’ " LOWELL YA oGS e L-Ilmw

% DATA SEGMENT | | - Lwegps

The data segment of core storage is partitioned into three distinct
areas (see Fig. 3). ‘

r::::lzn’-—f:n.—r—fi ¥ep
ast PN, Tdowch &
#LL MW“‘“ ATomic Stvucture S%ﬁ Seece ,"
:‘M‘ / ‘ 4 <—ppL
| e 7 ARRAY AREA T T T e revealle
' oc (. THPE ATem (£ code) Compaclel
 beolgan A2 S2E of Stvactwre (Ouc‘s) : ‘f&
 Svinys 3, m&.'.;u«-., r(frtdeac) - v "‘“'__ L moveable
, +ubles L -
 rveys
*SYmBeL FREE AREA MG&‘“‘.
I emids T et e \ ol
o date
L dewtiviars
"ﬁ»gm —\HHe cocestes of moviay alled
ﬁL B 4‘ ' . O
we ™ Trocelure LIST AREA “qromiy Pain
Cowmpackel

Fig. 3 Data Segment

Details of the contents of each area and of the interaction among
the areas are discussed in the paragraphs that follow.

1.11. LIST AREA

The 1list area of the data segment contains within it structures

of only one type; these structires are termed list fodes. At all
times the 1ist area must be compactly filled with Nodes, 1.e., there
must never exist in the area a word which does not form a node.

Each 1list node represents an ordered pairing of two data pointers,
- one of which is designated as the CAR element, the other as the

CDR element. Since the assumption Is made here that a core storage

word can accomodate at least two addresses, a list node requires

exactly one word for the paired data pointers. The address of this
?ord const%?utea a reference to the node and is itself a data pointer
see fig. .

t I

1.12

A data pointer occurring as the CAR or CDR element of a 1ist node
may refer to any one of the following types or classes of structures:

1) 1list nodes (as above) '

2) atomic structures (array area

3) identifier heads (found in the fixed area of the
variable segment)

4) TRUE and NIL (special cases)

1ist ‘ b E23 30 47|
pointer - ==\ A ,/522 R

Fig. 4. List Node, Q~32 Style

CAR, CDR and the list pointer
itself are data pointers.

New list nodeé are created by the primitive LISP function CZNS.
The procedure for selecting words in whiech to form them is treated
in paragraph 1.13.

ARRAY AREA

The array area of the data segment contains structures of an arbitrary
numbexr of types; however, all of them. regardless of type, must conform
to certain common specifications and will be referred to collectively
as atomic structures. As was the case with list nodes in the list ares,

- atomic structures must always compactly fill the array area.

Atomic structurss are, essentially, ordered collections of data, both
pointer and absolute, arranged in type-specific formats that conform
to those specifications, outlined below, which are common to all types.
Each atomic structure consists of one or more sequentially-addressed
words in the array area. The first word of the structure (and half
of the second, i1f necessary) 1s called the title word. It includes
three ingredients, explicit or impliecit: "

1) :ype indicator, a small integer specifying the structures
ype

2) size, integer count of the total number of words in the
structure (unneeded if this information is implied by
the type indicator.)

3) self-pointer, address of the title word, conventionally
located in CDR of the title word considered as a list node.

The remaining words of the structure contain the absolute and pointer
elements; the number and arrangements of these elements and the
significance of each one of is a function of the type and, for types
allowing variable-size strusctures, also of the size .

Conventionally, however, pointers are permitted within a word only in
the CAR-CDR positions. Atomic structures of any type, whether or not

they may be created in various sizes, are fixed in size ever after
¢heir ereation. In order to expand or contract a structure, it
would be necessary (but not always possible) to generate a new one
of the desired dimension and to copy imto it those elements of the
old one which are to be preserved.

A Type Indicato ///1 A :
and Size s TITLE WORD

1

Pointer and
Absolute STRUCTURE

Elements

Fig. 5. Atomic Structure

Although the format and pattern of the elements of an atomic

styructure are relatively unrestricted, certain information about

the elements must be available, for each particular type, to the
storage control section of the system. Specifically, this includes

the size, if constant, and not explicit in the title, and an

algorithm for locating and, in some cases, determining the significance
of each pointer element in the structure. This information is required
by the garbage collector as discussed in paragraph 1.1i4%. Of course,
much more information about each type is needed to make possibie
effective programming use of it.

