
()

•

A·1159 4/65

Prof. Or. H. staysn
Unlvl3(Sltat =-rl~ngen.N(jrnberg
Institut fOr Mathematisd'le Maschlnen
und Datenverarbeitung (Informatlk VIlO
Am Weichselgarten 9

910SS Erlan§eii

'IM-2337/103/00

1r~~[}1]I~~~~
1~1(ffi~~lrrn~1

(TM Series)

This dO-'.llment was produced by SOC in p-erformance of contract AF 19 (628) .. 5166 with
the ~~ectronic Systems Division~ Air Force Systems Command,
in performance of ARPA Order 77j for the Advanced Research
ProJects Agency Information Processing Techniques Office.

THE Q-32 LISP 1.5 NOD. 2.6 SYSTEM

Operating System, Input-Output, File, and
Library Functions

S. L. Kameny
C. Heissman

11 April 1966

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

90406

The views, conclusions or recommendations expressed in this document do not neces­
sarily reflect the official views or policies of agencies of the United States Government .

()

a

/--...

()

-.

()

o

..

0

o

11 April 1966 1
(Page 2 blank)

CONTENTS

Sectior!

1. Introduction •
2. Table of Functions · · • · • • ·
3. Input-Output Concept and Operation

3.1 File Activation · • · · • •
3.2 File Deactivation · • • • •
3.3 File Selection . • . . · •
3.4 File Control · • · • · •
3.5 I/O Primitive Changes · • ·
3.6 Scope Functions · · · • • •
3.7 Library Functions • · • · • •

4. System t-1odifications • • · • · ·
4.1 Initialization · · · • • ·
4.2 Supervisor · · · •
4.3 Growing Pains .

5. Primitives ·
6. Error 1-1essages . • • • • • • • •

6.1 Input/Output Error Messages •
6.2 Other Error Messages · · • •
6.3 Time-Sharing Error Messages

Table 1 Functions Discussed
in this Document

TM-2337/103/00

Page

5

• 5

· 5

• 7

• 9

• 10

11

• 12

· 14

• 16

• 17

• 17

• 17

18

• 19

• 22

• 22

· 23

26

6

()

~\ (.
-)

,

()

•

3
(Page 4 blank)

ABSTRACT

This document supplements TM-2337/10l/00 by
describing the input-output, file-handling,
and library functions ot Q-32 LISP 1.5
Mod. 2.6. It also describes differences
between Mod. 2.6 and t~ previous Mod. 2.5
described in TM-2337!102/00 dated 9 August
1965.

TM-2337/l03/00

•

(J

o

C)

•

()

11 April 1966 5 TM-2337/103/00

1. INTRODUCTION

A new version of Q-32 LISP 1.5, Model 2.6 has been operational for a number of
months. This new version extends the capability of the basic system described
in the Q-32 LISP Reference Manual, TM-2337/101/00, in three significant ways.
First, a new scheme for input-output is available that permits acceE3 to tele­
type, tapes, disc, and CRT devices in an integrated and consistent format.
Second, certain modifications have been made to Evalquote to handle the new
~/O features. Third, free space and array space have been increased to a maxi­
mum of nearly (30,000)10 words by reducing binary program space to nearly
nothing, and augmenting the system with a "growing pain" that extends binary program
space dynamically by preempting array space when needed.

This document describes these new features as a separate document, supplementing
the Q-32 LISP Reference Manual.

2. TABLE OF FUNCTIONS

Table 1 contains a list of names of functions described in this document,
together with function types, file handling, library handling, CRT primitives,
and miscellaneous functions.

3. INPUT-OUTPUT CONCEPT AND OPERATION

Model 2.6 LISP 1.5 I/O is based upon a set of primitive functions and macros
that are available to the user. Each input or output operation references,
either implicitly or explicitly, a speci~ic ~ile. A ~ile is nrumed by the user
and associated with a particular device. A file can be any literal atom, e.g.,
INTAPE. A6., etc. The LISP meaning of the term "file" is the same as the
meaning normally assigned by a time-sharing system. A file is device-dependent
but direction-independent; the same file may be used for both input and output
and can, with considerable caution, be used for both purposes simultaneously.

A symbolic file consists of a sequence of records, only one of which is ever
in main memory at a time, thereby reducing buffer storage overhead. Records
consist of one or more 72-character lines. When a file is activated, LISP
dynamically creates from array space the buffer storage needed to hold the
current record of the file. Also, when a file is deactivated, LISP reclaims
this buffer storage. Many files may be active concurrently, limited only by
the LISP array space and the time-sharing devices available.*

* Whenever a LISP program is loaded and set into operation, all previously
declared files (i.e., files in existence at the time the program was saved)
are removed, and the system starts off with only a single teletype file
declared, named *TTY.

""-

II April 1966 6 TM-2337/l03/00
j')

Table 1. Functions Discussed in this Document

Page
Function Name No. of Arguments Function Type No.

*IOINIT 0 System initialization 17

*IOSHUT 1 System initialization 17

LOADEXP 1 Library loading 16
OPEN 2 or 3 Macro 7
OPENFILE 3 File primitive 19
PLOT 3 CRT buffer filling 12
POSITION 2 File positioning 11

PRINI. PRIN III J 2 Printing 14
CJ

~RINT. PRINTCH

*RATOM. READ } 0 Reading 13
READ1, READCH

READCRT 2 Light pen read 15
READFILE 1 Library handling 16 /~

(\

\ /
PRINT CRT 2 CRT display output 15

PRINTFILE 2 Library handling 16
RDS 1 Read select 10

SHUT 1 or 2 Macro 9
*SHUTF 2 File primitive 9
STERPRI 0 Output 13
*SUPV 0 System supervisor 17
TAB IN 1 Reading 12
TAB OUT 1 Printing 12
TEREAD 0 Reading 13
TERPRI 0 Printing 12
*TEVALQT 2 Evalquote 17
WRS 1 Write select 10

•

(~)

o
....

