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CHAPTER 1 

INTRODUCTION 

The purpose of this LISP 2 Primer is to provide an understanding of the. 

main features of the Programming language LISP 2. 

The Primer is one of the two main sources of information on LISP 2; the 

other is the LIS~ 2 Reference Manual. These two books serve different 

purposes in making information about LISP 2 available to the interested 

reader and prospective programmer. 

The Reference Manual is intended to be a full description of the language. 

It contains a complete and concise definition of each aspect of the language, 

and its arrangement is systemat-ic; significant details are not omitted. 

This makes the Reference Manual difficult to read through, especially for a 

potential user who is not familiar with other LISP systems, or with computer 

programming in general. Also, the Reference Manual contains many cross­

references. and many explanations that seem unmotivated until some other 

explanation is read elsewhere. The Reference Manual is much easier to under­

stand if one first acquires some understanding of the main features of LISP 2. 

The Primer is intended to give an understanding of the main features of LISP 2. 

Unlike the Reference Manual, the Primer is intended to be read from beginning to· 

end in the order in which it is written. The Primer makes only a few assumptions 

about what the reader already knows-~ainly, a little mathematic,o all of which 

is taught in high school. If in addition one has calculus or logiC, some of the 

examples will appear more interesting, but neither subject is necessary. 

In describing the LISP 2 source language, all non-primitive syntactic entities are 

written in italics. If the entity is composed of more than one word, the words 

are joined by italicized colons. For example, the terms identifier and 

bZock:expression are non-primitive syntactic entities, and thus are italicized. 
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The Primer seeks to present LISP 2 in such a way that reasons for introducing 

new concepts are made clear, and the programmer's knowledge of LISP 2 techniques 

is developed gradually. This way of explaining is inconsistent with the method 

of arranging subject matter into a logical classification of topics and subtopics, 

and then explaining each topic fully before proceeding to the next. Therefore. 

you, the reader, should be aware that while each explanation in the Primer is 

correct, it is rarely complete, and usually there are possibilities that have 

not been mentioned. Also, many topics have been omitted from the Primer altogether, 

and their explanations can be found only be consulting the Reference Manual. 

For example. one of the first LISP 2 concepts discussed in the Primer is 

identifie~t and examples of identifie~B are given~ But nowhere in the Primer 

appears any explanation which would sUSlest that the entities A.B. and %N{«N 

are acceptable identifie~B. For a complete definition of identifiB~, therefore, 

see the Reference Manual. 

The LISP language is founded on mathematical logic, and. in particular, on a 

part of logic known as recursive function theory. However, the theoretical 

concepts needed are not difficult or advanced, and are presented completely in 

the Primer. It is recommended that you understand the ideas presented in Chapter 

2 before reading further in the Primer. It is also recommended that you solve 

the exercises in each chapter, obtaining the correct answers, before reading 

further in the Primer. 

Finally, it is recommended that as you read this Primer, you keep in mind the 

types of data that will occur in the problems you want to handle, and the types 

of processes you wish to perform on the data. Then you should be able to decide 

whether a given capability in LISP 2 is relevant to your problem or not. It is 

hoped that some of the examples may suggest possibilities to you. 
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CHAPTER 2. 

IDENTIFIERS" ATOMS, AND S-EXPRESSIONS 

If you are familiar with LISP, you may skip this chapter except for noting that: 

(l) the definition of an atom is broad; (2) an identifier is a type of atom 

but not all atoms are identifiers; (3) the booteans TRUE and FALSE are atoms 

but not identifiers, and (4) the predicate ATOM is true for all types of atoms. 

2.1 SYMBOLIC DATA PROCESSING 

The data that are processed by a computer programming language can be classified 

into two broad divisions, numerical and symbolic. An example of a numerical (or 

numeric) datum is: 

2.5 

An example of a symbolic datum is: 

(THIS IS A LIST) 

The processing of numerical data is a well-established science. Basic 

operations on numbers, such as addition. multiplication, and comparison of two 

numbers to see which is greater, are taught in elementary school. The solving 

of many kinds of equations, and many useful applications of numerical processing 

are taught in high school. The science of dealing with numbers is presented in 

a logically rigorous manner in college courses. 

The processing of symbolic data, however, is not a well-established sc~ence. 

In fact, the processing of symbolic data has only begun to be a science; and 

the development of this science has been called forth by the advance of computer 

programming. Among the computer programming languages, LISP is one of the few 

in which the processing of symbolic data is treated just as systematically and 

scientifically as the processing of numerical data is treated in all computer 

languages. 
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For symbolic data processing, just as for numeric data processing, there is a 

basic set of skills and a mathematical theory. These skills and theory take 

a particular form in the LISP system for symbolic data processing. The mathe­

matical theory is beyond the scope of this Primer but is briefly summarized in 

an appenclix to the Reference Manual. The basic skills of symbolic data proces-" 

sing could easily be taught in elementary school; but nowadays, of course. they 

are not. It is the purpose of this chapter of the Primer to present them. 

2.2 IDE1I7.'IF IERS 
In dealing with symbolic processing, we recognize certain sequences of characters 

called identifiers. Identifiers have the following properties: 

Identifiers are the basic units of symbolic data (i.e., 

identifiers are the words of the language). 

I~tifiB~s are composed of sequences of signs, the elements 

of the LISP alphabet. Sign means a letter, a numeraZ, or a 

mark. Letter means one of the 26 letters of the English 

alphabet, written in the form of a Roman capital (A, B ••• Z). 

Numeral means one of the ten Arabic numerals (0, 1 ••• 9). 
Mark means one mark, each associated with a name or names 

in the following list: 

+ plus :sign 
minus: sign 
spaoe" blank 

period. deoimal:poin~ dot. LISP:dot. dot:operator 
, oomma 

= equaZs:sign 
( Zeft:parenthBsis 
) right:parBnthBsis 

quote. apostrophe 
# fenoe 
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• 

CQZon 

• semi:coZon . , 
+ Ze ft: arrOlA1 

t up:arrOlA1 

• asterisk 

< Zess:than:sign 

> greater: than: sign 

/ s'Lash 

\ reverse:sZash 

Out of identifiers we may make aore and more complicated 

units of symbolic data. 

An identifier is spelled in the same way (made up of the 

same signs on each occurrence.) 

Identifiers that are not spelled the same way have no necessary 

or intrinsic relation to each other. Thus, for example, as 

identifiers, ABC and ABCX are as unrelated as ABC and RQ. 

There are a number of ways to compose acceptable identifiers in LISP, so that 

we can name what we want to talk about. All these ways. however. are limited 

by the fact that we have to use the equivalent of a typewriter key not only 

to compose identifiers but also for all other signs in LISP. 

So there are rules for constructing identifiers. These are the rules (although 

these are not all the rules.)nevertheless, at the start they are a sufficient 

set. 

• 

A sequence of signs that satisfies the following three 

rules is an identifier. 
The only signs that may be in the sequence are Zettel's and 

Arabic nwneraZs. 

/~\ , , 

~.' 
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A spaae is not acceptable as a sign in an idQnt~;rier; thus THE is not 

acceptable, and the intended identifier must instead be written THE. 

The first sign of the sequence is a tetter. 

The sequence is not.broken up in any way, such as DY the 

insertion of spaaes or hyphens or punctuation marks or 

by printing or writing on two different lines. 

Under these rules we can see that the following are acceptable examples of 

identifiers: 

A 
ITEMl6 

T222 

XYZ 

ABC 
CHICAGO 

The following are not acceptable identifiers: 

LOS -ANGELES 

LOS ANGELES 

5ABC 

x Y Z 

The minus:sign or hyphen is not allowed in 

an identifier. 

The spaae prevents this sequence from being 

a single identifier. 
The first sign may not be a nume~Z. 

This is not one identifier. It could be 

considered ~s three identifiers. 

I_titwp. are uled in many ways in LISP. The most important use of an 

identifier is as a name for something. IdBntifiezts are used to name many 

different types of entities; Just how, is made clear in succeeding chapters. 
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2.3 ATOMS 

One of the e%pressions that is acceptable in LISP 2 is called ~~. 

The definition of atom is introduced gradually. At this point we can say: 

Every identifier is an atom. 

Intuitively, an atom in LISP is something like a word in language; an atom 

like a word, is made up of acceptable signs in acceptable ways, and it is 

treated as a basic unit of discourse. In this chapter, most examples of atoms 

are identifiers. In addition, any statement made in this chapter about atoms is 

true for all kinds. of atoms. 

2.4 S.EXPRESSIONS 

The most general type of datum in LISP 2 is the S-expression. The term is derived 

from "symbolic expression", but S-expression has a specific technical meaning. 

S-expressions are the most important kind of datum in LISP, and they are the 

main subject of this chapter. 

We can define S-expression quite simply in terms of atom and a mark which is 

called the LISP:dot and is written as a period with a space on each side. The 

following rules apply: 

Rule 1: Every atom is an S-expression. 

Rule 2: If x and y stand for S.e::cpressions ,then (x • y) is an S-e:cpression. 

In the expression (x • y) the period is called the dot:operator or the LISP:dot. 

This is an example of what is known to mathematicians as an inductive definition. 

The way in which it works is illustrated by the following example, in which we 

show that (M2 • (X • M2» is an S-expression. 

X is an identifier. Therefore. it is an atom. Therefore, 

by Rule 1 it is an S-e::cpression. 

c) 

• M2 is an S-e::cpressiob by the same reasoning. C 
• Since both X and M2 are S~e%pr-e88ion8. it follows by Rule 2 

that (X • M2) is an S-e::cpression. 
Since both M2 and (X • M2) are S-e::cpressions~ it follows by 

Rule 2 that (M2 • (X • M2» i; an S-e::cpression 
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One simple detail needs to be stressed here. The pePiod (.) is used in 

several different ways in LISP 2. When it is used as in Rule 2 above to combine 

S-exppessions, it is always written with a space before it, and a spaoe after it. 

Failure to do this may result in an incorrect S-~pession. 

Examples of S-exppessions: 
A 

(A • B) 

«A. B) • (e • D» 
(NEWYORK • (KANSASeITY • SANFRANeISeO» 
(A • (B • (e • D») 

«(A 0 B) • C) • D) 

The last two examples are different S-~~ssions because the paP8ntheses occur 

in a different pattern. 

Some examples of entities that are not S-~pessions follow, together with their 

explanation: 

A 0 B 
(A 0 B • C) 

(A • B» 

Problem Set 1: 

Without papentheses, this is not an S-B=ppession. 
If an S-ezppession is to contain three S-ezppessions 

with two dots, then two of the S-e=ppessions and 

the dot between them must be enclosed in another 

set of pa~entheses: thus. «A. B) • e) or 

(A • (B • e» are acceptable, 

The number of Ze!t:paPentheses must be equal to the 

number of ~ght:~entheses. 

Which of the follOWing are S-~~s8ions? 

a. UVW 

b. (A. B • C) 

c. (A. Be) 

d. «(A. B) 0 C) • E) • (F • (Go H») 
eo «A. B) • (c • D) 0 (E • F» 

fo «X»» 

Answers; See page 1~8 
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FUNCTIONS 

We may' have functions in algebra. so we may have functions in LISP. An 

example of a function in algebra and a function in LISP is subtraction. The 

operation of subtraction in algebra is such that given any two numbers A and B. a third 

number C is produced which is the result of subtracting B from A. The operation 

of any fUnotion in LISP is such that given one or more data Which are called the 

arguments of the fUnction, another datum is produced which is the result of the 

operation of the function on the arguments. This result is called the value of 

the function. 

In LISP the arguments and vaZue of a function may be numbers or atoms or 

S-ezpressions, etc., or any mixture of them. as for example a function which 

operates on an S-~ression and tells the number of atoms in that S-ezpression. 

It is a common convention in mathemaiics to write the arguments of a function 

with parentheses around the group of arguments and commas to separate them. 

Thus, we could write in LISP: 

DIFFERENCE (A. B) 

If the identifier DIFFERENCE had been appropriately defined, this would mean in 

LISP the result of A minus B. 

It is possib.le in LISP for a function to have no arguments. Suppose FN is such 

a function. Then the fact that FN has no arguments. may be indicated in LISP by 

writing nothing at all between the Zeft:parenthesis and the right:parenthesis, thus: 

FN ( ) 

2.6 QUOTE 

In LISP, when an S-~ztession is used as the argument of a function, it is 

preceded by a quote (an apostztophe). 

For example: 

FN (. A) The S-ezpztession A is the argument of FN. 
FN ('(C • R» The S-e3:pression (C • R) is the argument of FN. 

The reasons for this procedure are given in Chapter 5; here in Chapter 2, this 

procedure has no consequences that create difficulties. 

c 

C: 
---' 

c 
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THE FUNCTION CONS 

As was said earlier. if x and y stand for two S-expressions. then (x • y) 

is an S-ezpression. where the dot is the LISP:dot. CONS is a function 

of two arguments such that if its two argument~ are x and y, then its vatue is (x • y). 

For example: 

CONS ( 'A, 'B ) is (A • B) 

For another example: 

CONS('A, '(B. C» is (A • (B • C» 

Note that the outer pair of parentheses following CONS delimits the arguments 

of CONS, while the inner pair of parentheses are essential parts of the 

S-ezpr8ssion (B • C), the result of CONS operating on 'B and 'C. This 

example may be read aloud as follows: 

The value of CONS of quote A comma quote B dot C is A dot (pause) B dot C. 

Here are more examples of the operation of CONS: 

CONS('(A. B),'(ORANGE • VIOLET» is «A. B) • (ORANGE. VIOLET» 

CONS( 'Xl, CONS ( 'X2, CONS( 'X3, 'x4)}) is (Xl. (X2 • (X3 • x4») 

CONS(CONS(CONS('Xl,'X2),'X3),'X4) is «(Xl. X2) • X3) • x4) 

Problem Set 2: 

Evaluate each of these expressions. 

a. CONS('WINE, 'CHEESE) 

b. CONS('TUOLUMNE, CONS('SANJOAQUIN,'KINGS» 

c. CONS('(A. B),'(C • D» 

d. CONS(CONS( 'A, 'B). CONS ( 'C'D» 

e. CONS('(A. B), COD('C,'D» 

Answers: See pages 138, 139 



15 July 1966 14 TM-27l0/l0l/00(DRAFT} 

2.8 THE FUNCTIONS CAR AND CDR 

Whereas CONS is a funotion that puts S-e:t:pressions together. CAR (pronounced 

"car") and CDR (pronounced "could-er") are funotions that take apart S-e:&pressions 

(that are not atoms). Any S-e:t:pression is either an atom or not an atom. If 

z is an S-expression that is not an atom. it must be of the form (x • y) where 

x and yare S-e:t:pressions. 

By definition, CAR of z is x and CDR of Z is y. CAR and CDR are not defined 

when their arguments are atoms. 

For example: 

CAR(tA) is undefined 

CAR('{A. B» is A 

CAR('(A. (B • C)}) is A 

CDR('(A 8 (B • e))) is (B • c) 

CDR ( '( A • B» is B 

CAR(CDR{t(A. (B • C») is CAR('(B • C» which is B 

CAR(CDR('A • B») is CAR(tB) which is undefined 

CDR(CDR('(A • (B • C»» is CDR('(B • C» which is C 

The names CAR and CDR arose as mnemonics in the early development of LISP, and 

have continued in use because they are short and easy to say. because they are 

symmetrical, and because they easily form longer names of functions involving 

several CARs and CDRs in succession: For example. CAAR is a funotion meaning 

CAR of CAR of. CADR is a jUnotion meaning CAR of CDR of • and CDADR is a 

funotion meaning CDR of CDR of CAR of CDR of ,etc. CADR{'( A • (B • e») is 

eAR(CDR('(A. (B • C»».which is eAR('(B • C» which is B. Observe that in 

expressions using CADR or in e:t:pressions such as CAR(CDR('(A • (B • C»». the 

CDR or D operation is done before the CAR or A operation • 

. 
For example: 

CDAAR('«(W. X) • Y) • Z» means CDR(CAR(CAR('«(W • X) • y) • Z»» which 1s X. c 
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Problem Set 3: 
Evaluate each of thes'e 6Zpl'essions. (Some of them may be undefined.) 

a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

1. 

J. 
k. 

1. 

m. 

n. 

o. 

CAR( 'A) 
CDR ( , (A • B» 

CAR(CDR('(STRAVINSKY. (BARTOK. SIBELIUS»» 

CDR(CAR(CAR('«(HAT • TIE) • SHIRT) • JACKET»» 

CAR(CDR('«AQUITAINE • GASCONY) • ARAGON») 

CAR ( CONS ( 'A, 'B» 

CAR(CDR(CONS('(A • B), ,(C. D»» 

CONS(CAR('(A • B», CDR('(C • D») 

CONS(CAR('(A. B»,CAR('C • D») 

CONS(tA, CAR('(C • D») 

CADR( '(A • B» 

CADR('(SHRIMP • (LOBSTER. CRAB») 

CAAR(CONS(CONS('A.'B),'C» 

CDDR(CONS('A,'(B • C») 

CONS(CAAR('«A • B) • C», CONS('D, CDDR('(E • (F • G»») 

Answers: See pages 139, 140 

2.9 BOOLEANS AND PREDICATES 

A boo'Lean is a type of atom. There are exactly two boo'L6ans. namely TRUE and 

FALSE. They are very like "true" and "false" in ordinary language. Because 

booZeans are atoms, they are also S-6~r6ssions. However, they are not id6ntifi6l'S. 

A function in LISP 2 is called a pr6dicat6 if its values are always one or the 

other booZ6an. 

In programming, it is frequently necessary to choose between alternatives according 

to whether a given condition is true or false. The use of booZ6ans and p1'6dicates 
in this process is illustrated further on. 



15 July 1966 16 TM-27l0/l0l/00(DRAFT) 

The boolean FALSE is also expressed by either one of two other names: 

NIL 

( ) 

NIL is not an identifiep; it is another name for the boolean FALSE. FALSE, 

NIL and ( ) are absolutely equivalent names for the same booZ.ean; it is a 

matter of indifference which one is used at any time. 

2.10 LIST: NOTATION 

The notation for writing S-e:ppessions that has been introduced SO far is known 

as dOt:notation. It is 'not very convenient for representing symbolic data 

because of the larger number of dots and parentheses required. There is another 

notation called Z.ist:notation which allows one to write many S-e~pessiona more 

conveniently than in dOt:notation. 

It is important to understand that no new type of S-~ression is being 

introduced in this way: instead we h~ve a new way of writing S-e~pessions that 

have already been introduced. 

Given any S-e~pession in list:notation, it is always possible to write the 

same S-e~pession in dOt:notation. However. the converse is not always true. 

Definition: 

Given (xl x2 ••• Xn) where xl' x2 ••• are S-~PBssions. then this by 

definition is the same S-exppession as (Xl' (x2 •••• (xn • NIL) ••• ». The form 

(xl x2 •••• Xn) is called a list. 
f 
Examples: 

(A M D H) is the same as (A • (M • (D • (H • NIL»» 

(A B) i~ the same as (A • (B • NIL» 

(A) is the same as (A • NIL) 

( ) is the same as NIL 

•. 



o 

o 

0 

--------

15 July 1966 17 TM-2710/101/00(DRAFT) 

The list:notation (A B) and the dot:notation (A • (B • NIL) are equivalent names 

for exactly the same S-expression; either may be used. 

Lists may occur within lists to any desired depth. For example, 

«ABC) (DEF) (GHI» 

is a list of lists (to depth 2.) At each depth, the list stands for an 

expression using dot:notation according to the definition given above. 

For example, consider the S-expression «A B C) (D E F) (G H I». According 

to the rule: 

Then 

(A B C) is the same S-expression as (A (B (C NIL») 

(D E F) is the same S-expression as (D • (E • (F • NIL») 

(G H I) is the same S-expression as (G (H (I NIL») 

«A B C) (D E F) (G H I» can be written as: 

«A. (B • (C • NIL») (D • (E • (F • NIL») (G • (H • (I • NIL»» 

Here dot:notation and list:notation have been mixed, and this is acceptable 

also. To put this into pure dot:notation, we observe that it is of the form (x y z) and 

rewrite it in the form (x • (y • (z • NIL»). This gives us: 

«A. (B • (C • NIL») • «D. (E • (F • NIL») • «G. (H • (I • NIL») • NIL») 

List:notation. where it can be used, is obviously compact and convenient. 

Problem Set 4: 

Rewrite each of the following S-expressions using only dot:notation. 

a. (A) 

b. ( (A) ) 

c. (HE MADE THE STARS ALSO) 

d. ( () (A) (A A» 

e. (A (A) «A») 
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Rewrite each of the following S-expressionsusing ~iBt:notation as much 

as possible: 

f. «A. NIL) • «(B. NIL) • NIL) • NIL) 

g. «A. NIL). «B. NIL) • NIL» 

h. (A. B) 

i. ««A. NIL) • NIL) • NIL) • NIL) 

j • ( (X • NIL) • « NIL • Y) • NIL» 

Answers: See pages 140, 141 

There is another mixed notation that the programmer may never use. but which 

from time to time appears on computer output. An S-e~reBBion of the form 

(xl x2 ••• xn_l • xn) is. the same as the S-~preBsion (xl • (x2 '0' (Xn_l 0 Xn) 

• o. ». 

Example: 

(A B • C) is the same as (A • (B • C». 

The behavior of the funations CAR, CDR and CONS on Zists can always be determined 

by translating the arguments into dot:notation, evaluating, and then, if desired 

translating back into Zist:notation. 

Example: 

CDR ( , (A B C» 

CDR('(A. (B 0 (C. NIL»» is (B, (C. NIL» which can be 

written in Zist:notation as (B C). Therefore, CDR('(A B C» is (B C) . 

Problem Set 5: 

Evaluate each of these expresBions: 

a. CAR ( , (A B C» 

b. CADR ( , (A B C» 

c. CADDR ( , (A B C» 

d. CDR ( , (A Be) 

e. CDDR( • (A B C» 

f. CDDDR( • (A B C» 

·. 
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g. CAAR ( '( ABC) ) 

h. CONS ( 'A, ' (B C» 

i. CONS( 'A, CONS ( 'J?, '(C») 

j • CONS('A, CONS('B, CONS('C, NIL» ) 

k. CONS('(A B),'(C D» 

1. CONS(CONS('A, NIL), NIL) 

m. CDAR ( , ( (A B) (C D») 

Answers: See pages 141, 142 

2.11 THE PREDICATE EQUALS 

The prediaate EQUALS or = has the same meaning in LISP as it has in ordinary 

mathematics. For example, it is true that 'A = 'A, but it is not true that 

'A = tB. 

When evaluating an expression of the form x=y, the vatue is TRUE if x and yare 

the same S-expression and FALSE otherwise. Two S-e.zpress-tonB may be the same 

even if they do not look the same, because one is written in tist:notation and 

the other is written in dot:notation. In this case, the vatu6 of x=y is true. 

Examples: 

'(A B) = '(A B) is TRUE 

'(A)= '(A • NIL) is !RUE 

, (A • B) = '( A B) is FALSE 

CONS( 'A='A, 'B) is (TRUE. B) 

CONS('A, 'B='C} is (A • FALSE) or (A • NIL) or (A) 

Problem Set 6: 

Evaluate the following expressions. 

a. '(HELLO THERE BILL) = '(HELLO THERE JOE) 

b. FALSE=( ) 

c. NIL=( ) 

d. '(A (B • C}) = '( (A • B) • C) 

e • CAR ( , (A B» = CADR ( , (B A» 

f. CONS(CONS( '(A B), '(C D»,'A = 'B) 

Answers: See pages 142, 143 
-- ._._-----,., ...... ,.-------------
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2.12 The PREDICATE ATOM 

The pl'edicate ATOM has the vaZue TRUE is its al'gwnent is an atom, and the 

vaZue FALSE if its al'gument is not an atom. Remember that identifiel's. bool,eans. 

and other things not yet defined are atoms. 