References to an atomic structure come in two different variaties.
The data pointer variety, consisting werely of the address of the
¢itle word, represents the structure as a whole in a data context.
The locative pointer variety, on the other hand, refers to a single
element within the structure in a variable context and consists of
both the address of the word in which the element iies and the
displacement of that word from the title (see Pig. 6}.

A Title Word

Data Pointer Elements

NI Aevenwn e esmacenn —c——

E Selected Element

v/ s
AL 7 L

Locative Pointer

Elements

Fig. & Atomic Structure References

Some examples of specific types of atomic structures, as they might
appear in the Q-32 LISP II system, are illustrated below (see Fig.7)
| Example A depicts a real number as an atomic structure; the type
‘ indicator is 5 and the implied size for this type is 2. In example
B is shown a real matrix; the type indicator is 10, the total size
of the structure is S, there are 3 dimensions, 11-13 give the ranges
8

for each dimension, and by - by are base addresses {ised for indexing
the matrix. PFinally, example ~ C illustrates a special table structure;
the type indicator is 50, the implied size is 3, and the elements
include 2 data pointers and an integer, arranged as shown.

47

W
o

6 23 30 a7 - 23

5%5 I
i

RIOating Pt. No.

s
o

N\N

REAL

A

£
w

30 A7

®
\\\N\NNNNNY

f “F |
AL\ AR\

“'\ L 6 3
2237’ /
¢ i;;(/ 50 1// . ¢
:;//’ Data Data | ?%? Floating Pt.
;///'Pointor:::arointer o)
;>/,/ //(Elements
gl A

1 Full-word Integer

SPECIAL TABLE

—_—— REAL MATRIX

‘ o Pig. 7. Examples of Q-32 Atomiec Structures

.1.13

Free Area

The free storage area of the data segment contains nothing whatever
of any significanee to the program; its sole purpose, in fact, is

to serve as a reservoir of words out of which list nodes and atomic
structures may be formed. Whenever a new list node is to be created,
that word in the free area immediately adjacent to the 1list area is
expropriated for the purpose, becoming thereafter a word in the 1list
area. A similar procedure is employed for the generation of atomic
structures, except that many words may be taken at a time instead of
Just one and that the other end of thejfree area is involved.

The efficacy of the procedure desérivep above is, of coru
upon the availability in free storage of the requisite number of words
one or many as the case may be. Since this area is continually being

" depleted by the creation of structures, the moment is bound to arrive

1.14

sooner or later, when it is unable to satisfy the demand for words
made upon it. At this point, a process known as garbage collection
must be initiated and carried through to a success%ﬁi completion.
if the program is to be continued. Hopefully, the garbage collector
will be able to increase substantially the dimension fo the free
storage area, at least by an amount sufficient to meet the demand
1u§hh:ng. The gargage collection Algorithm is presented in paragraph
. elow. , .

GARBAGE_COLLECTION

The algorithm for garbage collection of the data segment will be
presented below in LISP II source language. It will be far from
complete, for the most part neglecting the related garbage collection.
problems for the other segments of core storage, which will be
discussed later in more informal terms. Many subfunctions will be
desoribed, but not explicitly defined. Despite the limitations of
such an approach, however, the primary purpose, that of exhibiting
the algorithm for compacting the 1list and array areas by structure
relocation, will have been served. S . '

That portion of the total garbage collection scheme which affects
the data segment consists of seven or eight distinct steps (they do
not all really deserve to be called passes) The first step involves
the marking of structures which must be preserved, i.e., are not
garbage; the remaining steps represent a progression toward the
ultimate compacting of the saved structures, requiring their re-
assignment and relocation and the updating of all references to them.
A pprief description of each of the steps is offered below as a
prelude to the actual LISP precedure definitions themselves.

