
"'? '/ . '. CLrlLk {(j).), .. d-1'~UJj~~'--"

8-2OK/65

'\ G «Primer for LISP 2 by Mike Levin and Ed Berkeley))

Draft. Sept. 20. 1965

PREFACE

The purpose of this primer for LISP 2 is to give a fairly simple and under-

standable explanation of several important parts of LISP 2. including the way in

which information is given to the system (called Source Language) and the way in

which the system operates with the information (called the Intermediate Language).

We assume that readers of this primer have had no previous familiarity with

LISP.

We also assume that readers have some familiarity with mathematics including

the binary and octal scales of notation, the algebra of the real number system

c and Boolean algebra. However such information is needed only seldom.

We try to ~xplain each idea stated here in such a way that the explanation

is all cont ained in this primer. However, every noW and then an idea occurs in

the primer marked "this will be explained later" or "this will be 'mentioned but

not explained in the primern •

We invite suggestions, comments, and criticisms of this draft from every

reader.

o

8-20K/65

o «Primer for LISP 2 by Mike Levin and Ed Berkeley))

Draft, Sept. 20. 1965

Chapter 1. INTRODUCTION

1. Three Basic Ideas

The first two ideas needed for the computer programming language LISP 2 are:

the Source Language

the Intermediate Language

The Source Language is a language which is relatively easy and natural for a

programmer to learn. write. and use to express problems, and which is acceptable

by a device (a set of rules or a computer progra~ called the Syntax Translator

which produces Intermediate Language.

o The Intermediate Language is a language which is much like LISP 1.5. which

is acceptable to one or more computers and can be implemented on them, and which

enables a computer to solve the problems that a programmer has expressed.

The Syntax Translator may be a computer-implemented system or it may be a

set of rules which a pro~rammer can manually apply or be guided by. A programmer

can of course ~Tite in Intermediate Language if he chooses.

2. Example of Source Language and Intermediate Language
4Lvo ')

In order to illustrate the content of each of these ~ symbolic systems. ,--,

let us take the problem of:

telling a computer (a person or a machine) the definition of the

factorial of R. which is R times n-l times n-2 and so on down to

3 times 2 times 1. except that factorial of 0 is 1;

o directing the computer to compute the factorial of 5.

In these words just writ ten we have expressed the problem in ordinary English.

o

o

o

In Source Language the problem is expressed:

FUNCTION FACTORIAL (N)

IF N='O THEN I ELSE

N ':' FACTORIAL (N-I)

FACTORIAL (5);

In internal Language the problem is expressed:

(FUN CT ION FACTO RIAL (N)

(IF (EQUAL N 0) 1

(TIMES N (FACTORIAL (DIFFERENCE l'Ji)})).)r~cJ--'
(FACTORIAL 5)

?\e(

Z\~

The first thing we have to do is to describe source language and explain what

is acceptable and what is not. To say what is acceptable requires a long series of

statements and many examples.

3. Acceptable Characters

The standard acceptable characters for Source Language are:

- t11e26 capital letters A to Z; capital 0 is written 0;

- the 10 digits 0 to 9; the digit 0 is written 0; the digit 1 for one

is not the same character as the small letter L;

- the 24 characters in Table 1; each is shown there with its name and its

usual meaning if any.) .
¥

In addition from time to time)the absence of , any character) i.e •• nothing written •
., ~ ~~.l!.lN.9. .. "'-s c,M,.'\ 4e>..&:e,l..

h ~=i.S meaning as the symhoJ i?plus"s~1'n other ways f\..aJl.Q t~is IS called an empt:y. For ~

c:x~~r.ple" Lj " , " ',-' ''':-'',-. ":'Y'! 0~~-':'''''r>r. ' ("''-~- • ~" ... -{~'1r.-::. _ ~ ~_" ,....Ii' ,<,._/j l,_:.~ -,;' J).,,~) . -" h"""~ .;": •• ,,c;; ,,,CQ,.l.i'~' iJ0~.t aLe ... ,li:.; ue'.:)at.lve U.L --:I; umnus .tOU.!. •

different from a space, such as the space between words in ordinary

English. as produced by pressing the space-bar of a typewriter.

The last two signs in Table 1 are not literally expressed in Source Language

by the characters 0. ~. Instead they are expressed in Source Language by pressing

the space bar, and by pressing the carriage return key.

,.

o

o

'0

No.

