))) 146
{ (EQUAL (CADADR E) (CADDR E)) 147
(LIST (QUOTE MINUS) (LIST (QUOTE EXPT) (CADDR E) 2))) 148
(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E)))))) 149

TThe expression is further simplified by the function COLLECT, which is
described later.

TTThe expression is further simplified by the function SEXPT, which is described

later.
-173-

((AND (NDT (ATOM (CADDR E))) (EQ (CAADDR E) (QUITE MINUS))) 150

(COND ((EQUAL (CADR (CADDR E)) (CADR E)) 151
(LIST (QUOTE MINUS) (LIST (QUOTE EXPT) (CADR E) 2))) 152
(T (COLLECT E)))) 153
(T (COLLECT E))))) 154
20.5.3 COLLECT

COLLECT is a function common to both SPLUS and STIMES. It provides additional
simplification rules applicable to both functions. COLLECT attempts to simplify

an expression if it matches various patterns of nested PLUS or TIMES operators.

Rule Value Line No.

]

1. expression = atom expression 156

2. expression = (operator a b)

a = atom, b = atom (operator a b) 158
3. expression = (operator a b)
a # atom, b = atom (operator b a)+ 159
4. (PLUS a (PLUS b c))
a and b = constant (PLUS a + b ¢) 161
5. (TIMES a (TIMES b c¢))
a and b = constant (TIMES a * b ¢) 161
6. (PLUS (PLUS a b) (PLUS c d))
a and c = constant (PLUS a + ¢ (PLUS b d)) 166
7. (TIMES (TIMES a b) (TIMES c d))
a and ¢ = constant (TIMES a * ¢ (TIMES b d)) 166
8. all else expression 171 and 172
(COLLECT (LAMBDA (E) 155
(COND ((ATOM E) E) 156
((ATOM (CADDR E)) 157
(COND ((ATOM (CADR E)) E) 158
(T (COLLECT (LIST (CAR E) (CADDR E) (CADR E))))))} 159
((AND (EQ (CAR E) (CAADDR E)) (NUMBERP [CADR {CALDR E)))) 160
(COND ((NUMBERP (CADR E)) 161
(LIST (CAR E) 162
(EVAL (LIST (CAR E) (CADR E) (CADR (CADODR E)))) 163
(CADDR (CADDLR E)))) 164
((ATOM (CADR E)) E) 165
{ (AND (EQ (CAR E) (CAADR E))} (NUMBERP (CADADR E))) 166
(LIST (CAR E) 167
(EVAL (LIST (CAR E) (CADADR E) (CADR (CADDR E)))) 168
(LIST (CAR E) (CADOR (CADR E)) 169
(CADDR (CADDR E))))) 170
(T E))) 171
(T £)))) 172

+The expression is further simplified by a recursive call to COLLECT.

=174~

20.5.4 SQUOTIENT

SQUOTIENT attempts some minor simplifications. If they fail, the form
(QUOTIENT a b)

is transformed into the form
(TIMES a (QUOTIENT 1 b))

and a call to STIMES is made with the new expression. SQUOTIENT does not make

a zero-divide check, i.e., b is assumed # O.

Rule Value Line No.
l. a=5>» 1 174
2. a=20 0 175
3. a=1 (QUOTIENT a b) 176
4, b=1 a 179
5. a and b = constant a/b 178
6. b = constant, a # constant (TIMES 1.0/b a)* 180
7. b = (MINUS bl) (TIMES a (MINUS
(QUOTIENT 1 bl)))JrJr 182
8. all else (TIMES a (QUOTIENT 1 b))'T 187
(SQUOTIENT (LAMBDA (E) 173
(COND {{EQUAL (CADR E) (CADDR E)) 1) 174
{ {tAND (NUMBERP (CADR E)) (ZEROP (CADR E))) 0) 175
{ {AND (NUMBERP (CADR E)) (ONEP (CADR E))}) E) 176
{ (NUMBERP (CADDR E)) 177
(COND ((NUMBERP (CADR E)) (EVAL E)) 178
{ {ONEP (CADDR E)) (CADR E)) 179
{T (COLLECT (LIST (QUUTE TIMES) 180
{QUOTIENT 1.0 (CADOR E)) (CADR E)))))) 181
{ (AND (NOT (ATOM {CADDR E))) (EQ (CAADDR E) (QUOTE MINUS))) 182
{STIMES (LIST (QUOTE TIMES) (CADR E) 183
{LIST (QUGTE MINUS) 184
{LIST (QUUTE QUOTIENT) 185
1 (CADR (CADDR E))))))) 186
(T (STIMES (LIST (QUOTE TIMES) (CADR E) 187
(LIST (QUOTE QUOTIENT) 1 (CADDR E)}))1)))) 188

1'The expression is further simplified by the function COLLECT.

HThe expression is further simplified by the function STIMES.

-175-

20.5.5 SEXPT

For an expression of the form
(EXPT a b)

the following simplification rules are used by SEXPT. The argument b is assumed
to be constant (i.e., NUMBERP is not used to guarantee this fact). O0 is

defined equal to one.

Rule Value Line No.
1. =0 1 190
2. b=1 a 191
3. a and b = constant ab 192
4, a = atom (EXPT a b) 193
= *
5. a = (EXPT a; bl) (EXPT a; b : bl) 194
6. a = (MINUS al), b = even (EXPT 2, b) 198
7. a = (MINUS al), b = odd (MINUS (EXPT a b)Jr) 200
8. all else (EXPT a b) 197
(SEXPT (LAMBDA (E) 189
{COND ({(ZEROP (CADDR E)) 1) 190
{{ONEP {CADDR E)) (CADR E)) 191
{ {NUMBERP (CADR E)) (EVAL E)) 192
((ATOM (CADR E)) E) 193
{(EQ (CAADR E) (QUOTE EXPT)) 194
(LIST (QUOTE EXPT) (CADALR E) 195
(TIMES (CADOR E) (CADDR (CADR E))))) 196
{(NOT (EQ (CAADR E) (QUUTE MINUS))) E) 197
({(EVENP (CADUR E)) 198
(SEXPT (LIST (QUOTE EXPT) (CADADR E) (CADDR E)))) 199
{7 (LIST (QUOTE MINUS) 200
(SEXPT (LIST (QUOTE EXPT) (CADADR E) (CADDR €)))))))) 201
20.5.6 SMINUS

The rules below apply to an expression of the form

(MINUS a)

1‘The expression is further simplified by a recursive call to SEXPT.

-176-

Rule Value Line No.

1. a = constant -a 203

. a = (MINUS al) a; 204

3. all else (MINUS a) 206
(SMINUS (LAMBDA (E) 202
(COND ((NUMBERP (CAUR E)) (EVAL E)) 203
{ {AND (NOT (ATOM (CADR E))) 204
(EQ (CAADR E) (QUOTE MINUS))) (CADADR E)) 205
tT EV)N) 206

20.6 PRE2IN

Translating from prefix to infix notation is considerably simpler than vice
versa, and PRE2IN is a simpler function than IN2PRE., There are only two
problems: (1) determining when to parenthesize an expression to remove

ambiguity, and (2) printing the expression in a "pretty" infix form.

The first problem is solved by taking cognizance of the precedence or binding
strength of adjacent operators. When printing an expression whose operator has
higher precedence than the operator of an argument, the argument is parenthesized.

For example, the expression

(TIMES A (PLUS B C))
should print as

A(B + C)
whereas

(PLUS A (TIMES B C))
should print as

A + BC

since TIMES has higher precedence than PLUS. For our problem, operator prece-

dence, from high to low, is as listed below:

EXPT

TIMES, QUOTIENT

PLUS, MINUS
-177-

where TIMES and QUOTIENT (and PLUS and MINUS) have equal precedence. The

function WRAP provides the parentheses when called.

The second problem of printing the expression in a 'pretty" format is sidestepped

to some degree by PRE2IN, particularly for the case
(TIMES constant (QUOTIENT 1 A))

If the constant were 3, the infix expression could print as
31/A

which is incorrect. The solution I've chosen is to always insert a space

following a constant (line 209). A better printing algorithm could yield
3/A
but this is not done here.

The structure of PRE2IN includes the supervisory program PRE2IN and six sub-
functions. They are simple enough to be left to the reader to follow the
code directly. ©Note, however, the use of the character objects PLUSS, SLASH,
DASH, UPARROW, LPAR, RPAR, and BLANK, whose values print as the desired

characters.