"­
: I
'--.-/

•

o

11 April 1966 7 TM-2337/103/00

To access a file, the user must first select the file, either for reading or
for writing. The user's program always accesses the same file for each call
to standard LISP I/O primitives, e.g., PRINT. READ, TERPRI, etc. To access
another file, that file must be activated. (The system supervisor always uses
the input teletype console, regardless of user file selection.)

This scheme allows LISP programs to be written in a device-independent manner.
A program is composed which evaluates I/O read and print primitives as neces­
sary without immediate concern as to the source or destination of the informa­
tion. Once composed, the program can be exercised from a teletypewriter file
one moment,and from tape or disc files at a later time by simply activating
and selecting such files in higher level programs or at the top level itself.

3.1 FILE ACTIVATION

Before a file can be selected for reading or writing, it must first be acti­
vated. This activation can most easily be done using the macro OPEN.

OPEN (f d m)

OPEN is a LISP macro that expands, using the function *OPENF, intc the primi­
tive OPENFILE, described in Section 5. It returns as its value a list of all
currently active file names. Here, f is the user-specified name of the file
being activated", it is a literal atom whose first six characters are used for
internal identification between LISP and the time-sharing system. The argu­
ment d specifies the device associated with the file f. While the optional
parameter m is used to indicate the nature of the file to be created, the
permissible values of d and m are given, together with their meanings, in the
following table.

V 1 a ue 0 r d D i ev ce V 1 a ue 0 f m M ean i ng

TTY Teletype - -
DISC or DISK disc unit - new file

PERM file already in inventory

~ (numeric" zero) tape WRITE scratch tape, read/write

"number. n ~ 7 tape - tape reel n, read only

WRITE tape reel n, read/write

number - or LOW 680 character maximum

1 ~ n ~ 6 CRT MEDIUM 1360 character maximum

HIGH 2000 character maximum

11 April 1966 8 TM-2337/l03/00

If greater control over file activation is desired, the user may always use
the primitive OPENFILE. OPEN is provided as a convenience, and presupposes
values in the macro expansion to OPENFILE. These values are tabulated below:

~
TTY

Tape

DISC

Record Size

1 line

30 lines

41-51 lines

Internal Buffer Size

10 words

300 words

512 words

Unit Reservation

none

1 tape drive

1 track

Some examples of the use of OPEN are given below:

Example

OPEN(TTYFILE TTY)

OPEN(MYFILE DISC)

OPEN(YOURFILE DISC PERM)

OPEN(TAPE 3 1234)

OPEN(TAPE2 ¢ WRITE)

OPEN(SCOPEX 5)

OPEN(SCOPEX 5 HIGH)

Meaning

activates teletype file TTYFILE

activates local disc file HYFILE

activates permanent disc file YOURFILE. found in
inventory as file YOURFI

activates read-only tape file TAPE3 on physical
reel 1234

activates read/write tape file TAPE2 on a scratch
tape

activates 680 character CRT file SCOPEX on physical
CRT console 5

activates 2000 character CRT tile SCOPEX on physical
CRT console 5

Before opening a file, the user should make sure that the physical file is
available. For example, make sure that there are tape units available before
opening a tape file, and make sure that a disc file of the proper name is
available to the user and on the disc before opening a disc file in PERM mode.
If these precautions are not observed, an error return from OPENFILE will be
generated.

A disc file name within TSS can consist of up to 6 characters; LISP can use any
literal atom. Consequently, if a LISP program uses a file name containing more
than six characters, only the first six characters are meaningful to TSS. E,g"
DISK¢¢l as a file name in LISP becomes DISC¢¢ in TSS, and hence is identical,
as far as TSS is concerned, with file name DISC¢¢2. One final remark concern­
ing disc files is that a permanent disc file can be opened only if it belongs
to the user, or is public, or is allowed to the user. It can be read and
written by a user if it belongs to him, is allowed to him, or is public and not
protected from reading or writing. Any attempt to read a read-protected file
or write on a write-protected file, or to open a private file in PERM mode, will
result in an error.

The atom *FILES* contains as its value a list of all active file names.

)

(-.\
\ /

o

o

11 April 1966 9 Tr.1-2337/l03/00

3.2 FILE DEACTIVATION

Whenever a file is no longer needed. it should be deactivated so that its core
storage can be returned to the LISP system and the physical file unit. i.e.,
tape, disc, or CRT., can be released. For temporary disc files, it is essential
to deactivate the file in order to add the file name to the user's disc inventory.
File deactivation can be accomplished through the macro SHUT.

SHUT (f d)

SHUT is a LISP macro that expands, using the function *SHUTF, into the primitive
SHUTFILE described in Section 5. Like OPEN, it returns as its value a list of
all currently active file names. Again, f is the name of the filei it is to
be deactivated and must previously have been used with OPEN to activate the file.
Hhenever any file is shut, its buffer storage is reclaimed, and the associated
unit is released (physical tape or CRT and reserved disc tracks). The argument
d is optional and can be absent; it is only used to specify the disposition of
a disc file and is ignored for other than disc files. For disc files only, if
d evaluates to the reserved word DELETE, the file is purged from the disc inven­
tory. For disc files only, if d is absent or is not the reserved word DELETE,
the file is purged from LISP (its buffer storage is reclaimed); however, it is
saved on the disc and the first six characters of the file name f are placed
in the user's disc inventory as the name of this file. The file may subsequently
be reactivated with OPEN by OPEN (f DISC PERI,I) where f is the file name.

