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CHAPTER 1

INTRODUCTION

The purpose of this LISP 2 Primer is to provide an understanding of the
main features of the Programming language LISP 2,

The Primer is one of the two main sources of information on LISP 2; the
other is the LISP 2 Reference Manual, These two books serve different
purposes in making information about LISP 2 available to the interested
reader and prospective programmer,

The Reference Manual is intended to be a full description of the language.
It contains a complete and concise definition of each aspect of the language,
- and its arrangement is systematic; significant details are not omitted.

This makes the Reference Manual difficult to read through, especially for a
potential user who is not familiar with other LISP systems, or with computer
programming in general, Also, the Reference Manual contains many crosse
references, and many explanations that seem unmotivated until some other
explanation is read elsewhere. _The Reference Manual is much easier to under-

stand if one first acquires some understanding of the méin features of LISP 2.

The Primer is intended to give an understanding of the main features of LISP 2.
Unlike the Reference Manual, the Primer is intended to be read from beginning to-
end in the order in which it is written., The Primer mekes only a few assumptions
about what the reader already knows--mainly, a little mathematics, all of which
is taught in high school, If in eddition one has calculus or logic, some of the

examples will appear more interesting, but neither subject is necessary.

In describing the LISP 2 source language, all non-primitive syntactic entities are
written in italics, If the entity is composed of more than one word, the words
are joined by italicized colons. For example, the terms identifier and

block:expression are non-primitive syntactic entities, and thus are italicized.
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The Primer seeks to present LISP 2 in such a way that reasons for introducing

new concepts are made clear, and the programmer's knowledge of LISP 2 techniques

is developed gradually. This way of explaining is inconsistent with the method

of arranging subject matter into a logical classification of topics and subtopics,
and then explaining each topic fully before proceeding to the next, Therefore,

you, the reader, should be aware that while each explanation in the Primer is
correct, it is rarely complete, and usually there are possivilities that have

not been mentioned. Also, many topics have been omitted from the Primer altogether,

and their explanations can be found only be consulting the Reference Manual,

For example, one of the first LISP 2 concepts discussed in the Primer is
identifier, and examples of identifiers are given. But nowhere in the Primer
appears any explanation which would suggest that the entities A,B., and %#(((#
are accéptable tdentifiers. For a complete definition of identifier, therefore,
see the Reference Manueal,

The LISP language is founded on mathematical logic, and, in particular, on a

part of logic known as recursive function theory. However, the theoretical
concepts needed are not difficult or advanced, and are presented completely in
the Primer, It is recommended that you understand the ideas presented in Chapter
2 before reading further in the Primer. It is also recommended that you solve
the exercises in each chapter, obtaining the correct answers, before reading

further in the Primer.

Finally, it is recommended that as you read this Primer, you keep in mind the
types of data that will occur in the problems you want to handle, and the types
of processes you wish to perform on the data. Then you should be able to decide
vhether a given capability in LISP 2 is relevant fo your problem or not. It is
hoped that some of the examples may suggest possibilities to you,
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CHAPTER 2.

IDENTIFIERS, ATOMS, AND S-EXPRESSIONS

If you are familiar with LISP, you may skip this chapter except for noting that:
(1) the definition of an atom is broad; (2) an identifier is a type of atom

but not all atoms are identifiers; (3) the booleans TRUE and FALSE are atoms
but not identifiers, and (L4) the predicate ATOM is true for all types of atoms.

2,1 SYMBOLIC DATA PROCESSING

The data that are processed by a computer programming language can be classified
into two broad divisions, numerical and symbolic., An example of a numerical (or

numeric) datum is:

2.5

An example of a symbolic datum is:

(THIS IS A LIST)

The processing of numerical date is a well-established science, Basic
operations on numbers, such as addition, multiplication, and comparison of two
numbers to see which is greater, are taught in elementary school. The solving
of many kinds of equations, and many'useful applications of numerical processing
are taught in high school. The science of dealing with numbers is presented in

a logically rigorous manner in college courses,

The processing of symbolic data, however, is not a well-established science,

In fact, the processing of symbolic data has only begun to be & science; and

the development of this science has been called forth by the advance of computer
programming, Among the computer programming languages, LISP is one of the few
in which the processing of symbolic data is treated just as systematically and

scientifically as the processing of numerical data is treated in all computer
languages. '

O

O
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For symbolic data processing, just as for numeric data processing, there is a
basic set of skills and a mathematical theory. These skills and theory take

a particular form in the LISP system for symbolic data processing. The mathe-
matical theory is beyond the scope of this Primer but is briefly summarized in
an appendix to the Reference Manual. The basic skills of symbolic data procese.-
sing could easily be taught in elementary school; but nowadays, of course, they
are not, It is the purpose of this chapter of the Primer to present them,

2.2 IDENTIFIERS
In dealing with symbolic processing, we recognize certain sequences of characters

called identifiers., Identifiers have the following properties:

« Identifiers are the basic units of symbolic data (i.e.,
identifiers are the words of the language).

. Identifiers are composed of sequences of gigns, the elements
of the LISP alphabet. Sign means a letter, a numeral, or a
mark. Letter means one of the 26 letters of the English
alphabet, written in the form of a Roman capital (A, B ... Z).
Numeral means one of the ten Arabic numerals (0, 1 ... 9).
Mark means one mark, each associated with a name or names
in the following list: ) !

+ plus t8ign
- minus:atgn
space, blank
. period, decimal:point, dot, LISP:dot, dot:operator
, comma

equals:sign
left:parenthesis
right:parenthesis

- N A~

quote, apostrophe
# fence
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: colon

3 semi:colon
- left:arrow
4 up :arrow

* asterisk

< lesg:than:sign

v

greater: than:sign
slash

reverse:sglash

. Out of identifiers we may make more and more complicated
units of symbolic data.

+ An identifier is spelled in the same way (made up of the
same signs on each occurrence.) '

. Identifiers that are not spelled the same way have no necessary
or intrinsic relation to each other., Thus, for example, as
identifiers, ABC and ABCX are as unrelated as ABC and RQ,

There are a number of ways to compose acceptable identifiers in LISP, so that
we can name what we want to talk about, All these ways, however, are limited
by the fact that we have to use the equivalent of a typewriter key not only
to compose identifiers but also for all other signs in LISP.

So there are rules for constructing identifiers. These are the rules (although
these are not all the rules,)nevertheless, at the start they are a sufficient

set,

« A sequence of gigns that satisfies the following three
rules is an identifier.
« The only signs that may be in the seguence are letters and -

Arabic numerals.
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A space is not acceptable as a Sign in an identifier; thus T H E is not
acceptable, and the intended identifier must instead be written THE.

+ The first sign of the sequence is a letter,

. The sequence is not broken up in any way, such as by the
insertion of spaces or hyphens or punctuation marks or
by printing or writing on two different lines.

Under these rules we can see that the following are acceptable examples of
identifiers:

A
ITEM16
T222
XYZ
ABC
CHICAGO

The following are not acceptable identifiers:

1LOS -ANGELES The minus:8ign or hyphen is not allowed in
an identifier,

LOS ANGELES The space prevents this sequence from being
a single identifier,

5ABC The first gign may not be a numeral,

XYz This is not one identifier. It could be

considered s three identifiers,

Identifiers are used in many ways in LISP, The most important use of an
tdentifier is as a name for something. Idemtifiers are used to name many
different types of entities; just how, is made clear in succeeding chapters,
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2.3 ATOMS
One of the expressione that is acceptable in LISP 2 is called atom.
The definition of atom is introduced gradually. At this point we can say:

Every identifier is an atom.

Intuitively, an atom in LISP is something like a word in language; an atom

like a word, is made up of acceptable signs in acceptable ways, and it is
treated as a basic unit of discourse. In this chapter, most examples of aqtoms
are tdentifiers. In addition, any statement made in this chapter about atoms is
true for all kinds of agtoms,

2.4 S=-EXPRESSIONS

The most general type of datum in LISP 2 is the S-expression. The term is derived

from "symbolic expression", but S-expression has a specific technical meaning.
S-expressions are the most important kind of datum in LISP, and they are the

main subject of this chapter.

We can define S-expression quite simply in terms of atom and a mark which is
called the LISP:dot and is written as a period with a space on each side. The
following rules apply:

Rule 1: Every atom is an S-expression.

Rule 2: If x and y stand for S-expressiong, then (x . y) isan S-expreesion,

In the expression (x . y) the period is called the dot:operator or the LISP:dot,

Thig is an example of what is known to mathematicians as an inductive definition.
The way in which it works is illustrated by the following example, in which we
show that (M2 . (X . M2)) is an S-expression.

« X is an identifier. Therefore, it is an atom. Therefore,

by Rule 1 it is an S-expression,
« M2 is an S-expressioh by the same reasoning.

. Since both X and M2 are S-expressions, it follows by Rule 2
that (X . M2) is an S-expression.
Since both M2 and (X . M2) are S-expressions, it follows by
Rule 2 that (M2 , (X . M2)) i; an S-expression

77N
\,/'
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One simple detail needs to be stressed here., The period (.) is used in

several different ways in LISP 2, When it is used as in Rule 2 above to combine
S-expresaioﬁs, it is always written with a space before it, and a space after it.
Failure to do this may result in an incorrect S-expression.

Examples of S=expressions:
A
(A . B)
((A.B) . (C., D))
(NEWYORK . (KANSASCITY ., SANFRANCISCO))
(A. (B.(Cc.D)))
(((A.B) . C).D)

The last two examples are different S-expressions because the parentheses occur
in a different pattern.

Some examples of entities that are not S-expressions follow, together with their
explanation:
A.B Without parentheses, this is not an S-expregsion.
(A .B.C) If an S-expression is to contain three S-expressions
with two dots, then two of the S-expressions and
the dot between them must be enclosed in another
set of parentheseg: thus., ((A . B) . C) or
(A . (B.C)) are acceptable,
(A . B)) The number of left:parentheses must be equal to the
number of right:parentheses.

Problem Set 1:
Which of the following are S-expressions?

8. UWW
bo (AOB'C)
c. (A, BC)

d. (((A.B).C).E).(F.(G.H)))
e, ((A.B) . (CoD) . (E.F))
f.o ((X))))

Answers: See page 138
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2.5 FUNCTIONS ,

We may have functions in algebra, so we may have funetione in LISP, An

example of a function in algebra and a‘functian in LISP is subtraction. The

operation of subtraction in algebra is such that given any two numbers A and B, a third
number C is produced which is the result of subtracting B from A, The operation

of any function in LISP is such that given one or more data which are called the
arguments of the function, another datum is produced which is the result of the
operation of the function on the arguments. This result is called the value of

the function,

In LISP the arguments and value of a function may be numbers or atoms or
S-expressions, etc,, or any mixture of them, as for example a funetion which
operates on an S-expression and tells the number of atoms in that S-expression.

It is a common convention in mathematics to write the arguments of a function

with parentheses around the group of argumentes and commas to separate them, (:;
Thus, we could write in LISP:

DIFFERENCE (A, B)

If the identifier DIFFERENCE had been appropriately defined, this would mean in
LISP the result of A minus B,

It is possible in LISP for a funection to have no arguments. Suppose FN is such
a function. Then the fact that FN has no arguments may be indicated in LISP by

writing nothing at all between the left:parenthesis and the right:parenthesis, thus:
FN () ” ‘

2.6  QUOTE
In LISP, when an S-expregsion is used as the argument of a function, it is
preceded by a quote (an apostrophe).

For example:

FN ('A) The S-expression A is the argument of FN, <::
FN ('(C . R)) The S-expreseion C . R)is the argument of FN.

The reasons for this procedure are given in Chapter 5; here in Chapter 2, this

procedure has no consequences that create difficulties
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2.7 THE FUNCTION CONS

As was said earlier, if x and y stand for two S-expressions, then (x . y)

is an S~-expression, where the dot is the LISP:dot. CONS is a funetion
of two arguments such that if its two arguments are x and y, then its value is (x , y).

For example:
conNs('A, 'B) is (A . B)

For another example:
cons('a, '(B . C)) is (A . (B, C))

Note that the outer pair of parentheses following CONS delimits the arguments
of CONS, while the inner pair of parentheses are essential parts of the
S-expression (B . C), the result of CONS operating on 'B and 'C, This

example may be read aloud as follows:

The value of CONS of quote A comma quote B dot C is A dot (pause) B dot C,

Here are more examples of the operation of CONS:
CONS('(A ., B),'(ORANGE , VIOLET)) is ((A ., B) . (ORANGE , VIOLET))

CONS('X1, CONS('X2, CONS('X3,'Xk))) is (X1 . (X2 . (X3 . xk4)))
CONS(CONS(CONS( 'X1,'X2),'X3),'Xk) is (((X1 . X2) . X3) . X4)

Problem Set 2:
Evaluate each of these expressions.
a, CONS('WINE, 'CHEESE)
b, CONS('TUOLUMNE, CONS('SANJOAQUIN, 'KINGS))
c. CONS('(A . B),'(C . D))
d. CONS(CONS('A,'B), CONS('C'D))
e. CONS('(A . B), CONB('C,'D))

Answers: See pages 138, 139
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2.8 THE FUNCTIONS CAR AND CDR
Whereas CONS is a function that puts S-expressions together, CAR (pronounced

"ecar") and CDR (pronounced "could-er") are functions that take apart S-expressions
(that are not atoms). Any S-expression is either an atom or not an atom. If

z i8 an S-expression that is not an atom, it must be of the form (x . y) where

x and y are S-expressions,

By definition, CAR of z is x and CDR of Z is y. CAR and CDR are not defined
vhen their arguments are atoms.

