A-1159 8/63

T™™-2337/101/00

TECHNICAL

MENMORANDUM

(TM Series)

This document was produced by SDC in performance of contract SD-97

SYSTEM
LISP 1.5 Reference Manual for Q..32 - DEVELOPMENT
CORPORATION
S. L. Kameny 2500 COLORADO AVE.

SANTA MONICA

9 August 1965

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not neces-
sarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should
be obtained in advance from the System Development Corporation, or from authorized

agencies of the U.S. Government.

/7N
N

9 August 1965 1
(Page 2 blank)

LISP 1.5 Reference Manual for Q-32

ABSTRACT

This document is a reference manuasl for the Q-32 LISP
system in operation under the Time-Sharing System
(TSs) on the AN/FSQ-32 computer. It describes the
working of the LISP system, and contains descriptions
of all currently available and installed functionms,
except for input-output and library functions given
in ™-2337/102/00.

This document conforms to the current numbering on
LISP 1.5 documents, and supersedes TM-2430/000/00,
which was a draft.

™-2337/101/00

N
{
N
.

K.) 9 August 1965 3 ™-2337/101/00
(Page 4 blank)

ACKNOWLEDGMENT

In the writing of this document, the author has mixed -
new material with descriptions adapted from the LISP 1.5
User's Manual and from the book The LISP Programming
Language: Its Operation and Applications. He also wishes
to acknowledge contributions in subject matter and
clarification by Clark Weissman of SDC, Robert A. Saunders
and Dr. Paul Abrahams of Information International,
Incorporated, and Prof. Dan Bobrow of Massachusetts
Institute of Technology.

The Q=32 LISP system is based on a compiler written in
LISP and compiled by itself on an IBM 7090, then merged
into a machine coded section assembled in SCAMP on the
Q-32. The compiler was written by R. A. Saunders of
I.I.I., based upon the Hart Compiler for the M-460
computer, with assistance from T. P. Hart, D. Edwards and
M. Levin of M.I.T., and Prof. J. McCarthy and S. Russell
of Stanford University. Some system functions were
written by C. Weissman and the author.

)
J

N

)

9 August 1965 ™-2337/101/00

5
(Page 6 Blank)

CONTENTS
Page
1. Introduction T
2. Using the Time-Sharing System for LISP 8
2.1 General Procedure for Message Input 8
2.2 Specific Procedures for Using LISP 8
3. The Q-32 LISP System 13
3.1 Reading and Printing 1k
3.2 Types of Variables 16
3.3 Data Structure in Q-32 LISP 19
3.4 Evalquote 29
3.5 Macro and the Macro Expander MDEF 29
3.6 IAP, Pushdown List, Closed Subroutines 32
. Reserved Atoms in Q=32 LISP L3
b1 Summary of Functions, Forms, Macros, 43
and Reserved Atoms
k.2 Common LISP Functions _ 5k
4.3 Evalquote Functions 64
bl Q=32 General Purpose LISP Functions 66
k.5 Arithmetic Functions and Predicates 80
k.6 Buffer Functions and Save 84
Iist of Figures
Figure 1 Storage Allocation in:LISP System 20
2 Use of Word Within Q-32 LISP 23
3 Examples of Q-32 LISP Structures 25
L Q-32 LISP Pushdown List 39
List of Tables
Table 1 Available Functions 50
2 Compiler Functions _ 51
3 Evalquote Functions 52
3 Character Objects 53

9 August 1965 ™-2337/101/00

—~

L. INTRODUCTION

This manual is intended for those already familiar with the LISP programming
language. It contains a description of the internal mechanics of the Q=32
LISP system and supersedes any prev1ous description of the Q=32 LISP system.
The reader is referred to Ref. 1¥ and to the LISP 1.5 Manual (Ref. 2) for
additional descriptions of LISP 1.5 language and its use. Input-output and
library functions of Q-32 LISP 1.5 Mod. 2.5 are given in E[M-2337/102/00° for
Mod. 2.6, they are described in TM-2337/111/00.

The beginning LISP user will find the Q-32 LISP Primer (Ref. 3) useful.
Further information on the Q=32 Time=Sharing System can be found in Ref. k4.

The Q-32 is a l's complement binary computer with a 48-bit word length and
65,536 words of storage. Core speed is about 2 microseconds;, and some instruc-
tions overlap. It has an accumulator, an accumulator extension called the B-
register, eight index registers, and various other electronic registers.
Peripheral equipment includes 16 tape drives (729 IV), about 700,000 words of
drum storage, a card reader, card punch, and a line printer, 6 display consoles,
a RAND tablet, and 50 remote typewriter stations. A PDP-1l is used as a peri=-
pheral processor to service time-shared teletypes. When run under time-sharing,
the lowest 16,384 registers are used by the Executive.

The external 1anguage is compatible with LISP 1.5. Some features are not
implemented at present. Most programs that will run with 7090 LISP will run
on Q=32 LISP without change.

From the user's point of view, the Q=32 LISP system is seen through a version
of Evalquote, which reads a pair and executes it. As in T090 LISP, the pair
is a function and a list of arguments. If the function is an atom carrying a
functional definition, that definition, in the form of compiled code;, is
applied to the arguments. If it is a functional expression, the expression is
compiled and then executed.

Because the Q-32 LISP system is compiler-oriented rather than interpreter-
oriented, the user should expect:.

~» Programs to run faster on the Q-32 than (uncompiled) on the 7090.

» To have to pay more attention to variable declarations than in
an interpretive system, where free variable bindings are
available automatically.

. To have less thorough error-checking by the LISP system.
In particular, there is no check to see that the proper
number of arguments is supplied to functions.

The Q=32 LISP system in current use is Mod. 2.5, and has been considerably
" changed from Mod. 1.0 system described in Ref. 1.

9 August 1965 8 | T™-2337/101/00 | (,)

2. USING THE TIME-SHARING SYSTEM FOR LISP

In this section, the steps necessary to use the Q-32 LISP are discussed.
These steps include both the communications with the time-sharing Executive
and the communication with the LISP system itself.

2.1 GENERAL PROCEDURE FOR MESSAGE INPUT

 Messages are sent to the Time-Sharing System in either of two modes:
Executive mode or object program mode. The Executive mode is used for com-
municating messages to the time-sharing Executive, and the object program
mode is used for communicating messages to LISP. With a few exceptions, the
system stays in one mode until it is specifically instructed to shift to the
other. The two characters, the exclamation point (%) and the quotation mark
(") are used as mode control characters. The exclamation point is used to
go into Executive mode, and the quote mark to go into object program mode.
Typing an exclamation point has two effects: it sets the input mode to the
Executive mode, and, if it is not the first character of the line (mode
control characters excluded), then it-also causes the line to be ignored.

In the latter case, the system sends back a carriage return and line feed.
The quotation mark also cancels a line, but sets the input mode to object
program mode. (If already in object program mode, the quotation mark simply
cancels the line.) (—>

A message (in either mode) is terminated by a carriasge return. Until the
carriage return is received, the message is not sent from the PDP-1 to the
Q-32; thus, a message cancelled by a mode control character is never seen
by the Q-32. It is possible to cancel single characters as well as entire
lines by using the "rub out” key on Model 33 and 35 TTY's. The effect of
this key is to cause the last character to be ignored. It can be used
several times in succession; for example, three rub outs in succession will
cause the last three characters to be deleted from the input message. How-
ever, the effect of a rub out cannot be seen by examining the typed text.

At present, LISP acknowledges & -need for input by ringing the bell. It

is important to wait after typing a line before typing the next line when
communicating with LISP. (If a line has been cancelled with a quotation
mark, however, then the bell signal will not be given, since LISP never
sees the cancelled line.) Any typing on & new line before the bell will be
lost. If either $? or $WHAT? is typed back after input, the system is in
Executive mode. Type " and repeat input.

2.2 SPECIFIC PROCEDURES FOR USING LISP

Initial LOGIN. If you are working at a location remote from SDC, your first
step in using Q-32 LISP is to dial into the Time-Sharing System. This
procedure varies, depending on the nature of the teletype hookup with the
Q-32, and will not be described here. (See Part 1, Vol. 3 of the User's —."
Guide.) Both remote users (when contact has been made) and local users then <7>

O

9 August 1965 | g ™-2337/101/00

type in
LOGIN xxxxx yyyyy

where xxxxx is the programmer s number, and yyyyy is the job number-.

After LOGIN,; the system will type back
$0K LOG ON n

where n is the teletype channel number.

LOAD Command. The next step is to'request LISP to be loaded. The usual
request is

LCAD LISP

Tf there is sufficient space on the drum (approximately 47K is required), the
system will type back

$LOAD n

vwhere n is the channel number, and you can proceed to the next step.
If it types back

$NO LOAD DRUMS FULL

then there is insufficient space on the drums, and you will have to repeat
the procedure later. You can find how much space is available on the drum
without loading, by typing at any time:

¢ DRUMS

If you wish to load a nonstandard private version of LISP, such as one on
which you have some of your own function definitions, then the proper load
command is

LOAD 22442 nnnn

where ££02% is any unique name (6 alphanumeric characters) you choose, and
where nnnn is the number of the tape on which your version is stored. The
full description of the LOAD command is given in Part 1, Volume 4, of the
User's Guide. '

Occasionally, LISP (or your privatevLISP version) will not be stored on‘the
Q-32 disc, but will be available only on tape. - If the system typed back

‘$WAIT

after the load request, then the system is not on disc, and you will have to
wait for the operator to mount the correct tape. After the tape is mounted,
you will receive either the

$LOAD OK

9 August 1965 10 m™-2337/101/00

or the
$NO LOAD DRUMS FULL

message. If you do not get a response to the load request within a few
minutes, repeat it.
Combined LOGIN and LOAD Command. A new feature of the Executive allows the
LOGIN and LOAD ccmmands to be combined. You may type

LOGIN xxxxx yyyyy #4444 nnnn

where the four fields are as previously descrived. If you wish only to ioad'
LISP, then

LOGIN xxxxx yyyyy LISP
is sufficient.

The response of the Executive will be (like that to the LOAD command above)
$LOAD n. |

GO Command. After LISP has loaded successfully, you should type in the command
GO

This command will cause:LISP to start running and will also set the input mode
to the object program mode (so that you should use the quotation mark when
you want to cancel a 1ine) LISP will type back the date and time, Q-32 LISP
model number, and READY, and will then ring the bell. Don't type in any input
until the bell rings. ‘

LISP Input. After LISP has acknowledged the GO commend with the typeout and
the bell, you can type in pairs of S-expressions for Evalquote to execute.
As in T090 LISP, each pair is executed as soon as it is read, and the result
is printed out. After the result is printed, the bell signals that LISP is
again ready for input.

The conventions regarding the pairs for Evalquote are the same as those for
7090 LISP, with minor exceptions. The first element of the pair may be
either a A-expression or a function name. The set of available functions for
Q=32 LISP is not the same as those available for 7090 LISP, but the most
commonly used functions are available. Since Q-32 LISP is compiler-based, the
effect of DEFINE is somevwhat different from that in 7090 LISP. Defining a
function via DEFINE causes the function to be complled and the S-expression
representation to be thrown away.

9 August 1965 11 TM-2337/101/00

LISP Typing Conventions. The Q-32 LISP READ program is independent of line

boundaries so that the last character of the nth line appears adjacent to the
first character of the (n+l)th line. Consequently, a carriage return does

not terminate an atomic symbol, and, if you want to type a message that ends
with an atomic symbol, you must follow that symbol by a space. For instance,

. if Evalquote is given a function of no arguments, the second element of the

Evalquote pair may be written either NIL or (). If NIL is used, it must be
followed -by a space; if the carriage return is typed without a space, the
READ program will still look for a character to terminate the atomic symbol.
(However, typing a blank on the next line will work.)

After Evalquote executes a pair, it throws away the remainder of the last
line that it reads. Thus, if two complete Evalquote pairs are typed on the
same line, the second one will be ignored. For the same reason, an excess of
right parentheses at the end of the second element of an Evalquote pair will
be ignored.

If you are typing in a long expression to Evalquote and you wish to cancel
the entire expression, type the illegal percent character. The effect will
be to cause an error in the READ function so that Evalquote will reject the
entire pair. This trick is useful when you discover an error in a previously
typed line and you want to begin the Evalquote pair over again.

The QUIT Command. After you have finished using LISP, you should terminate

operations by typing in
! QUIT

This command will go to the Executive and will terminate your operation. It
will also disconnect your teletype from the Time-Sharing System.

Reloading. Quite frequently, you may wish to reload without having to QUIT,
LOGIN, and LOAD all over. This can be done by executing the LOAD command
whenever necessary. You needn't QUIT first or LOGIN again as these are done
automatically for you by the system.

SAVE Command. The time-sharing Executive now permits you to dump the current

state of your core onto disc via the SAVE command. The form is
{ SAVE 22244

where 42444 if present is the 6 alphanumeric character name for this file and
must be different from all the names currently on the disc. If this name is
absent (blank), then the file will replace the one that you are currently
using on disc (i.e., the one used in the LOAD commend). The Executive will
respond :

$WAIT
while the dump is in progress, and then follow with

9 August 1965 12 ™-2337/101/00

$SAVE OK |
when completed. If it replies $SAVE NG (NO GOOD) try another name.

Q-32 LISP has a similar SAVE feature, (see section 4.6) with the
dump on tape rather than disc.

The RESCUE Feature. Certain LISP errors, such as illegal address references,
can cause LISP to be interrupted by the time-sharing Executive. The RESCUE
feature provides a mechanism whereby LISP can regain control and function
properly. When such an interrupt takes place, the Executive gives control
back to LISP in a specified location, and LISP will then call the unwind and
backtrace procedures. If either unwind or backtrace itself causes an inter-
rupt, the recovery procedure is halted, and LISP goes directly to the point
vhere it looks for a new Evalquote pair. When a system error occurs, LISP
will print : '

RESCUE n

vwhere n is a code indicating the nature of the interrupt. This printout may
or may not be followed by a backtrace. Occasionally, a RESCUE printout may
result from an illegal input to a LISP system function for which there is no
disgriostic test; generally, the backtrace will make it clear that this is the
difficulty. After the RESCUE printout is complete and the bell has rung, you
can continue with your next Evalquote pair as usual.

Restart Procedure. On occasion, LISP:may get itself into a state where the
only way to get back to Evalquote is to return to the Executive program. In
this case, you can try:
(a) Type

LSTOP . _

to stop LISP and get back to the executive mode.

(b) Type
'$LIV/CR¥
The system will then type back
'$LIV=n
where n is the location at which LISP stofped.,

¥ Carriage return

8

N
< g

9 August 1965 13 | T™--25337/101/00

(e¢) Type
L0002 *

The éystem'will acknowledge‘with;
$MSG IN

(a) Type
/CR
The system should type back
n - 40002' ; where n is the machine address for the symbolic
address $LIV.

If anything else comes back, repeat steps (b) through (d).

(e) Type

GO

LISP will now act as though it had just started up. If it does
does start properly, try typing a space followed by a carriage

return. This step is occasionally necessary when LISP. is hung

up expecting input.

If LISP gets hung up in an output loop, it may be stopped by entering

! Blank CR (if you can get it in). To get going again, use the restart
procedure above. Alternatively, you may press the "BREAK" key which induces
a RESCUE interrupt.

If a LISP error is so bad that the procedure above does not work, then the
only way to recover is to LOAD again. The effect of repeating LOAD will be
to load a fresh copy of LISP. Errors requiring a fresh start can occur if
the "garbage collector"” becomes injured or confused; it will generally be
evident when this is the case. :

3. _ ‘THE Q-32 LISP SYSTEM

This section describes the structure and operation of the Q-32 LISP system.
Section 3.1 discusses reading and printing. Section 3.3 describes the over-
all structure of the LISP system in terms of the core map and data structures.
Section 3.4 describes the working of Evalquote. ‘Section 3.5 describes LISP
Macros and the macro expander. Finally, section 3.6 discusses in detail IAP,
the structure of the Pushdown List, and closed subroutines.

The description of all other functions, macros and special forms is left to
section k.

9 August 1965 1k T™-2337/101/00

Sections 3.1 and 3.2 are of interest to all users of LISP. Sections 3.5 and
3.6 are useful for anyone who tries to write Macros or LAP code. Sections 3.3
and 3.4 are of interest mainly to advanced LISP users who wish to understand
the system completely, modify the system or to make functions which manufacture
other functions.

3.1 READING AND PRINTING

Q=32 LISP read functions READ and READTAPE can be made to accept the following
character set from teletype or magnetic tape card image:

Ietters:

A through Z
/%=

Delimiters
Space , () .

Numerics
+ - @ through 9
Illegal Characters
:># %\ e-Bell]; t2[<
Ignored characters
Line Feed Carriage Return
Special treatment
' (prime)
Atomic symbol is a number or any string of letters and numerics starting with

a letter and terminated by a delimiter, or else an atom input in one of the
following manners:

1) The $$ artifact permits any arbitrary string of characters to be
inserted into LISP as an atomic symbol.

$$@ (string of characters not containing @)@ (where @ is any character)
is used to insert any string of characters as an atomic symbol.

