O

8-20K/65
((Primer for LISP 2 by Mike Levin and Ed Berkeley))

Draft, Sept. 20, 1965

PREFACE

The purpose of this primer for LISP 2 is to give a fairly simple and under-
standable explanation of several important parts of LISP 2, including the way in
which information is given to the system (called Source Language) and the way in
which the system operates with the information (called the Intermediate Language) .

We assume that readers of this primer have had no previous familiarity with
LISP.

We also assume that readers have some familiarity with mathematics including
the binary and octal scales of notation, the algebra of the real number system
and Boolean algebra. However such information is needed only seldom.

We try to explain each idea stated here in such a way that the explanation
is all contained in this primer. However, every now and then an idea occurs in
the primer marked "this will be explained later" or “this will be;mentioned but
not explained in the primer™.

We invite suggestions, comments, and criticisms of this draft from every

reader.

8-20K/65
((Primer for LISP 2 by Mike Levin and Ed Berkeley))
Draft, Sept. 20, 1965

Chapter 1. INTRODUCTION

1. Three Basic Ideas
The first two ideas reeded for the computer programming language LiSP-Z are:
the Source Language
the Intermediate Language

The Source Language is a language which is relatively easy and natural for a
programmer to learn, write, and use to express problems, and which is acceptable
by a device (a set of rules or a computer program) called the Syntax Translator
which produces Intermediate Language.

The Intermediate Language is a language which is much like LISP 1.5, which
is acceptable to one or more computers and can be implemented on them, and which
enables a computer to solve the problems that a programmer has expressed.

The Syntax Translator may be a computer-implemented system or it may be a
set of rules which a programmer can manually apply or be guided4by. A programmer

can of course write in Intermediate Language if he chooses.

2. Example of Source Language and Intermediate Language
- LS ymbors —/
In order to illustrate the content of each of these symbolic systems,
let us take the problem of:
—-- telling a computer (a person or a machine) the definition of the
factorial of n, which is n times n-1 times n-2 and so on down to
3 times 2 times 1, except that factorial of O is 1;

-- directing the computer to compute the factorial of 5.

In these words just written we have expressed the problem in ordinary English.

In Source Language the problem is expressed:
FUNCTICN FACTORIAL (N) -
=
IF N=0 THEN 1 ELSE

N * FACTORIAL (N-1) ;

FACTORIAL (5) ;

In internal Language the problem is expressed:
'(FUNCTION FACTCRIAL (N)

(IF (EQUAL N 0) 1
(ITMES N (FACTORIAL (DIFFERENCE ND))) 3

12

(FACTORIAL 5)
The. first thing we have to do is to describe source language and explain what

is acceptable and what is not. To say what is acceptable requires a long series of

statements and many examples.

3. Acceptable Characters

The standard acceptable characters for Source Language are:
- the 26 capital letters A to Z; capital o is written O;

- the 10 digits O to 9; the digit O is written @; the digit 1 for one

is not the same character as the small letter L;

- the 24 characters in Table 1: each is shown there with its name and its

usual meaning if any, *®

In addition from time to tlme)the absence of any character)l e., nothing written,
&\&Q‘O,Q,@u\& w oy chcuﬁEu

s the symbol "nlus' '»o= In other ways Yaﬂd—th&s s called an empty. For

has weaning a

; meaning: both are the negative of =4 (minus four).

