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ABSTRACT 

LISP 2, which is based on LISP 1.5, is a new programming 
language for manipulating complex data structures and 
performing lengthy arithmetic calculations, As in LISP 
1.5, programs can be treated as data, and storage can be 
regained through "garbage collect ion. " The LISP 2 Source 
Language (SL) , which resembles ALGOL, is the standard input ; 
the LISP 2 Intermediate Language (IL), which resembles LISP 
1.5, is used for programs that are to be treated as data. 
Type declarations are available for efficient compilation 
of arithmetic operations, LISP 2 includes bit operators 
and an open subroutine capability. The most general form 
of a datum is a symbolic expression; other forms include 
numbers, functions, strings, and integer-indexed arrays. 
All of the system programs are themselves written in LISP 2. 
The 1/0 package transforms input into a stream of characters 
which are converted into tokens by the finite state machine. 
The supervisor controls the various LISP 2 operations. SL 
is translated into IL by the syntax translator; IL is trans- 
lated into assembly language by the compiler; and assembly 
language is translated into machine language by the LISP 2 
assembler, LAP. Machine mobility is achieved through core 
image generation. 



26 September 1966 

ACKNOWLEDGMENTS 

LISP 2 is being developed jointly by Information International, Incorporated 
and System Development Corporation, with contractual support from the Advanced 
Research Projects Agency of the Department of Defense. Personnel actively 
participating in this program include: 

Dr. Paul W. Abrahams (111) 
Mr. Jeffrey A. Barnett (SDC) 
Mr. Erwin Book (SDC) 
Mrs. Donna Firth (SDC) 
Mr. Lowell Hawkinson (111) 

Dr. Stanley L. Kameny (SDC) 
Mr. Michael I. Levin (111) 
Mr. Robert A. Saunders (111) 
Mr. Clark Weissman (SDC) 

In addition, we wish to acknowledge the voluntary support and contributions 
received from Professor Marvin Minsky and his associates at MIT; Professor 
John McCarthy and his associates at Stanford University; Dr. Daniel G. Bobrow 
of Bolt, Beranek and Newman; and many others. 



26 September 1966 iii 

CONTENTS 

Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
  data................................. 5 

Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  constants 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Variables 8 . . . . . . . . . . . . . . . . . . . . . . . . .  Operational Forms 9 . . . . . . . . . . . . . . . . . . . . . . . . .  Other Expressions 10 

. . . . . . . . . . . . . . . . . . . . . . . .  Blocks and Statements 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  mnct ions  1 4  

. . . . . . . . . . . . . . . . . . . . . . . . . .  FunctionalData 15 . . . . . . . . . . .  Functions of an Indef in i te  Number of Arguments 15 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  sect ions  16 . . . . . . . . . . . . . . . . . . . . .  Supervisor Level Operations 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Input-Output 17 . . . . . . . . . . . . . . . . . .  F i l e  Activation and Deactivation 18 . . . . . . . . . . . . . . . . . . . . . . . . . . .  F i l e s e l e c t i o n  18 . . . . . . . . . . . . . . . . . . . . . . . .  Other 1 /0  Functions 19 

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

. . . . . . . . . . . . . . . . . . . . . . . . .  THE PROGRAMMING SYSTEM 20 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  SystemOverview 20 . . . . . . . . . . . . . . . . . . . . . . . . . .  Memory Management 22 . . . . . . . . . . . . . . . . .  Syntax Translator  and META Compiler 23 . . . . . . . . . . . . . . . . . . . . . . . . .  F i n i t e  S t a t e  Machine 24 . . . . . . . . . . . . . . . . . . . . . . . . . . .  LISP2Compiler 24 

Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Optimizer 25 . . . . . . . . . . . . . . . . . . . . . .  User Control F a c i l i t i e s  26 



26 September 1966 

CONTENTS ( Cont ' d)  

Page 

LISP 2 Assembly Program. . . . . . . . . . . . . . . . . . . . . . .  26 

REFERENCES 

Figures 

1. System Organization. . . . . . . . . . . . . . . . . . . . . . . .  4 

. . . . . . . . . . .  2. System Components and Information Flow Paths 21 



26 September 1966 

INTRODUCTION 

LISP 2 is a new programming language designed for use in problems that require 
manipulation of highly complex data structures as well as lengthy arithmetic 
operations. Presently implemented on the M/FSQ-32V computer at the System 
Development Corporation in Santa Monica, California, LISP 2 has two components: 
the language itself, and the programming system in which it is embedded. The 
system programs that define the language are accessible to and modifiable by 
the user; thus the user has an unparalleled ability to shape the language to 
suit his own needs and to utilize parts of the system as building blocks in 
constructing his own programs. 

While it provides these capabilities to the do-it-yourself prograslmer, LISP 2 
also provides the complete and convenient programming facilities of a ready- 
made system. Typical application areas for LISP 2 include heuristic programming, 
algebraic manipulation, linguistic analysis and machine translation of natural 
and artificial languages, analysis of particle reactions in high-energy physics, 
artificial intelligence, pattern recognition, mathematical logic and automata 
theory, automatic theorem proving, game-playing, information retrieval, numerical 
computation, and exploration of new programming technology. 

The primary source materials on LISP 2 are the LISP 2 Primer [I], which provides 
an introduction to the language for those with little or no programming experi- 
ence, and the LISP 2 Reference Manual [2], which provides a complete specifi- 
cation of the language. 

The LISP 2 programming system provides not only a compiler, but also a large 
collection of run-time facilities. These facilities include the library 
functions, a monitor for control and on-line interaction, automatic storage 
management, and communication with the monitor system of the machine on which 
the system is operating. 

A particularly important part of the program library is a group of programs 
for bootstrapping LISP 2 onto a new machine. (~ootstrapping is the standard 
method for creating a LISP 2 system on a new machine.) The bootstrapping capa- 
bility is sufficiently powerf'ul so that the new machine requires no resident 
programs other than the standard monitor system and a binary loader. 

LISP 2 includes and extends the capabilities of its ancestor, LISP 1.5 [3]. 
LISP 1.5 has been notable for its mathematical elegance and symbol-manipulating 
capabilities. It is unique among programming languages in the ease with which 
programs can be treated as data, in its "garbage collection" approach to 
reclaiming unused storage, and in its ability to represent programs organized 
as a collection of small, easily understood function definitions. Full 
recursion without special user provisions is a natural outgrowth of the 
structure of the language. However, LISP 1.5 lacks a convenient input language 
and efficiency in the treatment of purely arithmetic operations. 
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LISP 2 was designed to maintain the advantages of LISP 1.5 while remedying its 
deficiencies. The first major change has been the introduction of two distinct 
language levels : Source Language (SL) and Intermediate Language (IL) . The two 
languages have different syntaxes but the same semantics (in the sense that for 
every SL program there is a computationally equivalent IL program). The syntax 
of SL resembles that of ALGOL 60 [ 4 ] ,  while the syntax of IL resembles that of 
LISP 1.5. IL is designed to have the same structure as data, and thus to be 
capable of being manipulated easily by user (and system) programs. An advan- 
tage of the ALGOL-like source language is that the ALGOL algorithms can be 
utilized with little change. 

The second major change has been the introduction of type declarations and new 
data types, including integer-indexed arrays and character strings. At a 
future time, packed data tables, which can presently be simulated through pro- 
gramming techniques, will be added. Type declarations are necessary to obtain 
efficient compiled code, particularly for arithmetic operations, but by using 
the default mechanisms, a programmer may omit type declarations entirely 
(albeit at the cost of efficiency). 

The third major change has been the introduction of partial-word extraction and 
insertion operators. Further, an IL-level macro expansion capability has been 
included, which makes possible the definition of operations in terms of a basic 
set of open-coded primitives. These changes made it possible to write the entire 
system in its own language without loss of efficiency. Also, the compilations 
of user programs are more economical of time, and to some extent of space, than 
they would be without these facilities. Furthermore, the knowledgeable user 
can trade space against time through appropriate redefinition of system functions. 

