
M. Levin Page 1 
7 July 1965 

INFORMATION INTERNATIONAL INC. 

LISP II MEMO #9 

Internal Storage Conventions for LISP II 

I TYPE TABLE 

0 
1 
2 Boolean (22 by location) 42 Boolean Array (62 by location) 
3 Octal (23 by location) 43 Octal Array (63 by location) 
4 Integer (24 by location) 44 Integer Array (64 by location) 
5 Real (25 by location) 45 Real Array (65 by location) 
6 String 

/\ 7 Identifier 

U 10 Symbol (30 by location) 50 Symbol Array (70 by location) 
11 Formal (31 by location) 51 Formal Array (71 by location) 
12 Fluid Cell 75 Function Sub- specified 
13 Quote Cell 76 Tables 
14 Function Descriptor 77 Table Entry Types 

100-7777 Table Entry Types 

10000-37777 Virtual Types 



o 

o 

400008 

Higher 
Memory 
Addresses 

TSS ENTRY 

Character Identifiers } 

~------I 

Fixed Space (Triples) 

/ 

Push Down St;d'ck 

Procedures 

Arrays 

t Lists 

400 
8 

Page 2 



o 

o 

o 

Page 3 

II FIXED SPACE 

Fig. I Character Identifier 
T=22 for characters A through Z 

107\ VF-List \ T \ P-List T=32 for other characters 

Fig. 2 Identifier - less than 7 characters in name 

T=04 standard spelling 
07 VF-List P-List 

T=14 unusual spelling 

o Link 

Fig. 3 Identifier - 7 or more characters in name 

071 VF-List T P-List 

C C2 C 0 Pname 
I 3 

o I Count 0 Link 

~ 06 Size 

C l C 
2 

C 3 

T=O sta ndard spelling 

~ T=IO 

Self-
0 Pointer 

C4 C s C6 

u nusual spelling 

This is a string located 
in array space. 



o 

o 

o 

Page 4 

07 is the prefix that specifies identifiers. 

The VF-list (variable- and function list) is a threaded list of all fluid 
cells and function descriptors of this identifier. Note its peculiar structure. 

Fig. 4 

I L --+- I I S 
I';'~ 

1 
1 

I I 
__ I 

Identifier Fluid Cell Function Descriptor Etc. 

The T (tag) field of an identifier has bits with the following signifi­
cance. 

Fig. 5 
24 25 26 27 28 29 

I I I I I I I 

I 

Bit 24. Used by the garbage collector. It is 0 during normal execution. 

Bit 25. This bit is 1 for character identifiers, 0 for other identifiers. 

Bit 26. This bit is 1 for identifiers with non-standard spelling. An 
identifier has normal spelling if and only if the first character is a letter, 
and all other characters are letters, digits, or the period. 

Bit 27. This bit is to 1 when the pname of the identifier consists of 
6 or less characters stored in the identifier itself. 

Bit 28. This bit is 1 when the identifier is not to be collected as 
garbage at any time. 

When an identifier has more than 6 characters in its pname, then the 
pname is stored as a string. 

Excess spaces in pnames are filled with the illegal code 376 . 
8 

The link field is used to string identifiers together on a bucket of the 
oblist. 



o 

o 

o 

Fig. 6 Fluid Cell 

12 Section 

Datum 

o 

Fig. 7 Quote Cell 

13 

Datum 

o Type 

Fig. 8 Function Descriptor 

Section 

o 

Count 

Link 

Count 

Link 

Count 

Link 

Page 5 

T=O 

T=O 7 

This is an octal array located in 
array space. 

43 

etc. 

Self­
Pointer 

Fig. 9 Function Descriptor (3 or~,sarguments) 
S- w Ie":>,;; 

Section Count 

Link 



o 

o 

o 

Page 6 

The section specifies the section to which the variable or function 
bel()ngs, or else is 0, indicating a global variable or function. 

The count field specifies how many references to the cell exist in 
code. This is incremented when a procedure is loaded, and decremented 
when a procedure is excised. 

The link field strings the function and fluid cells of any identifier into 
a threaded list as per Figure 4. 

Pointers from pure procedure into fixed space are indicated as =) . 
Poin ters of other kinds are indicated as -7 

The type of a fluid or quote cell is as per the type chart. 

The datum in these cells may be absolute one-word types, or pointers. 

The call of a function descriptor gives type conversion information. 
The first field specifies the number of arguments. The second field specifies 
the type of the value of the function. Succeeding fields specify the types of the 
parameters in order. 

The six bit codes used for all but the first field are those on the type 
list. 

If five or less fields are required, 
occurs in the function descriptor itself. 
be set to 1. 

then the call is not remote, but 
In this case, bit 25 of the tag will 

Bit 24 of the tag is used by the garbage collector and is normally zero. 

The m.iddle word of the function descriptor normally contains a pointer 
in the address to the starting location of code. If it points to the middle word 
of another function descriptor, then the indirect bit, (bit 25) is set to 1. 

If the function is not in core memory, if it is undefined, if it is being 
traced, or for several other reasons, the address may be to some trap 
location. The left half of the word may then contain other information. In 
these situations, the 26 bit of the first word of the function descriptor is set to 
1. 

Bit 27 is set to 1 when the second word contains an instruction to be 
executed. This is done only in unusual situations. 



o 

o 

III LIST SPACE 

Fig. 10 

IV ARRA Y SPACE 

Fig. 11 String 

See type table 

This scheme may be 
replaced by index 
tables. 

Car 

p6 I Size 

C C C 
1 2 

C 7 etc. 

Size 

Size 

1 0 I Cdr 

I I Self-o Pointer 

C C C 
3 4 5 6 

A [IJ 

A [2J 

etc. 

Self­
Pointer 

Number of first 
dimension 
second 

dimension 

h-th 
dimension 

A [1,1,1] 

A [1,1,2J 

etc. 

Page 7 

LISP node 

1 dimensional array 

Multi-dimensional array 



" .. 

o 

o 

Strings contain 6 8-bit ASCII characters per word. Unused bytes 
in a word are filled with the illegal character 376 . 

. 8 

The size field specifies the total number of words iri the string or 
array. 

Page 8 

The self pointer is contained in the same position in all arrays. It is 
used by the garbage collector. 

Symbol arrays and symbol variables contain pointers. If these point to 
the heads of arrays, lisp nodes, or first words of triples in fixed space, 
then the pointer is in the address, and the rest of the word is empty. 

Pointers to the second word of function descriptors have the indirect 
bit set. Pointers into arrays have a pointer to the head of the array in the 
left portion of the word. 

Formal variables, and formal array elements only have pointers to 
the middle words of function descriptors. It is legitimate to branch indirect 
to such a variable. 



C'\ 
" " 

v PROCEDURE SPACE 

Fig. 13 Procedure 

Pointer 
from 
Function 
Descrip-
tor 

Size a 

Relocation 
Information 

Page 9 

Pointer to function 
descriptor 

Relocation information (2 bits per word) is packed from left to right 
starting with the La.st word and working backwards. 

a - means no relocation or count. 

1 - if address is local then it is relocatable. If address is 
to fixed space, then increment count when loading, and 
decrement count when excising. 