Al

A2

A3

A4

Bl

B2

B3

B4

B5

B6

B7

Cl

C2

C3

C4

Dl

D2

D3

El

E2

E3

E4

F-l

F2

Class

Grouping
signs

Operation
signs

Punctuation

Relation
signs

E

F

Character

(

)

[

J
o

1"

....

/

\

t
~

&

~

7

%

$

Table 1

Name

left parenthesis

right parenthesis

left bracket

right bracket

plus sign

minus sign

asterisk

slant or slash

backward slash

up arrow

left arrow

comma

semicolon

period or dot

colon

less than sign

greater than sign

equal sign

percent sign

fence. (number sign)

dollar sign

single quote

Usual Meaning if Any

start of an expression. list. etc.

finish of an expression. list. etc.

start of a block or an array of
constants

finish of a block or an array of
con,~tants

PLUS

MINUS

TIMES

DIVIDED BY

REMAINDER

EXPONENT ~C)~ C' ~>.t2-:l
ASSIGNMENT ~Er ... ; EQUAL), to I • I') ~

separator between arguments of
a function

separator between statements in
sequence

the point in a scale of notat ion.
(see note)

placed after labels in source
language

---- ---Ia..ve.r c''-e (LEn,... mT., ""'T . ~ 'b

I GREATER THAN 'OI,U-QY c~<.; E'_

EQUALS

escape character. enabling the
next character to take a special
assigned .. ~.PA.f"'-ei,vtl..~ ~

start or end of a string

tailing of names in sections of
programs

QUOTE

~ b slashed space. in the sense of pressing the
space bar on a typewriter

~ c r in a circle carriage return, in the sense of
pressing a typewriter key to

r:, 0." c~VU.Q~ }\9f.Lt..'\A.' ==-=--==nroduce carriage r~
~§J-~-- y

u ..

c)

o

C)

". :::.

4. The Period

Table 1 gives for the period or dot (.) "the point in a scale of notation, .

etc. (see note)vv.

In Source Language, the period is used in exactly four ways~ We. shall

specify these ways here although the meaning of the information given here will

not become clear until later.

1. The period is used for specifying the decimal point in a number

.j(()/i ." . .,\ l /) I))
(expressed according to the rules~/d~/.HU\;\'{'.'L" ,c>\.(F· ,."It ,((v:.,u·H.'r ,V

2. It is a permitted character in identifiers except in the first
e.N--· u.lvv.XJuic,:\.. I

po sit ion 0 f ~h-aF-ae-'i>e-1'.

3. It is used in what is called the dot-notation in S-expressions in

the precise form '9space,dot. space" (see later explanation).

4. It is used as the infix operator for CONS in the form ltspace,

dot, s paceH •

o

o

o

o

8-20K!65

«(Primer for LISP 2 by Mike Levin and Ed Berkeley))

Dr' a ft, Sept. 20, 1965

Chapter 2. DATA -- Part 1

We will now consider the ideas used in Source Language for designating data.

Data comprises the constant information which the implemented computer will accept

as given. To designate data, a number of terms are used, which have special

defined meanings.

1. Characters

A letter is one of the 26 capital letters of the alphabet.

An octal-diait is one of the eight digits 0, 1. 2, 3, 4. 5, 6, 7.

A diqit is a decimal digit; it is one of the digits from 0 to 9.

A sign is an empty (i.e., nothing written) or + or -

A space is the result of press ing the space bar on a typewritter and occurs as

a separator between expressions in source language. In talking about a

space in situations where otherwise the meaning may not be clear, the

sign J6 (slashed b) is used, meaning a space. This sign however does not

appear in Source Language itself.

A carriaae return is the result of pressing the carriage return key on a

typewriter. When Source Language is copied from one place to another,

the end of one line of writ ing and the beginning of the next line of

writing is not noticed. may vary, and the variation is not significant.

In talking about carriage return, the symbol ~ (c r in a circle) is

used as its name. but this symbol does not appear in Source Language.

Other characters may occur in source language (such as / or %). They will

be ~xplained below as they occur.

'"

0,-
", '

, J

Ci

0,

r

.,
2. Numbers

~ An integer is an acceptable expression of Source Language which stands fo~

a pOsitive or negative integer written in the usual way in the scale of 10, wit~

an option for using a positive exponent.
, , C

I\"'LN\\~A.\ r ('"

"
jExamples of acceptablel\ expressions are: ~.