A fourth major change, the introduction of pattern-driven data manipulation 
facilities, along the lines of COMIT [5] and METEOR [6], is still in the process 
of implementation. Because of the open-ended nature of LISP 2, these facilities 
can be added without disrupting the existing system structure. We mention this 
facility here, despite the fact that it does not yet exist, because it is an 
integral part of the over-all design of the language. Since the specifications 
are not final as of this writing, however, we shall not discuss them further. 

To orient the reader toward the exposition of the language, we present a short 
example at this point. Further examples will be given later. The following 
program [7] is written in SL: 

%R RANDOM COMPUTES A RANDOM NUMBER IN THE INTERVAL (A, B) 
DECLARE (Y) INTEGER OWN Y: 
REAL FUNCTION RANDOM( A ,B ) REAL A ,B : 
DO Y+3125*Y; 

~+~\6710-864; 
RETURN (~/67108864.0 * (B-A)+A) 

END ; 
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The only significant difference between this program and the ALGOL original is 
the use of the reverse slash (I1\") to indicate the computation of the remainder. 
The corresponding program in IL is: 

(DECLARE (Y OWN IITEGER) ) 
(FUNCTION (RANDOM REAL) 

( ( A  REAL) (B REAL)) 
(BLOCK NIL (SET Y (TIMES 3125 Y) ) 
(SET Y (REMAINDER Y 67108864) ) 
(RETURN (PLUS (TIMES (QUOTIENT Y 6.7108864000~+7) 

(DIFFERENCE B A 1) A ) ) ) )  

The process of converting SL programs into compiled code is shown in Figure 1. 
SL is first translated into IL by a syntax translator. IL is then translated 
into assembly language by a compiler. Finally, the assembly language is trans- 
lated into machine language by an assembly program. The process is entirely 
accessible to the user, in that he can write programs in IL or assembly 
language if he so chooses. 

The remainder of the paper is divided into two parts, one dealing with the 
language and the other with the implementation. Certain aspects of the language 
that were intended primarily as implementation tools, e.g., open subroutines, 
are discussed in connection with the implementation. 

In discussing the language, we shall present simultaneous discussions of the 
syntax of SL and IL, accompanied by discussion of the semantics of both. In 
this way the semantic equivalence of SL and IL will become apparent. It should 
be borne in mind that the primary use of SL is for programs written by people, 
while the primary use of IL is for programs written by machines. Thus the 
syntax of SL is designed for convenience in writing, while the syntax of IL 
is designed to reflect in its form the structure of the program that it repre- 
sents. 

THE LISP 2 LANGUAGE 

TOKENS 

Tokens are the smallest units of input or output data with which LISP 2 programs 
ordinarily deal; they are significant because of their role in defining the 
standard input-output conventions with regard to both programs and data. The 
major categories of tokens are: 

(1) Delimiters 
(2) Numbers 
(3) Simple strings 
(4) Identifiers 
( 5) Operators 



SL = SOURCE LANGUAGE 
I L  = INTERMEDIATE LANGUAGE 
AL = ASSEMBLY LANGUAGE 
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The del imi ter  tokens are :  

Numbers as  tokens may be e i t h e r  signed o r  unsigned i n  IL, but must be unsigned 
i n  SL since a preceding sign is  in terpre ted  as  an operator. Some examples of 
unsigned numbers are :  

unsigned in teger  1 2 335 

unsigned o c t a l  12Q 1 4 ~ 6  

unsigned r e a l  .87 12. 4.535 2.3-10 

Signed numbers a re  l i k e  these ,  but a r e  preceded by a sign,  Other examples of 
tokens are:  

i d e n t i f i e r  AB H21 GO. TO 

operat o r  * /  = + > =  \ +  c 

A s t r i n g  consis ts  of a sequence of chaxacters delimited a t  each end by "#". 
The character  " ' " ins ide  a s t r i n g  causes t h e  character  following t o  be entered 
i n  the  s t r i n g ,  Some examples of s t r ings  are :  

An i d e n t i f i e r  may be created from a s t r i n g  by preceding it with t h e  escape 
character .  This character  i s  changeable within t h e  system but w i l l  usually be "%". I f  "%11 i s  t h e  escape character ,  t h e  following i s  an i d e n t i f i e r :  

An i d e n t i f i e r  created i n  t h i s  way i s  sa id  t o  have an "unusual spell ing,"  
s ince ,  i n  general,  such i d e n t i f i e r s  w i l l  be created only when they cannot be 
wri t ten  i n  any other way unambiguously. 

DATA 

The most general form of a LISP 2 datum i s  an S-expression, where t h e  S stands 
f o r  "symbolic." S-expressions a r e  b u i l t  up from atoms, which may be numbers, 
s t r i n g s ,  i d e n t i f i e r s ,  function spec i f i e r s ,  and arrays.  A s  i n  LISP 1.5,  t h e  
c l a s s  of S-expressions i s  defined recursively as  follows: 

(1) Every atom i s  an S-expression. 
(2)  If el and e2 a r e  S-expressions, then 
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(el e2) 

is an S-expression. Thus, for instance, 

((A . B) . (C D)) 

S-expressions of the form: 

(el . (e2 . ... . (en . NIL) ... 1) 

are known as lists, and can be written in the abbreviated form: 

The e. are called the elements of the list. The two notations may be inter- 
1 mixed ; thus 

is an S-expression in the form of a list, but the elements of the list are not 
themselves in the form of lists. The atom NIL can also be written in the form 
( ) ,  and designates the empty list. 

Basic Functions 

The LISP functions CAR, CDR, and CONS are defined by: 

CAR applied to (el . e2) yields el 
CDR applied to (el . e2) yields e2 
CONS applied to el and e2 yields (el . e2) 

In terms of the list notation, CAR finds the first element of a list and CDR 
removes the first element from a list. Thus CAR applied to the list (A B C D) 
yields A, and CDR applied to the same list yields the list (B C D). CDR applied 
to a list of one element yields the empty list ( ) .  The function NULL has value 
TRUE for the empty list ( ) (also represented as NIL) and value FALSE for any- 
thing else. The function CONS of two arguments can be used to add an element 
at the head of a list; thus CONS applied to the element A and the list (B C D) 
yields the list (A B C D). CONS is the basic operator used for constructing 
lists . 
I L  programs are written in the form of S-expressions, and therefore can be 
treated as data. The ability to treat programs as data in a natural way is 
an essential feature of LISP. SL programs can also be treated as data, 
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because of the existence of strings; however, this is not nearly so natural as 
it is with IL. 

Arrays are atoms because CAR and CDR are not defined for them. Constant arrays 
are written by enclosing their elements in brackets. For example: 

[INTEGER 2 5 -1 41 

is a one-dimensional array of integers, and: 

is a two-dimensional array of S-expressions. 

Data Types 

Although every LISP 2 datum is an S-expression, it is useful to pick out certain 
subsets of the set of all S-expressions and to designate these subsets by data 
type names. The data type names and the subsets they denote are: 

BOOLEAN Truth value data, represented by TRUE and FALSE. 
The empty list ( ) , the atom NIL, and the Boolean 
value FALSE are regarded as synonymous. 

INTEGER Signed integers. 

OCTAL Another form of integer, basically regarded as unsigned, 
that prints in an octal output format. 

REAL Floating-point decimals. 

FUNCTIONAL LISP 2 function. 

SYMBOL The entire set of S-expressions. Strings and identifiers 
must be of this type. 

type ARRAY An array whose elements are of the specified type, where 
type is either BOOLEAN, INTEGER, OCTAL, REAL, FUNCTIONAL, 
or SYMBOL. 

