
~o

~O

.JIo

..
o

A·1l59 8/63

TM-2337/101/00

1r~~~~~~~~
1~1~~~~~(ill1

(TM Series)

This document was produced by SOC in performance of contract---.:S:...::D=---...... 9~7L-_________ _

SYSTEM

LISP 1.5 Reference Manual for Q-32
. DEVELOPMENT

CORPORATION

S .. L. Kameny 2500 COLORADO AVE.

SANTA MONICA
9 August 1965

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not neces
sarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should
be obtained in advance from the System Development Corporation, or from authorized
agencies of the U.S. Government.

o

o

....

o

9 August 1965 1
(Page 2 blank)

LISP 1.5 Reference Manual for Q-32

ABSTRACT

This document is "a reference manual for the Q-32 LISP
system in operation under the Time-Sharing System
(TSS) on the AN/FSQ-32 computer. It describes the
working of the LISP system," and contains descriptions
of all currently available and installed functions,
except for input-output and library functions given
in TM-2337/l02/00.

This document conforms to the current numbering on
LISP"l.5 documents, and supersedes TM-2430/000/00,
which was a draft •

TM-2337/101/00

o

-'" ()
-'-.- .

o
•

9 August 1965 3
(Page 4 blank)

TM-2337/101/00

ACKNOWIEOOMENT

In the writing of this document, the author has mixed.
new material with descriptions adapted from the LISP 1.5
User's Manual and from the book The LISP Programming
Language: Its Operation and-Applications. He also wishes
to acknowledge contributions in subject matter and
clarification by Clark Weissman of SDC, Robert A. Saunders
and Dr. Paul Abrahams of Information International,
Incorporated, and Prof. Dan Bobrow of Massachusetts
Institute of Technology.

The Q-32 LISP system is based on a compiler written in
LISP and compiled by itself on an IBM 7090, then merged
into a machine coded section assembled in SCAMP on the
Q-32. The compiler was written by R. A. Saunders of
I.I.Io, based upon the Hart Compiler for the M-460
computer, with assistance from To P. Hart, Do Edwards and
M. Levin of Mol 0 To, and Prof. J 0 McCarthy and S e Russe 11
of Stanford University. Some system functions were
written by Co Weissman and the author.

...

()
'---- _/

•

...

o 9 August 1965 5
(Page 6 Blank)

TM-2337/10l/00

CONTENTS
Page

1. Introduction 7

2. Using the Time-Sharing System for LISP 8
2.1 General Procedure for Message Input 8
2.2 Specific Procedures for Using LISP 8

3· The Q-32 LISP System 13
3411 Reading and Printing 14
3.2 Types of Variables 16
303 Data Structure in Q-3? LISP 19
3.4 Eva lquote 29
305 Macro and the Macro Expander MDEF 29
3.6 LAP, Pushdown List, Closed Subroutines 32

4. Reserved Atoms in Q ... 32 LISP 43

n 4.1 Summary of Functions, Forms, Macros, 43

.. '- and Reserved Atoms
4.2 Cammon LISP Functions 54
403 Evalquote Functions 64
404 Q-32 General Purpose LISP Functions 66
4.5 Arithmetic Functions and Predicates 80
406 . Buffer Functions and Save 84

List of Figures

Figure 1 Storage Allocation in.LISP System 20
2 Use of Word Within Q-32 LISP 23
3 Examples of Q-32 LISP structures 25
4 Q-32 LISP Pushdown List 39

List of Tables

Table 1 Available Functions 50
2 Compiler Functions 51
3 Evalquote Functions 52
4 Character Objects 53

•

n -/

o

~O

o
i

9 August 1965 T TM-2337/ 101/00

I. INTRODUCTION

This manual is intended for those already familiar with the LISP programming
language 0 It contains a description of the internal mechanics of the Q-32
LISP system and supersedes any previous description of the Q-32 LISP system.
The reader is referred to Ref. 1* and to the LISP 1.5 Manual (Ref. 2) for
additional descriptions of LISP 1.5 language and its use. Input-output and
library functions of Q-32 LISP 1.5 Modo 2.5 are given in TM-2337/l02/00; for
Modo 206, they are described in TM-2337/Ill/00. '

The beginning LISP user will find the Q-32 LISP Primer (Ref. 3) useful.
Further infonnation on the Q 32 Time-Sharing System can be found in Ref 0 40

The Q~32 is a las complement binary computer with a 48=bit word length and
65,536 words of storage. Core speed is about 2 microseconds, and some instruc
tions overlap. It has an accumulator, an accumulator extension called the B
register, eight index registers, and various other electronic registers.
Peripheral equipment includes 16 tape arives (729 IV), about 700,000 words of
drum storage, a card" reader, card punch, and a line printer, 6 display consoles,
a RAND tablet, and 50' remote typewriter stationso A PDp ... l is used as a peri
pheral processor to service time-shared teletypes. When run under time-sharing,
the lowest 16,384 registers are used by the Executive~

The external language is compatible with LISP 105. Some features are not
implemented at present. Most programs that will run with 7090 LISP will run
on Q-32 LISP without change.

From the user~s point of view,: the Q ... 32 LISP system is seen through a version
of Evalquote" which reads a pair and executes ito As in 7090 LISP, the pair
is a function and a list of arguments. If the function is an atom carrying a
functional definition, that definition, in the form of compiled code, is
applied to the argumentso If it is a functional expression, the expression is
compiled and then executede

Because the Q~32 LISP system is compiler-oriented rather than interpreter
oriented, th~ user should expect:"

*

" <I Programs to run faster on the Q~32 than (uncompiled) on the 7090.

To have to pay more attention to variable declarations than in
an interpretive system, where free variable bindings are
a.vailable automa.tically~

• To have less thorough error-checking by the LISP system.
In particular, there is no check to see that the proper
number of arguments is supplied to functions.

The Q~32 LISP system in current use is Modo 205, and has been considerably
- changed from Modt 1.0 system described in Ref. 1.

9 August 1965 8 TM-2337/l01/OO

20 USING THE TIME-SHARING SYSTEM FOR LISP

In this section, the steps necessary to use the Q-32 LISP are discussed.
These steps include both the communications with the time-sharing Executive
and the communication with the LISP system itself.

2 01 GENERAL PROCEDURE FQR MESSAGE INPUT

Messages are sent to the Time-Sharing System in either of two modes:
Executive mode or object program mode. The Executive mode is used for com
municating messages to the time-sharing Executive, and the object program
mode is used for communicating messages to LISP. With a few exceptions, the
system stays in one mode until it is specifically instructed to shift to the
other. The two characters, the exclamation point (~) and the quotation mark
(If) are used as mode control characters. The exclamation point is used to
go into Executive mode, and the quote mark to go into object program mode.
Typing an exclamation point has two effects:. it sets the input mode to the
Executive mode, and, if it is not the first character of the line (mode
control characters excluded), then it· also causes the line to be ignored.
In the latter case, the system sends back a carriage :return and line feed.
The quotation mark also cancels a line, but sets the input mode to object
program mode. (If already in object program mode, the quotation mark simply
cancels the line.)

A message (in either mode) is terminated by a carriage return. Until the
carriage return is received, the message is not sent from the PDP-I to the
Q-32; thus, a message cancelled by a mode control character is never seen
by the Q-32o It is possible to cancel single characters as well as entire
lines by using the "rub out" key on Model 33 and 35 TTY's •. The effect of
this key is to cause the last character to be ignored. It can be used
several times in succession; for example, three rub outs in succession will
cause the last three characters to be deleted from the input message. How
everJ) the effect of a rub out cannot be seen by examining the typed text.

At present, LISP acknowledges a.need for input by'ringiilg the bell. It
is important to wait after typing a line before typing the next line 1'lhen
communicating with LISP.. (If a line has been cancelled with a quotation
mark, however, then the bell signal will not be given, since LISP never
sees the cancelled line.) Any typing on a new line before the bell will be
lost. If either $1 or $WHAT? is typed back after input, the system is in
Executive mode 0 Type It and repeat input.

202 SPECIFIC PROCEDURES FOR USING LISP

Initial LOGIN. If you are working at a location remote from SDC, your first
step in using Q-32 LISP is to dial into the Time-Sharing System. This
procedure varies, depending on the nature of the teletype hookup with the

()
- - /4.;

Q-32, and will not be described here. (See Part 1, Vol. 3 of the User's (-__ '/)
Guide.) Both remote users (when contact has been made) and local users then ~

o

o

9 August 1965 9

type in

LOGIN xxxxx yyyyy

where xxxxx is the programmer's number, and yyyyy is the job numbero

After LOGIN, the system will type back

$OK LOG ON n

where n is the teletype channel number.

LOAD Commando The next step is to request LISP to be loaded. The usual
request is

LOAD LISP

If there is sufficient space on the drum (approximately47K is required), the
system will type back

$LOAD n

where n is the channel number, and you can proceed to the next stepo
If it types back

$NO LOAD DRUMS FULL

then there is insufficient space on the drums, and you will have to repeat
the procedure later 0 You can find how much space is available on the drum
without loading, by typing at any time:

! DRUMS

If you wish to load a nonstandard private version of LISP, such as one on
which you have some of your own function definitions, then the proper load
command is

LOAD tttttnnnn

where tt.~tt is any unique name (6 alphanumeric characters) you choose, and
where nnnn is the number of the tape on which your version is stored. The
full description of the LOAD command i? given in Part 1, Volume 4, of the
User's Guideo .

Occasionally, LISP (or your private LISP version) will not be stored on the
Q-32 disc, but wi~l be available only on tape •. If the system typed back

$WAIT

after the load request, then the system is not on disc, and you will have to
wait for the operator to mount the correct tape. After the tape is mounted,
you will receive either the

$LOAD OK

9 August 1965 10 TM-2337/l01!00

or the
$NO LOAD DRUMS FULL

message 4 If you do not get a response to the load request within a few
minutes, repeat it. .

Combined LOO-IN and LOAD Cormnand. A new feature of the Executive allows the
LOOIN and LOAD commands to be combined. You may type

LOOIN XXXXX yyyyy ~tttt nnnn

where the four fields are as previously described. If you wish on~ to load
LISP, then

LOOIN xxxxx yyyyy LISP

is sufficient.

The response of the Executive will be (like that to the LOAD command above)

$LOAD n.

GO Command. After LISP has loaded successfully, you should type in the command

GO

Thi s command wi 11 cause LISP to sta.rt running and. wi 11 also set the input mode
to the object program mode (so that you should use the quotation mark when
you want to cancel a line). LISP will type back the date and time, Q-32 LISP
model number, and READY, and will then ring the bell •. Don't type in any input
until the bell rings.

LISP Input. After LISP .has acknowledged the GO command with the typeout and
the bell, you ca.n type in pairs of S-expressions for Evalquote to execute.
As in 7090 LISP, each pair is executed as soon as it ds read, and the result
is printed out. After the result is printed, the bell signals that LISP is
again ready for input.

The conventions regarding the :pairs for Evalquote are the same as those for
7090 LISP, with minor exceptions. The first element of the pair may be
either aX-expression or a function name. The set of available functions for
Q-32 LISP is not the same as those available for 7090 LISP, but the most
commonly used functions are available. Since Q-32 LISP is compiler-based, the
effect of DEFINE is somewhat different from that in 7090 LISP. Defining a
function via DEFINE causes the function to be compiled and the S-expression
representation to be thrown away.

(\
,)

~O

o

9 August 1965 11 TM-2337/10l/00

LISP Typing Conventionso The Q-32 LISP READ program is independent of line
boundaries so that the last character of the nth line appears adjacent to the
first character of the (n+l)th line. Consequently, a carriage return does
not terminate an atomic symbol, and, if you want to type a message that ends
with an atomic symbol, you must follow that symbol by a space. For instance,
if Evalquote is given a function of no arguments, the second element of the
Evalquote pair may be written either NIL or ()o If NIL is used, it must be
followed·by a space; if the carriage return is typed without a space, the
READ program will still look for a character to terminate the atomic symbol.
(However, typing a blank on the next line will worko)

After Evalquote executes a pair, it throws away the remainder of the last
line that it reads. Thus, if two complete Evalquote pairs are typed on the
same line, the second· one will be ignored. For the same reason, an excess of
right parentheses at the end of the second element of an Evalquote pair will
be ignored 0

If you are typing in a long expression to Evalquote and you wish to cancel
the entire expression, type the illegal percent character. The effect will
be ·to cause an error in the .READ function so that Evalquote will reject the
entire pair. This trick is useful when you discover an error in a previously
typed line and you want to begin the Evalquote pair over again.

The QUIT Commando After you have finished using LISP, you should terminate
operations by typing in

~ QUIT

This command will go to the Executive and will terminate your operation. It
will also disconnect your teletype from the Time-Sharing Systemo

Reloading 0 Quite frequently, you may wish to reload without having to QUIT,
LOOIN, and LOAD allover. This can be done by executing the LOAD command
whenever necessary. You needn't QUIT first or LOGIN again as these are done
automatically for you by the system.

SAVE Commando The time-sharing Executive now permits you to dump the current
state of your core onto disc via the SAVE commando The form is

! SAVE ttttt
where ttttt if present is the 6 alphanumeric character name for this file and
must be different from all the names currently on the disco If this name is
absent (blank), then the file will replace the one that you are currently
using on disc (i.e., the one used in the LOAD command). The Executive will
respond

$WAIT

while the dump is in progress, and then follow with

9 August 1965 12 TM-2337/10l/00

$SAVE OK

when completed. If it replies $SAVE NG (NO GOon) try another name.

Q-32 LISP has a similar SAVE feature, (see section 4.6) with the
dump on tape rather than disc. .

The RESCUE Feature. Certain LISP errors, such as illegal address references,
can cause LISP to be interrupted by the time-sharing Executive. The RESCUE
feature provides a mechanism whereby LISP can regain control and function
properly. When such an interrupt takes place, the Executive gives control
back to LISP in a specified location, and LISP will then call the unwind and
backtrace procedures. If either unwind or backtrace itself causes an inter
rupt, the recovery procedure is halted, and LISP goeS directly to the point
where it looks for a new Evalquote pair. When a system error occurs, LISP
willprl~ -

RESCUE n

where n is a code indicating the nature of the interrupt. This printout may
or may not be followed by a backtrace. Occasionally, a RESCUE printout may
result from an illegal input to a LISP system function for which there is no
diagnostic test; generally, the backtrace will make it clear that this is the
difficulty. After the RESCUE printout is complete and the bell has -rung, you
can continue with your next Evalquote pair as usual.

Restart Procedure. On occasion, LISP-may get itself into a state where the
only way to get back to Evalquote is to return to the Executive program. In
this case, you can try:

(a) Type

tSTOP

to stop LISP and get bac~ to the executive mode.

(b) Type

~$LIV/CR*

The system will then type back

!$LIV=n

where n is the location at which LISP stopped.

* Carriage return

()

()

o
•

9 August 1965

(c) Type

'40002'*

The system will acknowledge with

$MSG IN

(d) Type

/CR

The system should type back

13 TM··2337!101/OO

n - 40002' where n is the machine address for the symbolic

address $LIV~

If anything else comes back, repeat steps (b) through (d)~

(e) Type

tGO

LISP will now act as though it had just started up. If it does
does start properly, try typing a space followed by a carriage
return. This step is occasionally necessary when LISP~-is hung
up expecting input.

If LISP gets hung up in an output loop, it may be stopped by entering
~ Blank CR (if you can get it in). To get going again, use the restart
procedure above. Alternatively, you may press the "BREAK" key which induces
a RESCUE interrupto

If a LISP error is so bad that the procedure above does not work, then the
only way to recover is to LOAD again. The effect of repeating LOAD will be
to load a fresh copy of LISP. Errors requiring a fresh start can occur if
the "garbage collector" becomes injured or confused; it will generally be
evident when this is the case.

3. 'THE-Q-32 LISP SYSTEM

This section describes the structure and operation of the Q-32 LISP system.
Sect-ion 3.1 discusses reading and printing~ Section 3.3 describes the over
all structure of the LISP system in terms of the core map and data structures.
Section 3.4 describes the working of Evalquote. -Section 3.5 describes LISP
Macros and the macro expander. Finally, section 3.6 discusses in detail LAP,
the structure of the Pushdown List, and _closed subroutineso

The description of all other functions, macros and special forms is left to
section 4.

9 August 1965 14 TM-2337/101/00

Sections 3.1 and 3.2 are of interest to all users of LISP. Sections 3.5 and
3.6 are useful for anyone who tries to write Macros or LAP code. Sections 3.3
and 3.4 are of interest mainly to advanced LISP users who wish to understand
the system completely, modify the system or to make functions which manufacture
other functions.

3.1 READING AND PRINTING

Q-32 LISP read functions READ and READTAPE can be made to accept the following
character set from teletype or magnetic tape card image:

letters:

A through Z
* / $ =

Delimiters

Space , () •

Numerics

+ - ¢ through 9

Illegal Characters

: > # % \ ... Be 11] ; t ? [<

Ignored characters

Line Feed Carriage Return

Special treatment

t (prime)

Atomic symbol is a number or any string of letters and numerics starting with
a letter and terminated by a delimiter, or else an atom input in one of the
following manners:

1) The $$ artifact permits any arbitrary string of characters to be
inserted into LISP as an atomic symbol .•

$$@ (string of characters not containing @)@ (where @ is any character)
is used to insert any string of characters as an atomic symbol.