"- "J-

37

2E0

-345E9

Exampies of

the decimal number 37
',1, ..

the decimal number 2

" the decimal number minus 345 times 10 to the 9th power

or minus 345-billion ~
II.,VNI,I.C l~' ~ ~.Q

unacceptable expressions are:

, .

- . , ,

/k" .
II'he absence of a digit in front of the E bars it <Vl 0.... ~,O CI. V KF

(' (I I' I ' II fI , '

E'3
, r+"-'lO" '(I' • AcLt l· \~ t.·,.)h\ll.ll'"c..~) CJAJ'l"6":~tt.\ h..~}"'/'.) ,
}-~he negativ~ exponent (the minus ~~~ the ,E) bars it I ~

.Q..x- .
/lhe spaces bar it; the Syntax Translator would look on

2E-7

2 E 7
.)

this as three expressions

An inteaer may be defined precisely as:

empty or + or - followed by

one or 'more decimal digits, followed by

empty, or E followed by one or more decimal digits

The term integer (in Source Language) is short for decimal integer, or integer

written in the decimal scale. as described above.

An octal is an acceptable expression of Source Language,which stands for a

positive or negative octal integer. with an option for using a positive exponent

written in the decimal scale. Such a number is regularly used as a bit pattern. a

pattern of ones and zeros produced by converting the octal digits ~ to 7 individually

into binary equivalents 000 to III in the binary scale.

37Q

-2Q

+37Q

37 in the octal scale. 11111 in the binary scale

minus 2 in the octal scale

37 in the octal scale Uhe plus is not necessary but is
accept able)

5Q8 500000000 iri the octal scale (note that the 8 is an

o exponent written in the scale of 10)

500000000Q this is the same as the last number, written in another

accept able way

Examples of expressions which are not acceptable are:

37 the absence of Q means that the number is decimal not octal

5Q-2 the negative exponent makes the octal number fractional;

only positive integers in the octal scale are acceptable

40Q~-3 the presence of a plus sign between Q and the next digit

bars the expression

3.4Q the presence of the point in the octal scale makes the

expression unacceptable

37 Q the space bars it; the Syntax Translator would treat this

as two expressions

o 49Q the 9 makes the expression unacceptable as an octal

An octal may be precisely defined as:

empty or Il or - followed by

one or more octal-digits, followed by

Q. fgHgw©g by

empty or one or more decimal digits

A (in Source Language) is an acceptable expression of Source Language

Co ~ ,.;... ..:;;. ... s '(. ::~;.-:. u...~:; V' n:;..,. ~.J,~i;::; i.,.. _ 'J V' :J::'" i ve ..{. 1,.. ~ + f-i.r!
~ H i Ld; ~;: ~~>:

... .J., • 1 .. ;rS;9!: ·19ng parI-

expressed in thG sca.le oi 10, and with an option for using a positive or negative

exponent.

Examples of acceptable reals are:

2.
J.t,

;the number 2.0
...[Coc..,
Il"he number 2 and 3 tenths o 2.3

o

r-

o

o

0.416

-7.65 /

7.65

.2

3.67E-4

000. 032EB

000.000

, .\c j (, .
Jhe d~cimal number 446 thous andths

1inus seven point six five

~even paint ~ix five
1,1
.Fhe numbe~ two tenths

3.67 time,s 10 'fa the minus 4 power

.032 times l~to the 8th power
(.t.' " '.

A'representat ion of zero

A real may be precisely defined as:

" a sign. followed by .

zero or more decimal digit s. followed by

a period (a point). foJlowed by

zero or more decimal digits. followed by

empty. or E followed by a, sign followed by one or more decimal digits;

provided that there is at least one decimal digit on one side or the other of the

point.

h
A;Number (in Source Language) is an integer or an octal or a !eal.

,--~e/~~~e.e-tnlaD~

These are all of the acceptable expressions which represent numbers.

In practice. there is a limit to the number of digits which may occur in the

repres ent at ion ofa number. In Source Language as such. there is no specified

limi t.

3. Booleans

In reporting the truth values of, statements there is need for reporting "true.

yes. correct~V or ~tfalse. no, wrong".

The first of these is TRUE which is an acceptable expression of Source Language.

The second of these is anyone of the following expressions, all of which are

in~erchangeable r C>-M-.£ ..P-tyN:"~r,~er;'vd- : ,.,~

"

('
\..)

o

C\

~ I ~.