(PREZIN (LAMBDRA (E) 207
(PROG () 208
(COND ({NUMBERP E) (PROGZ (PRIN E) (PRIN BLANK))) 209
((ATOM E) (PRIN E)) 210

(T (SELECT (CAR E) 211

{(QUOUTE PLUS) (XPLUS E)) 212

({QUUTE MINUS) (XMINUS E}) 213

((QUOTE TIMES) (XTIMES E)) 214

{(QUUTE QUOTIENT) (XQUOTIENT E)) 215

{(QUUTE EXPT) (XEXPT E)}) ENN)D)) 216

(XPLUS (LAMBDA (E) 217
(PROG () 218
(COND ((NUMBERP (CADR E)) 219
(RETURN (XPLUS (LIST (CAR E) (CADUR E) (CADR E)))))) 220

(PREZ2IN (CADR E)) 221
(PRIN BLANK) 222
(COND ((AND (NOT (ATOM (CADOR E)}) (EQ (CAADDR E) (QUOTE MINUS))) 223

(GO X)) 224

((AND (NUMBERP (CADDR E)) (MINUSP (CADDR E))}) (60 X))) 225

(PRIN PLUSS) 226
(PRIN BLANK) 227

X (PRE2IN (CADDR E))))) 228
(XMINUS (LAMBDA (E) 229
(PROG () 230
{(PRIN DASH) 231
(PRIN BLANK) 232
(PRE2IN (CADR E)))}) 233

-178-

(XTIMES {LAMBDA (E) 234

(PROG (X) 235
(SETQ X (QUOTE (PLUS MINUS))) 236
(COND ((ATOM (CADR E)) (PRIN (CADR E))) 237

((MEMBER (CAADR E) X) {WRAP {CADR E))) 238

(T (PRE2IN (CADR E)))) 239

(COND ((ATOM (CADDR E)) (PRIN (CADDR E))) 240
({MEMBER (CAADDR E) X) (WRAP (CADDR E)}} 241

(T (PRE2IN {CADDR E))))))) 242
{XQUOTIENT (LAMBDA (E) 243

{PROG (X) 244
(SETQ X (QUOTE (PLUS MINUS))) 245
(COND ((ATOM (CADR E)) (PRIN (CADR E))) 246

((MEMBER (CAADR E) X) (WRAP {CADR E))) 247

(T (PRE2IN (CADR E)))) 248

(PRIN SLASH) 249
{COND ((ATOM (CADDR E)) (PRIN (CADDR E£))) 250

({MEMBER {CAADDR E) X) (WRAP (CADDR E))) 251

{7 (PRE2IN {CADDR E})))))) 252

{(XEXPT (LAMBDA (E) 253

(PROG () 254

(COND ((ATOM {CADR E)}) {PRIN (CADR E))) 255

(T (WRAP (CADR E))})) 256

(PRIN UPARROW) 257
(PRIN (CADDR E))))) 258
(WRAP {LAMBDA (TERM) 259

(PROG () 260
{PRIN LPAR) 261
(PRE2IN TERM) 262
(PRIN RPAR)))) 263

20.7 DIFF

DIFF is the supervisor for the complete program. It controls the evaluation of

the previously discussed functions, and input-output.
MAPCAR is used (line 267) to print the output message
THE DERIVATIVE OF-

whereupon, control is given to the function READER (line 281) to return a list
of all the non-blank characters of the infix expression to be differentiated.

To satisfy the demands of READER, the infix expression must be terminated by

a comma (line 286). If the expression ends with a period, READER returns the
value END (line 285) and DIFF exits to EVALQUOTE with the value FINIS (line 272).
If the expression returned by READER can't be translated by IN2PRE, IN2PRE

prints the message

(POORLY FORMED EXPRESSION)

-179-

and DIFF tries again (line 273). If the translation is successful, DIFF prints

the message
WITH RESPECT TO-

and READER is called again (line 276) to read the variable of differentiation;

it must be a literal atom.
The message
Is-

is printed and DIFF calls DERIV, SIMPLIFY, and PRE2IN in order to perform
differentiation, simplification, and infix translation, respectively (line 278).
Since PRE2IN prints its result directly, DIFF just repeats the loop for another

expression.

Note the use of the $$-artifact to print non-parenthesized output messages.

The free variable DIGITS, noted earlier, is CSET to a list of pairs of literal
atoms and numeric atoms for each digZt. The function DIGIT uses ASSOC (line 8)
to search this 1list for equality of the literal atom returned by READCH, and
the CAR of each pair, e.g., $5$$0$, $$51$, etc. When the equality is satisfied,
i.e., ASSOC returns a non-NIL value, the CADR of the pair yields the numeric
value of the literal atom read (line 10).

{(DIFF (LAMBDA () 264
(PROG (X Y) 265
A (TERPRI) 266

(MAPCAR (QUOTE (THE DERIVATIVE $$3%0F-3%))} 267
(FUNCTION (LAMBDA (J) (PROGZ2 {PRIN J} (PRIN BLANK))))) 268
(TERPRI) 269
(TEREAD) 270
(SETQ X (READER)) 271
(COND ((EQUAL X (QUOTE END)}) (RETURN (QUOTE FINIS))) 272
((NULL (SETQ X (IN2PRE X))) (GO A))) 2713

B (PRINT (QUOTE $$$ WITH RESPECT TO-$)) 274
(TEREAD) 2715
(COND ((NOT (ATOM (SETQ Y (CAR (READER))))) (6O B))) 276
(PRINT (QUOTE $$$15-%)) 2117
(PRE2IN (SIMPLIFY (DERIV X Y))) 278
(TERPRI) 279
(G0 A)))) 280

(READER (LAMBOA () 281
(PROG (X Y) 282
A (SETQ X (READCH)) 283

(COND ((EQ X BLANK) (GO A)) 284
((EQ X PERIOD) (RETURN (QUUTE END))) 285
((EQ X COMMA) (RETURN (REVERSE Y)))) 286
(SETQ Y (CONS X Y)) 287
(GO A)))) 288

-180-

With the program now completely described, we can examine a few typical examples

of its operation.

DIFF ()

THE DERIVATIVE OF-
Y,

WITH RESPECT TO-
X,

IS-

0

THE DERIVATIVE OF-
X+3,

WITH RESPECT TO-
X,

IS-

1

THE DERIVATIVE OF-
3X4+3,

WITH RESPECT TO-
X,

IS~

9 X42

THE DERIVATIVE OF-
3X42-2X-4,

WITH RESPECT TO-
X,

IS-

6 X -2

THE DERIVATIVE OF-

3X43 + 2X42+X+3,

WITH RESPECT TO-

X,

IS-

9 X424+ 4 X+ 1
-181-

THE DERIVATIVE OF-
3(X+2 + X) + 2X43,
WITH RESPECT TO-

X,

IS~

3 (2X+1)+6ZX42

THE DERIVATIVE OF-
(X+Y) *(X-Y)

WITH RESPECT TO-
X,

IS-

X-Y+X+Y

Since the input expression in this example was not in simplest form, the answer
is not in simplified form.

THE DERIVATIVE OF-
B+B)* (A-B),
(POORLY FORMED EXPRESSION)

THE DERIVATIVE OF-

FINIS

-182-

APPENDIX A
EXERCISE ANSWERS

CHAPTER 2.
1. Yes
2, No. This is an example of two literal atoms.
3. Yes
4. Yes
5. No. There are no parentheses in an atomic symbol.
6. Yes
7. Yes
8. Yes
9. No. This is a dotted pair.
10. No. First character not a letter. (On some systems this may be an
acceptable literal atom because it is obviously not a number.)
11. No. Parentheses missing.
12. No. Parentheses missing.
13. No. Too many dots without proper parentheses.
14, Yes
15. Yes
16.
ONE
\
TWO |THREE
17.
ONE
/.
, WO
THREE | NIL

-183~

18.

19. (. (B . ((C . NIL) . (D . NIL))))

20. (((A.B).(€.D).(E. .G .H)
CHAPTER 3.

1. (ATOM . NIL)

2. ((LISP . NIL) . NIL)

3. (((MORE . (YET . NIL)) . NIL) . NIL)

4. (HOW . (ABOUT . (THIS . NIL)))

5. (DONT . ((GET . ((FOOLED . NIL) . NIL)) . NIL))
6. (X1)

7. (NIL X1)

8. (KNOW THY SELF)

9. ((BEFORE AND AFTER))
10. (A ((B ©)))
11. ((W)) = ((W . NIL) . NIL)

12. (NIL NIL NIL) = (NIL . (NIL . (NIL . NIL)))

13. (W (B) B) = (W . ((B . NIL) . (B . NIL)))
14. ((((NEST)))) = ((((NEST . NIL) . NIL) . NIL) . NIL)
15. (((A) B) (C) D) = (((A . NIL) . (B . NIL)) . ((C . NIL) . (D
CHAPTER 4.

1. Yes

2. Yes (5 E)

3. Yes (E5 . 5)

4, Yes (1.0 . 1Q)

-184-

. NIL)))

3

5. Yes Q3 is a literal atom and not 0 X 8
6. Yes 4.4

7. No

8. Yes (B . 9.9)

9. No

Note that the use of blanks to delimit the ''CONS dot"

in 7 and 9 would make these legal S-expressions.