Example: $$/%))/ inserts the atom %)) into LISP

/’\)
"~

<:> 9 August 1965 15 | TM-2337/101/00

2) Outside of a $$ artifact, the special character ' (prime) followed by any
character except carriage return is converted to a character atom whose
representation is the address 1Q4 plus the octal representation of the
character. Thus, 'A (A corresponds to 21Q) becomes address 10021Q.

If ' (prime) is followed immediately by a carriage return, the carriage
return is ignored and the first character from the next line is used to
form the character atom. ' (prime) is not a delimiter, and hence must be
set off on the left by a blank, comma, left or right parenthesis, dot, or
another character atom, or else all characters to the left of the ' (prime)
will be lost.

Thus, '' means character atom corresponding to '

'l means character atom corresponding to 1, ete.

Any character at all may appear in the $$ string except the Carriage Return
and Line Feed characters, which are ignored.

A number is one of the following forms:

(:) ~ integer 1 12 +2EL -35
octal integer 27Q 27Q3 -1hkq -1hQ5
floating point number 1.0 -g.5 +1.75 22l

2.0 +357.75E-3

where E is the power-of-ten scaling of scientific notation for integers and
floating point numbers; and Q is the power-of-eight scaling for octal numbers.
Octal and integer numbers may-have only positive scalings.

Note: A number must start with a numeric. It can contain at most one decimal
point. It may contain the letter E.

All numbers are converted on input to one of three internal representations:
integer, octal, or floating. On output, the numbers are then reconverted.

Floating number input and output conversions give 11 to 12 significant figures.
Floating point printout is 12 places of which the twelfth may be in error by t L.

If the read program encounters an illegal character outside of a $$@ string,
then ERROR is called and the current program is unwound.
Tape Reading and Printing

Tape reading uses the first 72 columns and ignores the last 8 columns of the
- card image to allow for sequencing. '

S

9 August 1965 16 T™- 2337/101/00

Printing using PRINT or PRINTAPE use a 'pretty-print" formatting logic which:
1) prints one S-expression, supplying parentheses and dots as required,

2) prints numbers according to their internal coding:

1000Q prints as 1Q3

512 prints as 512

1.76 prints as 1.T76000000000 Some of these zeros
22.0 prints as 22.09pPPPPPdes may be suppressed

2234.5 prints as 2.234503000PBIE3

3) If the expression will not fit on a 72 character line, the line is
broken as follows:

- after the first RPAR at the lowest parenthes1s depth at which
the line can. be broken and still fit;

- after the:last atomor symbol which will fit, if no RPAR is
found;

- in the middle of an atom as a last resort if no other break point
can be found, e.g., an atom consisting of 73 characters.

If the line is broken, the next line starts with n spaces, where n is the
parenthesis depth, and the line-breaking algorithm is applied to the new line,
except that if an atom has to be broken, or if the parenthesis depth exceeds
70, no indentation is used in prlntlng.

3.2 TYPES OF VARIABLES

In Q-32 LISP, a literal atom can have one of two statuses, Special or Unspecial,
governed by a flag in bit 2 of the atom head (see section 3.3).

Local Variables: If an atom which is not Special is bound in a function by
PROG or LAMBDA, then the atom is regarded strictly as a local dummy variable.
Within the lexical scope of the PROG or LAMBDA the atom neme is simply an
address on the pushdown list. If it is a LAMBDA variable it is bound initially
by the function call, and may be reset within the function (viz. by SETQ). If
it is a PROG variable, it is set to NIL at the entrance to the PROG, and may be
reset by functions inside the PROG, but it is invisible outside of the scope

of the PROG in which it is bound. The lexical scope of a function (i.e., the
variebles bound by IAMBDA) includes any PROG found within the LAMBDA but
excludes any IAMBDA expression within functional arguments in the function. A
local dummy variable is meaningful only at compile time.

Special Variables: An atom which is in Special status always retains its atomic
identity. If used as a free variable, it has the lowest level binding applic- (F\
able at the time of use. If a special atom is bound by IAMBDA, the following
results occur:

9 August 1965 17 TM-2337/101/00

1) At the time of entry into the function, the old value of the variable
is saved on the PDL.

2) The new value of the variable is stored .in the special cell of the atom
replacing the old.

3) All changes to the value of the variable are made in the special cell.

4) At exit from the function, the old value of the special variable is
recovered from the PDL and restored to the special cell of the atom.

If the special atom is bound by PROG, the same steps occur, except that the
nev value of the variable at entrance to the PROG is, as usual, NIL.

From the above it can be seen that a special variable, when used as a free
variable, always shows its most recent binding. (The atoms of 7090 LISP are
thus more similar to the Special atoms of Q-32 LISP than they are to Unspecial
atoms of Q-32 LISP.)

Setting of Free Variables Zero-level Bindings: An atom is considered to have
a zero-level binding if it can be used completely free (i.e., not bound by
IAMBDA or PROG), and acts like a constant. In Q-32 LISP, there is no APVAL
mechanism, and the zero=level binding is done directly in the atom head. The
only exceptions are the atoms T and F which are treated as special cases by
the compiler and cannot be bound by IAMBDA or PROG. (T always evaluates to
quote T and F always evaluates to quote NIL.) Numbers, character atoms, and
NIL cannot be bound.

Zero level bindings of atoms and the current binding of Special atoms in Q-32
LISP are stored in the CAR of the atom head. For unbound atoms, the CAR of
the atom head points to NIL (=¢). For atoms which have a functional binding,
the CAR points to the first cell of the compiled code for the function. All
other special bindings are made indirectly through a special cell pointed at
by the CAR of the atom head (see section 3.3 for examples).

The functions SETQ, CSETQ and CSET may all be used to change zero-level bind-
ings of free variables, but SETQ cannot be used to establish a zero-level
binding and will cause serious errorg if applied to an atom which is either
unbound or has a functional binding.

Really, CSETQ and SETQ are identical except:

l. CSETQ makes variables Special
2. SETQ returns value of 2nd Arg., CSETQ lst Arg.

If a variable is used completely free, i.e., is bound only at zero level, the
action of CSETQ and SETQ are identical, except that CSETQ changes the status of
the variable to Special at run time and SETQ does not. Also, SETQ returns 2nd
Arg, CSETQ 1lst Arg., as value. For variables already in Special status, CSETQ
and SETQ produce identical results.*

* For Special variable X, (CSETQ X Y) is equivalent to (RPIACA (QUOTE X) (LIST Y)),
while (SETQ X Y) is equivalent to (RPLACA (CAR (QUOTE X)) Y). The second form
produces undesirable effects if(CAR (QUOTE X)) is not a true list pointer.

9 August 1965 18 : T™-2337/101/00

Free Use of Unspecial Varisbles: Use of Unspecial variables as free variables
causes the compiler to give a message of the form (variable NOT DECIARED) but
does not prevent correct compilation, since the compiler handles the variable
as if it were Special. However, if at run time the unbound variable has no
Special cell and the function tries to set the variable, a serious error will
be induced. ‘

Functional Argument: Atoms bound by LAMBDA may be used as functional var-
iables in Q-32 LISP with no difficulty. It is not necessary to declare the
functional variables Special, since the compiler recognizes them by context.

In calling a function which requires a functional argument, FUNCTION must
always be used. QUOTE will not work, since the calling function requires the
special binding of a functional argument, not the name of a function, as
described below.

FUNCTION can be used with a simple (atomic) function neme or with a ILAMBDA

or ILABEL expression. In the atom case, FUNCTION causes the special binding
of the atom (the CAR of the atom head) to be passed to the calling function.
Thus (FUNCTION FN) acts like FN, not like (QUOTE FN). (A simple function
name can be used without FUNCTION. This will cause the compiler to print out
(FUNCTION NOT DECIARED) but it will work.) In the case of a LAMBDA or IABEL
expression, FUNCTION causes the functional argument to be compiled at compile
time into a subdidiary function end passes the pointer for the subsidiary
function to the calling function, so that the LAMBDA or IABEL expression case
is reduced to the simple function case. ‘

Examples:

1) Special variables required: X and Y must be declared Special in
order to make the definition of SUBST1 work. Note also use of
FUNCTION: S

SPECIAL ((X Y))
DEFINE (((SUBSTL (IAMBDA (X Y Z)
(MAPCAR 7 (FUNCTION (IAMBDA (J)
(conD ((EQUAL Y J) X) (T 9))))))))))
UNSPECIAL ((X Y))

2) Zero level binding of free variable.
CSET (PI 3.14159)
(IAMBDA (X) (TIMES X PI)) (2)
result 6.28318 PI is Special

~
o,

N
\v/

O 9 August 1965 19 TM-2337/101/00

3) Restoring of higher level bindings, assume PI set as above
(LAMBDA (PI) (CSET PI 5)) (B)
result = 8 B is set to 8 and PI is still 3.14159. Once B
has been bound, SETQ works like CSETQ.
(TAMBDA (PI) (CSET PI B)) (PI)

result = PI. This somewhat confusing example is intended to show
that an atom cannot be set at zero level if it is bound by LAMBDA
or PROG. In operation of this function, the atom PI is first bound
to quote PI, then to 8, the value of B, but at the end is restored
to its original value of 3.14159.

(LAMBDA (X) (SETQ PI X)) (@)

result = @ This time PI is changed to a new value #.

) Another example of FUNCTION
(IAMBDA (X) (MAPCAR X (FUNCTION SUBL))) ((p 12 3)))

1::> result = (-1 ¢ 1 2)

3.3 | DATA STRUCTURE: IN.Q-32 LISP

Storage Allocation: The Q-32 LISP system occupies octal locations L@@ddQ to
v 172777Q in core and has a total length of 46592 (decimal) cells. As shown

in Fig. 1, the space is divided into six areas:

Binary Program Space. Binary Program Space starts at L4@gggq
and may run up to T4776Q. The reserved atom TBPS (mnemonic
for Top of Binary Program Space) points to cell TWT77Q. The
reserved atom BPORG points to the next available cell in
Binary Program Space, and the reserved atom *BPORG is used
to back up in case of error. DEFINE, IAP and MACRO compile
code for all functions or macros into Binary Program Space.

Scratch Program Space. Scratch Program Space starts at 75¢¢¢Q
and may run up to (57(7Q. The cell T60PPQ, which is the origin
of the Pushdown Iist, 1s protected against being overwritten
from Scratch.

Scratch Program Space is used by Evalquote and the functions
EVALQT and *EVAIQT to compile code for interpreting all
functions, Macros and special forms which cannot be operated
directly. :

9 August 1965

Octal Address

Lpde

THTTT
75889

TSTT7
76080

141768

191777
1p2ppd

187777
116809

172575

172576
172577
172609

172775

20 TM-2337/101/00

Remarks

Binary Program
Space v

e=—BPORG is at 6@@52 in LISP 1.5 M2.5

Protected Cell

TE%——TBPS points here

Scratch Program

Space

tzi::fSCRACH_points here
#*SCRACHX points to next available cell

1l

Pushdown List

«=——Pushdown list origin-protected from
Scratch programs

de=—TIndex Register 1 points to étart of
next available block qf PDL.

+e=—Protected from Index Register 1

Atom Heads and
Quote Cells

Je%———OBLlST atom head

Full Word Space‘

y o« 3 m» o e @ @™ oy

o e & o s e @ e o

Free Storage

=

172577 de&——OBLIST Special Cell

1126QQ'LE———Pointer to OBLIST array

OBLIST buckets

Fig. 1

Storage Allocation in LISP System

—~

O

9 August 1965 , 21 T™-2337/101/00

Pushdown List. The Pushdown IList (PDL) starts at location T6@80Q
and may run up to location l¢1777Q, The pushdown block for a
function uses as many cells as the function requires. Index
register 1 always points to the start of a pushdown block and is -
saved and changed by a function to protect its block before it
calls another function. Since the called function could in
principle use up to 32 arguments or l¢¢Q cells;, Index Register 1
is protected from exceeding l¢l7¢¢Q.

The Pushdown IList is used to store all arguments, program variables,
temporary pointers, return addresses, and also the previous

values of special variables which are used as program variables

or function variables. The structure of the PDL is described in
section 3.6.

Atom Heads and Quote Cells. The region of core from 1¢20¢®Q up
to 1PT7T77Q is reserved for quote cells and for atom heads for

‘(unique) literal atoms. OBLIST is at 1020¢9.Q. A quote cell is

a single cell containing only a CAR pointer to an atom or to a
piece of list structure. It is assigned uniquely by IAP (e.g.,
two different references to (QUOTE (A B C)) point to the same
quote cell), is never collected by the garbage collector, and
serves to protect the list structure, atom or number to which
it points. All references from binary program space to LISP
data, i.e., numerical, literal or list structure constants,

are made via quote cells.

An atom head for a literal atom contains an atom head flag (bit
number 1 = 1) and a CDR pointer to a pointer to its print name
and property list. The CAR is either NIL or a special binding.
Bit number 2 of the atom head indicates an atom in Special
status (see section 3.2 for meaning of Special status, and a
later paragraph in this section for further description of Word
Use). Atom heads in Q-32 LISP are not protected by the OBLIST,
but may be collected by the garbage collector under certain
circumstances. If the free cells in the atom head or quote
cell area are exhausted, the garbage collector reclaims all
atom heads which are not in Special status, are not pointed to,
have no binding and have no property list. (The print name is
not considered a property in Q-32 LISP.)

Full Word Space and Free Storage Space. Full Word Space and
Free Storage occupy the region from 114@@fQ to 172775Q jointly.
Full Word Space starts at 110¢@¢¢Q and is filled downward in
Figure 1 (i.e., toward higher numbered registers). It is used
to store arrays. These include print name arrays for literal
atoms and arrays for storing LISP numbers. Free Storage starts
at 172577 and is built upwards, except that the OBLIST buckets

9 August 1965 22 TM-2337/101/00

occupy ‘the area from 1726@@Q to 172775Q. CONS adds one cell

to the top of Free Storage. When Free Storage and Full Word
Space meet, the garbage collector is called to compact Full Word
Space upwards anmd Free Storage downwards. Free Storage is used
only for storage of list structures.

Word Use. The Q-32 data word consists of 48 bits, divided up

into four parts, the prefix, decrement, tag and address, which
ocecupy bits §-5, 6-23, 24-29, 3@-47 respectively. Core loca-
tions in binary progrem space and in scratch space hold instruc-
tions and data cells corresponding to compiled programs. Cells

on the Pushdown list in general hold address pointers as described
in section 3.6,

The use of words within the Atom Head and Quote Cell Ares, Free
Storage and Full Word Space is shown in Fig. 2. Within Atom Head
and Quote Cell Space and Free Storage spaces bit § of the prefix
is used by the garbage collector, bit 1 is always an atom flag
(the function ATOM tests this bit only), bit 4 is used as a flag
indicating an atom in Special status, and the remainder of the
prefix is unused. The tag portion of the word is unused except
for number pointers (which are like atom heads for numbers but
are in Free Storage, are non-unigue, and are never Special).

For number pointers, the tag is Tl for integers, T2 for floating
point numbers and 75 for octal numbers.

A Quote Cell has only a single address pointer in its CAR (the
CDR is always NIL).

Full Word Space is used for storage of arrays. Each array has an
array head cell followed by a contiguous block of core containing
the array-.

Within the array head, bit ¢ is used by the garbage collector,
bits 1, 2 and 3 are unused. Bit 4 is 1 if the array contains
non-list type data (at present the only allowed type). Bit 5
is zero for numerical arrays, 1 for BCD data. The tag is used
for BCD arrays to indicate the number of characters in the last
word (left justified).

The decrement is used to indicate the number of words in the array,
exclusive of the array head. For LISP numbers this is always 1,
while for Pname arrays the length is essentially unlimited. The
CAR of an array head always contains a back pointer to the cell

in Free Storage which points to the array.

Al

O

AR A%

dSTT 2E~B UTUITM PJIOM JO 3sq

Q

garbage collector

S

]

special status

=
1

@ if not special status; 1 if

@ for pointer arrays (not nnp1e=

mented);1l for non-pointer arrays

=
]

1 indicates atom; @ if not atom

5 for octal

word of Pname array

X - Unused (@)

, Word Core
LISP VWord Part Prefix Decrement Address Toca-
Bit [0 L 2 3 4 5|6 through 23| 24=26] 27-29] 30 , tions
Atom Head G 1LXX SX| Pointer to Pneme @ @ ¢ if unbound, 102¢00q
A pointer or pointer to through
Special Binding | 187777Q
Quote Cell coppoe gl ¢) Pointer to Atom
A : Head or List
Structure
Pneme or ILiteral G 9PPPd P CDR-Pointer to)) Pointer to Free
Array Pointer A Atom Head, Quote : Iiteral Array Storage
' Cell, Free Stor- : above
age, or NIL (=p) Full
Number pointer C1pPPP 8l 7| N | Pointer to Word
. : : Space and
A Number Array
v below
List Structure CPpPPP P CDR-pointér to)) CAR-pointer to 172776Q
pointer A Atom Head, Quote Atom Head,
Cell, Free Stor- Quote Cell, Free
age, or NIL (=@) Storage or NIL
(=)
Numerical Array GPpP@1LPl (one word array) 1| ¢ 1) Pointer back to | Full
Head L Number Pointer Word
| Numeric Array cell Numerical wvalue ?E%;;¢Q
Pname or Literal GPPP11Ll Number of array ? B Pointer back to | to above
Array L words ‘ literal array Free
pointer Word
Pname array cell Pname Hollerith left justified filled with octal T7's Space
IEGEND: G - Bit normally zero, used by N - 1 for integer; 2 for floating point;

B - Number of characters (1-8) in last

€2 G96T 3snany 6

00/T0T/LEER-NT

@

9 August 1965 ' 2l | TM-2337/101/00

Atom and List Structures. Fig. 3 shows five examples of atom and list
structures in Q-32 LISP.