Example: $$/ofo»/ .inserts the atom ofo» into LISP

o

...

o

()

9 August 1965 15 TM-2337/l0l/00

2) Outside of a $$ artifact, the special character I (prime) followed by any
character except carriage return is converted to a character atom whose
representation is the address lQ4 plus the octal representation of the
character. Thus, IA (A corresponds to 2lQ) becomes address 1002lQ.
If ' (prime) is followed immediately by a carriage return, the carriage
return is ignored and the first character from the next line is used to
form the character atom. r (prime) is not a delimiter, and hence must be
set off on the left by a blank, comma, left or right parenthesis, dot, or
another character atom, or else all characters to the left of the r (prime)
wi 11 be lost.

Thus, It means character atom corresponding to U

'1 means character atom corresponding to 1, etc.

Any character at all may appear in the $$ string except the Carriage Return
and Line Feed characters, which are ignored.

A number is one of the following forms:

integer 1 12 +2E4 -35
octal integer '27Q 27Q3 -14Q -14Q5

floating point number 1.0 -¢.5 +1·75 224.

2.0 +357·75E-3

where E is the power-of-ten scaling of scientific notation for integers and
floating point mlmbers; and Q is the power-ofyeight scaling for octal numbers.
Octal and integer numbers may: have only', posi ti ve ·.scalings •

Note: A number must start with a numeric. It can contain at most one decimal
point~ It may contain the letter E.

All numbers are 'converted on input to,one of three internal representations:
integer, octal, or floating. On output, the numbers are then reconverted.

Floating number input and output conversions give 11 to 12 significant figures.
Floating point printout is 12 places of which the twelfth may be in error by t 4.

If the read program encounters an illegal character outside of a $$@ string,
then ERROR is called and the ,current program is unwound.

Tape Reading and Printing

Tape reading uses the first 72 columns and ignores the last 8 columns of the
card image to alloyT for sequencing.

9 August 1965 16 TM-2337/101/00

Printing using PR:r:NT or PRINTAPE use a "pretty-print" fonnatting logi.c "Thich:

1) prints one S-expression, supplying parentheses and dots as required,

2) prints numbers according to their internal coding:

3)

lOOOQ prints as lQ3

512 prints as 512

1.76 prints as 1.76¢¢¢¢¢¢¢¢¢ Some of these zeros

22.0 prints as 22.¢¢¢¢¢¢¢¢¢¢
may be suppressed

2234 .. 5 prints as 2.2345¢¢¢¢¢¢¢¢E3

If the expression will not fit on a 72 character .line, the line is
broken as follo'-1s:

- after the first RPAR at the lowest parenthesis depth at which
the line can. be broken and still fit;

- after the last atom "or symbol which will fit, if no RPAR is
found;

in the middle of an atom as a last resort if no other break point
can be found, e.g., an atom consisting of 73 characters.

If the line is broken, the next line starts with n spaces, where n is the
parenthesis depth, and the line-breaking algorithm is applied to the new line,
except that if an atom has to be broken, or if the parenthesis depth exceeds
70, no indentation is used in printing.

3 .2 TYPES OF VARIABLES

In Q-32 LISP, a literal atom can have one of two statuses, Special or Unspecial,
governed by a flag in bit 2 of the atom head (see section 3.3).

Local Variables: If an atom which is not Special is bound in a function by
PROGor LAMBDA, then the atom is regarded strictly as a local dummy variable.
Within the lexical scope of the PROG or LAMBDA the atom name is simply an
address on the pushdown list. If it is a LAMBDA variable it is bound initially
by the function call, and maybe reset within the function (viz. by SETQ). If
it is a PROG variable,it is set to NIL at the entrance to the PROG, and may be
reset by functions inside the PROG, but it is invisible outside of the scope '
of the PROO in which it is bound. The lexical scope of a function (i.e., the
variables bound by IAMBDA) includes any PROG found within the LAMBDA but
excludes any lAMBDA expression wi thin functional arguments in the function. A
local dummy variable is meaningful only at compile time.

()

Special Variables: An atom which is in Special status always retains its atomic
identity_ If used as a free variable, it has the lowest level binding applic- n
able at the time of use. If a special atom is bound by lAMBDA, the following
results occur:

... o

~O

...

o

9 August 1965 17 TM-a337/101/00,

1) At the time of entry into the function, the old value of the variable
is saved on the PDL.

2) The new value of the variable is stored-,in the special cell of the atom
replacing the old.

3) All changes to the value of the variable are made in the special cell.

4) At exit from the function, the old value of the special variable is
recovered from the PDL and restored to the special cell of the atom.

If the special atom is bound by PROG, the same steps occur, except that the
new value of the variable at entrance to the PROG is, as usual, NIL6

From the above it can be seen that a special variable, when used as a free
variable, always shovTs its most recent binding. (The atoms of 7090 LISP are
thus more similar to the Special atoms of Q-32 LISP than they are to Unspecial
atoms of Q-32 LISP.)

Setting of Free Variables·-Zero-Level Bindings: An atom is considered to have
a zero-level binding if it can be used completely free (i.e., not bound by
IAMBDA or PROO), and acts like a constant. In Q-32 LISP J there is no APVAL
mechanism, and the zero-level binding is done directly in the atom head. The
only exceptions are the atoms T and F which are treated as special cases by
the compiler and cannot be bound by IAMBDA or PROO. (T always evaluates to
quote T and F always evaluates to quote NIL.) Numbers, character atoms, and
NIL cannot be bound •

Zero level bindings of atoms and the current binding of Special atoms in Q-32
LISP are stored in the CAR of the atom head. For unbound atoms, the CAR of
the atom head points to NIL (=¢). For atoms which have a functional binding,
the CAR points to the first cell of the compiled code for the function. All
other special bindings are made indirectly through a special cell pointed at
by the CAR of the atom head (see section 3.3 for examples).

The functions SETQ, CSETQ and CSET may all be used to change zero-leve 1 bind
ings of free variables, but SETQ cannot be used to establish a zero-level
binding and will cause serious error~ if applied to an atom which is either
unbound or has a functional binding.

Really, CSETQ and SETQ-are identical except:

1. CSETQ makes variables Special
2. SETQ returns value of 2nd Arg .. , CSETQ 1st Arg ..

If a variable is used completely free, i.e., is bound only at zero level, the
action of CSETQ and SETQ are identical, except that CSETQ changes the status of
the variable to Special at run-time and SETQ does not. Also, SETQ returns 2nd
Arg, CSETQ 1st Arg., as value. For variables already in Special status, CSETQ
and SETQ produce identical results.*

* For Special variable X, (CSETQ X Y) is equivalent to (RPLACA (QUOTE X) (LIST Y),
vlhile (SETQ X Y) is equivalent to (RPIACA (CAR (QUOTE X» Y) 0 The second form
produces undesirable effects if(CAR (QUOTE X» is not a true list pointero

9 August 1965 18 TM- 2337/l0l/00

Free Use of Unspecial Variables: Use of Unspecial variables as free variables
causes the compiler to give a message of the form-(variable NOT DECLARED) but
does not prevent correct compilation, since the compiler handles the variable
as if it were Special. However, if at run time the unbound variable has no
Special cell and the function tries to set the variable, a serious error will
be induced.

Functional Argument: Atoms bound by IAMBDA may be used as functional var
iables in Q-32 LISP with no difficulty. It is not necessary to declare the
functional variables Special, since the compiler recognizes them by context.

In calling a function which requires a functional argume~t, FUNCTION must
always be used. _QUOTE will not work, since the calling function requires the
special binding of a functional argt1Illent, not the name of a function, as
described below.

FUNCTION can be used with a simple (atomic) function name or with a LAMBDA
or !ABEL expression. In the atom case, FUNCTION causes the special binding
of the atom (the CAR of the atom head) to be passed to the calling function.
Thus (FUNCTION FN) acts like FN, not like (QUOTE FN). (A simple function
name can be used without FUNCTION. This will cause the compiler to print out
(FUNCTION NOT DECIARED) but it will work.) In the case of a-IAMBDA or IABEL
expreSSion, FUNCTION causes the functional argument to be compiled at compile
time into a subdidiary function and passes the pointer for the subsidiary
function to the calling function, so that the LAMBDA or LABEL expression case
is reduced to the simple function case.

Examples:

1) Special variables required: X and Y must be declared Special in
order to make the definition of SUBSTl work. Note also use of
FUNCTION:

SPECIAL «X Y»
DEFINE « (SUBSTl (LAMBDA (X Y Z)

(MAPCAR Z (FUNCTION (IAMBDA (J)

(COND «EQUAL Y J) X) (T J») ») »»
UNSPECIAL « X Y»

2) Zero level binding of free variable.

CSET (PI 3014159)
(IAMBDA (X) (TIMES X PI» (2)

result 6.28318 PI is Special

(~
\ /

-~
()
_/'"

"

(j

--.

o

D

"

o

9 August 1965 19

3) Restoring of higher level bindings, assume PI set as above

(LAMBDA (PI) (CSET PI 5» (B)

TM-2337/l0l/00

result = 8 B is set to 8 and PI is still 3.14159. Once B
has been bound, SETQ works like CSETQ.

(LAMBDA (PI) (CSET PI B» (PI)

result = PI. This somewhat confusing example is intended to show
that an atom cannot be set at zero level if it is bound by LAMBDA
or PROG. In operation of this function, the atom PI is first bound
to quote PI, then to 8, the value of B, but at the end is restored
to its original value of 3.14159.

(LAMBDA (X) (SETQ PI X» (¢)

result = ¢ This time PI is changed to a new value ¢.

4) Another example of FUNCTION

(LAMBDA (X) (MAPCAR X (FUNCTION SUB 1) » « ¢ 1 2 3»

result = (-1 ¢ 1 2)

DATA.·· STRUCTURE ~ IN-, Q~32 LISP

Storage Allocation: The Q-32 LISP system occupies octal locations 4¢¢¢¢Q to
l72777Q in core and has a total length of 46592 (decimal) cells. As shown
in Fig. 1, the space is divided into six areas:

Binary Program Space. Binary Program Space starts at 4¢¢¢¢Q
and may run up to 74776Q. The reserved atom TBPS (mnemonic
for Top of Binary Prograni,Space) points to cell 74777Q. The
reserved atom BPORG pOints-to the next available cell in
Binary Program Space, and ~he reserved atom *BPORG is used
to back up in case of error. DEFINE, rAP and MACRO compile
code for all functions or macros into Binary Program Space.

Scratch Program Space. Scratch Program Space starts at 75¢¢¢Q
and may run up to 75777Q. The cell 76¢¢¢Q, which is the origin
of the Pushdown List, is protected against being overwritten
from Scratch.

f?cratch Prqsram Spa~~ is used by Evalquote and the functions
EVALQT and *EVALQT to compile code for interpreting all
functions, Macros and special forms which cannot be operated
directly.

9 August 1965

Octal Address

4¢¢¢

74777

75¢¢¢

75777

76¢¢¢

1¢7777
ll¢¢¢¢

Binary Program
Space

Protected Cell

Scratch Program
Space

Pushdown List

~ ~ - - - - ~ ~ ~ ~ ~

Atom Heads and
Quote Cells

Full Word Space
1- - - - ... - ... - ... - -
fa - - - - - CD - QO

Free Storage

1725r"(7

'----

l.--
~

c;
~

'--
I----
...." -
t-. -

172575

172576
172577
1726¢¢

172600 ' l..,..o -
OBLIST buckets

172775

20 TM- 2337/l0l/00

Remarks

IIp ORG is at 6¢¢52 in LISP 1.5 M2.5

'!'B PS points here

*S
*S

'1"),. --'"
Se

CRACH",points here
CRACHX points to next available cell

shdown list origin-protected from
ratch programs

J:n dex Register 1 points to start of
xtavailable block of PDL. ne

'Dr otected from Index Register 1

'()B LIST atom head

-OB

-~o

LIST Special Cell

inter to OBLIST array

Figo 1 storage Allocation,in LISP System
(j

()

.-

o

9 August 1965 21 TM-2337/l01/00

Pushdown Listo The Pushdown List (PDL) starts at location 76¢¢¢Q
and may run up to location 1¢1777Qo The pushdown block for a
function uses as many cells as the function requireso Index
register 1 always points to the start of a pushdown block and is
saved and changed by a function to protect its block before it
calls another function, Since the called function could in
principle use up to 32 arguments or l¢¢Q cells, Index Register 1
is protected from exceeding 1¢17¢¢Qo

The Pushdown List is used to store all arguments, program variables,
temporary pointers, return addresses» and also the previous
values of special variables which are used as program variables
or function variableso The structure of the PDL is described in
section 3060

Atom Heads and Quote Cells" The region of core from 1¢2¢¢'¢ Q-up
to l¢7777Q is reserved for quote cells and for atom heads for
(unique) literal atoms. OBLIST is at 1¢2¢¢¢.Qo A quote cell is
a single cell containing only a CAR pointer to an atom or to a
piece of list structure. It is assigned uniquely by LAP (e.g.,
two different references to (QUOTE (A B C)) point to the same
quote cell), is never collected by the garbage collector, and
serves to protect the list structure, atom or number to which
it points.. All references from binary program space to LISP
data, ioeo, numerical, literal or list structure constants,
are made via quote cellso

An atom head for a literal atom contains an atom head flag (bit
number 1 = 1) and a CDR pointer to a pointer to its print name
and property listo The CAR is either NIL or a special binding.
Bit number 2 of the atom head indicates an atom in Special
status (see section 302 for meaning of Special status, and a
later paragraph in this section for further description of Word
Use)" Atom heads in Q-32 LISP are not protected by the OBLIST,
but may be collected by the garbage collector under certain
circumstances 0 If the free cells in the atom head or quote
cell area are exhausted, the garbage collector reclaims all
atom heads which are not in Special status, are not pointed to,
have no binding and have no property listo (The print name is
not considered a property in Q-32 LISP.)

Full Word Space and Free Storage Space. Full Word Space and
Free storage occupy the region from 11¢¢¢¢Q to 172775Q jointly.
Full Word Space starts at 11¢¢¢¢Q and is filled downward in
Figure 1 (ieeo, toward higher numbered registers).. It is used
to store arrays.. These include print name arrays for literal
atoms and arrays for storing LISP numbers.. Free Storage starts
at 172577 and is built upwards, except-that the O~LISTbuckets

9 August 1965 22 TM-2337/101/00

occupy the area from 1726¢¢Q to 172775Q. CONS adds one cell
to the top of Free Storage 0 When Free Storage and Full Word
Space meet, the garbage collector is called to compact Full Word
Space upwards am Free Storage downwards. Free Storage is used
only for storage of list structures.

Word Use. The Q ... 32 data word consists of 48 bits, divided up
into four parts, the prefix, decrement, tag and address, which
occupy bits ¢-5, 6-23, 24-29., 3¢-47 respectively. Core loca
tions in binary program space and in scratch space hold instruc
tions and data cells corresponding to compiled programs. Cells
on the Pushdown list in general hold address pointers as described
in section 306~

The use of words within the Atom Head and Quote Cell Area, Free
Storage and Full Word Space is shown in Fig. 2. Wi thin Atom Head
and Quote Cell Space and Free Storage spaces bit ¢ of the prefix
is used by the garbage collector, bit 1 is always an atom flag
(the function ATCM te sts thi s bit only) , bit 4 is used as a flag
indicating an atom in Special status, and the remainder of the
prefix is unused. The tag portion of the word is unused except
for number pointers (which are like atom heads for numbers but
are in Free Storage, are non-uniq:ue.? and are never Special).
For number pointers, the tag is 71 for integers, 72 for floating
point numbers and 75 for octal numbers.

A Quote Cell has only a single address pointer in its CAR (the
CDR is always NIL).

Full Word Space is used for storage of arrays. Each array has an
array head cell followed by a contiguc)us block of core containing
the array ..

Within the array head, bit ¢ is used by the garbage collector,
bits 1, 2 and 3 are unused. Bit 4 is 1 if the array contains
non-list type data (at present the only allowed type). Bit 5
is zero for numerical arrays, I for BCD data. The tag is used
for BCD arrays to indicate the number of characters in the last
word (left justified).

The decrement is used to indicate the number of words in the array,
exclusive of the array head. For LISP numbers this is always 1,
while for Pname arrays the length is essentially unlimited. The
CAR of an array head always contains a back pointer to the cell
in Free Storage which points to the array.