10. Yes (1.23 77Q3 27 2700000 3.21E-8 ALPHA Q . 32)

11. (99.9)

12, (NIL . 99.9)

13. Not a legal S-expression as there are too many dots.
14. (5 5.5 5Q5 5.5 500)

15. ((13.13) (25Q2))

CHAPTER 5.
1. LEFT
2. RIGHT
3. (LEFT . RIGHT)
4. A
5. (&)
6. A
7. (A . B)
8. (SENTENCE IS A LIST)
9. ((ABOUT THIS))
10. ((DOT . PAIR2))
11. (CAR . CDR)
12. NIL = ()
13. (CDR)
14. (CAR)
15. (A)
16. (75Q . 100)
17. 1
18. (2.0 3.0 . 77Q) = (2.0 . (3.0 . 77Q))

19. ((A . B))

~185-

20. ((((ALPHA))))
The relationship among CONS, CAR, and CDR is that CONS puts together that
which CAR and CDR tear apart. More exactly, if the argument to CAR and to
CDR is the same S-expression, s, and the two arguments to CONS are the values
of the CAR and CDR of this S-expression, then the value of CONS is the
original S-expression, i.e., (CONS (CAR s) (CDR s)) = s.
21. CAR CDR CAR = CADAR
22. CAR CAR = CAAR
23. CAR CDR = CADR
24, CDR = CDR
25. CAR CDR CDR = CADDR
26. CAR CDR CDR CDR = CADDDR
27. CAR CAR = CAAR
28. CDR CAR = CDAR
29. CAR CAR CAR CDR = CAAADR
30. CAR CAR CDR = CAADR
31. CAR CDR CAR CDR = CADADR
CHAPTER 6.
Variable Binding
1. X ATOM
2. Y (LIST)
3. J (THREE ELEMENT LIST)
4, K (THREE ELEMENT LIST)
5. U VERY
A GOOD
6. Y ONE
X (THEN . ANOTHER)
. A (A (B . 77Q2))
8. VARIABLE ((A B))
9. J NIL
10. empty empty
11. U ALPHA
v BETA

-186-

Binding

Variable
12, U BETA
v ALPHA
13. U ALPHA
v BETA
14, v ALPHA
U BETA
15. FIRST (FIRST)
SECOND SECOND
CHAPTER 7.
1. ATOM
2. (LIST)/
3. THREE -
4. (ELEMENT LIST)
5. (VERY . GOOD)
6. (ONE THEN . ANOTHER) = (ONE . (THEN
7. B
8. (B):
9. 3.14159
10. 3.14159
11. ALPHA -
12. BETA .
13. BETA
14. ALPHA
15. FIRST
CHAPTER 8.
1. 437
2. LISTY
3. NIL
4, 43
5. NUMBER
vé. Y
7. (((LIST)))

-187-

. ANOTHER))

/8. B
9. 123Q3
10, (A . B)
11. (LAMBDA (J) (CAR (CDR (CDR J)))) ((1 23 4)) =3
12. (LAMBDA (X) (CAR (CAR X))) (((ABC)D)) =A
13. (LAMBDA (Y) (CAR (CDR Y))) (((ABC)D)) =D
_ 14. (LAMBDA (Z) (CDR (CAR 2))) (((ABC) D)) = (B C)
. 15. (LAMBDA (VARIABLE) (CAR (CDR (CAR VARIABLE)))) (((ABC) D)) =B
16. (A C)
17. (A C)
18. (A)
19. (C)
20. ((B A) (D C))
CHAPTER 9.
1. X
2. J
3. (AN S EXPRESSION)
4, A
5. @)
6. (QUOTE . EXPR)
7. CAR ((A . BETA)) = A
8. (NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THE PARTY)
9. (A . B)
10. (LAMBDA (X) X)
11. (ONE TWO THREE)
12. (ONE TWO THREE)
13. (NIL F NIL F NIL F)
4. (FFFFFF)
15. ((NIL F F) (T T T) (NIL NIL NIL) (123 123 123))
16. X
7. J
18. (AN S EXPRESSION)
19. A
20. (J)

-188-

21. ABLE

22. (ABLE QUOTE ABLE) ‘
23. EVAL ((CAR (QUOTE (ABLE)))) = ABLE
24, (CONS A B)

25. EVAL ((CDR (QUOTE (A B)))) = (B)

CHAPTER 10.

1. DEFINE (((FIRST (LAMBDA (X) (CAR X)))))
FIRST ((ABCDE)) =A

 2-4. DEFINE ((
(SECOND (LAMBDA (Y) (CADR Y)))
(THIRD (LAMBDA (Z) (CAR (CDDR Z))))
(CADDDDR (LAMBDA (J) (CAR (CDDDDR J))))

)

SECOND ((AB CDE)) = B

THIRD ((ABCDE)) = C

CADDDDR ((ABCDE)) = E

5. DEFINE (((REVDOT (LAMBDA (J) (CONS (CDR J) (CAR J))))))
REVDOT ((A . B)) = (B . A)
REVDOT (((A) . (B))) = ((B) . (&) = ((B) A)
REVDOT ((((FIRST)) . (LAST))) = ((LAST) . ((FIRST))) = ((LAST) (FIRST))

CHAPTER 11.

TRUE
1
Undefined, as there is no non-NIL conditional clause.
(T)
NOP
DEFINE (((OR2 (LAMBDA (X Y) (COND (X T) (Y T) (T NIL))))))
DEFINE (((XOR2 (LAMBDA (X Y)

(COND (X (COND (Y NIL) (T T))) (¥ T) (T NIL))))))
8. DEFINE (((AND2 (LAMBDA (X Y)

(COND (X (COND (Y T) (T NIL))) (T NIL)))))

9. (SELECT T'(p1 el) (p2 ez) cee (pn en) (error))

N O LNy -
L 2 Y T Y T

-189-

10. (COND ((EQUAL p pl) el) ((EQUAL p p2) e2) oo
((EQUAL p p) e) (T o))
CHAPTER 12.
1. (TFTH
2, T
3. T
4, NIL
5. T
6. NIL
7. T
8. NIL
9. T
10. NIL
11. NIL
12, T
13. T
14, T
15. NIL, since HEAR is not a top-level member of list (NOW (HEAR THIS)).
Rather, HEAR is a member of the sublist (HEAR THIS), and MEMBER
tests only for elements at the top level of a list.
6. T
17. DEFINE (((EQUIV (LAMBDA (X Y) (EQ X Y)))))
18. DEFINE (((IMPLIES (LAMBDA (X Y) (OR (EQ X Y) Y)))))
19. This program can be easily written with conditionals and recursion.

However, since the student has not learned these techniques, the following

expression is required (see exercise 19 of Chapter 14 for recursive solution):

DEFINE ((
(INSEQ (LAMBDA (J)
((LAMBDA (V W X Y Z) (AND
(AND (NUMBERP V) (NUMBERP W) (NUMBERP X) (NUMBERP Y) (NUMBERP Z))
(OR (AND (LESSP V W) (LESSP W X) (LESSP X Y) (LESSP Y Z))
(AND (GREATERP V W) (GREATERP W X) (GREATERP X Y) (GREATERP Y Z)))))
(CAR J) (CADR J) (CADDR J) (CADDDR J) (CAR (CDDDDR J)))))
))

-190-

Note that the use of nested lambda expressions permits us to bind V to

the first list element, W to the second, X to the third, etc. This
practice creates temporary storage for these partial results and simplifies
the total expression as well as reduces the total computation, since we

need compute these repeatedly used arguments only once.

20. DEFINE (((EQN (LAMBDA (X Y) (OR (EQ X Y)
(AND (NUMBERP X)
(NUMBERP Y)
(ZEROP (DIFFERENCE X Y))))))))
CHAPTER 13.
1. 55
2, 95.85841
3. 1024
4, 32768
5. 0.0
6. O
7. 10.000000001
8. 9.999999999
9. 18
10. 18.333333333
11. 1 i.e., a number-theoretic remainder for fixed-point arguments. _
12. 9.3132257461E-10 i.e., floating-point residue for floating-point arguments.
13. (18 1)
14, (18.333333333 9.3132257461E-10)
15. (18 1)
16. 123
17. =123
18. O
19. O
20. 5.0
21. 0.333333333
22. 0
23, 1.2345678900E+8
24, 3.14159

-191-

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

38.

39.

40.

v &~ W

77777Q
717375Q
765435Q
715335Q
12345Q
204Q1
16Q1
34Q
DEFINE (((TRIPLE (LAMBDA (X) (PLUS X X X)))))
DEFINE (((CUBE (LAMBDA (X) (TIMES X X X)))))
DEFINE (((SIMPLEINTEREST (LAMBDA (PRINCIPAL RATE YEARS)
(TIMES PRINCIPAL (ADD1 (TIMES YEARS RATE)))))))
DEFINE (((ANNUALCOMPOUND (LAMBDA (P R Y)
(TIMES P (EXPT (ADDL R) Y))))))
DEFINE (((TIMECOMPOUND (LAMBDA (P R Y T)
(TIMES P (EXPT (ADD1 (QUOTIENT R T)) (TIMES T Y)))))))
DEFINE (((TWOBY (LAMBDA (All Al12 A21 A22)
(DIFFERENCE (TIMES All A22) (TIMES Al2 A21))))))
DEFINE (((THREEBY (LAMBDA (All A12 Al3 A21 A22 A23 A31 A32 A33)
(PLUS (TIMES All (TWOBY A22 A23 A32 A33))
(MINUS (TIMES A12 (TWOBY A21 A23 A31 A33)))
(TIMES Al3 (TWOBY A21 A22 A31 A32)))))))
DEFINE (((SOLVE (LAMBDA (A1l A12 Al13 A21 A22 A23 A31 A32 A33 Cl C2 C3)
((LAMBDA (Ul U2 U3 D) (LIST (CONS (QUOTE Ul) (QUOTIENT Ul D))
(CONS (QUOTE U2) (QUOTIENT U2 D))
(CONS (QUOTE U3) (QUOTIENT U3 D))))
(THREEBY C1 Al2 Al3 C2 A22 A23 C3 A32 A33)
(THREEBY All Cl A13 A21 C2 A23 A31 C3 A33)
(THREEBY All A12 Cl A21 A22 C2 A31 A32 C3)
(THREEBY A1l A12 A13 A21 A22 A23 A31 A32 A33))))))
SOLVE (21 -2111-1-23-6212) = (Ul . 1) (U2 .-2) (U3 . 3))
SOLVE (2 1 -2213-1-235612) = (U1l . 7) (U2.-9) (U3 . 0))
SOLVE (15 15 15 7 1 -100 -50 1 1 15 -100 -16) = ((Ul . 0) (U2 . 0) (U3
SOLVE (1 2 -2111-2-13-1262) = ((U1 . 8) (U2 . -6) (U3 . 4))

SOLVE (-2 211113-1=-2-241499) = ((U1 . 22) (U2 . -5) (U3 . 32))

-192~

. 1))

CHAPTER 14.