An empty is different from a space, such as the space between words in ordinary

English, as produced by pressing the space-bar of a typewriter.
The last two signs in Table 1 are not literally expressed in Source Language

by the characters ¥, @E}. Instead they are expressed in Source Language by pressing

the space bar, and by pressing the carriage return key

O

No. Class Character
Al Grouping (
signs
A2)
1 [
A4 1
Bl Operation T
signs
B2 -
B3 *
B4 /
B5 X
B6 i
B7 &
Ci Punctuation -,
'C2 ;
C3 .
c4
D1 Relation =~
signs
D2 —-
D3 ==
El E %
E2 #
E3 $
E4 !
Fl F ¥
F2 D)

Table 1

Name
left parenthesis
right parenthesis
left bracket

right bracket

plus sign
minus sign
asterisk

slant or slash
backward slash
up arrow

left arrow

commna
semicolon
period or dot

colon

less than sign
greater than sign

equal sign

percent sign

fence, (number sign)

dollar sign
Single quote
b slashed

¢ r in a circle

(e daey cobwe g Ao,

Usual Meaning if Any

start of an expression, list, etc.

finish of an expression, list, etc.

start of a block or an array of
constants

finish of a block or an array of
congtants

PLUS

MINUS

TIMES

DIVIDED BY

REMAINDER

EXPONENT ¢ o chee

=S ——

ASSIGNMENT gEr...;EQUAL/L,ﬁ)....) A

separator between arguments of
a function

separator between statements in
sequence

the point in a scale of notation,
(see note)

placed after labels in source
language

———— [xu2r case

"LESS THAN

kbUQY IS e
“ GREATER THAN

EQUALS

escape character, enabling the
next character to take a special
assigned -wteparfelioin X
start or end of a string

tailing of names in sections of
progr ams ~
QUOTE

space, in the sense of pressing the

space bar on a typewriter
carriage return, in the sense of

pressing a typewriter key to

——=———Droduce carriage returm <y

O

4. The Period

Table 1 gives for the period or dot (.) "the point in a scale of notation, -

etc. (see note)™.

In Source Language, the period is used in exactly four ways{ ‘We shall

specify these ways here although the meaning of the information given here wili E

not become clear until later.

1. The period is used for specifying the decimal point in a number
0.»' . ‘ B 4
(expressed according to the rules%/ﬁa;vaouﬁtn J%o#ﬂvﬂ(‘é&éziu“>
2. It is a permitted character in identifiers except in the first
G L&"/V‘i D\—‘&,‘\,,
position of -a\charaeter.
3. It is used in what is called the dot-notation in S-expressions in
the precise form "space,dot, space" (see later explanation).

4. It is used as the infix operator for CONS in the form "space,

dot, space™.

¥

8-208K/65

((Primer for LISP 2 by Mike Levin and Ed Berkeley))
Draft, Sept. 20, 1965

Chapter 2. DATA -- Part 1

We will now consider the ideas used in Source Language. for designating data.
Data comprises the constant information which the implemented computer will accept
as given. To designate data, a number of terms are used, which have special

defined meanings.

1. Characters

A letier is one of the 26 capital letters of the alphabet.

An octal-digit is one of the eight digits 9, 1, 2, 3, 4, 5, 6, 7.

A digit is a decimal digit; it is one of the digits from § to 9.

A sign is an empty (i.e., nothing written) or + or -.

A space is the result of pressing the space bar on a typewritter and occurs as
a separator between expressions in source language. In talking about a
space in situations where otherwise the meaning may not be clear, the
sign B (slashed b) is used, meaning a space. This sign however does not
appear in Source Language itself.

A carriage return is the result of pressing the carriage return key on a

typewriter. When Source Language is copied from one place to another,
the end of one line of writing and the beginning of the next line of
writing is not noticed, may vary, and the variation is not significantf
In talking about carriage return, the symbol (:) (c r in a circle) is
used as its name, but this symbol does not appear in Source Language.
Other characters may occur in source language (such as / or %). They wili

be éxplained below as they occur.

g , - 2. Numbers
<:>* ~ An integer is an acceptable expression of Source Language which stands for
< _] .

a positive or negative integer written in the usual way in the scale of 10, with
2 an option for using a positive exponent.
. At lan'c Y