The different data types are not mutually exclusive, in that the class of data 
of type SYMBOL includes all other classes of data. Except for SYMBOL, all of 
the data classes include atomic data only. 
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EXPRESSIONS 

An expression is a designation of a datum. The datum designated by an expression 
is the value of the expression. The elementary components from which expressions 
are built up are constants, variables, and operational forms. We shall first 
discuss these, and then show how they are combined to form more complex expres- 
sions. 

Constants 

A constant is a datum appearing in a program context that denotes itself, i.e., 
its representation is both its name and its value. Consequently, a constant 
can not change value during the execution of a program. A symbolic constant 
is denoted by a quoted S-expression. In SL, an S-expression is quoted by 
preceding it with a single prime, e.g., 'ALPHA or '(~1 ~2). Quotation is 
necessary only for identifiers and lists to prevent them from being inter- 
preted as variables or operational forms. 

Variables 

A variable is also an elementary designation of a datum. However, the value of 
a variable may be changed during the execution of a program. A variable is 
normally denoted by a single identifier. Associated with every variable is a 
collection of bindings, each of which is a location containing a value. Bindings 
are created by declarations, which may appear in blocks, in functions, or on the 
supervisor level (see below). Blocks and functions are the two different kinds 
of program units. At execution time, a program unit may be activated either by 
the supervisor or by another program unit; thus there is a hierarchy of active 
program units. 

When execution of a program unit commences, a binding is created for each 
variable declared by the program unit. When execution of the program unit is 
completed, these bindings disappear. Thus, each active program unit has a 
set of bindings associated with it, and the hierarchy of bindings corresponds 
to the hierarchy of active program units. In general, the value of a variable 
is the value attached to the most recently created and still existing binding 
of that variable. It is possible to use an assignment action to change the value 
associated with the current binding of a variable. 

Associated with every variable is a type, a storage mode, and a transmission 
mode. The type of variable restricts but does not necessarily determine the 
types of the data that are its values at different times. In particular, a 
variable whose type is SYMBOL may assume values of any type whatsoever. 

There are three storage modes for variables: fluid, own, and lexical. A fluid 
variable can be referred to from outside the program unit that binds it, while 
a lexical variable can not. Thus, fluid variables are more general but are also 
more prone to conflicts of names. Fluid variables are primarily used as a means 
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of communication among separately compiled programs. An own variable is like 
a fluid variable except that only one binding can exist for it, and that binding 
must be made by a supervisor action. Own variables are designed primarily for 
communication with non-LISP 2 programs. 

A variable may designate a datum either directly or indirectly. If the variable 
designates the datum directly, then it designates the actual value of the datum; 
if the variable designates the datum indirectly, then it designates the location 
in which the value is stored. This distinction is significant chiefly when a 
datum is being passed as an argument to a function; the transmission mode of the 
argument variable indicates whether a value or a location of a value is being 
passed. If a location is being passed, then the transmission mode is said to be 
locative; otherwise the transmission mode is said to be by value. 

O~erational Forms 

An operational form is used to apply a lnction to its arguments, to invoke a 
macro transformation, to alter the flow of a program, or to locate an element 
of an array. An operational form in SL is written: 

where f is the form operator and the e are its operands. In IL the operational 
form is written as: i 

If the form operator designates a function, then to obtain the value of the 
operational form, the operands are first evaluated, and then the function is 
applied to the values so obtained. An array is handled similarly; the sub- 
scripts are treated as arguments of a function that finds the desired element 
of the array. 

Each function has associated with it a value type and a set of argument types. 
Any argument that is not of the expected type is converted to that type when 
the conversion is legal. The value type restricts the type of the result of 
the evaluation in the same way that the type of a variable restricts the values 
that the variable may assume. 

In general, the order of evaluation of the operands of an operational form is 
not guaranteed. This is a departure from most other problem-oriented languages, 
but leads to improved compiled code. Also, with the advent of parallel-proces- 
sing computers, it may be desirable to have several arguments evaluated simulta- 
neously. If evaluating an operand has any side effect on the evaluation of any 
other operand, then the results of the evaluations will be unpredictable. 
However, the operator ORDER applied to an operational form will cause the oper- 
ands to be evaluated in order of appearance. 
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Macros may be used to effect transformations of a program after it has been 
translated from SL to IL and before it has been compiled. When a macro name 
appears as a form operator, the effect at compile time is to cause the entire 
operational form to be replaced by a new form. The new form is calculated by 
a function associated with the macro; the argument of this function is the 
IL version of the operational form. Much of the task of compilation is 
achieved through the use of macros that are invisible to the user; however, 
the user can also define his own macros. The use of macros is discussed 
further in connection with the user control facilities of the compiler. 

Other Expressions 

Elementary expressions ( i . e . , constants , variables, and operational f oms ) may 
be combined in SL by means of prefix and infix operators. Thus, all of the 
usual arithmetic and Boolean expressions are permitted in the usual algebraic 
notation. The symbolic operators CAR m d  CDR are also prefixes, which help to 
reduce the accumulation of parentheses. If a, b, and c are any expressions 
in SL, the relational expression: 

and all similar forms have the same meaning in SL as they do in mathematics. 
Any number of relational operators can be combined in a relational expression, 
and different operators can be used in the same expression. 

Infix and prefix operators can not be used in IL, and must be replaced by 
corresponding operational forms. For example: 

is written in IL as: 

(PLUS (TIMES A B) 3 (MINUS (EXPT ALPHA 2) ) ) 

A similar notation is used for relational expressions. Conditional expressions 
in SL have the form: 

IF p1 THEN el ELSE IF p2 THEN e2 ELSE ... IF pn THEN en ELSE en+l 
The final ELSE clause need not be included (unlike ALGOL). The corresponding 
form in IL is: 

The pi, which are Boolean expressions, are evaluated in turn from left to 
right until a true one is found. The value of the corresponding ei is then 
used as the value of the entire expression. Conditional expressions have the 
useful property that evaluation proceeds only as far as necessary to determine 
the outcome. 
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A block expression i$ a block (see below) that appears in a context where an 
expression is required. A block expression is used to write a program as a 
sequence of statements to be executed and ultimately to produce a value. The 
value of a block is ordinarily specified by a RETURN statement (see below). 
LISP 2 differs from ALGOL in permitting a block to be an expression as well as 
a statement. 

A CASE expression is written in the form: 

in SL, and in the IL form: 

where s is an integer-valued expression known as the selector. If the value 
of the selector, s, lies in the range 1 r s I n, then the expression e is 
evaluated and is the value of the CASE expression. If s * 1 or s > n,sthe 
value is e . n 

An assignment expression is written in the form: 

in SL, and in the form: 

in IL. 

If v is a variable and e is an expression, the assignment expression has the 
effect of evaluating the expression e and assigning its value to v. The value 
of the entire expression is the value of e. Assignment expressions, like all 
other expressions, can be used as arguments in operational forms; in particular, 
they can be nested to achieve simultaneous assignment of value to several 
variables. 

The general form of the left side of an assignment expression is a locative 
expression. A locative expression designates a part of a data structure or 
variable structure. A variable is a particular case of a locative expression. 
Locative expressions can be used to designate the current binding of a variable, 
an element of an array, part of a list structure, or particular bits of a word 
of memory, Thus, the two assignments: 

A + '(MARY DOE) ; 
CAR A + 'JOHN ; 

will cause the value of A to become: 
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BLOCKS AND STATEMENTS I 

A block may be e i t h e r  a block expression, a block statement, o r  a compound 
statement. A l l  t h ree  of these  a r e  wri t ten  i n  the  same form and a r e  evaluated 
i n  the  same way. Whether a block is  a block expression, a block statement, o r  
a compound statement depends on both t h e  context of the  block and what i s  con- 
ta ined within the  block. 