In Example 1, the atom DIFFERENCE, the name of a simple function, is shown.
Its atom head in the Atom Head and Quote Cell ares has an atom flag but not
a Special fleg. Hence the prefix is octal 20. The CAR of the atom head
points into BPS to the start of code for DIFFERENCE. The CDR prints through
a pointer cell in Free Storage to a two-word-plus-array-head Pname array in
Full Word Space. The array head has an 3 Prefix to indicate a non-list type
literal array. The 2 in the CDR of the array head shows a 2 word array, and
the 2 tag shows that the last word contains 2 left-justified BCD characters.
The CAR of the array head points back to the pointer cell in Free Storage.
During garbage collection, the Pname array and the Free Storage pointer all
may be moved, but the Atom Head will remain fixed.

Example 2 shows the result of setting the atom ILARR to the zero level binding
$$/-/ . 'The atom ~ is generated Unspecial and unbound, and is pointed to
indirectly from the CAR of the atom head for IARR. IARR is in Special status.

Example 3 shows a LISP number, the integer 1f1 (decimal). Its atcm head,

which is non-unique, is a cell in Free Storage which has the prefix 2¢ to: o Y
indicate an atom, and a tag of Tl indicating a decimal integer. The CAR of (N
the Free Storage cell points to an array of one cell whose arrey head has a

go Prefix to indicate a numerical array, a CDR of 1 to indicate one data cell,

and a CAR pointer back to Free Storage. : “

Example 4 shows an atom with a property list, in this case the Macro PLUS.

The CAR of the atom head points to location @ designating no zero level binding.
The CDR points to a list of three elements whose CARs point to the Pname for
PLUS, to MACRO, and to the start of the code for expanding PLUS expressions.

Example 5 shows a quoted list of three elements. Its Quote Cell in Atom Head
end Quote Cell area is zero except for its CAR which points to the list in
Free Storage Area. The list in Free Storage is made of pointers to atoms A,

B and C respectively. The quote cell can never be collected by the garbage
collector. The list in Free Storage is protected from collection by being
pointed at by the quote cell;, and atoms A, B and C are protected by the quoted
list in Free Storage.

Garbage Collector. The garbage collector in Q-32 LISP is designed to compact
and collect lists and arrays, and to collect those Gensyms and other atoms that
are not being used (i.e., not bound at any level, not pointed to, and having
no property list). The object list is used mainly as a dictionary for atoms,
and if atom cell space is short, the OBLIST is not used to protect atoms.

Quote cells will protect atoms, lists and arrays, and IAP sees that quote cells
are never duplicated; by searching through all existing quote cells, using the
EQUALN test, before establishing a new quote cell. C)

€ *9ta

soIngonIys JsTI 2€-b Jo seorduwexy

* [y

O

DIFFERENCE
|; P CDR T CAR

ointer to start of code for DIFFERENCE
7] [79] |__~P REN

(Not Special status) X
although it has & —Cbl 2o L—"1p0| F——t P31 0000p2] P2

fen binding) ' D IFF E REN
' ' C_E T7I7 77 777777
Atom Head Area Free Storage . Full Word Space

Example 1. Function name -~ DIFFERENCE

— $$/-/

P CDR T CAR
D [_—]

(->->] 1) IR DOy 7,731 Y11
, = TT7TTT 77 1717707

— LARR

P CDR T CAR : o
IfZo 18— — T |

Q-s»l@ﬂ//lifﬁfbl _— ¢3| PP00P1 P
- __ARR 7T TTTT77

Atom Head Area - Free Storage Full Word Space

Example 2. CSET (IARR $$.-.) ILARR is bound and Special
« is unbound and not Special

O

¢e G96T 2sn3ny 6

00/T0T/LECS-NL

€ *31g

(*p3uo)) auxnjomniys JSTT 2E-d Jo sardusxy

123

Pointer from Quote
, Cell or list structure

Exemple 3. The LISP Number 101 (integer)

PLUS
P CDR T CAR
20 | |00 |

Pre- . Pre-

fix CDR Bg CAR fix CDR Teg CAR
| 20 | PPPPP0l T F———>1 2] P0PPP1 PP

00 000000 00 OOOCL45

1l = integer

Free Storage Full Word Space

Atom Head Ares

CDR CAR ' ‘ l ‘ ,
! l_—pl pname array PLUS |

| MACRO |
Pointer to atom head ‘
for MACRO
Pointer to BPS code for
[—1]—P expanding PLUS expressions
Free Storage l Full Word Space

in Standard LISP notion, this is equivalent to

PLUS —— [_—] el] [—MACRO [>t —1
unbound atom Pnam* BPSYcode
pointer PLUS for PLUS

Example 4. An atom with a property list-the Macro PLUS

G96T 3snIny 6

9¢

00/T0T/LEES -WL

€ *8tg

(*P3uoc)) saanjonigs JsTT E-b JO sorduwexy

(QUOTE (A B C)) |

P CDR T CAR ‘ CDR CAR

i1 [— [K

l Pointer to Atom head for A

|—

| ? . ,
Pointe¥ to Atom head for B

- Pointer“to Atom head for C
Atom head or Quote Cell Free Storage Area
Area

in standard LISP notation, this is shown as

Example 5. A quoted list

1

00/T0T/LEEC-WL

G96T asn3ny 6

Lz

9 August 1965 28 T™-2337/101/00

Atoms are always preserved if they are in Special status, have properties, or
if they possess Special bindings. They are also preserved if they are pointed
to from & protected area. Pointers in Binary Program space go only to quote
cells or to atom heads of atoms with Special bindings. Hence, Binary Program
space is not used for marking.

The OBLIST. The OBLIST is a pointer to a series of 125 buckets from each of
which hangsa list of pointers to literal atoms. The bucket from which an
atom hangs is determined by a simple hash coding scheme based upon the first
word of the print neme. The OBLIST is used by the read programs as a rapid
look~-up table for atoms. Whenever atoms are collected by the garbage collec=-
tor, the OBLIST is discarded and the remaining literal atom print names are
bucket sorted again and restrung to create a new OBLIST.

Garbage Collection. Garbage collection is done in a five phase process:

1. All list structure is marked, starting from the quote cells,
the object list or selected atam heads and the pushdown list.
Full words are marked with a bit in the array head, so a bit
table is not required.

2. Full word space is compacted downward. Two pointers start
at the beginning of full word space. The first pointer is
advanced over all full words, and those marked are copied
into the location indicated by the second pointer, which
is advanced for each array copied. The pointer in the array
head is used to update the list pointers to relocated arrays.

3« Free storage is compacted upward by a scheme attributed to
D. Edwards. Two pointers are set, one to the top of free
storage and one to the bottam. The top pointer scans words,
advancing downward, looking for one not marked. When one is
found, the bottom pointer scans words, advancing upward,
looking for a marked word. When one is found, it is moved
into the location identified by the other pointer. A pointer
is left at the location the word was moved from, pointing to
where it was moved to. The top pointer is then again advanced
as before. The process terminates when the two pointers meet.

k, 1List references to the vacated free storage are fixed up by
looking at CAR and CDR of every word on the pushdown list,
on the OBLIST, and in the compacted free storage. Any pointers
to the vacated area are replaced with pointers to the relocated
words, using the pointers left there in step 3.

()

O

O

9 August 1965 29 TM-2337/101/00

5. The OBLIST is re-created if it was not used for marking
. atoms by performing a bucket sort on the print names of the
remaining literal atoms. ‘

3.4 EVAIQUOTE

Evelquote used in the Q-32 LISP works as follows: It takes two arguments,

the first being a function name, the name of a Macro or special form, and the
second being a list of arguments to be regarded as quoted arguments for the
function. It is possible, of course, to have a special form beginning with
IAMBDA or IABEL or PROG or to have (with proper caution being observed) an
expression which, when evaluated, will produce a function deseriptor. If
Evalquote finds that the first argument is an atom and is a bona fide function,
it passes to the ultimate evaluator function ¥EVQ two arguments, the first of
which is a pointer to the machine code for the function. A second argument

is the list of arguments originally given to Evalquote. ‘

In all other cases, namely where the first argument for Evalquote is a Macro
or special form or something which is not an atom, a LAMBDA expression is
concocted and fed to the compiler under the neme ¥FUNC. *FUNC is compiled
into a scratch area which is reused every time Evalquote has to compile.
Finally, Evalquote calls ¥EVQ with the arguments CAAR of *FUNC "and either the
original argument list that was given to Evalquote or, if necessary, an
argument list to which has been appended a list of all quoted variables which
occurred within the first argument that was given to Evalquote. The function
descriptor is modified to accept these arguments as values for additional
variables. These are used instead of quote cells to prevent irreparable loss
of quote cell space. (Once & quote cell is created it can never be collected.)
Once *FUNC has been produced, the original function descriptor can be used
again by giving Evalquote a first argument *¥FUNC, until *FUNC is recompiled

by the next non-atom or -non-function encountered by Evalquote. Evalgquote is

not a function and so is not callable. within the system. However; the system
includes the callable function EVALQT, vhich is a function of the same two
arguments that Evalquote takes at the top level. When EVAIQT is called, the
same thing happens as when Evalquote itself is called at the top level except
that if compilation has to occur, GENSYM's are used to neme all compiled .
functions. Upon return from EVAIQT, these GENSYM s are unbound so that they
can be garbageacollected

3,5 ,MACRO AND THE'MACRO EXPANDER MDEF

Q-32 LISP contains a provision for defining Macros using the function MACRO
and a Macro expander, MDEF, for expanding Macros before a function is com-
piled., The general flow through the system, and a typlcal example, is shown
in the following example:

9 August 1965 30 TM™-2337/101/00 ®

Stage Status Remax;ks
S-expression (Prus3 (IAMBDA (A B C) PLUS is a Macro
input to DEFINE (PLUS é(A B C)))

Processed by Macrél
expander MDEF
S-expression (PLus3 (IAMBDA (A B C) ¥PLUS is a function
input to Compiler (*PLUS A of 2 arguments
' (*PLUS B C)))) ‘

Compiler and
IAP

Binary Code for PLUS3

A Macro is a function of one argument which is applied to an S-expression

before compilation and without evaluation of the S-expression. The argument (*\
of the Macro is the entire form containing the Macro, i.e., the S-expression AA
whose CAR is the name of the Macro. (In the above example, the Macro PLUS

is applied to the argument (PLUS A B C) .) B

In order to define a Macro in Q-32 LISP, one writes the expression for a
function of one argument and gives it to the function MACRO rather than
DEFINE,

MACRO causes the definition to be compiled into binary code, just as DEFINE
would for a function. After the compilation is completed, MACRO then attaches
the pointer to the binary code on the property list of the name of the Macro
under the property MACRO. (For a function, the pointer would be placed in
the CAR of the function neme.) The property MACRO is used by the Macro
expander MDEF to obtain the code for expanding a Macro.

Examples:
1. A simple Macro (not in standard Q-32 IISE?is FILAMBDA, defined as follows:
MACRO (((FIAMBDA (IAMBDA (L)
(LIST (QUOTE FUNCTION)
(coNs (QUOTE IAMBDA) (CDR L)))))))

which converts any S-expression of the form s
(FLAMBDA (Args) expression) ()

O

. 9 August 1965 31 T™-2337/101/00

2,

3.

into the form
(FUNCTION (IAMBDA (args) expression))

The Macro definition of IF is the following:

MACRO (((IF (LAMBDA (L)
(CONS (QUOTE COND) (LIST (CADR L) (CADDR L))
(COND (QUOTE T) (CADDIR L))))))))
which converts an expression of the form
(IF p q 1)
into the form

(cowd (p) (T r))

The Macro PLUS is defined as follows:

MACRO (((PLUS (LAMBDA (L) (*EXPAND L(QUOTE *PLUS))))))

vhere ¥PLUS is a function which adds its two arguments, and the
function *EXPAND is defined in the system by the expression:

DEFINE (((*EXPAND (LAMBDA (L OP) (COND ((NULL (CDDR L)) (CADR L))
(T (LIST OP (CADR L) (CONS (CAR L) (CDDR L)))))))))

If the expression (PLUS 2 3 4 5) is encountered, MDEF will change it to
(*PLUS 2 (PLUS 3 L 5))

and MDEF will then be applied recursively to this expression until
the expression is expanded to the form

(¥PLUS 2 (¥PLUS 3 (*PLUS 4 5)))

Macros can also be used to form functions that qﬁote their arguments as
well as functions of an indefinite number of arguments.

For example, a Macro that would quote all of the list containing it
could be defined by
MACRO (((QUOTEF (IAMBDA (L) (COND ((NULL (CDDR L))

(CONS (QUOTE QUOTE) (CIR L)))

(T (LIST (QUOTE QUOTE) (CIR L))))))))

Then (QUOTEF A B C D) would yield (QUOTE (A B C D)) while (QUOTEF A)
would yield (QUOTE A)

9 August 1965

One will note
expansion mus

32 T™~-2337/101/00

that any function name'that is to appear in the output macro

t be quoted inside of the Macro definition. Mscros and functions

can be freely mixed inside LISP expressions. However, since Macro expansion
occurs at compile time, a Macro must always be defined before its name is
used, and changing a Macro definition has no effect on previously defined

functions or

on the other Macros. (For functions, on the other hand, the

definition existing at call time is the one that counts.)

3.6 . LAP, PUSHDOWN LIST, CLOSED:'SUBROUTINES

LAP:

IAP is a two-pass assembler. It is used by the LISP compiler, but it caen

also be used

for defining functions in machine language, and for making

patches. IAP is an entirely internal assembler. Its input is in the form

of an S-expre

ssion that remains in core memory during the entire assembly,

No input or output occurs. It assembles directly into memory during the

second pass.

IAP can be used just like any other LISP function; however,

since the effect of IAP is to compile code or place a binary patch into core,

and the value
operated at t

Format:

of IAP is not usually of interest to the user, IAP is usually
he highest level for the effect it produces.

IAP is a function w1th two arguments. The first argument is the listing, the

second argume
pairs of the
.table.

nt is the initial symbol table in the form of a list of dotted
form (symbol . value). The value of IAP is the final symbol

The first item of the listing is always the origin. All remaining items of
the listing are either location symbols if they are atomic symbols other than
- NIL, or instructions if they are composite S-expressions.

Origin:

The origin informs the assembler where the assembly is to start and whether
it is to be made available as a LISP function. The origin must have one of
the following formats:

*

If the origin is an octal or decimal number, then the
agsembly starts at that location.

If the origin is an atomic symbol other than NIL, then
this symbol must have a zero-level binding to a number
that specifies the starting location.

@

o

9 August 1965 33 T™-2337/101/00

« If the origin is NIL, then the assembly will start in the
first available location in the binary program space. If
the assembly is successfully completed, then the cell
specifying the first unused location in binary program
space is updated. If error diagnostics are given during
compilation, the binary program counter (BPORG) will not
be moved.

. If the origin is of the form (NAME SUBR n), where n is the
number of arguments that the subroutine expects, then
assembly is in binary program space, as in the case above.
If the assembly is successful, the CAR of the name will be
made to point to the origin of the program. If the assembly
is not successful (if any error diasgnostic has occurred),
then the atom name will point to wherever it was pointing
before and BPORG will be left pointing to the start of the
program that was compiled, so that the next compilation will
clobber it.

Symbols:

Atomic symbols appearing on the listing (except NIL or the first item on the
listing) are treated as location symbols. The appearance of the symbol
defines it as the location of the next instruction in the listing. During
pass one, these symbols and their values are made into a pair list, and are
appended to the initial symbol table to form the final symbol table. The
final table is used in pass two to evaluate the symbols when they occur in
instructions. It is also the value of IAP.

Symbols occurring on this table are defined only for the current assembly.
The symbol table is discarded after each assembly.

Instructions:
Each instruction is a list of froam one to four fields. Each field is evaluated
in the same manner; however, the fields are combined as follows:

o The first field is taken as a full wordo‘

o The second field is reduced algebraically modulo 218
and is OR'ed into the address part of the word. An
arithmetic -fQ is reduced to 777777

o The third field is shifted left 18 bits and then OR'ed into
the word.

. The fourth field is reduced modulo 218 and is shifted
left 24 bits and OR'ed into the decrement.