()

t:j
(JQ

(\)

c::::
01
(J)

o
I-Q

~
"i
PI
~
1-1.

s:
1-1.
:::i

l'
w
(\)

~
~

c) o
Word Prefix Decrement Address Core-

LISP Word Part wca-
Bit 012345 6 through 23 24co26 27-29 30 tions

Atom Head GIXXSX Pointer to Pname ¢ ¢ ¢ if unbound, 1¢2¢¢¢Q
A pointer or pointer to through

Special Binding 1¢7777Q

Quote Cell G¢¢¢¢¢
--~

¢ ¢ Pointer to Atom
A Head or List

Structure

Pname or Literal G ¢ ¢ ¢-¢ ¢ CDR-Pointer to ¢ ¢ Pointer to Free
Array Pointer A Atom Head, Quote ~ teral Array Storage

Cell, Free Stor- above
age, or NIL (=¢) Full

Gl¢¢¢¢ ¢
-- Word Number pointer 7 N Pointer to Space and

A Number Array below
List Structure G¢¢¢¢¢ CDR-pointer to ¢ ¢ CAR-pointe~ to 172776Q
pointer ,- A Atom Head, Quote Atom Head,

Ce 11, Free Stor- Quote Cell, Free
age, or NIL (=¢) Storage or NIL

(=¢)

Numerical Array G¢¢¢l¢ (one'word array) 1 ¢ ¢ Pointer back to Full
Head L Number Pointer Word

Numeric Array cell N u mer ic a 1 val u e Space
11¢¢¢¢Q

Pname or Literal G f/J f/J ft' 1 1 Number of array ¢ B Pointer back to to above
Array L words literal array Free

pointer Word
Pname array cell Pname Hollerith left justified filled with octal 77 i s Space

~

LEGEND: G c> Bit normally zero, used by
garbage collector

S ~ ¢ if not special status; 1 if
special status

L - ¢ for pointer arrays (not imple
mented);l for non~pointer arrays

A .,. 1 indicates atomj ¢ if not atom

N - 1 for integer; 2 for floating point;
5 for octal

B ~ Number of characters (1~8) in last
word of Pname array

X - Unused (¢)

1

I

!

I

()

\0

l
s:!
01
cr

"D
~
V1

(\)
w

~
I

(\)
W
UJ

~
b
~
o
o

9 August 1965 24 TM-2337/l01/00

Atom and' J:j.st Structures. Figo 3 shows five examples of atom and list
structures in Q-32 LISP.

In Example 1, the atom DIFFERENCE, the name of a simple function, is shown.
Its atom head in the Atom Head and Quote Cell area has an atom flag but not
a Special flag. Hence the prefix is octal 200 The CAR of the atom head
points into BPS to the start of code for DIFFERENCE. The CDR prints through
a pointer cell in Free Storage to a two-word-plus-array-head Pname array in
Full Word Space. The array head has an ¢3 Prefix to indicate a non-list type
literal array. The 2 in the CDR of the array head shows a 2 word array, and
the ¢2 tag shows that the last word contains 2 left~justified BCD characters.
The CAR of the array head points back to the pointer cell in Free Storage.
During garbage collection, the Pname array and the Free storage pointer all
may be moved, but the Atom Head will remain fixed.

Example 2 shows the result of setting the atom LARR to the zero level binding
$$/~/ 0 The atom ~ is generated Unspecial and unboun~, and is pointed to
indirectly from the CAR of the atom head for IARR. IARR is in Special status.

Example 3 shows a LISP number, the integer l~l (decimal). Its atom head,
which ,is non-unique, is a, cell in Free Storage which has the prefix 2¢ to'
i':ri.dicate an atom, and a tag of 71 indicating a decimal integer. The CAR of
the Free storage cell points to an array of one cell whose array head haS a
¢2 Prefix to indicate a numerical arraYJ a CDR of 1 to indicate one data cell,
and a CAR pointer back to Free Storage.

Example 4 shows an atom with a property list, in this case the Macro PLUS,
The CAR of the atom head points to location ¢ designating no zero level binding.
The CDR points to a list of three elements whose CARs point to the Pname for
PLUS, to MACRO, and to the start of the code for expanding PLUS expressions.

Example 5 shows a quoted list of three elements. Its Quote Cell in Atom Head
and Quote Cell area is zero except for its CAR which points to the list in
Free Storage Areao The list in Free Storage is made of pointers to atoms A,
Band C respectively 0 The quote cell can never be collected by the garbage
collector. The list in Free Storage is protected from collection by being
pointed at by the quote cell, and atoms A, Band C are protected by the quoted
list in Free Storage.

Garbage Collector. The garbage collector in Q-32 LISP is designed to compact
and collect lists and arrays, and to.collect those Gens:Yllls and other atoms that
are not being used (i.e., not bound at any level, not pointed to, and having
no property list). The object list is used mainly as a dictionary for atoms,
and if atom cell space is short, the OBLIST is not used to protect atoms.
Quote cells will protect atoms,lists and arrays, and LAP sees that quote cells
are ne~er duplicated, by searching through all existing quote ce~ls, using the
EQUALN test, before establishing a new quote cello

o·

t-:tj
r-:.

(JQ

LA.>

t?=j
x
~
I'd
f-I
(!)

C/l

o
~

c?
LA.>
(\)

~
CJ)
'"tI

~
~
(')
c+
s::
~
C/l

o
DIFFERENCE

, -=-:oJ, :oJ -; i CAR. ~ointer to start of code for DIFFERENCE

(Not Special status
although it has a
fcn binding)

Atom Head Area Free Storage

Example 1. Function name - DIFFERENCE

Atom Head Area Free· Storage

Example 20 CSET (IARR $$) LARR is bound and Special
+.-.. ~e; unbound and not Special

Full Word Space

o

\0

i
m
c+

{O
0'\
\.J1

ro
\.J1

~
ro
w w
-.:J
...........

~
...........
o o

t:rj
1-10

OQ .
lA>

J
hi'
O'l

o
~

l'
lA>
I'\)

~
~
~
§
S-
Ii
CD
;-..

n o
~
PA .

'--"

123

Pre":

Pointer from Quote
1 = integer , Cell or list structure I
Free storage

The LISP Number 101 (integer) Example 3 .

Atom Head Area Free Storage

Full Word Space

Pointer to BPS code for
expanding PLUS expressions

Full Word Space

in Standard LISP notion, this is equivalent to

Example 4. An atom with a property list-the Macro PLUS

',.. .. -..... j
~

t.

i~
" / " . ~

\0

i
O'l
c+

~
0'\
\J1

ro
0'\

~
I
ro
VJ

~
b
<
8

:)
''-...../

J:J
~.

oq
•
w

i
~
m
o
H.l

l'

o

w
I\)

~
~
~ a
n
[
~
m -C')

~
PI ..
-..-;

o

CDR CAR

o Atom head for B

o Atom head for C

Atom head or Quote Cell
Area

Free Storage Area

in standard LISP notation, this is shown as

IZI ~ A ... 1 B ".J-C .uL../I

Example 5. A quoted list

o

'" ,
m
c+

~
0\
\J1

~

~ ,
I\)
w w
~
b
~
.0

9 August 1965 28 TM-2337/l0l / 00

Atoms are always preserved if they are in Special status, have properties, or
if they possess Special bindings. They are also preserved if they are pointed
to from a protected area. Pointers in Binary Program space go only to quote
cells or to atom heads of atoms with Special bindings. Hence, Binary Program
space is not used for marking.

The OBLIST. The OBLIST is a pointer to a series of 125 buckets from each of
which h~ a list of pointers to literal atoms. The bucket from which an
atom hangs is deter.mined by a simple hash coding scheme based upon the first
word of the print name. The OBLIST is used by the read programs as a rapid
look-up table for atoms. Whenever atoms are collected by the garbage collec
tor, the OBLIST is discarded and the remaining literal atom print names are
bucket sorted again and restrung to .create a new OBLIST.

Garbage Collection. Garbage collection is done in a five phase process:

1. All list structure is marked, starting from the quote cells,
the object list or selected atom heads and the pushdown list.
Full words are marked with a bit in the array head, so a bit
table is not required.

2. Full word space is compacted downward. Two pointers start
at the beginning of full word space. The first pointer is
advanced over all full words, and those marked are copied
into the location indicated by the second pointer, which
is advanced for each array copied. The pointer in the array
head is used to update the list pointers to relocated arrays.

3. Free storage is compacted upward by a scheme attributed to
D. Edwards. Two pointers are set, one to the top of free
storage and one to the bottom. The top pointer scans words,
advancing downward, looking for one not marked. When one is
found, the bottom pointer scans words, advancing upward,
looking for a marked word. When one is found, it is moved
into the location identified by the other pointer. A pointer
is left at the location the word was moved from, pointing to
where it was moved to. The top pointer is then again advanced
as before. The process ter.minates when the two pointers meet.

4. List references to the vacated free storage are fixed up by
looking at CAR and CDR of every word on the pushdown list?
on the OBLIST, and in the compacted free storage. Any pointers
to the vacated area are replaced with pointers to the relocated
words, using the pointers left there in step 3.

()

()
, ,'.

o

o

o

,9 August 1965 29 TM-2337/l0l/00

50 The OBLIST is re-created if it was not used for marking
atoms by performing a bucket sort on the print names of the
remaining literal atoms.

304 EVALQUarE

Evalquote used in the Q-32 LISP works as follows: It takes two arguments,
the first being a function name, the name of a Macro or special form, and the
second being a list of arguments to be regarded as quoted arguments for the
function. It is possible, of course, to have a special form beginning with
IAMBDA or IABEL or PROG or to have (with proper caution being observed) an
expression which, when eValuated, will produce a function descriptor 0 If
Evalquote finds that the first argument is an atom and is a bona fide function,
it passes to the ultimate evaluator function *EVQ two arguments, the first of
which is a pointer to the machine code for the function. A second argument
is the list of arguments originally 'given to Evalquote.

In all other cases, namely where the, first argument for Evalquote is a Macro
or special form or something which is not an atom, a LAMBDA expression is
concocted and fed to the compiler under the name *FUNC 0 *FUNC is compiled
into a, scratch area which i,s reused every time, Eyalquote has to compi Ie 0

Finally" Evalquote 'calls *EVQ with the arguments CAAR ·of'·*FUNC -and 'either the
original argument list that was given to Evalquote or, if necessary, an
argument list to which has beeri appended a list of all quoted variables which
occurred within the first argument that was given to Evalquote 0 The function
descriptor is modified to accept these arguments as values for additional
variables. These are used instead of 'quote cells to prevent irreparable loss
of quote cell space~ (Once a quote cellis'created it can never be collected.)
Once *FUNC has been produced,the original function descriptor can be used
again by giving Evalquote a first argument *FUNC, until *FUNC is recompiled
by the next non=atom or ,non-fUnction encountered by Evalquote. EValquote is
not a runction and so is not callable, within the syste~o However; the system
includes the callable function EVALQT, which is a function of the same two
arpents that Evalquote,takes at the top level. When EVALQT is called,the
same thing happens as when Evalquote itself is called' at tlie top level except
that if compilation has to occur, GENSYM's are used to name 'all compiled "
functions. Upon return from EVALQT, these GENSYM's are unbound so that they
can be garbage=collected.

305 MACRO AND THE MACRO EXPANDER MDEF

Q-32 LISP contains a provision for defining Macros using the function MACRO
and a Macro expander, MDEF, for expanding Macros before a, function is com
piled. The general flow through the system, and a typical example, is shown
in the following example:

9 August 1965

Stage

S-expression

30

Status

(PlliS3 (LAMBDA (A B C)

input to DEFINE (PlliSCA B C)))

I Processed by Macr6' + expander MDEF

S-expression

input to Compiler

Compiler and
lAP

(Pllis3 (LAMBDA (A B C)

(*PLUS A

(*PLUS B C))))

Binary Code for PLUS3

TM_2337/101/00

Remarks

PLUS is a Macro

*PLUS is a function

of 2 arguments

A Macro is a function of one argument which is applied to an S-expression
before compilation and without evaluation of the S-expression. The argument
of the Macro is the entire form containing the Macro, i.e., the S-expression
whose CAR is the name of the Macro. (In the above example, the Macro PlliS
is applied to "the argument (PLUS A B C) .) ,

In order to define a Macro in Q-32 LISP, one writes the expression for. a
function of one argument and gives it to the function MACRO rather than
DEFINE.

MACRO causes the definition to be compiled into binary code, just as DEFINE
would for a function. After the compilation is completed, MACRO then attaches
the pointer to the' binary code on the property list of the name of the Macro
under the property MACRO. (For a function, the pointer would be placed in
the CAR of the function name.) The property MACRO is used by the Macro
expander MDEF to obtain the code for expanding a Macro.

Examples:

1. A simple Macro (not in standard Q-32 LISP) is FIAMBDA, defined as follows:

MACRO « (FIAMBDA (lAMBDA (L)

(LIST (QUOTE FUNCTION)

(CONS (QUOTE LAMBDA) (CDR L)))))))

which converts any S-expression of the form

(FLAMEDA (Args) expression)

o

~o·

o

9 August 1965 31

into the form

(FUNCTION (LAMBDA (args) expression»

20 The Macro definition of IF is the following:

MACRO « (IF (IAMBDA (L)

(CONS (QUOTE COND) (LIST (CADR L) (CADDR L»

(COND (QUOTE T) (CADDDR L»»»»

which converts an expression of the form

(IF p q r)

into the form

(COND (p q) (T r»

3. The Macro PLUS is defined as follows:

MACRO « (PLUS (IAMBDA (L) (*EXPAND L(QUOTE *PLUS»»»

TM·- 2'337/101/00

where *PLUS is a function which adds its two arguments, and the
function *EXPAND is defined in the system by the expression:

DEFINE CC (*EXPAND (IAMBDA (L OP) (COND «NULL (CDDR L» (CADR L»

(T (LIST OP (CADR :r;)- (CONS (CAR L) (CDDR L»»»»)

If the expression (PLUS 2 3 4 5) is encountered, MDEF will change it to

(*PLUS 2 (PLUS 3 4 5»
and MDEF will then be applied recursively to this expression until
the expression is expanded to the form

(*PLUS 2 (*PLUS 3 (*PLUS 4 5»)

4. Macros can also be used to form functions that quote their arguments as
well as functions of an indefinite number of arguments.

For example, a Macro that would quote all of the list containing it
could be defined by

MACRO· (((QUOTEF (LAMBDA (L) (COND « NULL (CDDR L»

(CONS (QUOTE QUOTE) (CDR L»)

(T (LIST (QUOTE QUOTE) (CDR L»»»»

Then (QUOTEF ABC D) would yield (QUOTE (A BCD» whi Ie (QUarEF A)
would yield (QUOTE A)

9 August 1965 32 TM-2337!lOl!OO

One will note that any function name 'that is to appear in the output macro
expansion must be quoted inside of the Macro definition. Macros and functions
can be freely mixed inside LISP expressions. However, since Macro expansion
occurs at compile time, a Macro mustal~ys be defined before its name is
used, and changing a Macro definition has no effect on previously defined
functions or on the other ~acros. (For functions, on the other hand, the
definition existing at call time is the one that counts.)

3.6 LAP,. PUSHDOWN ·LIST~ CLOSED:'SUBROUTINES

LAP:
LAP is a two-pass assembler.. It is used by the LISP compiler, but it can
also be used for defining functions in machine language, and for making
patches. rAP is an entirely internal assemb,ler. Its input is in the form
of an S-expression that remains in core memory during the entire assembly.
No input or output occurs. It assemoles directly into memory during the
second pass. rAP can be used just like any other LISP function; however,
since the effect of LAP is to compile, code or place a binary patch into core,
and the value of LAP is not usually of interest to the user, LAP is usually
operated at the highest level for the' effect it produces.

Format:
LAP is a function with two arguments. The first argument is the listing, the
second argument is the initial symbol table in the form of a list of dotted
pairs of the form (symbol • value). The value of' rAP is the final symbol
,table. '

The first item of the listing is al~ys the origin. All remaining items of
the listing are either location symbols if they are" atomic symbols other than

- NIL, or instructions if they are composite S-expressions.

Origin:
The origin informs the assembler where the assembly is to start and whether
it is to be made available as a LISP function. The origin must have one of
the following formats:

• If the origin is an octal or decimal number, then the
assembly starts at that location.

If the origin is an atomic-symbol other than NIL, then
this symbol must have a :zero-level'binding to a number
that specifies the starting location.

('\
\)

o 9 August 1965

Symbols:

33 TM-2337/l0l!OO

If the origin is NIL, then the assembly will start in .the
first available location in the binary program space 0 If
the assembly is successfully completed, then the cell
specifying the first unused location in binary program
space is updated. If error diagnostics are given during
compilation, the binary program counter (BPORG) will not
be moved.

If the origin is of the form (NAME SUBR n), where n is the
number of arguments that the subroutine expects, then
assembly is in binary program space, as in the case above.
If the assembly is successful, the CAR of the name will be
made· to point to the origin of the program. If the assembly
is not successful (if any error diagnostic has occurred),
then the atom name will point to wherever it was pointing
before and·BPORG will be left pointing to the start of the
program that was compiled, so that the next compilation will
clobber it.

1~} Atomic symbols appearing on the listing (except NIL or the first item on the
~ listing) are treated as location symbols. The appearance of the symbol

defines it as the location of the next instruction in the listing. During
pass one, these symbols and their values are made into a pair list, and are
appended to the initial symbol table to form the final symbol table. The
final table is used in pass two to evaluate the symbols when they occur in
instructions. It is also the value of lAP 0

(~.

U

Symbols occurring on this table are defined only for the current assembly.
The symbol table is discarded after each assemblyo

Instructions:
Each instruction is a list of from one to four fields. Each field is evaluated
in the same manner; however, the fields are combined as follows:

The first field is taken as a full wordo

The second field is reduced algebraically modulo 218

and is OR' ed into the address part of the word. An
arithmetic -¢Q is reduced to 777777Qo .

The third field is shifted left 18 bits and then CRted into
the word.