1. A
B
“ _, 7hC
NIL —7 -
NIL
2. X
E
NO
L
3. DEFINE (((TWIST (LAMBDA (S) (COND ((ATOM S) S)
(T (CONS (TWIST (CDR S))
(TWIST (CAR $)))))))))
A
(B . A)
(C. (B.A)) =(B. A
(((NIL . C) . B) . A)
(NIL . (B . A)) = (NIL B . A)
4, DEFINE (((SUM (LAMBDA (X Y) (COND ((ZEROP Y) X) (T (SUM (ADD1l X) (SUBL Y))))»))M
ARGS OF SUM
1
2
ARGS OF SUM
2
1
ARGS OF SUM
3
0
VALUE OF SUM
3
VALUE OF SUM
3
VALUE OF SUM
3

-193-

10.

11.

12.

13.

14.

15.

16.

DEFINE (((PROD (LAMBDA (X Y) (COND ((ZEROP Y) 0)

(T (SUM X (PROD X (SURL Y)))))))))

DEFINE (((REMXY (LAMBDA (X Y) (COND ((LESSP X Y) X)

DEFINE (((COUNT (LAMBDA (E)
(COND ((NULL E) 0) ((ATOM E) 1)

(T (PLUS (COUNT (CAR E)) (COUNT (CDR E)))))))))

DEFINE (((FIBB (LAMBDA (N)
(COND ((ONEP N) 1) ((EQUAL 2 N) 1)

(T (PLUS (FIBB (SUBL N)) (FIBB (DIFFERENCE N 2)))))))))

DEFINE (((GCD (LAMBDA (X Y) (COND ((GREATERP X Y) (GCD Y X))

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

DEFINE

((

((

((

(«(

(«(

((

((

((EQUAL X Y) 0)
(T (REMXY (DIFFERENCE X Y) Y)))))))

((ZEROP (REMAINDER Y X)) X)
(T (GCD X (REMAINDER Y X))))))))

(AMONG (LAMBDA (A L) (COND ((NULL L) NIL)

((EQ A (CAR L)) T)
(T (AMONG A (CDR 1))))))))

(INSIDE (LAMBDA (A E) (COND ((ATOM E) (EQ A E))

((INSIDE A (CAR E)) T)
(T (INSIDE A (CDR E))))))))

(COPYN (LAMBDA (X N) (COND ((ZEROP N) NIL)

(T (CONS X (COPYN X (SUBL N)))))))))

(LENGTHS (LAMBDA (L) (COND ((NULL L) 0)

(T (ADD1 (LENGTHS (CDR L)))))))))

(UNIONS (LAMBDA (X Y) (COND ((NULL X) Y)

(INTERSECT (LAMBDA (X Y)

((MEMBER (CAR X) Y) (UNIONS (CDR X) Y))
(T (CONS (CAR X) (UNIONS (CDR X) Y))))))))
(COND ((NULL X) NIL)
((MEMBER (CAR X) Y) (CONS (CAR X)
(INTERSECT (CDR X) Y)))
(T (INTERSECT (CDR X) Y)))))))

(REVERSAL (LAMBDA (L) (COND ((NULL L) NIL)

~194—~

(T (APPEND (REVERSAL (CDR L))
(LIST (CAR 1))))))) 2)

17. DEFINE (((PAIRS (LAMBDA (L1 L2) (COND ((NULL L1l) NIL)
(T (CONS (CONS (CAR L1) (CAR L2))
(PAIRS (CDR L1) (CAR L2)))))))))
18. DEFINE (((DELETE (LAMBDA (A L) (COND ((NULL L) NIL)
((EQ A (CAR L)) (DELETE A (CDR L)))
(T (CONS (CAR L) (DELETE A (CDR L)))))))))
19. DEFINE ((
(INSEQ (LAMBDA (L) (OR (INSEQA L) (INSEQA (REVERSE L)))))
(INSEQA (LAMBDA (L) (COND ((NULL L) T)
((NULL (CDR L)) T)
((NOT (NUMBERP (CAR L))) NIL)
((NOT (NUMBERP (CADR L))) NIL)
((LESSP (CAR L) (CADR L)) (INSEQA (CDR L)))
(T NIL))))
))
20. DEFINE (((REPLACE (LAMBDA (A B X) (COND ((ATOM X) (COND ((EQUAL B X) A) (T X)))
(T (CONS (REPLACE A B (CAR X))
(REPLACE A B (CDR X)))))))))
CHAPTER 15.
1. DEFINE (((NEGCNT (LAMBDA (L) (PROG (X)
(SETQ X 0)
TAG1 (COND ((NULL L) (RETURN X))
((MINUSP (CAR L)) (SETQ X (ADD1 X))))
(SETQ L (CDR L))
(GO TAG1))))))
2. DEFINE (((CURVE (LAMBDA (A B C) (PROG (X)
(SETQ X (PLUS (TIMES B B) (TIMES -4 A C)))
(COND ((ZEROP X) (RETURN (QUOTE PARABOLA)))
((LESSP X 0) (RETURN (QUOTE ELLIPSE))))
(RETURN (QUOTE HYPERBOLA)))))))
3. DEFINE (((LENGTHS (LAMBDA (M) (PROG (X)

(SETQ X 0)
LOC1 (COND ((NULL M) (RETURN X)))
(SETQ X (ADD1 X))

=195~

(SETQ M (CDR M))
(GO LOC1))))))
4. DEFINE (((LAST (LAMBDA (L) (PROG (U)
T1 (COND ((NULL L) (RETURN U)))
(SETQ U (CAR L))
(SETQ L (CDR L))
(GO T1))))))
5-7. DEFINE ((
(REVERSAL (LAMBDA (L) (PROG (Y)
T2 (COND ((NULL L) (RETURN Y)))
(SETQ Y (CONS (CAR L) Y))
(SETQ L (CDR L))
(GO T2))))
(PAIRS (LAMBDA (L1 L2) (PROG (X)
T3 (COND ((NULL L1) (RETURN (REVERSE X))))
(SETQ X (CONS (CONS (CAR L1) (CAR L2)) X))
(SETQ L1 (CDR L1))
(SETQ L2 (CDR L2))
(GO T3))))
(DELETE (LAMBDA (A L) (PROG (Z)
T4 (COND ((NULL L) (RETURN (REVERSE Z)))
((EQ A (CAR L)) (GO T5)))
(SETQ Z (CONS (CAR L) Z))
T5 (SETQ L (CDR L))
(GO T4))))
))
8. DEFINE (((PERMUT (LAMBDA (N R)
(QUOTIENT (FACTORIAL N) (FACTORIAL (DIFFERENCE N R)))))))
DEFINE (((PERMUT (LAMBDA (N R) (PROG ()
(RETURN (QUOTIENT (FACTORIAL N) (FACTORIAL (DIFFERENCE N R)))))))))
9. DEFINE (((COMBIN (LAMBDA (N R)
(QUOTIENT (FACTORIAL N) (TIMES (FACTORIAL R)
(FACTORIAL (DIFFERENCE N R))))))))

-196-

10.

DEFINE (((COMBIN (LAMBDA (N R) (PROG ()

DEFI

(RETURN (QUOTIENT (FACTORIAL N)
(TIMES (FACTORIAL R)
(FACTORIAL (DIFFERENCE N R))))))))))
NE (((PASCAL (LAMBDA (N) (PROG (X R LINE)
(SETQ X 0)

OUTLOOP (SETQ R 0)

(COND ((LESSP N X) (RETURN NIL)))

INLOOP (COND ((LESSP X R) (GO BUMPX)))

B

(SETQ LINE (CONS (COMBIN X R) LINE))
(SETQ R (ADD1 R))
(GO INLOOP)
UMPX (PRINT LINE)
(SETQ LINE NIL)
(SETQ X (ADD1 X))
(GO OUTLOOP))))))

PASCAL (15)

(1
(1
(1
(1
(1
(1
¢!
(1
(1
(1
(1
(1
(1
(1
(1
1
NIL

1)

2 1)

331)

46 4 1)

510 10 5 1)

6 15 20 15 6 1)

7 21 3535 21 7 1)

8 28 56 70 56 28 8 1)

9 36 84 126 126 84 36 9 1)

10 45 120 210 252 210 120 45 10 1)

11 55 165 330 462 462 330 165 55 11 1)

12 66 220 495 792 924 792 495 220 66 12 1)

13 78 286 715 1287 1716 1716 1287 715 286 78 13 1)

14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1)
15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1)

~197-

PASCAL (16) is the largest triangle possible with this definition since

16! is maximum fixed-point accuracy of a 48-bit machine.

CHAPTER 16.

There are no exercises for this chapter.

CHAPTER 17.

1. (LIST)
(LIST)
2. blank line
NIL
blank line
NIL
3. ATOM1 ATOM2
NIL
4. (NOW HEAR THIS)
5. ((INPUT) ANYTHING)
6. TFor R=5 , 31.4159
For R=50 , 314.159
For R=10 , 62.8318
For END , END
7. (() ./ =$ * NOW HEAR THIS -533.17)
8. (B C)
9. 1. % This expression binds the literal atom $$*%* to the name PERCENT.
The $$-artifact is the only way to enter illegal read characters.
%
PERCENT

10.
11. A
(B C)
(A . B)
3.14159
3.14159
(A)

(A . B)

12.