For example:
CAR('A) is undefined
CAR('(A . B)) is A
CAR('(A ., (B . C))) is A
. CDR(*(A . (B . C))) is (B . C)
CDR('(A . B)) is B
CAR(CDR('(A . (B, C))) is CAR('(B . C)) which is B
CAR(CDR('A . B))) is CAR('B) which is undefined
CDR(CDR('(A . (B . C)))) is CDR('(B . C)) which is C

The names CAR and CDR arose as mnemonics in the early development of LISP, and
have continued in use because they are short and easy to say, because they are
symmetrical, and because they easily form longer names of functiong involving
several CARs and CDRs in succession: For example, CAAR is a function meaning
CAR of CAR of, CADR is a function meaning CAR of CDR of , and CDADR is a
funetion meaning CDR of CDR of CAR of CDR of , ete, CADR('( A . (B . C))) is
CAR(CDR('(A . (B . C)))) which is CAR('(B . C)) which is B, Observe that in
expressions using CADR or in expressions such as CAR(CDR('(A . (B . C)))), the
CDR or D operation is done before the CAR or A operation.

for example; .
CDAAR('(((W , X) « Y) . Z)) means CDR(CAR(CAR('(((W . X) . Y) . 2)))) which is X,

C
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Problem Set 3:
Evaluate each of these expressiong. (Some of them may be undefined.)

a. CAR('A)

b, CDR('(A . B))

c. CAR(CDR('(STRAVINSKY . (BARTCK . SIBELIUS))))

d. CDR(CAR(CAR('(((HAT . TIE) . SHIRT) . JACKET))))
e, CAR(CDR('((AQUITAINE , GASCONY) . ARAGON)))

f. CAR(CONS('A, 'B))

g+« CAR(CDR(CONS('(A . B), '(C . D))))

h, CONS(CAR('(A . B)), CDR('(C . D)))

i. CONS(CAR('(A . B)),CAR('C . D)))

J. CONS('A, CAR('(C . D)))

k. CADR('(A . B))

1. CADR('(SHRIMP ., (LOBSTER . CRAB)))

m. CAAR(CONS(CONS('A,'B),'C))

n, CDDR(CONS('A,'(B . C)))

o. CONS(CAAR('((A . B) . C)), CONS('D, CDDR('(E . (F . G)))))

Answers: See pages 139, 140

2.9 BOOLEANS AND PREDICATES ,
A boolean is a type of atom. There are exactly two booleans, namely TRUE and

FALSE. They are very like "true" and "false" in ordinary language. Because

booleans are atoms, they are also S-expressiong. However, they are not identifiers.

A function in LISP 2 is called a predicate if its values are always one or the
other boolean.

In progrémming, it is frequently necessary to choose between alternatives according
to whether a given condition is true or false. The use of booleans and predicates
in this process is illustrated further on,
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The boolean FALSE is also expressed by either one of two other names:
NIL
()

NIL is not an idemtifier; it is another name for the boolegn FALSE. FALSE,
NIL and ( ) are absolutely equivalent names for the same boolean; it is a

matter of indifference which one is used at any time,

2.10 LIST:NOTATION

The notation for writing S-expressions that has been introduced go far is known

as dotsnotation. It is not very convenient for representing symbolic data
because of the larger number of dots and parentheses required. There is another
notation called list:motation which allows one to write many S-expressions more
conveniently than in dot:motation.

It is important to understand that no new type of S-expression is being
introduced in this way: instead we have a new way of writing S-expressions that

have already been introduced.

Given any S-expression in list:motation, it is always possible to write the

same S-expression in dot:notation. However, the converse is not always true,

Definition:
Given (xl Xy oo xn) vhere x,, X, ... are S-gxpressions, then this by
definition is the same S-expression as (xl . (x2 “ eee (xn . NIL) ...)). The form

(xl Xy vees xn) is called a list.

éxamples:
(AMDH) is the same as (A . (M, (D . (H , NIL))))
(A B) is the same as (A . (B . NIL))
(A) is the same as (A . NIL)
( ) is the same as NIL

)
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The list:notation (A B) and the dot:motation (A . (B . NIL) are equivalent names

for exactly the same S-expression; either may be used.

Lists may occur within lists to any desired depth., For example,
((ABC) (DEF) (GHI))

is a list of lists (to depth 2.,) At each depth, the list stands for an

expression using dot:notation according to the definition given above.

For example, consider the S-expression ((A B C) (DE F) (G H I)), According

to the rule:

(A B C) is the same S-expression as (A . (B ., (C ., NIL)))
(D E F) is the same S-expression as (D . (E . (F , NIL)))
(G H I) is the same S-expression as (G . (H . (I . NIL)))

Then
((ABC) (DEF) (GH I)) can be written as:
((A . (B.(C.NIL))) (D, (E. (F.NIL))) (G. (H ., (I .NIL))))

Here dot:notation and ligt:motation have been mixed, and this is acceptable
also. To put this into pure dot:notation, we observe that it is of the form (x y z) and
rewrite it in the form (x . (y . (z . NIL)))., This gives us:

((A.(B.(c,NIL))) . ((D. (E. (F.NIL))) . ((G. (H . (I .NIL))) . NIL)))

List:notation, where it can be used, is obviously compact and convenient.,

Problem Set Uk:

Rewrite each of the following S-expressions using only dot:notation,

a. (4)

b. ((A))

c. (HE MADE THE STARS ALSO)
a. ( () (a) (A n))

e. (A (a) ((A)))
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Rewrite each of the following S-expressiong using list:notation as much

as possible:

f. ((A . NIL) . (((B . NIL) . NIL) ., NIL)
g. ((A . NIL), ((B . NIL) . NIL))

h., (A . B)

i. ((((A . NIL) . NIL) , NIL) ., NIL)

Jo ((x . NIL) . ((NIL . Y) . NIL))

Answers: See pages 1L0, 141

There is another mixed notation that the programmer may never use, but which
from time to time appears on computer output. An S-expression of the form

(xl Xp ees X 1 xn) is the same as the S-expression (xl . (x2 ‘oo (xn_l . xn)

vee D)o

Example:

(AB ., C) is the same as (A , (B . C)).

The behavior of the functions CAR, CDR and CONS on ligts can always be determined

by translating the arguments into dot:notation, evaluating, and then, if desired
translating back into listemotation.

Example:
CDR('(A B C))
CDR(*'(A . (B, (C . NIL)))) is (B , (C . NIL)) which can be

written in list:notation as (B C). Therefore, CDR('(A B C)) is (B C) .

Problem Set 5:
Evaluate each of these expressions:

a. CAR('(A B C))

b. CADR('(A B C))

c. CADDR('(A B C))

d. CDR('(A B C))

e. CDDR('(A B C))

f. CDDDR('(A B C))

@
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CAAR('(A B C))

CONS('A,'(B C))

CONS('A, CONS('B, '(C)))

CONS('A, CONS('B, CONS('C, NIL)))
CONS('(A B),'(C D))

CONS(CONS( 'A, NIL), NIL)
CDAR('((A B) (C D)))

Answers: See pages 141, 142

2,11 THE PREDICATE EQUALS

The predicate EQUALS or = has the same meaning in LISP as it has in ordinary

mathematics,
'A = 'B,

For example, it is true that 'A = 'A, but it is not true that

When evaluating an expression of the form x=y, the value is TRUE if x and y are
the same S-expression and FALSE otherwise. Two S-expressicns may be the same

even if they do not look the same, because one is written in list:notation and
the other is written in dot:notation. In this case, the value of x=y is true,

Examples:

'"(A B) = '"(A B) is TRUE

'(A)= '(A . NIL) is TRUE

‘(A . B) = '"(AB) is FALSE

CONS('A='A, 'B) is (TRUE . B)

CONS('A, 'B='C) is (A . FALSE) or (A . NIL) or (A)

Problem Set 6:

Evaluate the following expressions,

a.

b.

C.
d.
e,

f.

'(HELLO THERE BILL) = '(HELLO THERE JOE)
FALSE=( )

NIL=( )

‘A (B.C))="'(a.B),C)

CAR('(A B)) = CADR('(B A))
CONS(CONS('(A B), '(C D)),'A = 'B)

Ansvers: See pages 142, 143
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2.12 The PREDICATE ATOM
The predicate ATOM has the value TRUE is its argument is an atom, and the

value FALSE if its argument is not an atom. Remember that identifierse, booleans,
and other things not yet defined are atoms.

Examples:
ATOM('A) is TRUE
ATOM('(A . B)) is FALSE
ATOM('(A)) is FALSE ,
ATOM('()) is TRUE (because () is FALSE which is a boolean)
ATOM(CAR('(A B C))) is ATOM('A) which is TRUE

Problem Set T:
Evaluate the following expressions,
a, ATOM('TUVWXYZ)
N
b, ATOM('A) = ATOM('B) (:;)
c. ATOM(CDR('A B)))
d. ATOM('A = '(B C))
e. ATOM(CAR (CONS(CAR('(A B)), CDR('(C D)))))

Answers: See page 1u3

2,13 THE FUNCTION LIST

LIST is a function that has an indefinite number of arguments. It may have
zero, one or more arguments.

LIST(xl, . xn) has the same value as CONS(xl. ceo CONS(xn, NIL) «.o )

Exanmples:
LIST('A, 'B , 'Clhas the same value as CONS('A, CONS('B, CONS('C, NIL)))
which is (A B C) :
LIST('A) has the same value as CONS('A, NIL) which is (A)
LIST( ) is ( ) or NIL C
LIST(LIST (LIST('A))) is (((A)))
LIST('(A B), '(C D)) is ((a B) (C D))
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Problem Set 8:

21

Evaluate the following expressions;

a.
b,
c.
d.

€.

LIST('A, 'B, '(C D))

CAR(LIST('A, 'B, 'C))

CAR(LIST('(A B C)))

ATOM(LIST('A))

LIST('A, 'B)=CONS('A, CONS('B, NIL))

Ansvers: See pages 143, 1kl

2,14 THB PREDICATE NULL

TM=2710/101/00(DRAFT)

The predicate NULL has the value TRUE if its argument is the boolean FALSE and
has the value FALSE if its argument is anything else.

Examples:

NULL(FALSE) is TRUE

NULL(()) is TRUE

NULL(NIL) is TRUE

NULL(TRUE) is FALSE

NULL('A) is FALSE

NULL('(((A B C)) (D))) is FALSE
NULL(CDDR('A B))) is TRUE

Problem Set 9:

Evaluate the following expressions,

a.
b.
Ce

d,

NULL(CADDR('(A (B C) D)))
CONS( 'A,NULL( 'A))
NULL(LIST () )
NULL(CDR(LIST 'A)))

Ansvers: See page 1kl
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CHAPTER 3

SOME ILLUSTRATIONS OF PROGRAMMING IN LISP 2

This chapter contains several LISP 2 progr&ms--miniature, but complete .

The text explains how the programs are organized and the results they produce.

It should be possible to understand the sense of these illustrative programe,
even though not enough information has yet been given for the reader to write

a program himself,

3.1 A PROGRAM TO SOLVE QUADRATIC EQUATIONS

We shall write a program in LISP 2 that solves quadratic equations of the form

ax2 +bx+c=0

To use this program on any occasion, you need td type in the name of the program

(suppose we call it QUADSOLVE) and the numbers a, b, and c. If the equation

has real roots, the program replies by typing out the numbers that are the <:j
solutions for x; otherwise it types out the report COMPLEX.

The program that we shall express in LISP 2 can be summarized by the following
algorithm in English:

Step 1. Compute b> = hac, and call it w,

Step 2. If w is negative, then type out the word COMPLEX and
halt; otherwise go to step 3.

Step 3. Compute (-b+Yw)/2a and print the value

Step 4. Compute (=b-vw)/2a and print the value,

Step 5. Type out the phrase PROBLEM SOLVED,

Step 6. Halt.,

Let us suppose that you are working at & time-shared computer facility, and that
you have just called LISP 2. The computer now waits for you to type something.

First, you type the following function:definition of the LISP 2 function (:j
QUADSOLVE, which solves quadratic equations using the algorithm just stated:
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FUNCTION QUADSOLVE(A,B,C) BEGIN REAL W;
WeBto-L*ARC;
IF W< O THEN RETURN #COMPLEX¥#;
PRINT( (~B+SQRT(W))/(2*A));
PRINT( (-B=-SQRT(W))/(2%4));
RETURN #PROBLEM SOLVED#;
END;
When these lines have been typed, the waiting LISP 2 computer system has
absorbed the function:definition of the funetion QUADSOLVE, You may then
call QUADSOLVE and use it.

For example, suppose you desire to solve the particular quadratic equation

3x2+3x+h=0. You type:
(j\ QUADSOLVE (3,3,4);

This requests the solutions of 3x2+3x+h=0. There are no real solutions to

this equationj therefore the program prints out:

COMPLEX

LISP 2 is then ready for your next example, which might be:
QUADSOLVE(3,T,4);
This does have solutions, and the program replies:

-loo
=0.75
PROBLEM SOLVED

Let us now comment on the components of function:definition and explain their
meaning.
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Comgonent
FUNCTION

QUADSOLVE

(A,B,C)

BEG

=

N ... END

REAL W

W+Bt2-LRa%C

2k T¥=2710/101/00(DRAFT)

Meaning

This informs the LISP 2 system that a fumetion:definition
is being presented.

This is the name of the function being defined. Any name,
of course,can be chosen that has not already been given a
meaning in the LISP 2 system. ‘
This is a list of the names of the arguments or the
argument:parameters of QUADSOLVE, It specifies that
QUADSOLVE has three arguments, and that they are called

A, B and C,respectively. They could, of course, have
been called M, N, and P or any other names, but then these
other names would have to be used consistently throughout
the rest of the funetion:definition.

These two words glong with whatever goes between

them constitute the main part of the funetion:definition,
It is called the body. The main entities inside the body
are either declarations or statements, They are separated
by semi:colons.

W is called an interﬁal:parameter. REAL W is a
declaration that says that the valuee for W are

real numbers in the mathematical sense, and floating-
point numbers in the computer sense,

This is an assignment :statement. It says that W is
assigned the value of BZ_LAC. The left:arrcw means "is
assigned the value of", The up-arrow meems "reised to the
the power....". B42 means Be. The asterisk means
"multiplied by". L¥*A%C means 4AC., Although no mathematical
parentheses appear around B42.4¥*A*C, the left:arrow implies

these parentheses.
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IF W<O THEN RETURN #COMPLEX#
This is a conditional:statement. The less:than:sign
(<) is used to say that if W is less than O, then
the computation is complete and the value of the
funcetion QUADSOLVE is the word COMPLEX., The word
RETURN means "this is the end of the computation of
this funetion, and the value of the function is what
follows," #COMPLEX# consisting of the word COMPLEX
inside two fences (#) is called a string. A string
is basically a sequence of characters handled as a
constant unit and not having any other meaning in
the LISP 2 system,

PRINT( (~B+SQRT(W))/(2%A))
This is another statement. It says "print out the

(:? . value of the expression (-B+/W)/2A". SQRT is a function

in the LISP 2 system that gives square root.