The fourth field is reduced modulo 218 and is shifted
left 24 bits and OR'ed into the decremento

9 August 1965 TM-2337/101/00

Fields:
Fields are evaluated by testing for each of the following conditions in
the order listed:

If the field is atomic:

a. The atomic symbol NIL has for its value the current origin
of binary program space. During an assembly that is not
in binary program space, this cell contains the starting
address of the next assembly to go into binary program
space.

b. The atomic symbol $ has the current location as its
value.

c. The symbol table is searched for an atomic symbol that
is identical to the field.

d. If the field is a number, then its numerical value is
used.

If the field is of the form (E a), then the value of.the
-field is the address of the S-eipression!:., which should be

a literal atom.,

If the field is of the form (QUOTE a), then a quote cell
pointing to a in the address is created (if it does not
already exist). It is the address of the quote cell that
is assembled. QuotedS-expressions are protected against
being collected by the garbage collector. A new literal
will not be created if it is EQUALN to one that already
exists.

If the second field is of. the form (*SPECIAL x), then the
value is the CAR of the atom x. The-assembled instruction
contains the address of atom x, with the indirect bit set
in the tag field (equivalent to a tag of 2OQ).

In all other cases, the field is assumed to be a list of
subfields, and their sum is taken. The subfields must be of
types listed above.

(J
9 August 1965 35 ~-2337/l01/00

The set of operations codes that are recognized by LAP is

Octal code Mnemonic Name

014 BUC Branch Unconditionally-
020 8FT Shift
050 FST Full store
051 STZ: Store Zero
100 ADD Add
110 SUB Subtract
120 MUL Multiply
134 DVD Divide
200 LDA Load Accumulator
204 :LIM Load Magnitude (Accumulator)
210 LDC Load Complement(Accumulator)
220 LDB Load B Register
230 LDL Load Logical Register
300 FAD Floating Add
310 FSB Floating Subtract
320 FLT Float
324 FRN Floating Round

0 330 FMP Floating Multiply
334 FDV Floating Divide
400 CAS Compare Accumulator ~th Storage
420 LDX Load Index (Register)
43003 XOR Exclusive OR
424 ATX Add to Index (Register)
430 CON Connect Accumulator ~th Storage
434 LDS Load and Shift
500 STA Store Accumulator
504 STB store B Register
510 STL store Logical Register
520 STX store Index (Register)
524 ECH Exchange Accumulator with Storage
600 BOZ Branch On Zero
601 BNZ Branch on Non-Zero
604 BSN Branch On Sense Unit
610 BOP Branch On Positive
6104 Brn Branch On Minus
700 BXH Branch On Index High
710 BXL Branch On Index Low
720 BXE Branch On Index Equal
730 BSX Branch and Set Index
740 BAX - Branch and Add to Index
750 BPX Branch on Positive Index

c 760 BMX Branch On Minus Index

0

9 August 1965 TM"2337/101/00

In addition, the following addresses are available

$A Accumulator
$L Logical Register
$Z Zero Cell
($A 1) B Register

The user can add other instruction codes or addresses to LAP at any time by
using CSET. For example:

CSET ($B 777622Q)

would define the address of the B register for LAP. (Actually $B is not in
LISP at present, since the accumulator $A is at location 777621Q and $B can
always be replaced by ($A 1) in LAP.)

Similarly:
CSET (AOR 53Q14)

could be used to define the instruction AOR (add one to register).

In writing LAP code, the programmer should be aware that it is the respon-
sibility of each LAP procedure to save and restore the pushdown list and any c-)
registers it needs if it branches to some other procedure that can possibly -~

induce the garbage collector.

1. A typical LAP function is shown in the following examples:

LAP «(ADDI SUBR 1) (BAX ($ 2) 1 4) (¢ (E ADDl) 1)

(BXH *PDLGN 1 *NDPDL) (STX -3 1 4)- (STA 3 1)

(LDA (QUOTE 1» (BUC (*SPECIAL *PLUS) ¢ 4) (BAX *RETRN 1 -4)) NIL)

2 • Showing the use of LAP to correct a ce 11 in a LISP program:

Cell 453l¢Q is to' be changed to do a branch on plus or minus zero
to cell 4523Q (the number ¢ is slashed)

LAP «453l¢Q (BOZ 45323Q ¢ 3Q4») NIL)

The 34Q in the decrement changes the BOZ instruction from (left
justified octal) 6¢¢ to 6¢¢3 as required by the Q-32 to do a test
on plus or minus zero. LAP returns NIL.

3. Use of LAP to insert a patch. The patch, to branch on zero accumulator
to an error unwind is to be inserted at location 52345Q, which previous
ly contained (STA 3 1). To insert a jump at 52345Q, one inputs LAP
«52345Q (BUC NIL» NIL) LAP prints back NIL.

•

o

o

..
o

9 August 1965 37

Then to complete the code, one inputs

LAP «NIL (BOZ C ¢ 3Q4) (STA 3 1) (BUC 52346Q)

C (LDA (QUOTE (ZERO ACCUMULATOR»)

(BUC (*SPECIAL ERROR) ¢ 4» NIL)

LAP returns «C ~ 6¢¢54Q»~

TM-2337/101/00

If the patch was to be inserted in a vital portion of the LISP
system,then it would be necessary to put it in reverse, so that
the patch is operable before the jump. This is done as follows:

First insert

LAP (NIL A (BOZ C ¢ 3Q4)

(STA 3 1) (BUC 52346Q)

C (LDA (QUOTE (ZERO ACCUMULATOR»))

(BUC (*SPECIAL ERROR) ¢ 4) NIL)

LAP returns the locations of A and C «A 0 6¢¢5lQ) (C 0 6¢¢54Q)

Then insert the jump at 52345Q, knowing that the patch starts at
6¢¢5lQ, using

LAP «52345Q (BUC 6¢¢5lQ» NIL)

Note that one cannot use (BUC NIL) as in the previous method, since
within LAP, the atom NIL stands for the current value of the binary
program origin and the patch changed it.

Pushdown List:
In Q-32 LISP, the pushdown list is used to store pointers to arguments for
functions and pointers to the values of program variables used by functionsc
It is also used to store return addresses for functions and to store the
values of special variables which are used as LAMBDA variables or PROG
variables, so that at the conclusion of operation of a function the previous
value of a special variable can be restored. The index register 1 always
contains a pointer to the top of the pushdown list at the level of either
the current function or the previousfunction~ Maintenance of the pushdown
list is of paramount importance for all LISP functions. Q-32 LISP uses two
machine cells for each entry on the pushdown listo The odd numbered cells
store the current values, while even numbered cells are used to store
previous bindings of special variables and are not directly used by the
programmer a

Hhen a function is entered, its arguments are always communicated as follows:
Argument I is on the pushdown list at location 3 + PDP where PDP is the
address pointer to the top of the pushdown listo

9 August 1965 TM- 2337/101/00

Argument 2 is on the pushdown list at location 5 + PDP.
Argument 3 is at 7 + PDP.
• • •
• * •

Argument i is at (2i+1) + PDP.

The last argument is in the accumulator.

Figure 4 shows the contents of the pushdown list at the time of entrance
into a function of three arguments which uses two program variables. In
the diagram, addresses increase upward. You will note that of the three
arguments supplied to the function, the first and second arguments are
pointed to from the pushdown list and the third and final argument is in the
accumulator (hereafter this discussion will not distinguish between the value
of an argument and a pointer to it).

If this function calls another function, which function can in turn possibly
cause a garbage collection, it is the responsibility of the current function
to do the following:

1. Protect its arguments by "bumping" PDP upwards N ce lls, where
N' = (number of arguments plus temporary variables + 2).
This is done by the instruction,

(BAX ($ 2) IN)

which says to add to index 1 (PDP) the number N, which is
the size of the block of cells on the pushdown list we
wish to protect. Then go to the instruction at current
location ($) plus 2. This BAX instruction must be present
as the first instruction in all functions, even if N is zero.

2. The instruction at $+1 must always be of the form
(¢ (E function-name) number-of-arguments number-of-pushdown
cells) •

This is not a real instruction, but is used in back tracing
for error diagnostics.

3. Test to see Whether the pushdown list is exhausted. This is
done by the instruction

(BXH *PDffiN 1 *NDPDL) •

This instruction is a conditional branch to an error routine
(*PDffiN) if index I (PDP) as 'incremented by step I above is
greater than the limit (*NDPDL) for the top of the pushdown
list.
Note that since we bumped the pushdown list pointer (PDP), the
current function references the pushdown list for its arguments

(~
\. J

o

o

o

o

o

·9 August 1965 39 TM-2337/101/00

At entrance to function:

OCTAL
ADDRESS

(DUMMY (IAMBDA (A B c) (PROO (Y Z) (••••• (DUMMY •••• ~))))

~

;~~

Reserved for Zl

Reserved for Y1

Reserved fQr C1
I

B1

A1

Resofor Reto Address
~

Reserved for Z

Re served for Y

Reserved for C

.B

A

Res" for Ret. Addres ~

-
.. r"' v -- .~/

+13

+11

+9

+7

+5

+3

+1

-1 I
-3

-5

-7

-9

-11

(DUMMY SUBR 3)

(BAX ($ 2) 1 12)

(~ (E DUMMY) 3)

(BXH *~DLGN 1 *NDPDL)

(STX -11 1 4)
(STA -5'1)

· ..
· ., .

(BUC (*SPECIAL DUMMY) ~ 4)

· ..
· ...

(:BAX *RETRN 1 - 12)

~DP1 - after 1st recursion of DUMMY

PDP ~ - after (BAX ($ 2) 1 12) in
DUMMY

Argument Cin $A

Return address in $x4
PDP

X
- before entrance to DUMMY

RElATIVE ADDRESS
TO PDP~

Fig. 4 Q-32 LISP Pushdown List

9 August 1965 40 TM-2337/l0l/00

by, address = [(2) (argument number)+l]-N relative to the

pushdown list pointer (PDP).

For the example in Fig. 4, N = l2, then
Argument 1 at «2)(1)-12+PDP = -9+PDP
Argument 2 at' -7+PDP
Argument 3 in the accumulator

4. Save index register 4 (RTN), ",which contains the return address of
the calling routine, on the pushdown list at the beginning of the
list of arguments. That is, treat the return address as another
argument, argument ¢. Thus, it always is saved at location
(l-n) + PDP. For the example in Fig. 4 the location is -11 + PDP.
The instruction for this is

(STX (l.N) 1 4).

5. Save the last argument which is in the accumulator on the pushdown
list at the location appropriate to that argument number. For the
example in Fig. 4, that argument is argument 3 and it would be
saved at location

«2)(3)+1) ·l2+PDP = -5+PDP.

(2+1)-4 = 3-4 = 1

The instruction for this 'is

(STA address 1)

where "address" is as given in step 3 above.

6. If the current function calls another function, the current
function must set up the arguments for that function. Arguments
1 through 4 for that function are entered at locations 3+PDP,
5+PDP, ••• (2i+l)+PDP on the pushdown list, with the last argument
entered in the accumulator.

7. Transfer control to the called function. This is done by the
instruction,

(BUC (*SPECIAL function-name) ¢ 4)

8. When ready to return, load the accumulator with the value of the
current function.

9. Reset the pushdown list pointer (PDP) to "unprotect" the arguments
of this function just before exiting. This is done by the
instruction,

(BAX *RETRN 1 -N)

(j

o 9 August 1965 41 TM .. · 2337/101/00

where N is as defined in step 1, and*RETRNis a closed
subroutine for returning to 'the calling procedureo

There are some exceptions to this which are conveniences in writing LAP code~
For example, if a function does not call another function then it need not
adjust the pushdown pointer; also it need not store index 4, in which case
the function does not need to execute steps 3 through 7, and the return, if
index 4 has not been changed, is made via the instruction (BUC ~ 4) in lieu
of step 90 However, instruction 1 must remain of the form (BAX ($ 2) 1)0

Closed Subroutines:
A closed subroutine is written in LAP (it cannot be defined directly in LISP)
by starting with (NAME SUBR ~)" Closed subroutines can be used wherever
desirable" They usually have to include provision for storing ~heprogram
counter into an instruction, and the last instruction in the subroutine is
a BUC to whatever address ~sstored in that cell. There are several closed
subroutines which are used by all arithmetic functions and which therefore
deserve specific note. They are described here along with the Special closed
subroutine *LIST which is used by the compiler to expand the special form
LIST 0

*CCMPAT. This routine~ starting with a pointer to a LISP number in the third
cell of the pushdown list, and a pointer ·toasecond number .in',the accumula.to~,
returns with the value of the first in the accumulator and the value of the
second in the B register, and index register 2 set to 2 if the final numbers
are in floating point format, andaet to 1 or 5 if they are in fixed point
format 0 If either of the original LISP numbers pointed to ~s floating, the
result is always floatingo

*DIVIDE" *DIVIDE is a closed subroutine which uses *CG1PAT to place the
numerical value of the first of two numerical arguments into the accumulator
and the second in the B register, and to set index register 2 to 2 if the
numbers are floating. *DIVIDE then divides the two numbers using either
integer or floating point division, rounds a floating result, and returns
with the quotient in the accumulator, the remainder in the B register, and
index register 2 set to 1 for integer numbers or 2 for floating point numbers.

*FIXVAL" *FIXVAL is a closed subroutine which, starting with the accumulator
pointing to-a LISP number, exits with the integer part of the number in the
accumulator.

*LIST" Is a subroutine which forms a list of n elements 0 It is used by the
compiler in expanding the special form LIST. The calling sequence for *LIST
is~

9 August 1965

(BSX *LIST 2 n)

(¢ 1,1- 1)

(¢ 1,2 1)

. . .
(¢ 1,n 1)

42 TM-2337/l0l/00

where n is the number of elements, and 1,1' 1,2 ••• 1,n are ~ointers to the n
elements to be listed.

*MKNO. This routine, given a number in the accumulator and the ap~ropriate
number 1, 2 or 5 in index register number 2, returns with the accumulator
pointing to a LISP number of the appropriate representation.

*NUMVAL. This routine enters with the accumulator pointing to a LISP number
and exits with the accumulator set to the same LISP number and with index
register 2 set to the value 1 for a decimal integer, 2 for a floating point
number and 5 for an octal number.

*PDWN. *PDWN is an error routine which prints out the message (OUT OF
PUSHDOWN LIST) and unwinds LISP. As shown earlier in this section, this
routine is called by most LISP functions by the instruction

(BXH *PDLGN 1 *NDPDL)

after the PDL pointer has-been set.

*RETRN.. *RETRN is not a closed subroutine" but is the common exit point for
most of the system's closed subroutines and LAP functions. It consists of
exactly two instructions,

(LDX 1 1 4)
and

(BUC ¢ 4).

The first instruction loads index register 4 (RTN) from the contents of
register l+PDP. This is the location on the pushdown list of the return
address of the current calling routine. It was set by the instruction

(STX (l-N)l 4)
as we saw earlier in step 4 of sect:ton PUSHDOWN LIST.. The second instruc
tion branches to that return address.

The best way of determining how T~ programs are written is to trace LAP
when defining a function or to perform CSET (PRINLIS T). The result will
be the LAP code for that function which should be in accordance with the
discussion hereino

r" \)
-- _

o

()

9 August 1965 TM-2337/l01/00

4. RESERVED ATCMS IN Q-32 LISP

4.1 SUMMARY OF FUNCTIONS, FORMS, MACROS AND RESERVED ATG1S

This section sununarizes the reserved atoms in Q-32 LISP as of 1 August 1965.

Table 1 lists all functions, special forms, atoms and macros which are of
general utility to LISP users. These are described further in sections 4.2
through 4.9 as indicated in the table*.

Table 2 lists a set of functions which comprise the compiler and are not
further described in this document.

Table 3 lists functions which constitute Evalquote in Q-32 LISP. They are
described in section 4.3.

Table 4 lists reserved atoms, the inadvertent use of which can wreck the
system~

Table 5 contains a list of character objects which are currently installed.

Section 402 describes those basic LISP functions Which are essentially
similar to those of 7090 LISP~

Section 404 describes general Q-32 LISP functions which are either not
contained in 7090 LISP or which differ in some respects from 7090 LISP.

Section 4.5 describes arithmetic functions of Q-32 LISP~ while section 4.6
describes buffer-handling functions. File input-output and library functions
of Q-32 LISP are given in TM-2337/l02!00 for Mod. 2.5 and TM-2337/Ill/00 for
Modo 2.6.

Several other functions have been described in earlier portions of the text:
LAP and closed subroutines which are callable only from LAP code are
described in section 3.6. MDEF and Macro were described in section 3.5.

* In Table 1 under Remarks,. letters E and C denote functions used by
"Evalquote or the Compiler, respectively. Changing the definitions of any
of these is likely to wreck the system.

I

9 August 1965 44 TM-2337/lDl/00

Table 1. Available Functions

The follo~ng functions; special for.ms, -atoms and macros are available
in the system for general utility.

Name ~l No. of 2 Section3
Arguments Remarks

ABSVAL SUBR 1 C 4.5
ADDl SUBR 1 C * 4.5
APPEND SUBR 2 E C 4.4
AND Form 'Indef. E C * 4.2
ATG1 SUBR 1 C * 4.4
BIANKS SUBR -1 C 4.4
CAR SUBR 1 BC * 4.2
CDR SUBR :1 E C * 4.2
CAAR-CDDDDR SUBR 1 E C * 4.2
CHARP SUBR 1 E C 4.4
CG1PRESS SUBR 1 4.4
*COMPAT SUBR ¢ LC 3.6
CONC Form Indef. C 4.4
COND Form Indef. E C * 4.2
CONS SUBR 2, E C * 4.2
CSET SUER 2 E C 4.4
CSETQ Form 2 E C 4.4
DEFl SUBR 2 C 4.4
DEFILE SUBR 1 4.6
DEFINE SUBR 1 C 4.4

1 SUBR = function; Fonn = special form; Atom = special atom

2 - = for system programming only, not general programming; L = useful
within LAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as 7090 LISP

(\
\

0

f:J

o

9 August 1965 45 TM-2337/101/00

Table 1 - Cont'd.