The partitioning of the data segment upon the initiation of _

garbage collection is defined by four boundaries Bl-Bi (see Fig.8)

The assumption is made that the extreme boundaries of the segment ,

Bl and B4, arg to be displaced by amounts DBl and DB4 respectively
allowing the segment as a whole to be expanded, contracted, or shifted
(an essential part of the so-called "growing pain"). ’

Bl DB1
 ARRAY
ARBA
B2 FREE
B3
LIST
AREA

BY ‘g
: - | ‘EDB“
e e e e e e - e -

Fig. 8 Boundaries of Data Segment

The principal procedure of the garbage collector GC has seven
arguments: pointers Bl -Bl, integers DBl and DBA, and an integer

N which specifies the minimum number of words that must be restored-
Procedure GC advances one by one through the eight steps, each of
which is outlined below, and before returning updates the pointers

Bl-Bi and checks that the megenerated freee area does indeed contain
at least N words. ‘

1. MARKVARS (not defined) marks all list and atomic structures

that are to be saved by applying procedure GCMARK to each data pointer
(or locative transformed into a title pointer) in the variable segment.
GCMARK determines what igs argument i1s pointing to and acts accordingly:

an identifier head is marked by MARKI; any other atomic structures,
if unmarked (NOT MARKEDA(X)), is marked by MARKA and then given to
MARKELS which is identical to MARKVARS except that it works on a
single atomic structure; a list node, if unmarked (NOT MARKEDL(X)),
1s marked by MARKL, after which GCMARK is applied recursively to

its CAR and CDR elements. Of all procedures used liere, only GCMARK
is defined; the rest are assumed. Predicates IDP and BOOLP test for
identifiers and value TRUE or NIL, respectively.

2. GC2 assigns new locations for all marked atomic¢c structures,

such that Bl + DBl is the first location so assigned and such

that the structures, when moved during step GC6 to their new
locations, will be compacted and will retain thelr original
ordering. The new address for the title word of each atomic.
structure replaces the CDR of its old title word (previously
ataeli-pointer) Sub-function SIZEA determines the size of an atomic
structure

3. gg; compacts the 1list area by repeating the following two
steps until it 1s no longer possible to do so: move the topmost
marked node down into the bottommost unmarked word; store a pointer
to the latter in CDR of the former. After this iteration has been
completed, the CDR of all atomic structures and of those nodes
which have been moved will contain their respectiva relocation
addressos. Y

-y, UPDATEVIRS (not defined) ruplaces each data pointer (or locative
properIy transformed) occurring in the variable segment by the value
of UPDATEP applied to it. UPDATEP returns the relocation address, CDR
of the structure, for all atomic structures and moved list nodes;

the pointer displaced by DBl for unmoved nodes, the pointer argument
itself otherwise. ‘ _

5. - ach updates all data pointers which occur as elements of marked
atomic structures. UPDATELS (not defined) is identical to UPDATEVAR
except that it substitutes for the data pointers found within a
sincle atomic structure. Note that the procedures MARKELS and
UPDATELS must have available to them the information required to
locate pointer elements, as mentioned in peragraph 1.12. Similarly

SIZEA must be able to determine the size of any given atomic structure.

6. GC5 replaces each CAR and CDR element of the nodes in the now
compdcted part of the list area by UPDATEP thereof. .

7. GC6 moves ecach marked atomic structure to the new location assigned
~_ for 1t during step GC2 (or to a tempor location if necessary, in

“order to awopid conflicis whsn boundary Bl is being displaced by a
positive bbl.

8. 6C displacea the oolpnctnd array. when DBl is pozitive and list
area when DB4 is_non-zero, such that the new boundaries of the -
data segment Bl and BA will become what was previously Bl ¢+ DBl.
and B4 and DB réspectively. As in step GC6, it is assumed that
any room required from variable or prucedure segment for the dis-
placement is already available. _

gl T PG o o ety "

Several considerations which are relevant to but have been neglected
in the garbage collection algorithm presented here are:

the unmarking of structures (somewhat machine dependent) ; the

fact that DBl, DBA, and N would not normally be parameters of GC,

but would rather be computed heuristically after the first (marking)
step; the remainder of the "growing pain” problem, since displacement
of Bl and B4 implies the moving of variable and procedure segment
boundaries; the gathering of statistics on garbage collection.