In  SL, a block i s  wri t ten  i n  the  form: 

BLOCK(P, k2, . . . kk) al; a2 . . . a : sl; s2; . . . s END m n 

where the  k. a re  block parameters ( e i t h e r  variables or  variables with p rese t s ) ;  
t h e  a .  a r e  aeclara t ions  of a t t r i b u t e s  fo r  those parameters which a re  bound 
whilelthe block i s  ac t ive;  and the  s a re  statements. The corresponding form 
i n  I L  with the  block parameters and k t t r ibu tes  combined as  the  declarat ions d 
i s :  i 

A statement i s  an ac t ion t o  be taken. Any expression (o ther  than a var iable)  
can be used a s  a statement, but not every statement can be used a s  an expression. 
When an expression appears i n  a context where a statement i s  expected, the  
expression i s  evaluated, but t h e  value i s  discarded. A statement may have one 
o r  more l a b e l s  associated with it; these a r e  refer red  t o  i n  GO statements (see  
below) and indicate  where t o  t r a n s f e r  control .  Variables can not be s t a te -  
ments because of the  conf l i c t  with labels .  

When evaluation of a block begins, bindings a r e  simultaneously created f o r  
each i n t e r n a l  parameter speci f ied  by a block declarat ion.  These bindings 
remain i n  existence u n t i l  t h e  evaluation of the  block is  completed, a t  which 
time they disappear. Each binding contains a value f o r  the  var iable  t h a t  it 
binds. The nature of the  binding i s  speci f ied  by the  block declarat ion t h a t  
crea tes  it. After t h e  bindings have been made, execution of the  statements i n  
t h e  block begins. The statements a re  executed i n  tu rn  unless t h e  sequence of 
control  is  a l t e r e d  by a GO statement o r  by a RETURN statement. Execution of 
the  block is  terminated e i t h e r  by executing a RETURN statement o r  by executing 
t h e  l a s t  statement of the  block without a t r a n s f e r  of control .  

Each of the  a t t r i b u t e  declarat ions a .  i n  SL i s  i n  the  form: 
1 

Here v.  a r e  names of var iables  and the  p a re  words describing t h e  type and 
1 i storage mode. Lexical s torage is  specif ied by omission. If t h e  type i s  omitted, 

o r  no a t t r i b u t e  i s  given f o r  a var iable ,  a default  type i s  used. Each of t h e  di 
given i n  t h e  SL block heading is  e i t h e r  the  name of a var iable ,  o r  one of the  
two prese t  forms, 
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In the first form, e is an expression giving an initial value for the variable 
v, and designates that the variable is transmitted by value. No preset on a 
variable means that transmission is by value, and a default value, depending 
on type, is used for a preset. The second form designates a variable trans- 
mitted by location and initializes the variable by location, 

In IL, each declaration specifies the properties of one and only one variable; 
thus, in the translation from SL to IL, it is necessary to break up each 
declaration that declares more than one variable into a sequence of declarations 
(with appropriate factoring of properties). An IL declaration is in the form: 

where one of the properties is the initial value, if any, 

The various types of statements and their effects may be summarized as follows: 

(1) GO statement--transfers control to the named statement. 

( 2) RETURN statement--terminates evaluation of a block and determines 
the value of a block expression, 

(3) Compound statement--permits the insertion of a sequence of statements 
in a context where only a single statement is expected, A compound 
statement is in the form of a block with no declarations. 

(4) Conditional statement--selects one of several possible statements 
to be executed on the basis of the truth or falsity of a sequence 
of Boolean expressions. 

(5) Simple expression--causes the evaluation of the expression; the value 
is discarded, 

(6) FOR statement--causes an iteration to be performed for a sequence of 
values of a named variable, 

(7) TRY statement--causes control to be returned to itself if an exit:. 
condition is detected during the execution of a statement within 
the TRY statement, 

(8) Block statement--like a compound statement, except that internal a 

parameters may be declared in the same manner as in a block 
expression, 
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(9) CASE statement--selects one of several possible statements to be 
executed on the basis of the value of an integer-valued expression. 

(10) Empty statement--can be used to place a label; contains nothing and 
makes no action. 

The FOR statement has some unusual features that merit further discussion. 
The statement : 

FOR v IN x : s 

causes the statement s to be executed for each element of the list x, with v 
assuming the successive elements as its value in each execution of s. If ON 
is used instead of IN, v first assumes as values the entire list x, then its 
successive terminal segments CDR x, CDDR x, etc., until the list x is exhausted, 
The clause: 

UNLESS b 

may be inserted as part of a FOR statement to inhibit execution of the state- 
ment s whenever the Boolean expression b is TRUE. The UNTIL clause of ALGOL, 
used in conJunction with STEP, is replaced by a relational operator and an 
expression; iteration continues until the variable of iteration no longer 
satisfies the specified relation. This approach avoids the need to recompute 
the sign of the increment for each iteration. 

FUNCTIONS 

A function definition is a specification of a computational procedure; the 
procedure itself is a function. A function definition in SL is in the form: 

t FUNCTION n (xl, x2, . . . , xn) dl; . . . %: e 
where t is the type of the value of the function, n is the name of the function, 
the x.  are dummy variables that stand for its arguments, the d. are declarations 

1 governing the arguments, and e is an expression whose value is the value of the 
function. 

The corresponding form in IL is: 

where a declaration is given for each argument. Thus the declarations not only 
give the properties of the arguments but also name them. If the value type of 
the function is omitted, then the name n can be written without parentheses and 
the default type will be used. 
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The argument parameters a r e  used t o  denote the  values of the  ac tua l  arguments 
within t h e  body of the  function def in i t ion .  The body of the  function de f in i t ion  
e is  the  expression t h a t  defines the  value of the  function. The argument 
declarat ions specify the  type, transmission mode, and storage mode of the  
argument s , 

Functional Data 

A function may be used i n  e i t h e r  of two ways: a s  an operator o r  a s  a datum. 
We have already seen how functions can be used as  form operators. An example 
of the  use of a function a s  a datum would be the  input t o  a numerical in te-  
gra t ion rout ine;  the  input i s  the  function t o  be integrated,  and the  output 
i s  the  integrand. An example oriented more closely t o  symbolic data  processing 
would be t h e  use of the  LISP function MAPCAR, whose arguments a r e  a l i s t  t o  be 
transformed and a transformation function. The output of MAPCAR is  t h e  trans-  
formation l i s t .  Thus 

MAPCAR( ' ( 2 5 4 9 ) , FUNCTION ADDER( J ) INTEGER J : J+2) 

would be evaluated t o  the  l i s t :  

Since a function i s  i t s e l f  a datum, it can be used i n  any context where a datum 
is  expected. Thus, functions can themselves be used as  arguments of other 
functions,  and functions can be values of var iables ,  A function can be desig- 
nated by i t s  def in i t ion ,  by i t s  name, or  by a var iable  having the  function a s  
i t s  value. 

There a r e  two contexts i n  which a function may be referenced--as a datum, as  
we have jus t  sa id ,  and a s  a form operator. When a function i s  used a s  a form 
operator ,  it must be designated e i t h e r  by a functional  var iable  e , a 
var iable  whose values a r e  functions)  or  by a function name. The e f f e c t  of 
using a function de f in i t ion  a s  a form operator can be achieved by assigning 
t h e  function de f in i t ion  t o  a functional  var iable  (which i s  legi t imate ,  s ince 
t h e  function de f in i t ion  then appears i n  a data  context) and then by using the  
functional  var iable  a s  the  form operator. 