Examples: 
ATOM{'A) is TRUE 

ATOM{ '(A • B» is FALSE 
ATOM( , (A» is FALSE 

ATOM('(» is TRUE (because () is FALSE which is a bool,ean) 

ATOM(CAR('(A B C») is ATOM('A) ~ich is TRUE 

Problem Set 7: 

Evaluate the following e:t:pl'essions. 

a. ATOM ( 'TUVWXYZ) 

b. ATOM('A) = ATOM('B) 

c. ATOM( CDR( 'A B»} 

d. ATOM( 'A = '(B C» 

e. ATOM(CAR (CONS(CAR('(A B)}, CDR('(C D»») 

Answers: See page 143 

2.13 THE FUNCTION LIST 

LIST is a function that has an indefinite number of al'guments. It may .have 
zero, one or more al'guments. 

Examples: 

LIST(xl , ••• Xn) has the same vaZue as CONS(xl , ••• CONS(xn, NIL) ••• ) 

LIST('A, 'B , 'C}has tbe same val,ue as CONS('A, CONS('B, CONS('C, NIL») 
which is (A B C) 

LIST('A) has the same vaZue as CONS('A, NIL) which is (A) 

LIST( ) is ( ) or NIL 

LIST{LIST (LIST('A»} is (((A») 

LIST('(A B), '(C D» is «A B) (G D» 

l! 
.\ 

; \ -eo ... ~ 

o 

c 
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Problem Set 8: 

Evaluate the following BXppessions; 

a. LIST( 'A, 'B, I (C D» 

b. CAR(LIST( 'A, 'B, 'C» 

c. CAR(LIST( '(A B C») 

d. ATOM(LIST( 'A» 

e. LIST( I A, 'B)=CONS( 'A, CONS ( 'B, NIL» 

Answers: See pages 143, 144 

2.14 TBB PREDICATE NULL 

The ppedioate NULL has the vaLue TRUE if its aPgument is the booLean FALSE and 

has the vaLue FALSE if its apgument is anything e18e. 

o Examples: 

o 

NULL(FALSE) is TRUE 

NULL«» is TRUE 

NULL(NIL) is TRUE 

NULL(TRUE) is FALSE 

NULL('A) is FALSE 

NULL('«(A B C» (D») is FALSE 

NULL(CDDR('A B») is TRUE 

Problem Set 9: 

Evaluate the following ezppessions. 

a. NULL(CADDR('(A (B C) D») 

b. CONS(' A ,NULL ( 'A) ) 

c. NULL(LIST () ) 

d. NULL(CDR(LIST 'A») 

Answers: See page 144 
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CHAPTER 3 

SOME ILLUSTRATIONS OF PROGRAMMING IN LISP 2 

This chapter contains several LISP 2 pPOgrams--miniature. but complete 

The text explains how the programs are organized and the results they produce. 

It should be possible to understand the sense o~ these illustrative programs, 

even though not enough in~ormation has yet been given for the reader to write 

a program himself. 

3.1 A PROGRAM TO SOLVE QUADRATIC EQUATIONS 

We shall write a program in LISP 2 that solves quadratic equations of the form 

ax2 + bx + c = 0 

To use this program on any occasion, you need tb type in the name of the program 

(suppose we call it QUADSOLVE) and the numbers a, b, and c. If the equation 

has real roots, the program replies by typing out the numbers that are the 

solutions for xi otherwise it types out the report COMPLEX. 

The program that we shall express in LISP 2 can be summarized by the following 

algorithm in English: 

Stet) 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 
Step 6. 

Compute b2 _ 4ac, and call it w. 

If w is negative, then type out the word COMPLEX and 

halt; otherwise go to step 3. 

Compute (-b+IW)/2a and print the value 

Compute (-b-IW)/2a and print the value •. 

Type out the phrase PROBLEM SOLVED. 

Halt. 

Let us suppose that you are working at a time-shared computer ~aeility. and that 

you have just called LISP 2. The computer now waits for you to type something. 

First, you type the following funotion:definition of the LISP 2 funotion 

QUADSOLVE, which solves quadratic equations using the algorithm just stated: 

. / 
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FUNCTION QUADSOLVE(A,B,C) BEGIN REAL Wi 

V+-B+2.4*A*C; 

IF W <.0 THEN RETURN 'COMPLEX'; 

PRINT ( (-B+SQRT(W) )/(2*A»; 

PRINT«-B.SQRT(W»/(2*A»; 

RETURN 'PROBLEM SOLVED'; 

END; 

TM .. 2710/l0l/00(DRAFT) 

When these lines have been typed, the waiting LISP 2 computer system has 

absorbed the function:definition of the funotion QUADSOLVE. You may then 

call QUADSOLVE and use it. 

For example, suppose you desire to solve the particular quadratic equation 

2 3x +3x+4=o. You type: 

QUADSOLVE (3,3,4); 

2 This requests the solutions of 3x +3x+4=o. There are no real solutions to 

this equation; therefore the program prints out: 

COMPLEX 

LISP 2 is then ready for your next example, which might be: 

QUADSOLVE(3,7,4); 

This does have solutions, and the progPam replies: 

-1.0 

-0.75 

PROBLEM SOLVED 

Let us now comment on the components of jUnotion:definition and explain their 

meaning. 
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Component 

FUNCTION 

QUADSOLVE 

(A,B.C) 

BEGIN ••• END 

REAL W 

W+Bt2-4*A*C 

24 ~-27l0/10l/00{DRAFT) 

Meaning 

This informs the LISP 2 system that a. function:definition 

is being presented. 

This is the name of the function being defined. AnY' name. 

of course. can be chosen that has not already been given a 

meaning in the LISP 2 system. 

This is a Zist of the names of the arsumentR or th~ 
argument:parameters of QUADSOLVE. It specifies that 

QUADSOLVE has three arguments~ and that they are called 

A. Band C.respectivelY" They could. of course, have 

been called M, N, and P or any other names, but then these 

other names would have. to be used consistently throughout 

the rest of the tunotion:definition. 
These t~~ words along with whatever goes between 

them constitute the main part of the funotion:definition. 
It is called the body. The main entities inside the body 
are either decZarations or statements. TheY' are separated 

by semi:ooZons. 
W is called an internaZ:parameter. REAL W is a 

deoZaration that says that the vaZues for Ware 

real numbers in the mathematical sense. and floating­

point numbers in the computer sense. 

This is an assignment:statement. It saY's that W is 

assigned the lIa~ue of B2_4AC. The Zeft:arrow means "is 

assigned the vaZue of". The up-arro1J mea.s "raised to the 

the power •••• ". Bt2 means B2. The asterisk means 

"multiplied by". 4*A*C means 4AC. Although no mathematical 

parentheses appear around Bt2.4*A*C. the Zeft:arrow implies 

these parentheses. 

o 
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IF W<O THEN RETURN NCOMPLEXN 

This is a conditionaZ:statement. The Zess:than:sign 
«) is used to say that if W is less than 0, then 

the computation is complete and the vaZue of the 

function QUADSOLVE is the word COMPLEX. The word 

RETURN means "this is the end of the computation of 

this function, and the'I)«Zue of the function is what 

follows." NCOMPLEXN consisting of the word COMPLEX 

inside two fences (N) is called a stping. A stping 

is basically a sequence of characters handled as a 

constant unit and not having any other meaning in 

the LISP 2 system. 

PRINT((.B+SQRT(W»/(2*A» 

This is another statement. It says "print out the 

vaZue ,of the ezppession (-B+rw) /2A". SQRT is a function 
in the LISP 2 system that gives square root. 

RETUR!( #PROBLEM SOLVEDH #PROBLEM SOLVED# is another stping that is returned 

as PROBLEM SOLVED by the computation as a result. 

END. END indicates the end of the body. When the semi:coZon 
following END is typed, the entire function:definition 
is absorbed by the LISP 2 system. 

These comments are not intended as complete explanations. They serve only as 

a very brief illustration of a LISP 2 7)X'Ogpam • 

This illustrative progpam, if it had been written in any of several other 

algebraic compiler languages, would have looked quite similar. But the next 

examples of progpams illustrate programming techniques peculiar to LISP 2. 
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Po PROGRAM TO COMPUTE THE FACTORIAL OFA NUMBER 

Mathematically, the factorial of a positive integer is the product of all the 

integers starting from 1, and up to and including the given integer. The 

factorial of 0 is 1 by definition. The factorial of a negative integer is 

undefined. The factorial of n is usually written in mathematics as nl, 

the exclamation point being read as "factorial." For example, 

61 = 6 x 5 x 4 x 3 x 2 x 1, which is 120. 

The following funotion:definition expresses FACTORIAL in LISP 2: 

FUNCTION FACTORIAL(N) BEGIN INTEGER K,L. 

K + O. 
L + 1; 

A: IF K = N THEN RETURN L; 

K + K+l. 

L + L*K. 
GO A; 
END; 

There are some new features in this program, and they may be briefly explained: 

Component 

INTEGER K,L 

A: 

GOA 

Meaning 

This is a deoZaPation. It says that K and Lare 

intepnaZ:pa~etep8 ana that their vaZues are 

integer8. 

This is a ZabeZ. It labels the 8tatement followi~ as 

being the 8tatement named A. 

This is a gO:8tatement. It causes the program to 

continue by jumping to 8tatement A and proceeding 

from there. 

We shall now give an alternative definition for the fUnction FACTORIAL. 

This alternative uses a fundamental concept of LISP 2 called recursion. 

Consider the following definition of factorial in English: "The factorial 

of 0 is 1; the factorial of any positive integer is that in~eger times the 

factorial of the next smaller integer." 

c 

o 

c 
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This definition is not a circular definition; it is a recursive:definition 

because factorial for one argument is defined in terms of factorial for 

another argument, and the entire sequence of arguments comes to an end. For 

example, if we want to know what 5! is, the definition tells us that it i8 5 

times 41, and additional uses of the definition tell us what other factorials 

are. The apparent circularity ends when the last case is resolved. For 

example: 

51 = 5 x 41 

= 5 x 4 x 3! 

= 5 x 4 x 3 x 2! 

= 5 x 4 x 3 x 2 x l! 

= 5 x 4 x 3 x 2 x 1 x 01 

= 5 x 4 x 3 x 2 x 1 x 1 

= 120 

This way of defining factorial in English suggests a LISP funotion:definition program 
for FACTORIAL that is also recursive. It is written as follows: 

FUNCTION FACTORIAL(N) IF N=O THEN 1 ELSE N*FACTORIAL (N-l)i 

Like most recursive:definitions, it is both extremely compact and powerful. 

It is equivalent to the previous LISP 2 funotion:definition in the sense that 

it always gives the same answer. 

Having given this funotion:definition, we m~ type: 

FACTORIAL(7)/(FACTORIAL(5)*FACTORIAL(7-5»; 

and the program replies: 

21 

which is correct, since 71 divided by 51 times 2! equals 21 

The ability to create recursive:definitions .1.S a skill that can be developed by o practlce. Recursive:definitions are a very powerful feature of LISP programming; 

therefore,the examples in this Primer emphasizes them. 
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A PROGRAM TO DETERMINE MEMBERSHIP IN A LIST 

The following example processes symbolic data, whereas the previous ones 

processed numbers. We shall use as an example a function related to Zists: 

the function MEllBER. An element is a member of a Hst if and only if that 

element is present in the list. This function has two arguments, which are 

an element and a Hst •.. It is a predicate because its only vaZues are TRUE 

and FALSE. If the element is a member of the Hst, then the vaZue of MEMBER 

is TRUE, otherwise the vaLue of MEMBER is FALSE. 

FUliCTIOlI MEMBER (E ,L) 

IF NULL (L) THEN FALSE 

ELSE IF E=CAR (L) THEN TRUE 

ELSE MEMBER (E,CDR(L»; 

Let us trace through this fUnction:definition step by step: 

The word FUNCTION means that we are defining a function 

The name of the function is MEMBER. 

The two variab 1,es of which MEMBER isa function are E 

(which stands for an element) and L (which stands for a List). 

IF NULL (L) means "if L is empty," 

THEN. FALSE means "the function has the value FALSE for this case. It 

IF EaCAR(L) means "if the element E is the first element of the Hst 

L", 
THEN TRUE means "the function has the value TRUE in this case~" 

ELSE MEMBER (E, CDR(L)) means "in other cases, discard the first 

from the Zist L and apply the same definition over again 

to the rest of the Zist L." 

For example, consider MEMBER ('A, '(A B C». In this case the second if:cZause 

produces true, and so MEMBER has the value TRUE. 

For another example. consider MEMBER (fB, t (A B cD. In this case, the first 

c' 

time through, with L set at (A B C), we obtain no decision, and so we go through C' 
a second time with L set at (B C). This time we do obtain a decision,.true, because 

B = CARt(B C». 

Further examples of function definitions and programs using LISP 2 are given in 

subsequent places in this Primer. 
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CHAPTER. 4 

ARITHMETICAL:EXPRESSIONS 

An expPB88ion can be roughly explained by saying that it is something that 

can be evaluated to yield a va7;ue • For example, 3+4 is an 8ZpPB88i.on; the 

vaZue it yields is 7. However, -A(X/» { is not an ~pe88ion because it 

is simply a collection of signs that has not been defined to have a meaning. 

Also. GO A is not an e~pession. because even though it causes something to 

happen. it nevertheless does not yield a vaZue. 

In fact. GO A is called a statement. In a later 

chapter, the concepts of expP6s8ion and statement are further explained and 

clarified. The distinction between the two concepts is essential. 

Another example of an e~res8ion is A+3. This ezpres8ion may be evaluated 

and yields a vaZue; however, the vaZue is dependent on the meaning given to A 

by lome particular context. Outside of a particular context there i8 no 

reason to give any particular vaZue to A. The nature of the context that 

i gives meaning to A is discussed later, but some idea of its nature may be 

o 

gained by studying the examples in this chapter. 

NUMBERS 

A number is an e~ression. It is an e~res8ion because it can be evaluated. 

and the vaZue it yields is itself. 

Several different types of numbers are used in LISP 2. The two most important 

types, integers and reaZ:numbers are described here. 

4.2 INTEGERS 
An integer, sometimes called a ~hoZe:number, is a numbep with no fractional 

part. It may be positive, negative or zero. 
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In LISP 2 an integep may be: 

Examples: 

(1) A sequence of one or more of the nume~t8 o through 9. or 

(2) A ptu8:8i~ (+) followed by a sequence of nume~t8 as 

in (1) above, or 

(3) A minu8:8ign (.) followed by a sequence of numel'at8 as in (1) 

above. 

(4) The same as in (1). (2) or (3) above. followed by the 

Zettel' E followed by a sequence of one or more 

numeraZs. 

5 

+37 
... 0 

299 

-80 

007 

lE9 (lxlO9) 

... 7E3 (_7xl03) 

3E4 (3X104) 

30E3 (30xl03) 

+3E4 ( 3X104) 

30000 (3X104) 

The last 4 examples are all equivalent. 

Examples that are incorrect in LISP 2: 

E2 An integel' must have at least one num.e~t that is not 

to the right of the E. (E2 is an identifiel'.) 

2E+6 In the case of an intege~. a 8ign is not permitted to 

the right of the Zettel' E. 

lE1El 

6E 

Only one E is permitted. 

The E must be followed by at least one nume1'aZ. c 
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In LISP 2 there is a limitation on the maximum size of an integer (whether 

positive or negative). This limitation depends on the computer being used. 

An integer with a pLus:sign is equivalent to the same number without a sign. 

Thus, 3, +3, and 003 are all equivalent. 

In LISP 2 an integer that ends in several zeros can be written using a more 

abbreviated notation using the Letter E to indicate an exponent. For example, 

-720000000 can be more conveniently written as -72E7, meaning -72 times 107 • 

4.3 REAL: NUMBERS 

In LISP 2, reaL:numbers differ from integers in several ways. Reat:numbers 

may have fractional parts (for example, 1.75); they may often be extremely 

large as compared with manageable integers (for example, 2.5E22); they may be 

(-~) very small (for example, .000000098). ,_/ 

o 

The definition of a reaL:number is a little more complicated than the definition 

of an integer. It is worth noting that integers never have deoimaL:points 

while reaL:numbers always have deoimaL:points. 

A reaZ:number has three parts of which the first and third are optional: 

Part 1 consists of a pLus:sign (+) or a minus:sign{-). This part 

may be omitted. 

Part 2 consists of several numeraLs, followed by a deoim~Z!point. 

followed by several numeraLs. There may be no numerats to the left 

of the deoimaL:point or there may be no numeraLs to the right of the 

deoimaZ:point, but not both of these conditions may be true at once. 

In other words, there must be at least one numeraL either to the 

left or the right of the deoimaZ:point. 
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• Part 3 consists of the l,etup E followed by an integel' that does 

not contain the tettep E itself. The integep may have a pl,us:sign 

or a minus:sign. This part may be omitted. 

The Zettel' E followed by an integep k means that the preceding numbep is to 

be multiplied by 10 raised to the kth power. For example, .05E3 means .05 

multiplied by 103, which is 50.0; and 1.E-6 means 1. times 10-6, which is 

.000001. 

Examples: 

2.87 

2.87E-3 

.03E4 

30.E4 

30.+E4 

Examples that are incorrect in LISP 2 are: 

4.4 

.El 

3 

2E3 

3.2El.5 

There must be a numeral, on one side or the 

other of the deaimal,:point 

There must be a deaimaZ:point 

There must be a deaimal,:point to the left of the E 

Bo deoimaZ:point is permitted to the right of E 

ARITHMETIC: OPERATORS 

Certain maPks in LISP 2 are combined to form aPithmetia:opepatops that stand 

for familiar operations often performed on numbers. Some of these 

apithmetia:ope~toPB are: 

Apithmetia:opepatop 

+ 

• 
/ 
-: 

Meaning 

Addition or plus 

subtraction or minus 

multiplication or times 

division or divided by c== 
integer division (example: 14-:3 equals 4) 
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\ integer remainder (example: 14\3 equals 2) 

+ exponentiation (example: 5 + 3 equals 125) 

These arithmetia:operators permit us to form more arithmetia:eXDressions. 

Rule A for Forming Arithmetia:Expre8sions: 

Let x and y be arithmetia:e~ressions. Then each of the following is also 

an arithmetia:expression: 

+x plus x 

x+y x plus Y 

-x minus x 

x-y x minus y 

x*y x times y 

x/y x divided by y 

x-:y the result of inte~er division of x by Y 

x \ y the result of integer remainder of x by y 

Jety x to the power y 

(x) meaning the same as x but grouped by parentheses 

This rule is recursive. Accordin~ to this rule, each of the followin~ examples 

is an arithmetia:expression. If you do not understand why this is so, please refer 

to the discussion of reauFSive:definitions in paragraph 2.4. 

Examples of arithmetia:expressions: 

35 

2.7E4 

---2 

x*y 
12-:A 

A+B*C 

(A+B)*C 

( A+B*C) 
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A/A/A/3 
A 
A+5 

u-v 
5/3 
A+2.0 

A+(B*C) 

«A+B) )*' «C») 

«(2») 
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The meaning of some of these expressions may not be clear until the end of 

this chapter. 

In LISP 2, arithmetio:expressions may contain a mixture of integers and 

rea'L:nwnbers. It is not necessary to keep them separated in any way. The 

following rules determine what happens in various cases. 

Rule 1: When the operations of addition (+), subtraction (-), 

negation (also -), and multiplication (*) are performed, the value 

is an integer if all of the arguments are integers. The value is a 

rea'L:number, if at least one argument is a rea'L:number. 

Examples: 

2+3 is 5 
2+3.0 is 5.0 
lE2 + 3 is 103 

1.5*1.5 is 2.25 
1.E2-2.E-2 is 99.98 

Rule 2: When the operation of division (I) is performed, the value is 

always rea'L. The division is carried out to the limitation of the 

accuracy of the computer on which it is performed. 

c 
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Examples I 

1/3 is .3333333333 

6/3 is 2.0 

5.0/2 is 2.5 

2.5/2.5 is 1.0 

(exactly how many 3's occur depends 

on the capacity of the computer) 

Rule 3: When integer division (-:) and integer remainder (\) are performed, 

the result is always an integer. 

The integer quotient is defined as being the integral number of times 

that the divisor goes into the dividend. This may be a positive or negative 

integer or zero. 

The remainder is what is left over after this process has been performed. 

The remainder always has the same sign as the dividend. 

These de~initions have been chosen so that the following identity holds 

exactly: 

dividend = (divisor * quotient) + remainder 

I~ either argument o~ an expression containing an integer division or 

integer remainder operator is a real:number, th~ argument is converted to an 

integer by the process of rounding to the nearest integer (see below). The 

rounding happens before the operation -: or \ is performed. This procedure 

sometimes has peculiar consequences. For example, 3.4-:1.7 is the same as 3-:2 which 

is 1. while of course 3.4/1.7 is 2.0 

Examples: 

5-:2 is 2 

5\2 is 1 

-5-:-2 is 2 

-5\-2 is -1 

-5-: 2 is -2 
5\2 is -1 

5-: -2 is -2 

5\-2 is 1 

5.0-:2.0 is 2 

5.0\2.0 is 1 
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3.4-: 1.7 is 1 

3.4\1.7 is 1 

Rule 4: If x and y are two ~p~e88ion8. then x t y is x raised to the exponent y. 

Examples: 
2 t 3 is 8 

3 t 2 is 9 

If x. y. and z are three exp~e88ion8. then x t y t z is s t (y t z). 

Examples: 
2 t 3 t 2 is 2 t (3 t 2). which is 2 t 9, which is 512 

(2 + 3) t 2 is 8 + 2, which is 64 

What about the type of the result, and special cases invOlving zero? The 

specifications are shown in Table 1. Here Ii is any numbe~, i is an integer, 

and r is a real:nwnbe~. 

Case Subcase -
a t i i > 0 

a t i i = 0, a ; 0 
a t i i = 0, a = 0 
at i i < 0, a ; 0 
a t i i < 0, a = 0 
a t r a > 0 
at r 

a • 0, r > 0 
at r 

a • 0 , r s 0 
at r a < 0 

Examples: 

10 t 7 
10 + 30 

is 10000000 

is lE30 

o t 0 is undefined 

o t 1.37 is 0 

Table 1 

Type and Remarks 

same type as a; if the result 

(or small), it is expressed as 

1, of the same type as a 

undefined 

of type real 

undefined 

exp (r log a), of type real e 
0.0, of type real 

undefined 

always undefined 

1 6 is e2.5 loge 13.76 3.7 t 2.5 

is too big 

a rea 1.:number 

o 
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-4 + 2 is 16 
14 t 2.0 is undefined 

8 t o is 1 
8.0 t o is eO, is 1.0 

Probl_ set 10: 

Evaluate each of these aFithmetio:e:pPBssions using the following table 

to deter,mine the vaZues of the vaFiabZes occurring in the ezppessions 

a. 

b. 

c. 

d. 
e. 

f. 

g. 