" Name ~1 No. of Remarks 2 Section3
Arguments

DEFLIST SUBR 2 C * 4.4
DE IETE L SUBR 2 C 4.4
DIFFERENCE SUBR 2 C * 4.5
DOTPAIR SUBR 2 4.4
DIVIDE SUBR 2 * 4.5
*DIVIDE SUBR ¢ L 3.6
ENTIER SUBR ·1 4.5
EQ SUBR 2 E C * 4.2
*EQN SUBR 2 - C 4.5
*EQP SUBR 2 - C 4.5
EQUAL SUBR 2 E C * 4.4
*EQUAL SUBR 3 - E C 4.4
EQUALN SUER 2 E C 4.4
ERROR SUBR 1 E C 4.4
EVALl SUBR 1 4.4
EVALQT SUBR 2 C 3.~
*EVALQT SUBR 3 - E 4.3
EXP SUBR 1 4.5
*EXPF SUBR 1 4.5
EXPl' SUBR 2 4.5
*EXPI'I SUBR 2 4.5
*EXPAND SUBR 2 E C 3·5
EXPLODE SUBR 1 4.4

1 SUBR = function; Form = specia.l form; Atom = special atom

2 - = for system programming only, not general programming; L = useful
within LAP code only; E = used by Eva1quotej C = used by Compiler

3 Section in which described;"* = same as 7090 LISP

9 August 1965 46 TM-2337/101!OO
Table 1 - Cont'd

1 No. of 2 Section3 , Name ~' Arguments· Remarks

F Atom E C * 4.2
FIRST SUBR 1 4.4
FIXP SUBR 1 C * 4.5
*FIXVAL SUBR ~ LC 3.6
FLOAT SUBR 1 4.5
FLOATP SUBR 1 C * 4.5
FUNCTION Form 1 E C 4.4
GENSYM SUBR ,~ E C * 4.4
GET SUBR 2 E C * 4.4
GETBUF SUBR -2 4.6
*GETNO SUBR 1 - C 4.4
GO'" Form 1 E C * 4.2
GREATERP SUBR 2 E C * 4.5
JUST SUBR 1 C 4.5

"

rABEL Form 2 E C * 4.2
IAMBDA Form -2 E C * 4.2
rAP SUBR 2 C 3.6
IAST SUBR 1 C 4.4
LEFT SHIFT SUBR 1 C 404
LENGTH SUBR 1 E C * 4.2
LESSP SUBR 2 C * 4.5
LIST Form Indef. E C * 4.2
*LIST SUBR ;¢ L C 306
*LOCN SUBR '1 - C 4.'4 '

1 SUBR = function; Form = special form; Atom = special atom

2 - = for system programming only, not general programming; L = useful
within IAP code only; E= used by Evalquote, C = us~d'by Compiler

3 Section in which described; * = same' as 7090 LISP

n

()
\~- A-

n
"- ./

0

0

o

9 August 1965 47 TM-2337/101/00

Table 1 - Cont'd

1 No. of 2 Section3 Name Type Arguments Remarks

LOO SUBR 1 4.5
LOGAND Macro Indef. * 4.5
*LOOAND SUBR 2 L 4.5
LOGOR Macro Indef. * 4.5
* LOO OR SUBR 2 L 4.5
LOGXOR Macro Indef. * 4.5
*LOOXOR SUBR 2 L 4.5
MACRO SUBR ." 1 3--5
MAP SUBR 2 C * 4.4
MAPCAR SUER '2 E C 4.4
MAPCON SUBR 2 C * 4.4
MAPLIST SUBR 2 C 4.4
MAX Macro Indef. * 4.5
*MAX SUBR 2 L 4.5
MEMBER SUBR 2 E C * 4.4
MIN Macro Indef. * 4.5
*MIN SUBR 2 L 4.5
MINUS SUBR 1 C * 4.5
MINUSP SUBR 1 C * 4.5
*MKNO SUBR ¢ LEC 3.6
NCONC SUBR 2 E C * 4.2
NIL Atom E C * 4.2
NOT Form 1 E C * 4.2
NULL SUBR 1 E C * 4.2
NUMBERP SUBR . 1 C * 4.4

1 SUBR = function; Form = special form; Atom = special atom

2 - = for system programming only, no~ general programming; L = useful
. within LAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as 7090 LISP

9 August 1965 . 48 TM-2337/l0l/00 r)
Table 1 - Cont'd

Type 1 No. of· 2 Section3 Name Arguments Remarks

*NUMVAL SUBR ¢ L C 3.6

OBLIST Atom ¢ E C * 4.2

OR Form Indef. E C '* 4.2

PAIR SUBR 2 C '* 4.2

'*PDLGN SUBR .¢ LEC 3.6

*P!ANT SUBR 2 - C 4.4

PillS Macro Indef. * 4.5

*PlliS SUBR :. 2 L 4.5

PRIN¢ SUBR 1 E C 4.4

PRINl SUBR 1 E C * 4.4

PRINT SUBR 1 E * 4.4

PRINTCH SUBR 1 4.4

PROG Fonn Indef. E C * 4.2 f\
\~/ J

PROG2 SUBR 2 E C * 4.2
....

PROP SUBR 3 C * 4.4

QUOTE Form 1 E C '* 4.2

QUOTIENT SUER 2 '* 4.5
*RATOM SUBR ¢ E 4.4

READ SUBR ¢ E '* 4.4

READl SUBR ¢ E 4.4

READCH SUBR -¢ 4.4

REMAINDER SUBR 2 '* 4.5

*RETRN SUER ¢ LC 3.6
RETURN Form 1 EC * 4.2

REVERSE SUBR 1 C '* 4.2

RPIACA SUBR 2 E C '* 4.2

1 SUBR = function; Form = special form; Atom = special atom

2 ~ = for system programming only, not general programming; L = useful
within IAPcode only; E = used by Evalquote; C = used by Compiler

i0
3 Section in Which described; * = .same as 7090 LISP \.-j

0

0

o

9 August 1965 49 TM .. 2337/101/00
Table 1 - Contrd

Typel No. of 2 Section3 Name Arguments Remarks

RPIACD SUER 2 E C * 4.2
SASSOC SUER 3 C * 4.2
SAVE SUER 1 4.6
SEIECT Fonn Indef. E C * 4.2
SET Form 2 not 4.4

implemented

SETBUF SUER 2 4.6
SETQ Fonn 2 E C * 4.4
SPECIAL SUBR 1 E 4.4
*SPECBIND SUER 1 LC 3.6
SQRT SUER 1 4.5
SQUOZE SUBR 1 4.4
SUB 1 SUBR 1 * 4.5
SUBST SUBR 3 C * 4.4
T Atom E C * 4.2
TEREAD SUBR ¢ E 4.4
TERPRI SUBR ¢ E * 4.4
TIMES Macro Indef. * 4.5
*TD1ES SUBR 2 L 4.5
TRACE SUBR 1 * 4.4
UNSPECIAL SUBR 1 E 4.4
UNTRACE SUER 1 * 4.6
ZEROP SUER 1 C * 4.5

1 SUBR = function; Form = special form; Atom = special atom

2 - = for system programming only, not general programming; L = ~seful
wi thin IAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as 7090 LISP

9 August 1965 50 'IN-2337/101/00

Table 2. Ccmp11er Functions

The following set of functions are used by the Ccapiler, and are not
directly useful to most LISP users:

A'lTACH Ca.mOOL PA3

*c,s496 Ca.tCOND PA4

*C~5B6 CCMLIS PA5

*C~~l COO> PA7

*095895 CCliPACT PA8

*C17¢6 Ca4PLY PA9
*c1852 CCJ.!PROO PA12

*C1927 CCMVAL PAFORM
*C1946 *CONDERR PAIRMAP

~2l795 DIFFER PAIAM

*C2293 rAC PASSl
*C2572 LAPEVAL PASS2

*C2598 LOCATE Pll
*C2671 LSHIFT P13
*C2854 MDEF PROOITER

*C2859 *MKTRC *SETFIAG
CALL *MKUNT SPECBIND
CEQ PAl SPECRSTR

*CLRFLAG STORE

f/\
\, ~

o

o

o

9 August 1965 51 TM-2337/10l/00

Table 3. Evalquote Functions

The following seven functions constitute Evalquote in Q-32 LISP and are
not directly interesting to most LISP users:

CG12

*DEFQ

*EVQ
*EVALQT

*EXPQ

*MGSYM

*SUPV

9 August 1965 - 52 TM-2337!lOl!OO

Table 4. .Reserved Atoms

other than the names of functions, special forms, macros,
and atoms used with LAP as noted herein, there exists a
collection of ATOMS reserved by the system for Evalquote,
LAP, and the computer, which should be avoided by the
user at all cost 0 Their unintentional use could wreck
the system. These reserved ATCMS include:

*NIL
BPORG

*BPORG

*SCRACH

TBPS

PRINLIS

*SCRACHX

*NDPDL

- bound to location ~

- pointer to next cell for compilation

- backup pointer for BPORG

- pointer to start of Scratch area

- pointer to top of Binary Program Space

- used as free variable by compiler

pointer to next cell in Scratch

- constant used to test for top of Pushdown List

The following atoms are clobbered by Evalquote and cannot be
bound by the user:' .

*FGNSL *FVAL *VALIST

o.

o

o

0

..

o

·9 August 1965 53

Table 5. Character Objects

The system currently contains an incomplete set of
Hollerith objects.

TM-2337!lOl/OO

The atom names below are bound to character values which
print as indicated. Of course, any character on the
teletype can be entered into the Q-32 system via the $$
artifact which is available as specified in the LISP 1.5

. Manual for 7090 LISP 0

Object Value

LPAR (

PERIOD

BrANK Blank

RPAR)

DOLIAR $
STAR *
SIASH I
EQSIGN =

Object

COLON

LARR

UPARR.

ISTHAN

GRTHAN

Value

-
t

<
>

Any other Hollerith objects can be added by the user as
desired, viz., CSET (PERCENT $$/%/)

9 August 1965 , 54 TM-2337/101/00

4.2 COMMON LISP FUNCTIONS

This section contains brief descriptions of atoms and functions which are
common to Q-32 LISP and 7090 LISP and which act the same in both. Their
names are:

AND IAMBDA PROO

CAR LENGTH PROO2

CDR· LIST QUOTE

CAAR - CDDDDR NCONC RETURN

CONn NIL REVERSE

CON~ NOT RPIACA

EQ NULL RPIACD

F OBLIST SASSOC

GO OR SELECT

IABEL PAIR T

In addition, the following functions are available in Q-32 LISP but are
slightly different from the same functions in 7090 LISP. They are
described in section 4.4.

APPEND GET READ

ATG1 IEFTSHIFT SETQ

CONC MAP SPECIAL

CSET MAPCON SUBST

CSETQ MAPLIST TERPRI

DEFINE MEMBER TRACE

DEFLIST PRINI UNSPECIAL

EQUAL PRINT tJN.rRACE

GENSYM PROP

()

o

..

o

9 August 1965 55 TM-2337/l01/ 00

Function Descriptions:
In the following description, all functions and forms \"hich can be given to
Evalquote at the top level are shovll1 in external Evalquote form. Those which
cannot be given. to Evalquote directly are shown in internal LISP format.

AND (Xl' x2 ••• xn) Special Form Predicate (Compiler, Evalquote)

AND is a special form of an indefinite number of arguments. Its
arguments are evaluated in succession until one of them is found
to be NIL (false) or until the end of the list is reached. The
value of AND is then NIL or T (true) respectively. The value of
(AND) of no arguments is T (true).

SUBR (Compiler, Evalquote)

If x, the argument of CAR, points to a character atom or NIL, CAR
induce s the error (CAR CHARACTER) NOT DEFINED) or
«CAR NIL) NOT DEFINED). otherwise, CAR leaves in the accumulator
the entire word which was pointed at by the address portion of x.
(This makes it possible to use CAR to transmit an entire instruc
tion word, as required for example by the function *EVQo Almost
all LISP functions look at only the address portion of the accumula
tor, and so the effect of .CAR is to return the address portion of
~) .
SUBR (Compiler, Evalquote)

If x, the argument of CDR, points to a character atom or NIL,
CDR-induces the error «CDR CHARACTER) NOT DEFINED) or
«CDR NIL) NOT DEFINED). otherwise, CDR returns the contents of
the decrement of x.

CAAR-CDDDDR are all defined in Q-32 LISP as composition functions of CAR and
CDR.

Special Form (Compiler, Evalquote)

The special form COND takes an indefinite number of argument
clauses in the form of pairs (p. e l). where p. is a predicate and e.
is a form. ~ -~ ~

The parentheses in COND have a different meaning than they do in any
other LISP form, in that (Pl e l) does not mean t~ apply function Pl
to argument eio Instead, p'S are evaluated from left to right until
the first one, saYPt' is found that evaluates to true, or specif
ically, is not EQ to NIL. The effect of the entire COND is that of
the associated form et ; all other e. (i ~ t) and p. (i > t) are

~ ~
not evaluated (operated) •

9 August 1965 TM-2337/101/00

p. may in general be any form in LISP except the specific statement
3.

forms (GO label) or (RETURN value) since these have no value.

If COND is used anywhere except as a top level statement ~thin
PROG, then at least one of the p. must be true (typically, the last

3.
p is the atom T). If none are true, an error ~ll be detected at

n
operate time. (If none of the p. are the atom T, the compiler
inserts the pair (T (*CONDERR» ~t the end of the COND.) None of
the expressions e. may be of the form (GO label) or (RETURN value).

3.

If COND is used at the top level of a FROG, then it is a statement
executed for effect not value (except when an e. is of the form
(RETURN value»,and the fo~lowing di~ferences o~cur:

I. The requirement that one of tile p. be true is waived.
J.

If all p. are NIL, the COND falls through to the next state-
3. ...

mente

2. Any of the forms e. may be of the form (RETURN v), where v
3. --is an expression to be evaluated and is the yalue of the FROG.

3 • Any of the forms e. mf;ty be a statement. of the form (GO (1,)
where!:.. must be a label which is used" in this PROO (see PROG).

Because "of the peculiar method of evaluating its arguments, COND
cannot be used as the function name at the top level of Evalquote.

CONS (2E X) SUBR (Compiler, Evalquote)

EQ (2E ~)

CONS is a basic function of LISP which takes a ceil from free
storage, places x and y in the address portions and decrement
portions of the cell, respectively, and returns a pointer to the
address of "the new cell.

SUBR (Specia.l Fonn) (Compiler, Evalquote)

EQ tests for equality of the addresses of its two arguments x and
yo If x and y are the same literal atom, the result is T. If
both arguroents are numbers or lists, then EQ is undefined. In all
other cases, EQ returns NIL.

..

o

{J

•

o

9 August 1965 57 ~-2337/l0lJ/OO

F

(GO .&)

When it is used as a predicate, EQ is compiled as open code.
For other uses, the function EQ is defined by:

(EQ (LAMBDA (A B) (COND «EQ A B) T) (T NIL))))

Special Atom i.(Compiler, Evalquote)

The Special Atom F may be regarded as permanently evaluated
to NIL. Whenever Fis encountered outside of a quoted expression,
the compiler replaces F with (QUOTE NIL), whose value is later
changed to NIL (addre ss = ¢) by rAP. Thus, F cannot be bound
by LAMBDA or PROO. HOvlever, F does not yield NIL until it is
evaluated, ~d is not the same as NIL when given to Evalquote,
'\·rhich quotes its arguments 0 Thus:

AND (T NIL) = NIL while

AND (T F) = T,

since F in quoted status is not NIL, and thus is true.

On the other hand,

(LAMBDA () (AND T F» () = NIL,

for in this expression F is evaluated, not quoted, but

(IAMBDA () (AND (QUOTE T) (QUOTE F»)) () = T •

Theatam F can be given a zero level binding by CSET, e.g.,
CSET (F FALSE), but the binding is not useful, since it can be
picked up only by performing (CAAR (QUOTE F».

Special Form PROG only .. (COmpi ler, Evalquote)

GO is a special form valid only within PROG. (GO t) causes
the flow of the program to move to the label t within the
PROO 0 See PROG.

(LABEL ~ (IAMBDA-expression» Special Form

LABEL is a special form used to give a LAMBDA-expression a
name so that it can be called recursively from within the
LAMBDA-expression.· LABEL causes compilation to occur in a
manner similar to DEFINE in Q-32 LISP, but with t,\-10 differ
ences:

1. the name used in LABEL is local, and can be seen only
within this LABEL fonno It thus can cause no conflict
with other functions or atoms used in the system •

20 lABEL defines a single function, while DEFINE can take
many functional expressionso

9 August 1965 TM-2337/l01/00

(LAMBDA args expr) Special Form -(Compiler, Evalquote)

A LAMBDA-expression defines a LISP function, in terms of
a list containing the atom LAMBDA; args is a list of atoms
(al a

2
••• a) (or the empty list- ()"Or NIL); !:!E! is any

single form (S-expression). -

IAMBDA serves several functions. First it is a flag telling
LISP that the next list is to be interpreted as a list of
arguments rather than a function to be evaluated. Second, the
S-expression which follows the argument list tells LISP how to
evaluate the LAMBDA expression and compute its value. In Q-32
LISP, LAMBDA~expressionsare alvays compiled into functions,
and evaluation consists of operating the compiled code.