The user is cautioned that SHUT does not write an end-of-file on either tape
or disc: the user must do this himself using POSITION (f '.JEOF). Note that
for simple uses of OPEN and SHUT with disc files (i.e., optional parameter is
absent), the user is protected against unintentional disruption or loss of
permanent disc files. For example:

OPEN(f DISC)

SHUT(f)

activates a temporary file

saves file as a permanent file

In other words, one must take positive action with both OPEN and SHUT to access
or destroy a file, respectively. In this regard, to free disc storage congestion
and as a courtesy to other users, always use SHUT(f DELETE) to remove unwanted
disc files.

Note further, that if you QUIT LISP with files still active (no SHUT used on
them), all CRT, TTY, tape, and temporary disc files are deleted and all perma­
nent disc files are saved. Hhen a disc file is saved, its contents on disc are
as of the last time it was written. This means that if no end-of-file was
written before the QUIT occurred, the disc file will in general be unreadable.

Note that all permanent disc files created by LISP through the SHUT function
are private, write-protected files. To change their mode to public, or to
change the protection mode, the user must use the appropriate TSS commands,
given directly to the TSS executive, not to LISP.

11 April 1966 10 TM-2337/103/00

3.3 FILE SELECTION

Except for CRT files (which are really binary files whose primitives are de­
scribed in Section 3.6) active files may be selected and a prior file de­
selected'for writing or reading by useof,two primitives, WRS and RDS, respectively.

RDS(f)

RDS is entirely analogous to WRS, but for input file selection.

WRS(f)

Argument f is the name of the active file being selected for output. The
value of WRS is the name of the active output file being deselected. When a
file is selected. the record, line, and column controls for the deselected
file are preserved with that file, and' the new file record, line. and column
controls are reestablished. Thus, WRS may be used with complete freedom at
any time, even following partially composed lines.

Note that WRS called by a LISP user affects only the user's program and does
not confuse the supervisor; all supervisor outputs are still given on the
teletype console. For example:

OPEN (OUTTAP ~ WRITE) opens scratch tape under name OUTTAP

$ WAIT } TSS replies
$FlLE OUTTAP DRIVE 12 REEL ~~¢¢

(OUTTAP *TTY) LISP reply. value of OPEN

WRS (OUTTAP) User write selection

*TTY

(LAMBDA (A)

Value of WRS

(PROG () (PRINT A) (RETURN (FIRST A»» }
«NOW IS THE TIME FOR ALL GOOD MEN TO COME User's program for test

TO THE AID OF THEIR PARTY» .

NOW

WRS (*TTY)

OUTTAP

LISP supervisor reply when tape bas been
written with (NOW IS THE ••• PARTY) .

User write selection

Value of WRS

Note: If a file is shut while selected for either read or write. the
selection reverts to the NIL file. a teletype file used by ERROR •.

'.J

\
)

'il

o

•

o

o

11 April 1966 11 TI·1-233~r /103/00

3.4 FILE CONTROL

POSITION (f m)

POSITION is a LISP 1.5 function that is useful for co~trolling active tape and
disc files; it acts as a NOP for CRT and TTY files. Argument f is the name of
an active file, and argument m is a reserved word describing the action desired.
These actions are tabulated below. (Not e that any other value of m d,Jes
(TEREAD) on the file f.)

!. Tape Action Disc Action

SKIPR Position file to first line Position file to first line of
next record. next sector.

SKIPF Position file to first line Position file to the end-of-file
of next file. and erase end-of-file.

WEOF Write tape end-of-file. Write disc end-of-file.

WEOT Write tape end-of-tape. Same as WEOF.

REWIND Position file to first line Position file to first line of
of first file. file.

BACKR Position file to first line Position file to first line of
of prior record. prior sector.

BACKF Position file to first line Same as REWIND.
of prior file.

For POSITION, tape records and disc sectors (there are eight, 5l2-word sectors
per disc track) are treated alike. Furthermore, only one physical file may
exist in a logical disc file, whereas multiple physical files may exist in a
logical tape file.

POSITION returns one of four possible values according to the action taken:

1. f is returned if m is not a SKIPR or SKIPF. If m is SKIPR
or SKIPF. the following values derive.

2. A positive integer, representing the number of records
(or sectors) skipped (not counting an end-of-file record).

3. The atom EOF if the next record on tape (or the current
sector on disc) is an end-of-file.

4. The atom EOT if the next tape record is an end-of-tape.

11 April 1966 12 TM-2337/103/00

Note: You can never POSITION or READ past the end-of-file on a disc file since
a disc file always contains only one physical file. You are permitted to do so
with tape files. at your own risk. since they may contain multiple physical files.

TABIN(n). TABOur(n)

These primi ti ve·s, TABIN and TABOur, may be used for format reading and writing,
respectively. They advance (forward or-backwards) the column pointer of the
selected file to column n, where n is a positive integer less than 71. (For n
outside the range 1 ~ n s: 70, a value of n = 1 is as sumed.) ·For example,
TABOur(33), will tab tne output line to column 33, and subsequent printing will
begin at that column.

Both primitives return a positive integer value, corresponding to the column number
prior to the tab.

TABIN and TABOUT do not influence the data content of any line, and may be used
to backup or skip forward within a line without disturbing the contents.