- Examples of acceptablgqexpressions are: " o S j S = R
) o 37 ~ the decimal number 37 . R
2ED ' the decimal number 2 - ¢
, R - . _ '
-345E9 “the dec1mal number minus 345 tlmes 10 to the 9th power L
or minus 345-billion } ‘ ,
/\\w*«\(‘uch ,) o .
Examples of unacceptable expressions are: c
E3 A /fae absence of a dlglt in front of the E bars it Qﬁ&mMMMOO v x
. r‘f"\#! =N f:. ((\ AcL(M.{ \é&‘)how&%) M/;gcn,((‘ge b;)lj. [¥7s : .
2E-T -~ szfhe negative exponent (the minus 4iy4§59nn—o£ the E) ‘bars it e
2ET /T/e spaces bar it; the Syntax Translator would look on
’ this as three expressions f —
<:;‘ An integer may be defined precisely as:

empﬁy or + or —, followed by
one or ‘more decimal digits, followed by
empty, or E followed by one or moré decimal digits
The term,intéger (in Source Language) is short for decimal integer, or integer
written in the decimal scale, as described above. |
An octal is an acceptable expression of Source Language.which stends for a
positive or negative_octal integer, with an option for using a positive exponent
written in the decimal scale. Such a number is regularly used as a bit pattern, a
pattern of ones and zeros produced by converting the octal digits @ to 7 individually

into binary equivalents ##@ to 111 in the binary scale.

370 37 in the octal scale, 11111 in the binary scale
<:> -2Q minus 2 in the octal scale
+37Q0 . 37 in the octal scale (the plus is not necessary but is

acceptable)

508

500000002Q

500000000 in the octal scale (note that the 8 is an
exponent written in the scale of 10)

this is the same as the last number, written in another

acceptable way

Examples of expressions which are not acceptable are:

37

50-2
40043
3.4Q

37 Q

O 49

the absence of Q means that the number is decimal not octal

the negative exponent makes the octal number fractional;
only positive integers in the octal scale are acceptable

the presence of a plus sign between Q and the next digit
bars the expression

the presence of the point in the octal scale makes the
expression unacceptable

the space bars it; the Syntax Translator would treat this

as two expressions

the 9 makes the expression unacceptable as an octal

An octal may be precisely defined as:

empty or +

or —, followed by

cne or more octal-digits, followed by

Q. followed by

empty or cne or more decimal digits

A ;gg% (in Source Language) is an acceptable expression of Source Language

IR R N A R s R T s o Ty v
WAk e NS ad o hs Ane s i o AV "‘/\‘ru-‘-"-

R S e Q{f'v\g”

e e e 3 Giamnman vtk ind ' and Ffrapeti
J2 O fegallve nuwliuel wiel zhedizfe b :::t'f,.»@i:;:@nal Part

expressed in the scaie of 10, and with an optien for using a positive or negative

exponent.

Examples of acceptable reals are:

2.

<:> 2.3

re

JFhe number 2.0

" '/.(/\
The number 2 and 3 tenths

O

Ac

AN
p.aas -, . he decimal number 446 thousandths
-7.65 ~ inusAseven point six five
7.65 weven point six five : f_J i
.2 ‘; he number two tenths' '
3.676-4 3.67 times 10 to the inus 4 pbwer. |
PP.G32E8 - .032 times 10 to the Sth power
oo . pod Aﬂréﬁresentatlon of zero ‘

A real may be precisely defined as:
a sign, followed by .
zero or more decimal dlglts. followed by
a period (a p01nt) followed by
ZEero or more‘décimal digits, followed by
empty, or E followed by a sign followed by one or more decimal digits;
provided that there is at least one decimal digit on one side or the other of the
peint.
A;Nnmber (in Source Language) is an 1nteger or an octal or a real.
K scale ,m@mmmm v
These are all of the acceptable expressions which represent numbérs.
In practice, there is a limit to the number of digits which may occur in the
representation of a number. In Source Language as such, there is no specified

limit.

3. Booleans
In reporting the truth values of statements there is need for reporting "true,
yes, correct” or "false, no, wrong".
The first of these is TRUE which is an acceptable expression of Source Language-
‘The second of these is any one of the following expressions, all of which are

interchangeable Zp omdl o bmﬂ«v&ﬁﬁ»vff‘ N "“f?“

)

s

.