VaPiabZe 

A-l 

A+B 

BtA 

C-:D 
c/D 

A*C 

D-:l.O 

A 

B 

C 

D 

Answers: See page 145 

4.5 PRECEDENCE 

Value 

2 

-3.0 

-5 
7.5 

The fact that many aFithmetic:~essions are recursive (see Section 4.4) 

sometimes makes their meaning ambiguous. For example, consider A + B * C. How 

is this to be evaluated? Suppose that A is 2, B is 3 and C is 4. If we take the 

e:ppession to mean (A + B) * C, then the ~ppess'on becomes (2+3) * 4, which 

equals 20. If we take the e:ppession to mean A + (B • C), then the e:r:pNssion 

becomes 2 + (3 * 4). which equals 14. In a programming language this kind of o aabiguity is intolerable; to remove it we use a set of coaventions called the 

rules of precedence. 
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Precedence rules are dependent upon the operators used in the expre88ion~ If 

an operator appears interspersed between its operands, it is called an 

infi%:ope1'ator. If the operator precedes its operands. it is called a 

We can state many of the rules of precedence quite simply using Table 2 and 

some additional statements. 

Rank or Precedence 

6 

5 

4 

3 

2 

1 

Table 2 

PN[i% and Inti%:9perato!'8 

CAR, CDR 

arithmetie:operato1's within 
. t * e;cpr>e881-onB. " • +. -

equals (=), Ze88:than «). 
gNater:than (». 
not:equaZ (/=), 

'Les8:than:or:equaZ «=). 
greater:than:or:equa'L (>=) 

ATOM, NULL 

the booZean:opemtors, 
AND. OR, NOT. etc. 

the infi%:opemtor for CONS 
which is spaee dot spaee 

For More Details, See 

Section 5.3 
Section 4.4 

Section 5.4 

Section 5.1 
Chapter 8 

Section 5.3 

o 
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All operators of higher rank according to this table take precedence over 

opePators of lower rank. For example, CAR A + B means (CAR A) + B since 

CAR (rank 6) has higher rank than plus (rank 5). But A • B + C means 

CONS (A. B+C) since plus (rank 5) takes precedence over the dot for CONS 

(rank 1). 

Within rank 5, the rules of precedence are as follows: 

Rank or Precedence 

3 

2 

1 

Table 3 

FUnations and OpePators 

t (raising to an exponent) 

* (times), / (divided by), -: 
( integer-divide) , \ (remainder) 

+ (plus), - (minus) 

o In a case of equal rank, operations are regularly grouped in sequence from 

left to right: 

o 

For example: 

(1) A + B - C + D means «A + B) - C) + D (and does not mean 

(A + B) - (C+D). for example) 

(2) A/B/C/D means «A/B)/C)/D 

The one exception is that raising to an exponent (t) is grouped from right 

to left. Thus AtBtCtD means At(Bt(CtD». 

More information on precedence is explained in later chapters, but there is 

a simple and universal rule that can always be followed: When in doubt, 

put in enough parentheses to be unambiguous. 
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Problem Set 11: 

Examine each e~resBion. (1) Insert parentheses and produce an equivalent 

expression which if there were no precedence rules would be completely 

unambiguous. (2) Evaluate this expression using the table to determine 

the vaZues of the variabZes occurring within the erpression. 

Answers: 

a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

j. 

k. 

1. 

m. 

A-3*C 

(A .. 3)*C 

A-(3*C) 

Dtet A 

A+B*C+D 

A*B+C*D 

-D+A 

-(D+A) 

-D-A 

6/3/2 

6/(3/2) 

6/(3*2) 

6/3*2 

Variab1..e 

A 

B 

C 

D 

See pages 146. 147 

Va1..ue 

5 

2.5 

1 

-6 

C: 
/ 
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4.6 ARITHMETIO FUNCTIONS 

Certain operations on numbeps are written in the form '''funation,- (cwgument. aPgument • 

••• • aPgument) " rather than expressinp: the function as an infi:c:operatop or 

ppefi:c:operatop. Note that the 2rguments are grouped using parentheses and commas 

If there are no argumsnts, then it is correct to write fn(). If there are one 

or more a,rtguments, then there will be one less comma ( ,), than there are aPguments. 
The ellipsis ( ••• ) is not part of the LISP 2 language. It is merely a device used 

in this text for designating a Zist of indefinite length. 

Examples: 

COS(A-3) 

MAX(A,B,C) 

ABS(X)*w 

ROUND(M) 

The following is a partial catalogue of arithmetic:functions available in LISP 2: 

f,unation 

ABS{X) 

SIGN(X) 

Number of Arguments 

1 

1 

indefinite 

Description 

The absolute value of X is -X if X 
is negative, and X otherwise. The 

type (integep or peaZ) of ABS(X) is 
the same as the type of X. 

The arithmetic sign of X is 1 if X is 
positive, 0 if X is zero (any zero 
including -0), and -1 if X is negative. 

The maximum of the Xi 1s the largest·· 
~st positive) value. If at least 
one argument of MAX is peaZ, then the 
value is peaZ. (e.g., MAX(2.0,5) is 
5.0) 

_._ ........ ----
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ROUND(X) 

ENTlER(X) 

SQ,RT(X) 

1 

1 

1 
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The minimum of the Xi is the smallest (mo~t 

negative) value. If at least one aflgwnent 

of MIN is reaZ, the vaZue is real. 

X is rounded to the nearest integefl by the 

formula: ROUND(X) = ENTlER (X + .5). 

The entier of X is the largest integefl that 

is not greater than X. For example, ENTlER 

(2.7) is 2. ENTIER(-2.7) is -3. 

If X is not negative, then the square root 

of X is its non-negative root. If X is 

negative, then SQRT(X) is not defined. The 

value of SQRT is always fleal. 

Other aflithmetie:functions are EXP, LOG, SIN, COS, and ARCTAN. 

Problem Set 12: 

Evaluate the following ezpzoessions using the table to determine the values of the 

variab le s • 

VafliabZe Value 

A 2 

B 3.0 

C 4 

D ... o.oE6 

E -1 

F 2.5 

a. ABS(A) 

b. ABS(E) 

c. SIGN(-B) 

d. SlGN(D) 

e. MAX(A,-B) 