FALSE, or

NIL. or

()

A Boolean may be precisely defined as TRUE or FALSE or NIL or ().

4. Identifiers

In order to deal with functions, variables, and other operations of computing,

we need a class of symbols which are here called" ident ifiersvt •

An identifier may be precisely defined as:

a letter, followed by

one or more letters or digits or periods

(excluding t he special express ions TRUE. FALSE, NIL), or

else:

a percent sign, followed by

a string

lIJe have not defined strings yet but we will come to them soon.

Examples of acceptable identifiers are:

CAR PLUS MER863.2 X

CDR U AIB2C3 FN

dlo if (((if: ~ / IJ ' otoil })
oif oil -:;:} }J

""

r-'\ (0) , '

-.....

'0

C)

~/

/ ,.

8-20K/65

«Primer for LISP 2 by Mike Levin and Ed Berkeley»

Draft, Sept. 24. 1965

Chapter 2: DATA

Part 2

5. Strings. Comments, Hyphenators. and Spacers

From time to time: as 'a computation proceeds we need to be able to write freely~
t . . .

disregarding all the conventions that we have hitherto set ~p. This happens for

example when we want 1;0 write a sentence as a comment, or when we want to con­

struct machine langu~ge programs using a suitable menemonic language which may not

in any way agree with our Source Language so far defined.

What we write on one of these occasions may be called a string, a sequence of

any characters whatever. whiqh;ii.eeds to be treated as a uni~. as for example in a

comment on a pro~am.

In order to write a string in Source Language, basically. we begin the string

with a fence and end the string with a fence.

Examples of acceptable st'rings are:

~HE POSITIVE ROOT IS#

#SUBROUTINE FOR SQUARE ROOT#

To define a string~ we will first define "string-character".

A string-character is a letter or a digit or any of the following 19 characters:

Grouping signs (4)

Operation signs (7)

Punctuation signs except the semicolon (3)

Relation signs (3)

$. dollar sign (1)

a space. produced by the space bar of a typewriter (1)

/~ b)

c' c-

-_.

o

Note that the following six characters are ~ string-characters:

fence

single quote or quote mark

% percent sign

'. semicolon

@ c r in a circle

~ slashed b

The slashed b isa name for a space, used when talking about strings. but not

used in strings. ,

One might think from this definition that we could not use the five non-

string characters in strings. But there is a,w(iY of avoiding this limitation.

It appears in the definition of string.

A string may be precisely defined as:

a fence. followed by

one or more of any of the following

,~ string character

a semicolon

a quote mark followed by a quote mark

a quote mark followed by a fence

a quote mark followed by a percent sign

a quote mark followed by a carriage return

followed by a fence

The meaning of a string (in other words. what the Internal Language rece~ves

as translation from the Syntax Translator) is:

a string containing all the characters of the original in

proper sequence. EXCEPT:

the initial fence is omitted;

the terminal fence is omitted;

------.- .·=-~=·:;:':_;::"':';:.·.~.::;:::::':"~-~=-"'~~=~7'··- .~:·._;_:'::'-::::::::7"'::--===---::::==--~_~·-_-=-..:.:::=:-..::':'~"::-:=-_:'",::"",:~::,:"":,,:,,,~_,:,,,::,,:,,:,,_.::_ _._~~:~ ___ ._,::-...... __ ::-=.::==.:::.:=:=:......-==~c:::c.:--:--.-...-,--,..,---'-.~-'----- ... -'--,-._, _________ .____ .. _ _. ' __ . __ .,_

",~ 0)

0" l,

0:.,

all quote marks are omitted except that a pair of quote marks together

yield a single quote mark in the translated string

Examples of strings and their translation appear below:

Source Language String

. #ABC#

#' 'A#

#CAR SUBR; CHOOSE ~.

X "A#

#'#ABC'##

A comment is:

a percent sign, followed by

a space, followed by

zero or more of:

- a string character. or

,'" a fence. or
, .
. - a quote mark.

followed by

a semicolon or a carriage return

Examples of acceptable comments are:

% THIS IS A COMMFNT;

Translated String (or Meaning) in
Intermediate Language

ABC

'A

CAR SUBR; CHOOSE

X 'A

#ABC~

% COMMEl'IT; A + B % THE PRECEDING EXPRESSION IS NOT:.A CO~T

Examples of expressions which are not acceptable as comments are:

% THE SECOND PERCFNT WILL CAUSE % AN ERROR;

% THIS COMMFNT IS NOT PROPERLY TERMINATED- A+B

A hyphenator is the equiva..lent in Source Language of B hyphen in ordinary

English. It is used to show that. although the end of a line has been reached in

the middle of a "word" (or a string). no break Whatever is intended.