Functions of an Indef in i te  Number of A r m e n t s  

It i s  possible t o  define functions t h a t  expect an indef in i t e  number of arguments. 
In  defining such a function, the re  i s  no way t o  enumerate t h e  names of the  argu- 
ments; therefore  an argument vector ,  i . e . ,  a one-dimensional ar ray  having a 
s ingle  var iable  name v ,  designates the  s e t  of arguments. The length of the  
vector  i s  specif ied by a second var iable  k, In  the  argument l i s t ,  t h e  argument 
vector  (which must be the  first  argument) i s  designated by writ ing v ( k )  i n  SL 
and (v  INDEF k )  i n  I L .  When the  function is  entered, the  value of v i s  the  
vector of arguments, and t h e  value of k  i s  the  length of t h i s  vector. The 
d i f fe ren t  elements of the  argument vector  can then be refer red  t o  within the  
body of t h e  de f in i t ion  by subscripted occurrences of v. 
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For example, t h e  function SUMSQUARE might be wri t ten  t o  take t h e  sum of t h e  
squares of i t s  arguments. We would then define it i n  SL a s  follows: 

REAL FUNCTION SUMSQUARE ( X( I ) ) : 
BLOCK (J  ,Y) INTEGER J ;  REAL Y:  
FOR J+1 STEP 1 UNTIL > I : 
Y+Y + X(J) + 2; 

RETURN Y 
END 

Here X i s  t h e  argument-vector parameter and I i s  i t s  length. The corresponding 
I L  de f in i t ion  is: 

(FUNCTION ( SUMSQUARE REAL) ( ( X  INDEF I )  ) 
(BLOCK ( ( J INTEGER ) ( Y REAL) ) 

(FOR J (STEP 11 GR I )  
(SET Y(PLUS Y (EXPT (X ~ 1 2 ) ) ) )  

(RETURN Y))) 

An ac tua l  use of SUMSQUARE might look l i k e :  

SUMSQUARE (2 ,  7 ,  4 )  

i n  SL, and: 

i n  I L .  

SECTIONS 

A sect ion i s  a col lec t ion of declarat ions and def in i t ions  t h a t  operate a s  a 
u n i t .  Dividing a large  program i n t o  sect ions makes it possible t o  wri te  dif-  
f e ren t  p a r t s  of t h e  program independently without name conf l ic ts .  It a l s o  
makes it possible f o r  one user  t o  r e f e r  t o  programs wri t ten  by another user  
without name conf l i c t s .  A sect ion i s  designated by i t s  sect ion name, which 
i s  an i d e n t i f i e r .  Each sect ion i s  associated with a s e t  of var iables  t h a t  
designate the  various e n t i t i e s  defined within the  sect ion.  A t  any given time 
there  i s  a s ingle  ac t ive  sect ion,  which is  known as  the  current sec t ion;  a l l  
other sec t ions  a re  external  sect ions.  A var iable  i n  a pa r t i cu la r  sec t ion,  
whether current  o r  not ,  can be refer red  t o  by t a i l i n g  (of ten  ca l l ed  "qualifying"), 
e . g o ,  "JOE$SAM" r e f e r s  t o  t h e  var iable  JOE i n  sect ion SAM. 

The sect ion mechanism permits p a r t s  of LISP 2 programs t o  be wri t ten  and checked 
out independently. A t  merge time, a t t en t ion  need be paid only t o  variables used 
f o r  names of common functions and communication variables.  Since the  system 
programs a r e  i n  a specia l  sec t ion,  the  user  need not worry about name conf l i c t s ;  
a t  the  same time, t h e  system programs a re  accessible t o  t h e  user  through t h e  
t a i l i n g  mechanism. Thus t h e  user  can, i f  he chooses, t r e a t  t h e  system p r o g r q s  
as  an extension of h i s  own program ra the r  than as  a black box. 
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SUPERVISOR LEVEL OPERATIONS 

LISP 2 is controlled by a supervisor program that is itself named LISP and that 
can be called as a function. When the user starts up the LISP system, the 
supervisor is called immediately. The supervisor accepts commands to perform 
various operations. The actions taken by the supervisor in response to these 
commands are known as top-level operations. The following top-level operations 
are possible: 

(1) hraluate an expression. 

(2)  Establish a current section with given name and default type. 

( 3 )  Create a fluid or own variable of specified type and transmission 
mode. 

(4) Define a function. 

( 5 )  Define a dummy function (used to establish type information in 
certain cases). 

(6) Define a macro. 

( 7 )  Define an instruction sequence to be used in compilation. 

(8) Define an assembly-language program. 

( 9 )  Declare a variable to be synonymous with another variable. 

The user can specify the input and output devices to be used; the on-line 
typewriter is taken as the default case. After each operation, the system 
sends any necessary output to the output device and proceeds to the next 
operation. 

Input -Output 

One of the primary design aims in LISP 2 I/O has been the maintenance of as 
much machine independence as possible. This is accomplished by distinguishing 
user interfaces from system interfaces and insulating the user from the system 
interfaces. This effect is achieved by creating machine-independent data 
aggregates called "files," and permitting the user to operate with files by 
means of LISP 2 functions. 

To the user, a file is a source or sink for information, which is filled on 
output and emptied on input. A file itself is both device- and direction- 
independent. The relationship of a file to an external device is determined 
by the user at run time, when he specifies whether the file is to be an input 
file, an output file, or both. 
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To t h e  system, a f i l e  consis ts  of a sequence of records, represented in te rna l ly  
a s  an ar ray  of type OCTAL if the  f i l e  is  binary, and as  a s t r i n g  if t h e  f i l e  is  
composed of characters .  (ASCII 8-bit characters  a r e  used in te rna l ly  throughout 
LISP 2.)  To reduce buffer  storage overhead, only one record f o r  a given f i l e  
can be i n  main memory a t  a time. S t r ing  records a re  fu r the r  s tructured i n t o  
l i n e s .  The number of characters  per l i n e  and l i n e s  per record may be specif ied 
by t h e  user ,  but must be consistent  with the  conventions used by t h e  external  
monitor system. 

When a record i n  a f i l e  i s  moved from an external  device i n t o  core, it i s  trans-  
formed i n t o  a LISP 2 s t r ing .  The transformation may involve character  code 
conversions and inser t ion  o r  delet ion of control  characters. The transformation 
i s  governed by a col lec t ion of control  words associated with t h e  f i l e .  During 
output, t h i s  transformation, known as  "s t r ing  gost-processing," i s  reversed. 

F i l e  Activation and Deactivation 

A f i l e  may be e i t h e r  ac t ive  or  inactive;  an ac t ive  f i l e ,  i n  tu rn ,  may be e i t h e r  
se lec ted  o r  deselected. No record i s  kept within LISP of inact ive  f i l e s ;  how- 
ever, many f i l e s  may be ac t ive  concurrently. 

A f i l e  i s  ac t ivated  by evaluating t h e  function OPEN which es tabl ishes  a l l  
necessary communication linkages between LISP 2 and the  monitor. The f i l e  is  
named by an i d e n t i f i e r  t h a t  is  i t s  referent  throughout i t s  ac t ive  l i f e .  The 
user  fu r the r  spec i f i e s  t h e  desired f i l e  descript ion a t  t h i s  time. This descrip- 
t i o n  i s  given only once and consis ts  of a l i s t  of f i l e  propert ies desired by t h e  
user ,  such as  t h e  un i t  ( tape ,  d i sc ,  te le type ,  CRT, e t c .  ), form (binary,  ASCII, 
BCD , e t c  . ) , format ( l i n e  and record s i z e s )  , and various protect ion and i d e n t i f i -  
c a t  ion parameters. 

Deactivation of a f i l e  i s  achieved by evaluating t h e  function SHUT. SHUT breaks 
a l l  t h e  communication linkages and dele tes  a l l  in te rna l  s t ructures  such a s  
ar rays ,  s t r i n g s ,  and variables t h a t  were dynamically established by OPEN. The 
user  may specify t h e  disposi t ion of the  f i l e ,  e.g., t h e  saving of t h e  tape o r  
t h e  inse r t ion  of t h e  f i l e  i n  d isc  inventory. The external  monitor i s  informed 
of such ac t ions  by LISP 2. 