.

N H U W N R PR W N

-198-

3.14159
(3.14159)
X SQUARE
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
END
13. DEFINE ((
(SUP4 (LAMBDA () (PROG (S1 S2 ARGS)
A (TEREAD) (SETQ ARGS NIL)
(SETQ S2 (READ))
(SETQ S1 (READ))
B (COND ((NULL S2) (GO C)))
(SETQ ARGS (CONS (LIST (QUOTE QUOTE) (CAR S2)) ARGS))
(SETQ S2 (CDR S2))
(GO B)
C (PRINT (EVAL (CONS S1 (REVERSE ARGS))))
(Go A))H))
))
A
(B C)
NIL
10
3.14159
3.14159

[<)BT, B~ NV I S

-199~

14.

15.

DEFINE ((
(SUP5 (LAMBDA () (PROG (X Y Z)
A (TEREAD) (SETQ Z NIL)
(SETQ X (READ))
(SETQ Y (READ))
(PRIN X) (PRIN Y) (TERPRI)
(COND ((EQ (QUOTE NO) (READ)) (GO A)))
(PRIN X) (PRIN Y) (PRIN BLANK) (PRIN1 EQSIGN) (PRIN BLANK)
B (COND ((NULL Y) (GO C)))
(SETQ Z (CONS (LIST (QUOTE QUOTE) (CAR Y)) Z))
(SETQ Y (CDR Y))
(GO B)
C (PRIN (EVAL (CONS X (REVERSE Z))))
(TERPRI)
(GO A)))))
DEFINE (((PI (LAMBDA (X) (PROG (HI)
(PRINT (QUOTE (ENTER MAX X)))
(SETQ HI (READ))
(SETQ X (TIMES X 1.0))
(PRINT (QUOTE $$$

X XSQUARE SQRTX RECIPX FACTORIALX
$))
TAG1 (COND ((LESSP HI X) (RETURN (QUOTE $$SLIMIT REACHEDS$))))
(PRIN1 X)
(PRIN 5 $)
(PRIN1 (TIMES X X))
(PRIN $$$ $)

(PRIN1 (SQRT X))

(PRIN 5 $) '
(PRIN1 (QUOTIENT 1.0 X))
(PRIN 8 $)

(PRIN1 (FACTORIAL X))
(TERPRI)

(SETQ X (ADD1 X))

(GO TAG1))))))

-200-

CHAPTER 18.

1. (TRY THIS SIMPLE CASE FIRST)

(THIS SIMPLE CASE FIRST)

(SIMPLE CASE FIRST)

(CASE FIRST)

(FIRST)

NIL
2. NOwW

THIS

ONE

NIL
3. AND

LASTLY

THIS

ONE

(AND LASTLY THIS ONE)
4., ((ONE 2 3 ONE 4 ONE 5) (2 3 ONE 4 ONE 5) (3 ONE 4 ONE 5) (ONE 4 ONE 5)
(4 ONE 5) (ONE 5) (5))
((L 23 4) (234) (34) (4)
((A.A) (B.B)(C.C) (.D) (E.E)
((A.X) (B.X)(C.X)M.X) (E.ZX)
((A.Z) (B.Z) (C.2Z) (D.2Z) (E.Z)
((A12345) (B12345)(C12345) (M12345) (E1L123L45))
9. DEFINE ((

(MAPCAR2 (LAMBDA (X Y FN)
(COND ((NULL X) NIL)
(T (CONS (FN (CAR X) (CAR Y)) (MAPCAR2 (CDR X) (CDR Y) FN))))))))

0 N O W»n

10. DEFINE ((
(TYPE (LAMBDA (J) (MAPCAR J (FUNCTION
(LAMBDA (X) (COND ((NUMBERP K) (RETURN (COND ((FIXP K) (QUOTE FIX))
(T (QUOTE FLT)))))
((ATOM K) (QUOTE ATOM))
((EQ (ATOM (CAR K)) (ATOM (CDR K))) (QUOTE DOTPAIR))
(T (QUOTE LIST))))))))))

-201-

CHAPTER 19.

1. ((CAT) (DOG) (FOX) 1 2 3.0)

X

LT

= L

DOG

FOX

L=

2. (1 (2 3.0))

3.0

3. (NCONC (LAMBDA (X Y) (PROG (M)
(COND ((NULL X) (RETURN Y)))

(SETQ M X)

A (COND ((NULL (CDR M)) (GO B)))

(SETQ M (CDR M))
(GO A)

B (RPLACD M Y)
(RETURN X))))

=202~

3.0

4. (REVLIST (LAMBDA (L) (PROG (C P)
A (SETQ C L) |
(COND ((NULL L) (RETURN P)))
(SETQ L (CDR L))
(RPLACD C P)
(SETQ P C)
(GO A))))
5. (BLAM (LAMBDA (L) (PROG (M)
(SETQ M L)
A (COND ((NULL M) (RETURN L)))
(RPLACA M (CDR M))
(SETQ M (CDR M))
(GO A))))
6. (SUITS (LAMBDA (PLAYER) (PROG (S H D C X)
(SETQ X (GET PLAYER (QUOTE HAND)))
A (COND ((NULL X) (GO B)))
(SELECT (GET (CAR X) (QUOTE SUIT))
((QUOTE SPADE) (SETQ S (CONS (CAR X) S)))
((QUOTE HEART) (SETQ H (CONS (CAR X) H)))
((QUOTE DIAMOND) (SETQ D (CONS (CAR X) D)))
(SETQ C (CONS (CAR X) C)))
(SETQ X (CDR X))
(GO A)
B (PUT PLAYER (QUOTE SPADES) S)
(PUT PLAYER (QUOTE HEARTS) H)
(PUT PLAYER (QUOTE DIAMONDS) D)
(PUT PLAYER (QUOTE CLUBS) C)
(RETURN PLAYER))))

7. (LONGSUIT (LAMBDA (PLAYER) (PROG (S H D C HIL HI2)
(SETQ S (LENGTH (GET PLAYER (QUOTE SPADES))))
(SETQ H (LENGTH (GET PLAYER (QUOTE HEARTS))))
(SETQ D (LENGTH (GET PLAYER (QUOTE DIAMONDS))))
(SETQ C (LENGTH (GET PLAYER (QUOTE CLUBS))))

-203~-

(COND ((GREATERP H S) (SETQ HI1 (CONS (QUOTE HEARTS) H)))
(T (SETQ HI1 (CONS (QUOTE SPADES) S))))
(COND ((GREATERP C D) (SETQ HI2 (CONS (QUOTE CLUBS) C)))
(T (SETQ HI2 (CONS (QUOTE DIAMONDS) D))))
(COND ((GREATERP (CDR HI2) (CDR HI1l)) (RETURN HI2))
(T (RETURN HIL))))))
(POINTS (LAMBDA (PLAYER)
(PLUS (POINT1 PLAYER (QUOTE SPADES))
(POINT1 PLAYER (QUOTE HEARTS))
(POINT1 PLAYER (QUOTE DIAMONDS))
(POINT1 PLAYER (QUOTE CLUBS)))))
(POINT1 (LAMBDA (P S) (PROG (SUM LN VALUE X)
(SETQ SUM 0)
(SETQ X (GET P S))
(SETQ LN (LENGTH X))
(COND ((ZEROP LN) (RETURN 3)))
A (COND ((NULL X) (RETURN SUM)))
(SETQ VALUE (GET (CAR X) (QUOTE RANK)))
(SETQ SUM (PLUS SUM
(COND ((LESSP VALUE 11) 0)
((EQUAL VALUE 14) 4)
((AND (EQUAL VALUE 13)
(GREATERP LN 1)) 3)
((AND (EQUAL VALUE 12)
(GREATERP LN 2)) 2)
((AND (EQUAL VALUE 11)
(GREATERP LN 3)) 1)
((ONEP LN) 2)
(T 0))))
(SETQ X (CDR X))
(Go A))))
(STOPPERS (LAMBDA (PLAYER) (AND (STOP PLAYER (QUOTE SPADES))
(STOP PLAYER (QUOTE HEARTS))
(STOP PLAYER (QUOTE DIAMONDS))
(STOP PLAYER (QUOTE CLUBS)))))

-204-

10.

(STOP (LAMBDA (P S) (PROG (LN VALUE X)
(SETQ X (GET P 8))
(SETQ LN (LENGTH X))
(COND ((ZEROP LN) (RETURN NIL)))
A (COND ((NULL X) (RETURN NIL)))
(SETQ VALUE (GET (CAR X) (QUOTE RANK)))
(COND ((OR (EQUAL VALUE 14)
(AND (EQUAL VALUE 13)
(GREATERP LN 1))
(AND (EQUAL VALUE 12)
(GREATERP IN 2))) (RETURN T)))
(SETQ X (CDR X))
(GO A) H))
(BALANCED (LAMBDA (PLAYER)
(LESSP 2 (MIN (LENGTH (GET PLAYER (QUOTE SPADES)))
(LENGTH (GET PLAYER (QUOTE HEARTS)))
(LENGTH (GET PLAYER (QUOTE DIAMONDS)))
(LENGTH (GET PLAYER (QUOTE CLUBS)))))))
(OPENBID (LAMBDA (PLAYER) (PROG (PT LS ST BAL)
(SUITS PLAYER)
(SETQ PT (POINTS PLAYER))
(SETQ LS (LONGSUIT PLAYER))
(SETQ ST (STOPPERS PLAYER))
(SETQ BAL (BALANCED PLAYER))
(COND ((LESSP PT 13) (GO PASS))
((LESSP PT 20) (GO ONEBID))
((AND ST BAL) (RETURN (QUOTE (2 NO TRUMP))))
(T (RETURN (LIST 2 (CAR LS)))))
PASS (COND ((AND (GREATERP (CDR LS) 6)
(GREATERP PT 6))
(RETURN (LIST 3 (CAR LS))))
(T (RETURN (QUOTE PASS))))
ONEBID (COND ((AND ST BAL (GREATERP PT 15)) (RETURN (QUOTE (1 NO TRUMP))))
(T (RETURN (LIST 1 (CAR LS))))))))

-205-

11.
12.