~

One example of the use of a hyphenator is:

a ABC%

DEF

The translation of this in Intermediate Language is:

ABCDEF

A hyphenator may even interrupt a number. so a second example is:

3.4~;6

53

3 .. 4E%

ABCDEF , .
A spacer is the equivalent in Source Language of the space between words or

other expressions when writing in ordinary English or mathematics. One or more

spaces in Source Language is a spacer.

A spacer (in Source Language) may be precisely defined as one of (or a sequence

of two or more of) space~. carriage returns, and comments.

Examples of spacers are:

(1) space. space. space as in: Al Bl

(2) carriage return as in: Al

Bl

(3) % THE SQUARE HOOT ROUTINE;

o
6. Tokens

A token (in Source Language) is anyone of the following:

a BOQlean, or a number, or an identifier. or a string. or one of the
,'~ '0 following 24 special tokens:

...:::::.
::::::;;>

-\-
•

/-,
~=

~=

-f

.""~"" .

0

\

/

t
«e-

. -.
(

)

[

]

$

o

. ,

comma

semicolon

colon

This is "space. period. space". and has a special meaning

less than sign

greater than sign

equal sign. which means EQUAL

slashed equal sign. which means NOT EQUAL

which means LESS THAN OR EQUAL

which means GREATER THAN OR EQUAL

PUJS

MINUS'

TIMES

REMAINDER

CDIVIDED BY

up arrow. EXPONENT

I left arrow. ASSIGNMENT (LEI' ••• EQUAL)

which: means DIVIDED BY

left', parenthesis

right parenthesis

left bracket

right bracket

quote mark

dollar sign

...
<>

"\ o

(~:\
''-../

C)

7. Atoms. S-Expressions. and Constants

In any discussion of any subject. we find it necessary to give names to the

ideas we are going to talk about. both those which are defined at the beginning

and those which are defined from time to time during the course of the discussion.

To name these ideas in LISP 2 systematically. we make ~s~ of identifiers.

numbers. Booleans. and strings. and we put them together into what are called

"acceptable symbolic expressions". This name is abbreviated 'to S-expression.

Some examples of S-expressions and their uses are:

,CAR a function of lists ,

(PLUS U V)

(U • (V .w»

()

(3 UExPONENT# R #HADIVS#
PI #USUAL MEANING#)

«(A B»(CD»

a sum of two variables U and V

a list of two elements one of which is a
sublist

NIL

a list of identifiers. and comments about them

a list of sublists

One element~!y type of S-expression is atom. An atom may be precisely

defined as anyone of the following:

a number. or a Boolean. or a string. or an identifier. or an array.

crhe term array will not be defined or discussed in this primer. but in order to

make definitions complete. it will be mentioned from~ime to time. The reason for

this is that if LISP 2 without arrays is understood first. then the inclusion of

arrays later is fairly'easy.)

An S-expression may be precisely defined as:

an atom; or

a left parenthesis. followed by one or more S-expressions separated by

spaces, followed by

a space, followed by a dot. followed by a space. followed by an

S-expression. followed by a right parenthesis; or

--------~~-------~-,--- ~-.==~~-.~--=.-:~-------

"J ". ..
a left parenthesi~. followed by zero or more S-expressions separated by

\
'C) spaces, followed by

.,

a right parenthesis

Some examples of S-expressions were given earlier.

A constant is:

a number, or a

a Boolean. or

a string. or

,the quote mar}{:..J"ollowed by an S-expression
•

Examples of constants are:
,

7.6E2

()

#THE END#

r\ , (CDR' (U V W»

\0 Examples of express ions that are not, const ant s are:

CAR an identifier , ,

<CAR (CDR (QUOTE (U V W») an S-expression .!!Q1. pr~ceded by a quote mark

/" -c;,

___ . __ ~ ___ . __ ... ~ ___________ ~ __ ~_·~=~-_~-..:...-:~'r..,....,.-.,..--:":_~-;'~,..,,;-,......''':-;'-:----:;-;-;