F i l e  Select ion 

A t  any given time, exactly one f i l e  is selected f o r  input and one f o r  output; 
a l l  other ac t ive  f i l e s  a r e  deselected. The LISP 2 reading functions a l l  operate 
on t h e  current ly  se lec ted  input f i l e ;  t h e  pr in t ing functions a l l  operate on t h e  
current ly  se lec ted  output f i l e .  The functions INPUT and OUTPUT are  used f o r  
se lec t ing  t h e  input f i l e  and the  output f i l e ,  respectively. 

When a new f i l e  i s  se lec ted ,  t h e  record, l i n e ,  and column controls  f o r  t h e  de- 
se lec ted  (replaced) f i l e  a r e  preserved, and the  new f i l e  record, l i n e ,  and 
column controls  a r e  re-established. Once a f i l e  is  selected,  a l l  1 /0  primit ives 
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act only on that file. Thus it is possible to write a LISP 2 program that is 
independent of form, format, and device by supplying the name of the file as 
an argument of the program at run time. This scheme allows a LISP program to 
be debugged with files generated on-line and subsequently run with bulk data 
from tape or disc files simply by changing the selected file. 

Other 1/0 Functions 

A variety of 1/0 functions are available for reading and writing binary and 
symbolic data. There are character-level primitives that permit testing, 
printing, reading, and transforming characters. Other functions allow reading 
and printing at the token and S-expression levels. Character mappings permit 
LISP 2 to communicate with restricted character-set devices. 

EXAMPLES 

An example is now given of a complete SL program. The example includes not 
only the program itself but also the control actions necessary to test it: 

SYMBOL SECTION EXAMPLES, LISP: 
%R LCS FINDS THE LONGEST COMMON SEGMENT OF TWO LISTS L1 and L2 
FUNCTION LCS (~1,~2) : 

BLOCK (x, Y, BEST, K + 0, N, LX +. LENGTH(L~)) INTEGER K, N, LX: 
FOR X ON L 1  WHILE LX > K : 
BLOCK ( LY LENGTH ( L2 ) ) INTEGER LY : 

FOR Y ON L2 WHILE LY > K: 
DO N + COMSEGL (x,Y); 

IF N <= K THEN GO A; 
K + N; 
BEST + COMSEG (X ,Y) ; 

A: LY LY -1; 
END ; 
RETURN BEST; 

END, 

%R COMSEGL FINDS THE LENGTH OF THE LONGEST INITIAL COMMON SEGMENT OF 
%R TWO LISTS X AND Y. 

INTEGER FUNCTION COMSEGL ( X ,Y ) : 
IF NULL X OR NULL Y OR CAR X /= CAR Y 

THEN 0 ELSE COMSEGL (CDR X, CDR Y) + 1, 

%R COMSEG FINDS THE LONGEST INITIAL COMMON SEGMENT OF TWO LISTS X AND Y 
SYMBOL FUNCTION COMSEG (X, Y) : 

IF NULL X OR NULL Y OR CAR X /= CAR Y 
THEN NIL ELSE CAR X COMSEG( CDR X, CDR Y) , 
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%R LENGTH COMPUTES THE LENGTH OF L 
INTEGER FUNCTION LENGTH (L)  : 

BLOCK (K,  ~ 1 )  INTEGER K: 
FOR L1 I N  L : K + K + 1; 
RETURN K; 

END, 

LCS ( ' ( A  B C B C D E ) ,  ' ( B  C D A B  C D E F)); 
machine: ( B  C D E )  

This example i l l u s t r a t e s  t h e  use of l i s t  processing c a p a b i l i t i e s  combined with 
in t ege r  a r i thmet ic  and i t e r a t i o n .  The operator  "<=" means " l e s s  than o r  equal 
t o , "  and t h e  operator  "I=" means "not equal  to ."  The LISP opera tors  CAR, CDR, 
and NULL a r e  a l l  used a s  p r e f i x  operators  without parentheses.  The dot i n  t h e  
t h i r d  l i n e  of COMSEG is  an i n f i x  operator  t h a t  s tands f o r  t h e  LISP funct ion 
CONS. The statement "FOR X ON L1" causes i t e r a t i o n  t o  take  p lace  on t h e  
successive te rminal  segments of L1. Thus, i f  L1 i s  t h e  l i s t  ( A  B C D ) ,  then 
i t e r a t i o n  t akes  place successively on (A B C D), (B  C D ) ,  ( C  D ) ,  and ( D ) .  The 
funct ion LENGTH, defined here ,  i s  ava i l ab le  a s  a system f'unction and i s  rede- 
f ined  only as an i l l u s t r a t i o n .  

THE PROGRAMMING SYSTEM 

SYSTEM OVERVIEW 

A diagram of t h e  LISP 2 system, which shows t h e  r e l a t ionsh ips  among i t s  d i f f e r -  
en t  components, i s  shown i n  Figure 2. Information en te r s  t h e  system v i a  t h e  
110 package i n  e i t h e r  SL o r  IL. The I / O  package transforms t h e  input  i n t o  a 
stream of characters--the input t o  t h e  f i n i t e  s t a t e  machine--which i n  t u r n  
generates  a stream of tokens. Among o ther  th ings ,  t h e  f i n i t e  s t a t e  machine 
performs t h e  t a s k  of l inking  up a newly received i d e n t i f i e r  with a previous 
copy of t h e  same i d e n t i f i e r .  The token stream produced by t h e  f i n i t e  s t a t e  
machine i s  routed by t h e  supervisor  t o  e i t h e r  t h e  syntax t r a n s l a t o r  o r  t o  a 
reading program f o r  IL, depending on whether SL o r  IL i s  expected. I n  e i t h e r  
case ,  t h e  r e s u l t  i s  an expression i n  IL. The supervisor determines when 
compilation i s  t o  t ake  p lace ,  and a l s o  handles processing reques ts .  

The syntax t r a n s l a t o r  t akes  a stream of SL tokens and transforms it i n t o  an 
IL expression. This expression can be returned as output ,  passed t o  t h e  com- 
p i l e r ,  o r  both. The choice i s  made by t h e  supervisor  under t h e  con t ro l  of t h e  
user .  The syntax t r a n s l a t o r  cons i s t s  of parsing and generat ing programs t h a t  
a r e  compiled from a s e t  of syntax equations. These syntax equations def ine  SL 
i n  terms of IL. 

The compiler, which i s  t h e  most complex component of t h e  system, converts  I L  
i n t o  input  f o r  LAP, t h e  LISP Assembly Program, o r  f o r  t h e  core image generator .  
Both LAP and t h e  core image generator  accept input i n  assembly language (AL) .  
If LAP i s  being used, then t h e  r e s u l t  of assembly i s  a r e loca tab le  segment of 



I LIBRARY FUNCTIONS ( 

I P R I M I T I V E S  I 

I GARBAGE COLLECTOR I 
I META COMPILW I 

(unlabeled connections designate control paths. ) 

Figure 2. System Components and Information Flow Paths 



26 September 1966 

code s tored i n  an area  of the  machine reserved f o r  binary programs. If the  
core image generator is  being used, then the  r e s u l t  is a s t r i n g  of pa i r s  of 
binary numbers, each consist ing of a core location and the  contents of t h a t  
locat ion,  s tored on a magnetic tape or  other external  medium. The core image 
generator i s  only used when a new system i s  being created. 

The META compiler, t h e  garbage co l l ec to r ,  and the  primit ives a r e  a l l  impl ic i t ly  
involved i n  t h e  operation of the  system. The META compiler i s  a l i b r a r y  pro- 
gram t h a t  generates a syntax t r a n s l a t o r  from a s e t  of syntax equations. The 
garbage co l l ec to r  i s  the  program t h a t  co l l ec t s  dead storage when avai lable  
storage has been exhausted. The primit ives a r e  the  basic l i b r a r y  functions i n  
terms of which the  e n t i r e  system i s  writ ten.  