13.

14.

MACRO (((PROD (LAMBDA (J) (*EXPAND J (QUOTE *TIMES))))))

MACRO ((
(MAXIMUM (LAMBDA (J) (*EXPAND J (QUOTE *MAX))))
(MINIMUM (LAMBDA (J) (*EXPAND J (QUOTE *MIN))))

))
MACRO (((FLAMBDA (LAMBDA (J)

(LIST (QUOTE FUNCTION)
(CONS (QUOTE LAMBDA) (CDR J)))))))
MACRO ((
(LIST2 (LAMBDA (J) (*EXPAND J (QUOTE CONS))))
(LIST1 (LAMBDA (J) (APPEND (CONS (QUOTE LIST2)
(CDR J))
(QUOTE (NIL)))))
))

We note here that given a form

(LIST1 x (1]

1 X2 *3)
the macro LIST2 expands form [1] to

(LIST2 x, x., x, NIL) [2]

17273

and with repeated application to

NIL)))

(CONS X (CONS X, (CONS Xq

Thus the sole purpose of macro LIST1 is to insert NIL as the last argument

of the form. If we used the macro definition for LIST2 only, we would get

a value of

X s X

(=) %, 3)

rather than
(x; %, %3)

which is the list we desire.

-206-

15.

A more practical solution is to redefine *EXPAND as say *EXPANDS.

DEFINE ((
(*¥EXPANDS (LAMBDA (FORM FN)
(COND ((NULL (CDDR FORM))
(CONS FN (CONS (CADR FORM) (QUOTE (NIL)))))
(T (CONS FN
(CONS (CADR FORM)
(CONS (CONS (CAR FORM) (CDDR FORM)) NIL)))))))))

Then define LIST1 as

MACRO ((
(LIST1 (LAMBDA (J) (*EXPANDS J (QUOTE CONS))))))

In this approach the form

(LIST1 X X, x3)

becomes
(CONS Xy (LIST1 x, x3))
and with repeated application
(CONS Xy (CONS X, (LIST1 x3)))

Here's the difference. *EXPAND would return x, as the last term, but

3
*EXPANDS returns (CONS x3 NIL) and we achieve the same result as above

much more efficiently.

DEFINE ((
(PRINTQ1 (LAMBDA (J) (PROG ()
T1 (COND ((NULL J) (RETURN (TERPRI))))
(PRIN (CAR J)) (PRIN BLANK)
(SETQ J (CDR J))
(GO T1))))))

-207~-

16.

MACRO ((
(PRINTQ (LAMBDA (J) (LIST (QUOTE PRINTQ1)
(LIST (QUOTE QUOTE)
(CDR 1NN)

The form
(PRINTQ NOW HEAR THIS)

after the macro PRINTQ has been executed, will be replaced by the form
(PRINTQL (QUOTE (NOW HEAR THIS)))

The function PRINTQl enters each element of the list into the print line
with PRIN, and executes a final TERPRI when the list is empty.

MACRO (((PROGN (LAMBDA (J) (*EXPAND J (QUOTE PROG2))))))

-208-

APPENDIX B
GLOSSARY

a-list

A synonym for association list.

association list

A list of dotted pairs used by interpretive LISP systems to pair bound

variables with their values. It is of the form

((ul . vl) (u2 . V2) ‘e (un . Vn))

atom

A synonym for atomic symbol.

atomic symbol

The elementary form of an S-expression. There are literal atoms and
numeric atoms. A literal atom consists of a string of capital letters
and decimal digits of indefinite length that begins with a letter; e.g.,
A, BOY22, Z1Z2, Numeric atoms are real, integer, or octal numbers dis-

tinguished by their syntax. (c.f. Chapter 4)

binding
The association of a variable with a value within some expression context.
There may be multiple bindings for a variable during its lifetime as it is
used in multiple contexts; however, there is only one binding current at
a time. Lambda and program expressions are the principal ways to create

bindings. (See zero-level bindings)

bound variables

A variable named in the list of variables following LAMBDA or PROG in
lambda or program expressions is bound within the scope of that expression.
During evaluation of these expressions, the value of the variable is the
value of the corresponding argument in the function call. For example,

for (LAMBDA (J K) body) (1 2), J has value 1 and K has value 2 at any of

their occurrences in the body.

-209-

character obiject

A literal atom, the value of which prints as a special character. For

example,
CSET (LARROW $$#%<*)

creates the character object LARROW, the value of which prints as "<«".

clause

A predicate expression and its corresponding form in a conditional

expression.

common variable

Variables used for communication between compiled and interpreted expressions

for LISP systems having both a compiler and an interpreter.

composed form

The concatenation of forms such that the value of one form is used as the

argument for another form. This is written in a nested format, e.g.,
(CONS (CAR X) (CDR X))

conditional expression

An expression containing a list of clauses. The value of the conditional
expression is the value of the form corresponding to the first (leftmost)
predicate expression that evaluates to non-NIL. Evaluation proceeds left
to right only as far as the first non-NIL expression. No form is evaluated

if its predicate expression is NIL.

constant
A variable, the value of which never changes during computation, or a

quoted expression. The following are examples of constants:

(QUOTE (A B C))
3.14159
T

-210-

context
The bindings for variables during a particular computation. For recursive
evaluation of a function or an expression, the context at any time is the
current state of its variables. Variables used free in an expression are
said to bq outside the scope of that expression as the expression does not

control the bindings of the free variables.

dot notation

The fundamental notation of LISP for representing non-atomic S-expressions.
Dot notation contains left parentheses, right parentheses, atoms, and dots.
A non-atomic S-expression is always a dotted pair of S-expressions of the

form
(s1 . 32)
where 81 and s, are any S—-expressions.

dotted pair
A non-atomic S-expression. The value of the expression

CONS (sl 52) = (sl . 52)
where 81 and s, are arbitrary S-expressions.
doublet
A pair of S-expressions for EVALQUOTE, the top-level system supervisor.
The first S—-expression is a function name or a functional expression. The

second S-expression is a list of arguments.

dummy variable

If the systematic substitution of a literal atom for one used as a variable
in an expression does not change the meaning (i.e., the value returned) of
the expression, the variable is a dummy variable. All lambda and program

variables are dummy variables.

element
The top-level constituents of a list. These constituents may be atomic or

non—-atomic. If they are lists, they may themselves have elements. Thus,

-211-

() has no elements
(A) has one element
(A (B)) has two elements, one of which is a list of

one element.

empty list
A list having no elements. This list is also equivalent to the literal

atom, NIL.

expression
A synonym for S—expression in most contexts in this text. In some

instances it may refer to an arithmetic expression.

An S-expression that may be a simple constant, a variable, a simple form,

a composed form, or a special form. It may be evaluated when some corres-
pondence has been set up between the variables contained in the S-expression
and a set of arguments. The correspondence is not part of the form.

(See function.)

free variable

A variable that is used, but not bound within the scope of an expression.
A free variable can only be determined free by considering the context in

which it appears. In the expression
(LAMBDA (J K) (CONS J ((LAMBDA () (LIST K)) ())))
K is a free variable in the innermost lambda expression, and a bound

variable in the outermost lambda expression.

function
An expression containing a form and a correspondence between the variables
in the form and the arguments of the function. A lambda expression is a

function, sometimes called a functional expression.

f = Ax(x,y) y2 + x
N, o g,

t

form

correspondence
£(1,2) = 5; £(2,1) = 3
(See also lambda notation.)
-212-

functional

A function that can have functions as arguments, e.g., MAPCAR.

functional expression

See function.

function composition

See composed forms.

global bindings

See zero-level bindings.

label notation

A scheme for temporarily naming a lambda expression, so that the expression
may call itself recursively. Recursive functions call themselves by their
names. Lambda expressions are functions without names. Thus, label
notation gives a temporary name to a lambda expression. The notation has

the form
(LABEL name lambda-~expression)

labels

See statement labels.

lambda conversion

The process of evaluating lambda expressions. All arguments are paired
with variables in the list of variables following the LAMBDA. Then the
form inside the lambda expression is evaluated using those values of the

variables.

lambda expression

See lambda notation.

lambda notation

The notation first used by Church for converting forms into functions. 1In

LISP, lambda notation is used for lambda expressions such that
(LAMBDA (a1 ay oeo an) form)

is a function of n variables. The variables are used in the form whose

arguments are the a . (See also function.)

~-213-

lambda variable

list

list

A variable named in the list of variables following the LAMBDA in a

lambda expression. (See also bound variables.)
A shorthand notation for an S-expression of the form
(s1 . (s2 . eee (sn . NIL) ...))
This represents the list
(sl Sy eee sn)

where the s, are any S—-expressions.

notation

list

A method of representing S—-expressions in a convenient notation for

reading and writing. (See list.)

structure

A list of lists.

literal atom

See atomic symbol.

macro expansion

A computational process that transforms one form into some other form.