3.5 I/O PRIMITIVE CHANGES

To accommodate the new I/O mechanisms, a number of existing primitives have
been modified in their side-effects only.

TERPRI ()

TERPRI now performs as follows:

1. Write an end-of-record mark in the current line of the selected
output file.

2. Move the current line to the next available "slot" in the
internal record of the selected output file.

3. Write the internal record of the selected output file onto
the associated external unit.

4. Clear the current line to blanks and reset the column
control to 1 for the selected output file.

5. For tape files, position file to the next record. For disc
files. position file to the next sector only if the current
sector is full.

•

(~,

\ /

o
11 April 1966 13 TM-2337/l03/00

Thus. TERPRI prints each teletypewriter line it sees; it writes blocked tape
records of variable length. up to 30 lines per record. whenever it is called;
and it writes blocked disc records, packed fully to 41 lines per record, when­
ever evaluated. A special TERPRI, called STERPRI, is available that always
blocks maximum size records, thus speeding production runs.

STERPRI ()

STERPRI performs as follows:

1. Move the currerit line to the next available slot in
the internal record of the selected output file.

2. If, and only if, the internal record is full, write
it out on the associated external unit,

3. Clear the current line to blanks and reset the column
control to 1 for the selected output file.

Note: Whenever STERPRI has been used in output formatting. TERPRI must be
called finally to print the last partial record from the output buffer.

*RATOM ()

The basic atom read primitive *RATOM is used by all read
functions, and it has been modified to read from the selected
input file. End-of-medium conditions are flagged by *RATOM as
follows:

Unit Condition *RATOM Effect -
TTY end-of-line ring bell for more input

(carriage return)

DISC end-of-file return literal atom EOF

tape end-of-file return literal atom EOF

tape end-of-tape return literal atom EOT

READ, READl and READCH which use *RATOM. read from the selected input file.
TEREAD also works on the selected input file.

,. ",- ~

11 April 1966 14 TM";2337!103/00

PRINl(a)

The basic atom print primitive, PRINI is used by all print functions and it .
has been modified to write in 'the selected output file. Disc files will
automatically grow larger, by one track, whenever printing overflows the last
sector (subject to the availability of free disc tracks). PRIN¢,'which uses
PRINl, similarly works on the selected output file, a's does PRINCH().·

3.6 SCOPE FUNCTIONS

The scope functions described here are used to plot displays on the dd-19 CRT
display consoles and to accept light-pen inputs. Scope files are opened just
as other files; however, scope files are never selectedby.WRS or RDS but
rather use the following primitives:

PLOT (f i s)
Procedure PLOT inserts a vector or character specified in list i
into the file f based on a search criterion specified in list s.
The search is made by comparing for equality a~ll non-NIL items in
s with data a.lready in file f. . If s = NIL, search is for first
available word in flle f. If the search fails, the value of the
procedure is NIL. If successful, the value of the procedure is
a list ! of the contents of the search' mat.ch word of file f.
The form of it s, and tis:

{(x.6x) (y.6y) (char. size) id

where;

x and ymust satisfy 0 ~ x, y ~. 1023

6x and 6y must lie in the range -127 ~ x, y ~ + 127

char = a character atom

size must lie in the range ¢ - 3 where ¢ designates the
smallest character size, and 3 indicates the largest .
size character (size is ignored for vectors).

For id, the fo1~owing conventions are used:

1 = Scope 1 .or 4

2 = Scope 2 or 5

3 = Scopes (1 and 2) or (4 and 5)

4 = Scope 3 or 6

5 = Scopes (1 and 3) or (4 and 6)
6 = Scopes (2 and 3) or (5 and 6)

. .)

•

(\
. /

o

o

o

11 April 1966 15 TM-2337/l03/00

7 = Scopes (I, 2 and 3) or (4, 5, and 6)

Note 1: A vector is designated when either 6x or 6y is not
NIL, and char = the character atom blank ('~).

Note 2: To display data, PRINTCRT must be used. The scope
number in OPEN determines whether Scopes I. 2, 3
or 4. 5. 6 are used.

Example:

PLOT (BUFF1

«100 • 127) (100) ('~) 4)

«NIL) (453) (E) 4))

This will enter a maximum sized vector for display on
Scope 3 (or 6) at coordinate (100. 100) if in file
BUFFI there is found on Scope 3 (or 6) an E at any
column of row 453. Note that any x or SIZE will
satisfy the search, since these parameters were NIL.
If the whole third argument of PLOT were NIL (s = NIL).
then the vector would be inserted at the first empty
entry, i.e •• a search for first NIL entry of the file.

PRINTCRT (f)

READ CRT (f)

PRINTCRT dumps the file named f on Q-32 drums for display
on the SDC scope. The value of the procedure is NIL if
print is not possible; otherwise the value is f.

READ CRT is used to obtain a light-pen input from LISP
file f. After the user lightpens a character or vector
on the CRT, READCRT returns a list of the information
describing that character or vector in the same format
used for PLOT i or s; i.e., READCRT returns a list of
the form

«x. 6x) (y • 6y) (char. size) id)

11 April 1966 16 TM-2337/l03/00

3.7 TJBRARY FUNCTIONS

. All of the library functions of Mod. 2.5 have disappeared from Mod. 2.6.
As a result of availability of the LISPED* program for file editing and
manipulation. we have found that most library functions are more readily
performed with LISPED. The following three functions have been added to
Mod. 2.6 to facilitate the loading (operation) of LISPED files into LISP:

LOADEXP (filename)
Performs loading (operation) of a single LISPED file (one
S.-expression in the forma.t

. . . fa) • n n

where _name is an arbitrary name. and f. a. are function and
1 a.

arguments constituting an Evalquote pair)

filename is the name used in OPEN.