MEMORY MANAGEMENT 

Most of t h e  concepts of memory management used i n  LISP 1.5 a r e  a l s o  used i n  
LISP 2. Memory management i n  LISP 2 i s  based on several  considerations: 

( 1 )  LISP 2 data  s t ructures  may vary i n  s i z e  by orders of magnitude * 

a t  run time, and storage f o r  such data  s t ructures  must be a l located  
automatically . 

( 2 )  Since recursion i s  permitted, successive generations of data  
s t ruc tu res  must be retained simultaneously. 

( 3 )  Programs and data  s t ructures  t h a t  a r e  no longer needed must be 
purged without e x p l i c i t  act ion on the  par t  of the  user. 

( 4 )  Numerical da ta  must be stored i n  such a way a s  t o  permit e f f i c i e n t  
numerical calculat ions.  

LISP 2 data  s t ructures  may be e i t h e r  var iable  or f ixed i n  s ize .  The var iable  
data  s t ruc tu res  a re  ar rays ,  s t r i n g s ,  and symbolic expressions. Although an 
ar ray ,  once established,  does not change i n  s i z e ,  the  s i z e  of an array i s  
frequently not known u n t i l  the  occasion a r i s e s  t o  crea te  it. In  t h e  case of 
l i s t  s t ruc tu res ,  the  s i tua t ion  i s  even more complex; a l i s t  s t ruc tu re  may be 
modified i n  such a way as  t o  increase o r  decrease i t s  aize.  

Arguments of functions ana in te rna l  parameters of blocks a r e  s tored on a push- 
down stack.  Since a l l  temporary storage belonging t o  LISP 2 functions i s  
recorded on the  pushdown s tack,  which is  maintained by the  LISP 2 system, 
recursion i s  permitted with no specia l  user  provisions. Unlike LISP 1.5, LISP 
2 s to res  numbers d i r e c t l y  on the  pushdown stack as  s ingle  c e l l s .  Therefore, it 
i s  possible t o  perform ari thmetic without the  l o s s  of ef f ic iency t h a t  would 
a r i s e  from packing and unpacking numbers referenced indi rec t ly .  Symbolic 
expressions, s t r i n g s ,  and ar rays ,  however, a re  accessed by means of pointers  
s tored i n  the  stack.  The data  s t ructures  thus pointed t o  a re  discarded when 
the  function creat ing them has completed i t s  execution; however, they do not 
disappear, but remain as  garbage u n t i l  t h e  next garbage col lec t ion,  t h e  descrip- 
t i o n  of which follows. 
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In LISP 2,  da ta  s t ructures  a r e  grouped according t o  t h e i r  storage charac te r i s t i c s  
and a  storage area  i s  s e t  aside f o r  each group. The groups are :  

(1 )  Elementary symbolic e n t i t i e s  (symbolic constants ,  function and 
var iable  names, e t c  . ) 

(2 )  Compiled programs. 

( 3 )  L i s t  s t ructures .  

( 4 )  Arrays and s t r ings .  

In  addit ion,  a  storage area  i s  s e t  as ide  f o r  t h e  pushdown stack. These storage 
areas  a r e  arranged i n  p a i r s ,  where one member of the  p a i r  grows from t h e  bottom 
up and t h e  other grows from the  top down. Data storage is  obtained by taking 
storage space from the  appropriate area  u n t i l  t h a t  area  i s  exhausted (which 
occurs when i t s  boundary meets t h e  boundary of t h e  area  t h a t  is  paired with i t ) .  
A t  t h i s  point ,  the  garbage co l l ec to r  i s  invoked. Garbage col lec t ion erases a l l  
inaccessible data  s t ructures  and reclaims the  emptied space f o r  new s t ructures .  
For instance,  i f  a  LISP 2 function has been redefined, the  program corresponding 
t o  i t s  old de f in i t ion  i s  inaccessible and thus i s  erased. During garbage 
co l l ec t ion ,  the  d i f fe ren t  areas a r e  compacted, re locat ing code and/or data  
s t ruc tu res ,  i f  necessary, so as  t o  eliminate the  gaps l e f t  by erased' s t ructures .  

The d i f fe ren t  kinds of s t ructures  a r e  s tored i n  d i f fe ren t  areas because t h e i r  
requirements i n  terms of garbage col lec t ion a re  d i f fe ren t .  For instance,  t h e  
elementary symbolic e n t i t i e s  can not be moved, but other kinds of data  can be 
moved. Similarly,  l i s t  s t ructures  consis t  of independent nodes, while ar rays  
consist  of blocks of d i f fe ren t  s i zes .  

SYNTAX TRANSLATOR AND META COMPILER 

The t r ans la t ion  from SL t o  IL i s  performed by a  syntax t r a n s l a t o r  t h a t  was 
generated by the  META compiler. The META compiler i s  based upon a  program 
developed by the  Special  I n t e r e s t  Group f o r  Programming Languages of t h e  Los 
Angeles Chapter of ACM [ 8 ] .  The META compiler takes as  input a  speci f ica t ion 
of t h e  syntax of SL, together with ins t ruct ions  on how each syntact ic  e n t i t y  
i s  t o  be transformed t o  IL. It produces an IL program t h a t  ac tua l ly  c a r r i e s  
out the  t r ans la t ion  from SL t o  IL. The descript ion of t h e  syntax of SL i s  
given i n  an extended version of Backus Naur Form [ b ] .  

The META compiler produces top-to-bottom compilers with a  control led backup 
fea tu re  and an in ter face  with the  f i n i t e  s t a t e  machine ( see  below). Both the  
control led backup and t h e  f i n i t e  s t a t e  machine a r e  ef f ic iency fea tures .  The 
control led backup allows t h e  designer of a  language t o  specify i n  t h e  syntax 
equations when the  s t a t e  of the  machine must be saved because two o r  more 
parsings s t a r t  with the  same construction. 
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Since it i s  possible t o  regenerate the  syntax t r a n s l a t o r  with new syntax 
equations a t  any time, t h e  syntax and semantics of SL a re  not ,  i n  pr inciple ,  
r i g i d l y  fixed. In  pract ice ,  var iants  on the  -syntax t r a n s l a t o r  w i l l  be used 
i n  order t o  t r a n s l a t e  other languages i n t o  LISP 2 I L .  These other languages, 
unlike SL, w i l l  normally not be semantically equivalent t o  IL. 

FINITE STATE MACHINE 

The f i n i t e  s t a t e  machine (FSM) i s  a token-parsing program used by the  syntax 
t r a n s l a t o r  and the  S-expression reader. Reading LISP 2 e n t i t i e s  is  expensive, 
not only i n  t h e  o r ig ina l  creat ion of t h e  in te rna l  s t ructures ,  but a l s o  i n  the  
time spent i n  garbage col lec t ing when the  s t ructures  a r e  discarded. Conse- 
quently, it is des i rable  t o  avoid backup a t  the  character  l e v e l  and i t s  
resu l t ing  re-creation of duplicate s t ructures .  Since backup must be used by 
t h e  syntax t r a n s l a t o r ,  the  FSM was imposed between it and t h e  character  stream 
t o  eliminate reprocessing of tokens. Having t h e  bottom-to-top FSM in te r face  
with t h e  top-to-bottom syntax t r a n s l a t o r  eliminates a large  port ion of the  
overhead associ.ated with reading i n  the  LISP 2 system. The S-expression 
reader does not require backup, but s ince the  FSM existed,  it was convenient 
t o  use tokens fo r  building S-expressions also.  

The FSM behaves l i k e  a Turing machine. It moves from s t a t e  t o  s t a t e  a s  it 
reads characters;  when a terminal s t a t e  i s  reached, it "prints" a character  
from i t s  output alphabet (tokens) and s e t s  i t s  s t a t e  t o  t h e  i n i t i a l  one. 
Parsing and manufacture of s t ructures  a r e  done simultaneously as  characters  
a re  recognized. No reprocessing of the  parsed characters  i s  ever necessary, 
s ince i n  a terminal s t a t e  t h e  token i s  already complete (except f o r  a f i n a l  
ac t ion,  such as  combining t h e  pa r t s  of a r e a l  number). 