9 August 1965

Fields:

3h ™-2337/101/00

Fields are evaluated by testing for each of the following conditions in
the order listed:

If the field is atomic:

a. The atomic symbol NIL has for its value the current origin
of binary program space. During an assembly that is not
in binary program space, this cell contains the starting
address of the next assembly to go into binary progrem

space .

b. The atomic symbol $ has the current location as its
value.

c. The symbol table is searched for an atomic symbol that
is identical to the field. ‘

d. If the field is & number, then its numerical value is
used.

If the field is of the form (E g), then the value of the

- field is the address of the S-expression 2, which should be

a literal atom. -

If the field is of the form (QUOTE E): then a quote cell
pointing to a in the address is created (if it does not
already exist). It is the address of the quote cell that
is assembled. Quoted S-expressions are protected against
being collected by the garbage collector. A new literal
will not be created if it is EQUAILN to one that already
exists.

If the second field is of the form (*SPECIAL x), then the

velue is the CAR of the atom x. The.assembled instruction
contains the address of atom X, with the indirect bit set

in the tag field (equivalent to a tag of 20Q).

In all other cases, the field is assumed to be a list of
subfields, and their sum is taken. The subfields must be of
types listed above.

O

9 August 1965

35 T™- 2337/101/00

The set of operations codes that are recognized by IAP is :

Octal code Mnemonic
o1k BUC
020 SFT
050 FST
051 STZ:
100 ADD
110 SUB
120 MUL
134 DVD
200 LDA
204 DM
210 1LDC
220 ILDB
230 IDL
300 FAD
310 FSB
320 FLT
32 FRN
330 FMP
334 FDV
oo CAS
420 1DX
43003 XOR
Lol ATX
430 CON
L3k 1DS
500 STA
50L STB
510 STIL
520 STX
52l ECH
600 BOZ
601 BNZ
604 BSN
610 BOP
6104 BOM
700 BXH
710 BXL
720 BXE
730 BSX
T4 BAX
750 BPX
760 BMX

Name'

Branch Unconditionally-
Shift o

Full Store

Store Zero

Add

Subtract

Multiply

Divide

Load Accumulator

Load Magnitude (Accumulator)
Load Complement(Accumulator)
Ioad B Register

Ioad Logical Register

- Floating Add

Floating Subtract

Float

Floating Round

Floating Multiply

Floating Divide

Compare Accumulator with Storage
Load Index (Register)

Exclusive OR

Add to Index (Register)

Connect Accumulator with Storage
Ioad and Shift

Store Accumulator

Store B Register

Store Logical Register

Store Index (Register)

Exchange Accumulator with Storage
Branch On Zero

Branch On Non-Zero

Branch On Sense Unit

Branch On Positive

Branch On Minus

Branch On Index High

Branch On Index Low

Branch On Index Equal

Branch and Set Index

- Branch and Add to Index

Branch on Positive Index
Branch On Minus Index

9 August 1965 36 T™-2337/101/00

In addition, the following addresses are available

$A Accumulator

$L Logical Register
$2 Zero Cell

($A 1) B Register

The user can add other instruction codes or addresses to IAP at any time by
using CSET. For example:

CSET ($B 777622Q)

would define the address of the B register for IAP. (Actually $B is not in
LISP at present, since the accumulator $A is at location 777621Q and $B can
always be replaced by ($A 1) in IAP.)

Similarly:
CSET (AOR 53QLk)
could be used to define the instruction ACR (add one to register).
In writing LAP code, the programmer should be aware that it is the respdn-
sibility of each LAP procedure to save and restore the pushdown list and any
registers it needs if it branches to some other procedure that can possibly
induce the garbage collector.
1. A typical IAP function is shown in the following examples:
IAP (((ADDL SUBR 1) (BAX ($ 2) 1 L4) (4 (E ADDL) 1)
(BXH *PDIGN 1 *NDPDL) (STX -3 1 4)- (STA 3 1)
(LDA (QUOTE 1)) (BUC (*SPECIAL *PLUS) ¢ 4) (BAX *RETRN 1 -L4)) NIL)

2. Showing the use of LAP to correct a cell in a LISP program:

Cell 145310Q is to be changed to do a branch on plus or minus zero
to cell 4523Q (the number P is slashed)

IAP ((45316Q (BOZ 45323Q § 3Q4)) NIL)

The 34Q in the decrement changes the BOZ instruction from (left
justified octal) 6@P to 60P3 as required by the Q-32 to do a test
on plus or minus zero. IAP returns NIL.

3. Use of LAP to insert a patch. The patch, to branch on zero accumulator
to an error unwind is to be inserted at location 523&5Q, which previous-
ly contained (STA 3 1). To insert a jump at 52345Q, one inputs LAP
((52345Q (BUC NIL)) NIL) IAP prints back NIL.

9 August 1965 37 TM-2337/101/00

Then to complete the code, one inputs
IAP ((NIL (BozZ C § 3Q4) (STA 3 1) (BUC 52346Q)
¢ (LDA (QUOTE (ZERO ACCUMULATOR)))
(BUC (*SPECIAL ERROR) ¢ 4)) NIL)

IAP returns ((c . 6p854Q)).

If the patch was to be inserted in a vital portion of the LISP
system, then it would be necessary to put it in reverse, so that
the patch is operable before the jump. This is done as follows:

First insert
" 1AP (NIL A (BOZ C @ 3qk)
(STA 3 1) (BUC 52346Q)
¢ (LDA (QUOTE (ZERO ACCUMULATOR)))
(BUC (*SPECIAL ERROR) $ 4)) NIL)

IAP returns the locations of A and C ((A . 68651Q) (C . 64@54Q)

Then insert the jump at 52345Q, knowing that the patch starts at
64¢51Q, using

IAP ((52345Q (BUC 6#@51Q)) NIL)

Note that one cannot use (BUC NIL) as in the previous method, since
within IAP, the atom NIL stands for the current value of the binary
program origin and the patch changed it.

Pushdown List:

In Q=32 LISP, the pushdown list is used to store pointers to arguments for
functions and pointers to the values of program variables used by functions.
It is also used to store return addresses for functions and to store the
values of special variables which are used as ILAMBDA variables or PROG
variables, so that at the conclusion of operation of a function the previous
value of a special variable can be restored. The index register 1 always
contains a pointer to the top of the pushdown list at the level of either
the current function or the previous function. Maintenance of the pushdown
list is of paramount importance for all LISP functions. Q=32 LISP uses two
machine cells for each entry on the pushdown list. The odd numbered cells
store the current values, while even numbered cells are used to store
previous bindings of special variables and are not directly used by the
programmer . ' ’

When a function is entered; its arguments are always communicated as follows:
Argument 1 is on the pushdown list at location 3 + PDP where PDP is the
address pointer to the top of the pushdown list.

9 August 1965 38 TM-2337/101/00

Argument 2 is on the pushdown list at location 5 + PDP.
Argument 3 is at T + PDP.

* * L]

Argument i is at (2i+1) + PDP.

The last argument is in the accumulator.

Figure L4 shows the contents of the pushdown list at the time of entrance

into a function of three arguments which uses +two program variables. In
the diagram, addresses increase upward. You will note that of the three
arguments supplied to the function, the first and second arguments are
pointed to from the pushdown list and the third and final argument is in the
accunulator (hereafter this discussion will not distinguish between the value
of an argument and a pointer to it).

If this function calls another function, which function can in turn possibly
cause a garbage collection, it is the responsibility of the current function
to do the following:

1. Protect its arguments by "bumping" PDP upwards N cells, where
N = (number of arguments plus temporary variables + 2).
This is done by the instruction,

(BAX ($ 2) 1N)

which says to add to index 1 (PDP) the number N, which is
the size of the block of cells on the pushdown list we
wish to protect. Then go to the instruction at current
location ($) plus 2. This BAX instruction must be present

as the first instruction in all functions, even if N is zero.

2. The instruction at $+1 must always be of the form
(¢ (E function-name) number-of-arguments number-of-pushdown-
cells).

This is not a real instruction, but is used in back tracing
for error diagnostics.

3. Test to see whether the pushdown list is exhausted. This is
done by the instruction

(BXH *PDIGN 1 *NDPDL).

This instruction is a conditional branch to an error routine
(¥PDIGN) if index 1 (PDP) as incremented by step 1 above is
greater than the limit (¥NDPDL) for the top of the pushdown
list. v

Note that since we bumped the pushdown list pointer (PDP), the
current function references the pushdown list for its arguments

@

<:> -9 August 1965 39 T™-2337/101/00

At entrance to functionﬁ
(puMMY (IAMBDA (A B C) (PROG (Y Z) (vevee (DUMMY ov.e.))))

(DUMMY SUBR 3)
(BAX ($ 2) 1 12)
(¢ (E DuMMY) 3)
(BXH *¥PDIGN 1 ¥*NDPDL)
+13 (STX -11 1 4)
ys————— (STA -51)
Reserved for Z1 +11
Reserved for Y1 +9 .o
72430 ‘ * i
Reserved for CL +7 - (BUC (*SPECIAL DUMMY) @ k)
Bl +5 . & » |
~£:> _AL +3 (BAX ¥RETRN 1 - 12)
Res.for Ret, Address | +1 ‘ P | frer 1st ' . P———
72¢2ﬂ5 Smiacs Te '—P 1 - efter lst recursion o
. Reserved for Z -1 ————PDP¢ - after (BAX ($ 2) 1 12) in
. DUMMY
Reserved for Y -3
Argument C in $A
Reserved for C -5
B =7
12018
Res. for Ret. Addres$ -1l Return address in $Xk
= _ PDPX - before entrance to DUMMY
OCTAL _— . . o
ADDRESS REIATIVE ADDRESS
TO PDP¢

<:> ~ Fig. 4 Q-32 LISP Pushdown List

9 August 1965 : Lo i , TM-2337/101/00

by, address = [(2) (argument number)+l]-N relative to the
pushdown list pointer (PDP).

For the example in Fig. 4, N = 12, +then
Argument 1 at ((2)(1)-12+PDP = =9+PDP

Argument 2 at -T+PDP
Argument 3 in the accumulator

4. sSave index register 4 (RTN), which contains the return address of
the calling routine, on the pushdown list at the beginning of the
list of arguments. That is; treat the return address as another
argument, argument Q; Thus, it always is saved at location
gl-n) + PDP, For the example in Fig. 4 the location is -11 + PDP.
The instruction for this is

(STX (1-N) 1 4).

5. Save the last argument which is in the accumulator on the pushdown
list at the location appropriate to that argument number. For the
example in Fig. 4, that argument is argument 3 and it would be
saved at location

((2)(3)+1) =12+PDP = -5+PDP.
(2+#1)-k = 3-k = 1

The instruction fdr this'is
(STA address 1)

where "address" is as given in step 3 above.

6. If the current function calls another function, the current
function must set up the arguments for that function. Arguments
1 through 4 for that function are entered at locations 3+PDP,
5+PDP, ... (2i+1)+PDP on the pushdown list, with the last argument
entered in the accumulator.

T. Transfer control to the called function. This is done by the
instruction,

(BUC (*SPECIAL function-name) @ L)

8. When ready to return, load the accumulator with the value of the
current function.

9. Reset the pushdown list pointer (PDP) to "unprotect” the arguments
of this function Jjust before exiting. This is done by the
instruction,

(BAX *RETRN 1 -N)

O

9 August 1965 b1 '5 M- 5337/101/00

where N is as defined in step 1, and ¥RETRN is & closed
subroutine for returning to the calling procedure.

There are some exceptions to this which are conveniences in writing LAP code.
For example, if a function does not call another function then it need not
adjust the pushdown pointer; also it need not store index 4, in which case
the function does not need to execute steps 3 through T, and the return, if
index 4 has not been changed, is made via the instruction (BUC § 4) in lieu
of step 9. However, instruction 1 must remain of the form (BAX ($ 2) 1).

Closed Subroutines:

A closed subroutine is written in IAP (it cannot be defined directly in LISP)
by starting with (NAME SUBR ¢)@ Closed subroutines can be used wherever
desirable. They usually have to include provision for storing -the program
counter into an instruction, and the last instruction in the subroutine is

a BUC to whatever address was stored in that cell. There are several closed
subroutines which are used by all arithmetic functions and which therefore
deserve specific note. They are described here along with the special closed
subroutine ¥LIST which is used by the compller to expand the special form
LIST.

*CMPAT. This routine, starting with a pointer to a LISP number in the third
cell of the pushdown list, and a pointer to a second number in'the accumulator,
returns with the value of the first in the accumulator and the value of the
second in the B register, and index register 2 set to 2 if the final numbers
are in floating point format; and set to 1 or 5 if they are in fixed point
format. If either of the orlglnal LISP numbers pointed to was floating, the
result is always floating.

*DIVIDE. *DIVIDE is a closed subroutine which uses *¥COMPAT to place the
numerical value of the first of two numerical arguments into the accumulator
and the second in the B register, and to set index register 2 to 2 if the
numbers are floating. ¥DIVIDE then divides the two numbers using either
integer or floating point division, rounds a floating result, and returns
with the quotient in the accumulator, the remainder in the B register, and
index register 2 set to 1 for integer numbers or 2 for floating point numbers.

¥FIXVAL., *¥FIXVAL is a closed subroutine which, starting with the accumulator
pointing to-a LISP number, exits with the 1nteger part of the number in the
accumulator.

*LIST. Is a subroutine which forms & list of n elements. It is used by the
campiler in expandlng the special form LIST. The calling sequence for ¥LIST
is: . : , .

9 August 1965 42 T™-2337/101/00

(BSX *¥LIST 2 n)
(#4,°1)
(8 2, 1)

* o @

($2 1)
where n is the number of elements, and El, 2

see zn are pointers to the n
elements to be listed.

2

*MKNO. This routine, given a number in the accumulator and the appropriate
number 1, 2 or 5 in index register number 2, returns with the accumulator
pointing to a LISP number of the appropriate representation.

¥NUMVAL. This routine enters with the accumulator pointing to a LISP number
and exits with the accumulator set to the same LISP number and with index
register 2 set to the value 1 for a decimal integer, 2 for a floating point .
number and 5 for an octal number.

¥PDIGN. *PDIGN is an error routine which prints out the message (OUT OF
PUSHDOWN LIST) and unwinds LISP. As shown earlier in this section, this
routine is called by most LISP functions by the instruction

(BXH *PDIGN 1 *NDPDL)
after the PDL pointer has been set.
¥RETRN. +#RETRN is not a closed subroutine,-but is the common exit point for

most of the system's closed subroutines and IAP functions. It consists of
exactly two instructions, ‘

(LDX 1 1 &)
(BUC @ L).

and

The first instruction loads index register 4 (RIN) from the contents of
register 1+PDP. This is the location on the pushdown list of the return
address of the current calling routine. It was set by the instruction

(sTX (1-N) 1 &)

as we saw earlier in step 4 of section PUSHDOWN LIST. The second instruc-
tion branches to that return address.

The best way of determining how TAP programs are written is to trace LAP

vwhen defining a function or to perform CSET (PRINLIS T). The result will
be the LAP code for that function which should be in accordance with the

discussion herein.

0

9 August 1965 43 T™-2337/101/00
L, RESERVED ATQMS IN Q-32 LISP
L.1 SUMMARY OF FUNCTIONS, FORMS, MACROS AND RESERVED ATOMS

This section summarizes the reserved atoms in‘Q-32 LISP as_of 1 August 1965.

Table 1 lists all functions, special forms, atoms and macros vwhich are of
general utility to LISP users., These are described further in sections 4.2
through 4.9 as indicated in the table”.

Table 2 lists a set of functions which comprise the compiler and are not
further described in this document.

Table 3 lists functions which constitute Evalquote in Q=32 LISP. They are
described in section 4.3.

Table 4 lists reserved atoms, the inadvertent use of which can wreck the
system.

Table 5 contains a list of character objects which are currently installed.

Section 4.2 describes those basic LISP functions which are essentially
similar to those of 7090 LISP.

Section 4.4 describes general Q-32 LISP functions which are either not
contained in 7090 LISP or which differ in some respects from 7090 LISP.

Section 4.5 describes arithmetic functions of Q-32 LISP, while section 4.6
describes buffer-handling functions. File input-output and library functions
of Q-32 LISP are given in TM-2337/102/00 for Mod. 2.5 and TM-2337/111/00 for
Mod. 2.6.

Several other functions have been described in earlier portions of the text:
IAP and closed subroutines which are callable only from IAP code are
described in section 3.6. MDEF and Macro were described in section 3.5.

7 o , , , .
In Table 1 under Remarks, letters E and C denote functions used by
"Evalquote or the Compiler, respectively. Changing the definitions of any
of these is likely to wreck the system. ' ’

9 August 1965 Lh TM-2337/101/00

Table 1. Aveilable Functions

The following functions, special forms, atoms and macros are available
in the system for general utility.