PROCEDURE GC (B1,B82, B3, BA, DBl, DBA, N)
PLUID POINTER B1,B2,B3,Bl;
INTEGER DB1,DBA4, N;
BEGIN PLUID POINTER NB2, NB3;
MARKVARS ():
NB2&— GC2(); NB ac3();
UPDATEVARS (); GCH(); acs ()3
ac6(); GC7();
Ble—Bl4DBl; B2¢&~— NB2;
B3¢~—NB3+DBA; Bl BU4DBY;
IF B3-B2 N THEN ERROR ('(GC ERROR})
RETURN
END

PROCEDURE GCMARK (X); BEGIN
IP IDP (X) THEN MARKI (X) ELSE
IF ATOM (X) AND NOT MARKEDA (X) THEN
BEGIN MARKA (X); MARKELS (X) END ELSE
IF NOT BOOLP (X) AND NOT MARKEDL (X) THEN
BEGIN MARKL {X); GCMARK (CAR (X));
GCMARK (CDR(X)) END;
RETURN
END

PROCEDURE GC2 ();
BEGIN POINTER P1,P2;
Pl¢~Bl; P24~ B1+DBi;
L1: IF PisB2 THEN RETURN (P2);
IF NOT MARKEDA (P1) THEN GO TO L2;
CDR (Pl)e— P2;
P2~ P24+SIZEA (Pl1);
L2: Plé— PI+SIZEA {P1);
G0 TO L1
END

PROCEDURE GC3 ();
BEGIN POINTER Pl, P2;
Pl B3; P2—Bl4;
Ll: P2e— P2-1;
IF MARKEDL (P2) THEN GO TO Ll;
L2: IPFP MARKEDL (P1) THEN GO TO L3;
Plw-- P1l+l; GO TO L2;
L3; IXP P1) P2 THEN RETURN (Pl);
WORD (P2)§-g— WORD (Pl1);
CDR (P1)t~ P24DBA;
Ple=- P141; GOTO L1
END

PROCEDURE UPDATEP (X); RETURN
IF Bl «f X ANDx¢v-BA THEN
IF X&NB3 THEN ODR (X) ELSE X +DBA
EL3SE X

PROCEDURE GCH {);

BEGIN POINTER Pl;
Pl Bl

Ll: IF Pl = B2 THEN RETURN;

* IF MARKEDA (Pl) THEN UPDA'I‘ELS (P1);

P1€=~ PI4+SIZEA (Pl);
GO TO L}

END

Pnacnnuan GCS ('R
BEGIN POINTER Pi;
Ple=—— NB3
Ll: IV Pil=BA THEN RETURN;
CAR (Pl)¢~ UPDATEP (cm(m));
CDR (P1)¢— UPDATEP (CDR(P1l));
D Pl¢— P141; GO TO L1

PROCEDURE GC6 {);
BEGIN POINTER P1, P2; INTEGER J, K;
K €—— IF DB1< 0 THEN 0 ELSE DB1;
PI6~— B2;
Ll: IP PilsB2 THEN RETURN:
IF MARKEDA (P1) THEN BEGIN
P2¢—CDR (P1)~K; |
POR J¢e— 0 STEP 1 UNTIL (SIZEA (P1)-1)
DO WORD (P24J)gueWORD (P14J)

' END;
Plémm—mP1l4+ SIZEA (P1); GO TO L1;
BEND

PROCEDURE GCT (33
BEGIN POINTER m ¥2; INTEGER J;
IF DBA & O THEN ’BEGIN ‘
Pla—NB3; P2am NB3+DBi;
FOR J&— 0 STEP 1 UNTIL (BA4-NB3-1)
DO WORD (P2+4J) WORD (P1+4J)
" END;
IP DB4 DO THEN BEGIN
Pl 4=~ BH; P2~ BH+DBE;
FOR Jé—— 1 STEP 1 UNTIL (BA-NB3)
b DO WORD (P2-J) o= WORD (P1-J)
EN

IF DB1 > 0 THEN BEGIN
Plee=w NB2 -~ DBl; P24 NB2;
FOR Je€&=1 STEP 1 UNTIL (PI-BI)
DO WORD (P2~J) &==-WORD (P1-J)
END;
RETURN
END