(Note that the file must be opened before LOADEXP is called.)
LOADEXP ~oes its own read selection using RDS. LOADEXP
prints the va·lue of each Evalquote pair on the user's console.
and returns name. -

READFILE (filename)
Reads all S-expressions on the file designated by filename.
and returns a list of the expressions read. READFILE does
its own read selection using RDS.

PRINTFILE (filename list)

*

Prints onto the file filename each S-expression in list. and
then writes an end-of-file on the file filename. PRINTFILE
does its own write selection using WRS.

LISPED is described in TM-2337/100/01 •

..I

C)

o

o

"

11 April 1966 17 Tf·1-2337/103/00

4. SYSTEM MODIFICATIONS
t

The LISP 1.5 Mod. 2.6 operating system consists of an initialization packa~e
and a supervisor which differ from those in the previous version of LISP.

4.1 IIITIALlZATION
.:>

The initialization package, called whenever the user says GO after loading.
consists of the function "IOINIT(), which

1. Cleans up the system by removing all previous file declarations
and· file buffers from LISP memory, by using the function
*IOSHUT to delete all files found as the value of *FILES*.

2. Makes a file declaration for the file *TTY that is used by
the supervisor; sets *TTY to the value (QUOTE *TTY); and sets
the variables *TRDS and *TWRS, which govern the input and
output from the supervisor, to *TTY.

4.2 SUP.ERVISOR

In general, the LISP 1.5 Mod. 2.6 supervisor performs the same function as the
LISP 1.5 Mod. 2.5 superviso~, and allows the same input flexibility, including
the use of*FUN~ to refer to the last top-level function compiled into scratch
program area. However. the operation is smoother and more efficient, and the
functions *DEFQt and *MGSYM are not used. .

*SUPV *SUPV() is the LISP supervisor, which does a RDS
(*TTY) and WRS (*TTY) and thereafter does a loop
using *TEVALQT •.

(*SUPV (LAMBDA () (PROG (X Y)

(RDS *TTY)

(WRS *TTY)

A (TEREAD)

(SETQ X (READ))

(SETQ X (READ))

(SETQ Y (READ))

(TEREAD)

(PRINT (*TEVALQT X Y)) (GO A))))

11 April 1966 TM-2337/l03/00

*TEVALQT (x y)
*TEVALQT performs housekeeping of scratch program space and
of read-selection. and write-selection and calls~ALQT as follows:

(*EVALQT X Y (QUOTE *FUNC))

*EVALQT (x y n) .
*EVALQT works as it did in Mod. 2.5, except that whenever the
third argument is identically (QUOTE *FUNC), a sweep is made
through the atom head an~ quote cell area, removing the
bindings of all atoms that point into the scratch program
area, and removing all temporary quote cells.

4.3 GROWING PAINS

In LISP 1.5 Mod. 2.6, the higher address boundary of binary program space
(BPS) is not fixed, but is moved by LAP whenever a new program being compiled
at any time would otherwise overflow the current boundary of BPS. This
"growing pain" is accomplished by the function FIXEM, which relocates all
full word space structures toward higher core addresses, and adjusts all
code references to full word space and binary program space boundaries
appropriately. .

The amount by which BPS i,s adjusted on each application of -FIXEM is determined
by the value of the atom *BUMP. The value of *BUMP in the standard LISP
system is lQ3 or 512. In assembling a very long function, LAP may callFIXEM
repeatedly.

Whenever FIXEM is called, the message

(n IS NEW TBPS)

is printed on the teletype.

Since the system boundaries change continuously, and free space may be used'
for binary programs, full word storage, or list storage, the user can find
out the amount of available space by calling the function FREESPACE ().

FREESPACE ()
FREESPACE () calls the garbage collector, then computes the
amount of available free storage, and prints the result as
a decimal integer.

The value of FREES PACE () in a clean LISP system is
approximately 29,000 cells.

•

L

o

•

•

o

o

11 April 1966 19 TM-2337il03/0C

5. PRIMITIVES

OPENFILE (f b)

OPENFlLE creates a file whose name is the first six characters
of the literal atom f. OPENFlLE returns f as its value.
Argument b is a list of property-value pairs describing the
file. The requisite pair information is tabulated below.

Property-Value Pairs for OPENFILE

Prop, t· er ~es TTY T ape D· :lSC CRT

UNIT 8 3 11 10

FORM 19 (BCD) 18 (binary) 18 (binary) 18 (binary)
19 (sortable) 19 (sortable)

SIZE 10 10n(1 ~ n ~ 30).(BCD) 4096 680n(1 ~ n ~ 3)

*

variable, (binary)

ID * reel no. * I S SCOPE NO

MODE * NIL (read-only) NIL(permanent) *
T (read/write) T (temporary)

BUFF GENSYM-named buffer supplied by OPENFlLE

IO OPENFILE places the list of above property value pairs
as the value of property IO on the property list of file.

Property-value pair not required

OPENFILE does four things:

1. It creates an internal, GENSYM-named buffer of specified
size, with all the necessary control mechanisms for the
unit specified.

2. It sets up all the necessary I/O communication linkages
with the time-sharing monitor.

3. It attaches list b (augmented by the property-value pair
"BUFF" and GENSYM-named buffer) as the value of property
"IO" on the property list of f.