'RETURY #PROBLEM SOLVED# #PROBLEM SOLVED# is another string that is returned
as PROBLEM SOLVED by the computation as a result.

END ; END indicates the end of the body. When the semi:colon
following END is typed, the entire function:definition
is absorbed by the LISP 2 system,

These comments are not intended as complete explanations. They serve only as

a very brief illustration of a LISP 2 program.

This illustrative program, if it had been written in any of several other
algebraic compiler languages, would have looked quite similar. But the next
examples of programs illustrate programming techniques peculiar to LISP 2,
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/
e

3.2 b PROGRAM TO COMPUTE THE FACTORIAL OF A NUMBER
Mathematically, the factorial of a positive integer is the product of all the

integers starting from 1, and up to and including the given integer. The
factorial of O is 1 by definition. The factorial of a negative integer is
undefined, The factorial of n is usually written in mathematics as n!,

the exclamation point being read as "factorial." For example,

6! =6 x5x b4 x3x2x1, which is 120,

The following function:definition expresses FACTORIAL in LISP 2:

FUNCTION FACTORIAL(N) BEGIN INTEGER K,Lg

K « O3
L« 13
A: IF K = N THEN RETURN L; . : O
K « K+1;
L « L*;
GO A;
END;

There are some new features in this program, and they may be briefly explained:

Component | Meaning

INTEGER K,L This is a declaration. It says that K and L are
internal:parametere and that their values are
integers.

A This is & label. It labels the gtatement following &8s

being the statement named A,

GO A This is a go:statement. It causes the program to

continue by jumping to statement A and proceeding
from there.

®

We shall now give an alternative definition for the funetion FACTORIAL,
This alternative uses a fundamental concept of LISP 2 called recursion.
Consider the following definition of factorial in English: "The factorial

of 0 is 1; the factorial of any positive integer is that integer times the
factorial of the next smaller integer,"
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This definition is not a circular definition; it is a recursive:definition
because factorial for one argument is defined in terms of factorial for
another argument, and the entire sequence of arguments comes to an end. For
example, if we want to know what 5! is, the definition tellm us that it is 5
times 4!, and additional uses of the definition tell us what other factorials
are, The apparent circularity ends when the last case is resolved. For
example:

51 =5 x bl
5x b x 31
5x b x 3x 2!
5x kbx3x2x 1!
5x bx3x2x1x0!
5xbx3x2x1x1
= 120

This way of defining factorial in English suggests a LISP function:definition program
for FACTORIAL that is also recursive., It is written as follows:

FUNCTION FACTORIAL(N) IF N=O THEN 1 ELSE N*FACTORIAL (N-l);
Like most recursive:definitions, it is both extremely compact and powerful,

It is equivalent to the previous LISP 2 funetion:definition in the sense that

it always gives the same answer,

Having given this funetion:definition, we may type:
FACTORIAL(T)/(FACTORTAL(5)*FACTORIAL(T-5) )3
and the program replies:
21

which is correct, since T! divided by 5! times 2! equals 21
The ability to creste recurgive:definitions ,s a skill that can be developed by

practice. Recursive:definitions are a very powerful feature of LISP programming;
therefore,the examples in this Primer emphasizes them,
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3.3 A PROGRAM TO DETERMINE MEMBERSHIP IN A LIST »

The following example prdcesses symbolic data, whereas the previous ones
processed numbers., We shall use as an example a function related to liste:
the function MEMBER., An élement is a member of a ligt if and only if that
element is present in the list. This function has two argumente , which are
an element and a list, It is a predicate because its only values are TRUE
and FALSE, If the element is a member of the ligt, then the value of MEMBER
is TRUE, otherwise the value of MEMBER is FALSE,

FUNCTION MEMBER (E,L)
IF NULL (L) THEN FALSE
ELSE IF E=CAR (L) THEN TRUE
ELSE MEMBER (E,CDR(L));

Let us trace through this function:definition step by step:

The word FUNCTION means that we are defining a fumction

The name of the funotion is MEMBER,

The two variables of which MEMBER is a funcetion are E

(wvhich stands for an element) and L (which stands for a list).

IF NULL (L) means "if L is empty,"

THEN. FALSE means "the funetion has the value FALSE for this case,"

IF E=CAR(L) means "if the element E is the first element of the list

L",

THEN TRUE means "the function has the value TRUE in this case,"

ELSE MEMBER (E, CDR(L)) means "in other cases, discard the first
from the list L and apply the same definition over again
to the rest of the list L."

For example, consider MEMBER ('A, '(A B C)). In this case the second if:clause
produces true, and so MEMBER has the value TRUE,

For another example, congider MEMBER ('B, '(A B C)). In this case, the first
time through, with L set at (A B C), we obtain no decision, and so we go through

a second time with L set at (B C)., This time we do obtain a decision, true, because
B = CAR'(B C)).

Further examples of function definitions and programs using LISP 2 are given in

subsequent places in this Primer,
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CHAPTER. 4
ARITHMETICAL:EXPRESSIONS

An expression can be roughly explained by saying that it is something that
can be evaluated to yield a vqlue. For example, 3+4 is an expresaion; the
value it yields is 7. However, =A(X/)) ( is not an expreseion because it
is simply a collection of gigns that has not been defined to have a meaning.
Also, GO A is not an expression, because even though it causes something to
happen, it nevertheless does not yield a value.

In fact, GO A is called a statement. In a later
chapter, the concepts of expression and statement are further explained and

clarified. The distinction between the two concepts is essential,

Another example of an expression is A+3, This expression may be evaluated
and yields a vglue; however, the ;,7,, is dependent on the meaning given to A
by some particular context. Outside of a particular context there is no
reason to give any particular vglue to A. The nature of the context that
gives meaning to A is discussed later, but some idea of its nature may be

gained by studying the examples in this chapter.

L,1 NUMBERS
A number is an expression., It is an expression because it can be evaluated,
and the value it yields is itself.

Several different types of numbers are used in LISP 2, The two most important

types, integers and real:numbers are described here,

4,2 INTEGERS
An integer, sometimes called a whole:number, is a nwmber with no fractional

part, It may be positive, negative or zero.
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In LISP 2 an integer may be:
| (1) A sequence of one or more of the numerals O through 9, or
(2) A plus:eign (+) followed by a sequence of numerals as
in {1) above, or
(3) A minus:sign (=) followed by a sequence of numerals as in (1)
above.
(4) The same as in (1), (2) or (3) above, followed by the
letter E followed by a sequence of one or more

numerale,

Examples:
5
+37
=0
299
-80
007
1E9 (1x20%)
-TE3 (=7x10°)
3E4 (3x10%)
30E3 (30x10°)
+3E4 (3x10h)
30000 (3x10h)
The last 4 examples are all equivalent,

Examples that are incorrect in LISP 2:
E2 An integer must have at least one mumeral that is not
to the right of the E. (E2 is an identifier.)

SE+6 In the case of an integer, a 8ign is not permitted to
the right of the letter E,

1E1El Only one E is permitted.

6E The E must be followed by at least one numeral,
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In LISP 2 there is a limitation on the maximum size of an integer (whether

positive or negative)., This limitation depends on the computer being used.

An integer with a plus:sign is equivalent to the same number without a sign.
Thus, 3, +3, and 003 are all equivalent,

In LISP 2 an integer that ends in several zeros can be written using a more
abbreviated notation using the letter E to indicate an exponent, For example,

~720000000 can be more conveniently written as -T2ET, meaning -T2 times 107.

b3 REAL:NUMBERS

In LISP 2, real:numbers differ from integers in several ways. Real:numbers

may have fractional parts (for example, 1,75); they may often be extremely
large as compared with manageable integers (for example, 2,5E22); they may be
very small (for example, .000000098).

The definition of a real:number is a little more complicated than the definition
of an integer. It is worth noting that i<ntegers never have decimal:pointse

while real:numbers always have decimal:points.

A real:number has three parts of which the first and third are optional:
. Part 1 consists of a plus:eign (+) or a minus:sign(-=). This part
may be omitted,

. Part 2 consists of several numerals, followed by a decimal:point,
followed by several numerals. There may be no numerals to the left
of the decimal:point or there may be no numerals to the right of the
decimal:point, but not both of these conditions may be true at once.
In other words, there must be at least one mwmeral either to the
left or the right of the decimal:point.
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L
o« Part 3 consists of the letter E followed by an integer that does
not contain the letter E itself, The integer may have a plus:sign
or a minug:stgn. This part may be omitted,
The letter E followed by an integer k means that the preceding number is to
be multiplied by 10 raised to the kth power., For example, ,05E3 means ,05
multiplied by 103, which is 50.0; and 1.E-6 means 1. times 10~°, which is
.000001,
Examples:
2.87
2.87E-3
+03El
30,E4
30,+Ek 7
W,

Examples that are incorrect in LISP 2 are:

+El There must be a numeral on one side or the
other of the deetmal:point

3 There must be a deeimal:point

2E3 There must be a decimal:point to the left of the E

3.2E1,5 Ro decimal:point is permitted to the right of E
L.k ARITHMETIC:0PERATORS

Certain marke in LISP 2 are combined to form arithmetic:operatore that stand
for familiar operations often performed on mumbers. Some of these
arithmetic:operators are:

Arithmetic:operator Meaning
+ Addition or plus
- subtraction or minus
b multiplication or times
/ division or divided by (::

- integer division (example: 1ll=:3 equals L)
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\ integer remainder (example: 14\3 equals 2)
+ exponentiation (example: 5 4+ 3 equals 125)

These arithmetic:operators permit us to form more arithmetic:expressions.

Rule A for Forming Arithmetic:Expressions:
Let x and y be arithmetic:expressions. Then each of the following is also

an arithmetic:expression:

+x plus x

x+y X plus y

-X minus x

Xy x minus y

x*y x times y

x/y x divided by ¥

X=1y the result of integer division of x by ¥

x\y the result of integer remainder of x by v

xty x to the power y

(x) meaning the same as x but grouped by parentheses

This rule is recursive. According to this rule, each of the following examples
is an arithmetic:eapression. If you do not understand why this is so, please refer

to the discussion of recursive:definitions in paragreph 2.4,

Examples of arithmetic:expressions:

35
2.TEk
I
X*Y
12-:A
A+B*C
(A+B) *C
(A+B*C)
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A/A/A/3

A

A+5

U=V

5/3

At2,0

A+(B*C)
((a+B))*(((C)))
(((2)))

The meaning of some of these expressions may not be clear until the end of
this chapter,

In LISP 2, arithmetic:expressions may contain a mixture of integers and
real:numbers, It is not necessary to keep them separated in any way. The

following rules determine what happens in various cases.,

Rule 1l: When the operations of addition (+), subtraction (=),
negetion (also =), and multiplication (*) are performed, the value
is an integer if all of the arguments are integers. The value is a
real:nunber, if at least one argument is a real:number.

Examples:
2+3 is 5
2+43,0 is 5;0
1E2 + 3 is 103
1.5%1,5 is 2.25
1,E2-2,E-2 is 99.98

Rule 2: When the operation of division (/) is performed, the value is

always real., The division is carried out to the limitation of the
accuracy of the computer on which it is performed.

)
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Examples!
1/3 is .3333333333 (exactly how many 3's occur depends
on the capacity of the computer)
6/3 is 2.0
5.,0/2 is 2.5
2.,5/2.5 is 1.0

Rule 3: When integer division (-:) and integer remainder (\) are performed,
the result is always an integer.
The integer quotient is defined as being the integral number of times
that the divisor goes into the dividend. This may be a positive or negative

integer or zero.

The remainder is what is left over after this process has been performed,

The remainder always has the same sign as the dividend.

<:> These definitions have been chosen so that the following identity holds
exactly:

dividend = (divisor * quotient) + remainder

If either argument of an expression containing an integer division or
integer remainder operator is a real:number, the argument is converted to an
integer by the process of rounding to the nearest integer (see below), The
rounding happens before the operation -: or \ is performed. This procedure
sometimes has peculiar consequences, For example, 3.4-:1,7 is the same ag 3-:2 which
is 1, while of course 3.4/1.7 is 2.0

Examples:

S5-:2 is 2
5\2 is 1
wS5wt=2 ig 2
=5\=2 is =1
=5=: 2 ig =2
5\2 is =1

(:) S=: =2 is =2
S5\=2 is 1
5.0-:2,0 is 2
5.0\2,0 is 1
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301‘-: 157 is 1
3.4\1.7 is 1
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Rule 4: If x and y are two expressions, then x 4 y is x raised to the exponent y.

Examples:
2431is 8

34+421is 9

If x, y, and z are three expressions, then x + y + z is x 4+ (y 4 z).

Examples:

243+2is2 4 (3 ¢+ 2), which is 2 + 9, which is 512
(2 43)423is 8 4 2, which is 64

What about the type of the result, and special cases involving zero? The

specifications are shown in Table 1, Here a is any number, i is an integer,

and r is a real:number,

Case Subcase
ati i>0
a+t i i=0,a#0
gt i i=0,a=0
a+t i i<o0,a#0
at i i<0,a=0
atr a >0
atr a=0,r>
atr a=0,1r <
atr a <0
Examples:

10 ¢+ 7 is 10000000

10 + 30 is 1E30

0+0 is undefined

0 + 1.37 is O

lable 1

Type and Remarks

same type as &aj; if the result is too big

(or small), it is expressed as a realsnumber
1, of the same type as a

undefined

of type real

undefined

exp (r logea), of type real

0.0, of type real

undefined

always undefined

13.76 + 2.5 is e2+? 108y 13.76
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-4 + 2 is 16

14 4+ 2,0 is undefined
8 +0isl

8.0* 0 is eo, is 1,0

Problem Set 10:

Evaluate each of these arithmetic:expressions using the following table
to determine the valuee of the variables occurring in the expressions

Variable Value
A 2
B =-3.0
c -5
D TeS
a, A=l
b. A+B
c., BtA
d, C=:D
e. C/D
f. A¥%C
g€ D=:1.0

Answers: See page 145

4,5 PRECEDENCE

The fact that many arithmetic:expressions are recursive (see Section U,k)
sometimes makes their meaning ambiguous, For example, consider A + B *# C, How
is this to be evaluated? Suppose that A is 2, B is 3 and C is 4, If we take the
expression to mean (A + B) * C, then the expressfon becomes (2+3) * L, which
equals 20, If we take the expression to mean A + (B * C), then the expression
becomes 2 + (3 * L), which equals 14, In a programming language this kind of
ambiguity is intolerable; to remove it we use a set of comventions called the
rules of precedence.
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an operator appears interspersed between its operands, it is called an

infiz:operator. If the operator precedes its operands, it is called a

prefix:operator,

We can state many of the rules of precedence quite simply using Table 2 and

some additional statements.