FALSE, or
NIL, or
()

A Boolean may be precisely defined as TRUE or FALSE or NIL or ().

4. Identifiers
In order to deal with functions, variables, and other‘operations 6f computing,
we need a class of symbols which are here called "identifiers".
An identifier may be precisely defined as:
a letter, followed by
one or more letters or digits or periods
(excluding the special expressions TRUE, FALSE, NIL), or
else:
a percent sign, followed by
a string
lle have not defined strings yet but we will come to them soon.
Examples of acceptable identifiers are:
CAR PLUS MERS63.2 X

CDR U A1B2C3 FN

Tt (((# BA 5 B# i, "

8-20K/65
((Primer for LISP 2 by Mike Levin and Ed Berkeley))

Draft, Sept. 24, 1965
Chapter 2: DATA

Part 2

5. Strings, Comments, Hyphenators, and Spacers

From time to timejas:é'computation proceeds we need to be able to write freely,

- disregarding all the conventions that we have hitherto set uﬁ. This happens for

N

example when we want Lb write a sentence as a comment, or ﬁhen we want to con-
struct machine langﬁéée programs using a suitable menemonic language which may not
in any way agree with our Source Language so far defined.

What we write on one of these occasions may be called a string, a sequence of

any characters whatever, which needs to be treated as a unit, as for example in a

comment on a program.

In ofder to write a string in Source Langﬁage. basically. we begin the string
with a fence énd end the string with a fence. |
Examples of acceptable strings are:
#THE POSITIVE ROOT IS¥*
#SUBROUTINE FOR SQUARE ROOT#
To define a string, we will first define "string-character".

A string-character is a letter or a digit or any of the following 19 characters:

Grouping signs (4)

Operation signs (7) |
Punctﬁation signs except the semicoion &)
‘Relation signs (3 |

$, dollar sign (1) .

a space, produced by the space bar of a typewriter (1)

Note that the following six characters are not string-characters:
fence
single quote or quote mark
% percent sign
i semicolon
€rc r in a circle
B slashed b

The slashed b is a name for a space, used when talking about strings, but not
used in strings.

One might‘think from this definition that we could not use the five non-
string ch;racters in strihgs. But there is away of aveiding this iimitation.
It appears in the definition of string.

A string may be precisely defined as:

é fence, followed by
one or more of any of the following

,a string character

a semicalon

<]

quote mark followed by a quote mark
a quote mark followed by a fence
a quote mark followed by a percent sign
a quote mark followed by a carriage return
followed by a fence
The meaning of a string (in other words, what the Internal Language receives
as translation from the Syntax Translator) is:
a string containing all the characters of the original in
proper sequence; EXCEPT : |
thevinitial fence is omitted;

the terminal fence is omitted;

all quote marks are omitted except that a pair of quote marks together

(:)ﬁ ‘ yield a single quote mark in the translated string
Examples of strings and their translation appeér below:
~ Source Lanquage String _ Translated String (or Meaning) in
: . : Intermediate Language
#ABCH | | ABC
! # AR M A
#CAR SUBR; CHOOSE 'Ch CAR SUBR; CHOOSE
X ''A¥ | X 'A
\ #HABC MK - . #ABCH
A QM is:
a percent sign, followed by
a space, followed by
‘zero or more of:
<ij> - a string character, or

~ a fence, or
~a quote mark, o o o
followed by
a semicolon or a carriage return
Examples of acceptable comments are:
% THIS IS A COMMENT; |
% COMMENT;‘A 4-B % THE PRECEDING EXPRESSION IS NOT- A COMMENT
Exambles of expressions which are not acceptable as comments are:
% THE SECOND PERCENT WILL CAUSE % AN ERROR;
% THIS COMMENT IS NOT PROPERLY TERMINATED- A¢B
A hyphenator is the equivalent in Source Language of a hyphen in ordinary
English. It is used to show that, although the énd of a line has been reached in

<:2f the middle ¢f a "word" (or a striﬁg); no break whatever is intended.