Neme Type' Mowents Remarks® Sectiond
ABSVAL SUBR 1 c k.5
ADDL SUBR 1 c % L.5
APPEND SUBR 2 EC L.b
AND Form ~ ‘Indef. EC * 4.2
ATOM SUBR 1 c * L.
BLANKS SUBR 1 c L.y
CAR SUBR 1 EC * L.2
CDR - SUBR 1 EC * Lh.2
CAAR-CDDDDR SUBR 1 EC 4.2
CHARP SUER 1 EC LYy
COMPRESS SUBR 1 L.L
*COMPAT SUBR R LC 3.6
CONC Form Indef. c L.y
COND Form Indef. EC 4.2
CONS SUBR 2 EC 4.2
CSET SUBR 2 EC L.y
CSETQ Form 2 EC by
DEF1 SUBR 2 c L.y
DEFIIE SUBR 1 4.6
DEFINE SUBR 1 c L.y

1 SUBR = function; Form = special form; Atom = special atom

- = for system programming only, not general programming; L = useful
within IAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as T090 LISP

9 August 1965 45 T™-2337,/101/00

Table 1 - Cont'd.

* Name gzggl No. of Remark52 Section3
Arguments
DEFLIST SUBR 2 * h.4
DELETEL SUBR 2 b.h
DIFFERENCE SUBR 2 c * L5
DOTPAIR SUBR 2 L.h
DIVIDE SUBR 2 * L.5
¥DIVIDE SUBR o L 3.6
ENTIER SUBR ‘1 k.5
EQ _ SUBR 2 EC * L2
*EQN SUBR 2 -C h.s
¥EQP SUBR 2 -C h.5
EQUAL SUBR 2 EC * L.
¥EQUAL SUBR 3 -EC CohL
EQUALN - SUBR 2 EC bk
ERROR SUBR 1 EC LY
EVALL SUBR 1 bl
EVAIQT SUBR 2 Cc 3.k
*EVALQT SUBR 3 - E 4.3
EXP SUBR 1 k.5
¥EXFF SUBR 1 k.5
EXPT SUBR 2 4.5
*EXPTI SUBR 2 k.5
*¥EXPAND SUBR 2 EC 3.5
EXPLODE SUBR 1 b.h

SUBR = function; Fom = special form; Atom = special atom

- = for system programming only, not general programming; L = useful
within IAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as 7090 LISP

9 August 1965 46 T™-2337/101/00
Table 1 - Cont'd

No. of

Name ng_l' ' ' Arguments. Remark32 Sec‘c:l.on3 :
F Atom Ec * 4.2
FIRST SUBR 1 L.L
FIXP SUBR 1 c | * 4.5
*¥FIXVAL SUBR)] LC 3.6
FLOAT SUBR 1 k.5
FLOATP SUBR 1 c * 4.5
FUNCTION Form 1 E b.b
GENSYM SUBR 8] EC * L4
GET SUBR 2 Ec % L
GETBUF SUBR 2 4.6
*GETNO SUBR 1 - b.h
co Form 1 EC * Lo
GREATERP. SUBR 2 EC * 4.5
JUST SUBR 1 c b5
LABEL Form 2. E * Lh.2
IAMEDA Fomm 2 EC * 4.2
IAP SUBR 2 c 3.6
IAST SUBR 1 c L.
LEFTSHIFT SUBR 1 c bk
LENGTH SUBR 1 EC * L2
LESSP SUBR 2 c * 4.5
LIST Form Indef. EC *¥ 4.2
*LIST SUBR '8 LC 3.6
*LOCN SUBR 1 -C L.L
1 SUBR = function; Form = special form; Atom = special atom
2 - = for system programming only, not general programming; L = useful

within IAP code only; E = used by Evelquote, C = used by Compiler
3 Section in which described; * = same as 7090 LISP :

O 9 August 1965 b7 T™-~2337,/101/00
o ‘ Table 1 - Cont'd

1 No. of 5 .3

Name Type Arguments Remarks Section
LOG SUBR 1 4.5
LOGAND Macro : Indef. * L5
*LOGAND SUBR 2 L 4,5
LOGOR Macro Indef . * 4,5
*LOGOR SUBR 2 L L.5
LOGXOR Macro Indef. * k4.5
*LOGXOR SUBR 2 L k.5
MACRO SUBR “1 ‘ 3.5
MAP SUBR 2 c * L.h
MAPCAR’ SUBR 2 EC L.k
MAPCON SUBR 2 c * L.L
MAPLIST SUBR 2 c h.b
MAX Macro Indef. * h.5
Q *MAX SUBR 2 ‘ L " L.5
MEMBER SUBR 2 EC b4
- MIN Macro Indef. * 4.5
*MIN SUBR 2 L " k.5
MINUS SUBR 1 c 4.5
MINUSP SUBR 1 c 4,5
*¥MKNO SUBR) LEC 3.6
NCONC SUBR 2 EC * L2
NIL Atom EC * L4.2
NOT Form EC * 4,2
NULL SUBR EC * Lh.2
NUMBERP SUBR c * b.h

1 SUBR = function; Form = spec¢ial form; Atom = special atom

- = for system programming only, not general programming; L = useful
-within IAP code only; E = used by Evalquote; C = used by Compiler

O 3 Section in which described; * = same as T090 LISP

9 August 1965 | 48 TM-2337/101/00
Table 1 - Cont'd

1 No. of. - 2 3
Name . . Type™ - Arguments Remarks Section
*NUMVAL SUER)] LC ' 3.6
OBLIST Atom) E C * 4.2
OR Form - Indef. EC * 4.2
PAIR SUBR 2 c * L2
¥PDIGN SUBR | ' LEC 3.6
*PLANT SUBR 2 -C bk
PLUS Macro Indef. * .5
¥PLUS SUBR L2 L 4.5
PRING SUBR 1 EC L.y
PRINL SUBR 1 EC * L.
PRINT SUBR 1 E * b4k
PRINTCH SUBR 1 L
PROG Forn Indef. EC * L2
FROG2 SUBR 2 c * L2
PROP SUBR 3 c * L.
QUOTE Form 1 EC * k.2
QUOTIENT SUBR 2 * L4.5
*RATOM SUBR) E L.
READ SUBR) E * 4.4
READL - SUBR [E L.b
READCH SUBR - @ b.h
REMAINDER SUBR 2 * L,5
*RETRN SUBR) LC 3.6
RETURN Form 1 EC * L2
REVERSE SUBR 1 c - * L4,2
RPIACA SUBR 2 EC % L2

1 SUBR = function; Form = special form; Atom = special atam

= = for system prograxmﬁing only, ‘not general programming; L = useful
within IAP code only; E = used by Evalquote; C = used by Compiler

3 Section in which described; * = same as 7090 LISP

O 9 August 1965 Lo T™~2337/101/00

- Table 1 - Cont'd
1 No. of 5 3
Name Type Arguments Remarks Section
RPIACD SUBR 2 EC ¥ L2
SAssoC SUBR 3 c * Lh.2
SAVE SUBR 1 4.6
SELECT Form Indef. EC * b2
SET Form 2 not L.y
implemented

SETBUF SUBR 2 k.6
SETQ Form 2 EC * bL.L
SPECIAL SUBR 1 E Ly
*SPECBIND SUBR 1 LcC 3.6
SQRT SUBR 1 k.5
SQUOZE SUBR 1 hb
SUBL SUBR 1 k.5

Q SUBST SUBR 3 c ® L4
T Atom ' EC * L2
TEREAD SUBR) E h.L
TERPRI SUBR) . E * L.
TIMES Macro Indef. * bL.5
*TIMES SUBR 2 L k.5
TRACE SUBR 1 *¥ L.h
UNSPECIAL SUBR 1 E bh
UNTRACE SUBR 1 * L.6
ZEROP SUBR 1 c * L,5

SUBR = function; Form = special form; Atom = special atom
2 = = for system programming only, not general programming; L = useful
* within IAP code only; E = used by Evalquote; C = used by Compiler

| Q 3 Section in which described; * = same as 7090 LISP

9 August 1965 50 ™-2337/101/00

Table 2. C@pilei' Functions

The following set of functions are used by the Compiler, and are not
directly useful to most LISP users:

ATTACH COMBOOL PA3
#CPhob COMCOND PAL
*CP586 COMLIS PAS
*CP6PL CMP PAT
*C@895 COMPACT PA8
*CLT7P6 COMPLY PA9
#C1852 COMPROG PAL2
*#C1927 ~ COMVAL PAFORM
*C1946 *CONDERR PATRMAP
#2179 DIFFER PALAM
#02293 IAC PASSL
*C2572 TAPEVAL PASS2
#02598 LOCATE P11
#2671 LSHIFT P13

- #C285L MDEF PROGITER

- #2859 *MKTRC *GETFLAG
CALL #MKUNT SPECBIND
CEQ PAl SPECRSTR
¥CLRFTAG STORE

‘/\j
AN

O 9 August 1965 s TM-2337/101/00

Table 3. Evalquote Functions

The following seven functions constitute Evalquote in Q-32 LISP and are
not directly interesting to most LISP users: _ '

coM2
*DEFQ
*EVQ
*EVALQT
XEXPQ
*¥MGSYM
*¥SUPV

9 August 1965 - 52 ™-2337/101/00

Teble 4. Reserved Atoms

Other than the names of functions, special forms, macros,
and atoms used with ILAP as noted herein, there exists a
collection of ATOMS reserved by the system for Evalquote,
IAP, and the computer, which should be avoided by the
user at all cost. Their unintentional use could wreck
the system. These reserved ATOMS include:

*NIL - bound to location @

BPORG - pointer to next cell for compilation
*BPORG - backup pointer for BPORG

*SCRACH - pointer to sﬁl;a.rt of Scratch area
TBPS - pointer to top of Binary Program Space
PRINLIS - used as free variable by compiler
*¥SCRACHX = pointer to next cell in Scratch —

*NDPDL constant used to test for top of Pushdown List

The following atoms are clobbered by Evalquote and cannot be
bound by the user:

*FGNSL ¥FVAL *VALIST

Q '9 August 1965

Table 5.

53

™-2337/101/00

Character Objects

The system currently contains an incomplete set of
Hollerith objects.

The atom names below are bound to character values which
print as indicated.
teletype can be entered into the @-32 system via the $$
artifact which is available as specified in the LISP 1.5

‘Manual for 7090 LISP.

Object
LPAR
PERIOD
BIANK
RPAR
Q DOLLAR
STAR
- SIASH
EQSIGN

Value

N

°

Blank

~ k

Object

COLON
LARR
UPARR
LSTHAN

GRTHAN.

O0f course, any character on the

Value

1

VA -~

Any other Hollerith objects can be added by the user as

desired, viz., CSET (PERCENT 3/%/)

9 August 1965 i TM-2337/101/00

L2 COMMON LISP FUNCTIONS

This section contains brief descriptions of atoms and functions which are
common to Q=32 LISP and 7090 LISP and which act the same in both. Their
names are:

AND TAMEDA PROG
CAR . LENGTH PROG2
CDR LIST QUOTE
CAAR - CDDDDR ~ NCONC RETURN
COND NIL REVERSE
cong NOT RPLACA
EQ NULL RPLACD
F | OBLIST | SASSOC
Go 1 " OR SEIECT
LABEL PAIR 7

" In addition, the following functions are available in Q-32 LISP but are
slightly different fram the same functions in 7090 LISP. They are
described in section k4.4,

APFEND GET READ

ATOM LEFTSHIFT SETQ

CONC MAP | SPECTAL
CSET MAPCON SUBST
CSETQ MAPLIST TERPRI
DEFINE MEMBER | TRACE
DEFLIST PRINL. . UNSPECIAL
EQUAL PRINT UNTRACE

GENSYM _ PROP

O

9 August 1965 55 TM-2337/101/00

Function Descriptions:
In the following description, all functions and forms which can be given to
Evalquote at the top level are shown in external Evalquote form. Those which

" cannot be given to Evalquote directly are shown in internal LISP format.

AND (xl, Xy oo xn) Special Form Predicate " (Compiler, Evalquote)

AND is a special form of an indefinite number of arguments. Its
arguments are evaluated in succession until one of them is found
to be NIL (false) or until the end of the list is reached. The
value of AND is then NIL or T (true) respectively. The value of
(AND) of no arguments is T (true).

CAR (x) SUBR ; (Compiler, Evalguote)

If x, the argument of CAR, points to a character atom or NIL, CAR
induces the error ((CAR CHARACTER) NOT DEFINED) or

((CAR NIL) NOT DEFINED). Otherwise, CAR leaves in the accumulator
the entire word which was pointed at by the address portion of X.
(This makes it possible to use CAR to transmit an entire instruc-
tion word, as required for example by the function *EVQ. Almost
all LISP functions look at only the address portion of the accumula-
tor, and so the effect of CAR is to return the address portion of

x).

CDR (x) SUBR (Compiler, Evalquote)

If x, the argument of CDR, points to a character atcm or NIL,
CDR induces the error ((CDR CHARACTER) NOT DEFINED) or

((CDR NIL) NOT DEFINED). Otherwise, CDR returns the contents of
the decrement of x.

CAAR—CDDDDR are all defined in Q-32 LISP as comp051tlon functions of CAR and
CDR.

(COND (p, e,) (P, e,) oo (pe)) Special Form (Compiler, Evalquote)
171 2 72 nn

The special form COND takes an indefinite number of argument
clauses in the form of pairs (p e). where B; is a predicate and e,
is a form.

The parentheses in COND have a different meaning than they do in any
other LISP form, in that (p; el) does not mean to apply function 121
to argument e, . Instead, p's are evaluated from left to right until
the first one, say p,, is found that evaluates to true, or specif-
ically, is not EQ to NIL. The effect of the entire COND is that of
the associated form e, ; all other e (i £t) and Py (i > t) are
not evaluated (operated).

9 August 1965 56 - ™M-2337/101/00

CONS (x y)

EQ (x y)

p; may in general be any form in LISP except the specific statement
forms (GO label) or (RETURN value) since these have no value.

If COND is used anywhere except as a top level statement within
PROG, then at least one of the P; must be true (typically, the last
pn is the atom T). If none are true, an error will be detected at
operate time. (If none of the p, are the atom T, the compiler
inserts the pair (T (*CONDERR)) &t the end of the COND.) None of
the expressions e, may be of the form (GO label) or (RETURN value).

If COND is used at the top level of a PROG, then it is arstatement
executed for effect not value (except when an e is of the form
(RETURN value)),and the following differences occur:

1. The requirement that one of the p. be true is waived.

If all p, are NIL, the COND falls through to the next state-
ment. '

2. Any of the forms ei may be of the form (RETURN x), where v
is an expression to be evaluated and is the value of the PROG.

3. Any of the forms e, may be a statement of the form (GO(£)
where £ must be a Tabel which is used in this PROG (see PROG).

Because of the peculiar method of evaluating its arguments, COND
cannot be used as the function name at the top level of Evalquote.

SUBR : (Compiler, Evalguote)

CONS is a basic function of LISP which takes a cell from free
storage, places x and y in the address portions and decrement
portions of the cell, respectively, and returns a pointer to the
address of the new cell.

SUBR (Special Fom) (Compiler, Evalquote)

EQ tests for equality of the addresses of its two arguments x and
Yo If x and y are the same literal atom, the result is T. If
both arguments are numbers or lists, then EQ is undefined. In all
‘other cases, EQ returns NIL.

O

O

9 August 1965 57 T™-2337/101/00

(Go)

When it is used as a predicate, EQ is compiled as open code.
For other uses, the function EQ is defined by:

(EQ (1AMBDA (A B) (conD ((EQ A B) T) (T NIL))))

Special Atom : "~ «(Compiler, Evalquote)
The Special Atom F may be regarded as permanently evaluated

to NIL. Whenever F is encountered outside of a quoted expression,
the compiler replaces F with (QUOTE NIL), whose value is later
changed to NIL (address = §) by IAP. Thus, F cannot be bound

by LAMBDA or PROG. However, F does not yield NIL until it is
evaluated, and is not the same as NIL when given to Evalquote,
vhich quotes its arguments. Thus:

AND (T NIL) = NIL while

AND (T F) T,

since F in quoted status is not NIL, and thus is true.

On the other hand,)

(rAMBDA () (AND T F)) () = NIL, ,

for in this expression F is evaluated, not quoted, but

(1AMBDA () (AND (QUOTE T) (QUOTE F))) () = T.

The atom F can be given a zero level binding by CSET; .8,
CSET (F FALSE), but the binding is not useful, since it can be
picked up only by performing (CAAR (QUOTE F)).

Special Form PROG only) “(Compiler, Evalquote)

GO is a special form valid only within PROG. (GO £) causes
the flow of the program to move to the label £ within the
PROG. See PROG.

(IABEL nsme (IAMBDA-expression)) Special Form

IABEL is a special form used to give a LAMBDA-expression a
name so that it can be called recursively from within the
IAMBDA-expression. IABEL causes compilation to occur in a
manner similar to DEFINE in Q-32 LISP, but with two differ-
ences:

1. ‘the name used in IABEL is local, and can be seen only
within this LABEL form. It thus can cause no conflict
with other functions or atoms used in the system.

2. LABEL defines a single function, while DEFINE can take
many functional expressions.

9 August 1965 58 TM-2337/101/00 @
(IAMBDA args expr) Special Form ‘ - (Compiler, Evalquote)

A IAMBDA-expression defines a LISP function, in terms of
a list containing the atom IAMBDA; args is a list of atoms

(a.1 8y oo &) (or the empty list () or NIL), expr is any
single form ?S-expre851on)

IAMBDA serves several functions. First it is a flag telling
LISP that the next list is to be interpreted as a list of
arguments rather than a function to be evaluated. Second, the
S-expression which follows the argument list tells LISP how to
evaluate the LAMBDA expression and compute its value. In Q-32
LISP, IAMBDA-expressions.are always compiled into functions,
and evaluation consists of operating the compiled code.