c 



~~~------------------

0 
15 July 1966 43 TM-2710/101/00(DRAFT) 

f. MAX(A.-C) 
g. MIN(A.E) 

h. ROUND(F) 

i. ENTIER(F) 

J. ROUND{-F) 
k. ENTIER(-F) 

1. SQRT(C) 

m. SQRT(E) 

n. ABS(A)+ABS(B)*ABS(C) 

o. -ROUND(E)-ROUND{D) 
p. ROUND (-F + .3) 

Answers: See pages 147, 148 149 

(-----.. 
U 

o 



15 July 1966 44 TM-2710/101/00(DRAFT) 

CHAPrER 5. SIMPLE: EXPRESSIONS 

5.1 NUMBERS AS A'IONS 

In Chapter 2 we stated the rule that identifiers and booZeans are atoms. We 

now wish to extend this rule by stating that integers and reaZ:numbers are also 

atoms. As a result, numbers may occur within S-e:x:pressions in Various ways •. 

Examples of Atoms: 

ABC (an identifier) 

TRUE (8. booZean) 

2.5E6 (a reaZ:number) 

-50 (an integer) 

Examples of S-e:x:pressions: 

2.5 

(A (6 TRUE) 7.2) 

(A 6 B) 

(y , 2.6) 

(3.4) 

(3 . 4) 

The last two examples are not equivalent. The s_e:x:pression (3.4) is a List of 

one element consisting of the reaZ:number 3.4 (three, deoimaZ:point, four); 

whereas (3 . 4) is the CONS value of 3 and 4. 

The predioate ATOM is TRUE if its argument is any type of atom. There are other 

predioates that can be used to distinguish the different types of atoms. 

IDP(X) is TRUE if and only if X is an identifier. 

BOOLP(X) is TRUE if and only if X if a booZean. 

NUMBP(X) is TRUE if and only if X is a number; intBgers and reaZ:numbers 

are both numbers. 

c; 
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INTP(X) if TRUE if and only if X is an intege~. 

REALP(X) is TRUE if and only if X is a ~eat:numbe~. 

Problem Set ·13. Evaluate the following_e:I:P~e88ion8. 

a. CAR(' (A B C» 

b. CADR( 1(4 5 6» 

c. CDR( 1(1 2» 

d. ArroM(500) 

e. REALP(7) 

f. REALP(CAR('(3.54.5») 

g. CAR(' (1.1» 

h. CAR('(l • 1» 

1- ATOM( I (7» 

j. NUMBP(CAR('(7») 

k. CONS( '(1 2) ,·(3 4» 

Answers: See page 150 

5.2 CONSTANTS AND VARIABLES 

TM.2710/101/00{DRAFT) 

A datum is an S-e:::pres8ion. Thus a nwnbe~ is a datum. because numbers are atoms, 

which are in turn S-ezp~essions. We refer to a p~gz'tZ11I in a computer language 

such as LISP 2 as "data processor." A LISP 2 pl'Ogztam performs various· operations 

(processes) on its data. which are nwnbe~s, identifie~s, composite S-e:Dp~es8i.ons, etc. 

A constant is a datum occuring within a p~g~. It stands for itself as distinct 

from a va~iab'Le, which stands for something else. For example, in the e%p%'ession 

X+3, X is av~iab'Le which must stand for some numbB~ in order for addition to be 

performed, but 3 is a constant. It only means the nwnbe~ 3, because numbe~sare 

never used in LISP 2 as variab'Les; instead, idSntifie~s are used as variabZes. 
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Now what do we do if an identifie~ is to be used as a oonstant? To overcome 

this problem, we use a convention: we put an apostpophe (or single quote mark) 

in front of the identifier, and then the identifier refers to itself and not to 

something else. This mark is called quote, and the operation is called quoting. 

For example, the identifier ANSWER refers to some variable which supposedly is 

the answer to some problem; but if we want the word ANSWER itself written in 

part of the printout of a solution, then when we issue that instruction, we put 

a quote mark in front, and write 'ANSWER. Then this actual word itself is printed 

where instructed. In the same way, 'A means the atom A itself; but A with no 

quote mark is an identifier which is a variable referring to something else. 

For another example, in the expression: 

CONS (A,'A) 

the first A is a variable that may stand for any S-expression, while the second 

A is a constant, and means A itself. 

The following rule specifies when an apostrophe (I) should be used to make a 

constant. 

Definition: A constant is either 

(1) an apostrophe (') followed by any S-expression, or 

(2) a boo 'Lean, or 

(3) a number. 

Since a number is an S-expression, this rule tells us that '3 is a constant. 

But 3 is also a constant (without the apostrophe). Thus, the apostrophe is 

permitted but not required for numbers and boo 'Leans and it is generally omitted. 

The apostrophe is required whenever an identifier or a non-atomic S-expression is 

used as a constant. 

CI 
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Problem Set 14 

Evaluate each of the following ~~e88ion8, using the table to determine the vaZues 

of the v~iabZes occurring in the e:p~e88ion8. 

Va~iabZe VaZue 

A X 

B NIL 

C 3.5 

D (A 4) 

E A 

a. CONS(A,B) 

b. CONS ( 'A,B) 

c. CONS(E,'B) 

d. CDR (D) 

e. C+CADR(D) 

f. SQRT(CADR(D» 

g. CONS(E,C) 

h. CONS(C,B) 

i. C+2 

Answers: See pages 151, 152 

LISP OPERATORS 

CAR, CDR and their compositions (such as CDAR, CADADR, etc.) ~ be used as 

p~efi=:operato~8 without the need to enclose their a~guments in parentheses. 

Their precedence is highest. So the following examples should be clear. 
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Examples: 

CAR A 

CADRB+C 

CONS(CAR A, CAR B) 

48 

means 

means 

and not 

means 

TM-2710/101/00(DRAFT) 

CAR(A) 

CADR(B) + C 

CADR(B + C) 

CONS(CAR(A), CAR(B» 

The infix:operator spaae dot spaae means CONS. It has a precedence which is 

lower than the precedence of any other operator; and if two or more CONS dots 

occur together, they are grouped from right to left. 

Examples~ 

A • B means CONS(A, B) 

A • B • C means CONS(A, CONS(B, C) ) 

and not CONS(CONS(A, B), C) 

CAR A • CDR B means CONS(CAR(A), CDR(B» 

and not CAR (CONS (A, CDR(B») 

A+B • C means CONS (A+B, C) 

and not A+CONS(B" C) 

Problem Set 15. 

Rewrite each expression adding enough parentheses to determine the correct 

grouping. Then evaluate them using the table to determine the values of the 

variables. 

VariabZe Val-ue 

W 4 

X (A B) 

y ro 

'" 
Z (2) 

(~ 
\._/ 

C -' 
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a. W • NIL 

b. Y • X 

c. W*3 • CAR Z 

d. CAR Z+2 

e. CAR X • CDR Z 

f. Y • NIL 

g. 'Y • NIL 

Answers: See page 152 

5.4 EOOLEAN:EXPRESSIONS 

As stated earlier, a predicate is a function whose value is TRUE or FALSE. 

o Using ppetlicateswe can form an ~ression whose vaZue is TRUE or FALSE. These 

are called booZean:e~ressions. 

o 

The predicates introduced in Chapter 2 were ATOM and = (meaning equal). Also, 

the predicates IDP, BOOLP, HUMBP, INTP, andREALP have also been defined. There 

is another set of basic predicates known as the arithmetic:r6Lation:ope~tors. 

Each of these is an inf~:ope~tor. 

Operator Meaning 

= is equal to 

/= is not equal to 

< is less than 

is less than or equal to 

> is greater than 

is greater than or equal to 
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The reason that the opel'atol' = is here listed again is that when it was first 

mentioned, it was defined only for atoms, not al'ithmetio:e:cpl'BssioruJ • 

Equality (=) may be used to test any two data and is TRUE if they are equal; and 

FALSE, otherwise. If a l'eal:nwnbel' and an integer are numerically equal, then 

the value of = is TRUE; for example, 3.0=3 is TRUE. 

Inequality (/=) is TRUE when = is FALSE, and FALSE when = is TRUE. 

The other four relations are def.lned only when their arguments are numbers, since 

it is not meaningful to ask if one S-e3:pression is greater than another. 

Problem Set 16. 

Evaluate these e~pl'esBiona using the table to determine the values of the 

variables. 

VariabZe VaZue 

A 3 

B 2.4 

C 3.0 

D A 

E (X y) 

a. A=3 

b. A=C 

c. D=A 

d. B>=C 

e. E='X . 'Yo NIL 

f. 'A=D 

g. CAR E='X 

h. 0<:8<=3 

i. 2<C+3<7 

j. 2<A<3 

C:! 
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Answers: See pages 153, 154 

THE GRAMMAR AND SYNTAX OF SIMPLE:EXPRESSIONS , -

The purpose of this section is to describe part of the grammar and syntax of 

LISP 2 accurately. 

The terms arithmeti~:expression, boolean expression, etc., classify expressions 

according to the type of datum they have as values. From a broader point of 

view, however, all expressionscan be classified as being simple:expressions, 

~onditional:expressions, or bloak:expressions, and every expression belongs in 

exactly one of these three classes. Conditional: express ions and bloak:expressions 

are not discussed in this chapter but are discussed later. What is a simple:expression? 

In order to define simpZe:expression, we shall make use of the concept of a 

primary. The definitions of primary and simpZe:expression are interdependent. 

Definition 1: Each of the following is a primary: 

(1) A aonstant; 

(2) A variable; 

(3) A form. A form is a funation name followed by a Zeft:papenthesis~ 

followed by the arguments of the funation separated from each 

other by commas, and followed by a right:parenthesis. For 

example, FN{'A, B*C) is a fol'm; 

(4) A aonditionaZ:expression (see Chapter 6) enclosed in a pair 

of parentheses ; 

(5) A simpZe:expression (let's take this on faith for a few more 

paragraphs) enclosed in a pair of papentheses. For example, 

(A+B) or (G-SQRT(M». 
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It follows from this definition that a primary is an expression which, whenever 

it occurs, is unambiguous. The simpZe:e:epression A+B is not a Iprimary , because 

in some contexts it is ambiguous. For example, placed in the context A+B*c, 

the symbols A+B no longer mean the expression A+B, because A+B*c means A+(B*C). 

Definition 2: Each of the following is a simple:expression: 

(1) A primary; 

(2) A prefix:operator followed by a simple:expression; 

(3) A simple:e:epression followed by an infix:operator followed by 

a simp le: expression. 

These rules simply generalize the rule for forming arithmetia:expressions in 

Chapter 4. 

The simple:expressions that result from these rules ~ be ambiguous. To 

prevent ambiguity, it is necessary to consider the rules of precedence to determine 

how simple:expressions are to be grouped. These rules are summarized below: 

Rule 1: CAR, CDR, and their compositions have the highest precedence. They 

capture the smallest possible expression to the right of them. For example, 

CAR AtB means (CAR A)tB. 

Rule 2: Arithmetia:operators are next in the hierarchy of precedence. Within 

the class of arithmetia:operators, there is a subhierarchy: 

Rule 2a: t has the highest precedence, and atbtc is grouped as at(btc). 

Rule 2b: *,/,-:, and \ are next. When these occur together, they are 

grouped from left to right. a/b*c is grouped a.s (a/b)*c. a*b/c*d is 

grouped as «a*b)/c)*d and not as (a*b)/(c*d). 

o 
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Rule 2c: + and - have the lowest precedence among the arithmetio:ope~tors 

When these occur together, they are grouped fram left to right. 

a-b+c is grouped as (a-b)+c. a+b-c+d is grouped as «a+b)-c)+d and 

not as (a+b)-(c+d). 

Rule 3: The reZation:operators =, /=, <, >, <= and >= are lower in precedence 

then arithmetio:operator. These reZation:operators are all on the same level 

of precedence and may be so arranged; for example, ~b=C<d means that sSb, b=c, 

and c<d. 

Rule 4: ATOM and NULL may be used as prefi:r::operators, that is, without always 

putting parentheses around their arguments. The precedence of ATOM and NULL is 

lOi.,er than the re lation: operators • 

Rule 5: The ZogioaZ:operators NOT, AND, OR, XOR, IMPLIES and EQUIV as a group 

have next lower precedence. Their relative precedence is explained in a later 

chapter. 

Rule 6: The infi:r::operator for CONS which is • (spaoe, dot, spaoe) has the 

lowest precedence of all. In other words, group everything else first. Finally, 

a . b • c is grouped from right to left as a • (b • c) and not from left to right 

as (a • b) • c. 

Problem Set 17 

Examine each simpZe:expression below. Then rewrite it adding sufficient parentheses 

to make it unambiguous assuming no rules of precedence. 
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a. CAR A+B 

b. CAR A+CDR B*C 

c. A-B/C/D+E 

d. A-B/C*DfE 

e. CAR X='A 

f. O<CAR A:B+SIN(Y)<5 

g. A+BtCtCADR D 

h. X • 'A • FN(X,Y,CDR Z*W) 

i. ATOM X=y 

j. NULL U • NULL CAR X+Y 

Answers: See page 154 
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CHAPrER 6. CONDITIONAL:EXPRESSIONS 

Consider the problem of describing the function which is Y of X shown in the 

graph of Figure 1. 

It is not natural to write a simple:expression that gives the value of Y as a 

funation of X. However, the following aonditional:expression describes it 

precisely: 

IF X<O THEN Xt2 ELSE IF X<l THEN 2*X ELSE 2 

The aonditional:expression is a means by which a computer progrRm can make a 

choice between several alternatives depending upon conditions that are determined 

at the time in the program's execution when the choice is to be made. 

6.1 THE ACCEPrED FORM OF CONDITIONAL:EXPRES8IONS 

A aonditional:expression is written either in the form 

IF Pl THEN el 

or in the form 

IF PI THEN el ELSE e2 

where Pl is any expression (including a aonditional:expression), el is an 

unconditional:expression (that is, it must be either a simpZe:expression or a 

bloak:expression) and e is any expression (and therefore may be another , 2 

aonditionaZ:expression). 

The expression between the IF and the THEN is called ananteaedent; the expression 

between the THEN and the ELSE, or following the ELSE, is called a. aonsequent. 

Examples of aonditional:expressions : 

IF ATOM X THEN X ELSE CAR X 

IF X=Y THEN 5 
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Figure 1. Bxample of the use of a ~onditionaZ:expression for describing 

precisely the r,raph y = f(x), where the body of f(x) is: 

IF X <0 THEN X+2 ELSE IF X <1 THEN 2*X ELSE 2 

o 
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The provision that el cannot be a conditionat:smpPBBBion is a trivial restriction; 

its purpose is to make 9ZppeBsions unambiguous. If a conditionat:empPtlBBion is 

enclosed by a pair of pa~entheses, then it becomes a BimptB:e~PBBBion and this 

Bimpte:exppeBBion m~ be used as consequent el • 

Example: 

IF x>o THEN (IF Y>O THEN FN (X,Y) ELSE FN(X,-Y» ELSE Z 

Since e2 may be any kind of e~p~es8ion including a conditionat:e~ppe88ion, we are 

permitted to write conditionat:exp~eBsions with many antecedentB and conBequents. 

Examples: 

IF A THEN B ELSE IF C THEN D ELSE IF E THEN F ELSE G 

IF A THEN B ELSE IF C THEN D ELSE IF E THEN F 

Since Pl may be a conditionat:e~p~ession, conditional:~peBsions may be nested 

within each other. 

Examples: 

IF IF X=5 THEN Y=3 ELSE Y<X THEN FN(X, Y) 

IF IF IF A THEN B ELSE C THEN D ELSE E THEN F 

6.2 THE EVALUATION OF CONDITIONAL:. EXPRESSIONS 

The following rules apply to the evaluation of conditionat:e:pPB8BionB' 

1. The parts of the exppeBsion are evaluated in order from left to right. 

2. Only those parts of the conditional:e:r:ppession that are needed to 

deter.mine a vaZue are evaluated. 

3. Each antecedent is evaluated in succession until one is found that 

evaluates to be true. For this purpose, the bootean FALSE (for 

which NIL and () are equivalents) is considered to be false, while 
----_ ... _ .. _ •.... _ ... 
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Ex9lD.ples: 

any other datum. is considered to be true. Usually the anteaedents 

are chosen to be booLean:expressions so that their value are TRUE 

or FALSE. 

4. If an anteaedent evaluates to FALSE, then the corresponding aonsequent 

is skipped over and is not evaluated. If an anteaedent evaluates 

to TRUE, then the corresponding aonsequent is evaluated, and this 

value is the value of the aonditionaZ:expression. The remaining 

anteaedents and aonsequents in the same aonditionaZ:expression , 

if any, are not evaluated. 

5. If a aonditionaZ:expression ends with ELSE en and if all of the 

preceding anteaedents are false, then e is evaluated, and its 
n 

6. 

value is the value of the aonditionaZ:expression. 

If a aonditionaZ:expression ends with ELSE IF p THEN e and if 
n n 

all of the anteaedents including p are false, then the value of 
n 

the aonditionaZ:expression is undefined, and an error condition 

results. 

In the following examples, suppose the variabZes are bo~d by the following 

table: 

w 5 

X A 

Y (A • B) 

z (3 4 5) 

Example 1: 

IF w<4 THEN X ELSE IF CADR Z<W THEN Y ELSE NIL 
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Steps in evaluation: 

Example 2: 

Example 3: 

Example 4: 

Example 5: 

1. w<4 is FALSE: therefore skip over X. 

2. CADR Z<W is TRUE because 4<5; therefore the vaZue of Y which is 

(A • B) is the vaZue of the oonditionaZ:e~ression. 

3. The part ELSE NIL is not considered. 

IF w<4 THEN I B 

The value is B. 

IF w<4 THEN I B 

The vaZue is undefined. 

IF X THEN W 

The value of X is 5 which is not FALSE, and is taken as true; the vaZue 

of the oonditionaZ:expression is A. 

IF W=CADDR Z THEN (IF X=CAR Y THEN Wt2 ELSE 10) ELSE 20 

Steps in evaluation: 

1. CADDR Z is 5 and this =W. Take the oonsequent. 

2. CAR Y is A and this =X. Take the oonsequent. 

3. Wt2 is W squared, which is 5 squared, which is 25. 
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Example 6: 

IF IF X= Y THEN w>4 ELSE w<4 ~EN I B ELSE I e 

Steps in evaluation: Think of IF ( •••••• ) THEN 'B ELSE 'e 

1. X is not equal to Y. Take what follows the first ELSE. 

2. W is not less than 4. Therefore ( •••••• ) evaluates to FALSE. 

Take what follows the second ELSE. 

3. 'e evaluates to e. 

6.3 OMISSION OF ELSE 

If the rese~ed:word ELSE is immediately followed by the reserved:word IF, then 

that ELSE may be omitted because there is no ambiguity. 

Example: 

IF A THEN B ELSE IF e THEN D ELSE E 

may be shortened to 

IF A THEN B IF e THEN D ELSE E 

The second ELSE may not be omitted because it is not followed by an IF. 

Problem Set 18 

Evaluate the following expressions using the list of values for variables. 

REALP means "is a J:leaZ:nwnber"; SQRT means "the sCluare root Of"; SIGN means "the 

cd 0'1") f)f." 

VariabZe VaZue 

A 5 
B 2.0 

e (7 14) 
X (3 • 9) C 
y (A B C) 

Z (A e) 
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o Answers: 

o 

a. IF A=5.0 THEN B 

b. IF REALP(Z) THEN C ELSE IF REALP(B) THEN (IF CAR At2=CDR A THEN Y 

ELSE Z) ELSE X 

c • IF IF CAR C=7 THEN FALSE ELSE TRUE THEN Z 

d. IF A=B THEN A=B ELSE A=B 

e. IF C THEN A 

f. IF SIGN(B)=SIGN(A) THEN (IF SQRT(CDR X)=CAR(X) THEN I A ELSE A) 

ELSE 'B 

g. IF CAR Y=CAR Z THEN 'ELSE ELSE I IF 

h. IF TRUE THEN 'IF IF 'IF THEN I THEN 

See pages 155, 156 
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CHAPTER 1. 

FUllCTION:DEFINITIONS AND RECURSION 

After you understand this chapter, you should be able to write simple LISP programs. 

This chapter explains how to make a series of related funct1:on:delinitions, how 

the process called recursion works, and how to define some fUnct~ons and how to 

use these functions to operate on some simple data. There is more to these 

topics than is explained here. 

7.1 FUNCTION: DEFINITIONS 

A function:definition is a deaLa~tion that the programmer makes to the LISP 

system. The deaLa~tion names a function, specifies its arguments, specifies what 

computation is to be performed. and what is to be the vaZue of the function. 

Each function:definition has two parts, the heading and the body. Each 

funation:definition includes a semi:coLon which terminates the definition. The 

system then holds this definition in memory, and at the appropriate time compiles 

it into efficient machine code so that it can be executed. 

THE HEADING 

The heading of a function has the form: 

FUNCTION name (al , ••• , an)j 

This consists of several parts, the first part of the heading is the constantl 

identifisp FUNCTION, which is a Y'eserved:lJJord. Then comes the particular name 

of the function that is being defined. The name of the function is an identifiere. 

Then comes the aregument:parametere:List. If there are no aregument:pareameteres, one 

must still write ( ). The aregument:pareameteres are identifieres. If there are two 

or more argument8~ they must be separated from each other by oommas. The last 

part or the heading is a semi:coZon.. It is optional. 

C" 
./ 
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Examples of headings of funotion:definitions: 

FUNCTION READ( ); 

FUNCTION CUBE (X) 

FUNCTION SUBST (Xl, X2, X3); 

THE BODY 

The body of a funotion:definition is always an e:r:pl'ession. It may be any kind 

of expression. SimpZe:expressions and oonditionaZ:expressions are defined in 

Cha;ters 4 through 6. The third kind, bZock:e:r:pressions, are defined in Chapter 

9. Examples of funotion:definitions: 

Each definition has a heading and a body, and is followed by a semi:aoZon: 

7.4 

FUNCTION CUBE(X) Xt3; 

FUNCTION HYPOTENUSE(SIDE1,tSIDE2)i SQRT(SIDElt2+SIDE2t2)i 

FUNCTION PUT(X,Y,L) CAR X • CDR Y • Li 

EVALUATION OF FUNCTIONS 

A funotion is called, or invoked, by the evaluation of a foPm- which begins with 

the function name. For example, suppose that the form HYPOTENUSE(3,4) is to be 

evaluated. The numbers 3 and 4 are the a:rogument of HYPOTENUSE. A foPm that 

calls a funotion must have as many a1"guments as the funotion has argument:pa:roamete1"s. 
The a:roguments- are paired with the argwnent:pazeamet6rs in the order in which they are 

written. Thus, the argument 3 is paired with the azegument:pazeameter SIDE1, and the 

argument 4 is paired with the argument:parameter SIDE2. 

The evaluation of a fUnction consists of evaluating the e:pression which is its 

body. This e:t:pression usually contains variabZes which are argument:pareameters of 

the funotion. The values associated with these variabZes are the a1"guments that 

are paired with them. We speak of this association as bindings. This is an 

incomplete explanation of bindings, which is covered more fully in section 10.2, 

but it is sufficient for the present. 
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To continue the preceding example, the function HYPOTENUSE is evaluated by 

evaluating the expression SQRT(SIDElt2+SIDE2t2). The current bindings of SIDE1 

and SIDE2 are 3 and 4 respectively; therefore the value of the expression and 

the value of HYPOTENUSE is 5.0. 

The body of one function may contain forms that call or invoke other funotions. 

These in turn may call other funotions. This may occur to any depth. Sometimes 

a function calls itself, either directly or by means of several funotion calls 

that eventually call the first funotion. This process is known as reoursive: 

definition or recursion and is not only permitted, but is encouraged as a standard 

technique in LISP. It was illustrated earlier (Chapter 3.) by the definition of. 

FACTORIAL, and is discussed below. 

It is important to distinguish an argument from an argument:parameter. It is also 

important to distinguish an argument from the expression which is used to compute 

the argument. This expression is the one that occurs in the argument:position of 

the form that calls the fUnction, not in the function itself and is called an 

argument:expression. The following example should make this clear. 

Consider for example the funotion DIAG which is defined to compute the diagonal of 

a rectangular prism given the three dimensions of the prism. 

FUNCTION DIAG(XiYi~) HYPOTENUSE(HYPOTENUSE(X,Y),Z); 

Now suppose that we evaluate the expression DIAG(3,4,l2). The arguments of DIAG 

are 3, 4 and 12, and these correspond to the argument:parameters X, Y and Z, respec­

tively. The inner call to HYPOTENUSE must be performed first in order to obtain a 

necessary argument for the outer call. The argument:expressions are X and Y; these 

are evaluated t~ obtain the arguments, which are 3 and 4. The arguments are what 

are transmitted to HYPOTENUSE. Once HYPOTENUSE has been called, the variabZes X and 

Yare no longer relevant--on1y the values 3 and 4 obtained from this evaluation are 

relevant. 
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Within the bOdy of HYPOTENUSE, the ~guments are available as the vaZues of 

the argument:pammeters SIDEl and SIDE2. The ~gument:parametel's X and Y of 

DIAG have no meaning within the body o~ HYPOTENUSE. They are bound to the 

values 3 and 4 only within the body of DIAG. 

The value of the inner call to HYPOTENUSE is 5.0. So the arguments for the 

second call to HYPOTENUSE are 5.0 and la respectively. The first aztgument 5.0 

was obtained by the evaluation of the expression HYPOTENUSE(X,Y). The second 

al'gument was.obtained from DIAG as the value of the vaztiabZe Z. 

Similar remarks apply to the second call to HYPOTENUSE. The bindings of SIDEl 

and SIDE2 this time are 5.0 and 12 respectively. 

The value of DIAG(3.4.12) is 13.0 

o Note: This description of ~gument evaluation and transmission applies to 

arguments ,transmitted by value only. The other alternative in LISP known &s 

transmission.by location is treated in a later chapter. Al'gumentsare always 

transmitted by value unless specified otherwise. You may ignore this distinction 

for the present. 

o 

Problem Set 19. 

In this problem set, several function:definitions are given, and a table of 

bindings for free:'VaZ'iables is given. The problem is to evaluate the e:epl'BBBionB 
that follow, using the function:definitions and the table of variabZe :bindings 
when necessary. 

When a variabZe occurs within the body of a funct~on. and this vaztiabZe is an 

argument:parameter of the function, the proper binding for the v~iabte is the 

~gument corresponding to its use as an ~gument:pa!'QTl1eter. Only if you cannot 

obtain a binding for a variabZe in this way, make use of the table of val'iabZe: 
bindings. 

function:delinitions: 

FUNCTION POLY(X); 2*Xt2+3*X-5. 

FUNCTION CHOOSE(X.Y) IF X-O THEN Y ELSE Y-X; 

FUNCTION TAKE(X,Y) IF ATOM X THEN Y ELSE IF ATOM Y THEN NIL ELSE CAR 
X • CDR Y; 

---~-.... ~.-- .. ---........ . 
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FUNCTION MAKE(X) ; X • Z; 

Table of bindings: 

VariabZe Binding 

U 'A 

X 3 

Z 7 

Expressions to be evaluated: 

a. POLY(3) 

b. POLY(Z) 

c. CHOOSE(1,-4) 

d. CHOOSE(POLY(Z)-114,X) 