One example of the use of a hyphenator is:

ABC)

@)

DEF
The translation of this in Intermediate Language is:
ABCDEF

A hyphenator may even interrupt a number, so a second example is:

3.42%
53
which means 3.4253. /
A third example is: ~ 3.4E%

v

2
which means 3.4E2, which is.the same as 340.
Another example is:
ABCY% ; DEF
<:)‘ which is translated:
ABCDE}F‘(

A gégggg isAthe equivalent in Source Language of the space between words or
other expressions when writing in ordinary English or mathematics. One or more
spaces in Source Language is a spacer.

A §ggggi (in Source Language) may be precisely defined as one of (or a sequence
of two or more of) spaces, carriage returns, and comments.

Examples of spacers are:

(1) space, space, space as in: Al Bl
(2) carriage return as in: Al
. o
@ % THE SQUARE ROOT ROUTINE;
<;) 6. Tokens

A token (in Source Language) is any one of the following:

a Boolean, or a number, or an identifier, or a string, or one of the

following 24 special tokens:

@)

. comma
; semicolon
colon
. This is "space, period, space", and has a special meaning
!) .
< less than sign
;:=’ ~ greater than sign

— equal sign, which means EQUAL

/= slashed equal sign, which means NOT EQUAL
‘¥E==' which means LESS THAN OR EQUAL
== which means GREATER THAN OR EQUAL
+ PLUS
o~ . MINUS
<~) " . TIMES
\ .. REMAINDER
/ [DIVIDED BY
1\ up arrow, EXPONENT
< ,left arrow, ASSIGNMENT (LET ... EQUAL)
- which means DIVIDED BY
(left . parenthesis
) right parenthesis
E left bracket
] right bracket
! quote mark
$ dollar sign

By

(

_ 7. Atoms..S-Expressions. and Constants
In any discussion of any subject, we find it necessary to give names to the:
ideés we are going to talk about, both those which are defined at the beginning
and those which are defined from time to time during the course of the discussion.
To néme these ideas in LISP 2 systematically, we make use of identifiers,
numbers, Booleans, and strings, and we put them together into what are called

“acceptable symbolic expressions". This name is abbreviated to S-expression.

Some examples of S—-expressions and their uses are:

CAR : a function of lists

(PLUS U V) ‘ a sum of two variables U and V

(b WV LewW) a list of two elements one of which is a
sublist '

) NIL

(3 *EXPONENT# R #RADIVS¥# a list of identifiers, and comments about them

P1 #USUAL MEANING#)
(((A B)) (C D)) a list of sublists
One elementary type'of S-expression is atom. An atom may be precisely
defined és any oné of the following:
a number, or a Boolean, or a string, or an identifier, or an array.
(The term array will not be defined or discussed in this primer, but in order to
make definitions complete, it will be mentioned from time to time. The reason for
this is that if LISP 2 without arrays is understood first, then the inclusion of
arrays later is fairly easy.)
An S-expression may be precisely defined as:
an atom; or
a left parenthesis, followed by one or more S—expressions separated by
spaces, followed by
a space, followed by a dot, followed by a space, followed by an

‘S—-expression, followed by a right parenthesis; or

a lefP_parenthesis. followed by zero or more S—expressions separated by
‘tz% : spaces, followed by -
a right parenthesis

Some examples of S-expressions were given earlier.

A constant is:

a number, or a

a Boolean, or

a string, or

.the quote mark followed by an S-expression.
Examples of constants are: |

7.6E2

()

#THE END#

? L
(\\ (CDR' (U V W))
/—\} .
KV) : Examples of expressions that are not. constants are:

CAR ‘ an identifier

© (CAR (CDR (QUOTE (U V W))}) an S—expression not preceded by a quote mark