The transformation rule is embedded in the definition of a LISP function.
This function is invoked by the system (usually at compile-time) and given
as its argument the form containing the name of the function. The value
of the function is the new form which replaces the old form in whatever
context the old form appeared. Generally, the transformation involves
expanding the old form into a composed form of primitive function calls;
however, any arbitrary computation is possible. Macros are used to define

special forms in compiler-based LISP systems.

~214-

object 1list
A special system structure that contains all the literal atoms read by

the system. In most systems, the object list is called the OBLIST and is
manufactured by distributing the literal atoms into a series of sublists,
called buckets, by a computation (hashing) upon their Hollerith print

names. It permits fast atom recognition during reading.

ordinary variable

A synonym for bound variable.

parameters
An elementary atomic form that is either a constant or a variable.

p-list
A synonym for property list.

pointer
An internal machine address. It designates or points to a location of

interest.

predicate
In mathematics, a function, the value of which is true or false. In LISP,

a function, the value of which is T (true) or NIL (false). (See also

semi-predicate.)

print name
The original string of characters read by the system, representing the

internal name for a literal atom. This string of characters is printed

as the name of the literal atom by PRINT and other print functions.

prog expression

A synonym for program expression.

prog variable

A synonym for program variable.

program expression

An expression of the form
(PROG (variables) statements)

that allows evaluation of statements in serial fashion. (See program

feature.)

-215-

program feature

A feature in LISP that allows programs, containing statements, to be
executed in serial fashion. It also permits iteration and the use of

temporary variables.

program variable

A temporary variable that is declared in the list of variables following
the PROG in a program expression. Program variables are initially assigned
the value NIL; however, they may be assigned arbitrary values by the pseudo-

functions SET and SETQ. They are also bound and dummy variables.

property list

The list structure associated with a literal atom that may be used for
storing information to be associated with the literal atom. The property
list is a convenient information repository that permits rapid, dictionary-

like retrieval.

pseudo-function

An expression that is called as if it were a function, but for its effect

rather than for its value, e.g., READ, PRINT, DEFINE.

push-down list

The last-in-first-out (LIFO) memory area used by the system for saving
partial results of recursive functions. Generalized LIFO storage for users

is possible by using CONS (push) or CDR (pop) omn any list.

quoting
The technique used by LISP to suppress expression evaluation. Quoting
creates constant data within functions. The special form QUOTE is used

for quoting.

recursion
Recursion is a technique for defining a computation on a given datum. The
process usually produces a partial solution and reduces the datum to a
simpler form. The same process is then reapplied to this simpler form
of the datum. Again a partial solution and a simpler form are obtained.
The process continues until some terminal datum obtains, whereupon all
partial solutions are combined in some fashion to produce the final

solution. To compute recursively the factorial of N, for example, we have

-216-

N! = N * (N-1)!

where N is the partial solution and (N-1) is the simpler form upon which
we repeat the factorial computation. This process recurs until the
terminal condition N = 0 is reached, whereupon the partial results are

combined to form the final answer; e.g.,

N % (N-1) * (N-2) * ... 3 % 2 %1

scope

The domain in which a variable is defined, i.e., its binding can be

retrieved. The domain is expressed as the limits of a given expression.

semi-predicate

A function, the value of which is either NIL (false) or non-NIL (true).

The implementation of COND in most LISP systems tests only for NIL. There-
fore, any function that returns a value of NIL or non-NIL may be used in
the predicate position of a clause of a conditional expression. CDR and

SETQ are two examples of semi-predicates. (See also predicate.)

S—-expression

A symbolic expression of arbitrary length that is either atomic or repre-
sents a structure having two branches at each node. The simplest form of

an S-expression is an atomic symbol. A non-atomic S-expression is either:
1. A dotted pair of atoms, e.g.,

(A . B)

or

2. A dotted pair of S-—expressions, e.g.,

(A . B) .0

special cell

See value cell.

=217~

special form

A form given special treatment by LISP. It is a form having an
‘indefinite number of arguments and/or arguments that are unevaluated and

given to the special form to control evaluation.

special variable

Variables that have bindings in the value cell. They are used for
constants and/or free variables. Such variables have to be declared
(in some systems) before they are used with the pseudo-function SPECIAL.

UNSPECIAL removes such variables from special status.

statement labels

A literal atom appearing at the top level (statement level) of a program
expression is used as the name for the form following the label. This

name may be used in a GO statement to transfer control to the labeled form.

statements
A series of non-atomic forms that constitute the body in a program
expression. The statements are evaluated in series for their effect
on variables rather than their value. All LISP forms are legal statements.
Recursion is permitted. The GO and RETURN statements allow control over

the sequence of statement execution.

value cell
A place used to store the value of a special variable. The value cell is
associated with the literal atom name of the special variable so that the
value may be retrieved by all functions, independent of context. (See

zero-level bindings.)

zero—level bindings

A variable that has a value at the top level (the zero level) is bound at
the top level. It has a scope that is global, i.e., may be used freely

at any level since it is defined for all levels. Variables with zero level
bindings are established by CSET or CSETQ (and SET and SETQ for some

systems) and are usually system constants.

-218-

APPENDIX C
REFERENCES

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer's Manual (Cambridge, Massa-
chusetts: The MIT Press, 1962).

Timothy P. Hart and Thomas G. Evans, '"Notes on Implementing LISP for the
M-460 Computer.'" in Edmund C. Berkeley and Daniel G. Bobrow (eds.),

The Programming Language LISP: Its Operation and Applications, 2nd ed.
(Cambridge, Massachusetts: The MIT Press, 1966), p. 191,

Robert A. Saunders, '"The LISP System for the Q-32 Computer," in Edmund
C. Berkeley and Daniel G. Bobrow (eds.), The Programming Language LISP:
Its Operation and Applications, 2nd ed. (Cambridge, Massachusetts: The
MIT Press, 1966), p. 220.

L. Peter Deutsch and Edmund C. Berkeley, ""The LISP Implementation for the
PDP-1 Computer," in Edmund C. Berkeley and Daniel G. Bobrow (eds.), The
Programming Language LISP: Its Operation and Applications, 2nd ed.
(Cambridge, Massachusetts: The MIT Press, 1966), p. 326.

Daniel G. Bobrow, D. Lucille Darley, Daniel L. Murphy, Cynthia Solomon,
and Warren Teitelman, The BBN-LISP System (Cambridge, Massachusetts:
Bolt, Beranek and Newman, Inc., 1966), AFCRL-66-180.

L. P. Deutsch and B. W. Lampson, Reference Manual, 930 LISP (University
of California, Berkeley, 1965), Document No. 30.50.40.

Alonzo Church, The Calculi of Lambda-Conversion (Princeton: Princeton

University Press, 1941).

Richard S. Burington, Handboo of Mathematical Tables and Formulas
(Sandusky, Ohio: Handbook Publishers, Inc., 1953), p. 45.

Fisher Black, '"Styles of Programming in LISP," in Edmund C. Berkeley

and Daniel G. Bobrow (eds.), The Programming Language LISP: Its Operation
and Applications, 2nd ed. (Cambridge, Massachusetts: The MIT Press, 1966),
p. 96.

-219-

10.

11.

12.

13.

14.

15.

16.

Elaine Gord, '"Notes on the Debugging of LISP Programs,' in Edmund C.
Berkeley and Daniel G. Bobrow (eds.), The Programming Language LISP: Its
Operation and Applications, 2nd ed. (Cambridge, Massachusetts: The MIT
Press, 1966), p. 93.

Timothy P. Hart, '"MACRO Definitions for LISP" (Artificial Intelligence
Project, RLE and MIT Computation Center, Memo 57, 1963).

J. W. Backus, '"The Syntax and Semantics of the Proposed International
Algebraic Language of the Zurich ACM-GAMM Conference,' Proceedings,
Internat'l. Conf. Information Processing, UNESCO, Paris, June 1959,
pp. 125-132.

K. Samelson and F. L. Bauer, ''Sequential Formula Translation," Communi-
ecations of the Association for Computing Machinery, Vol. 3, 1960,
pp. 76-83.

B. W. Arden, G. A. Galler and R. M. Graham, "An Algorithm for Translating
Boolean Expressions,'" Journal of the Association for Computing Machinery,
Vol. 9, No. 2, April 1962, pp. 222-239.

R. G. Toby, R. J. Bobrow and S. N. Zilles, "Automatic Simplification in
FORMAC," Proceedings, 1965 Fall Joint Computer Conference, Vol. 27,
Part 1, November 1965, pp. 37-53.

D. Wooldridge, "An Algebraic Simplify Program in LISP," (Artificial
Intelligence Project, Stanford University, Memo 11, December 1963).