The atoms a;, in args must be distinct literal atoms, not
including F, NIL, T; and if an atom is to have a functional
binding, it must not be the same as any Special Form (for
clarity, the use of the name of any function or Macro should
be avoided).

The args a; are in general dummy arguments for the LAMBDA (ﬁ\
expression or function, and refer only to cells on the push-
down list. However, if any of the a; have been declared
Special prior to compilation, then the actual atom a; is used
in the function and the compiled code saves the prior binding
of a; on the pushdown list, binds the atom ay temporarily
during the operation of the function, and restores the previous
binding when exiting from the function.

The S-expression is any single function or PROG to be evaluated,
~using some or all of the arguments a;. If the IAMBDA-expression
is used within DEFINE, MACRO or IABEL and has a name, this name

may be used in its own definitione.

A TAMBDA=expression is syntactically equivalent to a function
name and may be freely used wherever a function name is legal.
For exasmple, the following expressions are ccmpletely inter=
changeable forms of the function CDR

i) CDR ,
i1) (1AMBDA (X) (CIR X))
iii) ((TAMBDA (Y) Y) (FUNCTION CDR))

iv) (1AMBDA (X) (((IAMBDA (Y): Y) (FUNCTION CDR)) X)) -
v) ((1AMBDA (Y) Y) (FUNCTION (IAMBDA (X) (CDR X))))

. <:>. .

9 August 1965 59 T™-2337/101/00

in the above, iv) was obtained by substituting iii) into ii),
while v) was obtained by substituting ii) into iii).

Also, the following expressionsvoperate identically:
((1AMBDA (G) (LIST G G G)) (GENSYM))

and .
(PROG (G) (SETQ G (GENSYM)) (RETURN (LIST G G G)))

IENGTH (x) SUBR (Compiler, Evalquote)

LENGTH applied to a list x returns an integer equal to the number
of elements in the top level of the list. Applied to an atom
it yields zero.

(IENGTH (IAMBDA (M) (PROG (N) (SETQ N @)
A (conND ((AToM M) (RETURN N)))

(SETQ M (CDR M)) (SETQ N (ADDL N)) (GO A))))
LIST (xl %,
LIST takes an arbitrary number of arguments, and constructs
a list out of them. The compiler handles the Special Form
LIST by constructing open code using the function *LIST
(see section 3.6).

*¥LIST calls CONS and the effect is the same as
(cons X7 (cons X, (+.. (CONS X NIL) ...)))

but the actual method employed in Q=32 LISP is considerably
more efficient in terms of length of compiled code and speed
of operation if n > 2.

cos xn) Special Form (Compiler, Evalquote)

NCONC (x y) SUBR (Compiler, Evalquote)

NCONC appends list y onto the end of list x, without copying Xx.
The value of NCONC is the new value of Xx. “The NULL test is
used to find the end of the list x. If x is atomic, NCONC
appends a y onto the end of the property list of atom Xx.

(NcoNc (LAMBDA (X Y) (PROG (M)
(conD ((NULL X) (RETURN Y))) (SETQ M X)
A (coNp ((NULL (CDR M))}(GO B)))

(SETQ M (CDR M))(GO A) (;7‘&—?
B (RPLACD M Y) (RETURN X))))
T 771

9 August 1965 60 T™-2337/101/00

NIL

NOT (x)

NULL (x)

OBLIST

Special Atom , (Compiler, Evalquote)

NIL is equivalent to the empty list () and is treated by the
compiler as a pointer to address zero. On input, () is read
as NIL; in the Compiler, NIL is converted to (QUOTE NIL) while
(QUOTE NIL) is unchanged (see QUOTE). Thus, (), NIL and
(QUOTE NIL) all arrive at LAP as (QUOTE NILs and IAP replaces
(QUOTE NIL) by address $Z or T77€Q2 which contains zero.

The atom NIL actually exists in the system but is used only for
reading and writing the print name NIL, and is not accessible
for binding.

Special Form (Compiler, Evalguote)
NOT is regarded as a Speclal Form by the Compiler, and (NOT X)

is always changed to the equlvalent form (NULL X),

SUBR

NULL is compiled as open code when used as a predicate. For
other uses, the definition used is

(NULL (]'_AMBDA (x) (coND ((NULL X) T) (T NIL))))

;Spec1al Atcm (Compiler)

The atom OBLIST has a zero-level binding to a list of 125 buckets
which occupy adjacent cells in core. From the Ith bucket

(I=60, 1 ... 124) are strung all literal atoms for which the
remainder is I when the absolute value of the first word of the
print name (treated as a number) is divided by 125.

The OBLIST in Q=32 LISP is used primarily as a dictionary for
reading literal atoms, and doces not always protect atoms. If
atom head space is exhausted, marking of atoms for protection
from garbage collection is done from the pushdown list, quote

. cells, and atom head space only. Atoms which have no property

R (p, P,

list are not pointed to and have no binding are removed, and
the remaining literal atoms and gensyms are bucket sorted and
restrung to form a new OBLIST.

coe pn) Special Form (Compiler, Evalquote)

The arguments of OR are evaluated from left to right until
the first true (non-NIL) predicate is found. If a true
predicate is found, the value of OR is T; if the end of the
list is reached, the value of OR is NIL. The value of (OR)
of no arguments is NIL.

o

)

O

(PROG vars s

9 August 1965 61 T™-2337/101/00

PAIR (x y) SUBR (Compiler)

PAIR requires its inputs x and y to be lists of equal length
§=(X1x2 eoe Xn) _y_= (yl y2 eso yn)o

PAIR returns a list of dotted pairs

(e « 7)) (%5 o 7)) oo (x o 7))

as its value if this condition is met.

If the two lists are of unequal length, PAIR induces the
ERROR returns

((PAIR ERROR F2) x y) if x is shorter than y

or ((PAIR ERROR F3) x y) if y is shorter than x.

1 Sp oee sn) Special Fom (Compiler, Evalquote)

PROG is a Special Form that permits LISP programs to be written
in the form of a series of statements to be executed. In form,
PROG looks like a function of an indefinite number of agreements.

Its first argument vars must be either an empty list or a list
of atomic symbols (vi Vo ees ¥), called program variables.
Any program variable which is not in Special status at compile
time is merely a cell on the pushdown list. If a program
variable is in Special status during compilation, its previous
binding is saved on the pushdown list at entrance to the PROG
and is restored at exit, and the current binding is stored in
the CAR of the atom head within the PROG. Thus in either case,
the binding of a program variable is visible only within the
PROG. However, if the variable is Special, it is also visible
when used free by any function called from within the PROG. If
not Special, it is invisible except in the body of the PROG.

The other arguments s, ... s_ of a PROG can be either atoms or
statements. An atom is.reghrded simply as a label which is
local to the PROG. A statement may be any standard LISP form

or expression or may include a GO statement or a RETURN state=-
ment. If there are no GO or RETURN statements, the statements

81 S, «+o S_ are executed by evaluating the corresponding LISP
form“and ignoring the value. (Atoms are disregarded since
eveluating an atom and discarding the value is of no consequence.)
The control "falls out" of the PROG at the end, and'the value of
the PROG is NIL. '

9 August 1965 62 TM-2337/101/00)

The form (GO £), where £ is a label within the PROG, can occur at
the top level “of the PROG as one of the s, or can be used at the
top level of a COND or SELECT at the top 1evel of the PROG. If

- evaluated (GO.&) causes transfer of control to the label £ in the

PROG.

The form (RETURN v) can occur under the same conditlons as
(GO £) but causes v to be evaluated, and causes exit from the
PROG, with v as the value of the PROG.

Within a PROG, COND does not require a T alternative, since control
simply "falls through" to the next statement. SELECT with NIL as
its final expression causes the same effect.

PROG2 (a b) SUBR (Compiler, Evalquote)

(QUOTE v)

PROG2 causes its first argument to be evaluated and returns the
value of its second argument. It is equivalent in result to

(PROG () a (RETURN b)). It is defined by (PROG2 (IAMBDA (X Y) Y))

Special Form (Compiler, Evalguote))
The value of the special form QUOTE is the CADR of the list whose Nt

. CAR is the atom QUOTE. Thus, when evaluated,

(QUOTE A) = A | |)
(QUOTE (A B)) = (A B), etc., but
(QUOTE A B) = (QUOTE A . B) =

A quoted expression stands for itself, and is not evaluated.

In Q-32 LISP structure the form (QUOTE A) is represented by a
quote cell which points to atom A; similarly the form (QUOTE (A B))
is a quote cell which points to the list (A B). Hence, when
(QUOTE A) or (QUOTE (A B)) is transmitted to & function, it is

the address of the corresponding quote cell which points to the

. desgired LISP object or list,

Constants which are numbers, character atoms, T, F and NIL need
not be quoted in Q-32 LISP because the compiler always replaces
the constant n by the form (QUoTE n), and the quote cell

(QUOTE n) is a pointer to the constant n. (F becomes (QUOTE NIL))

_—/ v

9 August 1965 63 T™- 2337/101/00

(RETURN exp) Special Form " (Compiler, Evalquote)

The Special Form (RETURN EEB) is legal only at the top level of a
PROG or at the top level of a COND within a PROG. If (RETURN‘EEE)
is encountered in evaluation of a PROG, the expression exp is
evaluated (operated) and its value is the value of the PROG.

REVERSE (£) SUBR (Compiler)

The function REVERSE has for its valﬁe a list whose elements are
the top level elements of list £ taken in reverse order, e.g.,

REVERSE ((A (BC) D(EF))) = ((EF) D (B C) A)
When applied to an atom or to a list terminated by an atom other
than NIL, REVERSE is undefined.

RPLACA (a b) SUBR (Compiler, Evalquote)

RPIACA replaces the CAR of the cell pointed to by a with the
pointer b. Its value is a but a has been replaced by
(cons b (CIR a))

éfL/:)@ . For example, RPIACA (PI NIL) would unbind a previous CSET value

of PI. CSET (PI 3.14159) is equivalent to
RPLACA (PI (3.14159))
SPECIAL ((PI))

RPIACD (a b) SUBR (Compiler, Evalquote)

RPIACD replaces the CDR of the cell pointed to by a with the
pointer b. Its value is a but a has been replaced in value by
(coNs (CAR a) b).

The use of RPIACD on an atom will destroy the print neme of the
atom and can easily wreck the system. In fact, no useful result
can occur from the use of RPIACD at the top level of Evalquote.

(SASSOC x y £n) SUBR functional (Compiler)

SASSOC searches y which is a list of pairs (usually but not
necessarily dotted pairs), for the first pair whose first element
is EQ to x. If the search succeeds, the value of SASSOC is the
pair. If the search fails, the value of SASSOC is (fn), a function
of no arguments.

9 August 1965 6h TM-2337/1C1/00

(SELECT a

4.3

Because of its functional argument, SASSOC cannot be input as a
function at the top level of Evalquote.

(sAssoc (IAMBDA (X Y FN) (PROG () A (COND ((NULL Y) (RETURN (FN)))
((EQ (CAAR Y) X) (RETURN (CAR Y))))
(SETQ Y (CDR Y)) (GO A))))

(al el) (a e,) eee (an en) eo)

Special Form . (Compiler, Evalquote)

The expression a, is evaluated, then each of the a, are evaluated’

in turn and tested until the first one is found that satisfied
(EQ a, ai). The value of SELECT is then the corresponding e, If

no such a, is found, the value of SEIECT is e,-

SELECT can be used at the top level of PROG in much the same way as
COND. In this application GO and RETURN forms are legal for e; and
ey However, e, ‘cannot be omitted but may be NIL.

The compiler converts SELECT to the equivalent form
((raMBDA (G) (CcoND ((EQ G al) el) ((EQ & a2) e2)
(B Ga)e) (Te))) a)

where G is an arbitrary gensym. (If e, were omitted, the syntax
of the COND would be incorrect.)

Special Atom (Campiler, Evalquote)

The special atom is permanently bound to the value T. Whenever T
is encountered outside a quoted expression, the compiler replaces
T by (QUOTE T). Thus T cannot be bound by IAMBDA or PROG. It may
be bound at zero level by CSET (T TRUE), for example, but the
binding camnot be picked up except by explicitly performing

.(CAAR (QUOTE T)) or (CAAR T), and so is not normally of any use.

EVAIQUOTE FUNCTIONS

The six functions described in this section constitute the Q-32 LISP Evalquote.
The function COM2 is a principal function of the compiler in addition to being
used by Evalquote. These functions are not of use to most LISP users.

*SUBV ()

The supervisor *SUPV is a function of no arguments which calls for
two S-expressions to be read from the teletype, terminates the

input buffer, then calls for (PRINT (*EVAIQT X Y (QUOTE *FUNC))) and
loops back to call for two more S-expressions. (Here X and Y are
the two S-expressions read.)

O

O

9 August 1965 65 m-2337/ 101/00

*¥EVAIQT (fcen args name)

¥BEVAIQT evaluates fcn as a function with arguments listed in args
as follows'

If fen is an atom and is a true function (not a macro or spec:.al
form$ then ¥EVAIQT calls *EVQ to operate the function;

in all other cases, an appropriate Lambda-expression is manufactured
and compiled under the neme name into a reusable scratch area of

- core, using functions *DEFQ, T¥MSGYM, MIEF, CQM2.

*EVQ (locn

Then *EVAIQT calls *EVQ to operate the function and returns the
value.of this funection applied to its arguments.

args)

*¥EVQ operates the function whose code starts at locn with args as
its list of arguments, and returns the value of the function.
Note that if fcn is a function name, then locn 1s in general
(CAAR fen). :

*DEFQ (neme fcn args)

*DEFQ is a defining function which is used by *EVAIQT to prevent
temporarily compiled functions from using up quote cells or giving
permanent bindings to gensyms. It uses ¥MGSYM, MDEF and CQM2.

*MGSYM (value)

caM2 (type

*MGSYM is a macro expander used by ¥DEFQ to remove numbers and
quoted quantities from an expression before compilation, and

replace them by additional arguments. The removed values are

stored on *WALIST. (*EVQ (CAAR FCN) (APPEND (GET *VALIST FCN) ARGS))

nargs exp name)

COM2 is the function which is used by the compiler, DEFINE, MACRO

- and *DEFQ to do the final compilation of all functions. Type is

always SUBR. Nargs is the number of arguments which the function
expects. Exp is the ILAMBDA expression for the function. Name is
the name of the function. CQM2 cannot handle Macros, hence MDEF
must be applied to Exp before COM2 is called.

CM2 is called in the compiler by COMP to compile all LABEL
expressions and all LAMBDA expressions used as functional arguments
after FUNCTION.

9 August 1965 | 66 TM-2337/101/00

bk Q-32 GENERAL PURPOSE LISP FUNCTIONS

This section describes LISP functions which are either different from T090
LISP functions of the same name or are entirely new functions of general
utility. The names are listed below. The sign # before the name indicates
an entirely new. function. , A

APPEND . # EBVALL # PRINg
ATOM # - EXPLODE PRINL
BIANKS # FIRST ‘ . PRINT
CHARP , : FUNCTION # PRINTCH
COMPRESS - _GENSWM ' PROP
~ conc ~ GET | # *RATOM
CSET # *GETNO READ
CSETQ - LAST # READL
DEF1 - LEFTSHIFT # READCH
DEFINE # *LoCN SETQ
 DEFLIST N MAP , - SPECIAL
- # DEIETEL ~ # MAPCAR # squozE
DOTPAIR] MAPCON SUBST
" EQUAL MAPLIST # TEREAD
*EQUAL | ‘MEMBER o TERPRT
EQUAIN NUMEERP | TRACE

ERROR ‘ # *PLANT UNSPECIAL
| | UNTRACE

[
/
O

9 August 1965 67 TM-2337/101/00

APPEND (x

ATOM (x)

BIANKS (n)

CHARP (c)

COMPRESS (

CONC (x,

y) SUBR (Compiler, Evalquote)
If x is not an atom, APPEND returns a copy of x in which y
replaces the CDR of the last cell at the top level. If x is an
atom, APPEND is undefined.

Examples: 1) APPEND ((A B) (C D))= (A B C D)
2) APPEND ((AB)C) = (AB.C)
3) APPEND ((A . B)cC) = (A. c)

For both arguments in the form of lists (Example 1), the result
is the same as in 7090 LISP. The other cases are undefined and
cause errors in 7090 LISP.

SUBR , ~ Predicate (Compiler, Evalquote)
Atom returns T (true) if X is any atom, and NIL otherwise.
ATM is true for all atoms, including numbers.

SUBR : (Compiler)

BLANKS (n) enters n blanks into the output buffer used by PRINT.
If nis not a number, an error will result. If n is not a
positive integer, an endless loop will result.