The atoms ai' in args must be distinct literal atoms, not
including F" NIL, T; and if an atom is to have a functional
binding, it must not be the same as any Special Form (for
clarity, the use of the name of any function or Macro should
be avoided). -

The args ai are in general dummy arguments for the LAMBDA
expression or function, and refer only to cells on the push
down list. However, if any of the ai have been declared
Special prior to compilation, t~en the actual atom ai is used
in the function and the compiled code saves the prior binding
of ai on the pushdown liE?t, bind,s the atom ai temporarily
during the operation of the function, and restores the previous
binding when exiting from the function.

The S-expression is any single function or PROO to be evaluated,
using some or all of the arguments ai. If the LAMBDA-expression
is used wi thin DEFINE, MACRO or IABEL and has a name, thi s name
may be used in its own definition.

A LAMBDA~expression is syntactically equivalent to a function
name and may be freely used wherever a function name is legal.
For example, the following expressions are completely inter
changeable forms of the function CDR

i) CDR

ii) (LAMBDA (X) (CDR :x;»

iii) «LAMBDA (Y) Y) (FUNCTION CDR»

iV) (LAMBDA (X) «(LAMBDA (Y) Y) (FUNCTION CDR») X»

v) ((LAMBDA (Y) Y) (FUNCTION (~DA (X) (CDR X»»

f\
I ,

\ /

o

-0

o

9 August 1965 59 TM-2337/l0l./00

in the above, i v) "Tas obtained by substituting iii) into ii),
while v) was obtained by substituting ii) into iii).

Also, the following expressions operate identically:

((lAMBDA (G) (LIST G G G» (GENSYM))

and

(PROO (G) (SETQ G (GENSYM» (RETURN (LIST G G G»)

LENGTH (3) SUBR (Compiler, Evalquote)

LENGTH applied to a list x returns an integer equal to the number
of elements in the top level of 'the list. Applied to an atom
it yields zero.

(rnNGTH (IAMBDA (M) (PROO (N) (SETQ N ¢)

A (COND «ATGi M) (RETURN N»)

(SETQ M (CDR M» (SETQ N (ADDI N» (GO A»»

Special Form (Compiler, Evalquote)

LIST takes an arbitrary number of arguments, and constructs
a list out of them. The compiler handles the Special Form
LIST by constructing open code using the function *LIST
(see section 3.6).
*LIST calls CONS and the effect is the same as

(CONS XI (CONS X2 (... (CONS Xn NIL) ••• »)
but the actual method employed in Q-32 LISP is considerably
more efficient in terms of length of compiled code and speed
of operation if n > 2.

(Compiler, Evalquote)

NCONC appends list y onto the end of list x, without copying x.
The value of NCONC Is the new value of x. -The NULL test is -
used to find the end of the list x. If-x is atomic, NCONC
appends a Z onto the end of the property-list of atom 3-

(NCONC (IAMBDA (x Y) (PROO (M)

(COND «NULL X) (RETURN Y») (SETQ M X)

A (COND «NULL (CDR M»)(GO B»)

(SETQ M (CDR M»)(GO A)

B (RPIACD M Y) (RETURN X»»

~L !-I-.-f--;C]2J

9 August 1965 60 TM-2337/10l/00

NIL Special Atom . (Compi ler , Evalquote)

NIL is equivalent to the empty list () and is -treated by the
compiler as a pointer to address zero. On input, () is read
as NIL; in the Compiler, NIL is converted to (QUarE NIL) while
(QUOTE NIL) is unchanged (see QUOTE) • Thus (), NIL and
(QUOTE NIL) all arrive at LAP as (QUOTE NIL) and LAP replaces
(QUOTE NIL) by address $Z or 7776Q2 which contains zero.

The atom NIL actually exists in the system but is used only for
reading and writing the print name NIL, and is not accessible
for binding.

Nor (~) Special Form (Compiler, Evalquote)

Nor is regarded as a Special Form by the Compiler, and (NOT !)
is always changed to the equivalent form (NULL ~).

NULL (~) SUER

OBLIST

NULL is compiled as open code when used as a predicate.
other uses, the definition used is

(NULL (LAMBDA (X) (COND «NULL X) T) (T NIL»»

Special Atom (Compiler)

For

The atom OBLIST has a zero-level binding to a.list of 125 buckets
which occupy adjacent cells in c.ore. From the Ith bucket
(I = ~, 1 ••• 124) are strung all literal atoms for which the
remainder is I when the absolute value of the first word of the
print name (treated as a number) is divided by 125.

The OBLIST in Q=32 LISP is used ~primarily as a dictionary for
reading literal atoms, and does not always protect atoms. If
atom head space is exhausted, marking of atoms for protection
from garbage collection is done from the pushdo~ list, quote
cells, and atom head space only. Atoms which have no property
list are not pointed to and have no binding are removed, and
the remaining literal atoms and gensyms are bucket sorted and
restrung to form a new OBLIST.

Special Fonn (Compi ler, Evalquote)

The arguments of OR are evaluated from left to right until
the first true (non-NIL) predicate is found. If a true
predicate is found, the value of OR is T; if the end of t1:J.e
list is reached, the vallie of' OR is NIL. The value of (OR)
of' no arguments is NIL.

'-

"

o

o

9 August 1965 61 TM-2337/101/00

PAIR (~~) SUER (Compiler)

PAIR requires its inputs ~ and ~. to be lists of equal length

! = (Xl X2 ••• Xn) "1. = (Yl Y2 ••• Yn)·

PAIR returns a list of dotted pairs

«Xl • Yl) (x2 • Y2) ••• (xn • Yn)

as its value if this condition is met.

If the two lists are of unequal length, PAIR induces the
ERROR returns

«PAIR ERROR F2) ~ X}

or « PAIR ERROR" F3) ! "1.)

if x is shorter than X
if I is shorter than X.

(PROO ~ sl s2 •• 0 sn) Special Form (Compiler, Evalquote)

PROG is a Special Form that permits LISP programs to be written
in the form of a series of statements to be executed. In form,
PROO looks like a function of an indefinite number of agreements.

Its first argument vars must be either an empty list or a list
of atomic symbols (v 1 v 2 ' ••• v), called program variables.
Any program variable Whlch is Rot in Special status at compile
time is merely a cellon the pushdo'Wtl list. If a program
variable is in Special status during cc:mpilation, its previous
binding is saved on the pushdo'Wtl list at entrance to the PROO
and is restored at exit, and the current binding is stored in
the CAR of the atom head wi thin the PROO. Thus in either case,
the binding of a program variable is visible only within the'
PROO. However, if the variable is Special, it is also Visible
when used free by any function called from wi thin the PRO}. If
not Special, it is invisible except in the body of the PROO.

The other arguments sl 0 •• s of a PROG can be either atoms or
statements. An atom is .regRrded simply as a label which is
local to the PROO. A statement may be any standard LISP form
or expression or may include a GO statement or a RETURN state
ment. If there are no GO or RETURN statements, the statements
sl s2 ••• s are executed by evaluating the corresponding LISP
fom and igRoring the value. (Atoms are disregarded si~ce
evaluating an atom and discarding the value is of no consequence ~)
The control "falls out II of the PROG at the end, and' the value of
the PROG is NIL. '

9 August 1965 62 'IM-2337/101/00

The form (GO t), where t is a label within the PROO, can occur at
the top level-of the PROO as one of the s. or can be used at the
top level of a COND or SEIECT at the top level of the PROO. If
evaluated (GO t) causes transfer of control to the label t in the
~OO. - -

The form (RETURN v) can occur under the same conditions as
(GO t) but causes-v to be evaluated, and causes exit from the
PROG; with ! as the value of the PROO 0

Within a PROO, COND does not require a T alternative, since control
simply "falls through" to the next statement. - SELECT with NIL as
its final expression causes the same effecto

PROO2 (! 1?) SUBR (Compiler, Evalquote)

PROO2 causes its first argument to be evaluated and returns the
value of its second argument. It is equivalent in re sul t to
(PROO () ! (RETURN :£» 0 It is defined by (PROO2 (IAMBDA (X Y) Y»

(QUOTE v) Speciai Form (Compiler, Evalquote)

The value of the special form QUOTE is the CADR of the list whose
CAR is the atom QUarE. Thus, when evaluated,

(QUOTE A) = A

(QUOTE (A B)) = (A B), etc., but

(QUOTE A B) = (QUOTE A II B) = A

A quoted expression stands for itself, and is not evaluated.

In Q-32 LISP structure the form (QUOTE A) is represented by a
quote cell which points to atom Aj similarly the form (QUOTE (A B»
is a quote cell which points to the list (A B). Hence, when
(QUOTE A) or (QUOTE- (A B») is transmitted to a function, it is
the address of the corresponding quote cell which points to the
desired LISP object or list~

Constants which are numbers, character atoms, T, F and NIL need
not be quoted in Q-32 LISP because the compiler always replaces
the constantn by the form (QUOTE n), and the quote cell
(QUOTE ~) is a pointer to the constant~. (F becomes (QUOTE NIL»

/~
; \
, /

o

" .
o

9 August 1965 TM- 2"337/101/00

(RETURN ~) Special Form (Compi ler, EvalquoteJ

REVERSE (g)

The Special Form (RETURN ~) is legal only at the top level of a
PROO or at the top level of a CONn within a PROO. If (RETURN ~)
is encountered in evaluation of a PROO, the expression ~ is
evaluated (operated) and its value is the value of the PROO.

SUBR (Compi Ie r)

The function REVERSE has for its value a list whose elements are
the top level elements of list t taken in reverse order, e.g.,

REVERSE «A (B C) D (E F))) = «E F) D (B C) A)

When applied to an atom or to a list terminated by an atom other
than NIL, REVERSE is undefined.

RPIACA (~~) SUBR (Compiler, Evalquote)

RPIACA replaces the CAR of the cell pointed to by a with the
pointer b. Its value is a but a has been replaced-by
(CONS ~ "[CDR .~)) --

For example, RPIACA (PI NIL) would unbind a previous CSET value
of PI. CSET (PI 3.14159) is equivalent to

RPLACA (PI (3.14159))
SPECIAL « PI))

RPIACD (!~) SUBR (Compiler, Evalquote)

RPIACD replaces the CDR of the cell pointed to by a with the
pointer b. Its value is a but a has been replaced-in value by
(CONS (CAR .~) .:2). --

The use of RPLACD on an atom will destroy the print name of the
atom and can easily wreck the system. In fact, no useful result
can occur from the use of RPIACD at the top level of Evalquote.

(SASSCC ~ Z fn) SUBR functional (Compiler)

SASSOC searches y which is a list of pairs (usually but not
necessarily dotted pairs), for the first pair whose first element
is EQ to x. If the search succeeds, the value of SASSOC is the
pair. If-the search fails, the value of SASSCC is (fn), a function
of no arguments. --

9 August 1965 64 TM-2337/l0l/00

Because of its functional argument, SASSOC cannot be input as a
function at the top level of Evalquote.

(SASSOC (LAMBDA (X Y FN) (p~OO () A (COND «NULL Y) (RETURN (FN»)

«EQ (CMR Y) X) (RETURN (CAR Y»»

(SETQ Y (CDR Y» (GO A»»

(SELECT ao (al e l) (a2 e2) ••• (an en) eo)

T

Special Fo:r:m (Compiler, Evalquote)

The expression a is evaluated, then each of the a. are evaluated
o ~

in turn and tested until the first one is found that satisfied
(EQ a a.) • The value of SELECT is then the corre sponding e.. If o ~ . ~

no such a. is found, the value of SEIECT is e •
~ 0

SELECT can be used at the top level of PROO in much the same way as
CONDo In this application GO and RETURN fo:r:ms are legal for e. and
e • However, e cannot be omitted, but may be NIL 0 ~
00

The. compiler converts SEIECT to the equivalent fo:r:m

«IAMBDA(G) (COND «EQ Gal) e l) (CEQ G a
2

) e2) •••

«EQ G a) e) (T e») a)
n n 0 0

where Gis an arbitrary gens:ym. (If e were omitted, the syntax
of the COND would be incorrect.) 0

Special Atom (Campi ler, Evalquote)

The special atom is permanently bound to the value T. Whenever T
is encountered outside a quoted expression, the compiler replaces
T by (QUOTE T). Thus T cannot be bound by LAMBDA or PRo}. It may
be bound at zero level by CSET (T TRUE), for example, but the
binding cannot be picked up except by explicitly perfo:r:ming

. (CAAR (QUOTE T» or (CAAR-T),and so is not nor.m~lly of any use.

4.3 EVALQUarE FUNCTIONS

The six functions described in this section constitute the Q-32 LISP Evalquote.
The function CCM2 is a principal function of the compiler in addition to being
used by Evalquote. These functio:p.s are not of use to most LISP users.

*SUPV ()
The supervisor *SUPV is a function of no arguments which calls for
two S-expressions to be read from the teletype, te:r:minates the
input buffer, then calls for (PRINT (*EVALQT X Y (QUOTE *FUNC») and
loops back to call for two more S-expressions 0 (Here X and Yare
the two S-expressions read.)

(~

..

o

o

o

9 August 1965 TM-2337/101/OO

*EVALQT (fcn args name)
~EVALQT-eva:luates !£!! as a function with arguments listed in args

as follows:

If fcn is an atom and .is a true function (not a macro or special
form), then *EVALQT calls *EVQ to operate. the function;

in all other cases, an appropriate Lambda-expression is manufactured
and compiled under the name name into a reusable scratch area of
core, using functions *DEFQ, *MSGYM, MDEF, CCM2.

Then *EVALQT calls *EVQ to operate the function and returns the
value.·of this function applied to its arguments.

*EVQ (locn args)
---- *EVQ operates the function whose code starts at locn with args as

its list of arguments, and returns the value of the function:
Note that if fcn is a function name, then locn is in general
(CAAR !£!!). -

*DEFQ (name fcn args) .
-*DEFQ is a defining function which is used by *EVALQT to prevent

temporarily compiled functions from using up quote cells or giving
pennanent bindings to gensyms. It uses *MGSYM, MDEF and CCM2.

*MGSYM (value)
*MGSYM is a macro expander used by *DEFQ to remove numbers a.nd
quoted quantities fram an expression before compilation, and
replace them by additional arguments. The removed values are
stored on '*V'ALIST. (*EVQ (CAAR FCN) (APPEND (GET *VALIST FCN) ARGS»

CCM2 (type nargs ~ ~)
CCM2 is the function which is used by the compiler, DEFINE, MACRO

. and *DEFQ to do the final compilation of all functions. Type is
always SUBR. Nargs is the number of arguments which the fiiiiCtion
expects. ~ is the IAMBDA expression for the function. ~ is
the name of the function. CCM2 cannot handle Macros, hence MDEF
must be applied to ~ before C0M2 is called.

C0M2 is called in the compiler by COMP to compile all LABEL
expressions and all LAMBDA expressions used as functional arguments
after FUNCTION.

9 August 1965 66 TM-2337/101/00

4.4 Q-32 . GENERAL PURPOSE LISP FUNCTIONS

This section describes LISP functions which are either different from 7090
LISP functions of the same name or are entirely new functions of general
utility_ The names are listed below. The sign 11 before the name indicates
an entirely new. function.

APPEND . 11 EVALl 11 PRIN¢

AT<N 11 EXPLODE PRINl

11 BLANKS 11 FIRST PRINT

CHARP FUNCTION =/I PRINTCH

=/I CCJviPRESS .GENSYM PROP

CONC GET 11 *RATCM

CSET =/I *GETNO READ

CSETQ IAST =/I READl

DEFl LEFTSHIFT =/I. READeR
(--\

DEFINE =/I *LOCN SETQ

DEFLIST MAP . SPECIAL

11 DEIETEL =/I MAPCAR # SQUOZE

11 DOTPAm MAPCON . SUBST

EQUAL MAPLIST # TEREAD

#= *EQUAL 'MEMBER TERPRI

11 EQUALN NUMBERP TRACE

ERROR =If *PLANT UNSPECIAL

UNTRACE

()
\ ./

..

o

o

9 August 1965 TM-2337/10+!OO

APPEND (x y) SUER (Compiler, Evalquote)

If x is not an atom, APPEND returns a copy of x in which y
replaces the CDR of the last cell at the top ievel. If x-is an
atom, APPEND is undefined.

Examples: 1) APPEND «A B) (C D» = (A BCD)

2) APPEND «A B) C) =(A B • C)

3) APPEND «A. B) C) = (A. C)

For both argUments in the form of lists (Example 1), the result
is the same as in 7090 LISP. The other cases are undefined and
cause errors in 7090 LISP.

ATCM (~) SUER . Predicate (Compiler, Evalquote)

Atom returns T (true) if x is any atom, and NIL otherwise 0

ATG! is true for all atoms, including numbers.