Ir

Table 2
Rank or Precedence Prefix and Infix:Operators For More Details, See
6 CAR, CDR Section 5.3
5 arithmetic:operators within Section L4 b

expregsions, +, %, +, =

L equals (=), less:than (<),
: greater:than (>),

not:equal (/=),

less:than:or:equal (<=),

greater:than:or:equal (>=)
3 ATOM, NULL

the boolean:operators,
AND, OR, NOT, etc.

1 the infix:operator for CONS
which is space dot space

Section 5.4

Section 5,1
Chapter 8

Section 5.3

S



O

15 July 1966 39 ' TM=2710/101/00( DRAFT)

All operators of higher rank according to this table take precedence over
operators of lower rank. For example, CAR A + B means (CAR A) + B since
CAR (rank 6) has higher rank then plus (rank 5). But A . B + C means
CONS (A, B+C) since plus (rank 5) takes precedence over the dot for CONS
(rank 1),

within rank 5, the rules of precedence are as follows:

Table 3
Rank or Precedence Functions and Operators
3 4+ (raising to an exponent)
2 * (times), / (divided by), =-:

(integer-divide), \ (remainder)

1 + (plus), = (minus)

In a case of equal rank, operations are regularly grouped in sequence from
left to right:

For example:
(1) A+ B -C+ Dmeans ((A + B) - C) + D (and does not mean
(A + B) - (C+D), for example)

(2) A/B/C/D means ((A/B)/C)/D

The one exception is that raising to an exponent (4) is grouped from right
to left, Thus A4B4C4D means A+(B4(C4D)).

More information on precedence is explained in later chapters, but there is
a simple and universal rule that can always be followed: When in doubt,
put in enough parentheses to be unambiguéus,
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Problem Set 1l:

Examine each expression.
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(1) Insert parentheges and produce an equivalent

expregsion which if there were no precedence rules would be completely

unambiguous,

(2) Evaluate this expression using the table to determine

the values of the variables occurring within the expression.

a,
b,

Ce

e,
f.
g
h.
i.
Je
k.
1.

m,

A-3%*C
(A=3)%*C
A-(3%C)
Dt CHA
A+B*C+D
A¥B+C¥*D
~D+A
-~(D+A)
-D=A
6/3/2
6/(3/2)
6/(3%2)
6/3%2

Variable

o Q @ >

Answers: See pages 146, 147

Value

5
2.5

-6
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4.6 ARITHMETIC FUNCTIONS
Certain operations on nwnbers are written in the form "fumetion- (argument K argument

ceegargument)” rather than expressing the function as an infix:operator or

prefixz:operator., Note that the arguments are grouped using parentheses and commas

If there are no arguments, then it is correct to write fn( ). If there are one

or more arguments, then there will be one less comma(,), than there are arguments,
The ellipsis (...) is not part of the LISP 2 language. It is merely a device used
in this text for designating a list of indefinite length.

Examples:
COS(A-3)
MAX(A,B,C)
AB3(X)*wW
ROUND(M)

(::> The following is a partial catalogue of arithmetic:function8 available in LISP 2:

function Number of Arguments Description
ABS(X) 1 The absolute value of X is =X if X

is negative, and X otherwise. The

type (integer or real) of ABS(X) is
the same as the type of X,

SIGN(X) 1 The arithmetic sign of X is 1 if X is
positive, 0 if X is zero (any zero
including =0), and =1 if X is negative.

MAX(X. geaepX ) indefinite The maximum of the X,is the largest
1 n (most positive) value, If at least
one argument of MAX is real, then the
val?e is real. (e.g., MAX(2,0,5) is
5.0 '
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MIN(X), X

29 vee 'Xn) indefinite

ROUND(X) 1
ENTIER(X) 1
SQRT(X) 1

Other arithmetic:functions are

Problem Set 12:
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The minimum of the X, is the smallest (most
negative) value., If at least one argument

of MIN is real, the value is real.

X is rounded to the nearest integer by the
formula: ROUND(X) = ENTIER (X + .5).

The entier of X is the largest integer that
is not greater than X. For example, ENTIER
(2.7) is 2. ENTIER(=2.T) is =3.

If X is not negative, then the square root
of X is its non-negative root. If X is
negative, then SQRT(X) is not defined., The
value of SQRT is always real.

EXP, LOG, SIN, COS, and ARCTAN,

Evaluate the following expressions using the table to determine the values of the

variables.,
Vartable

A
B
C
D
E
F

a, ABS(A)

b, ABS(E)

c. SIGN(-B)

d. SIGN(D)

e. MAX(A,-B)

Value

2

3.0

k4
«0,0E6
-1

2.5

O



f.
g
h,
i.
Je
k.
1.
m.
n.
0.

Pe
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MAX(A,=C)

MIN(A,E)

ROUND(F)

ENTIER(F)
ROUND(=F)
ENTIER(-F)

SQRT(C)

SORT(E)
ABS(A)+ABS(B)*ABS(C)
~ROUND(E)-ROUND(D)
ROUND (=F + ,3)

Ansvers: See pages 147, 148 1k49

TM-2710/101/00( DRAFT)
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CHAPTER 5. SIMPLE:EXPRESSIONS

5.1 NUMBERS_AS ATOMS
In Chapter 2 we stated the rule that identifiers and booleans sre atoms, We

now wish to extend this rule by stating that integers and real:numbers are also

atoms. As a result, numbers may occur within S-expressions in various ways.

Examples of Atoms:

ABC (an identifier)
TRUE (s boolean)
2.5E6 (a real:number)
-50 (sn integer)

Examples of g_gzppessions®
2.5

(A (6 TRUE) T7.2)

(A 6 B)

(Y . 2.6)

(3.4)

(3.4)
The last two examples are not equivalent. The S-expression (3.4) is a li8t of
one element consisting of the real:mumber 3.l (three, decimal:point, four);

whereas (3 . 4) is the CONS value of 3 and k.

The predicate ATOM is TRUE if its argument is any type of atom, There are other
predicates that can be used to distinguish the different types of atoms.

IDP(X) is TRUE if and only if X is an identifier. ‘

BOOLP(X) is TRUE if and only if X if a boolean.

NUMBP(X) is TRUE if and only if X is a number; integers and real:numbers

are both numbers,
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INTP(X) if TRUE if and only if X is an integer.

REALP(X) is TRUE if and only if X is a real:number.

Problem Set :13.

which are in turn S-expressions.

Evaluate the following expressions.

a. CAR('(A B C))

b. CADR('(k 5 6))

c. CDR('(1 2))

d. ATOM(500)

e. REALP(T)

£. REALP(CAR('(3.5 %.5)))

g CAR('(1.1)) |

h. CAR('(L . 1))

1. AToM('(T))

3. NUMBP(CAR('(T)))

k. CONS('(1 2),(3 4))
Answers: See page 150
5.2 CONSTANTS AND VARIABLES

k5
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A datum is an S-expreseiom. Thus a number is a dstum, because numbers are atoms,

We refer to a program in s computer language

such as LISP 2 as "data processor."” A LISP 2 program performs various operations

(processes) on its data, which are numbers, identifiers, composite S-expressions, etc.

A constant is a datum pccuring within a program, It stands for itself as distinct

from a variable, which stands for something else. For example, in the expiesaion

X+3, X is a variable which must stand for some number in order for addition to be

performed, but 3 is a comstant. It only means the number 3, because numbers are

never used in LISP 2 as variables; instead, identifiers are used as variables,
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Now what do we do if an identifier is to be used as a constant? To overcome

this problem, we use & convention: We put an gpostrophe (or single quote mark)

in front of the {dentifier, and then the identifier refers to itself and not to
something else. This mark is called quote, and the operation is cailed quoting.
For example, the identifier ANSWER refers to some variable which supposedly is

the answer to some problem; but if we want the word ANSWER itself written in

part of the printout of a solution, then when we issue that instruction, we put

a quote mark in front, and write 'ANSWER. Then this actual word itself is printed
where instructed. In the same way, 'A means the atom A itself; but A with no

quote mark is an identifier which is a variable referring to something else.

For another example, in the expression:
CONS (A,'A)
the first A is a variable that may stand for any S-expression, while the second

A is a congtant, and means A itself.

The following rule specifies when an apostrophe (') should be used to meke a

constant,

Definition: A comstant ig either
(1) an apostrophe (') followed by any S-expression, or
(2) & boolean, or

(3) a number,

Since a number is an S-expression, this rule tells us that '3 is a constant,

But 3 is also a comstant (without the GPOStTOPhé). Thus, the apostrophe jg
permitted but not required fdr numbers and booleans and it is generally omitted.
The apostrophe is required whenever an identifier or a non-atomic S-expression is

used as a constant.

@
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Problem Set 1L
Evaluate each of the following e:cpreasiona , using the table to determine the values

of the vaniables occurring in the expressions.

Variable Value
A X
B NIL
c 3.5
D (A k)
E A

a. CONS(A,B)

b. CONS('A,B)
(:) c. CONS(E,'B)

d. CDR(D)

e. C+CADR(D)

f. SQRT(CADR(D))

g. CONS(E,C)

h. CONS(C,B)

i. C+2

Answers: ©See pages 151, 152

5.3 LISP OPERATORS

CAR, CDR and their compositions (such as CDAR, CADADR, etc.) may be used as
prefix:operators Without the need to enclose their arguments in parentheses.

Q Their precedence is highest. So the following examples should be clear.
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Examples:
CAR A means
CADR B + C means
and not
CONS(CAR A, CAR B) means

The infiz:operator space dot space means CONS.

TM=2710/101/00(DRAFT)

CAR(A)
CADR(B) + C
CADR(B + C)

CONS(CAR(A), CAR(B))

It has a precedence which is

lower than the precedence of any other operator; and if two or more CONS dots

occur together, they are grouped from right to left.

Examples:

A.B means

A.B.C means
and not

CAR A, CIR B. means
and not

A+B . C means
and not

Problem Set 15,

CONS(A, B)

CONS(A, CONS(B,FC))
CONS(CONS(A, B), C)
CONS(CAR(A), CDR(B))
CAR(CONS(A, CDR(E)))
CONS(A+B, C)

A+CONS(B, C)

Rewrite each expression adding enough parentheses to determine the correct

grouping. Then evaluate them using the table to determine the pglugg of the

B)

vartables,
Variable Value
W L
X (A
Y c
Z (2)
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a, W . NIL

b. Y. X

c. W¥3 . CAR Z
d. CAR Z+2

e. CARX . CIR 2
f. Y . NIL

g. 'Y . NIL

Answers: See page 152

5.4 BOOLEAN : EXPRESSIONS

As stated earlier, a predicate is a funetion whose value is TRUE or FALSE,
Using predicatesve can form an expression whose value is TRUE or FALSE. These

are called boolean‘expressions,

The predicates introduced in Chapter 2 were ATOM and = (meaning equal). Also,
the predicates IDP, BOOLP, NUMBP, INTP, and REALP have also been defined. There
is another set of basic prediecates known as the arithmetic:relation:operators.

Each of these is an infix:operator.

Operstor Meaning
= o is equal to
/= is not equal to
< ' is less than
<= is less than or equal to
> is greater than

>= is greeter than or equal to
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The reason that the operator = is here listed agé.in is that when it was first

mentioned, it was defined only for atoms, not arithmetic:expressions .

Equality (=) may be used to test any two data and is TRUE if they are equal; and
FALSE, otherwise. If a reql:number and an integer 8re numericelly equal, then

the value of = is TRUE; for example, 3.0=3 is TRUE,
Inequality (/=) is TRUE when = is FALSE, and FALSE when = is TRUE.

The other four relations are deffined only when their grguyments &re mumbers, since

it is not meaningful to ask if one S-expression is greater than another,

Problem Set 16,

Evaluate these expressions using the table to determine the valuees of the

variables,

Variable Value
A ' 3
B ' ‘ 2.k
c 3.0
D A
E X Y)

a, A=3

b. A=C

c. D=A

d. B>=C

e. E='X . 'Y . NIL

f. 'A=D

g. CAR E='X
h. O<B<=3
i, 2<C+3<T7

J. 25A<3

®
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Answers: See pages 153, 154

5.5 THE GRAMMAR AND SYNTAX OF SIMPLE:EXPRESSIONS

The purpose of this section is to describe part of the grammar and syntax of

LISP 2 accurately.

The terms arithmetic:expression, boolean expression, etc., classify expressions
according to the type of datum they have as vglues. From a broader point of

view, however, all expressionscan be classified as being simple:expressions,
conditional:expreseiong, or block:expressione, snd every expression belongs in
exactly one of these three classes. Conditional:expressions and block:expressions

are not discussed in this chapter but are discussed later. What is a simple:expression?