SUBR ' (Compiler, Evalguote)

CHARP is a predicate that tests for character atoms. The value
of CHARP is T if ¢ is a character atom (address in the range 10000Q
to 10077Q) and NIL if ¢ is not a character atom.

2) SUBR

COMPRESS is a LISP function that returns as its value a "literal"
atom formed from the list of character atoms 4. If L is a character
atom, COMPRESS returns the (SQUOZE (LIST £)). If £ Is any other
atom, CQMPRESS returns £. If 4 is a list of anything other than
character atoms, COMPRESS ‘returns an error message and "unwinds."

...x)

X X3
CONC acts like an APPEND of many arguments and concatenates its
arguments onto one new list. The first argument is copied.

(The compiler actually treats CONC by performing a Macro expansion
in terms of APPEND.) ,

9 August 1965 | 68 ™-2337/101/00

'CSET (a v) SUBR (Compiler, Evalquote)

This function is most useful at the top level of Evalquote. It is
used to establish a zero~level binding of an atom.

CSET (PI 4.13159) sets the value of the atom PI to the value
3.14159., - (Note that both arguments of CSET are quoted by Evalquote.

The form (CSET a v) produces the following results: If a is not
an atom (i.e., does not have a quoted atom as its value) an error
is detected; otherwise a is made Special, and then the effect is
the same as (RPLACA (CAR a) (LIST v))

(CSETQ & V) Special Form (Compiler, Evalquote)

This Special Form is like CSET except that it quotes its first
argument, which must be an atom. CSETQ cannot be used at the top
-+ level of Evalquote. '

DEF1 (ob £) SUBR - - (Campiler)

DEFl is a subsidiary function used by DEFLIST to place the value
% on the property list of the object ob under the property named
PRO. PRO is a free variable which must be set previously.

DEFINE (x) SUBR
The argument of DEFINE, x is a list of pairs
((m) 4)) (my &) wee (n, 0)),
where each n, is & name of a function and d is the corresponding
LAMBDA-expression for the function.

The execution of DEFINE is as follows:

Each pair (n d) is compiled, and a pointer to the compiled code
for the function n is placed in the CAR of the atom n; 'bhe expres-
sions 4 are discarded and DEFINE returns a list of the n's.

If any error occurs in compilation, the definition in which it
occurs, and all subsequent definitions, are not compiled, but
any previous compila.tions are unaffected.

If DEFINE is used twice on the seme atom, the new definition
replaces the o0ld, and the old binary program space in general is
lost. o

O

@)

AA

9 August 1965 69 T™-2337/101/00
DEFLIST (x ind) SUBR (Compiler)

The first argument of DEFLIST x is a list of pairs ((n:L dl)
(n2 de) «..), as for DEFINE, and the second argument ind is an

atom. DEFLIST places each expression d on the property list of
the corresponding atom n under the indicator ind. (Note that
there is in Q-32 LISP no relation between DEFINE and DEFLIST.)

DEFLIST is used by the function MACRO.

If DEFLIST is used twice on the same atom with the same indicator,
the old expression on the property list is replaced by the new
one. DEFLIST pf:aces new properties on the property list to the
left of all old properties. ’

Forl example:

DEFLIST (((AA (1 B)))P1)

DEFLIST{((A8_(3 })))P2) |

results in the following structure for atom AA

t CAR CIR A)
[| PPl &t | eyPl]| 1 []

Pname
- for AA
31 1+t [|1 +etB []
DEIETEL (b m) SUBR | (Compiler)

DEIETEL deletes from list m all elements which are members of list
b, and reCONSes the remaining elements into a new list. It does
not change m. (DEIETEL (IAMBDA (B M) (MAPCON M (FUNCTION

(rAMBDA (J) (CcOND ((MEMBER J B) NIL) (T (LIST J))))))))

It returns the new list as its value.

DOTPAIR (a2) SUBR ' Predicate

'DOTPAIR is a predicate that is true if a is atomic or a dotted
pair of atoms, and is false otherwise. It is used by the function
FIRST to find the first printable object on a list.

9 August 1965 70 m—2337/1ol/oo

EQUAL (x y) SUBR (Campiler)

EQUAL tests x and y for equality by going down the CAR and CDR
chains and using the function EQ to test equality of literal atoms
and the function *EQP to test numbers (see section 4.5).

EQUAL is defined by »
(EQUAL (IAMBDA (X Y) (*EQUAL X Y (FUNCTION *EQP))))

(¥EQUAL x y fn) SUBR (Compiler, Evalquote)

) ¥EQUAL tests x and y for equality recursively going down both
CAR and CDR chains. Numbers are compared using function fn.

(¥EQUAL (LAMBDA (A B FN) (COND ((EQ AB)T

((NUMBERP A) (COND((NW'IBE..RP B) (FN A B)) (T F)))

((AToM A) F) ((ATOM B) F)

((*EQUAL (CAR A) (CAR B) FN) (*EQUAL (CDR A) (CDR B) FN)) (T F))))

EQUALN (x l)' 'SUBR Predicate (Compiler, Evalquote)

EQUALN tests whether two lists x and y are identical. It uses ¥EQN (/—\
to test numbers and will fail if two numbers are unequal in value
or differ in representation. It is used to test whether quoted
constants are identical, and is also used by SUBST.

(EQUAIN (IAMBDA (X Y) (*EQUAL X Y (FUNCTION *EQN))))

ERROR (msg) SUBR ‘ (Compiler, Evalquote)

ERRCR causes its arguments msg to be evaluated and its value
printed and then induces an error unwind of the LISP system.

EVALL (exp) SUBR

EVALl performs evaluation of one S-expression exp. It is defined
by (EVALL (IAMBDA (S) (EVALQT (LIST (QUOTE IAMBDA) NIL S) NIL)))

~ EXPLODE (a) SUBR

EXPLODE is a LISP function that returns as its value a list of
character atoms "exploded" from the print nsme of atom a. Ifa
is NIL, EXPLODE returns NIL (an empty list). If a is a character
atom, EXPLODE will return (LIST a) If a is a nmnber or a non-
atomic expression, EXPLODE returns an error message and "unwinds."

O

9 August 1965 T1 ™-2377/101/00

FIRST (4) SUBR

FIRST finds the first atom or dotted pair on the list 2. It
uses the function DOTPAIR recursively on the CAR chain of L.

(FUNCTION £n) ' . Special Form (Compiler, Evalquote)

FUNCTION is used to transmit functional arguments. fn can be -
either the name of a true function (not a Macro or a Special
Form) or a IAMBDA or IABEL expression for a function. If fn

is a function name, FUNCTION ceuses & pointer to the compiled code
for fn to be transmitted to the calling function (note thsat in
this < case, FUNCTION can be omitted and will result in the print-
out fn NOT DECIARED but will cause no error in compilation. If
FUNCTION is followed by a. LAMBDA or IABEL expression, COMP is
called to compile the expression under a Gensym name, and a
pointer to the resulting compiled code is transmitted to the
calling function.

For exemple:

(IAMBDA (X) (MAPCAR X (FUNCTION ADD1))) ((0 1 2 3)) causes the
code pointer for function ADDL to be transmitted to MAPCAR. On
the other hand:

(IAMBDA (X) (MAPCAR X (FUNCTION (IaMBDA (J) (cons J J))))

((A B ¢ D)) causes the FUNCTION expression to be compiled and the
pointer to the code for the function (IAMBDA (J) (CONS J J) to be
transmitted to MAPCAR,

GENSYM ()

GET (x y)

9 August 1965 . 72 - TM-2337/101/00

SUBR (Compiler, Evalquote)

Each call to (GENSYM) generates a fresh and distinet atomic symbol
of the form GPPPPL. Gensyms are not placed on the OBLIST and are
collected by the garbage collector if they are not in use.

SUBR (Compiler, Evalquote)

GET searches list x for an element EQ to y. If the test succeeds,
GET returns the CADR of the list (i.e., the next element on the
‘list). If the test fails, GET returns the value NIL. If x is a
quoted atom, then GET searches the property list of x, otherwise
it searches the list which is the value of x.

For example, given CSET (AA (B C D))
pEFLIST(((AR\(E ©))) B)

the structure of the atom AA is

©)

CAR CDR

prake

for AA

| slc | =0 [

¥GETNO (v)

Then . (GET (QUOTE AA) (QUOTE B)) searches the list starting at
and returns (E G) while (GET AA (QUOTE B)) searches the chain
starting at @ and returns C.

SUBR ‘ (Compiler)

¥GETNO is & system building (cheating) function which, given a
list pointer, returns a pointer to an octal nimber that is equal
to the contents of the cell being pointed to.

O

9 August 1965 . 73 TM-2337/101/00

LAST (x)

SUBR (Compiler)

IAST searches a list x and returns the last element at the top level

of the list. It will cause an error if applied to an atom or to a
list terminated by a non-NIL atom.

Example:
IAST ((ABC)) =¢C
1AST ((A B (¢))) = (¢)

IAST (A) = IAST ((C . B)) = IAST ((A B . C)) = error

LEFTSHIFT (a b) SUBR (Compiler)

*LOCN (E)

(MAP x fn)

(MAPCAR x fn) SUBR - functional

LEFTSHIFT (a b) produces an octal number equal to the integer part
of a shifted Ieft by b bits, with zero brought in at the right to
replace the shifted bits. If b is negative, a right shift results
and zeros are brought in at the left end of the word. If both a
and b are negative, the sign of a is not extended, and the result-
ing value of IEFTSHIFT will be positive. The acceptable range for
b is =47 < b < 47,
SUBR (Compiler)

*¥LOCN (E) produces an octal number equal in value to the pointer a.

SUBR ‘ A functional ~ (Compiler)

MAP applies the function fn to x and to successive CDRs of x until
X is reduced to a single atom (usually NIL) which is returned as
The value of MAP,

(MAP (IAMBDA (X FN) (PROG (M) (SETQ M X).

IP (CoND ((AToM X) (RETURN M))) (FN M) (SETQ M (CDR M)) (GO LP))))
MAP cannot be input as the topblevel function to Evalquote since
the functional argument must be evaluated or compiled.

(Compiler, Evalquote)
MAPCAR constructs a new list whose value is a list of elements each

‘of which is obtained by applying the function fn to the correspond-

ing element of the list x.

MAPCAR is non-recursive, and uses ATOM to find the end of the list.
MAPCAR cannot be input as the top level function to Evalquote.
Examples of the use of MAPCAR are:

(IAMBDA (L) (MAPCAR I (FUNCTION SUBL))) ((9 1 2.3)) = (-1 @ 1.3)

(IAMBDA (L) (MAPCAR L (FUNCTION (LAMBDA (J) (COND ((ATOM J) (QUOTE ATOM))

(T NI1)))))) ((A B(C) D)) = (ATOM ATGM NIL ATM)

9 August 1965 Th T™-2337/101/00 <

N

(MAPCON x fn) SUBR functional (Compiler)

(MAPLIST x

MAPCON meps list X onto & new list fn (x) using NCONC, so that the
resulting list is " formed by concatenation, and uses ATGM to find
the end of list x. (MAPCON (IAMBDA (X FN3 (coND ((ATOM X) X)

(T (NCONC (FN X) (MAPCON (CDR X) FN))))))

MAPCON cannot be input as the top level function to Evalquote
because of its functional argument. Also; because of the use of
NCONC, MAPCON will damage the system or will cause an endless
loop or both, unless the function fn is chosen carefully. (See
DEIETEL for an example of the use of MAPCON.)

fn) SUBR functional (Compiler)

MAPLIST maps the list x onto the list £n (x). It performs the same
function as MAP except that it produces an output list by CONSing
together all of the results of the form fn (x) computer during the

mapping.

MAPLIST is non-recursive, and uses ATOM to find the end of list b
Because of its functional argument, MAPLIST cannot be input as the

function at the top level of Evalquote. (’\
Example: (IAMBDA (X) (MAPLIST X (FUNCTION (IAMBDA (J) (CONS (QUOTE B)
7)) ((ABcD) =((BABCD) (BBCD) (BCD) (BD)) .
MEMBER (2 b) SUBR Predicate (Campiler, Evalquote)

MEMBER is a predicate which is true if a is a member of list b, and
NIL otherwise. EQUALN used to perform the equality test. Hence
'MEMEER (10(A312))

NUMBERP (x) SUBR Predicate (Compiler, Evalquote)

NUMBERP (x) is true if X is’'a pointer to a LISP number, and false
otherwise. In particular, NUMBERP (NIL) = NIL.

¥PIANT (& b) SUER " (Compiler)

¥PIANT is a function used by LAP to plent code in core. It plants
the octal quantity corresponding to the value of a into the
location corresponding to the value of b.

Thus, *PLANT (@ L@@deq) would change the contents of core location
Liddeq. to zero (this would wreck the system. ¥PIANT must be used
with caution!)

Anything done by ¥PLANT could be done by IAP, viz., ((4pdd2q .
(8)) ()) would achieve the same result. However, the arguments of m

O 9 August 1965 5 TM-2337/101/00

PRING (s)

PRINL (a)

PRINT (s)

¥PIANT are subject to normal LISP interpretation, while those of
IAP are interpreted in a fashion peculiar to IAP. (Also, IAP can
install an entire block of code, while each call to *PLANT changes
only one cell). :

SUBR (Compiler, Evalquote)

PRIN® is used by PRINT to decompose an S-expression S into a string
of atoms, parentheses, dots and spaces and calls PRIN1 to fill the
print buffer. PRINP does all of the work of PRINT except for the
final (TERPRI). The value of (PRINA 8) is S. To print two S-
expressions a and b on the same line, one can use

(zaMBDA (A B) (PROG () (PRING A) (PRINT B)))) (FIRST SECOND)

~ This will result in the following printout:

FIRST SECOND
NIL

SUBR ‘ (Compiler, Evalquote)

PRINL accepts any atom & and packs its print name into the print
buffer. It is the only function of the system which packs the
output buffer. All other printing functions (such as PRIN¢ and
BIANKS) use PRINL as the basic building blocke The value of
(PRIN1 a) is a.

Example:

PRIN1 (A) results in AA

PRINL (ABCD) results in ABCDABCD since the value of PRIN1 is its
argument.

(1AMBDA (A B) (PROG () (PRINL A) (PRINL BIANK)

(PRINL B) (BIANKS 3). (PRINL B) (PRINL A) OPRINL PERIOD)

(TERPRI))) (FIRST SECOND) results in the following printout:

FIRST SECOND SECONDFIRST
NIL (the value of the PROG)

SUBR (Compiler, Evalquote)
(PRINT (IAMBDA (S) (PROG () (PRIN S) (TERPRI) (RETURN S))))

PRINT prints one full S-expression in standard format. (See
section 2.2 for the standard format.)

9 August 1965 76 | TM-2337/101/ 00

PRINTCH (c)

‘/-\)
S~

SUBR

If c is a character atom (such as 'a), PRINTCH enters the corres-
ponding character (A) into the print line at the next available
byte position. If ¢ is NIL, PRINICH flres TERPRI. PRINTCH returns
¢ as its value. ‘

(PROP x y £n) SUBR functional (Compiler)

- the structure of the atam AA is

PROP searches the list x for a property EQ to y. If one is found,
the value of PROP is a pointer to the CDR of the list. If the
property is not found, the value of PROP is (fn), a function of
no arguments.

~ Because of its functional argument, PROP cannot be used as -a
- function at the top level of Evalquote.

For example, given é
CSET (AA (BB CC DD))¥%
DEFLIST (((AA (E F G H)))BB)

A
. U
LPCAR CDR ©, - ®
| ol | ot | .
Pna!;
for AA | <:>
| E - G il
OO,
BB —s-jcc| |a{DD
Then

(1AMBDA (X) (PROP (QUOTE AA) Y (FUNCTION (IAMBDA () 2))) (BB)
searches the property list of AA starting at 1 for BB, and returns
a pointer to , the value ((E F G H)). The same function
applied to argument CC cannot find property and hence returns

2 as its value.

On the other hand, the function
(1AMBPA (X) (PROP AA X (FUNCTION (IAMBDA () ()))) (BB)

gearches the value of AA starting at (:) and returns a pointer to T
or the value (CC DD). The same function applies to value CC
returns a pointer to (:) with value (DD).

-~
"~

O

9 August 1965 T T™-2337/101/00

*RATGH ()

READ ()

READL ()

READCH ()

SET

by comparison, since GET when it succeeds returns a pointer to the
CADR of what PROP finds, GET (AA BB) yields & pointer to or the
value (E F G H), while (IAMBDA (X) (GET AA X)) yields the atam CC
or DD when applied to BB or CC, respectively.

SUBR (Compiler, Evalquote)

(*RATOM) is the basic LISP reading function, vwhich always returns

a single atom whenever called. If the input buffer is empty when
(¥*RATM) is called or before a delimiter is found, a read command

is issued to TSS (2 bells occur on the teletype). Otherwise

¥RATOM scans the input buffer and returns a single atom, consist-

ing of LPAR, RPAR, PERIOD, a numeric atom, a character atom, or a
literal atom. A literal atom not already there is added to the OBLIST.

¥RAT(M calls ERROR if an illegal character is found outside of a
$$ context, or if it finds an illegal format (e.g., a numerical
atom in incorrect format).