-220-

APPENDIX D
INDEX TO TECHNICAL TERMS

A-list (see association list)
APVAL, 117 (see also variables)
Ar guments:
arithmetic expressions, 82
composed forms, 50-55
CcoND, 70
debugging, 121-124
DEFINE, 66
EVALQUOTE, 62, 130-132
functional arguments, 137, 141
lambda expressions, 38-43
nature of variables, 114
QUOTE, 59
rapport with supervisor, 29
simple forms, 48
special forms, 58
Arithmetic:
arithmetic functions, 83-86
numbers, 25-27
number conversion, 76, 82
Association list, 115
Atomic symbol:
examples, 5
literal atom, 5
numbers:
floating point, 27
integers, 25-26
octals, 26
object list, 127

=221~

RATOM, 126
unusual spelling, 128

Atoms (see atomic symbol)

Backtrace, 123 (see also error:
diagnostic tools)

Backus Normal Form, 161

Binding variables, 114-115 (see
also variables)

Black, Fisher, 109

BNF, 161

Breakpoints, 124 (see also error:

diagnostic tools)

Character objects, 129-130
Character strings, 127-128

"Church, Alonzo, 38

Compile-time, 151 (see also macro)

Compiling, 68

Composition of forms (see form)

Composition of functions (see form)

Conditional clause, 70

Conditional expressions:
evaluation, 70-71
inside program expression, 108
syntax, 70, 72

Constants:

elementary form, 47

Constants (Cont.):
numbers, 25-27, 82
quoted data, 59-60

Context, 115-117 (see also

variables)

Debugging, 44, 121 (see also
error)
Document conventions:
meta variables, 2
pedagogic variables, 2
$S8-artifact, 128-129
Dotted pair:
decimal point resolution, 27
definition, 6
graphical representation, 7-10
Dot notation, 17-19 (see also
S-expression)
Dummy variable, 44-45 (see also

variables)

Error:
diagnostic tools, 123-124
high probability check list,
121-123

number syntax, 25-26

redefinition, 68

semantic class, 122

syntax class, 121

undefined evaluation:
arithmetic functions, 82

arithmetic predicates, 76-77

~222-

bad forms, 60
CAR, 31
CDR, 32

conditional expressions, 71, 108

unquoted data, 60
EVALQUOCTE:
definition, 130-132
mechanics of operation, 60-63
supervisor rapport, 29

Evaluation, 61 (see also form)

False, 74
Form:
composed form:

definition, 50
evaluation, 51, 54

nested lambda expressions, 53-54

syntax, 50, 53

contrast with function, 38-39

elementary form:
constants, 47
evaluation, 46-48
simple form, 47-48
syntax, 47
variables, 46

special form:
evaluation, 58
macro requirements, 155
nature of, 58

value, 46

Form vs. function, 38

Free variables, 109, 116-117 (see

also variables)

Function:

name, 66

necessary requirements, 39
Functional arguments, 137-141
Functional expression, 39-40, 53
Functionals, 137
Function definition, 39, 66

Function notation, 38

Garbage collector, 68, 156
Gord, Elaine, 121

Indicator, 150-152 (see also
property list)

Infix notation, 163

Interpreter, 68, 115, 118, 152

Label notation, 98
Labels (see statement labels)
Lambda conversion, 41-43
Lambda expression:
definition, 39-40
evaluation, 41
examples, 40-41
LABEL, 98
syntax, 40
Lambda notation, 38-45
Lambda variables, 40, 42 (see
also variables)

LIFO, 119

M

~223-

List:

circular, 145

construction:
APPEND, 97
CONS, 30
LIST, 58
NCONC, 147
RPLACA, 146
RPLACD, 146

elements, 13-14

empty list, 14

graphical representation, 19-22,

144-145

knotted, 145

modifying structures, 146-149

predicate functions, 77

push-down, 119

re-entrant, 145

threaded, 145

use of NIL, 14

List notation, 15-17 (see also

S-expression)

List structure, 13, 145 (see also list)

Literal atoms, 5 (see also atomic

symbol)

Logical connectives, 78-79

Macro:
macro definitions, 152, 155
macro expansion, 152
nature of, 151-152

Memory management, 68

GO, 108

NIL: labels, 107

definition of, 14 RETURN, 108

falsity, 74 syntax, 106

result of computation, 33 Program feature (see program
Number conversion, 76, 82 expression)
Numbers (see atomic symbol) Program variables, 106 (see also
Numeric atoms, 25-27 (see also variables)

atomic symbol) Property list, 117, 149 (see also list)

Propositional connective, 72, 80
Pseudo-function, 66

Object list, 127-128 Push-down list, 119

OBLIST, 127-128

On-line, 121, 134, 161

Q
Quoting:
Parameters, 38, 47 character strings, 128
Parentheses: symbolic constants, 59
dot notation, 6
lambda expressions, 43-44 R
P-list (see property list) Read line, 126
Pointer, 7, 34, 125-126, 145-147 Recursion:
Predicate, 74 examples, 96-98
Prefix notation, 38, 163 heuristics for use, 95
Print line, 126 label notation, 98
Print name, 125-130, 149 macro limitations, 155
Program expression: nature of method, 93
evaluation, 107-108 recursive function calls, 92
program variables, 106 terminal conditions, 95
programming styles, 109 variable bindings, 115
scope of definition, 108-109 Run time, 151 (see also macro)
statements:
conditional expressions, 108 S
flow of control, 107-108 Scale factors (see atomic symbol)

~224-

Scope:
of expression, 43-44
GO, 108
RETURN, 108
of variables, 116
Semantic errors, 122 (see also
error)
Semi -predicate:
application example, 164
definition, 74
S-expression:
building larger ones, 30-31
definition, 6
dot notation, 6-10
extracting sub-expressions,
31-33
graphical representation, 7-10,
19-22
list notation, 13-22
 Special cell, 117-119 (see also
variables)
Special forms (see form)
Statement, 106-109
Statement labels, 107
String, 127-128
String quoting, 122, 128
Sub-expression (see S-expression)
Supervisors, 29-30, 130-133 (see
also EVALQUOTE)
Symbolic expression (see S-
expression)
Syntax errors, 121 (see also

error)

T

U

v

-225-

Time-sharing, 121

Top-level:
bindings, 117
function calls, 42, 53
list element, 77
nature of, 132-133
restrictions, 132-133, 141

supervisor, 29-30, 60-63, 132-133

Trace, 124 (see also error:
diagnostic tools)
Trees (see S-expression)

True, 74

Unwind, 123 (see also error:

diagnostic tools)

Value cell, 117-119, 149 (see also

variables)
Variables:
APVAL, 117
binding values:
lambda conversion, 41, 117
global bindings, 118
on a-list, 115

zero-level bindings, 117-118; 130

bound variables, 114, 132
115-117

declarations, 119

context,

dummy variables:
definition, 44-45

dummy variables (Cont.):
lambda variables, 40
program variables, 106
elementary forms, 46-47
free variables, 109, 116-118,
142
initialized by PROG, 106
nature of, 114
ordinary variables, 118-119
scope, 116
setting values:
CSET, CSETQ, 118
SET, SETQ, 107
special cell, 117-119
value cell, 117-119, 149
special variables, 118-119

Zero-level bindings, 117-118, 130

-226-

FUNCTION DESCRIPTIONS

(Continued from front cover)

Function No. Arguments Type & Page Function No. Arguments Type & Page
*MAX 2 function, 159 RATOM 0 pseudo-function, 126
MEMBER 2 predicate, 77 READ 0 pseudo-function, 125
(example) , (98) READCH 0 pseudo-function, 127
MIN indefinite special form, 84 RECIP 1 function, 85
(macro), (159) REMAINDER 2 function, 84
*MIN 2 function, 159 REMPROP 2 function, 151
MINUS 1 function, 83 RETURN 1 pseudo-function, 108
MINUSP 1 predicate, 77 REVERSE 1 example REVERSAL,
NCONC 2 function, 147, 156 104, 112
NOT - 1 predicate, 78 RPLACA 2 function, 146
(example) , (71) RPLACD 2 function, 146
NULL 1 predicate, 77 SELECT indefinite special form, 72
NUMBERP 1 predicate, 76 SET ' 2 pseudo-function, 107
ONEP 1 predicate, 77 SETQ 2 pseudo-function, 107
R indefinite predicate, special SIN 1 example, 87
form, 78 SPECIAL 1 pseudo-function, 119
PLUS indefinite special form, 83 SQRT 1 function, 85
(macro) , (153) SUB1 1 function, 83
*PLUS 2 function, 153 SUBST 3 example REPLACE, 105
PRIN 1 pseudo-function, 125)] TEREAD 0 pseudo-function, 127
PRIN1 1 pseudo-function, 127} TERPRI 0 pseudo-function, 127
PRINT 1 pseudo-function, 125| TIMES indefinite special form, 83
PROG 2 special form, 106 (macro) , (159)
PROG2 2 pseudo-function, 109 | #*TIMES 2 function, 159
PROGN indefinite macro, 160 TRACE 1 pseudo-funcéion, 124
PROP 3 function, 151 UNION 2 example UNIONS, 103
PUT 3 function, 150 UNSPECIAL 1 pseudo-function, 119
QUOTE 1 special fqrm, 59 UNTRACE 1 pseudo-function, 124
QUOTIENT 2 function, 84 ZEROP 1 predicate, 76

DICKENSON PUBLISHING COMPANY, INC.

01 D 994

	Index - Function Descriptions
	Title
	Preface
	Acknowledgments
	Table of Contents
	1. Introduction
	2. Symbolic Expressions
	3. Symbolic Expressions in List Notation
	4. Numbers
	5. Elementary Functions
	6. Lambda Notation
	7. Elementary Forms
	8. Composition of Forms
	9. Special Forms
	10. DEFINE
	11. Conditional Expresions
	12. Predicate Functions
	13. Arithmetic Functions
	14. Recursive Functions
	15. The Program Feature
	16. Variables and Their Binding
	17. Debugging, Input-Output, and Supervisors
	18. Functional Arguments
	19. List Structures, Property Lists, and Macros
	20. A Complete LISP Program
	Appendix A. Exercise Answers
	Appendix B. Glossary
	Appendix C. References
	Appendix D. Index to Technical Terms
	Function Descriptions (Continued from front cover)