In order to define simple:expression, we shall mske use of the concept of a
primary, The definitions of primary and simple:expression are interdependent.
Definition 1: Each of the following is a primary:

(1) A constant;

(2) A variable;

(3) A forms A form is a function name followed by & left:parenthesis,
followed by the arguments of the function separated from each
other by commas, and followed by a right:parenthesis, TFor
example, FN('A, BXC) is a form;

(4) A conditional:expression (see Chepter 6) enclosed in & pair

of parentheges ;

(5) A simple:expression (let's teke this on faith for a few more
paragraphs) enclosed in & pair of parentheses. For example,

(A+B) or (G-SQRT(M)).
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It follows from this definition that a primary is an expreseion which, whenever
it occurs, is unambiguous. The &imple:expression A+B is not a primary , because
in some contexts it is ambiguous. For example, placed in the context A+B¥C,

the symbols A+B no longer mean the expression A+B, because A+B¥C means A+(B*C).

Definition 2: Each of the following is a simplg:expression:
(1) A primary;
(2) A prefix:operator followed by a simple:expression;
(3) A simple:expression followed by an infix:operator followed by

a simple:expression,

These rules simply generalize the rule for forming arithmetic:expressions in

Chapter 4.

The simple:expressions that result from these rules may be smbiguous. To
prevent ambiguity, it is necessary to consider the rules of precedence to determine

how simple:expressions are to be grouped. These rules are summarized below:

Rule 1: CAR, CDR, and their compositions have the highest precedence. They
capture the smallest possible expression to the right of them. For example,

CAR A'B means (CAR A)!B.

Rule 2: Arithmetic:operators are next in the hierarchy of precedence. Within

the class of arithmetic:operators, there is a subhierarchy:
Rule 2a: ' has the highest precedence, and a'btc is grouped as at(btc).

Rule 2b: %,/ -:, and \ are next. When these occur together, they are
grouped from left to right. a/b¥c is grouped as (a/b)¥c. a¥b/c*d is

grouped as ((a*b)/c)*d and not as (a*b)/(c*d).

@
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Rule 2c: + and - have the lowest precedence among the arithmetic:operators
When these occur together, they are grouped from left to right.

a-b+c is grouped as (a-b)+c. a+b-c+d is grouped as ((a+b)-c)+d and

not as (a+b)-(c+d).

Rule 3: The relation:opeﬁators =, [=, <, >, <= and >= are lower in precedence
then arithmetic:operator. These relation:operators are all on the same level
of precedence and may be so arranged; for example, asb=c<d means that &sb, b=c,

and c<d.

Rule 4: ATOM and NULL may be used as prefiz:operators, that is, without always

putting parentheses around their arguments, The precedence of ATOM and NULL is

lower then the relation:operators,

Rule 5: The logical:operators NOT, AND, OR, XOR, IMPLIES and EQUIV as & group
have next lower precedence. Their relative precedence is explained in a later

chapter.

Rule 6: The tnfixioperator for CONS which is . (8pace, dot, space) has the
lowest precedence of all. In other words, group everything else first. Finally,
& .b . c is grouped from right to left as a . (b . ¢) and not from left to right

as (& . b) . c.

Problem Set 17

Examine each 8imple:expression below. Then rewrite it adding sufficient parentheses

to meke it unambiguous assuming no rules of precedence.
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a. CAR A+B
b. CAR A+CDR B*C
c. A-B/C/D+E
d. A-B/C*¥D'E
e, CAR X='A
f. O<CAR A=B+SIN(Y)<5
g. A+B'C'CADR D
h. X . 'A . FN(X,Y,CDR Z*W)
i. ATOM X=Y
j. NULL U , NULL CAR X+Y

Answers: See

page 15k

TM=2T710/101/00(DRAFT)
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CHAPTER 6. (oNDITIONAL:EXPRESSIONS

Consider the problem of describing the funetion which is Y of X shown in the

graph of Figure 1.

It is not natural to write a simple:expression that gives the value of Y as a
f unction of X. However, the following conditional:expression describes it
precisely:

IF X<O THEN X!2 ELSE IF X<1 THEN 2¥X ELSE 2
The conditional:expression 1 & means by which a gom;puter program can meke a
choice between several alternatives depending upon conditions that are determined

at the time in the program's execution when the choice is to be made.

6.1 THE ACCEPTED FORM OF CONDITIONAL:EXPRESSIONS

A conditional:expression is written either in the form
IF p, THEN e,
or in the form
IF P, THEN ey ELSE e,
where Py is any expression (including a canditiomz:exppession) ’ € is an
unconditional:expression (that is, it must be either a simple:expression or a
bZock:expression), and e, is any expression (and therefore may be another

conditional:expression),

The expression between the IF and the THEN is called an gntecedent; the expregsion
between the THEN and the ELSE, or following the ELSE, is called a congequent -
Examples of conditional:expressions :

IF ATOM X THEN X ELSE CAR X

IF X=Y THEN 5




15 July 1966 56

S Y

et tata i

'}-’M‘"*" ———— <

Figure 1. Example of the use of a conditional:expression for deseribing

precisely the graph y = f(x), where the body of f(x) is:

IF X <0 THEN X42 ELSE IF X <1 THEN 2¥X ELSE 2

TM-2710/101/00(DRAFT)
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The provision that e, cannot be & conditional:expression is a trivial restriction;
its purpose is to mske expressions unambiguous. If a conditional:expression is
enclosed by a pair of parentheses, then it becomes a simple:expression @and this

simple:expression may be used as consequent e, .

Example:
IF X0 THEN (IF Y>0 THEN FN (X,Y) ELSE FN(X,-Y)) ELSE Z

Since e, may be any kind of expression including & conditional:expression, We are

permitted to write conditional:expressions with many antecedents and consequents.

Examples:
IF A THEN B ELSE IF C THEN D ELSE IF E THEN F ELSE G
IF A THEN B ELSE IF C THEN D ELSE IF E THEN F
Since p, may be a conditional:expression, conditional:expressions may be nested

within each other.

Examples:
IF IF X=5 THEN Y=3 ELSE Y<X THEN FN(X,Y)

IF IF IF A THEN B ELSE C THEN D ELSE E THEN F

6.2 THE EVALUATION OF CONDITIONAL:. EXPRESSIONS

The following rules apply to the evaluation of conditiandl:expreseione-
1. The parts of the expression are evaluated in order from left to right.
2. Only those parts of the conditiomal:expression that are needed to
determine a yglye are evaluated.
3. Each antecedent is evaluasted in succession until one is found that

evaluates to be true. For this purpose, the boolean FALSE (for

which NIL and () are equivalents) is considered to be false, while
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Examples:

any other datum is considered to be true. Usually the antecedents
are chosen to be boolean:expressions so that their value are TRUE

or FALSE.

If an antecedent evaluates to FALSE, then the corresponding consequent
is skipped over and is not evaluated. If an antecedent evaluates

to TRUE, then the corresponding consequent is evaluated, and this
value is the value of the conditional:expression, The remeining
antecedents and consequents in the seme conditional:expression ,

if any, are not evaluated.

If a conditional:expression ends with ELSE €, and if all of fhe
preceding antecedents are false, then e, is evaluated, and its

value is the value of the conditiomal:expression, (
If a conditional:expression ends with ELSE IF p THEN e and if

all of the antecedents including P, are false, then the value of

the conditional:expression is undefined, and an error condition

results.

In the following examples, suppose the variables are bouﬁd by the following

table:

Example 1:

3

<M

N

IF W<k THEN X ELSE IF CADR Z<W THEN Y ELSE NIL | C

>

A
(A . B)
(34 5)
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Steps in evaluation:
1. W<U is FALSE: therefore skip over X.
2. CADR Z<W is TRUE because U<5; therefore the vgqlue of Y which is
(A . B) is the value of the conditional:expression.

3. The part ELSE NIL is not considered.

Example 2:
IF w<li THEN 'B

The value is B.

Example 3:
IF W<l THEN 'B

(i) The value is undefined.,

Example 4:
IF X THEN W
The value of X is 5 which is not FALSE, end is taken as true; the pglue

of the conditional:expregsion is A.

Example 5:

IF W=CADDR Z THEN (IF X=CAR Y THEN W!'2 ELSE 10) ELSE 20
Steps in evaluation:

1. CADDR Z is 5 and this =W. Take the consequent,

2. CARY is A and this =X. Take the consequent,

3. W'2 is W squared, which is 5 squared, which is 25.
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Exampie 6:
IF IF X=Y THEN W>4 ELSE W<l THEN'B ELSE 'C
Steps in evaluation: Think of IF (......) THEN 'B ELSE 'C
1. X is not equal to Y. Take what follows the first ELSE.
2. W is not less than 4. Therefore (......) evaluates to FALSE.
Take what follows the second ELSE.

3. 'C evaluates to C.

6.3 OMISSION OF ELSE

If the reserved:word ELSE is immediately followed by the reserved:word IF, then
that ELSE may be omitted because there is no ambiguity.
Example:

IF A THEN B ELSE IF C THEN D ELSE E -
may be shortened to

IF A THEN B IF C THEN D ELSE E

The second ELSE may not be omitted because it is not followed by an IF.

Problem Set 18

Evaluate the following expressions using the list of values for variables.
REALP means "is a real:number'; SQRT means "the square root of"; SIGN means "the

aion of "

Vartable Value

2.0

(7 14)

(3 .9) C
(A BC)

(A C)
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C Answers: See
1

IF A=5.0 THEN B
IF REALP(Z) THEN C ELSE IF REALP(B) THEN (IF CAR At2=CDR A THEN Y
ELSE 2) ELSE X

IF IF CAR C=T THEN FALSE ELSE TRUE THEN Z

IF A=B THEN A=B ELSE A=B

IF C THEN A

IF SIGN(B)=SIGN(A) THEN (IF SQRT(CDR X)=CAR(X) THEN 'A ELSE A)
ELSE 'B

IF CAR Y=CAR Z THEN 'ELSE ELSE 'IF

IF TRUE THEN 'IF IF 'IF THEN 'THEN

pages 155, 156
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CHAPTER T.

FUNCTION:DEFINITIONS AND RECURSION

After you understand this chapter, you should be able to write simple LISP programs.
This chapter explains how to make a series of related function:d?finitions, how

the process called recursion works, and how to define some jrunetions and how to

use these functions to operate on some simple data. There is more to these

topics than is explained here,

T.1 FUNCTION : DEFINITIONS

A function:definition is a declaration that the programmer makes to the LISP
system. The declaration names a function, specifies its arguments, specifies what
computation is to be performed, and what is to be the value of the fumetion.

Each function:definition has two parts, the heading and the body. Each \_
funetion:definition includes a gemiscolon which terminates the definition. The
system then holds this definition in memory, and at the appropriate time compiles

it into efficient machine code so that it can be executed.

T.2 THE HEADING

The heading of a function has the form:

FUNCTION name (al, cens an);

This consists of several parts; the first part of the heading is the constant:
identifier FUNCTION, which is a reserved:word, Then comes the particular name

of the function that is being defined. The name of the function is an identifier.
Then comes the argument:parameter:list. 1If there are no argument:parametere, one
must still write ( ). The argument:parameters are identifiers. If there are two
or more arguments, they must be separated from each other by eommas. The last
part of the heading is a semi:colon.. It is optional.
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Examples of headings of fumnetion:definitionae:

FUNCTION READ( );
FUNCTION CUBE (X)
FUNCTION SUBST (X1, X2, X3)j

Te3 THE BODY

The body of a fumction:definition is always an expression. It may be any kind
of expression. Simple:expressions and conditional:expressions are defined in
Chapters 4 through 6. The third kind, block:expressions, are defined in Chapter
9. Examples of function:definitions:

Each definition has a heading and a body, and is followed by & semi:colon:

FUNCTION CUBE(X) X43;
FUNCTION HYPOTENUSE(SIDE1l,+SIDE2); SQRT(SIDEL+2+SIDE2+2);
FUNCTION PUT(X,Y,L) CAR X . CDR Y . L;

Tob EVALUATION OF FUNCTIONS

A function is called, or invoked, by the evaluation of a form which begins with

the function name. For example, suppose that the form HYPOTENUSE(3,4) is to be
evaluated, The nwnbers 3 and L are the argument of HYPOTENUSE., A form that

calls a function must have as many arguments as the funetion has argument:parameters.
The arguments are paired with the argument:parameters in the order in which they are
written. Thus, the argument 3 is paired with the argument:parameter SIDEl, and the
argument kL is paired with the argument:parameter SIDE2.

The evaluation of a function consists of evaluating the expression which is its
body. This expression usually contains varigbles which are argument:parameters of
the function. The values associated with these varigbles are the arguments that
are paired with them, We speak of this association as bindings. This is an
incomplete explanation of bindings, which is covered more fully in section 10.2,
butAit is sufficient for the present.
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To continue the preceding example, the function HYPOTENUSE is evaluated by
evaluating the expression SQRT(SIDE14+2+SIDE2+2). The current bindings of SIDEl
and SIDE2 are 3 and 4 respectively; therefore the value of the expresgsion and
the value of HYPOTENUSE is 5.0,

The body of one function may contain forms that call or invoke other functions.

These in turn may call other functione. This may occur to any depth. Sometimes

a function calls itself, either directly or by means of several function calls

that eventually call the first funetion. This process is known as recursive:

definition or recursion and is not only permitted, but is encouraged as a standard

technique in LISP, It was illustrated earlier (Chapter 3.) by the definition of

FACTORIAL, and is discussed below.

It is important to distinguish an argument from an argument:parameter, It is also

important to distinguish an argument from the'expression which is used to compute <”j
the argument. This expression is the one that occurs in the argument:position of —
the form that calls the function, not in the function itself and is called an

arqument :expregsion. The following example should make this clear,

Consider for example the fumction DIAG which is defined to compute the diagonal of

a rectangular prism given the three dimensions of the prism.

FUNCTION DIAG(X,Yy%) HYPOTENUSE(HYPOTENUSE(X,Y),Z);

Now suppose that we evaluate the expression DIAG(3,4,12). The arguments of DIAG

are 3, 4 and 12, and these correspond to the argument:parameters X, Y and Z, respec=-
tively. The inner call to HYPOTENUSE must be performed first in order to obtain a
necessary argument for the outer call. The argumeﬁt:expressiona are X and Y; these
are evaluated to obtain the argumente , which are 3 and 4. The arguments are what
are transmitted to HYPOTENUSE. Once HYPOTENUSE has been called, the variables X and

Y are no longer relevant--only the vglues 3 and 4 obtained from this evaluation are
relevant,
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Within the body of HYPOTENUSE, the arguments are available as the values of

the argument:parameters SIDEl and SIDE2, The argument:parameters X and Y of
DIAG have no meaning within the body of HYPOTENUSE. They are bound to the
valuee 3 and 4 only within the body of DIAG.