e. MAKE(U) 

f. TAKE(U,Z) 

g. LIST(U, TAKE(X • Z, IF POLY(l)<l THEN '(D E) ELSE '(F G» 

Answers: See pages 157, 158 

7.5 RECURSION 

We shall give tl~ree examples of definition by recursion; the first is numerical, the 

second is symbolic, and the third !las an argument which is a list, and gives an 

integer:vaZue. 

The important thing to keep in mind is that the argument:parameters of a function 

generally have different bindings each time that the function is called. 



o 15 July 1966 67 TM-2710!lOl!OO(DRAFT) 

7.5.1 EXAMPLE 1: THE FIBONACCI SERIES 

The Fibonacci series is a sequence of integers. The first two terms are 1 and 1, 

respectively. After that, each term of the series is the sum of the preceding 

two terns. The Fibonacci sequence begins therefore 1, 1, 2, 3, 5, 8, 13, 21, ••• 

The funation FIBB defined here gives the nth term of the sequence. 

FUNCTION FIBB(N) IF N=l THEN 1 ELSE IF N=2 THEN 1 ELSE FIBB(N-l)+FIBB(N-2); 

Suppose we evaluate FIBB(4). The definition tells us that FIBB(4) is'FIBB(3)+ 

FIBB(2). FIBB(3) is defined to be FIBB(2)+FIBB(1). The computations ofFIBB(l) 

and FIBB(2) are not recursive and yield the vaLues 1 and 1 immediately. The 

o evaluation of FIBB(4) is shown 'schematically in the following diagram: 

FIBBU):='l 

Recursive definitions do not alw'ays terminate. For example, the computation 

of FIBB(O) according to the above definition will never terminate. The computation 

continues with the depth of recursion getting deeper and deeper until lack of 

computer memory or lack of time causes an error condition in the computer. 

o 
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There is no general rule possible for determining whether a recursive computation 

will terminate or not. Therefore, the programmer must underst~d the particular 

type of recursion he is using and why he expects the recursive computation to 

terminate on the type of data being operated on. This understanding can be 

acquired with practice. The exercises in this Primer provide a start in this 

direction. 

The le~to-right sequence for evaluating aonditionat:exp~essions is essential 

for thereaupsive:definition to operate properly. For example, consider the 

evaluation of FIBB(l). Substituting 1 for N in the body of the definition gives: 

IF 1=1 THEN 1 ELSE IF 1=2 THEN 1 ELSE FIBB(O)+FIBB(-l) 

If all the parts of the aonditionaZ:exp~ession had to be evaluated first, before 

a choice between the parts was made, then the computation would not terminate, 

and so no vaZue could be obtained for it. 

EW1PLE 2~ SUBSTITUTION 

Suppose we want to substitute a given S-exp~ession for each instance of a given 

identifie~ in another S-e:x:p~ession. The funation SUBST does this. We define 

SUBST(X,Y,Z) as the result of "Substitute the S-e:pzoession x for a.ll occurrences 

of the identifie~ y in the S-e:x:pl'ession z." An example is: 

SUBST(' (THE TREE) ,'OBJECT,' ({THE MAN) SAW OBJECT» is «THE MAN) SAW (THE TREE» 

The definition of SUBST in LISP 2 is: 

FUNCTION SUBST (X,Y,Z) IF ATOM Z THEN (IF Z=Y THEN X ELSE Z) ELSE 

SUBST(X,Y,CAR Z) • SUBST(X,Y,CDR Z); 

CI 
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Another example is SUBST(.'Q, :fB, I «A B) B C». The value is «A Q) Q C). This 

is demonstrated in painstaking detail ~y the following account of the 11 calla 

to SUBST necessary to comp~ete this computation. 

(2) (7) 
1. SUBST(IQ,'B,'«A B) B C)=SUBST('Q,IB,I(A B» • SUBST('Q,IB,'(B C»='«A Q) Q C) 

2. 
(3) 4) 

SOOST( 'Q, 'B' (A B}}=SOOST( 'Q, 'B, 'A) • S~ST( IQ, 'B, I (B})=' (A Q) 

3. SUBST( 'Q, 'B, 'A)='A 
(5) (6) 

4. SOOST( 'Q, IB, ' (B) ) =BOOST { 'Q, 'B. ',B) • SUBST( 'Q. 'B ,NIL)= I {Q} 

5. SOOST( 'Q, 'B, 'B)='Q 

6. SOOST('Q,'B,NIL)=NIL 
( 8) {9} 

7. SOOST( 'Q, 'B,' {B c} )=SUBST{ 'Q, 'B, 'B) • SUBST{ 'Q, 'B, '(C»=f (Q C) 

8. SOOST( 'Q, 'B, 'B)='Q 

9. 
(10) (11) 

SOOST('Q,,'B,'(C»= SUBST('Q,'B,'C) • SUBST('Q.'C,NIL)=,(C) 

10. SUBST('Q,'B,'C)='C 

11. SOOST('Q,'B,NIL)=NIL 

It is interesting to note that the ~gument:parametep Z is bound to many different 

apgwnents in the 11 calls to SOOST, but that the ~gument:pal'ameteps X and Y do not 

change. This is a fairly common occurrence. 

7.5.3 EXAMPLE 3: LENGTH OF A LIST 

The length of a list is equal to the number of elements in the list. For 

example, the length of the "List (.A 4 (B C» is 3 because there are 3 elements 

in the li.t (the substructure of the element (B C) is irrelevant). The length of 

the empty "List ( ) is O. The definition of LENGTH is: 
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FUNCTION LENGTH(L) IF NULL L THEN 0 ELSE LENG'I'H(CDR L)+l; 

The evaluation of LENGTH ( I (A 4 (B C») -proceeds as fol19wS: 

LENGTH( 'CA 4 (B C» )-LENGTH (I (4 (B C» )+1 

=LENGTH( " (13 C» )+l+l=LENGTH (' ( ) )+1+1+1 

-0 + 1 + 1 + 1=3 

Problem Set 20 

a. The following definition-of FIBB uses an auxiliary /unction FIBB1. It gives the 

same answers as the definition in Example 1. Why does this definition lead to more 

efficient computation of FlBB for large argumsnts? 

FUNCTION FlBB (N); FIBBl (N ,1,2) ; 

FUNCTION FIBB1(X,Y,Z) IF X=l THEN Y ELSE FIBB1(X-l,Z,Y+Z)i 

b. Is there any set of arguments for which SUBST, as defined in Example 2, 

does not converge? Why or why not? 

c. Define the recursive function COUNT having one argument. The argument may be 

any S-e:tpression. The vaZue of COUNT is the number of atoms (not Just identifiers) 

in the argument. 

Answers: See pages 158, 159 

c 
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CHAPTER 8 

THE LOGICAL:OPERATORS 

The six ZogiaaZ:operators of LISP 2 are AND, OR, NOT, IMPLIES, XOR, and EQUIV. 

They may be regarded as functions whose arguments are booZean and whose vaZue is 

also booZean. But some of them (AND, OR, IMPLIES) differ in an· importan~ way 

from funations. These three operators have the property that their arguments are 

evaluated from left to right, and that only as many arguments as are necessary to 

determine the vaZue of the booZean are evaluated. In this respect, they are 

more like aonditionaZ:expressions than functions. 

8.1 !'ill! 

The booZean NOT has one argument. The vaZue of NOT is TRUE if its argument is 

FALSE (or NIL or (», and FALSE (or NIL or (» if its argument is anything else. 

As with conditionaZ:expressions,' any argwnent except FALSE is regarded as 

equivalent to TRUE. 

The expression 

NOT e 

is equivalent in meaning to the conditionaZ:expression 

IF e THEN FALSE ELSE TRUE 

NOT is a prefix:operator; therefore it is permissible to write either 

NOT (e) 

or 

NOT e 

The precedence of NOT is highest of the ZogicaZ:operators. 

The operator NULL is identical with NOT both in meaning and in precedence. 
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8.2 AND 

The operator AND has an indefinite number of arguments. It is either a prefix: 

()pEJJf't:ff:or or an infix:operator: one may write either 

or 

e l AND ••• AND en 

The precedence of AND is below that of NOT but hi~her than that 

of the other four ~ogiaa~:operators. 

The 

e1 and e2 .•.• AND en 

is equivalent in meaning to the expression 

IF NOT e1 THEN FALSE IF NOT e2 THEN FALSE •••• ELSE en 

In other words, the 

AND e 
n 

has the va~ue TRUE if each e1 is evaluated and the va~ues are all true (not FALSE), 

but if the evaluation of any e1 is FALSE, then the vaLue of the entire expression 

is FALSE, and the remaining e. to the right of this one are not evaluated. 
~ 

AND ( ) (meaning AND of no arguments) has by convention the vaLue TRUE. 

8.3 OR 

The operator OR has an indefinite number of arguments and it is either an infix 

or prefix: operator. One may write either 

or 
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The precedence of OR is fourth of the ZogicaZ:operators: below NOT, AND, XOR; 

above IMPLIES and EQUIV. 

The expression 

el OR ••• OR en 

is equivalent in meaning to the expression 

IF el THEN TRUE ELSE IF e2 THEN TRUE ••• ELSE en 

In other words, the expression 

el OR ••• OR en 

has the vaZue TRUE if at least one el has a true.vaZue. In this case, the 

remaining el to the right of this one are not evaluated. If all of the el 

evaluate to FALSE, then the vaZue of the entire expression is FALSE. 

OR ( ) (meaning OR of no arguments has by convention the vaZue FALSE.) 

8.4 

As an example of the use of the ZogicaZ:connectives, we shall give another 

definition of MEMBER: 

FUNCTION MEMBER(X,L) NOT NULL L AND (X=CAR L OR MEMBER(X,CDR L)); 

The recursion in this definition terminates only because AND and OR have the 

property of not .evaluating arguments further to the right of the one that 

determines their vaZue. 

The parentheses around the OR expression are necessary because AND has a higher 

precedence than OR, and if the parentheses were miSSing, then AND woUld capture 

X=CAR L as its argument on the right. 

Problem Set 21. 

(1) Insert parentheses in the following LISP 2 expressions in such a way that 

they are unambiguous assuming no rules of precedence. 
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(2) Evaluate the following exppessionsusing the table: 

VapiabZe 

A 

B 

e 

x 
y 

z 

a. CAR Y + eADR y=e AND A 

b. B AND 2+2=4 

c. • A OR 2+2=5 

d. NOT A OR B OR X=Y 

e. IF A OR B THEN e 

f. IF e THEN e ELSE 'e 

g. NOT (A AND B) 

h. NOT A AND B 

Answers: See -pages 160, 161 

8.5 IMPLIES 

VaZue 

TRUE 

( ) 

A 

(3 4) 

(A B) 

TM-2710!lOl!OO(DBAFT) /", 
L 

IMPLIES is a binapy:opepato~. It may be written either as a p~efix:opepator as 

in 

or as an infix:operator as in 

c' 
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For those who are logicians, the meaning of 'IMPLIES is almost "material.1mplication." 

For those who are not logicians, the meaning of IMPLIES is almost the meaning 

according to the following table of cases: 

False False True 

False True True 

True False False 

True True True 

We say "almost" because in LISP 2 the evaluation procedure does not evaluate e2 

unless el is true. This evaluation procedure is different from the evaluation 

procedure in logic. 

The evaluation procedure for IMPLIES is the folloWing: 

el is evaluated. If its value is FALSE, then the value of 

el IMPLIES e2 

is TRUE. otherwise, e2 is evaluated, and its value is the value of the entire 

erproession. 

el IMPLIES e2 

is thus equivalent in meaning to the aonditi,onal:erproession 

IF el THEN e2 ELSE TRUE 

IMPLIES has next to the bottom precedence of the Zogiaal:operatoros. 

8.6 XOR 

o XOR has an indefinite number of aroguments. It mB¥ be written as 

XOR(el ,e2 ••• ,en) 

or as 
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Unlike AND, OR, and IMPLIES, XOR evaluates all of its arguments in no specified 

order. If the number of arguments that are true is odd, then the vaZue of XOR 

is TRUE; otherwise the vaZue of XOR if FALSE. XOR has third rank in the precedence 

of the ZogicaZ:operators. 

8.7 EQUIV 

EQUIV has an indefinite number of arg~nts. It may be written as 

or as 

el EQUIV ••• EQUIV en 

It has lowest precedence of the ZogicaZ:operatorso 

All of the arguments of EQUIV are evaluated in no specified order. The vaZue of 

EQUIV is TRUE if all of its arguments are tr~e, or if all of its arguments are 

FALSE. In any other case, the vaZue of EQUIV is FALSE. 
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CHAPTER 9 

BLOCK:EXPRESSIONS AND STATEMENTS 

TM-27l0/l0l/00(DRAFT) 

So far we have described how to write LISP ppogpams using recursive function: 

definitions. It can be proved that any computation can be described by recursive 

function:definitiona; however, often it is easier to describe a computation in 

some other way. We need, in addition to re~ursion, a W8¥ of writing a series 

of statements that perform certain operations, and a way of controlling the 

order in which those statements are executed. 

For a concrete example of this pOint, see the two different ways given in 

Chapter 3, Section 3.2 for defining the function FACTORIAL. The first definition 

uses statements; the second definition uses recursion. The first method, although 

longer to write, compiles into a smaller and faster-running program. Most old­

time LISP programmers however prefer the second method, recursion, which is 

mathematically more elegant, and is an important distinguishing feature of all 

LISP systems. 

9.1 BLOCK: EXPRESSIONS 

For developing the second method, two new kinds of entities that are not 

expressions are needed--decZ.apations "and statements. Statements are described 

fully in this chapter, but decZ.aPations are described only briefly here; they are 

described more fully later. 

A context is needed in which statements and decZapations can occur. The 

bZock:exppession provides such a context. It is a special kind of exppession that 

contains decZ.aPations and statements inside it. 
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In this form each dl is a deaZaration, and each sl is a statement. Either m or 

n may be 0; that is, there may be no deaZapations or no statements or both. All 

the deaZarations must precede all the statements in a bZoak:expP6ssion. The 

deaZapations and statements are separated from each other by semi:coZons; there 

is one less semi:aoZon than the total number of deaZapations and statements. 

9.2 DECLARATIONS 

There are several kinds of deaZapationsj one kind of deaZaration that is suitable 

in this context is known as the intemaZ:paramet(fJ:r:deaZaration • 

Definition: 

An intemaZ:parametep:deaLa:ration may have one of the following forms (there 

are others): 

or 

or 

or 

INTEGER vl ' ••. , vn 

REAL vl ' ••• t vn 

BOOLEAN vl ' ••• , v n 

where each vl is a va:riabZe. The four words in capital letters denote the data: 

type of the val"iab Ze • 

o 

C, 
" 
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If there are two or more variabZes following the word SYMBOL (or INTEGER or REAL 

or. BOOLEAN), then they are separated from each other by commas. An internal: 

:parameter:decZaration is almost alw~s followed by a semi:coZon since another 

decZaration or a statement is to follow; however, the semi:coZon is not regarded 

as being part of the decZaration. 

Example of a bZock:expression with internaZ:parameter:declarations: 

BEGIN REAL X, Y; INTEGER Z; SYMBOL Al, A2; ••• END 

where ••• represents some statements. 

The internaZ:parameter:decZaration has the following effects on the program: 

(1) The variabZes mentioned in the declaration are declared to be 

c=J internaZ:parameters which can be referenced throughout the bZock:expression (or 

bZock) in which the decZaration occurs. One may refer to a variable either to 

o 

obtain its vaZue or to change its vaZue. Thus the internat:parameters may be 

used as storage places for data. 

(2) If an internaZ:parameter is declared to be of type SYMBOL, then 

its vaZue may be any type of datum. (That is, any type of datUm may be stored 

in it.) If the internaZ:parameter is of type INTEGER, REAL or BOOLEAN, then its 

vaZue may be only a datum of the specified type. 

(3) As soon as the bZock is entered, the internaZ:parameter is 

assigned an initial vaZue. Of course, this initial vaZue may be changed almost 

immediately by what the programmer writes, and it may be ignored entirely. The 

initial vaZue depends upon the type of the variabZe as follows: 
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Type Initial VaZue 

SYMBOL NIL 

INTEGER 0 

REAL 0.0 

BOOLEAN FALSE 

9.3 STATEMENTS 

The statements within a bZoak are normally executed in sequence starting with the 

first one. The sequence in which statements are executed may be controlled by 

several means; the simplest of these is the 

go: statement 

The kinds of statements which will be described in this chapter are: 

assignment: statements 

aonditionaZ:statements 

go: statements 

empty: statements 

l"eturn:.statements 

simpZe:statements 

Some more kinds of statements are described later. 

o 
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9.4 ASSIGNMENT: STATEMENTS 

The assignment:statement is a statement that causes a value to be assigned to a 

parameter. The assignment:statement has the form 

where v is a variable and e is an expression. 

The expression e is evaluated firstj then its value is stored in the variable v. 

The previous value of v is lost at that point. 

For example, suppose A has the value 5, and one executes the assignment:statement 

A~At2. The expression on the right is evaluated with A having the value 5. The 

value of the expression is 25. This is now assigned as the new value of A. The 

~ old vaZue of A is lost. 

o 

An assignment:statement occurring inside the body of a function: definition may 

change the value of an argument:parameter (see beloW) instead of changing the 

vaZue of an internal:parameter. This change remains in effect throughout the 

evaluation of the function. 

An assignment:statement may be used as an expression, in which case it is called 

an assignment:expression. The assignment:expression has the same effect as the 

assignment:statement, but the assignment:expression also has a value. The value 

of an assignment:expression is the value of its right half. 

Example (of an assignment:statement): 

A~B"""Xt2+3 
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The portion of this assignment:statement to the right of the first Zsfz:a~~ow is an 

assignment:e:x:p~ession B+Xt2+3. The effect of this statement is to assign the 

vaLue x2+3 to both A and B. 

The Zeft:a~~ow behaves somewhat as if it '\Tere an infix:ope~ato~, 

but a rather peculiar one. On the left, it has high precedence. It grasps the 

smallest possible e:x:p~ession it can find. On the right, it has very low precedence, 

lower even than the LISP dot • It grasps as much as possible. 

Example: 

A+OAR C+D • E 

means the same as: 

In other 'Words, this e:x:p~ession CONSes D and E and puts the result in C. It 

then takes CAR of this which is D again, and puts this inA • 

. , 
9.5 THE CONDITIONAL:STATEMENT 

A aonditionaL:statement is like a aonditionaL:e:x:p~ession; the only difference is 

that its consequents are statements rather than e:x:p~essions. 

Definition: 

A condi tiona Z: statement has one of the following forms: 

or 

where p is an e:x:p~ession, e1 is a basic:statement (see below), and e2 is any 

statement. 
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A basia:statement is any kind of statement except a aonditionaZ:statement or a 

for:statement (which is explained later). The restriction that a statement must 

be basia is trivial and intended only to avoid certain kinds of ambiguity. A 

aonditionaL:statement enclosed by BEGIN ••• END, is changed into a basia:statement. 

Examples of aonditionaZ:statements: 

IF A=O THEN GO L 

IF P THEN N-A+l ELSE A .... A-l 

IF A<B THEN GO M ELSE IF A>B GO N ELSE IF B=O GO L 

IF A THEN BEGIN IF B THEN X-+-l ELSE x--2 END ELSE GO L 

The following rules apply to the execution of aonditionaL:statements. 

(1) The anteaedents are evaluated from left to right until one is 

found whose value is TRUE (or in fact, any datum other than FALSE). 

(2) When an anteaedent is found that is true, the corresponding aonsequent 

is executed. The rest of the aonditional:statement is ignored. 

(3) If a aonditional:statement ends in ELSE sn' and if all the 

preceding antecedents are false, then sn is executed. 

(4) If a aonditionaZ:statement ends in IF p THEN s and if all the 
n n 

anteaedents including Pn are false, then nothing is executed, and the program 

proceeds in the normal manner. This is not an error condition in contrast to the 

analoguous situation for aonditionaZ:expressions. 

(5) ConditionaZ:statements are not expressions; therefore they never 

have values. 
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9.6 LABELS 

A LabeL is a means of giving a name to a statement. Identifiers are used as 

LabeLs. 

Definition: A LabeLed:statement has the form 

lb:s 

where lb is a Zabel and s is a statement. 

Examples of ZabeZed:statements: 

A: IF X=Y THEN GO A 

B: ~X+l 

c: GO A 

The kind of a statement is not changed by labeling the statement. Thus the first 

statement above is a oonditional:statement, whether labeled or not. 

9.7 GO: STATEMENTS 

The go:statement has the form 

GO lb 

where lb is a Zabel. 

The effect of a go:statement,GO lb,is to cause execution of the program to 

continue at the statement labeled lb; the program proceeds from there in the 

normal way. 

There are certain restrictions as to where in a program it is possible to go 

from a given location. These restrictions follow common sense and exclude cases c' 
where the execution of a go:statement could be poorly defined. They will be 

discussed later. The following interesting example is quite permissable however: 



o 
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GO A; 

IF X=O THEN ~2*Y ELSE A: IF X<=O THEN 'Y'-Z; 

If the go:statement is executed and if X=O at the time, then ~Z will be executed. 

If one started at the beginning of the conditional:statement with X=O, ~2*Y 

would be executed. 

9.8 THE VALUE OF A BLOCK:EXPRESSIONj RETURN:STATEMENTS 

A block:expression must have a value because it is an expression. Block:expressions 

may obtain values in two different ways. 

The first way occurs when the block:expression ends because it has run out of 

statements to execute. This happens when the last statement has been executed 

and is not a go: statement. The word END follows, but is not a statement. In 

this case, the evaluation of the block:expression is terminated and the vaZue is 

NIL. This is the usual way of ending a block: expression when the vaZue is not 

being used for any purpose. 

Sometimes,however,the last statement in a block:expression is a go: statement. 

To get out of the block, one needs to branch to some point after this statement. 

The empty:statement is useful for this purpose. For example, here is a block: 

expression with an empty: statement used as a way out: 

BEGIN •• ~ IF TERMINALCONDITION THEN GO B; ••• GO A; B:; END 
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An emptyistatement is specified by two consecutive semi:coZons with no statements 

between them. Since a ZabeZ is not a statement it may intervene as in the above 

example. The empty:statement is here represented by: 

; B: ; 

The second way to obtain a vaZue for a bZock:expression is to use a return: 

:statement. 

Definition: A retu~:statement has the form 

where e is an expression. 

A return:statement may occur in any statement context Within a bZock:expression; 

for example, it may appear as one of the consequents of a conditionaZ:statement. 

Also there may be several retu~:statement within one bZock:e~pression. As 

soon as one of them is executed, the following happens: 

(1) The e~pression e is evaluated 

(2) The bZock:expression is terminated. No further statements are 

executed no matter where one is in the bZock. 

(3) The vaZue of e is the vaZue of the entire bZock:expression. 

9.9 SIMPLE: STATEMENTS 

A simpZe:expression may be used as a statement, in which case it 1s called a 

simp Ze: statement. The only way to tell that it is a statement is the context in 

which it appears. A simpZe:statement alWB¥s occurs in a context which has the 

property that even if the simpZe:expression were to produce a vaZue the vaZue . , . 

would be ignored. 

c 
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Since the va~ue of a simp~e:statement is ignored, the only reason for executing 

it is to produce an effect, for example, PRINT(X). 

9.9.1 EXAMPLE AND PROBLEMS 

Example: Define REV which is a function that reverses a List and all its subLists • 

Thus, 

REV (I«A B C) (D E))) 

is 

«E D) (C B A)) 

Here is a definition of REV: 

FUNCTION REV(X) BEnIN SYMBOL Y; 

A: IF NULL X THEN· RETURN Y ELSE IF ATOM X THEN RE'l'URN X; 

~ REV(CAR X) • Y ; 

J{'-CDR X; 

END • , 

This example has several interesting features: 

(1) This definition uses both recursion and iteration of a loop of 

statements--the two most important means of controlling a repetitive process. 

Recursion is used to apply the function REV to subLists at all levels. But the 

job of reversing any one level is done by means of an open loop of statements. 

(2) It illustrates the use of an assignment:statement to set the 

argument:paPamete~ X, and another assignment:statement to set the inte~aL: 

:pa~amete~ Y. 
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(3) Each time the function REV is entered recursively, a new argument: 

~aramet6r X and a new internaZ:parameter Yare created. The different copies 

of X and Y have independent vaZue and do not interfere with each other. Only 

the innermost X and Yare available at any given "time, but when a particular 

recursion is terminated, the immediately previous X and Yare accessible once 

more, unchanged from when they were last accessible. 

Problem Rp.t 22. 

a. Define REV using recursion and without using bZock:expressions and 

statements. 

b. Define REV by means of a single non-recursive function:definition 

using bZock:expressions and statements. 

c. Define the LISP function SINE(X,N) that computes an approximation 

to the sin of X by summing the first N terms of the sequence 

(Do not use the LISP system function SIN.) 

Answers: See pages 162, 163 
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CHAPTER 10. 

BLOCKS 

Many entities in LISP 2 can be classified into three kinds; e%p~88ion8, 

statement8, or decZaPations. This distinction is important and needs to be 

mastered by a user of the language. To some extent, these kinds of entities 

are like interrogative, imperative. and declarative sentences, respectively, 

in English. However, this analogy cannot be carried too far. 

An exp~e88ion in LISP can be evaluated; that is. it has a vaZue' which can be 

computed. For example. the value of 3+4 is 7. In the same way, an interrogative 

sentence in English can be answered; that is, it has an answer or calls for an 

answer. 