4. It returns a list of all file names opened to date.

~ 6

11 April 1966 20 TM-2337/l03/00

Note: For DISC, a MODE value of NIL (permanent) means that the specified file
already.exists as a permanent disc file in the time-sharing disc-file-inventory.
T(temporary) means that the' specified file does not already exist and must be
created. Disc files should never exceed one track (4096 words), since for
reading, only one sector (512 words) is ever in co·re at any moment. For print­
ing files larger than one track (408 lines),.the LISP print programs will
automatically extend ·the file size by one track as needed·, Therefore. be
frugal with disc size requests.- For- example. OPENFILE (TAPEI (UNIT 3 FORM 23Q
SIZE 300 ID 1234 MODE NIL» would create a read-only (MODEmNIL), 300 word
(SIZE=300), sortable (FORMa 23Q)._tape (UNIT=3) file. on reel 1234 (ID=1234)
named TAPEI. OPEN(TAPEI 1234) would achieve the same result.

SHUTFILE (t b)

SHUTFILE deactivates a _file~ It returns as its value a list of all file names
still opened. It purges the file, whose name is the first six characters of
the literal atom f, from both the LISP system and the time-sharing I/O com­
munication tables, and dismisses the unit reserved by this file. The property
IO is removed from the property list of the atom f. The argument b is the
disposition mode for the file f and only has significance for disc files .•
If b = NIL (permanent), the file f will be deleted from the LISP system; but
the name and contents of the file will be added to the permanent time-sharing
disc inventory. The contents of this file will be exactly as they were at the
time of the last TERPRI. If b = T(temporary), the file f will be deleted from
both the LISP system and the time-sharing disc inventory, regardless of the
OPENFILE MODE value,

Therefore:

1. Always evaluate TERPRI prior to SHUTFILE to dUmp any
leftovers in the file on to the external unit. Then
write an end-of-file with POSITION.

2, Permanent disc files. may be deleted from the disc by
SHUTFILE with b = T (temporary).

3. Temporary disc files may be made permanent on the disc by
SHUTFILE with b.=·NIL (permanent), (Note: Q-32 time­
sharing permanent disc files will be automatically deleted
by the time-sharing system after about two days of dormant
residence,)

4. Forb = NIL (permanent), SHUTFILE may request another file
name under which to save this file. This may be necessary
because of a name conflict with other users' permanent
files in the time-sharing disc inventory, In such cases.
all future LISP references ,to this file must use the new name.

/ \

•

•

n

()

o

II

o

•

o

11 April 1966 21 TM-2337/l03/00

(TNSTAT)

SQUOZE (1)

READC (f b)

TNSTAT (transfer status) returns as its value the status
code (an integer) of the last I/O transfer according to
the schedule below. It is useful for error detection and
for distinguishing the terminating condition with READCH,
or any READ primitive.

status Code Condition

~ 3 End-of-line

4 End-of-file

5 End-of-tape

~ 6 Transfer errors

Note that (TNSTAT) can meaningfully be used only
inside a program, never at the top level of
Evalquote, since the last I/O transfer seen by
Evalquote is always a teletype read.

SQUOZE is a primitive used by function COMPRESS. The
value of SQUOZE is a literal atom formed from the list
of character atoms~. SOUOZE is undefined if ~ is anything
other than a list of character atoms.

READC is a primitive usee! by EXllLOD!;. The value of READe is
the character atom at the bth byte (startin~ with 0)
of the print name of literal atom f. If b exceeds the
maximum byte of the print name of f, READC returns the
value NIL •

11 Ap:t;"il 1966 22 TM-2337/l03/00

6. ERROR MESSAGES

The error messages given ·in Sections ~.l and 6~2 are LISp· ~rrormessages
which result in· a;LISP unwind; so that in general the user can continue
his operationsnormally~ The time-sharing error .m~ssages given in Section 6.3
require speciai ·action, as discussed" therein: ;

6.1

Message

NO FILE

NO SCOPE

UNITERR

UNITBUSY

FlLEGONE

INPUT/OUTPUT ERROR MESSAGES

Meaning

Read or write functions do not find an internal
buffer for the currently selected I/O unit. This
buffer is created and attached to the property
list of the file by OPEN (OPENFlLE) •

The CRT is currently not available as a selectable
I/O unit with WRS or RDS. The SCOPE may be used
with functions READCRT,·PRINTCRT. and PLOT.

Most probably caused by reading or writing a tape
beyond EOT, or beyond last EOF. Also induced by
trying to read a binary tape in Hollerith mode.
May also be induced by a disc or unit malfunction.

Unit requested by OPEN (OPENFI~)--tapet disc, or CRT-­
is in use by ,9.t,hers and tempo~rily· unavailable. .
Type !TAPES ~c~ or !TRACKS i,cr) to see current time.
sharing unit availability. Query the system a·nd try
again if either query shows unit availability.

Permanent disc file named with OPEN (OPENFILE) or
SHUT (SHUTFILE) cannot be found in the time-sharing
disc file inventory. Either·file name is in error,
or file has been deleted by periodic time-sharing
system purging of overloaded disc.

PREEMPTED DISC NAME - ENTER ANOTHER NAME
The temporary file named with OPEN (OPENFILE) cannot
be saved under that name by SHUT (SHUTFILE) as the
name conflicts with an existing disc file. Enter
another file name for this file following this
message. SHUT (SHUTFlLE) will repeat the request
until successful.

(x NOT OPENFlLED)
File name x has been used with WRS or RDS but has not
been opened previously with ~PEN OPENFlLE).

•

•

,

o

•

(J

•

•

o

11 April 1966 23 TM-2337!103!OO

(UNIT NOT SPECIFIED)
RDS or WRS has been unable to find "UNIT" on the value
list of property "IO" on the property list of the named
file. See OPEN (OPENFlLE).