The value of the inner call to HYPOTENUSE is 5.0. So the arguments for the
second call to HYPOTENUSE are 5.0 and 13 respectively., The first argument 5.0
was obtained by the evaluation of the expression HYPOTENUSE(X,Y). The second
argument was obtained from DIAG as the value of the variable Z.

Similar remarks apply to the second call to HYPOTENUSE. The pindings of SIDEl
and SIDE2 this time are 5.0 and 12 respectively.

The value of DIAG(3,4,12) is 13,0

(::) Note: This description of argument evaluation and transmission applies to
arguments transmitted by value only. The other alternative in LISP known as
transmission by location is treated in a later chapter. Arguments are always

transmitted by value unless specified otherwise, You may ignore this distinction
for the present.

Problem Set19,

In this problem set, several function:definitions are given and a table of
bindings for free:variables is given. The problem is to evaluate the expressions

that follow, using the function:definitions and the table of variable :bindings
when necessary.

When a variable occurs within the body of a funotdon, and this varigble is an
argument:parameter of the function, the proper binding for the variable is the
argument corresponding to its use as an argument:parameter. Only if you cannot
obtain a binding for a variable in this way, make use of the table of variable:
. bindings.
<:) function:definitions:
FUNCTION POLY(X); 2%X42+3%X=5;
FUNCTION CHOOSE(X,Y) IF X=0 THEN Y ELSE Y-X;

FUNCTION TAKE(X,Y) IF ATOM X THEN Y ELSE IF ATOM Y THEN NIL ELSE CAR
X . CDR Y; |
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FUNCTION MAKE(X) ; X . 23

Table of bindings:

Variable Binding
U 'A
X 3
z 7

Expregsions to be evaluated:

8.,

Answers: See

POLY(3)

POLY(Z)

CHOOSE(1,-4)
CHOOSE(POLY(Z)=-114,X)

MAKE(U)

| TAKE(U,2)

LIST(U, TAKE(X ., Z, IF POLY(1)<l THEN '(D E) ELSE '(F G))

pages 157, 158

Ted RECURSION

We shall give three examples of definition by recursion; the first is numeriecal, the

second is symbolic, and the third has an argument which is a list, and gives an

integer:value.

The important thing to keep in mind is that the argument:parameteis of a function

generally have different bindings each time that the function is called,

’//\\

\_
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TeS5el EXAMPLE 1% THE FIBONACCI SERIES
The Fibonacci series is a sequenée of integers., The first two terms are 1 and 1,

respéctively. After that, each term of the series is the sum of the pre¢eding

two terms. The Fibonacci sequence begins therefore 1, 1, 2, 3, 5, 8, 13, 21, ...

The function FIBB defined here gives the nth temm of'the sequence,

FUNCTION FIBB(N) IF N=1 THEN 1 ELSE IF N=2 THEN 1 ELSE FIBB(N-1)+FIBB(N-2);

Suppose we evaluate FIBB(4)., The definition tells us that FIBB(4) is FIBB(3)+
FIBB(2). FIBB(3) is defined to be FIBB(2)+FIBB(1l). The computations of FIBB(1)
and FIBB(2) are not recursive and yield the values 1 and 1 immediately. The

<::) evaluation of FIBB(4) is shown schematically in the following diagram:

FIBB(4) = 3

//// \‘\\\\\\\\\\\\;

~
FIBB (3)=2 FIBB(2)=1

-4

FIBB(2)=1 FIBB(1)=1

Recursive definitions do not always terminate. For example,vthe computation
of FIBB(0) according to the above definition will never terminate. The computation
continues with the depth of recursion getting deeper and deeper until lack of

computer memory or lack of time causes an error condition in the computer,
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There is no general rule possible for determining whether a recursive computation
will terminate or not. Therefore, the programmer must understand the pérticular
type of recursion he is using and why he expects the recursive computation to
terminate on the type of data being operated on, This understanding can be
acquired with practice. The exercises in this Primer provide a start in this

direction,

The lef¢to-right sequence for evaluating conditiomnal:expressions is essential
for the recursive:definition to operate properly. For example, consider the

evaluation of FIBB(1l)., Substituting 1 for N in the body of the definition gives:

IF 1=1 THEN 1 ELSE IF 1=2 THEN 1 ELSE FIBB(0)+FIBB(=l)

If all the parts of the conditional:expression had to be evaluated first, before
a choice between the parts was made, then the computation would not terminate,

and so no value could be obtained for it.

Te5e2 EXAMPLE 27 SUBSTITUTION

Suppose we want to substitute a given S-expression for each instance of a given
identifier in another S-expression. The function SUBST does this, We define
SUBST(X,Y,Z) as the result of "Substitute the S-expression x for all occurrences

of the identifier y in the S-expression z." An example is:

SUBST('(THE TREE),'OBJECT,'((THE MAN) SAW OBJECT)) is ((THE MAN) SAW (THE TREE))

The definition of SUBST in LISP 2 is:

FUNCTION SUBST (X,Y,Z) IF ATOM Z THEN (IF Z=Y THEN X ELSE Z) ELSE
SUBST(X,Y,CAR Z) . SUBST(X,Y,CDR 2);

O
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Another example is SUBST('Q,"B,'((A B) B C)). The value is ((A Q) Q C). This
is demonstrated in painstaking detail by the following account of the 11 calls
to SUBST necessary to complete this computation.

(2) (1)
1. SUBST('q,'B,'((A B) B C)=SUBST('Q,'B,'(A B)) . SUBST('Q,'B,'(B C))="((A Q) Q C)

(3) h&
2., SUBST('Q,'B'(A B))=SUBST('Q,'B,'A) . sﬁB T('Q,"B,'(B))="(A Q)
3. SUBST('Q,'B,'A)='A
(5) (6)
4. SUBST('Q,'B,'(B))=SUBST('Q,'B,'B) . SUBST('Q,'B,NIL)='(Q)
5. SUBST('Q,'B,'B)='Q
6. SUBST('Q,'B,NIL)=NIL
(8) (9)
T. SUBST('Q,'B,'(B C))=SUBST('Q,'B,'B) . SUBST('Q,'B,'(C))='(q C)
8. SUBST('Q,'B,'B)='Q
(10) (11)
9. SUBST('Q,'B,'(C))= SUBST('Q,'B,'C) . SUBST('Q,'C,NIL)=1(()
10. SUBST('Q,'B,'C)='C

11. SUBST('Q,'B,NIL)=NIL

It is interesting to note that the argument:parameter Z is bound to many different
argumenteg in the 11 calls to SUBST, but that the argument:parameters X and Y do not

change, This is a fairly common occurrence,

Te5.3 EXAMPLE 3: LENGTH OF A LIST

The length of a ligt is equal to the number of elements in the ligt. For

example, the length of the list (A 4 (B C)) is 3 because there are 3 elements

in the list (the substructure of the element (B C) is irrelevant), The length of ‘

the empty list ( ) is O. The definition of LENGTH is:
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.

FUNCTION LENGTH(L) IF NULL L THEN O ELSE LENGTH(CDR L)+1;

The evaluation of LENGTH('(A 4 (B C))) proceeds as follows:
LENGTH('(A & (B C)))=LENGTH ('(4 (B C)))+1
=LENGTH('((B C)))+1+1=LENGTH ('())+1+1+1

=0 + 1+ 1+ 1=3

Problem Set 20
a. The following definition.of FIBB uses an auxiliary function FIBBl. It gives the
same answers as the definition in Example 1. Why does this definition lead to more

efficient computation of FIBB fér large arqumants?

FUNCTION FIBB(N); FIBB1(N,1,2); <::”

FUNCTION FIBB1(X,Y,Z) IF X=1 THEN Y ELSE FIBBl(X1,2,Y+Z);

b. Is there any set of arguments for which SUBST, as defined in Example 2,

does not converge? Why or why not?

c. Define the recursive function COUNT having one argument. The argument may be
any S-expression. The value of COUNT is the number of atoms (not just identifiers)

in the argument.

Answers: See pages 158, 159
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CHAPTER 8

THE LOGICAL:OPERATORS

The six logical:operators of LISP 2 are AND, OR, NOT, IMPLIES, XOR, and EQUIV.
They may be regarded as functions whose arguments are boolean and whose value 1is
also boolegn. But some of them (AND, OR, IMPLIES) differ in gn'importang way
from fﬁnctions. These three operators have the property that their argumentsAare
evaluated from left to right, and that only as many arguments as are necessary to
determine the value of the boolean are evaluated. In this respect, they are

more like conditional:expressions than functions.

8.1 NoT

The boolean NOT has‘one argument. The value of NOT is TRUE if its argument is
FALSE (or NIL or ()), and FALSE (or NIL or ()) if its argument.is anything else.
As with aonditionél:expressions; any argument except FALSE is regérded as

equivalent to TRUE.

The expression
NOT e
is equivglent in meaning to the conditional:expression
IF e THEN FALSE ELSE TRUE
NOT is a prefix:operator; therefore it is permissible to write either
NOT (e)
or
NOT e

The precedence of NOT is highest of the logical:operators.

The operator NULL is identical with NOT both in meaning and in precedence,
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8.2 AND
The operator AND has an indefinite number of arguments. It is either a prefix:
eperator or an infiz:operator: one may write either
AND(el,...,en)
or
el AND. . .AND e,
The precedence of AND is below that of NOT but higher than that

of the other four logical:operators.

The
ey and €y eves AND e
is equivalent in meaning to the expression

IF NOT e, THEN FALSE IF NOT e

1 THEN FALSE ....ELSE e,

2

In other words, the
e AND ... AND e,
has the value TRUE if each ey is evaluated and the values are all true (not FALSE),

but if the evaluation of any e, is FALSE, then the value of the entire expression

is FALSE, and the remaining e, to the right of this one are not evaluated.

AND ( ) (meaning AND of no grguments) has by convention the value TRUE.

8.3 OR

The operator OR has an indefinite number of arguments and it is either an infix
or prefix:operator. One may write either

OR(el,...,en)
or

OR ... OR €
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The precedence of OR is fourth of the logical:operators: below NOT, AND, XOR;

above IMPLIES and EQUIV.

The expression

e1 OR ... OR en

is equivalent in meaning to the expression

IF ey THEN TRUE ELSE IF e, THEN TRUE ... ELSE e,

2

In other words, the expression

e, OR ... OR e,

1
has the value TRUE if at least one e has a true.value. 1In this case, the

remaining e. to the right of this one are not evaluated. If all of the e

1
evaluate to FALSE, then the value of the entire expression is FALSE.

1

OR ( ) (meaning OR of no arguments has by convention the value FALSE.,)

8.4 EXAMPLE
As an example of the use of the logical:connectives, we shall give another
definition of MEMBER:

FUNCTION MEMBER(X,L) NOT NULL L AND (X=CAR L OR MEMBER(X,CDR L))

H
The recursion in this definition terminates only because AND and OR have the

property of not evaluating argumente further to the right of the one that

determines their value.

Tﬁe parentheses around the OR expression are necessary because AND has a higher
precedence than OR, and if the parentheses were missing, then AND would capture
X=CAR L as its argument on the right.

Problem Set 21,

(1) 1Insert parentheses in the following LISP 2 expressions in such a way that

they are unambiguous assuming no rules of precedence.
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(2) Evaluate the following expressionsusing the table:

Variable Value
A TRUE
B ()
C 7.0
X A
Y (3 1)
z (A B)

a. CAR Y + CADR Y=C AND A
b. B AND 2+2=k

c. A OR‘2+2=5 | (:]
d. NOT A OR B OR X=Y |
e. IF AOR B THEN C

f. IF C THEN C ELSE 'C
g. NOT (A AND B)

h. NOT A AND B

Answers: See pages 160, 161

8.5 IMPLIES
IMPLIES is a binary:operator. It may be written either as a prefix:operator as
in
IMPLIES(el, e2)
or as an infixioperator as in

ey IMPLIES e2
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For those who are logicians, the meaning of IMPLIES is almost "material. implication.”

For those who are not logicians, the meaning of IMPLIES is almost the meaning

according to the following table of cases:

e, e, e IMPLIES e,
False False True
False True True
True False False
True True True

We say "almost" because in LISP 2 the evaluation procedure does not evaluate e,

unless & is true. This evaluation procedure is different from the evaluation

procedure in logic.

The evaluation procedure for IMPLIES is the following:
e, is evaluated. If its value is FALSE, then the value of

ey IMPLIES e,

is TRUE. Otherwise, e, is evaluated, and its value is the value of the entire
expression,

ey IMPLIES €5
is thus equivalent in meaning to the conditional:expression

IF ey THEN e, ELSE TRUE

IMPLIES has next to the bottom precedence of the logical:operators.

8.6 XOR

XOR has an indefinite number of arguments. It may be written as
XOR(el,ez... ,en)

or as

el XOR e2 ... XOR en
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Unlike AND, OR, and IMPLIES, XOR evaluates all of its arguments in no specified
order. If the nmumber of argumente that are true is odd, then the value of XOR
is TRUE; otherwise the value of XOR if FALSE. XOR has third rank in the precedence

of the logiecal:operators.

8.7 EQUIV

EQUIV has an indefinite number of arguments, It may be written as
EQ.UIV(el ive en)

or as
e EQUIV ... EQUIV e,

It has lowest precedence of the logical:operators.

All of the arguments of EQUIV are evaluated in no specified order. The value of

@

EQUIV is TRUE if all of its arguments are true, or if all of its arguments are

FALSE. In any other case, the value of EQUIV is FALSE.

o
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CHAPTER 9

BLOCK:EXPRESSIONS AND STATEMENTS

So far we have described how to write LISP programs using recursive function:

definitions, It can be proved that any computation can be described by recursive

function:definitions; however, often it is easier to describe a computation in
some other way. We need, in addition to recursion, a way of writing a series
of 8tatements that perform certain operations, and a way of controlling the

order in which those statements are executed.