A statement in LISP is a request or command that some process be performed. 

For example GO J is a 8tatement requesting execution of the process beginning 

at J. In the same way. an imperative sentence in English is a request or 

command that some action be performed or that some state exist; that is, it 

calls for some action to be performed or for some state to exist. For example, 

"Give me that list" or "Be careful." 

A declaration in LISP informs the computer of some fact or condition. For 

example. REAL M,says that there will be an internaZ:pa~ete~ in the pPOg~ 

and that it will have ~eal:vaZue8. In the same way. in English, a declarative 

sentence (also called an indicative sentence) tells or provides information. 

For example. "M will be a variable in this program, with real values." 
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Both in LISP and in English the classification is sometimes more nominal than 

actual, and is determined more by the way in which an entity occurs in its 

surroundings (by the grammar and syntax) than by meaning (the semantic context). 

For example, in LISP the eValuation of an exppession may not only yield a vaZue 

but cause certain other things to happen. These are called side:el~ects. 

Similarly in English, a sentence which is interrogative in form may be declara-

tive in substance. For example, the interrogative "Why isn't the butter on the 

table?" may mean the imperative "Please put the butter on the table"; the 

speaker is not really interested in knowing why the butter is not on the table. 

Another example is the interrogative: "How much more of this nonsense do I have 

to listen to?" This means the declarative "I don't want to listen to any more 

of this because I consider it to be nonsense." The speaker does not want to 

be answered "About 15 minutes more nonsense." 

Both in LISP and in English one can argue in favor of linguistic purity. But 

impure use of the language will remain and spread because it is often convenient 

and direct, and often economical. 

In LISP, it is always possible to classify entities into exp~ssions, state-

ments, and decZapations, by analyzing the syntax. But it is not always possible 

to do this by examining a single entity. Usually one must consider the context 

in which it appears. Thus we shall be referring to a statement:context and an 

exppession:aontext. (In LISP, deaZar-ations present no problem. They can always 

be distinguished by their first words regardless of context.) 

What contexts have been encountered so far? One is the context of the body of 

a funation:definition. This is always an expression. Therefore, whatever 

c\ 
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appears after the heading of a function:definition is in an ~~ssicn:aonte~t. 

At the top level of a LISP pPOg~, one may write ~ressions but not statements. 

Therefore, this 1s an exp~ssion:context. 

10.1 BLOCKS 

A b"tock has precisely the following syntax: 

BEGIN dl ; d2; ••• dm; sl; s2; ••• sn END 

where each dl is a dec"taration and each sl is a statement. Either m or n or 

both could be O. 

A block consists of the rese~ed:~rd BEGIN, followed by some deaZarations, 

followed by some statements, followed by the rese~ed:~rd END. All the 

declarations in a block come before any of the statements. The dec"ta~tions 

and statements are separated from each other by semi·:ao Zons. 

How is a block to be classified? If a b"tock appears in an e~~ssion:context 

then it is an expression, and specifically it is called a bZock:e~~ssion. 

If a block appears in a statement:context, then there are two possibilities. 

If it bas no decLarations, then it is called a compound:statement; if it has 

one or more dec"tamtions, then it is called a bZock:statement. This classifica­

tion is summed up in the following table: 

Context: 

Dec"taztations: 

none 

at least one 

CLASSIFICATION OF BLOCKS 

expression:context 

b"tock:~~ssion 

bJock:~~ssion 

statement:context 

compound: statement 

bZock:statement 

-------------- --------
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A block:~ression maybe used on any level as the body of a function:definition, 

or it may be used on the top level as an ~ression. Within the block:empression 

there ~ be statements (including block:statements and compound:statements). 

From this specification, it follovs that vhen blocks appear nested one within 

the other as in: 

BEGIN ••• ••• END 
BEGIN ••• • •• END 

BEGIN ••• END 

the outermost one, at least, must be a blook:e~res8ion. 

10.2 VARIABLES~ BINDINGS~ AND SCOPES 

A variable (to repeat vhat vas said earlier) is an identifier used within a 

program to denote some value. For example. the variable M may turn out to have 

the value 4. 

A variable may be mentioned in anyone of four vays. It may be mentioned in 

order to bind it either as an argwflent:parameter (see Chapter 7) or as an internal: 

~arameter (see Chapter 9). It may be mentioned for the purpose of changing it. 

It may be mentioned for the purpose of making use of its value. This is summarized 

in the folloving table: 

MENTIONS OF VARIABLES 

Type of Mention 

to bind it as an aztgWllent:parametep 

to bind it as an intemal:parametep 

to change it 

for its value 

Example 

FUNCTION FI{X) 

INTEGER X; 

X+-3; 

X + 3; 

••• 

c 

o 
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Every bi:nding of a var>iab'Le has associated with it a scope. The scope is a , 

region of program within which that particular binding of a vanab'Le may be 

referenced either to change the var>iabl.e or to evaluate it. The scope must be 

thought of as something dynamic: it starts to exist when it is activated, and 

it stops existing when some fixed piece of a prog~ is finished. 

Rule 1: When a variabl.e is bound as an argument:parameter of a function, the 

scope of the binding is the body of the function:definition (but not including 

the scope of any other binding of the same variab'Le that is inside the first 

binding). The scope exists as soon as the fUnction is entered, and ceases to 

exist when the vaLue of the function has been computed and control returns to 

the point from which the function was called. 

Example: 

FUNCTION FN(X) 3*X+5; 

FN(2 ); 

The variabl.e X is bound as an argument:paztameter. The scope of the binding is 

the body of the function:definition. namely 3*X+5. However, merely making a 

function:definition does not activate the scope. When the function FN is 

called with the aPgwnent· 2, then the binding of X is activated. and throughout 

its scope it has the vaZue 2. 

Rule 2: When a variabZe is bound as an intemal.:pazoameter, the scope of the 

binding is all the statements (but not the decl.~tions) of the bLock in which 

o the dec'Lamtion is made. but not including the scope. of any other binding of 

the same var>iab'Le inside the first binding. The scope of the binding exists 

just prior to the execution of the first statement of the btock, and continues 

until the b'Lock is left. 
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Example 1: 

Example 2: 

first· binding as an ar~nt:pa~eter 

I second third binding as internaZ:parameter 
J J . . 

FUNCTION G(X) BEGIN H(X); BEGIN REAL X; H(X); BEGIN INTEGER (X); 
L 1 II 2 I 

H(X) END END END 
3 IWW 

1._1_1 ,saope of first binding 

2 , saope of second binding 

3 ,saope of third binding 

~inding as argwnent:parcuneter 

FUNCTION FN(X) 3*X+5; 
I ___ ...... _j 

I"\. saope as argument:parcuneter 

BEGIN INTEGER ~.IX~ 6; PRINT (FN(X+l» END~ 

binding as internaZ:pa~ete~ ~aope as internaZ:parcuneter 

Let us repeat that the definition of a funation defines the saope of its argwnent: 

:parcuneter, but does not activate it. The entity that follows the funotion:definition FN 

"is a bZook:e:cpression. It has an internaZ:pa~eterX. The execution of the 

bZook activates the binding of X. At first, X has the vaZue 0, but this is 

immediately changed to 6. The e:cpression X+l is then evaluated. This happens 

before the funotion FN is called. The vaZue of this e:cpression is 7. The 

funotion FN is called with the argwnent 7. At this point, the argwnent:parameter 

X is activated and has the vaZue 7. The vaZ.ue of FN (which gets printed) is 

26, and not 23. 

Example 3: 

BEGIN SYMBOL XiX + 'A; BEGIN SYMBOL X; X + 'B; PRINT (X) END;PRINT (X) END; 
. . . 

If you concluded that B would be printed first and then A, the conclusion was 

correct, and your analysis was probably correct. 
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Each binding must be regarded as having an independent existence. When the 

second binding is activated, the first one continues to exist but within the 

scope of the second binding it cannot be referenced. When the scope of the second 

binding ends, the first one still exists and has not been ~hanged. 

A decZaration such as 

REAL X; 

may be made at the top level of a LISP p~g~. In this case, the vaPiable and 

its associated value exist indefinitely. 

10.3 RETURN: STATEMENTS 

A retUPn:statement is of the form RETURN w. The return:statement must be used 

inside a block:e~ression. The effect of the retuPn:statement is to terminate 

a bZock:e~re8sion and cause the block:~pression to take the value of w. If 

two bZock:e~ressions are nested, then the execution of a retum:statement 

that is inside both of them terminates only the innermost one. However, when 

a bZock:statement or compound:statement is nested inside a block:e~ression, 

control passes outward through these and the block:e~ression that is outside 

them is terminated. Thereserved:word RETURN always terminates a block:ezpreBsion. 

Example 1: 

FUNCTION FN(X) BEGIN BEGIN RETURN X END END; 

The inner block is a compound:statement. The outer bZock is a bZock:e:r:pNssion. 

The RETURN terminates the outer block and X is the val.ue of FH(X). So the 

function:definition defines an identity:function. 

Example 2: 

FUNCTION FN(Xr BEGIN ATOM BEGIN RETURN X END END; 
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The inner block is a block:exppession, because it is the apgument of ATOM, 

and aPguments are always exppessions. ATOM BEGIN RETURN X END is a simple: 

: statement. Its vaLue is true if X is atomic, but this is irrelevant. There 

are no fUrther statements in the outer block, and no RETURN from it. So the 

value of FN is always NIL. 

10.4 RESTRICTIONS ON GO:STATE~NTS 

There are certain restrictions on the use of go:statements. The rules are: 

(1) A go:statement may not be used to enter a block:statement·from 

a point outside it. 

(2) A go:statement may not be used either to go into an exppession 

from a point outside it or to go out of an exppession from 

a point inside it. 

These rules have the following consequences for blocks. 

GO:STATE~NT RESTRICTIONS 

.' Type of Block May Enter? May Leave? 

bLock:exppession no no 

compound: statement yes yes 

block:statement no yes 

If one were to enter a bZock:statement by means of a go:statement, this would 

put the internaZ:paPameters of the bZock:statement into an ambiguous condition. 

Since a compound:statement has no internaZ:parameteps specific to it, the problem 

does not arise there. 

The body of a iunction:definition is an expression; therefore one may not enter 

or leave the body of a function:definition by means of a go:statement. 
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Problem Set 23: 

Examine the statement GO A in each ot the following miniature p~~s and 

decide whether or not it is legal, and why or why not. 

a. FUNCTION FN(X) BEGIN A: RETURN G(X) END; 

FUNCTION G(X) BEGIN GO A END; 

b. BEGIN INTEGER I; 

c. 

END 

BEGIN REAL X; GO A END; 

BEGIN A: If- 3 END 

BEGIN INTEGER I; 

BEGIN GO A END; 

BEGIN REAL X; A: I~ 3 END 

END 

d. BEGIN INTEGER I; 

BEGIN GO A END; 

BEGIN A: I+-3 END 

e~ BEGIN GO A; FN(BEGIN A: ; RETURN X END) END 

f. BEGIN -BEGIN GO A END; BEGIN A:;END END 

Answers: See pages 164, 165 

10.5 TYPICAL USES FOR BLOCKS 

(1) A oompound:statement groups several statements together for execution one 

after another. One use of this technique is as a oonsequent of a oonditionat: 

statement when several things are to be done if a condition is satisfied. 
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Example: 

IF X=O THEN BEGIN Y+- 5; GO A END; 

Without aompound:statements, one would have to use a circumlocution (or 

"program around it") such as: 

IFX/=O THEN GO,B; Y+5; 'GO Aj B: 

(2) A oondi tiona 1- : statement cannot be used as the oonsequent of another 

aonditionaZ:statement following the word THEN. This restriction can be overcome 

by turning the first aonditionaZ:statement into a oompound:statement with one 

statement inside it. 

Incorrect: C) 
.. / 

IF A THEN IF B THEN GO X ELSE GO Y ELSE GO Z; 

Correct: 

IF A THEN BEGIN IF B THEN GO X ELSE GO Y END ELSE GO Z; 

(3) A b1-ook:expression is commonly used as the body of a funation:definition 

when the vaLue of the funation is computed by means of statement programming 

rather than recursion. For an example of this, study the definition of REV in 

Chapter 9. 

(4) A b1-ook:e:t:pression may be used to avoid several repetitions of the same 

computation. 

Example 1: 

X~ BEGIN REAL Y; Y~ A1'2-3*A+Bt2; RETURN LIST {Y, Y-3, SQRT (y» END; 

Alternatively, this could have been written: ' 

X~ LIST (At 2-3*A+B"t2, At2-3*A+B1' 2-3 , SQRT (1¢2,-3*A+B't2)); 

the first program runs faster. 
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o 
(5) A btock:~tatement may also be used to avoid several repetitions of the' 

same computation. 

Example 2: 

BEGIN SYMBOL Yi 

Y~-FN (IF X-3*R"O THEN CAR (L) ELSE M • CAR (N»; 

, V·.,:- CADR Y; 

I. W~-CDDR Y 

~D; 

o 

o 

----_. __ .... - .. _----_ ........ 
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CHAPTER 11. 

ARRAYS 

An array in LISP 2 is an indexed collection of data having one or more dimensions. 

We shall explain this further presently. In the meantime, let us note that this 

is different from an array in some other programming languages. In FORTRAN, 

for example, an array is an indexed collection of variables; the difference is 

not trivial. 

For an example in LISP 2, let us consider a 3 by 4 by 5 reaZ:array. This is a 

collection of reaZ:data, specifically, a collection of exactly 60 reaZ:n~bers. 

It is a 3-dimensionaZ indexed collection of reaZ:numbers. This means that every 

element of the collection is identified by specifying in sequence three integers 

called the three aoordinates of the element. If the three aoordinates are called 

x, y and z, then the aoordinates must satisfy l~x <:3, l<y <4, 

11.1 OPERATIONS 

What are the basic operations that may be performed on an array? An array in 

LISP 2 is regarded as a single datum and is defined as a type of atom. Accordingly, 

an array may be the argument or vaZue of a function and it may be incorporated 

into a nonatomic S-expression. In addition, any specific element of an array 

may be obtained or may be changed. 

Since the allocation of storage space in LISP 2 is completely dynamic, arrays 

do not have to be declared in advance. They may be declared at any time and 

discarded at any time. As soon as an ar~y is discarded, the space it occupied 

in memory is available for other purposes. 



o 
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11.2 ONE WAY OF DECLARING ARRAYS 

One of the ways of declaring an tlPmy is upon entry to a b'tock. The following 

information must be stated: 

(1) The type of the aPray. Some of the army:types are: 

booZean:array 

integer: array 

reaZ:array 

symboZ:aPray 

An integer:army has only integers as its elements, etc. A 

symboZ:army may have any type of data for its elements 

including other a~y8. 

(2) The size of the array. The specification must give the number 

of dimensions, and the bounds of each dimension. The bcund of 

a dimension is always a positive integer. 

(3) The data out of which the array is initially composed. This 

is determined as soon as the type and size are declared: 

Type of Army 

booZean:array 

integer: array 

reaZ:array 

symbo Z: array 

Initial Data 

all elements are FALSE 

all elements are 0 

all elements are 0.0 

all elements are NIL 

Of course, the data in such an a~y are promptly changed during the course of 

a computation using it. 

For example, at the beginning of a bZook, suppose we wish to declare a reaZ: 

~Pay:variabZe called A containing a 3-dimensionaZ reaZ:~ywhose bounds are 

3, 4, and 5,respect1vely. We would write: 
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REAL ARRAY A( 3,4,5) 

In the place of the number 4, for example, we could put an expression which 

would evaluate to the correct integer bound. 

For another example: 

SYMBOL ARRAY A(5), B(X+2), C(FN(W» 

This decLaration declares three one-dimensionaZ arrays named A, B, and C of 

type SYMBOL. The size of the dimension of A is 5. The size of the dimension 

of B is equal to X plus 2. The size of the dimension of C is equal to FN of W. 

The second two sizes can only be determined at run time. 

We should note that: 

1. All the arrays specified in anyone decLaration must be of the 

same type. 

2. They may each have any number of dimensions. 

3. The number of dimensions is implied by the number of expressions 

specifying bounds. 

4. A bound does not have to be a predeclared integer. Instead, it 

can be any expression that can be evaluated to yield an integer 

at the time that the array is activated. This can, for example, 

be a different integer each time the array is activated. 

5. When an array:decLaration is placed among the decLarations of a 

bLock, the array:variabZe and associated array are active Just 

before the first statement of the bLock is activated and continue 

active until the bLock is terminated. The same considerations of 

binding and soope apply to array:variabZes as apply to ordinary 

variabLes (see Chapter 10). 

6. An array:decLaration may be made on the top level of a LISP 2 

c 
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program rather than inside a bZock. In this case, the a~y 

remains in existence all the time the LISP 2 program is in the 

computer. 

11.3 HOW TO OBTAIN AN ARRAY:ELEMENT 

Suppose that a 3-dimensionaZ peaZ:a~y whose bounds are 3, 4 and ~respectively 

is associated with the peal:apPay:vapiable A. Then the element whose coopdinates 

are I, J and K may be referred to as 

A(I,J,K) 

I, J, and K are called subscPipt:exppessions. They must evaluate to positive 

integeps, and must not be greater than their respective bounds. Any ~ppessions 

that have these properties may be used as apray:subscPipt:exppessions. 

Example 1: A(2, IF p=o THEN Q-l ELSE Q, R) 

Example 2: A ( 3, BEGIN RETURN 4 END, 5) 

An aPray:vaPiabZe followed by its subscPipt:exppessions enclosed in parentheses 

and separated from each other by commas is a 101'111. In fact it is impossible to 

tell by examining a fom whether it begins with an ~y:vaPiabZe or a function: 

:name. Foms are primaries and consequently they are also sUnpZe:e:r:pressions 

(see Chapter 5). 

When a f01'l11 composed of an a~ay:variable and subscPipt:e:r:pressions is evaluated, 

the sUbscPipt:expressions are evaluated first. If there are the correct number 

of subscPipt:expressions and if each sUbscPipt:e:r:pression is within bounds~ then 

o the value of the fom is the specified element of the apray. 

11.4 HOW TO CHANGE AN ELEMENT OF AN ARRAY 

To change an element of an apray, we write a f01'l11 with the a~ay:name and subscript: 
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:expressions and use it as the left side of an assignment:statement or assignment: 

:expression: 

Example 1: This sets the a~ay element with coordinates 2, 2, 

A(2,2,2) + 3.14159 and 2 to the vaZue 3.14159. 

Examj>le 2: 

Z(I,K) + X(I,J)*Y(J,K) This sets the a~ay:ez.ement of Z with coordinate I 

and K equal to the product of the arPay:eZement of X 

with coordinates I and J and the a~ay:eZement of Y 

with coordinates J and K. 

11.5 A MATRIX MULTIPLICATION PROGRAM 

Suppose we wish to define in LISP 2 a function MM, a program that multiplies two 

matrices. We shall assume that we have available, two functions called VREADIN 

and VREADOUT that read the data from an external device into or out of an a~y, 

respectively. 

The argument8 X, Y and Z of MM specify that a matrix of dimensions X by Y is 

to be multiplied by a matrix of dimensions Y by Z. 

Here is the definition: 

FUNCTION MM(X,Y,Z) BEGIN REAL ARRAY A(X,Y), B(Y,Z), C{X,Z); 

INTEGER I,J,K; 

VREADIN (A) ; 

VREADIN(B); 

r<-l; 

R: J~l; 

s: K~l; 

C! 
~~ 
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T: C(I,K)+- C(I,K)+A(I,J)*B(J,K); 

IF K< Z THEN BEGIN K~ K+l; GO TEND; 

IF J < Y THEN BEGIN J ~ J+l; GO SEND; 

IF I< X THEN BEGIN I~I+l; GO REND; 

VREADOUT(C) 

END 

11.6 PROCESSING AN ARRAY AS A SINGLE DATUM 

An arPay in LISP 2 does not necessarily have a name. This is because an a~y 

is a datum. The situation is quite analogous to any other type of data~ say 

reaL:numbers. If 5.0 is the vaZue of the reaZ:variable X, then we may refer 

to X and mean 5. But at some other time, X may not mean 5. In other words, 

an array may be a constant, or an array may be denoted by a variabLe, and 

either may be part of an S-expression. 

The following example consists of a list, one of whose elements is an array. 

The square:brackets refer either to a row of an array or a sub:~y or the 

array as a Whole. 

(A 3 (INTEGER [1,0] , [0,1]] ) 

The third element of this list is a 2 by2 integer:array which is denoted mathe­

matically as the matrix: 

In regard to transmission of arrays or array:eZements, there are some points to 

o be stated. If FN is a function of' one argument, and if A is a 2-dimensionaZ: 

~y, then FN(A(I,J» is an expression that obtains the i,jth element·ot A; this 

expression transmits this datum to FN, which then computes the appropriate vaZue. 

Also, an entire arPay may be transmitted as an argument, or assigned to an 
------,------' .. '--'~--.-
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aPray:variabte by an assignment:statement. In the following example we define 

a function of an apray:vapiable X, and then read in an appay and give it to 

the function as an argument. 

Example: 

FUNCTION FN(X} REAL ARRAY X; body; 

REAL ARRAY A; 

A ~ READARRAY (); 

FN(A); 

In the above example we have employed READARRAY to stand for a pPOgpam devised 

by a user which reads in an al'l'ay from an input file. Since this functionlhas 

no aPguments, ( ) is used. READARRAY fills in all the elements of the al'Pay 

that it creates. 

The new techniques appearing in this example are explained in the following state-

ments. 

(1) If a function is to receive an entire al'l'ay as an aPgument corresponding 

to a certain al'gument:pa~tel' (X in the above example), this condition should 

be declared in a declaration appearing after the argument:papametep:list, and 

before the body of the function:definition; REAL ARRAY X in the above example. 

The general form of this decLaration is: 

type ARRAY vl ' ••• vn 

where type is BOOLEAN, INTEGER, REAL, or SYMBOL; and the v i are one or more 

variables. The decLaration is followed by a semi:coLon to separate it from the 

next declamtion or the body of the function:definition. 

C~ 



o 15 July 1966 107 TM-27l0/l01/00(DRAFT) 

A more complete description of the kinds of decZarations that may be made 

after the apgument:papametep:Zist in the function:decLaration is given in 

Chapter 15. 

(2) The decZapation REAL ARRAY A in the above example specifies that A is 

a vaPiabZe of type peaZ:appay. It does not, however, place a peaZ:aPPay filled 

with floating-point zeros (O.O's) in A. To do this, if n is the number of 

dimensions, we write REAL ARRAY A( el , ••• en)' Or we make use of READARRAY in 

the example. 

(3) If an appay:type:vaPiabZe is used as the left side of an assignment: 

o ~tatement (or assignment:exppession) without subscPipt:exppessions (in the 

line A~ READARRAY ( ) of the example}, then the entire arpay (in this case, 

the current vaZue of A) is to be replaced with a new army which is the vaZue 

of the right half of the assignment:statement (or assignment:exp~ssion). 

In the case of A~ READARRAY ( ), there was no aPPay in A to begin with; but 

an aPPay is placed in A by the function READARRAY which by the user's definition 

has an a~y as its vaZue. (There is no LISP system:function called READARRAY 

because it would depend too much on the particular machine configuration.) 

If one assigns NIL to an army:vaPiabZe, then the army that was in it, if any, 

is discarded, and the storage space occupied by the army is released. 

(4) If an apgument:pat'CUTIetera of a funation is of an arpay:type, then the 

o argument transmitted to it must be an arpay of such type. The fom FN{A) in 

the preceding example calls the function FN and presents to it the army that 
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is the value of A. This array as it is being transmitted is no longer referred 

to as the value of the variable A, but within the body of FN, is referred to 

as the value of the argument:parameter X. 

11. 7 BASIC FUNCTIONS FOR ARRAYS 

The predicate ARRAYP(X) is true if X is an array and false otherwise. 

The following functions allow one to obtain useful information about arraY8. 

In the description below, assume that A is an argument which is an array, and 

I is an integer:argument. 

ARRAYTYPE(A) can be used to find the type of an array. Its value is an identifier 

such as BOOLEAN, INTEGER, REAL or SYMBOL. 

ARRAYDIM(A) specifies the number of dimen8ions of its argument. Its value is 

an integer. 

ARRAYSIZE(A,I) specifies the bound of a particular dimension. The argument I 

specifies the dimension about which one is inquiring. The vaLue of ARRAY SIZE 

is an integer. 

(~: The following function has not been fully specified. A possible imple-

mentation is described below because it is useful for the purposes of this 