BIANKS (~) SUER (Compiler)

BIANKS (n) enters n blanks into the output buffer used by PRINT.
If n is not a number" an error will result. If n is not a
posItive integer, an endless loop will result. -

CHARP <.~) SUBR (Compiler, Evalquote)

CHARP is a predicate that tests for character atoms. The value
of CHARP is T if c is a character atom (address in the range 10000Q
to 10077Q) and NITh if c is not a character atom.

COMPRESS (~) SUER

CCMPRESS is a LISP function that returns as its value a "literal"
atom formed from the list of character atoms t. If t is a character
atom, CG1PRESS returns the (SQUOZE (LIST t».- If t is any other
atom, CG1PRESS returns t.. If t is a list-of anything other than
character atoms, CGiPRESS returns an error message and "unwinds. n

CONC (~l ~2 ~3 ••• ~n)
CONC acts like an APPEND of many arguments and concatenates its
arguments onto one new list. The first argument is copied.
(The compiler actually treats CONC by performing a Macro expansion
in terms of APPEND.)

68 ~-2337 /101/00

CSET <.~.!) SUBR (Compiler, Evalquote)

This function is most useful a.t the top level of Evalquote. It is
used to establish a. zero-level binding of an atom.

CBET (PI 4.13159) sets the- value of the atom PI to the value
3.14159. (Note that both arguments of CSET are quoted by Evalquote.

The form (CSET a v) produces the following results: If a is not
an atom (i.e., does not have a quoted atom as its value)-an error
is detected; otherwise a is made Special, and then the effect is
the same as (RPIACA (CAR!) (LIST .!»

(CSETQ av) -- Special Form (Compiler, Evalquote)

This Special Form.is lik~ CSET except that it quotes its first
argument, which must be a.n atom. CSETQ cannot be used at the top
level of Evalquote.

DEFl (ob 1:.) SUBR (Compiler)

DEFl is a subsidiary function used by DEFLIST to place the value
t on the property list of the object ob under the property named
PRO. PRO is a free variable which must be set previously.

DEFINE (~) SUBR

The argument of· DEFINE, 2!: is a list of pairs

«nl dl) (n2 d2) ~ •• (nn- dn}),

where each n. is· a name of a function and d. is the corresponding
LAMBDA-expre~sion for the function. 1

The execution of DEFINE is as follows:

Each pair (n d) is compiled, and a pointer to the compiled code
for the functIon xi is pla.ced in the CAR of the atom nj the expres
sions d are discarded and DEFINE returns a list of the nls.

If any error occurs in compilation, the definition in which it
occurs, and all subsequent definitions, are not compiled, but
any previous compilations are unaffected.

If DEF~ is used twice on the same atom, the new definition
replaces the old, and the old binary program space in general is
lost.

o

M

o

9 August 1965 TM-2337/101/00

DEFLIST (~ind) SUBR (Compiler)

The first argument of DEFLIST ~ is a list of pairs «nl dl)

(~ d2) •••), as for DEFINE, and the second argument ind is an

atom. DEFLIST places each expression d on the property list of
the corresponding atom n under the indIcator indo (Note that
there is in Q-32 LISP no relation between DEFINE and DEFLIST.)

DEFLIST is used by the function MACRO.

If DEFLIST is used twice on the same atom with the same indicator,
the old expression on the property list is 'replaced by the new
one. DEFLIST places new properties on the property list to the
left of all old properties.

For example:

DEFLIST ((AA (,1 B»)) Pl)

DEFLISTt(~~»)P2)
results in the following structure for atom AA

Pnwne
for AA

DEIETEL (E.~) SUER (Compiler)

DEIETEL deletes from list m all elements which are members of list
b, and reCONSes the remaining elements into a new list. It does
not change m. (DELETEL (IAMBDA (B M) (MAPCON M (FUNCTION
(LAMBDA (J)-(COND «MEMBER J B) NIL) (T (LIST J»»»»

It returns the new li st as its value.

DOTPAIR (~) SUBR Predicate

DOTPAIR is a predicate that is true if a is atomic ora dotted
pair of atoms, and is false otherwise 0 -It is used by the function
FIRST to find the first printable object on a list.

9 August 1965 70 TM-2337/l0l /00

EQUAL (?f. 1) SUBR (Compiler)

EQUAL te sts x and y f'or equality by going, down the CAR and CDR
chains and using the function EQ to test equality of' literal atoms
and the function *EQP to test numbers (see section 4.5).

EQUAL is def'ined by

(EQUAL (LAMBDA (X Y) (*EQUAL X Y (FUNCTION *EQP))))

(*EQUAL !. Z f'n) SUBR (Compiler, Eva.lquote)

*EQUAL tests x and y f'or equality recursively going dow both
CAR and CDR chains.- Numbers are compared using function f'n.

(*EQUAL (LAMBDA (A B FN) (COND «EQ A B) T

«NOMBERP A) (COND(~RP B) (FN A B)) (T F)))

«ATCM A) F) «AT<M B) F)

((*EQUAL (CAR A) (CAR B)FN) (*EQUAL (CDR A) (CDR B) FN)) (T F))))

EQUALN (!. Z) SUBR Predicate (Compiler, Evalquote)

EQUALN tests whether two lists x and y are identical. It uses *EQN
to test numbers and will fail if two numbers are unequal in value
or differ in representation. It is used to test whether quoted
constants are identical, and is also used by SUBST.

(EQUALN (LAMBDA (X Y) (*EQUAL X Y (FUNCTION *EQN))))

ERROR (~) SUBR (Compiler, Evalquote)

ERROR causes its arguments msg to be evaluated and its value
printed and then induces an error unwind of' the LISP system.

EVALl (~) SUER

EVALl perf'onns evaluation of' one S-expression exp. It is def'ined
by (EVALl (IAMBDA (S) (EVALQT (LIST (QUOTE IAMBDA) NIL S) NIL)))

EXPLODE <.~) SUBR

EXPLODE is a LISP function that returns as its value a list of'
character atoms "exploded" f'rom ~the print name of' atom a. If'- a
is NIL, EXPLODE returns NIL (an empty list). If' a is a-character
atom, ~LODE will return (LIST a). ,If' a is a number or a non
atomic exp~ssion, EXPLODE retur'iis an error message and "unwinds. It

o

..

o

9 August 1965 71 TM-2377/101!OO

FIRST <.~) SUBR
FIRST finds the· first atom or dotted pair on ·the list t. It
uses the function DOTPAIR recursively on the CAR chain-of L.

(FUNCTION !:!!) Special Form (Compiler, Evalquote)

FUNCTION is used to transmit functional arguments. fn can be .
either the name of a true function (not a Macro or a-special
Form) or a IAMBDA or !ABEL expression for a function. If fn
is a function name, FUNCTION causes a pointer to the compiled code
for fn to be transmitted to the calling function {note th~t in
this~ase, FUNCTION can be omitted and will result in the print
out fn Nor DECIARED but will cause no error in compilation. If
FUNCTION is followed by a, LAMBDA or IABEL expression, CG1P is
called to compile the expression under a Gensym name, and a
pointer to the resulting compiled code is transmitted to the
calling function.

For exemple:

(LAMBDA (X) (MAPCAR X (FUNCTION ADD1))) « 0 1 2 3)) causes .the
code pointer for function ADDl to be transmi tted to MAPCAR. On
the other hand:

(IAMBDA (X) (MAPeAR X (FUNCTION (IAMBDA (J) (CONS J J))))
«A BCD)) causes the FUNCTION expression to be compiled and the
pointer to the code for the function (LAMBDA (J) (CONS J J) to be
transmitted to MAPCAR.

9 August 1965 72 TM-2337/l0l/00

GENSYM ()

GET (~l.)

®

SUBR (Compiler, Evalquote)

Each call to (GENSYM) generates a i'resh and distinct atomic symbol
of the for.m G¢¢¢¢l. Gensyms are not placed on the OBLIST and are
collected by the garbage collector if they are not in use.

SUBR (Compi ler, Evalquote)

GET searches list x for an element EQ to y. If the test succeeds,
GET returns the CADR. of the list (i.e., the next element on the
li st) • If the te st fai ls, GET returns the value NIL. If xis a
quoted atom, then GET searches the property list of x, otherwise
it searches the list which is the value of x. -

For example, given CSET (AA (B CD»

DEFLIST(C(f\\\(E G)}) B)

the structure of the atom AA is

GI/1

D IZI
Then. (GET (QUOTE AA) (QUOTE B» searches the list starting at 0
and returns (E G) while (GET AA (QUOTE B» searches the chain
starting at ® and returns C.

*GETNO (y) SUBR (Compiler)

*GETNO is a system building (cheating) function which, given a
list pointer, returns a pointer to an octal ntlmber that is equal
to the contents of the cell being pointed to.

(")
\ /

o

o

o

9 August 1965 73 TM-2337/l0l/00

SUBR (Compiler)

LAST searches a list x and returns the last element at the top level
of the list. It willcause an error if applied to an atom or to a
list terminated by a non-NIL atom.

Example:

LAST «A B C» = C
LAST «A B (C») = (C)

LAST (A) = LAST «C. B» = LAST «A B • C» = error

IEFTSHIFT (~l?) SUBR (Compi ler)

*LOCN (~)

IEFTSHIFT (a b) produces an octal number equal to the integer part
of a shifted left by b bits, with zero brought in at the right to
replace the shifted bits. If b is negative, a right shift results
and zeros are brought in at the left end of the word. If both a
and b are negative, the sign of a is not extended, and the result
ing Value of LEFTSHIFT wi 11 be posi ti ve 0 The acceptable range for
.£ is -47 ~ l? ~ 47.

SUBR (Compiler)

*LOCN (!!!) produces an octal number equal in value to the pointer ~.

(MAP 3£ fn) SUER functional (Compiler)

MAP applies the function fn to x and to successive CDRs of x until
x is reduced to a single atom (usually NIL) I-Thich is returned as
the value of MAP.

(MAP (IAMBDA (X FN) (PROO (M) (SETQ M X),

LP (COND «ATG1 X) (RETURN M») (FN M) (SETQ M (CDR M).) (GO LP»»

MAP cannot be input as the top ~ level function to Evalquote since
the functional argument must be evaluated or compiled.

(MAPCAR ?:£ fn) SUBR functional (Compiler, Evalquote)

MAPCAR constructs a new list whose value is a list of elements each
'of which is obtained by applying the function fn to the correspond-
ing element of the li st ~ 0 ' -

MAPCAR is non-recursive, and uses ATOM to find the end of the list.

MAPCAR cannot be input as the top level function to Evalquoteo

Examples of the use of MAPCAR are:

(LAMBDA (L) (MAPCAR L (FUNCTION SUBl») «¢ 1 2.3» = (-1 ¢ 1.3)
(LAMBDA (L) (MAPCAR L (FUNCTION (LAMBDA (3) (COND «ATCM J) (QUarE ATCM»
(T NIL»»» «A B (C) D» = (ATCM ATOM NIL ATOM)

9 August 1965 74 TM-2337/101/00

(MAPCON !!E) SUBR functional (Compiler)

MAPCON maps list x onto a ne'W list fn (x) using NCONC,· so that the
resulting list is-formed by concatenation(and uses ATCM to find
the end of list x. (MAPCON (IAMBDA (x FN) (CONn «ATCM x) x)
(T (NCONC (FN X)-(MAPCON (CDR x) FN»))))

MAPOON cannot be input as the top level function to Evalquote
because of its functional argument. Also, because of the use of
NOONO, MAPCON will damage the.system or will cause an endless
loop or both, unless"the function fn is chosen carefully. (See
DEIETEL for an example of' the use Of MAroON.)

(MAPLIST ~!!!) SUBR functional (Compiler)

MAPLIST maps the list x onto the list fn (x). It performs the same
function as MAP except-that it producesan output list -by CONSing
together all of the results of the form fn (x) computer during the
mapping. -

MAPLIST is non-recursive, and uses ATOM to find the end of list x.
Because of its functional argument, MAPLIST cannot be input as the
function at the top level of Evalquote.

Example: (IAMBDA (X) (MAPLIST X (FUNCTION (IAMBDA (J) (CONS (QUOTE B)

J))) «A BOD» = « B ABC D) (B BCD) (B C D) (B D»

MEMBER (~E) SUER Predicate (Compiler, Evalquote)

MEMBER is a predicate 'Which is true if a is a member of list b, and
NIL otherwise. EQUALN used to perform 'the equality test. Hence
MEMBER (1.0 (A B 1 2)) = NIL

Predicate (Compiler, Evalquote)

NUMBERP (x) is true if x is' a pointer to a LISP number, and false
otherwise -:- In part1cu:Lar ,NUMBERP (NIL) = NIL.

*PIANT (!.£) SUBR (Compiler)

*P!ANT is a function used 1.:lY LAP to plant code ·in core. It plants
the octal quantity corresponding to the value of a.into the
location corresponding to the value of .£. -

Thus, *PLANT (¢ 4¢¢¢2Q) 'Would change the contents of core location
4¢¢¢2Q- to zero (this 'Would wreck the system. *PIANT must be used
with caution!)

Anything done by *PLANT could be· done by rAP, viz., lAP « 4¢¢¢2Q
(¢» (» would achieve the same result. However, the arguments of

•
()
\ -'

\

o

o
•

•

o

9 August 1965 75 rrn·2337/101/00

PRIN¢ <.~)

*PLANT are subject to normal LISP interpretation, while those of
IAP are interpreted in a fashion peculiar to IAP. (Also, rAP can
install an entire block of code, while each call to *PLANT changes
only one ce 11) •

SUBR (Compiler, Evalquote)

PRIN¢ is used by PRINT to decompose an S-expression S into a string
of atoms, parentheses, dots and spaces and calls PRINI to rill the
print buffer. PRIN¢ does all of the work of PRINT except for the
final (TERPRI). The value of (PRIN¢ S) isS. To print two S
expressions! and ~ on the same line,~o~e can use

(IAMBDA (A B) (PROO () (PRIN¢ A) (PRINT B»» (FIRST SECOND)

This will result in the foliowing printout:

FffiST SECOND

NIL

SUBR (Compiler, Evalquote)

PRINI accepts any atom a and packs its print name into the print
buffer. It is the only-function of the system which packs the
output buffer. All other printing functions (such as PRIN¢ and
BIANKS) use PRINl as the basic building block. The value of"
(PRINl!:!:) is a.

Example:

PRINI (A) results in M

PRINI (ABeD) results in ABCDABCD since the value of PRINI is its
argument.

(IAMBDA (A B) (PROO () (PRINl A) (PRINI BIANK)

. (PRINI B) (BIANKS 3), (PRINI B) (PRINI A) OPRINI PERIOD)

(TERPRI)) (FIRST SECOND) results in the following printout:

FffiST SECOND SECONDFIRST

NIL (the value of the PROO)

PRINT (2,) SUER (Compiler, Evalquote)

(PRINT (IAMBDA (S) (PROO () (PRIN¢ S) (TERPRI) (RETURN S»»

PRINT prints one full S-expression in standard format 0 (See
section 2.2 for the standard format.)

9 August 1965 TM~2337/l01/00.

PRINTCH (~) SUBR

M

If'c is a character atom (such as 'A), PRINrCH enters the corres ...
ponding character (A) into the print-" line at the next availaple
byte position •. If c is NIL, PRINTCH fires TERPRI. PRINTCH returns
c as its value. - .

(PROP x y fn) SUBR functional (Compiler)

PROP searches the list x for a property EQ to y. If one is found,
the value of PROP is a pointer to the' CDR of the-list. If the
property:'is not found, the value of PROP is (fn), a function of
no arguments. ---

Because of its. functional argument, PROP cannot be used as-a
. function at the top leve 1 of Evalquote.

For example, given (

CSET (AA (BB cc DD»-t
DEFLIST «,<AA (E F G H) ~ BB)

the structure of the atom AA is

Pname
for AA

Then .
(LAMBDA (X) (PROP (QUOTE AA) Y (FUNCTION (IAMBDA () 2») (B:a)
searches the :Qroperty list of AA starting at 1 for BB, and returns
a pointer to @' the value «E F G H». The same function
applied to argument CC cannot find 'property and hence retu·rns
2 as its value.

On the. other hand, the function

(IAMBDA (X) (PROP M X (FUNCTION (IAMBDA () (»» (BB)

searches the value of AA starting at CD and returns a pointer t~. ® or the value (CC DD). The same function applies to value CC
returns a pointer to G) with value (DD).

•

A

o.
•

o
•

6

o

9 August 1965 ,77 TM-2337/10l/00

by comparison, since GET when it succeeds returns a pointer to the
CADR of what PROP finds, GET (AA BB) yields a: pointer to ®. or the
value (E F G H), while (IAMBDA (X) (GET AA X» yields the atom CC
or DD when applied to BB or CC, respectively.

*~T(M () SUBR (Compi ler, Evalquote)

READ ()

READI ()

READeR ()

SET

(*RATCM) is the basic LISP reading function, :which alwa.ys returns
a single atom whenever called. If the input buffer is empty 'When
(*RATOM) is called or before a delimiter is found, a read command
is issued to TSS (2 bells occur on the teletype). Otherwise
*RATCM scans the input buffer and returns a single atom, consist-
ing of LPAR, RPAR, PERIOD, a numeric atom, a character atom, or a
literal atom.· A literal atom not already there is added 'to the OBLIST 0

*RATCM calls ERROR if an illegal character is found outside of a
$$ context, or if it finds an illegal format (e.g., a numerical
atom in incorrect format).