For a concrete example of this point, see the two different ways given in

Chapter 3, Section 3.2 for defining the function FACTORIAL. The first definition
uses statements; the second definition uses recursion. The first method, although
longer to write, compiles into a smaller and faster-running progrem. Most old-
time LISP programmers however prefer the second method, recursion, which is
méthematically more elegant, and is an important distinguishing feature of all

LISP systems.

9.1 BLOCK : EXPRESSIONS

For developing the second method, two new kinds of entities that are not
expressions are needed--declarations and statements, Statements are described
fully in this chapter, but declarations are described only briefly here; they are

described more fully later.

A context is needed in which statements and declarations can occur. The
block:expression provides such a context. It is & special kind of expression that

contains declarations and statements inside it.
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Definition:
A block:expression has the form

BEGIN dl; oo 3 dm;sl; cee 35 END
In this form each 4, is a declaration, and each s, is a statement. Either m or
n may be O; that is, there may be no declarations or no statements or both. All
the declarations must precede all the statements in a block:expression. The

declarations and statements are separated from each other by semi:colons; there

is one less semi:colon than the total number of declarations and statements .

9.2 DECLARATIONS

There are several kinds of declarations; one kind of declaration that is suitable

in this context is known as the intermal:parameter:declaration . _/
Definition:

An intermal:parameter:declaration may have one of the following forms (there

are others):

SYMBOL Vi, +.. , V

n
or
INTEGER Vl, cee o Vn
or REAL Vis eee A
or

BOOLEAN v,, ... , v_

where each vy is a variable, The four words in capital letters denote the datq:

type of the variable.
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O

1f there are two or more variables following the word SYMBOL (or INTEGER or REAL
or BOOLEAN), then they are separated from each other by commas. An internal:
sparameter:declaration ig almost always followed by & semi:colon since another
declaration or a statement is to follow; however, the semi:colon is not regarded

as being part of the declaration,

Example of & block:expression with internai:parameter:decZarations:

BEGIN REAL X,Y; INTEGER Z; SYMBOL Al, A2; ... END

where ... represents some statements .
The internal:parameter:declaration has the following effects on the program:

(1) The variables mentioned in the declaration are declared to be
<:> internal:parameters which can be referenced throughout the block:expression (or
block) in which the deelaration occurs. One may refer to a variable either to
obtain its value or to change its value. Thus the internal:parameters may be

used as storage places for data.

(2) If an internal:parameter is declared to be of type SYMBOL, then
its value may be any type of datum. (That is, any type of datum may be stored
in it.) If the internal:parameter is of type INTEGER, REAL or BOOLEAN, then its

value may be only a datum of the specified type.

(3) As soon as the block is entered, the internmal:parameter is
assigned an initial value, Of course, this initial value may be changed almost
immediately by what the programmer writes, and it msy be ignored entirely. The

<::> initial value depends upon the type of the variable as follows:
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Type Initial Value
SYMBOL NIL
INTEGER 0
REAL 0.0
BOOLEAN FALSE
9.3 STATEMENTS

TM=2710/101/00(DRAFT)

The statements within a block are normelly executed in sequence starting with the

first one. The sequence in which gtatements are executed may be controlled by

several means; the simplest of these is the

go:statement

The kinds of statements which will be described in this chapter are:

agsignment:statements
conditional:statements
go:statements

empty: statements
return:statements

simple:statements

Some more kinds of 8tatements are described later,

N

Q\/}
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9.4 ASSIGNMENT : STATEMENTS

The assignment:statement is a statement that causes a value to be assigned to a
parameter, The assignment:statement has the form
vee

where v is a variable and e is an expression.

The expression e is evaluated first; then its value is stored in the variagble V.

The previous value of v is lost at that point.

For example, suppose A has the value 5, and one executes the assignment:statement
A-A'2., The expression on the right is evaluated with A having the value 5. The
value of the expression is 25. This is now assigned as the new value of A. The

old value of A is lost.

An assignment:statement occurring inside the body of a funetion:definition mey
change the value of an argument:parameter (see below) instead of changing the
value of an internal:parameter. This change remains in effect throughout the

eveluation of the funection,

An aseignment:statement may be used as an expression, in which case it is called
an assignment:expression, The assignment:expression has the same effect as the
assignment:statement, but the assignment:expression also has a value. The value

of an assignment:expression is the value of its right half.

Example (of an assignment:statement).

A-B-X12+3
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The portion of this assignment:statement to the right of the first left:arrow is an
agsignment:expression B«X+2+3, The effect of this statement is to assign the

value x2+3 to both A and B.

The lefti:arrow behaves somewhat as if it were an infiz:operator,
but a rather peculiar one, On the left, it has high precedence. It grasps the
smallest possible expression it can find. On the right, it has very low precedence,
lower even than the LISP dot , It grasps as much as possible.
Example:

A<CAR C«<D . E
means the same as:

A-(cAR(C—(D . E)))

In other words, this expression COliSes D and E and puts the result in C. It

then takes CAR of this which is D again, and puts this in A.

¥

9.5 THE CONDITIONAL:STATEMENT

A conditional:statement is like a conditional:expression; the only difference is

that its consequents are statements rather than expressions,

Definition:
A conditional:statement has one of the following forms:

IF p, THEN e,

or

IF P, THEN ey ELSE e,

where p is an expression, el is a basic:statement (see below) , and e2 is any

statement.
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A basic:statement is any kind of statement except a conditional:statement or a
for:statement (which is explained later). The restriction that a statement must
be basic is trivial and intended only to avoid certain kinds of ambiguity. A
conditional:statement enclosed by BEGIN ,.. END, is changed into a basic:statement.
Examples of conditional:statements:

IF A=O THEN GO L

IF P THEN A-A+l ELSE A"A-1

IF A<B THEN GO M ELSE IF A”B GO N ELSE IF B=0 GO L

IF A THEN BEGIN IF B THEN X«1 ELSE X*2 END ELSE GO L
The following rules apply to the execution of conditional:statements.

(1) The antecedents are evaluated from left to right until one is

found whose value is TRUE (or in fact, any datum other than FALSE).

(2) When an antecedent is found that is true, the corresponding consequent

is executed. The rest of the conditional:statement is ignored.

(3) If a conditional:statement ends in ELSE s,» and if all the

preceding antecedents are false, then s, is executed.

(4) If a conditional:statement ends in IF Py THEN S end if all the
antecedents including p, are false, then nothing is executed, and the program
proceeds in the normal manner. This is not an error condition in contrast to the

analoguous situation for conditional:expressions.

(5) Conditional:statements are not expressions; therefore they never

have values.
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9.6 LABELS

A label is a means of giving a name to a statement. Identifiers are used as

labels,

Definition: A labeled:statement has the form
1b:s

where 1b is a label and s is a statement.

Examples of labeled:statements:
A: TIF X=Y THEN GO A
B: XX+l

C: GO A

The kind of a statement is not changed by labeling the statement. Thus the first

statement above is a conditional:statement, whether labeled or not.

9.7 GO:STATEMENTS

The go:statement has the form
GO 1b

where 1b is a label.

-The effect of a go:statement,GO 1b,is to cause execution of the program to
continue at the statement labeled 1lb; the program proceeds from there in the

normal way.

There are certain restrictions as to where in a program it is possible to go
from a given location. These restrictions follow common sense and exclude cases
where the execution of a go:statement could be poorly defined. They will be .

discussed later, The following interesting example is quite permissable however:

~,
< "‘
—e
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GO A;

IF X=0 THEN Y-2¥Y ELSE A; IF X<=0 THEN Y-Z;

If the go!statement is executed and if X=0 at the time, then Y2 will be executed.
If one started at the beginning of the conditional:statement with X=0, X—2%Y

would be executed.

9.8 THE VALUE OF A BLOCK:EXPRESSION; RETURN:STATEMENTS

A block:expression must have a value because it is an expression, Block:expressions

may obtain values in two different ways.

The first way occurs when the block:expression ends because it has run out of
statements to execute. This happens when the last statement has been executed
and is not a go:statement, The word END follows, but is not a 8statement, 1In
this case, the evaluation of the block:expression is terminated and the value is
NIL. This is the usual way of ending a block:expression when the value is not

being used for any purpose.

Sometimes ,however the last statement in a block:expression is a go:statement.

To get out of the block, one needs to branch to some point after this statement.
The empty:statement is useful for this purpose. For example, here is a block:
expression with an empty:statement used as a way out:

BEGIN ... TF TERMINALCONDITION THEN GO B;.... GO A; B:; END
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An emptysstatement is specified by two consecutive semi:colons with no statements
between them. Since a label is not a statement it may intervene as in the above
example. The empty:statement is here represented by:

3 B

The second way to obtain a value for a block:expression is to use a return:

sstatement,

Definition: A returm:statement has the form
RETURN e

wvhere e 1s an expression,

A return:statement may occur in any Statement context within a block:expression;
for example, it may appear as one of the comsequents of a conditional:statement,
Also there may be several return:statement within one block:expression, As

soon as one of them is executed, the following happens:

(1) The expression e is evaluated

(2) The block:expression is terminated. No further Statements are

executed no matter where one is in the block,

(3) The value of e is the value of the entire block:expression.

9.9 SIMPLE : STATEMENTS

A simple:expression may be used as a statement, in which case it is called a
simple:statement. The only way to tell that it is a 8tatement is the context in
which it appears. A gimple:statement always occurs in a context which has the

property that even if the 8imple:expression were to produce a value, the value

would be ignored.
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Since the value of a simple:statement is ignored, the only reason for executing

it is to produce an effect, for example, PRINT(X).
9.9.1 EXAMPLE AND PROBLEMS

Example: Define REV which is a function that reverses a list and all its sublists .
Thus,
REV ('((A B C) (DE)))
is
((E D) (Cc B 4))
Here is a definition of REV:
FUNCTION REV(X) BEGIN SYMBOL Y;
A: IF NULL X THEN RETURN Y ELSE IF ATOM X THEN RETURN X;
Y- REV(CARX) . Y ;
X~CDR X;
END ;
This example has several interesting features:
(1) This definition uses both recursion and iteration of a loop of
gtatements--the two most important means of controlling a repetitive process.
Recursion is used to apply the function REV to sublists at all levels. But the

job of reversing any one level is done by means of an open loop of statements.

(2) It illustrates the use of an assignment:statement to set the

argument:parameter X, and another assigmment:statement to set the internmal:

parameter Y.
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(3) Each time the function REV is entered recursively, & new argument:

jparameter X and a new internal:parameter Y are created. The different copies

of X and Y have independent value and do not interfere with each other. Oniy
the innermost X and Y are available at any given time, but when a particular
recursion is terminated, the immediately previous X and Y are accessible once

more, unchanged from when they were last accessible.

Problem Set 22,
a. Define REV using recursion and without using bZock:expressions and

statements.

b. Define REV by means of & single non-recursive function:definition

using block:expressions and statements,

c. Define the LISP function SINE(X,N) that computes an approximation

to the sin of X by sumning the first N terms of the sequence

sin (x)=x/l!-x3/3!+x5/5!-x7/7!....

(Do not use the LISP system function SIN.)

Answers: See pages 162, 163

O
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CHAPTER 10.
BLOCKS

Many entities in LISP 2 can be classified into three kinds; expressions,

statements, or declarations. This distinction is important and needs to be
mastered by a user of the language. To some extent, these kinds of entitles
are like interrogative, imperative, and declarative sentences, respectively,

in English., However, this analogy cannot be carried too far.

An expression in LISP can be evaluated; that is, it has a value which can be
computed. For example, the value of 3+4 is 7. In the same way, an interrogative
sentence in English can be answered; that is, it has an answer or calls for an

answer.

A étatement in LISP is a request or command that some process be performed.
For example GO J is a statement requesting execution of the process beginning
at J. In the same way, an imperative sentence in English is a request or
command that some action be performed or that some state exist; that is, it

calls for some action to be performed or for some state to exist. For example,

"Give me that list" or "Be careful."

A declaration in LISP informs the computer of some fact or condition. For
example, REAL M,says that there will be an internal:parameter in the program
and that it will have real:values. In the same way, in English, a declarative
sentence (also called an indicative sentence) tells or provides information.

For example, "M will be a variable in this program, with real values."
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" Both in LISP and in English the classification is sometimes more nominal than
actual, and is determined more by the way in which anbentity occurs in its
surroundings (by the grammar and syntax) than by meaning (the semantic context).
For example, in LISP the evaluation of an expression may not only yield a value
but cause certain other things to‘happen. These are called side:effects.
Similarly in English, a sentence which is interrogative in form may be declara-
tive in substance. For example, the interrogative "Why isn't the butter on the
table?" may mean the imperative "Please put the butter on the table"; the |
speaker is not really interested in knowing why the butter is not on the fable.
Another example is the interrogative: "How much more of this nonsense do I have
to listen to?" This means the declarative "I don't want to listen to any more
of this because I consider it to be nonsense." The speaker does not want to | ~

be answered "About 15 minutes more nonsense."

Both in LISP and in English one can argue in favor of linguistic puritj. But

impure use of the language will remain and spread because it is often convenient

and direct, and often economical.

In LISP, it is always possible to classify entities into expressions, state-
ments, and declarationg, by analyzing the syntax, But it is not always possible
to do this by examining a single entity. Usually one must consider the context
in which it appears. Thus we shall be referring to a statement:context and an
expression:context., (In LISP, declarations present no problem. They can always

be distinguished by their first words regardless of context.)

What contexts have been encountered so far? One is the context of the body of <:;

& function:definition. This is always an expression. Therefore, whatever
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appears after the heading of a function:definition is in an expression:context.
At the top level of a LISP program, one may write expressiong but not statements.

Therefore, this is an expression:context.

10.1 BLOCKS
A block has precisely the following syntax:

BEGIN dl; d2; PN dm; 813 Sp53 ees Sy END

where each dl is a deelaration and each sl is a statement. Either m or n or

both could be 0.

A block consists of the reserved:word BEGIN, followed by some declarations,
followed by some statements, followed by the reserved:word END. All the
declarations in a block come before any of the statements. The declarations

and statements are separated from each other by semi-:icolons.