primer. It or something similar to it will be implemented.) 

The function MAKEARRAY can be used to create a new array. 

MAKEARRAY ( dl , ••• , dn , type) C:' 
MAKEARRAY has an indefinite number of arguments. The first group of arguments 

are integer8 and specify successively the bounds of the new array to be created. 

The number of bounds implicitly specifies how many dimen8ions the array has. The 
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type of the ~ay is specified by the last argument. which is an identifier: 

BOOLEAN, etc. The vaZue of MAKEARRAY will be an array of the specified type 

and size. Its initial data will all be FALSE, 0, 0.0, or NIL according to the 

type. 

An example: Matrix multiplication 

The following is a definition of a function that performs matrix multiplication. 

Unlike the previous example, it is a genuine function. It receives two arrays 

as its arguments and has their matrix product as its vaZue. 

FUNCTION MXMPLY(A,B) REAL ARRAY A, B; BEGIN 

REAL ARRAY C; 

INTEGER I,J,K,X,Y,Z; 

X ~ARRAYDIM(A,l) ; 

Z ~ARRAYDIM(B,2); 

IF (Y'f-- ARRAYDIM(A,2» /= ARRAYDIM(B,l) THEN RETURN 

#ERROR - SECOND DIMENSION OF ARRAY 1 IS NOT THE SAME SIZE AS 

FIRST DIMENSION OF ARRAY 2#; 

C <E-- MAKEARRAY (X, z, 'REAL) ; 

1<:-' --1; 

R: J~l; 

S: K~-l; 

T: C{ I,K) ~ C(I ,K)+A(I,J)*B(J ,K); 

IF K < Z THEN BEGIN K~ K+l; GO TEND; 

IF J < Y THEN BEGIN J~-' -J+l; GO SEND; 

IF I < X THEN BEGIN I~ Hl; GO REND; 

RETURN C 

END; 
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Folloving are some comments: 

REAL ARRAY C specifies an array:varoiabl,e but doesn't put an 

array in it. 

Six variables, namely I, J, K, L, M, and N, are declared as 

integer:parameters; 

A, Bare argument:parameters; C is an internal:parameter; 

X. Z are set to the outer dimensions of matrix multiplication; 

Y is set to the second dimension of the first matrix A by an 

drgument:expression • 

The value of the assignment:expression is compared to the first dimension of B. 

They must be equal or the value of MXMPLY vill be a string reporting the error. 

(This is not a recommended way of handling errors.) -
The example contains an instance of MAKEARRAY. Its arguments are two integers 

and an identifier which is quoted in this case, because it is constant and 

always refers to real:type. 
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CHAPTER 12 

FOR STATEMENTS 

This chapter is a temporary one and will be replaced in the next edition of 

the Primer. It differs from the rest of the Primer in not being written in a 

tutorial style, not having any examples, and in its use of intermediate 

language. It supplants the chapter on FOR statements in the March 1966 

preliminary draft of the Reference Manual. 

Each type of FOR statement is herein illustrated both in source language and 

in intermediate language. The semantics of each kind of FOR statement is then 

completely defined by translating it into a block. This is a complete descrip-

tion of the semantics of the FOR statement because the LISP 2 compiler does in 

fact replace the FOR statement by the corresponding block via macro expansion. 

Some of the FOR statements expand into compo_und statements, and some expand 

into block statements. It is correspondingly legal or illegal to transfer into 

the FOR statement. A FOR statement is never an expression, and it does not 

have a defined value. It is alw~s possible to transfer out of a FOR statement 

if other conditions permit. 

In the statement schemas that follow, the following symbols are used: 

var 

exp 

ae 

bool 

gl, g2 ••• 

st 

to mean any variable 

to mean any expression 

to mean any arithmetic expression 

to mean any Boolean expression 

to mean identifiers generated at the time of the 
macro expansion 

to mean any statement ____ __ 
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12.1 GENERAL CONSIDERATIONS 

A FOR statement is a means by which the programmer can specify a program loop 

controlled in various ways, without explicitly writing out the loop. It is a 

shorthand notation, and does not permit anything which could not be done without 

FOR statements but at greater length. 

Every FOR statement has a variable associated with it called the control 

variable. The control variable always appears in the FOR statement immediately 

after the word FOR and can be recognized accordingly. 

FOR var ••• 

The FOR variable is never declared or bound by the FOR statement itself. When 

the control variable is mentioned within the FOR statement,the binding in effect 

at this time must be the same one as immediately outside of the FOR statement. 

The value of the variable at the time of entry into the FOR statement may be 

used inside the FOR statement in certain cases. The last value assigned to the 

control variable inside the FOR statement is available after the FOR statement 

has been executed. 

The general form of the FOR statement in source language is: 

FOR var for-element while-exp unless-exp DO st 

In intermediate lnaguage it is: 

(FOR var for-element wh-ile-exp unless-exp st) 

In this schema, var stands for the control variable. The different types of 

FOR elements are explained in the succeeding sections. The statement st is 

called the object statement of the FOR statement. The object statement and the 

WHILE and UNLESS expressions are discussed below. 

~. 
I • 

~--.... / 

C) 

c 
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The object statement may be any type of statement including another FOR state­

ment. It is executed repeatedly in a closed loop until the loop is terminated 

for one of several reasons. One way of terminating a FOR statement is to 

transfer from within the object statement to a label outside of the FOR state-

mente A RETURN statement may be used similarly. 

The WHILE expression has the form: 

WHILE bool 

(WHILE bool) 

or else it is omitted. 

of the object statement. 

(in source language) 

(in intermediate language) 

Tke expression bool is evaluated prior to each execution 

If the value of bool is FALSE, then the FOR statement 

c=J is terminated immediately. 

The UNLESS expression has the form: 

UNLESS bool (in source language) 

(UNLESS bool) (in intermediate language) 

or else it is omitted. The expression bool is evaluated prior to the execution 

of the object statement. If its value is TRUE, then the execution of the object 

statement is omitted for this one pass through the loop. The FOR statement is 

~ terminated by this action. 

Either the WHILE expression or the UNLESS expression or both may be omitted. 

If they are both present, then the WHILE expression is written first and performed 

first 

o 12.2 THE EMPTY FOR ELEMENT 

sl: FOR var while-exp unless-exp'DO st 

il: (FOR var () while-exp unless-exp st) 
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expansion: 

(BLOCK () 

LW 

s u 

st 

(GO L) 
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In this expansion (and others) the symbols L. LU. and LW are labels which are 

genids manufactured at the time that the macro expansion is performed. The 

statements sand s are present only if the WHILE expression and the UNLESS w u 

expression correspondingly are present in the FOR statement. They have the 

forms: 

s : (IF (NOT bool) (GO lw)} 
w 

s: (IF bool (GO lull 
u 

where the boolean expressions from the WHILE expression or the UNLESS expression 

correspondingly are used. 

The FOR statement with an empty FOR element is the one instance in which the 

control variable has no significance. 

Example: 

61: FOR A WHILE B<20 UNLESS C DO BC-FN( )+1 

il: (FOR A () (WHILE (LS B 20» (UNLESS C) (SET B (PLUS (FN) 1») 

expansion: 

(BLOCK () 

L LU (IF (NOT (LS B 20» (GO LW» 

(IF C (GO LU}) 
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LW) 

(SET B (PLUS (FN) 1» 

(GO L) 
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This expansion is literally correct except for the replacement of L, LW and 

LU by genids. (This example is worthless as a programming example.) 

12.3 THE LOOP FOR ELEMENT 

sl: FOR var LOOP exp while-exp unless-exp DO st 

il: (FOR var (LOOP exp) while-exp unless-exp st) 

expansion: 

(BLOCK (.) 

L LU (SET var exp) 

st 

(GO L) 

LW ) 

The LOOP element resets the control variable for each iteration of the loop. 

The initial value of var is unimportant unless it is used somewhere in the 

eValuation of expo 

12.4 THE RESET FOR ELEMENT 

sl: FOR var~ expl RESET exp2 while-exp unless-exp DO st 

il: (FOR var (RESET expl exp2) while-exp unless-exp st) 
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expansion: 

(BLOCK () 

(SET var expl) 

L s 
w 

st 

LU (SET var exp2) 

(GO L) 

LW ) 

The RESET element differs from the LOOP element in that the control variable 

can be set to an initial value via a different computation (expl) than the 

computation (exp2) that resets it. 

If the previous value of var is to be used on the first iteration, then expl 

should be yare In source language, this may be omitted as follows: 

.sl: FOR var RESET exp2 while-exp un1ess-exp DO st 

i1: (FOR var (RESET var exp2) while-exp unless-exp st) 

12.5 THE IN AND ON FOR ELEMENTS 

81: IN FOR var ON exp while-exp unless-exp DO st 

il: IN (FOR var(Qi exp) while-exp unless-exp st) 

expansion: 

(BLOCK ({Gl SYMBOL exp» 

Ll (IF (NUL Gl) (GO L2» 

(SET var (CAR Gl) ) 
Gl 

~ 
'\ . 
\\ .. 
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LU (SET Gl (CDR Gl» 

(GO Ll) 

LW L2 ) 
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The IN (ON) FOR element executes the loop as many times as the length of the 

list which is the value of the expression exp. In successive executions of the 

loop, the control variable is set to successive elements of (remaining segments 

of) the lis"t. 

12.6 THE STEP FOR ELEMENT 

sl: FOR var expl STEP exp2 UNTIL rel exp3 while-exp unless-exp DO st 

il: (FOR var (STEP expl exp2 rel exp3) while-exp unless-exp st) 

There are six possible relations (rel) in source language which translate into 

six corresponding relations in intermediate language: 

sl il 

< LS 

< = LEQ 

> GR 

> = GEQ 

= EQ 

/= NQ 

The following omissions of parts of the statement are permitted: 

1: If "~expl" is omitted in source language, then expl in 

intermediate language is var. 

2: If "UNTIL rel exp3" is omitted in source language, then rel 

and exp3 are omitted in intermediate language. 
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expansion: 

(BLOCK «Gl ASSIGNED exp2) (G2 ASSIGNED exp3)*) 

(SET var expl)** 

Ll (IF (rel var G2) (GO L2»** 

s w 

st 

LU (SET var (PLUS var G2» 

(GO Ll) 

LW L2 

* Omitted if there is no exp3. 

** Omitted if this reads (SET var var). 

12.7 

The variable var may be replaced by any locative with exactly those consequences 

implied by the macro expansion. 

c 
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CHAPTER 13. 

FLUID: VARIABLES 

Every variabZe in LISP 2 has one of three storage:modes. The three storage: 

modes are Ze3!icaZ, fiui4 and own. The storage:mode of a vaztiabZe is independent 

of the type of the vanabZe. Thus a va1'iabZe may be l'eaZ and fiuid, or symboZ 

and Ze%ioaZ, etc. All va1'iabZes that have been considered so far in this Primer 

are Z~caZ, because that is the storage:mode that is assumed by the system 

unless the user specifies otherwise. The storage:mode own is described in the 

Reference Manual. Here we shall describe fiuid:variabZes and distinguish them 

from Ze%icaZ:variabZes. 

13.1 EXAMPLES OF FLUID AND LEXICAL:VARIABLES 

The properties of ZexicaZ and fluid:variabZes are explained in Table 13.1. 

If the Type 
of Va1'iabZe 
is: 

ZezicaZ 

f1,uid 

ZexicaZ 

fiuid 

And the Type 
of Binding 
is: 

as an al"gu­
ment: 
parametel' 

" 

an an intel'­
naZ: 
pal'ametel' 

Table 13.1 

Then the Scope 
of the Binding 
is: 

the body of the 
funotion being 
defined 

the entire 
pl'O(Jl'aI7I 

the sequence of 
statement in 
the bZock in 
which the 
binding was made 

the entire 
pl'()gram 

And the Dura­
tion of the 
Binding ia: 

while the body 
is being 
evaluated 

" 

while these 
statements 
are being 
executed 

" 

See 
Example No. 

1 

2 

3 

4 

We should note that any mention of a val'iabZe lies (or should lie) within the 

scope of exactly one binding of that vanabZe. In a case where the mention of a 
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variabLe lies within the saopes of several bindings, it is the innermost binding 

which takes priority, then the next outer binding, and so on. 

Example 1. This is an example of Ze:x:iaaZ:variabZes used as argument:paPamete'l's. 

FUNCTION MEMBER (X,L); 

NOT NULL X AND 

(X = CAR L OR MEMBER (X, CDR L»; 

In this case both X and L are Le:x:ioaZ:a'l'gument:paramete'l's. The saope of their 

binding is from the first semi:aoZon to the second semi:aoZon. The time of their 

binding is while the body (the portion of the prog~ between the two semi:aoZons) 

is being evaluated. Only while the body is being evaluated can X and L be known. 

Example 2. This example contains two fLuid:variabZes used as aPgument:pa'l'amete'l's, 

and two Le:doaL:vaPiabZes used as a'l'gwnent:paPamete'l'8. 

FUNCTION SUBST(X,Y,Z) FLUID X,Y; SUBST1(Z); 

FUNCTION SUBST1(W) IF ATOM W THEN (IF W=Y THEN X ELSE W) 

ELSE(SUBST1(CAR W) • SUBST1(CDR W»; 

This is the same funotion SUBST that was defined in Chapter 3, but here the 

definition is a different one, making use of an auxiliary function called SUBST1. 

SUBST is not recursive in this definition; it binds the three variabLes X, Y, and 

Z. SUBSTl is recursive and binds W, the binding for W changing for each recursion. 

However, SUBSTl must use the first two va'l'iabZes X and Y. SUBSTl is not within 

the ZexioaZ:soope of SUBST. but since the argument:pa'l'a11lete'l's X and Y of SUBST 

are declared to be fZuid, then they may be accessed anywhere in the p'l'ogram while 

the body of SUBST is being evaluated. This includes the time during which SUBSTI 

is being computed because SUBST still has not been finished. 
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We say that SUBSTl is within the jtuid:scope of SUBST when SUBST calls SUBST1. 

If SUBSTl were called from some other function, however, then SUBSTl would not 

be wi thin the jtuid : scope of SUBST and it would not be able to take hold of the 

bindings of X and Y. Thus the concept of f'Luid:scope is a highly dynamic one, 

and depends upon conditions that cannot in general be anticipated before the 

progr-aJn is run. 

When a var-iab'Le is mentioned in a function:definition without its being bound 

in that definition either as an ar-gument:par-ameter- or as an inter-na'L:par-ameter, 

then it is called a fr-ee:var-iab'Le. Fr-ee:var-iab'Les are automatically and 

necessarily f'Luid. 

In the definition of SUBST1, X and Yare fr-ee:var-iab'Les. They are not azaguments 

of SUBST1, but they are referenced for va'Lue. The only reason they have va'Lues 

is that SUBSTl is called by SUBST which binds X and Y as jtuid:var-iab'Les. If 

the dec'Lar-ation FLUID X, Y were missing in the definition of SUBST, then the 

va~ues of these bindings could not be used in SUBSTl. If this dea'La1'ation were 

missing, X and Y would become 'Le%iaa'L:var-iab'Les in SUBST, and could be referenced 

only from within SUBST. 

Example 3. This example contains two 'Le~iaa'L:var-iab'Les as inter-na'L:p~eters. 

FUNCTION REVERSE (X) BEGIN SYMBOL Y; 

A: IF NULL X THEN RETURN Y; 

Y+- (y • CAR X); 

o X~CDR X; 

GO A; END; 

This progl'am of statements produces the reverse of a 'List, a 'tist in the reverse 

order. 
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X and Y are Ze~caZ:variabZes used as intepnaZ:parameteps. Their binding exists 

spatially in the sequence of statements in the bZock where they are bound, and 

exists in time while those statements are being executed. 

Example 4. The following artificial example may explain some points about the 

sC!ope of vanab Zes • 

FUNCTION P(X) FLUID X; Q(); 

FUNCTION R(Y); p(y); 

FUNCTION Q(); PRINT(X • '0); 

FUNCTION J(Y); FLUID Y; K(); 

FUNCTION K(); BEGIN FLUID SYMBOL X; X -+- Y; Q() END; 

p( 'A); 

R( 'B); 

J('C); 

When this progpam is run, the S-ezpPBssions (A • D) (B • D) and (C • D) are 

printed in that order. Here is the description of its operation. 

(1) Function P binds the jLuid:variabZe X to the va'Lue A. The 

A can then be picked up as the va'Lue of thefpee:variabZe X that 

occurs in function Q. 

(2) Function R transmits its argument (which is B) to function P. 

Function Pthenbinds B to the f'Luid:variab'Le X, where it is 

picked up by Q. 

(3) Function J binds C to the jLuid:argument:parametep Y. It then 

calls K whicb has no arguments. K has a jLuid:intePna'L:papa­

meter X which is initially bound to NIL. It then becomes bound 

to C because of the assignment:statement which picks up the 

c 

c 

C:i 
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Example 5. 

value of the free:v~iable Y and assigns this to X. The C 

is then picked up by Q. 

FUNCTION L(X) BEGIN SYMBOL FLUID Y; Yf--(X • NIL); MCX); 

FUNCTION M(Y) N(); 

FUNCTION N() PRINT ('B. y); 

DC'A); END ; 

In this case, the fUnction N prints (B A) and not (B • A). The variable Y 

occurs free in N, and the value of Y must be the most recent ftuid:binding of 

(--') Y that is still in effect. This is the intemat:pal"ametel' Y declared in L. 
~ 

o 

The Y of funotion M is not fluid (because it is not declared to be ftuid and 

therefore it is not the value of Y that will be used. 

A fZuid:v~iable may have only one type regardless of the area in the pro~ 

where it is used. Thus the following two dec~ations, if made in one program, 

are incompatible even if they may be in different subsections of the same 

progl'Q1Tl : 

Incompatible deolarations: 

FLUID INTEGER X; 

FLUID REAL ARRAY X; 

It is a common programming convention in LISP to choose longer, more uncommon 

names for ftuid:variables because their scopes are so wide, and one may run into 

collision problems among fluid:variables. Single:Zetter:identifier8 are 

commonly used for Ze~cal:val'iable8. 

- -~~-.-----------
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13.2 FLUID: DECLARATIONS 
To declare that an, argument:parameter or several argument:parameters are 

fLuid, we put the dea Zaration 

FLUID vl ' ••• , vn 

after the argument:parameter:Zist and before the body of the funation:defini­

tion. This function:definition may be combined with others that may properly 

be put in this position, such as 

FLUID REAL ARRAY X, Y 

This dec"Laration is always followed by a semi:aoZon. 

To declare that an internaZ:parameteris fZuid, we write 

FLUID vl ' ••• , vn 

but it is usual to combine this with another deaZaration such as a type: 

decZaration. 

Ex~le 6. Suppose we have three internaZ:parameters X, Y and Z with the follow­

ing dec Zarations : 

FLUID SYMBOL X; 

FLUID REAL ARRAY Yi 

REAL ARRAY Z; 

The statement that X is of type SYMBOL and has storage:mode fZuid can be stated 

either by FLUID SYMBOL X or by SYMBOL FLUID Xt or by SYMBOL X; FLUID X. 

The order of the declaratory words makes no difference so long as all thedeclara­

tory words precede all the variabZes to which they apply. The set of decZarations 

above could be rewritten as follows with the same effect: 

FLUID X, Y; 

SYMBOL X; 

REAL ARRAY Y, Z; 

c 
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CHAPTER 14. 

LOCATIVE TRANSMISSION OF PARAMETERS 

Every pa~ameter in LISP has a type, and a sto~age:mode, and in addition what is 

called a t~ansmission:mode. There are two t~ansmission:modes, called trans­

mission:by:value and t~ansmiBBion:by:loaation. This latter is abbreviated to 

the ~e8erved:word LOC. All the parameters considered up to this point in this 

Primer have been t~an8mitted:by:value. This is the most common mode. For this 

reason the t~8mi88ion:modeassumed. unless the programmer declares otherwise, 

C=) is transmisBion:by:value. 

o 

We will discuss here a~gument:pa~ameters having loa:transmi8sion,mode. The 

case of internal:pa~amete~s having loa:t~smisBion:mode is rare and outside of 

the province of the Primer. 

14.1 ARGUMENTS TRANSMITTED BY VALUE 

First, let us consider an example which reviews some terms. 

Example 1: 

FUNCTION FN(X) Xt2+3*X; 

Wf-3; 

FN(W-7); 

a. Argument:Expression. In this example FN is defined as x2 + 3x; then W is 

set at 3; and FN of W-7 is called. In this example, W-7 is an expression 

used to compute an argument for the funation FN. W-7 is not itself the 

argument; we call W-7 an a~gument:exp~ession. 
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b. Argument. The argument of FN in this example is -4, because -4 is the 

vatue of the argument:expression W-7 when W is set at 3. 

c. Argument:parameter. The argument:parameter of FN is the variab'Le X. Its 

vaZue 3 while the body of FN is being evaluated, is the argument -4. The 

argument:parameter X has vaZue:transmission:mode; what X means is determined 

by finding the vaZue of X. (This is true because there is no deoZaration 

specifying that the transmission:mode should be 1.00; furthermore, as we 

shall see, a deoZaration LOC would be illegal in this case.) 

Having reviewed this vocabulary, we can now state a rule for transmitting 

arguments by vaZue. 

Rule: If an argument:parameter has vaZue:transmission:mode, then at the time 

the funotion is called, the argument:e~res8ion corresponding to that argument: 

parameter is evaluated, and the resulting vaZue is transmitted to the funotion 

as the argument. 

We note that the evaluation of the argument:expres8ion to yield an apgument is 

performed prior to the call to the function. 

The term transmission:by:va'Lue is justified by the fact that it is the argument 

and not the argument:expres8ion that is transmitted. Thus, in the preceding 

example, the function FN receives the argument -4; there it is immaterial that 

the variab'Le W was in any way related to the method by which -4 was determined. 

14.2 ARGUMENTS TlWIS1·lITTED BY LOCATION 

Let us n01-' try to explain the Zoc:tl'an8mif!f~ion:rr!ode. We shall begin with another 

example. 

~. 
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Example 2: 

FUNCTION FN(X) INTEGER LOC X; X~ 5; 

BEGIN INTEGER Y; 

END; 

FN(Y); 

PRINT(Y) 

What will be the result of executing this prog~am? Let us analyze the steps: 

(1) The function FN is defined. X is declared intege~ and 

Zocative. Then X is set equal to 5. 

(2) A bZock:exp~e88ion is entered; the internal:pa~ete~ Y is 

declared of type INTEGER; it is assigned the vaZue 3. 

(3) Now TI~ is called from within the block:exp~88ion. Corres-

ponding to the a~gument:pa~ete~ we have the a~gument: 

e:r:p~88ion Y. But Y is !!2i evaluated to produce 3 as an 

a~gument for FN. Instead, the binding of Y itself is trans-

mitted t i.e., the location of the vaZue of Y. 

(4) When the a88ignment:8tatement X~5 is executed, X is not 

bound to a value; instead it is bound indirectly to another binding, 

namely the binding of Y. Therefore, it is as if the statement 

Yt- 5 were executed. 

(5) This changes the binding of Y in the bZock:e=p~e88ion, so that 

its vaZue is now 5. Consequently, 5 is what is printed. 

If an ~gument:pa~amete~ has ZoC:t~smi88ion:mode, severe restrictions are imposed 

on its argument:e:r:p~e88ion. 
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One cannot in general use any exppession. For example, consider 

FUNCTION FN(X) INTEGER LOC X; X~5; 

One cannot call FN by FN(3) because this would mean that the assignment: 

exppession would then read 3~ 5 which is nonsense. Even FN(:y+4) is illegal. 

This would make the assignment:statement read Y+4f--5. One could claim that 

this means Y~ 9 but in LISP, it does not, because the assignment:statement 

is not intended as a device for solving implicit equations. 

Two possibilities are permitted here (others are discussed in the Reference 

Manual). First, the argument may be a vaPiabZe of the same type as the 

Zocative:al'gwnen!;:parametep. So one may write FN(Y) but only if Y is a 

val'iabZe of type INTEGER. If Y were of type REAL, this would be illegal. 

Secondly, if the Zocative:papametel' is of a simple type (such as INTEGER, REAL, 

etc., but not n rEGER ARRAY etc.) then one may use as an azegument:exppes8ion a 

val'iabZe of the corresponding al'pay:type, with subscripts. Thus if A is a 

variabLe of typ( INTEGER ARRAY, one may write FN(A(L-3, M*4». The aproay: 

8ubscpipt:exppe."sions (L-3 and M*4 in this case) are evaluated before FN is 

called, and a r'ference to the element A(l,l) is transmitted to FN that makes 

X correspond wi ;h the particular element of the integep:aPl'ay that has been 

specified. 

Example 3. 

FUNcrION FN(X) INTEGER LOC X; X~5; 

BEGIN INTEGER ARRAY A(6,7); 

INTEGER I,J; 

If--3; 

J~4; 

C: 
/ 
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END; 

PRINT (A(2,l»; 

FN{A(I-l,J-I» ; 

PRINT(A(I-l,I-2» 
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The first nwnber printed is 0; the second is 5. Thevariabte A is bound to a 

6 by 7 integer:array whose data are all 0' s. The call to FN binds X not to 

the datum 0 in the 2,1 location, but to the 2,1 location itself,because X is 

LOC. The assignment:statement in the body of FN X~5 has the meaning or inter­

pretation A(2,1)~5. 

The following example illustrates one of the peculiar properties of a parameter 

that is both fLuid and Zoc. Example: 

FUNCTION FN(Y) FLUID LOC Yt G(); 

MICTION G() Y~'B; 

BEGIN SYMBOL X; 

END; 

X~'A; 

FN(X) ; 

PRINT(X) 

This program prints B. When FN is called from within the b7,ock:ezpression, X 

is not evaluated. Instead, the binding of X is transmitted as the binding of 

Y because Y is Zoe. When G is called, the free:variab7,e Y in G is within the 

scope of the argument :parameter Y (of FN) because the argument :parameter is 

fiuid. Thus the assignment:statement in G may be read as X~'B and refers to 