SUBR (Evalquote)

(READ) calls for one S-expression to be read from teletype, using
functions (READ1) ,and (*RATCN) 0 READ calls ERROR if a right
parenthesis or period (not a decimal point) occurs, and calls
READl every time i t'sees a left parenthesis.

SUBR (Evalquote)

(READl) is a function used by READ to read a non-atomic S-expression.
READl is entered after one left parenthesis has been encountered.
It calls *RATCN' or READI successively until the matching right .
parenthesis is read and calls CONS to tie atoms together appro
priately to build the corresponding list structure in core. If an
illegal structure is encountered, READl produces a diagnostic and
calls ERROR. .

SUBR

READeH reads the next character in the input line. The value of
READeH is the character atom read. If the read line is empty, READeH
fills the buffer f;rom the. teletype and then returns the character
atom read. READeR does not see' the character (77Q) meaning end-of
message, and hence cannot return the character atom 1¢¢77Q as its
value.

SET is not implemented.

9 August 1965 TM-2337/l0l/00

(SETQ! .~) Special Form (Compiler, Evalquote)

SETQ is a special fonn which evaluated its second argument v and
assigns this value, which is also the value of SETQ, to the-atom
given as its first argument a. In general, a is treated as if it
were quoted. If a is not an-atom, an error results. If a is not
in Special status-and is bound in a function by LAMBDA or-PROG,
SETQ affects only the cellon the pushdown list of the function.

If a is in Special status and has had a previous CSET binding
SETQ changes the value of that binding, by being compiled as open
code equivalent to (RPIACA (CAR !) !).

If a is in Special status had no previous binding « CAR A) = NIL)
then an error results.

SETQ can be used in series to set many variables to the same value
as (SETQ X (SETQ Y Z»which sets both x and y to the value of z.

SPECIAL (~) SUBR (Compiler, Evalquote)

The argument of SPECIAL, x is a list of literal atoms. SPECIAL
sets a flag in bit 4 of the atom head, and returns a copy of its
input list.

The Special flag on an atom serves only to te 11 the compiler that
if this atom is bound by LAMBDA or PROO, the old binding of the
atom must be saved and the current binding attached to the atom
head (rather than ,to the pushdown list).

SQUOZE (!.J SUBR

SQUOZE is a primitive used by CCMPRESSbe low. The value of SQUOZE
is a "literal" atom formed from the list of character atoms t.
SQUOZE is undefined if Lis anythiDg other than a li st of character
atoms. -.

SUBST (~'x.!) SUBR (Compiler, Evalquote)

SUBST substitutes x for each occurrence of the list structure y in
the list structure~z. The function EQUALN is used to perfonn the
test, so that x, y,-and·z,can have the most general form.

Examples:

SUBST (A B (B C E» = (A C E)

SOBST (A B (B (B 0" C) (B))) = (A (A • C) (A»

SUBST (A (B) (C B» = (C: 0 :A)

since (C B) = (C. (B NIL»

• r)

...

o

o
•

o

9 August 1965 79

SUBST (A (B) (B C» = (BC)

SUBST (2 3 (3 405» = (2 405)

but

SUBST (2 3 (30~ 405» = (3o~ 4.5)

since EQUALN (3 3 0 ~) = NIL

TM-2337/101/00

TEREAD () SUBR (Compiler, Evalquote)

(TEREAD) causes the read buffer to be reset so that the next call
to READ (or to *RATCM) will ask for new teletype input. If (READ)
is called without (TEREAD) and if at the last READ there were any
right parentheses left in the buffer, (READ) would call ERROR.
(TEREAD) prevents this 0 The value of TEREAD is NIL.

TERPRI () SUBR (Compiler, Evalquote)

(TERPRI) causes the contents of the print buffer to be printed,
induces a line feed,and resets the print buffer. If the print
buffer is already empty, (TERPRI) causes a line feed to occur.

Consecutive (TERPRI)s· result in skipping print lineso The value
of (TERPRI) is NIL.

SUBR

The argument of TRACE, x, is a list of function names
«fl f2 f3 000 fn» -

TRACE performs (TRACE (IAMBDA (X) (MAPCAR X (FUNCTION *MKTRC»»

The function *MKTRC tests each of these names f. in turno If a
function is traceable and is not already in Tra~e status, *MKTRC
changes the instruction (BXH *PDIGN 1 *NDPDL) to a (BUCl 6 -TRACE),
and returns the name of the functiono -If the test fails, *MKTRC
returns NILo

The value of TRACE is therefore a list composed of the names of
those functions f. which were set to Trace status and the remainder

l.
of the names replaced by NIL.

If a function (say Dn'}i'~NCE) is used while in Trace status, a
typical TRACE printout would be

ARGS OF DIFFERENCE
5
3.0

VAlUE OF DIFFERENCE
200 (any other printing starts here)

The function TRACE must be used 'With caution 0 It can result in a
large amount of printout if used on a recursive function, unless
the user intentionally induces a Rescue from TSS to stop printing.

9 August 1965 80 TM.2337/l0l/00

UNSPECIAL (~) SUBR (Evalquote)

UNSPECIAL is similar to SPECIAL. x should be a list of literal
atoms. For each atom in x, UNSPEC!ALc'lears' bit 4 of the
atom head to: zero. The value of UNSPECIAL is x.

UNTRACE (~) SUBR

UNTRACE undoes the effect of a previous TRACE.

(UNTRACE (IAMBDA (X) (MAPCAR X (FUNCTION *MKUNT)))) where *MKUNT
checks each function named in list x for the instruction
(BUC ~ 6 TRACE) and either replaces-it with (BXH *PDIGN 1 *NDPDL)
arid returns the function name, or simply returns NIL.

The value of UNTRACE is a copy of the input list x in which those
function names which were not changed to normal status (presumably
because they were not being traced) are replaced by NIL.

4.5 ARITHMETIC FUNCTIONS AND PREDICATES

In Q-32 LISP, floating point numbers have the full accuracy available in
the 48 bit words: 12 bits of characteric plus 36 bits of mantissa. All
approximate tests of equality of floating point numbers use 30 bits of .
accuracy in the mantissa using function *EQP.

Macros:
The arithmetic Macros are listed in the left hand column below:

MAX *MAx (~ x.)

MIN *MIN (~ ~)

LOGOR *LOOOR (,! X)
LOOAND *LOOAND (,! 1..)

LOOXOR *LOOXOR (,! 1..) .

PillS *PLUS (~}:)
TTh1ES *TIMES (,! 1)

Each of the above Macros is defined in terms of the corresponding simple
function whose name begins ~th an asterisk. The simple arithmetic functions
have exactly two arguments. For example, the definition of MAX is

MACRO « (MAX (IAMBDA (L) (*EXPAND L (QUarE *MAX)))))).

~--- -

o

,0

o
..

9 August 1965 81 TM-2337/l0l/00

The arithmetic of PillS and TD1ES is floating point if any arguments are
floating, integer otherwise. PillS never produces -¢ as an output. LOOOR,
LOGAND and LOOXOR fix their arguments and produce octal integers as answers.
The other functions all produce answers in £loating point or decimal integer
format.

other Arithmetic Functions

ABSVAL (~)
Compiles the absolute value of number x.

Adds 1 to X. (ADDI (IAMBDA (x) (PLUS xl»)

DIFFERENCE (3£ 1) also DIFFER (3£ 1)
Subtracts y from x. (DIFFERENCE (IAMBDA (X Y) (PLUS X (MINUS Y»»

DIVIDE (x y)
- -Divide x by y uses subroutine *DIVIDE. Division is in floating

point if ei th'er x or y is floating; integer otherwise. DIVIDE
forms a list of QUOTmNT and REMAINDER.

ENTlER (~)

*EXPTI(3£ Z)

FLOAT (~)

Compute s the integer part o.f .! for po si ti ve .! and - integer part
of -x for negative ~.

Computes ~, using functions EXPl' and *EXPl'F 0

x Computes e- for ... l~ 3£ ~lo Used by EXP.

Raises x to the y power. The result is an integer if x is an
intege~-and Z is-a positive integer and if the value is less
than 2 7; otherwise the'value is a floating point number.
Functions LOO, EXP, and *EXPTI are used for some cases.

Raises x to the y power by power product. y must be a positive
integer: Computation is done in floating point or integer
arithmetic, depending upon the representation of ~o .

Produces a floating point output equal to the input !.

9 August 1965 82

18 Reduces a number x modulo 2 ..

(JUST (IAMBDA (X) (*LOGAND 777777Q»)

TM-2337/l0l/00

Cam~utes the natural logarithm of x, for positive x, and gives
an error diagnostic for ~ ~ ¢. - -

MINUS ~roduces -~ as its value.

QUOTIE~ (~~)
For fixed-point arguments, the value is the number theoretic
quotient. If either X or Y is a floating point number, the
answer is the floating ~oint quotient.

REMAINDF,R (x y)
Cam~utes,the number theoretic remainder for fixed-point
arguments, and floating point residue for'floating-point arguments.

SQRT takes a floating point square root of the absolute value of
!.. "With no check as to original sign of ~.

Subtracts 1 fran X.

(SUBI (LAMBDA (x) (PWS x-I»)

Arithmetic Predicates:

*EQN (~~)
Tests two numbers for equal! ty of representation. Thus

*EQN (¢ -¢) = NIL

*EQN (1 1Q) = NIL

*EQN (1 1.¢) = NIL'
*EQN (lQ l.¢) = NIL

*EQ,N (3Q4 3¢Q3) = T' ,

*EQN (l.¢ 1.¢¢¢¢¢¢¢¢¢¢1) = T

*EQN (¢ ¢) = T

*EQ,N (-¢ -¢) = T

*EQN (1.¢ l.¢) = T

*EQN (lQ lQ) = T;

*EQN (l'.¢ 1.¢E¢) = T

The last case holds because the last decimal place is lost in the
internal representation.

(\
\

•

•

o

o

o

9 August 1965 'lM-2337/101/00

*EQP (~ z)
Tests two numbers for approximate equality. If the numbers are
integers, the test is for equality of value (¢-= .¢). If either
of the two numbers is a floa.ting point number, the test is made
on equality of all but the right-most 6 bits.

In general: .

. . *EQP (x y) = J,T 11' I ~:~ 1 < 1jJ.7 x 1¢-9

(NIL otherwise

Is true if x i:s a'1'ixed point number, an er~or if x is not a
number, and-fal'se ,if ~ is floating.

Is true if x is a floating point number, an error if x is not a
number, and-false otherwise.

GREATERP (x y)
- -True if ~ > l. and false if ~ ~ l..

Note that it is possible for both *EQP (x y) and,GREATERP (x y)
\ to be true simultaneously~ but (AND (LESSPX Y) (GREATERP 'X-Yj)

) IESSP (~z) is always NIL.

Thi s is true if ~. < l. and false if ~ ':?! l..

Note that it is possible for both *EQP (x y) ~d LESSP (x y)
to be true if either ~ or l. is floatingo- - - -

Tests whether ~ is negative.

(ZEROP (LAMBDA (x) (*EQP x ¢)))

ZEROP (~) is true if X= ¢ Or X = -¢ and NIL otherwi se 0

9 August 1965 84

4.6 BUFFER FUNCTIONS.AND SAVE

LISP arrays are not implemented in Q-32 LISP. There exists two functions for
the handling of buffers or arrays of non-pointer data, as follows:

GETBUF (!!!)

SETBUF (!!!)

GETBUF cr.eates a non-pointer· array or buffer of the specified
number of words n.. The name m of "the array is any legal "atom
and is the value-of the procedure. The number of words n is .
limi ted only by the availability of free and full word sPace
at the time of.procedure ~all •.

SETBUF sets every word of the array named m to the specified
constant n. Useful for clearing or initializing an array.
The array-namem ~s the value of the procedure •

. -
SAVE is a LISP function that saves current core contents
(essentially an array core dump) on magnetic tape reel n. This
dump is in a for.m compatible with the Time-Sharing System's
LOAD command.

SAVE makes its own binary tape request fran the Time-Sharing
System, so tha~ GETFlLE is not used before SAVE. However,
DEFILE should be used following a SAVE to release the tape drive.
To save the LISP system on a scrat~h tape, the user should type
SAVE (¢). SAVE, like GETFlIE, wili cause TSS to reply $WAIT,
and later $FlIE n ¢¢DRlVE d REEL n. After SAVE is completed,
LISP will reply ii, then 2 bells. If a scratch tape was used
for the SAVE, the ·user will have to dial the operator to save
that reel and giveh1m the name of the user and title of the
tape.

CAUTION:

Saving a LISP system is at the user's risk. A saved system
will not be updated along with stanBard LISP, and may have to
be loaded from tape rather than disk. ·In general, it is
desirable to save a library tape of S-expressions to b~ loaded
into LISP, in addition to saving the version that is ,in core.

.---......

J
(- \

•

•

o

L-

o
..

9 August 1965 85
(last page)

References

TM-2337/l0l/00

1. The Programming Language LISP : Its Operation and
Applications. Infonnation International, Incorporated,
Cambridge, Mass. March 1964

20 LISP 1.5 Programmer's Manual. M.I.T. Press, Cambridge,
Mass. August 1964 .

3. Clark Weissman. LISP Primer: A Self-Tutor for Q-32
LISP 105. SDC Series TM.-2337!010!OO. June 1965,

4. Command Research Laboratory User's Guide.

5.

SDC Series TM-1354

S. L. Kameny. LISP 1.5 Input-Output File and Libra
Functions. SDC Series TM-2337 102 00. September 19 5.

"

(\
'- 1,

J

(\;
\. J

..

	SDC-TM-2337_101_000001_a
	SDC-TM-2337_101_000001_b
	SDC-TM-2337_101_000002_a
	SDC-TM-2337_101_000002_b
	SDC-TM-2337_101_000003_a
	SDC-TM-2337_101_000003_b
	SDC-TM-2337_101_000004_a
	SDC-TM-2337_101_000004_b
	SDC-TM-2337_101_000005_a
	SDC-TM-2337_101_000005_b
	SDC-TM-2337_101_000006_a
	SDC-TM-2337_101_000006_b
	SDC-TM-2337_101_000007_a
	SDC-TM-2337_101_000007_b
	SDC-TM-2337_101_000008_a
	SDC-TM-2337_101_000008_b
	SDC-TM-2337_101_000009_a
	SDC-TM-2337_101_000009_b
	SDC-TM-2337_101_000010_a
	SDC-TM-2337_101_000010_b
	SDC-TM-2337_101_000011_a
	SDC-TM-2337_101_000011_b
	SDC-TM-2337_101_000012_a
	SDC-TM-2337_101_000012_b
	SDC-TM-2337_101_000013_a
	SDC-TM-2337_101_000013_b
	SDC-TM-2337_101_000014_a
	SDC-TM-2337_101_000014_b
	SDC-TM-2337_101_000015_a
	SDC-TM-2337_101_000015_b
	SDC-TM-2337_101_000016_a
	SDC-TM-2337_101_000016_b
	SDC-TM-2337_101_000017_a
	SDC-TM-2337_101_000017_b
	SDC-TM-2337_101_000018_a
	SDC-TM-2337_101_000018_b
	SDC-TM-2337_101_000019_a
	SDC-TM-2337_101_000019_b
	SDC-TM-2337_101_000020_a
	SDC-TM-2337_101_000020_b
	SDC-TM-2337_101_000021_a
	SDC-TM-2337_101_000021_b
	SDC-TM-2337_101_000022_a
	SDC-TM-2337_101_000022_b
	SDC-TM-2337_101_000023_a
	SDC-TM-2337_101_000023_b
	SDC-TM-2337_101_000024_a
	SDC-TM-2337_101_000024_b
	SDC-TM-2337_101_000025_a
	SDC-TM-2337_101_000025_b
	SDC-TM-2337_101_000026_a
	SDC-TM-2337_101_000026_b
	SDC-TM-2337_101_000027_a
	SDC-TM-2337_101_000027_b
	SDC-TM-2337_101_000028_a
	SDC-TM-2337_101_000028_b
	SDC-TM-2337_101_000029_a
	SDC-TM-2337_101_000029_b
	SDC-TM-2337_101_000030_a
	SDC-TM-2337_101_000030_b
	SDC-TM-2337_101_000031_a
	SDC-TM-2337_101_000031_b
	SDC-TM-2337_101_000032_a
	SDC-TM-2337_101_000032_b
	SDC-TM-2337_101_000033_a
	SDC-TM-2337_101_000033_b
	SDC-TM-2337_101_000034_a
	SDC-TM-2337_101_000034_b
	SDC-TM-2337_101_000035_a
	SDC-TM-2337_101_000035_b
	SDC-TM-2337_101_000036_a
	SDC-TM-2337_101_000036_b
	SDC-TM-2337_101_000037_a
	SDC-TM-2337_101_000037_b
	SDC-TM-2337_101_000038_a
	SDC-TM-2337_101_000038_b
	SDC-TM-2337_101_000039_a
	SDC-TM-2337_101_000039_b
	SDC-TM-2337_101_000040_a
	SDC-TM-2337_101_000040_b
	SDC-TM-2337_101_000041_a
	SDC-TM-2337_101_000041_b
	SDC-TM-2337_101_000042_a
	SDC-TM-2337_101_000042_b
	SDC-TM-2337_101_000043_a
	SDC-TM-2337_101_000043_b
	SDC-TM-2337_101_000044_a
	SDC-TM-2337_101_000044_b