How is a block to be classified? If a block appears in an expression:context
then it is an expression, and specifically it is called a block:expression.
If a block appears in a statement:context, then there are two possibilities.

If it has no declarations, then it is called a compound:statement; if it has

one or more declarations, then it is called a block:statement. This classifica-

tion is summed up in the following table:

CLASSIFICATION OF BLOCKS

Context: expression:context statement:context
Declarations:
none block:expreseion compound: statement

at least one block:expression block:statement
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A block:expression may be used on any level as the body of a function:definition,

or it may be used on the top level as an expréssion.

Within the block:expression

there may be gtatements (including block:statements and compound:statements).

From this specification, it follows that when blocks appear nested one within

the other as in:

BEGIN ...

«eo END

BEGIN oo 0 e 00 END

BEGIN ... END

the outermost one, at least, must be a block:expression.

10.2 VARIABLES, BINDINGS, AND SCOFES

A variable (to repeat what was said earlier) is an identifier used within a

program to denote some value. For example, the variable M may turn out to have

the value k4.

A variable may be mentioned in any one of four ways.

It may be mentioned in

order to bind it either as an argument:parameter (see Chapter T) or as an internal:

parameter (see Chapter 9 ). It may be mentioned for the purpose of changing it.

It may be mentioned for the purpose of making use of its value. This is summarized

in the following table:

MENTIONS OF VARIABLES
Type of Mention
to bind it as an argument:parameter
to bind it as an internal:parameter
to change it

for its value

Example

FUNCTION FN(X) ...
INTEGER X;

X33

X+ 3;

@
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Every binding of a variable hes associated with it a scope. The scope is ai
region of program within which that particular pinding of a variable may be
referenced either to change the varigble or to evaluate it. The geope must be
thought of as something dynamic: it starts to exist when it is activated, and

it stops existing when some fixed piece of a program is finished.

Rule 1: When a variable is bound as an argument:parameter of a function, the
scope of the binding is the body of the funetion:definition (but not including
the scope of any other binding of the same varigble that is inside the first

binding ). The scope exists as soon as the function is entered, and ceases to
exist when the value of the function has been computed and control returns to

the point from which the function was called.

Example:

FUNCTION FN(X) 3%X+5;

FN(2);
The variable X is bound as an argument:parameter. The scope of the binding 1is
the body of the function:definition, namely 3¥X+5. However, merely making a

function:definition does not activate the scope. When the funetion FN is

‘called with the argument 2, then the binding of X is activated, and throughout

its scope it has the value 2.

Rule 2: When a variable is bound as an internal:parameter, the scope of the
binding is all the statements (but not the deelarations) of the block in which
the declaration is made, but not including the scope of any other binding of
the same variable inside the first binding. The scope of the binding exists

Just prior to the execution of the first statement of the block, and continues

until the bloek is left.
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Example 1: second third binding as intermal:parameter
FUNCTION G(X) BEGIN H(X); BEGIN REAL X; H(X); BEGIN INTEGER (X)ﬂ
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L 1 11
H(X) END END END ;
[ 3  JLejiag

|_1 | , scope of first binding
|2} , scope of second binding

i3 | » scope of third binding

Example 2: binding as argument:parameter

FUNCTION FN(x) 3*x+5§

scope as grgument:parameter

BEGIN INTEGER §i{x+-6; PRINT (FN(X+1)) END;

binding ss internal:parametei\\\“scope as internal :parameter

Let us repeat that the definition of a function defines the scope of its argument:
:parameter, but does not activate it. The entity that follows the function:definition FN
"is a bloék:expression. It has an internal:parameter X. The execution of thé

block activates the binding of X. At first, X has the value 0, but this is

immediately changed to 6. The expression X+l is then evaluated.
before the funetion FN is called. The value of this expression is T.
function FN is called with the argument 7. At this point, the argument:parameter

X is activated and has the value 7. The vqlue of FN (which gets printed) is

26, and not 23.

Example 3:

BEGIN SYMBOL X; X « '"A; BEGIN SYMBOL X; X « 'B; PRINT (X) END;PRINT (X) END;

If you concluded that B would be printed first and then A, the conclusion was

correct, and your analysis was probably correct.

This happens

\\
i
S

(::ﬁ
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Each binding must be regarded as heving an independent existence. When the
second binding is activated, the first one continues to exist but within the
scope of the second binding it cannot be referenced. When the scope of the second

binding ends, the first one still exists and has not been changed.

A declaration such as
REAL X;
mey be made at the top level of a LISP program. In this case, the variable and

its associated value exist indefinitely.

10.3 RETURN ; STATEMENTS

A return:statement is of the form RETURN w. The return:statement must be used
inside a blbck:expressian. The effect of the returm:statement is to terminate
a block:expression and cause the block:expression to take the value of w. If
two block:expressions are nested, then the execution of a return:statement
that is inside both of them terminates only the innermost one. However, when
a block:statement or compound:statement is nested inside a block:expression,
control passes outward through these and the block:expression that is outside

them is terminated. The reserved:word RETURN always terminates a block:expression.

Example 1:

FUNCTION FN(X) BEGIN BEGIN RETURN X END END;
The inner block is a compoﬁnd:statement. The outer block is a block:expression.
The RETURN terminates the outer block and X is the value of FN(X). So the

function:definition defines an identity:function.

Example 2:

FUNCTION FN(X) BEGIN ATOM BEGIN RETURN X END END;
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The inner block is a block:expression, because it is the argument of ATOM,

and arguments are always expressions. ATOM EEGIN RETURN X END is a simple:
:statement. Its value is true if X is atomic, but this is irrelevant. There
are no further statements in the outer block, and no RETURN from it. So the

value of FN is always NIL.

10,k RESTRICTIONS ON GO:STATEMENTS

There are certain restrictions on the use of go:statements. The rules are:
(1) A go:statement may not be used to enter a block:statement from
& point outside it.
(2) A go:statement may not be used either to go into an expression
from a point outside it or to go out of an expression from <;»
a point inside it.

These rules have the following consequences for blocks.

GO:STATEMENT RESTRICTIONS

Type of Block May Enter? May Leave?
block:expression no no
compound: statement yes yes
block:statement no yes

If one were to enter a block:statement by means of a go:statement, this would
put the internal:parameters of the block:gstatement into an ambiguous condition.

Since a compound:statement has no internal:parameters'specific to it, the problem

does not arise there.

The body of a f%nction:definition is an expression; therefore one may not enter

or leave the body of a function:definition by means of a go:statement.
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Problem Set 23:

Examine the statement GO A in each of the following miniature programs and
decide whether or not it is legal, and why or why not.
a. FUNCTION FN(X) BEGIN A: RETURN G(X) END;

FUNCTION G(X) BEGIN GO A END;

b. BEGIN INTEGER Y;
BEGIN REAL X3 GO A END;
BEGIN A: Y¢— 3 END

END

c. BEGIN INTEGER Y;

P

)
&~/ BEGIN GO A END;
BEGIN REAL X; A: Y<— 3 END

END

d. BEGIN INTEGER Y;
BEGIN GO A END;

BEGIN A: Y<—3 END
e. BEGIN GO A; FN(BEGIN A: ; RETURN X END) END
f. BEGIN -BEGIN GO A END; BEGIN A:;END END
Answers: See pages 164, 165

10.5 TYPICAL USES FOR BLOCKS

3
<;/’ (1) A compound:statement groups several statements together for execution one
after another. One use of this technique is as a consequent of a conditional:

statement when several things are to be done if a condition is satisfied.
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Example:
IF X=0 THEN BEGIN Y¢—5; GO A END;
Without compound:statements, one would have to use a circumlocution (or

"program around it") such as:

IF X/=0 THEN GO B; Y+«5; GO A; B:

(2) A eonditional:statement cannot be used as the consequent of another
conditional:statement following the word THEN. This restriction can be overcome
by turning the first conditional:statement into a eompound:statement with one

statement inside it.

Incorrect:

IF A THEN IF B THEN GO X ELSE GO Y ELSE GO Z;

Correct:

IF A THEN BEGIN IF B THEN GO X ELSE GO Y END ELSE GO Zs

(3) A block:expression is commonly used as the body of a funetion:definition
when the value of the function is computed by means of statement programming
rather than recursion. For an example of this, study the definition of REV in

Chapter 9.

(4) A block:expression may be used to avoid several repetitions of the same

computation.

Example 1: ‘
X¢— BEGIN REAL Y; Y¢— AT2-3*%A+BT2; RETURN LIST (Y, f—3, SQRT (Y)) END;
Alternatively, this could have been written: - | | |
X¢—LIST (Al2-3%A+BT2, k’;‘é-3*A+B’|‘2-3, SQRT (AI‘2,-3?A+BT2))";

the first program runs faster.

AN

@

C
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(5) A block:statement may also be used to avoid several repetitions of the:

same computation.

Ekample 2:
BEGIN SYMBOL Y;
Y<--FN (IF X-3%R<0 THEN CAR (L) ELSE M . CAR (N));
U<4—CAR Y;
;:v\'— CADR Y;
W<— CDDR Y

END;
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CHAPTER 11.

ARRAYS

An grrgy in LISP 2 is an indexed collection of data having one or more dimensions.
We shall explain this further presently. In the meantime, let us note that this
is different from an array in some other programming languages. In FORTRAN,

for example, an grray is an indexed collection of wvariables; the difference is

not trivial.

For an example in LISP 2, let us consider a 3 by b by 5 real:array. This is a
collection of real:data, specifically, a collection of exactly 60 real:numbers.
It is a 3-dimensional indexed collection of real:numbers. This means that every
element of the collection is identified by specifying in sequence three integers
called the three coordinates of the element. 1f the three coordinates are called

x, y and z, then the coordinates must satisfy 1 <x <3, 1l<y <h, 1<z <5,

11.1 OPERATIONS

What are the basic operations that may be performed on an array? An array in

LISP 2 is regarded as & single datum and is defined as a type of atom. Accordingly,
an array may be the grgument or value of a function and it may be incorporated

into a nonatomic S-expression. In addition, any specific element of an array

may be obtained or may be changed.

Since the allocation of storage space in LISP 2 is completely dynamic, arrays
do not have to be declared in advance. They may be declared at any time and

discarded at any time. As soon as an array is discarded, the space it occupied

in memory is available for other purposes.
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11.2 ONE WAY OF DECLARING ARRAYS

One of the ways of declaring an array is upon entry to a block. The following
information must be stated:
(1) The type of the array. Some of the array‘types are:
boolean:array
integer:array
real:array
symbol:array
An integer:array has only integers as its elements, etc. A
symbol:array may have any type of data for its elements
including other arrays.
(2) The size of the array. The specification must give the number
of dimensions, and the bounds of each dimension. The baind Of
8 dimension is always a positive integer.
(3) The data out of which the grray is initially composed. This

is determined as soon as the type and size are declared:

Type of Array Initial Data
boolean:array all elements are FALSE
integer:array all elements are O
real:array all elements are 0.0
symbol:array all elements are NIL

Of course, the data in such an arr&y are promptly changed during the course of

<:> a computation using it.

For example, at the beginning of a block, suppose we wish to declare a real:
array:variable called A containing a 3-dimensional real:array whose bounds are

3, 4, and 5,respectively. We would write:
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REAL ARRAY A(3,4,5)
In the place of the number 4, for example, we could put an expression which

would evaluate to the correct integer bound.

For another example:

SYMBOL ARRAY A(5), B(X+2), C(FN(W))
~ This declaration declares three one-dimensional arrays named A, B, and C of
type SYMBOL. The size of the dimension of A is 5. The size of the dimension
of B is equal to X plus 2. The size of the dimension of C is equal to FN of W.

The second two sizes can only be determined at run time.

We should note that:

1. All the arrays specified in any one declaration must be of the
same type.

2. They may each have any number of dimensions.

3. The number of dimensions is implied by the number of expressions
specifying bounds.

4, A bound does not have to be a predeclared integer. Instead, it
can be any expression that can be evaluated to yield an integer
at the time that the array is activated. This can, for example,
be a different integer each time the array is activated.

5. When an array:declaration is placed emong the declarations of a
block, the array:variable and associated array are active just
before the first statement of the block is activated and continue
active until the block is terminated. The same considerations of
binding and scope apply to array:variables as apply to ordinary
variables (see Chapter 10).

6. An array:declaration may be made on the top level of a LISP 2
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program rather than inside a block, In this case, the array
remains in existence all the time the LISP 2 program is in the

computer.

11.3 HOW TO OBTAIN AN ARRAY:ELEMENT

Suppose that a 3-dimensional real:array whose bounds are 3, 4 and 5, respectively
is associated with the real:array:variable A. Then the element whose coordinates
are I, J and K may be referred to as

A(I,T,K)

I, J, and K are called subsceript:expressions. They must evaluate to positive
integers, and must not be greater than their respective bounds. Any expressions
that have these properties may be used as array:subscript:expressions.

Example 1: A(2, IF P=0 THEN Q-1 ELSE Q, R)

Example 2: A(3, BEGIN RETURN L4 END, 5)

An array:variable followed by its subscript:expressions enclosed in parentheses
and separated from each other by commas is a form. In fact it is impossible to
tell by examining a form whether it begins with an array:variable or a function:

iname. Forms are primaries and consequently they are also simple:expressions

(see Chapter 5).

When a form composed of an array:variable and subscript:expressions is evaluated,
the subscript:expressions are evaluated first. If there are the correct number
of subscript:expressions and if each subsceript:expression is within bounds, then

the value of the form is the specified element of the array.

11.L HOW TO CHANGE AN ELEMENT OF AN ARRAY

To change an element of an array, we write a form with the array:name and subscript:
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expressiong and use it as the left side of an agssignment:statement or assignment:

expression:

Example 1: This sets the array element with coordinates 2, 2,
A(2,2,2) « 3.14159 and 2 to the value 3.14159.

Example 2:

Z(I,K) « X(I,J)%*Y(J,K) This sets the array:element of Z with coordinate I
and K equal to the product of the arragy:element of X
with coordinates I and J and the array:element of Y

with coordinates J and K.

11.5 A MATRIX MULTIPLICATION PROGRAM

Suppose we wish to define in LISP 2 a funetion MM, a program that mul