the internaZ:parameter X of the btock:e:rpression. But this is only because Y 

in FN is both fiuid and 1.0c. 



15 July 1966 130 TM-2710/101/00(DRAFT) 

The reader may, at this point, be puzzled as to how to treat the rule 2 which 

states that an argwnent:parameter that is Zoe, and its corresponding argument: 

expression must correspond in type. Until now, it has not been stated that 

every variabLe has a type. Yet this is indeed the case. Usually the type of 

a variabZe is determined without the programmer being very much aware of it. 

But it is important to understand that every variabZe always has a type, and 

that there are rules for determining this. This is treated in the next 

chapter. 

C, 
,/ 



o 
15 July 1966 131 TM-2710/10l/00(DRAFT) 

CHAPTER 15. 

TYPES AND DECLARATIONS 

15.1 TYPES OF VARIABLES 

Every datum has a type, and every variabZe has a type, but the type of a 

datum is a little different than the type of a val'iabZe. 

The type of a datum is always deducible by looking at the datum. For example, 

the type of 2.5E3 is ~eaZ. and this is clear from the way in which 2.5E3 is 

written. Of course. a symboZic:datum (type SYMBOL) is any datum at all; so 

o 2.5E3 is also a symboZic:datum. although 2.5E3 is regularly considered to be 

a ~aZ:datum since this is more specific. 

The type of a val'iabZe is an intrinsic property of the v~iab'Le. It amounts 

to a restriction on the type of datum that may .be assigned to that variab'Le as 

a vaZue. Thus, if A is a ~aZ:va1'iabZ~ its vaZue must always be a ~a'L:numbe~; , 

if B is a symboZic:variabZe, its vaZues can be any datum at all. 

What is the advantage of having variab'Les of different types? Why not let all 

val'iabZes be of type SYMBOL? 

The first answer is that when a variabZe is used with ~ay:subsc~ipts following 

it. the variab'Le cannot be of type SYMBOL. The LISP 2 compiler requires that it 

be a specific ~~ay:type of variab'Le. ~ee Chapter 11.) A similar requirement is 

o true of val'iabZes that designate functions as aztguments. a case which is 

discussed later. 
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The "second reason is efficiency. If arithmetic types of data, such as intege'P, 

~ac, and octaZ, are specified for va'Piabces, then the programmer (in return 

for restricting himself to assign only data of the specified type as vacues for 

that va'PiabZe) thus informs the compiler; and the compiler can generate more 

efficient code. The decZa'Pations allow the compiler to assume what kind of 

datum is in a va'PiabZe; and therefore the test to determine type does not have 

to be made each time the va'PiabZe is referenced as the p~g~ is executed. 

In a case where a P'Po~~ does only numerical computation, and all the va'PiabZes 

are declared to be of a'Pithmetic:types, the program may run 30 to 100 times 

faster than a p'Pog'Pam which performs the same computation with all va'PiabZes 

of type lJymbo Z • 

15.2 DECL~TIONS FOR ARGUMENT:PARAMETERS 

The deccarations for a~ent:paramete'Ps are those that specify type, storage: 

mode, and tmnsmission:mode. These decZarations follow directly after the 

a'Pgument:paPamete'P:Zist of the fUnction and before its body. Each one is 
\ 

followed by a semi:coZon. . They may be grouped in any convenient way; the order 

is riot significant. 

Each decZa'Pation begins with one or more key words which specify type tmns­

mission:mode, and storage:mode. They are followed by a list of partamete%'s. If 

there is more than one pa'Pamete'P, then they are se~arated from each other by 

commas. (The key words are not separated from each other or from the first 

va'PiabZe by any punctuation.) Each va'Piabce mentioned must be one of the 

parqmete%'s in the p~te'P:cist preceding the decca'Pations. 

' ... 

o 
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Some of the key words are: 

Example: 

BOOLEAN 

INTEGER 

REAL 

SYMBOL 

BOOLEAN ARRAY 

INTEGER ARRAY 

REAL ARRAY 

SYMBOL ARRAY 

133 

FLUID 

OWN 
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LOC 

FUNCTION FN(V,W,X,Y,Z) REAL LOC V, W; SYMBOL X; FLUID V, Z; 

REAL Y. Z; LOC Y; ••• body ••• 

This example could have been written: 

FUNCTION FN(V,W,X.Y,Z) REAL LOC FLUID V; REAL LOC W; SYMBOL Xi 

REAL LOC Yi REAL FLUID Z; ••• body •.• 

Incorrect example: 

FUNCTION G(X,Y) SYMBOL X,Yj REAL LOC Y,Z; ••• body ••• 

It is inconsistent to assign two types to the pa~amete~ Y. It is also incorrect 

to mention a variabLe Z which is not an a~gument:paramete~ of G. 

15.3 DECLARATIONS FOR INTERNAL:PARAMETERS 

DecZ~ation8 for intePnaL:p~amete~8 follow the word BEGIN at the beginning of 

a bLock. The rules for these are similar to the rules for decZ~tion8 of 

~gument:p~amete~8. There are some differences however. 
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An internaL:paPameter must be mentioned at least once if the program is to 

notice it at all. At a minimum, the type of a variabLe can be declared--if 

there is nothing else that you wish to declare. 

Unlike argument:parameters, internaL:parameters are subject to initialization. 

The initialization may be specified by the user or not. If not, a default 

initialization will be made by the LISP system. The default initialization 

depends upon the type of the variabLe, and will be NIL, 0, 0.0, etc., accordingly. 

An explicit assumption is made using what looks like an assignment:statement. 

Example: 

REAL A~-2.5. B, C~X-Y; 

This decLaration specifies three var~abLes as being reaZ:internaZ:parameters. 

A is initialized to 2.5. B is initialized to 0.0. C is initialized to the 

vaZue of the expression X-Yo 

The initializing ezp~ssion may be any kind of expression. All the initializing 

expressions are evaluated before any of the bindings of the internaZ:parameters 

become effective. One consequence of this is illustrated by the following 

example. 

FUNCTION FN(X) BEGIN SYMBOL X(-'A, Yf- X; RETtJRN Y END; F'N( 'B); 

The value of FN in this case il B. The argument:parameter X has as its vaZue 

the identifier B. The inte:r-na~:parameter X is initialized to the identifier A. 

When the initialization of Y is computed, the binding of the internaZ:parameter 

X is not in effect yet. (Its scope starts with the word RETURN.) ThuQ, the X 

referred to in Y~X must be the argument:parameter X, and so Y gets initialized 

to B. 
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15.4 DEFAULT: DECLARATIONS 

It would be tedious if the programmer were to specify the type~ storage:mode~ 

and tmnsmission:mode of each pammetel'. Fortunately this is not the case. 

The system is able to deduce these in most cases by a set of rules called the 

defauZt:decZarations. If the programmer wishes, he may over-ride these by 

making specific decZarations. 

Rule 1: If no decZal'ation specifies otherwise, then a pammetel' has vaZue:trans-

mission:mode. 

Rule 2: .If no declaration specifies otherwise, then a pal'ametel' has ZexicaZ: 

stol'age:mode. 

Rule 3: There is a type specified as being the current section:types. (See 

Sections in the LISP 2 Reference Manual.) The section:type does not change 
it 

until the programmer changes/by means of a section:decZaration. Initially, the 

section:type is SYMBOL. If no type:decZal'ation is made for a parameter~ its 

type is the section:type. 

15.5 VALUE: TYPE: DECLARATIONS 

If a function always has a vaZue which is of some specific type~ then a 

declaration informing the compiler of this fact increases the efficiency of 

the p~gram. This decZaration is ~ade just before the word FUNCTION. 

Example: 

REAL FUNCTION SIN (X) ••• 

This declal'ation restricts the values of SIN to being l'eaZ:numbers; it makes 

SIN a more efficient progl'am than if its value were not so specified. 
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When no value:type is specified, the section:type is assumed to be the vaZue: 

type. If the section:type is SYMBOL, this creates no problems. But if the 

section:type is, say, INTEGER and if a function is to have S-expressions as 

values, it is necessary to specify SYMBOL FUNCTION ••• 

When a function is never executed to have a value, but only for its effect, 

then the declaration NOVALUE FUNCTION may be used. 

15.6 FREE: DECLARATIONS 

Free:declarations are declarations that are not made within function:definitions 

or blocks, but on the top level of LISP. 

The declaration 

REAL X, Y; 

specifies that the fluid:variables X and Yare of type REAL. Every parameter X 

or Y which is specified as being fluid, and every free mention of X and Y must 

refer to the real:variables X and Y which of course are fluid. 

These variables also have a universal scope in some sense. If they are referred 

to free in a context in which they are not within the f7,uid:scope of any 

binding of them as argument:parameters or intePnaZ:parameters, then it is this 

top level that is referred to. This gives the programmer a way of using, non-

recursively, variables that can retain vaZues from one part of a program to the 

next. 

We remind the user that all occurrences of any fluid:variab7,e must be of the 

same type. Note that there may be a Zerica7,:parameter called X which is not 

of type REAL. 

c 
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The dec Zapation 

REAL FLUID X,Y; 

means something different. It means not only that all fZ.uid and free references 

to X and Y refer to a reaZ:vapiabZe, but that in addition, all references to 

any X and Y refer to a fZuid:reaZ:va~abZe. Thu~ it over-rides the convention 

that a parameter is of ZeroioaZ:storage:mode unless otherwise stated. Once this 

decZaration is made. all variabZes X and Yare fZuid. 
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PROBLEM: SETS AND ANSWERS 

CHAPTER 2 

PROBLEH SET 1 

Which of the following are S-e:x:pressions? 

a. UVW 

b. (A • B • C) 

c. (A • BC) 

d. ««A. B) • C) • E) • (F. (G. H») 

e. «A. B) • (C • D) • (E • F» 

f. «X)) 

Answers: 

a. Yes 

b. No 

c. Yes 

d. Yes 

e. No 

f. No 

PROBLEM SET 2 

Evaluate each of these expressions: 

a. CONS ( 'WINE, ' CHEESE) 

b. CONS('TUOLUMNE, CONS('SANJOAQUIN, 'KINGS) ) 

c. CONS ('(A. B) • '(C. D}) 

d. CONS (CONS ('{A, ' 'B) , CONS ('C, 'D) ) 

e. CONS ( , (A • B), CONS (' C , 'D ) } 

TM-2710/l01/00(DRAFT) 

C,i 
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Answers: 

a. (WINE. CHEESE) 

b. (TUOLUMNE. (SANJOAQUIN • KINGS» 

c. «A. B) • (C • D» 

d. «A. B) • (C • D» 

e. «A. B) • (C • D» 

PROBLEM SET 3 

Evaulate each of these e:ppessions. (Some of them may be undefined.) 

a. CAR( 'A) 

b. CDR('(A. B» 

(J c. CAR(CDR('(STRAVINSKY. (BARTOK. SIBELIUS»» 

d. CDR(CAR(CAR('«(HAT. TIE) • SHIRT) • JACKET»» 

e. CAR(CDR('«AQUITAINE. GASCONY) • ARAGON») 

f. CAR(CONS( 'A, 'B» 

g. CAR(CDR(CONS('(A. B),'(C • D}}}) 

h. CONS(CAR('(A. B»,CDR('(C • D») 

i. CONS(CAR('(A. B»,CAR('(C • D}}} 

j. CONS('A,CAR('(C. D}}} 

k. CADR (' (A • B» 

1. CADR('(SHRIMP. (LOBSTER. CRAB}}) 

m. CAAR(CONS(CONS('A,'B},'C}} 

n. CDDR(CONS('(A,'(B. C}}} 

o o. CONS(CAAR('«A. B) • C}},CONS('D,CDDR('(E • (F • G»})} 

Answers: 

a. undefined 

b. B 
r 

------- - ------------------ -...... ~- .... ---.- ----------------- - --- ------------- -
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c. BARTOK 

d. TIE 

e. undefined 

f. A 

g. C 

h. (A • D) 

i. (A C) 

j. (A • C) 

k. undefined 

1. LOBSTER 

m. A 
,,~./ 

n. C 

o. (A • (D • G) ) 

PROBLEM SE'l' 4 

Rewrite each of these following S-e:x:p'l'essions using only dot:notation. 

a. (A) 

b. «A» 

c. (HE HADE THE STARS ALSO) 

d. (0 (A) (A A» 

e. (A (A) «A») 

Rewrite each of the following S-exp'l'essions using Zist:notation as much as 

possible: 

f. «A. NIL) • « (B • NIL) • NIL) • NIL) 

g. «A. NIL) • «B. NIL) • NIL» 

h. (A. B) 

i. « «A • NIL) • NIL) • NIL) • NIL) 



o 

o 

o 

15 July 1966 TM-2710/101/00(DRAFT) 

J. «X. NIL) • «NIL. Y) • NIL» 

Answers: 

a. (A. NIL) 

b. «A. NIL) • NIL) 

c. (HE. (MADE • (THE • (STARS • (ALSO • NIL»») 

d. (NIL. «A. NIL) • «A. (A • NIL» • NIL») 

e. ({A. NIL) {{A. (A. NIL» • {(A. {A. (A. NIL») • NIL») 

f. «A) ({B») 

g. ({A). «B») 

h. (A. B) 

i. ({«A»» 

j. ({X). «NIL. y») 

PROBLEM SET 5 

Evaluate each of these expressions: 

a. CAR('(A B C» 

b. CADR ( , (A B C» 

c. CADDR{'{A B C» 

d. CDR('(A Be» 

e. eDDR('(A B C» 

f. CDDDR('(A B C» 

g. CAAR('(A B C» 

h. CONS ( , A, '( Be) ) 

i. CONS('A, CONS('B, ,(C») 

J. CONS('A, CONS('B, CONS('C, NIL») 

k. CONS('(A B),'(C D» 

1. CONS(CONS('A, NIL), NIL) 

m. CDAR('«A B) (C D») 
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c' 
Answers: 

a. A 

b. B 

c. e 

d. (B e) 

e. (e) 

f. NIL 

g. undefined 

h. (A • (B e» = (A B e) 

i. (A • (B • (e») = (A B e) 

J. (A B e) 

k. «A B) • (e D) 

1. ( (A» 

m. (B) 

PROBLEM SET 6 

EValuate the following expressions: 

a. '(HELLO THERE BILL) = '(HELLO ~IERE JOE) 

b. FALSE=( ) 

c. NIL=( ) 

d. t(A (B • e» = '{(A. B) • e) 

e. eAR('(A B» = eADR('(B A» 

f. eONs(eONS('(A B).·(e D»,'A = 'B) 

.Answers: o 
a. FALSE 

b. TRUE 

c. TRUE 
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d. FALSE 

e. TRUE 

f. «(A B) • (C D») 

PROBLEM SET 7 

Evaluate the following exppessions: 

a. ATOM( 'TUVWXYZ) 

b. ATOM('A) = ATOM('B) 

c. ATOM{CDR('{A B») 

d. ATOM{'A = '(B C}) 

e. ATOM{CAR(eONS(CAR('(A B}}, CDR('{C D»}}) 

0 
Answers: 

a. TRUE 

b. FALSE 

c. FALSE 

d. TRUE 

e. TRUE 

PROBLEM SET 8 

Evaluate the following exppessions: 

a.. LIST ( 'A, t B , qc D» 

b. CAR(LIST(IA, IB, 'C» 

c. eAR(LIST('{A B C») 

0 d. ATOM(LIST( 'A» 

e. LIST{'A, 'B) = CONS('A, eONS{ 'B, NIL» 
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Answers: 

a. (AB(CD» 

b. A 

c. (A B C) 

d. FALSE 

e. TRUE 

PROBLEM SET 9 

Evaluate the following expressions: 

a. NULL (CADDR ('(A (B C) D») 

b. CONS ('A, NULL ('A» 

c. NULL (LIST ( ) ) c 
d. NULL (CDR ( LI ST 'A») 

Answers: 

a. FALSE 

b. (A) 

c. FALSE 

d. TRUE 



o 
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Evaluate each of these aFithmetic:e:r:pressions using the following table to 

determine the vaZues of the variabZes occurring in the e:r:p~essions. 

VariabZe VaZue 

A 2 

B -3.0 

C -5 

D 7.5 

a. A-l 

b. A+B 

c. BtA 

d. C-:D 

e. C/D 

f. A*C 

g. D-:l.O 

Answers: 

a. 1 

b. -1.0 

c. 9.0 

d. 0 

e. -.6666666667 if computer'provides 10 decimal digits 

f. -10 

g. 8 
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PROBLEM SET 11 

Examine each e~ression. (1) Insert parentheses and produce an equivalent 

e~ression which if there were no precedence rules would be completely unambiguous. 

(2) Evaluate this expression using the table to determine the va~ues of the 

variabLes occurring within the expression. 

a. A-3*C 

b. (A-3)*C 

c. A-(3*C) 

d. D'tC1'A 

e. A+B*C+D 

f. A*B+C*D 

g. -D+A 

h. .(D+A) 

i. -D-A 

j. 6/3/2 

k. 6/(3/2) 

1. 6/(3*2) 

m. 6/3*2 

VariabLe 

A 

B 

C 

D 

Va~ue 

5 

2.5 

1 

-6 

c' 
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Answers: 

(1) (2) 

a. A-(3*C) 2 

b. (A-3)*C 2 

c. A-(3*C) 2 

d. Dt(CtA) -6 

e. (A+(B*C»+D 1.5 

f. (A*B)+(C*D) 6.5 

g. (-D)+A 11 

h. -(D+A) 1 

i. (-D)-A 1 

0 j. (6/3)/2 1.0 

k. 6/(3/2) 4.0 

1. 6/(3*2) 1.0 

m. (6/3)*2 4.0 

PROBLEM SET 12 

Evaluate the following e~pes8ions using the table to determine the va'Lues of 

the vaPiab'Les. 

VaPiabZe Va'Lue 

A 2 

B 3.0 

C 4 

D -0.oE6 

0 E -1 

F 2.5 

/ ---------------------
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a. ABS(A) 

b. ABS(E) 

c. SIGN(-B) 

d. SIGN(D) 

e. MAX(A,-B) 

f. MAX(A,-C) 

g. MIN(A,E) 

h. ROUND(F) 

i. ENTIER(F) 

j. ROUND(-F) 

k. ENTIER(-F) 

1. SQRT(C) 

m. SQRT(E) 

n. ABS(A)+ABS(B)*ABS(C) 

o. -ROUND(E)-ROUND(D) 

p. ROUND (-F + .3) 
Answers: 

a. 2 

b. 1 

c. -1 

d. 0 

e. 2.0 

f. 2 

g. -1 

h. 3 

i. 2 

j. -2 

k. -3 



... --.------ --------

-1 
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1. 2 

m. undefined 

n. 14.0 

o. 1 

p. -2.0 

o 

o 

............... _ ..... _._ ..... _ ... -~-------~-----. 
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CHAPTER 5 

PROBLEN SET 13 

Evaluate the following expressions: 

a. CAR ( , (A B C» 

b. CADR ( , (4 5 6» 

c. CDR( '(1 2» 

d. ATOM(500) 

e. REALP(7) 

f. REALP(CAR('(3.54.5») 

g. CAR ( , (1.1) ) 

h. CAR ( , (1 • 1 ) ) 

i. ATOM( '(7» 

j. NUMBP (CAR ( , (7) ) ) 

k. CONS('(l 2) ,'(3 4» 

Answers: 

a. A 

b. 5 

c. (2) 

d. TRUE 

e. FALSE 

f. TRUE 

g. 1.1 

h. 1 

i. FALSE 

j. TRUE 

k. «12)34) 
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u 
PROBLEM SET 14 

Evaluate each of the following expressions, using the table to determine the 

vaLues of the variables occurring in the expressions. 

VariabLe Value 

A X 

B NIL 

C 3.5 

D (A 4) 

E A 

a. CONS(A,B) 

C) b. CONS ( • A,B) 

~. CONS (E, 'B) 

d. CDR(D) 

e. C + CADR(D) 

f. SQRT( CADR(D) ) 

g. CONS(E,C) 

h. CONS(C,B) 

i. C+2 

Answers: 

a. (X • NIL) , which equals (X) 

b. (A • NIL) • which equals (A) 

c. (A • B) 

0 d. (4) 

e. 7.5 

f. 2.0 

g. (A • 3.5) 
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h. (3.5. NIL), which equals (3.5) 

1. 5.5 

PROBLEM SET 15 
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Rewrite each expression adding enough parentheses to determine the correct 

grouping. Then evaluate them using the table to determine the vaZueB of the 

variabZes. 

Answers: 

a. W • NIL 

b. Y • X 

c. W*3 • CAR Z 

d. CAR Z + 2 

e. CAR X • CDR Z 

f. Y • NIL 

g. 'Y • NIL 

(1) 

a. W. NIL 

b. Y. X 

Variable 

W 

X 

Y 

Z 

c. (W*3). (CAR Z) 

d. (CAR Z) + 2 

e. (CAR X) • (CDR Z) 

f. Y. NIL 

g. 'Y. NIL 

Value 

4 

(A B) 

C 

(2) 

(2) 

(4 • NIL), which equals (4) 

(c • (A B», which equals (C A B) 

(12 • 2) 

4 

(A • NIL) , which equals (A) 

(C • NIL) , which equals (C) 

(Y • NIL), which equals (y) 

C 

C 
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PROBLEf-1 SET 16 

EValuate these expressions using the table to determine the value' of the 

variabl.es. 

Vapiabl.e VaZue 

A 3 

B 2.4 

C 3.0 

D A 

E (X y) 

a. A = 3 

b. A = C 

c. D = A 

d. B)= C 

e. E :: 'X • 'Y • NIL 

f. 'A = D 

g. CAR E = 'X 

h. o <B<= 3 

i. 2<.C + 3<7 

j. 2<.A<.3 

Answers: 

a. TRUE 

b. TRUE 

c. FALSE 

d. FALSE 

e. {NIL • (Y • NIL», which equals (NIL Y) 

f. TRUE 

g. TRUE 
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h. TRUE 

i. TRUE 

j. FALSE 

PROBLEM SET 17 

Examine each simpZe:expression below. Then rewrite it adding sufficient 

parentheses to make it unambiguous assuming no rules of precedence. 

a. CAR A + B 

b. CAR A + CDR B*C 

c. A-B/C/D+E 

d. A-B/C*D'} E 

e. CAR X = 'A 

f. a <. = CAR A = B + SIN ( Y ) < 5 

g. A + B l' C t CADR D 

h. X • 'A • FN(X,Y,CDR Z*W) 

i. ATOM X = Y 

j. NULL U • NULL CAR X + Y 

Answers: 

a. (CAR A) + B 

b. (CAR A) + «CDR B)*C) 

c. (A-( (B/D)/D) )+E 

d. (A-( (B/C)*(D ~ E») 

e. (CAR X) = 'A 

f. o < = (CAR A) = (B + SIN ( y) ) < 5 

g. A+(B'(ct(CADR D») 

h. X • ('A. FN(X,Y,«CDRZ)*W») 

i. (ATOM X) = y 

j. «NULL U) • (NULL«CAR X) _+ y») 

c 

c 



o 
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CHAPTER 6 

PROBLEM SET 18 

Evaluate the following e~~e88ions using the list of vaZue8 for v~iabZe8. 

REALP means "is a l'eaZ:numbe~"; SQRT means "the square root of"; SIGN means 

"the sign of." 

Answers: 

V~iabZe VaZue 

A 5 

B 2.0 

C (7 14) 

X (3 • 9) 

y (A B C) 

Z (A C) 

a. IF A = 5.0 THEN B 

b. IF REALP (z) THEN C ELSE IF REALP(B} THEN (IF CAR A+2 = CDR A THEN Y 

ELSE z) ELSE X 

c. IF IF CAR C = 7 THEN FALSE ELSE TRUE THEN Z 

d. IF A = B THEN A = B ELSE A = B 

e. IF C THEN A 

f. IF SIGN(B) = SIGN(A} THEN (IF SQRT{CDR X) = CAR(X) THEN fA ELSE A) 

ELSE 'B 

g. IF CAR Y = CAR Z THEN 'ELSE ELSE • IF 

h. IF TRUE THEN 'IF IF 'IF THEN • THEN 

a. 2.0 

b. (A C) 

c. UNDEFINED 

d. FALSE 
.•.......................... ---
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e. 5 

f. A 

g. ELSE 

h. IF 



o 
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In this problem set, several function:definitions are given, and a table of 

bindings for free:variabZes is given. The problem is to evaluate the expressions 

that follow using the function:definitions and the table of variabZe:bindings 

where necessary. 

When a variabLe occurs within the body of a function, and this variabZe is an 

argument:parameter of the function, the proper binding for the variabZe is the 

argument corresponding to its use as an argument:parameter. Only when you cannot 

obtain a binding for a variabLe in this way, make use of the table of variabZe: 

bindings. 

FUNCTION POLY(X} ; 2*xt2+3*x-5; 

FUNCTION CHOOSE(X,Y) IF X = 0 THEN Y ELSE Y-X; 

FUNCTION TAKE(X,Y) IF ATOM X THEN Y ELSE IF ATOM Y THEN NIL ELSE CAR X • CDR Y 

FUNCTION MAKE(X} ; X • Z; 

Table of bindings: 

Expressions to be evaluated: 

a. POLY(3) 

b. POLY(Z) 

c. CHOOSE(1,-4) 

VariabLe 

U 

X 

Z 

Binding 

'A 

3 

7 
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d. CHOOSE(POLY(Z)-114,x) 

e. MAKE(U) 

f. TAKE(U,Z) 

g. LIST(U, TAKE(X • Z. IF POLY(l)<l THEN t(D E) ELSE '(F G» 

Answers: 

a. 22 

b. 114 

c. -5 

d. 3 

e. (A • 7) 

f. 7 

g. (A (3E» 

PROBLEM SET 20 

a. The following definition of FIBB uses an auxiliary funation FIBB1. It gives 

the same answers as the definition in Example 1. Why does this definition 

lead to more efficient computation of FIBB for large arguments? 

FUNCTION FIBB(N) ; FIBB1(N,1,2); 

F1lllCTION FIBB1(X,Y.Z) IF X = 1 THEN Y ELSE FIBB1(X-l,Z,Y+Z); 

b. Is there any set of arguments for which SUBST as defined in Example 2 will 

not converge? Why or why not? 

c. Define the recursive funation COUNT having one argument. The argument may 

be any S-expression. The vaZue of COUNT is the number of atoms (not just 

identifiers) in the argument. 

c' 

c 
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Answers: 

a. This definition is more efficient than the previous one because it avoids 

computing FIBB of any number more than once. 

If the first definition is used to compute FlBB(4), for example, it calls 

FlBB(3) and FIBB(2), FIBB(3) calls FIBB(2) and FlBB(l). Thus FlBB(2) has 

been called twice. For large apguments. of FlBB, this redundancy grows 

swiftly. 

b. No. When Z is atomic, SUBST terminates explicitly with no more recursion. 

When Z is not atomic, SUBST is defined recursively in terms of SUBST of 

c=J CAR{Z) and SUBST of CDR(Z). 

o 

The process of taking successive CAR's and CDR'd of an S-e%pression and 

stopping when one reaches atoms, always terminates. 

c. FUNCTION COUNT (X); IF ATOM (X) THEN 1 ELSE COUNT (CAR X) + COUNT (CDR X); 
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(1) Insert parentheses in the following LISP 2 ~res8ions in such a way that 

they are unambiguous assuming no rules of precedence. (2) Evaluate the e~~ssions 

using the table: 

Answers: 

a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

Vanab'Le 

A 

B 

C 

X 

y 

Z 

CAR Y + CADR Y = C AND A 

B AND 2+2 = 4 

A OR 2+2 = 5 

NOT A OR B OR X = Y 

IF A OR B THEN C 

IF C THEN C ELSE 'c 

lWT(A AND B) 

NOT A AND B 

(1) 

a. «(CAR y) + (CADR Y» = C) AND A 

b. B AND (2+2 = 4) 

c. A OR (2+2 = 5) 

Va'Lue 

TRUE 

( ) , 

7.0 . 

A 

(3 4) 

(A B) 

(2) 

TRUE 

NIL 

TRUE 

c' 

C 

c' 
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d. «NOT A) OR B) OR (X = y) 

e. IF (A OR B) THEN e 

f. IF e THEN e ELSE 'e 

g. NOT (A AND B) 

h. (NOT A) AND B 

o 

NIL 

7.0 

7.0 

TRUE 

NIL 

TM-2710/101/00{DRAFT) 
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C;-lAP'l'l:;P' 9 

a. Defin f ' REV u.s i.ng recursion and without using btoak:e:r:p:ressions and 

b. Define REV 1):/ mearw of a. single non-recursive funation:definition 

using Uo(}k:e!xp't'essions a.nd statements .. 

c. Define the LISP funation SINE(X,N) that computes an approximation 

to the sin of X by summing the first N terms of the sequence 

sin (X)=X/l!-x3/3!-x5/5!-x7/7! •••• 

(Do not use the LISP system funation SIN.) 

a. FUNCTION REV(X); REV1(X.NIL); 

F'UNCTION REV1(X.Y); IF NULL X THEN Y ELSE REV1(CDR X, REV(CAR X) • Y); 

c 

c' 
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b. FUNCTION REV(X); BEGIN SYMBOL Y,U,V; 

A: IF NULL X THEN (IF NULL U THEN RETURN Y ELSE GO B); 

U<-X • U; 

Vof-Y • V; 

Y"~ NIL; 

X~ CAR X; 

IF NOT ATOM X THEN GO A ELSE Y~X; 

B: Y~Y. CAR V; 

X+-- CDAR U; 

U<.- CDR U; 

Vr" CDR V; 

GO A 

END; 

C. FUNCTION SINE(X,N)jBEGIN INTEGER I; REAL A; 

I~l; 

A~O; 

L: IF I> N THEN RETURN A; 

A,-A + X t (2*I-1)/FACTORIAL(2*I_1); 

H--I + 1; 

GO L 

END; 
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CHAPTER 10 

PROBLEM SET 23 

Examine the statement GO A in each of the following miniature programs and 

decide whether or not it is legal, and why or why not. 

Answers: 

a. IiUNCTION FN(X) BEGIN A: RETURN G(X) END; 

FUNCTION G(X) BEGIN GO A END; 

b. BEGIN INTEGER Y; 

BEGIN REAL X; GO A END; 

BEGIN A: Y<:-3 END 

END 

c. BEGIN INTEGER Y; 

BEGIN GO A END; 

BEGIN REAL X; A: Y+- 3 END 

END 

d. BEGIN INTEGER Y; 

BEGIN GO A END 

BEGIN A: Y~3 END 

e. BEGIN GO A; FN(BEGIN A: RETURN X END) END 

f. BEGIN -BEGIN GO A END; BEGIN A: END END 

a.· Illegal for two reasons. Each b~ock in the example is a bZock: 

ezpression because each is the body of a function:definition. 

It is illegal for a go:statement (I) to transfer out of an 

c 

c 



o 
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e:l:pNssionand (2) to transfer into an e:l:pzeession. 

b. Legal. A go:statement may transfer out of a bZock:statement and 

into a compound:statement. 

c. Illegal. A go:statement may transfer out of a compound:statement, 

but it may not transfer into a bZock:statement. 

d. Legal. A go:statement may transfer out of a compound:statement 

and into another compound:statement. 

e. Illegal. The argument of FN is a bZock:e:l:pzeession and a go: 

statement may not transfer into it. 

f. Illegal. Theminus:sign (-) before a bZock determines that the 

bZock is a bZock:6:l:pression; a go:statement may not transfer out 

of it. 

-~----------------------- -------- --- ----------------------------- -- ---- ---

I 

/ 
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