SUBR (Evalquote)

(READ) calls for one S-expression to be read from teletype, using
functions (READ1) and (¥RATOM). READ calls ERROR if a right
parenthesis or period (not a decimal point) occurs, and calls
READL every time it sees a left parenthesis.

SUBR (Evalquote)

(READL) is a function used by READ to read a non-atomic S-expression.
READL is entered after one left parenthesis has been encountered.

It calls *RATOM or READL successively until the matching right
parenthesis is read and calls CONS to tie atoms together appro-
priately to build the corresponding list structure in core. If an
illegal structure is encountered, READ1 produces a diagnostic and
calls ERROR.

SUBR

READCH reads the next character in the input line. The value of
READCH is the character stom read. If the read line is empty, READCH
fills the buffer from the teletype and then returns the character
atom read. READCH does not see the character (77Q) meaning end-of-
message, and hence cannot return the character atom 1@@77Q as its
value. :

SET is not implemented.,

9 August 1965 : 78

(SETQ a v)

SPECIAL (x)

SQUOZE (£)

SUBST (

1%
e’
I

T™-2337/101/00

Special Form (Compiler, Evalquote)

SETQ is a special form which evaluated its second argument v and
assigns this value, which is also the value of SETQ, to the atom
given as its first argument a. In general, a is treated as if it
were quoted. If a is not an atom, an error results. If a is not
in Special status and is bound in a function by LAMBDA or PROG,
SETQ affects only the cell on the pushdown list of the function.

If a is in Special status and has had a previous CSET binding
SETQ changes the value of that binding, by being compiled as open
code equivalent to (RPLACA (CAR &) v).

If a is in Special status had no previous binding ((CAR A) = NIL)
then an error results.

SETQ can be used in series to set many variables to the same value
as (SETQ X (SETQ Y Z))which sets both x and y to the value of z.

SUBR (Compiler, Evalquote)

The argument of SPECIAL, _:5 is a list of literal atoms. SPECIAL
sets a flag in bit 4 of the atom head, and returns a copy of its
input list.

The Special flag on an atom serves only to tell the compiler that
if this atom is bound by LAMBDA or PROG, the old binding of the
atom must be saved and the current binding attached to the atom
head (rather than to the pushdown list).

SUBR

SQUOZE is a primitive used by COMPRESS below. The value of SQUOZE
is a "literal" atom formed from the list of character atoms 4.

‘SQUOZE is undefined if _& ‘is anything other than a list of character

)

atoms.

SUBR ‘ (Compiler, Evalquote)

SUBST substitutes x for each occurrénce oi“ the list structure y in
the list structure z. The function EQUALN is used to perform the
test, so that x, y, and z can have the most general form.

Examples:
SsuBST (AB(BCE)) = (ACE)
SuBST (AB (B (B ..C) (B))) = (A (a.cC)(a))
SUBST (A (B) (C B)) = (¢ ..A)
since (C B) = (¢ . (B NIL))

—

)

9 August 1965

TERPRT ()

TRACE (x)

79 ™-2337/101/00

suBsT (A (B) (B C)) = (BGC)

SUBST (2 3 (3 L4.5)) (2 k4.5)
but

SUBST (2 3 (3.8 4e5)) = (3.8 L4.5)
since EQUAIN (3 3.§) = NIL

i

SUBR (Compiler, Evalquote)

(TEREAD) causes the read buffer to be reset so that the next call
to READ (or to *RAT(M) will ask for new teletype input. If (READ)
is called without (TEREAD) and if at the last READ there were any
right parentheses left in the buffer, (READ) would call ERROR.
(TEREAD) prevents this. The value of TEREAD is NIL.

SUBR ‘ (Compiler, Evalquote)

(TERPRI) causes the contents of the print buffer to be printed,
induces a line feed, and resets the print buffer. If the print
buffer is already empty, (TERPRI) causes a2 line feed to occur,

Consecutive (TERPRI)s result in skipping print lines. The value
of (TERPRI) is NIL.

SUBR

The argument of TRACE, x, is a list of function names
((£, £, £3 oee fn)) ' ’ ‘

TRACE performs (TRACE (IAMBDA (X) (MAPCAR X (FUNCTION *MKTRC))))

The function *MKTRC tests each of these names fi in turn. If a
function is traceable and is not already in Trace status, *MKTRC
changes the instruction (BXH *PDIGN 1 *¥NDPDL) to a (BU‘Cl 6.TRACE),

and returns the name of the function. -If the test fails, *MKTRC
returns NIL.)

The value of TRACE is therefore a list composed of the names of
those functions f, which were set to Trace status and the remainder
of the names replaced by NIL.

If a function (say DIFFERENCE) is used while in Trace status, a
typical TRACE printout would be

ARGS OF DIFFERENCE

5

3.0

VALUE COF DIFFERENCE

2,0 (any other printing starts here)

The function TRACE must be used with caution. It can result in a
large amount of printout if used on a recursive function; unless
the user intentionally induces a Rescue fram TSS to stop prinmting.

9 August 1965 80 - TM-2337/101/00

UNSFECIAL (x) SUBR -~ (BEvalquote)

UNSPECTIAL is similar to SPECIAL. x should be a list of literal
atoms. For each atom in x, UNSPECIAL clears = bit 4 of the
atom head to: zero. The value of UNSPECIAL is X.

UNTRACE (x) SUBR
UNTRACE undoes the effect of a previous TRACE.

(UNTRACE (IAMBDA (X) (MAPCAR X (FUNCTION *MKUNT)))) where *MKUNT
checks each function named in list x for the instruction
(BUC # 6 TRACE) and either replaces it with (BXH *PDIGN 1 *NDPDL)

and returns the function name, or simply returns NIL.

The value of UNTRACE is a copy of the input list x in which those
function names which were not changed to normal status (presumably
because they were not being traced) are replaced by NIL.

b5 ARTITHMETIC FUNCTIONS AND PREDICATES

In Q=32 LISP, floating point numbers have the full accuracy available in
the 48 bit words: 12 bits of characteric plus 36 bits of mentissa. All
approximate tests of equality of floating point numbers use 30 bits of -
accuracy in the mantissa using function ¥EQP.

Macros: .
The arithmetic Macros are listed in the left hand column below:

MAX *WAX (x y)
MIN *IN (x y)
LOGOR *LOGOR (x y)

LOGAND *LOGAND (x y)
LOGXOR *¥LOGXOR (x y)
PLUS *PLUS (x y)
TIMES *TIMES (x y)
Each of the above Macros is defined in terms of the corresponding simple

function whose name begins with an asterisk, The simple arithmetic functions
have exactly two arguments. For example, the definition of MAX is

MACRO (((MAX (LAMBDA (L)‘ (*EXPAND L (QUOTE *MAX)))))).

.

N

O

9 August 1965 81 T™-2337/101/00

The arithmetic of PLUS and TIMES is floating point if any arguments are
floating, integer otherwise. PLUS never produces -f as an output. LOGOR,
LOGAND and LOGXOR fix their arguments and produce octal integers as answers.
The other functions all produce answers in floating point oxr decimal integer
format. . ,

Other Arithmetic Functions

ABSVAL (x)) ;
Compiles the absolute value of number x.

ADDL (x)
T Adds 1 to X. (ADDL (IAMBDA (x) (PLUS x 1)))

DIFFERENCE (x y) also DIFFER (x y)

Subtracts y from x. (DIFFERENCE (IAMBDA (X Y) (PLUS X (MINUS Y))))
DIVIDE (x y)

Divide x by y uses subroutine ¥DIVIDE. Division is in floating

point if elther x or y is floating; integer otherwise. DIVIDE
forms a list of QUOTIENT and REMAINDER. '

Camputes the integer part of x for positive x and - integer part
of -x for negative x.

EXP (x) X
Camputes e=, using functions EXPT and ¥EXPTF.
¥EXPF (x) x '
Computes e~ for -1< x <1. Used by EXP.
EXPT (x y)
Raises x to the y power. The result is an integer if x is an
integeﬁ' and y is a positive integer and if the value is less
~than o+ ; otherwise the value is a floating point number.
Functions LOG, EXP, and ¥EXPTI are used for some cases.
*EXPTI(x y)
Raises x to the y power by power product. y must be a positive
integer. Computation is done in floating point or integer
arithmetic, depending upon the representation of x.
FLOAT (x)

Produces a floating point output equal to the input x.

9 August 1965 82 T™-2337/101/00

Reduces a number x modulo 2

(JUST (IAMBDA (X) (¥LOGAND TTTTTTR)))

LoG (x) -
: - Computes the natural logarithm of x, for positive x, and gives
an error diagnostic for x <

MINUS (5)
MINUS produces -x as its value.

QUOTIENT (x y)
For fixed-point arguments, the value is the number theoretic
quotient. If either X or Y is a floating point number, the
answer is the floating point quotient.

REMAINDER (x y)
Computes the mumber theoretic remainder for fixed-point

~ arguments, and floating point residue for floating-point arguments.

SQRT (x) |
SQRT takes a floating point square root of the absolute value of
Xo. with no check as to original sign of x.

SURL (x)
Subtraects 1 from X.

(suBl (IAMBDA (x) (PIUS x =1)))

Arithmetic Predicates:

*EQN (x y)
Tests two numbers for equality of representation. Thus
¥EQN (f -f) = NIL ¥EQN (B @) =
*EQN (1 1Q) = NIL *EQN (-§ -§) =
*BQN (1 1l.8) = NIL *¥EQN (1.8 1.8) =T
XEQN (1@ 1.8) = NIL ¥EQN (1@ 1Q) =T

it
=

*EQN (3Q4+ 30Q3)
¥EQN (1.6 1 ¢¢¢¢¢¢¢¢¢¢1)

The last case holds because the last decimal place is lost in the
internal representation.

i

¥EQN (1'.¢ 1.0E8)

/\
~

~

O

9 August 1965 83 TM~2337/101/00

¥EQP (x y)

FIXP (x)

FLOATP (x)

GREATERP (x y)

LESSP (x y)

MINUSP (x)

ZEROP (x)

Tests two numbers for approximate equality. If the numbers are
integers, the test is for equality of value (f = -@f). If either
of the two numbers is a floating point number, the test is made
on equality of all but the right-most 6 bits.

In general:

*¥EQP (% y) = Tifl z;g < B.7 % 1677
NIL otherwise ’

Is true if x is a fixed point number, an error if x is not a
number, and false if p.d is floating.

Is true if x is a floating point number, an error if x is not a
number, and . false otherwise.

“True if X > yand false if X <Y.

Note that it is possible for both *EQP (x y) and GREATERP (y)
to be true simultaneously, but (AND (IESSP X Y) (GREATERP X Y))
is always NIL.

This is true if x-< ¥ and false if x > Y.

Note that it is possible for both *EQP (x y) and LESSP (x y)

to be true if either x or Y is floating.

Tests whether x is negative.

(ZEROP (LAMBDA (X) (*EQP X £)))

ZEROP (x) is true if X = @ or X = -@ and NIL otherwise.

9 August 1965

k.6

84 | ™-2337/101/00 / \

BUFFER FUNCTIONS AND SAVE

LISP arrays are not implemented in Q-32 LISP. There exists two functions for

the handling

GETBUF (m n)

SETBUF (m n)

SAVE (n)

of buffers or arrays of non-pointer data, as fol;ows:

GETBUF creates a non-pointer array or buffer of the specified
number of words n. The name m of the array 1s any legal atom
and is the value of the procedure. The number of words nis
limited only by the availability of free and full word space
at the time of procedure call.

SETBUF sets every word of the a.rray named m to the specified
constant n. Useful for clearing or initializing an array.
The array | neme m is the value of the procedure.

SAVE is a LISP function that saves current core contents

(essentially an array core dump) on magnetic tape reel n. This

dump is in a form compatible with the Time-Sharing System's

LOAD command. p

SAVE makes its own binery tape request from the Time-~Sharing
System, so that GETFILE is not used before SAVE. However,
DEFILE should be used following a SAVE to release the tape drive.
To save the LISP system on a scratch tape, the user should type
SAVE (). SAVE, like GETFILE, will cause TSS to reply $WAIT,
and later $FIIE n ¢ DRIVE 4 REEL n. After SAVE is completed,
LISP will reply n, then 2 bells. If a scratch tape was used

for the SAVE, the user will have to dial the operator to save
that reel and give him the name of the user and title of the

tape.

CAUTION:

Saving a LISP system is at the user's risk. A saved system
will not be updated along with standard LISP, and may have to
be loaded from tape rather than disk. In general, it is
desirable to save a library tape of S-expressions to be loaded
into LISP, in addition to saving the version that is in core.

9 August 1965 85 T™-2337/101/00
(last page) |
References
1. The Programming Language LISP : Its Operation and

2,
3.

L,

Applications. Information International, Incorporated,
Cambridge, Mass. March 1964

ILISP 1.5 Programmer's Manual. M.I.T. Press, Cambridge,
Mass. August 1964 : :

Clark Weissman. ILISP Primer: A Self-Tutor for Q-32

LISP 1.5. SDC Series TM=2337/010/00. June 1965

Command Research Leboratory User's Guide.
SDC Series TM-1354

S. L. Kameny. LISP 1.5 Input-Output File and Library
Functions. SDC Series T™-2337/102/00. September 1965.

s
Ne

	SDC-TM-2337_101_000001_a
	SDC-TM-2337_101_000001_b
	SDC-TM-2337_101_000002_a
	SDC-TM-2337_101_000002_b
	SDC-TM-2337_101_000003_a
	SDC-TM-2337_101_000003_b
	SDC-TM-2337_101_000004_a
	SDC-TM-2337_101_000004_b
	SDC-TM-2337_101_000005_a
	SDC-TM-2337_101_000005_b
	SDC-TM-2337_101_000006_a
	SDC-TM-2337_101_000006_b
	SDC-TM-2337_101_000007_a
	SDC-TM-2337_101_000007_b
	SDC-TM-2337_101_000008_a
	SDC-TM-2337_101_000008_b
	SDC-TM-2337_101_000009_a
	SDC-TM-2337_101_000009_b
	SDC-TM-2337_101_000010_a
	SDC-TM-2337_101_000010_b
	SDC-TM-2337_101_000011_a
	SDC-TM-2337_101_000011_b
	SDC-TM-2337_101_000012_a
	SDC-TM-2337_101_000012_b
	SDC-TM-2337_101_000013_a
	SDC-TM-2337_101_000013_b
	SDC-TM-2337_101_000014_a
	SDC-TM-2337_101_000014_b
	SDC-TM-2337_101_000015_a
	SDC-TM-2337_101_000015_b
	SDC-TM-2337_101_000016_a
	SDC-TM-2337_101_000016_b
	SDC-TM-2337_101_000017_a
	SDC-TM-2337_101_000017_b
	SDC-TM-2337_101_000018_a
	SDC-TM-2337_101_000018_b
	SDC-TM-2337_101_000019_a
	SDC-TM-2337_101_000019_b
	SDC-TM-2337_101_000020_a
	SDC-TM-2337_101_000020_b
	SDC-TM-2337_101_000021_a
	SDC-TM-2337_101_000021_b
	SDC-TM-2337_101_000022_a
	SDC-TM-2337_101_000022_b
	SDC-TM-2337_101_000023_a
	SDC-TM-2337_101_000023_b
	SDC-TM-2337_101_000024_a
	SDC-TM-2337_101_000024_b
	SDC-TM-2337_101_000025_a
	SDC-TM-2337_101_000025_b
	SDC-TM-2337_101_000026_a
	SDC-TM-2337_101_000026_b
	SDC-TM-2337_101_000027_a
	SDC-TM-2337_101_000027_b
	SDC-TM-2337_101_000028_a
	SDC-TM-2337_101_000028_b
	SDC-TM-2337_101_000029_a
	SDC-TM-2337_101_000029_b
	SDC-TM-2337_101_000030_a
	SDC-TM-2337_101_000030_b
	SDC-TM-2337_101_000031_a
	SDC-TM-2337_101_000031_b
	SDC-TM-2337_101_000032_a
	SDC-TM-2337_101_000032_b
	SDC-TM-2337_101_000033_a
	SDC-TM-2337_101_000033_b
	SDC-TM-2337_101_000034_a
	SDC-TM-2337_101_000034_b
	SDC-TM-2337_101_000035_a
	SDC-TM-2337_101_000035_b
	SDC-TM-2337_101_000036_a
	SDC-TM-2337_101_000036_b
	SDC-TM-2337_101_000037_a
	SDC-TM-2337_101_000037_b
	SDC-TM-2337_101_000038_a
	SDC-TM-2337_101_000038_b
	SDC-TM-2337_101_000039_a
	SDC-TM-2337_101_000039_b
	SDC-TM-2337_101_000040_a
	SDC-TM-2337_101_000040_b
	SDC-TM-2337_101_000041_a
	SDC-TM-2337_101_000041_b
	SDC-TM-2337_101_000042_a
	SDC-TM-2337_101_000042_b
	SDC-TM-2337_101_000043_a
	SDC-TM-2337_101_000043_b
	SDC-TM-2337_101_000044_a
	SDC-TM-2337_101_000044_b