(x HAS NO BUFF)
RDS or WRS has been unable to find "BUFF" on the value
list of property "IO" on the property list of file x.
See OPEN (OPENFlLE).

6.2 OTHER LISP ERROR MESSAGES

(CAR NIL UNDEFINED)
CAR of a character atom is undefined •

(CDR NIL UNDEFINED)
CDR of a character atom is undefined.

(EXPLODE x UNDEFINED)
EXPLODE error if x is a nonatomic S-expression.

(COMPRESS x UNDEFINED)
COMPRESS error if x is a list of other than character
atoms.

(x REDUNDANT FILE NAME)
A file with the same file name has already been opened
by OPEN (OPENFILE). Try another file name.

x NOT BOUND AS FN
This usually means that x has been called as a function
without having been defined. Correct the condition and
try again.

x SETQ'ED - NOT BOUND
This usually means that an attempt was made to perform
(SETQ x expression) where x was neither bound, nor
CSET previously. To use a variable free, it must be
given a CSET (or CSET0) previously. SPECIAL«x)) will
not solve the problem, but CSET (x NIL) will •

(COND ERROR A3)
COND used in expression context had no true clause, and
evaluation "fell through" at run time •

«PAIR ERROR F2) x y)
«PAIR ERROR F3) x y)

The function PAIR was called with lists of unequal length.

11 April 1966 24 TM-2337I103/00

{x NOT AN ATOM (CSET))
First argument given to CSETQ, was not a literal atom. or
first argument of CSET did not evaluate to an atom.

(OUT OF SCRATCH)
LAMBDA-expression given to Evalquote was too long to
compile into scratch program area: define the function.
then call it.

(x NOT A NUMBER)
An attempt was made to use a non-numeric argument for
an arithmetic function.

{x NOT A LABEL (COMPROG))

(SET ILLEGAL)

The expression (GO x) was encountered in a PROG where
x was not used as a label. The function must be
corrected and redefined.

SET is not defined in Q-32 LISP 1.5.

(x NOT FUNCTION)
x is an expression other than (LAMBDA •••) or
{LABEL ••• (LAMBDA)), used in a context where a LAMBDA­
expression is called for, e.g.

DEFINE « (A B)))

will not work, although

DEFINE «(A (LAMBDA (y) (B y)))))

will:.

(x NOT DECLARED)
This :message is printed by the compiler during compilation,
as a warning only. It means that x was used free without
having been declared SPECIAL before compilation. or was
used as a functional argument without being preceded by
the word FUNCTION. This is the only compilation error
message which does not prevent completion of compilation,
since the compiled code may be correct. "

•

•

o

•

o

11 April 1966 25 TM-2337/103/00

For example:

(LAMBDA (X) (MAPCAR X ADD1» «~ 1 2»

will work, but the message:

(ADD1 NOT DECLARED)

will occur.

(LAMBDA (X) (MAPCAR X (FUNCTION ADDl») «¢ 1 2»

will not produce the error message •

Similarly,

DEFINE «

(AA (LAMBDA (X) (CSETQ B X»)

(BB (LAMBDA (y) (CONS (AA y) B»»)

will produce the error message:

(B NOT DECLARED)

during compilation, even though the function BB cannot
cause an error •

11 April· 1966 26.

RESCUE n

The meaning of this error message is given in the
following table:

n Meanin~ Remarks

1 Illegal branch to FIX program (1)

2 Illegal instruction (1)

3 Illegal address reference (2)

TM-2337/103/00

4 Illegal division. Attempt to divide by zero

5 Program halt (1)

6 BCH ZERO - tape write Should never occur unless
LISP is bad

7 Wrong mode - tape read Wrong tape mounted?

8 Memory protect violation (1)

9 Illegal PER instruction (1)

10 or * I/O trap (1)

11 or = Attempt to store into input (1)
memory

12 or Memory protect register or (1)
Interrupt content register store

13 or " Manual. Break action Break key or !STOP used

(1) These rescue messages should never occur unless the user
has used LAP incorrectlv~ or unleR~ the ~vstem has been
d~aged in some way.

(2) This message will not usually appear. Instead, LISP
will print out one of the two messages,

x SETQ'ED - NOT BOUND or

x NOT BOUND AS FUNCTION

depending upon whether an illegal store or an illegal
indirect jump was encountered. x is usually an atom
name.

o
oJ

o

r

o

11 April 1966 27 TI-1-2337 / 103/ 00
(last page)

6.3 TIME-SHARING ERROR MESSAGES

The following time-sharing error messages may be encountered by the user dup
to his attempt to shut or write on a write-protected public disc file which
is not his own. or to read a read-protected disc file which is not his own.

$

$

NO FILE

BAD MOVE

LISP

LISP

¢~~nnnnn DISPATCHER CALL ERROR ****

00~nnnnn DISPATCHER CALL ERROR ****

The program will at this point be trapped by the Time-Sharing System. To
extricate himself from this situation, the user will then have to reload o~
else execute the following set of time-sharing commands •

. ,-
!$LIV=4~¢~2'* fcr

$MSG IN.

GO

reset live re~ister

TS~ reply

"go" command to TSS

LISP will output two bells when it is ready to receive more input. If the
user does not receive two bells he must reload to continue.

(~
, J

1

, ,

o
..,t

D

o

I

u

Unclassified

Security Classiftt;(lthm

DOCUMENT CONTROL DATA II R&D
(Security cl ... III~~tlon 01 tltl •• bodY 01 .')ltrlct """ Induln, ,."ng"tlan mlllll' b • • nt,r.d wIt,n the aver." rlport I. ol ... m.d)

1. QRIGINATIN G ACTIV'ITY (Corporate aJ,lthorJ ", ,.BPO"" '~CU"ITV C L.ASSIFICATION

System Development Corporation
Santa Monica, California

3. REPORT TITLE

Unclassified
%b. GROUP

THE Q-32 LISP 1.5 MOD. 2.6 SYSTEM Operating System, Input-Output, File, and
Libra~ Functions.

4. OESCRIPTIVE NOTES (Type 01 report and Incluelve date.)

Kameny, S. L. and C. Weissman.

6· REPO RT OAT~
11 April 1966

Sa. CONTRACT OR GR~NT NQ·AF 19 (628)-5166
Electronic Systems Division, Air Force

b. PROJECT NO·Systems Command, in perfor-

". TOTAL NO. OF PAGEl
29

17b. NO. OF'REFS

, •. ORIGINATOR'S REPORT NUMBER(S)

TM-2337/103/00
mance of ARPA Order 773 for the Advance(~ __ ~

c. Research ProJoects Agency Information lb. OTH Elit ",POIitT NO(S) (Any otll,r number. th.t m.y b I,",d
thl. report)

Processing Techniques Office.
d.

10. A V A IL ABILITY ILIMITATION NOTICES

This document has been cleared for open publication and may be disseminated by
the Clearing House for Federal Scientific & Technical Information.

t 1. 5UPPL EMENTARY NOTES u· SPONSOlltlNCJ MIL.ITA,.y ACTIVITY

13. ABSTRACT

This document supplements TM-2337/101/00 by describing the input-output, file­
handling, and libra~ functions of Q-32 LISP 1.5 Mod. 2.6 It also describes
differences between Mod. 2.6 and the previous Mod. 2. 5 describes in TM-2337/102/0C
dated 9 August 1965.

DO FORM , JAN 154 1473

TM-2337/101/00 - AD - 622 022
TM-2337/102/00 - AD - 622 018

Unclassified
Security Classification

Unclassified
Security Classification

14·

AN/FSQ-32
LISP
Input IOutput
Library Functions

KEY WORDS
LINKA LINK 8 LINK C

ROLE WT ROL~ WT ROLE WT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and addrel!s
of the contractor, subcontractor, grantee, Department of De­
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over­
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord­
ance with appropriate security regulations.

2b. GROUP:. Automatic downgrading is specified in 000 Di­
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 'as author­
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica­
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
relJort, e. g.; interim, progress, summa~y.' annual~ or fin~l. .
Give the inclusive dates when a speclhc reporting penod IS

covered.

5. AUTHOR(S): -- Enter the name(s) of author(s) as shown on
or in the report. Entet' last name, first n~e, middle initial.
If :r.ilitary, show rank end brElnch oC service. The name of
the principal cmthor is an absolute minimum requirement.

6. REPORT OAT!:.: Enter the date of the report as day,
month, year; or m~nth, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow nonnal pagination procedures, i. e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the ~pplicable number of the contract or grant under which
the report was written.

8b, Sc, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9il. ORT(jTNATOR'S REPORT NUMBER(S): Enter the offi­
cial reporl number by which the document will be identified
and controlled by the originating activity. This number must
be u~que to this report.

9b. OTh . :·.EPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the ori~inator
or by the sponsor), also enter this number(s).

10. AVAILABILITt/LIMlTATION NOTICES: Enter any lim­
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may o~tain copies of this
report from DDC."

(2) "Foreign announcement and dissemination of this
report ·by DOC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DOC. Other qualified DOC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DOC. Other qualified users
shall request throu~h

"

"
(5) "All distribution of this report is controlled. Qual­

ified DDC users shall request through

-- ."
If the report has been furnished to the Office of Technical

Services, Department of Commerce, for sale to the public, indi­
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana­
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the dep art mental proj ect office or 1 aboratory sponsoring (pa~
in~ for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re­
port. If additional space is required, a continuation· sheet :;hall .
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in­
formation in the paragraph, represented as (T5), (5), (C), or (U).

There is no limitation on the length of the abstrQct. How­
ever, the suggested length is from 150 t!:> 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words mllst be
selected so that no security classification is required. Identi­
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con­
text. The assignment of linles, rules, and weights is optional.

Unclassified
Security Classification

1

	TM-2337_103_000001_a
	TM-2337_103_000001_b
	TM-2337_103_000002_a
	TM-2337_103_000002_b
	TM-2337_103_000003_a
	TM-2337_103_000003_b
	TM-2337_103_000004_a
	TM-2337_103_000004_b
	TM-2337_103_000005_a
	TM-2337_103_000005_b
	TM-2337_103_000006_a
	TM-2337_103_000006_b
	TM-2337_103_000007_a
	TM-2337_103_000007_b
	TM-2337_103_000008_a
	TM-2337_103_000008_b
	TM-2337_103_000009_a
	TM-2337_103_000009_b
	TM-2337_103_000010_a
	TM-2337_103_000010_b
	TM-2337_103_000011_a
	TM-2337_103_000011_b
	TM-2337_103_000012_a
	TM-2337_103_000012_b
	TM-2337_103_000013_a
	TM-2337_103_000013_b
	TM-2337_103_000014_a
	TM-2337_103_000014_b
	TM-2337_103_000015_a
	TM-2337_103_000015_b
	TM-2337_103_000016_a
	TM-2337_103_000016_b
	TM-2337_103_000017_a
	TM-2337_103_000017_b
	TM-2337_103_000018_a
	TM-2337_103_000018_b