LISP 2 COMPILER 

The LISP 2 compiler i s  a large ,  one-pass, optimizing t r a n s l a t o r  whose input i s  
a function de f in i t ion  i n  IL and whose output i s  an assembly-language l i s t  of 
ins t ruct ions  su i t ab le  f o r  input t o  LAP. Most of the  compiler i s  independent 
of t h e  t a r g e t  machine, s ince the  compilation concepts themselves a r e  machine- 
independent. The declarat ions of a l l  f l u i d  var iables  appearing within t h e  
function a r e  wri t ten  i n t o  t h e  output l i s t i n g ,  s ince these must agree with 
f luid-variable declarat ions made elsewhere. Checks a re  made f o r  both format 
and semantic e r ro r s  during compilation. The compiler consis ts  of th ree  major 
sect ions:  t h e  analyzer, the  optimizer, and the  user  control  functions. 

Analyzer 

The top-level control  of the  compiler res ides  i n  the  analyzer, which operates 
recursively.  Each item t o  be compiled i s  passed t o  the  analyzer e i t h e r  
d i r e c t l y  or  ind i rec t ly .  I f  t h e  item i s  a var iable ,  an appropriate declarat ion 
i s  found and code f o r  r e t r i ev ing  the  var iable  i s  generated; otherwise the  code 
f o r  a function c a l l  is generated, a macro expansion i s  performed and the  r e s u l t  
compiled, or  linkage t o  an appropriate code generator i s  made. 
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A pattern-matching function has been implemented for use in the LISP 2 compiler. 
The patterns are written in a modified form of Backus Naur Form (not the same 
as the one used in the syntax translator). The patterns are matched to an 
S-expression and the value of the match is either TRUE or FALSE. The pattern- 
matching function checks for syntactic correctness and distinguishes among 
different forms at the same time. 

Optimizer 

Optimization of the code produced by the LISP 2 compiler is handled by many 
groups of routines, each responsible for certain actions. The communicative 
mechanisms between these various parts and the rest of the compiler will be 
described in some detail below. 

The movers, a highly machine-dependent set of functions, produce code that alters 
the state of a compilation in a specified way, such as moving an object to an 
accumulator or converting a datum to a specific type. Embodied in the movers 
is a predicate capability that answers the question, "Is this move possible 
under these conditions (say, one machine instruction)?" The movers are used 
to build all address and modifier fields of generated instructions. Associated 
with the movers is a post-processor that rewrites the output code after the 
main compiler has produced it. Redundant load-store sequences and some un- 
necessary branches are removed from the listing. Also, certain groups of 
instructions are rewritten to make use of machine-specific instructions. 

The arithmetic optimization package handles code generation for addition and 
multiplication. The algorithm used is a standard one that first sorts the 
arguments by type and then by priority sequence within a particular type. The 
sequence depends on whether the arguments are memory or accumulator references. 
A single set of functions handles both multiplication and addition, with the aid 
of several functional arguments . 
A second kind of optimization has to do with the elimination of unnecessary trans- 
fer instructions. This task is accomplished through the analysis of confluence 
points, i.e., places in the program at which several paths of control converge. 
For instance, consider the conditional expression: 

The appearance of this conditional expression establishes a confluence point at 
the end of the compiled code that represents it. After the execution of any of 
the e control goes to this confluence point. Moreover, the confluence point is i '  hereditary for each of the e i.e., if one of the e is a conditional expression, 

i' i 
then its confluence point is the same as that of the entire expression. Analogous 
considerations hold for conditional statements. Confluence points are also hered- 
itary with respect to RETURN statements of blocks, i.e., the confluence point of 
a RETURN statement is the same as that of the block in which it appears. 
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When an expression is  compiled, the  charac te r i s t i c s  of the  value t h a t  i s  pro- 
duced must be specif ied.  These charac te r i s t i c s  include type, whether it is  i n  
a spec ia l  r e g i s t e r  o r  i n  an ordinary memory c e l l ,  i t s  address modifier ( d i r e c t  
o r  i n d i r e c t ) ,  which r e g i s t e r s  it may be l e f t  i n ,  whether t h e  ac tua l  value i s  
needed or  whether the  negative or  reciprocal  of the  value i s  so described, e t c .  
These charac te r i s t i c s  a re  remembered by a s e t  of s t a t e  var iables ,  which a r e  
bound f o r  each c a l l  t o  the  analyzer. A s  a statement o r  expression i s  compiled, 
a l i s t i n g  i s  generated and the  s t a t e  variables s e t  t o  r e f l e c t  t h e  s t a t e  of t h e  
compilation. The compiler i s  passive i n  the  sense t h a t  a compilation produces 
only t h e  minimum mount of code necessary t o  allow t h e  r e s u l t  t o  be described 
by the  s t a t e  variables.  

User Control F a c i l i t i e s  

The user  can give t h e  compiler e x p l i c i t  ins t ruct ions  t o  a id  i n  t h e  compilation 
process. A s  i n  LISP 1.5, macros a r e  an in tegra l  pa r t  of the  language. Many 
of the  f a c i l i t i e s  of the  language, e.g., FOR statements, a r e  implemented by 
means of system macros. When a FOR statement ( i n  IL form) is  encountered 
during compilation, it appears a s  an operational form whose operator i s  FOR. 
The compiler t e s t s  each form operator t o  see i f  a macro i s  defined f o r  it. 
In the  case of FOR, the re  i s  such a macro. The macro i s  invoked with t h e  FOR 
statement ( i n  t h e  form of an S-expression) as  input. The output i s  a block 
containing an equivalent i t e r a t i v e  loop. This block i s  then compiled i n  place 
of the  FOR statement. Macros may a l so  be defined by the  user ,  and no dis t inc-  
t i o n  i s  made between system macros and user  macros. 

Certain machine-dependent operators a re  pa r t i cu la r ly  useful  a s  primit ives i n  
compilation. CORE i s  an operator t h a t  a c t s  l i k e  an array whose content i s  a l l  
of t h e  machine memory. Therefore CORE(X) i s  the  content of locat ion x. BIT i s  
an operator t h a t  spec i f i e s  a ce r t a in  contiguous portion of a word. There a r e  
a l s o  severa l  operators t h a t  permit an expression t o  be forced t o  a ce r t a in  type 
or  permit a datum of one type t o  be used as  though it were of another type. 
Although such mechanisms e x i s t  i n  most compilers, LISP 2 has made these  items 
avai lable  through t h e  language. 

LISP 2 ASSENRLY PROGRAM 

The LISP 2 Assembly Program, LAP, generates a code segment from a l i s t  of 
symbolic ins t ruct ions  and l abe l s .  LAP a l s o  a l loca tes  storage f o r  var iables  on 
t h e  pushdown s tack,  and insures t h a t  references t o  f l u i d  and own var iables  a re  
consistent  among d i f fe ren t  compiled functions. LAP does more than most assem- 
b l e r s ,  i n  t h a t  it handles a l l  aspects of pushdown stack mechanics; consequently, 
references t o  var iables  a r e  made by naming the  var iable  i n  the  appropriate 
f i e l d  of any ins t ruct ion t h a t  references it. Thus, the  pushdown stack need 
never be referenced exp l i c i t ly .  

LAP includes a number of system macros spec i f i ca l ly  designed f o r  LISP 2 pro- 
gramming. The prologue and epilogue of a function a re  generated by BEGIN and 
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RETURN respectively;  CALL i s  used t o  generate a c a l l  t o  a LISP 2 function i n  
t h e  standard format. Storage a l locat ion on the  pushdown stack i s  performed 
by t h e  BLOCK, DECLARE, and END macros; FLBIND creates  any necessary bindings 
f o r  f l u i d  variables.  LAP does not have a generalized macro f a c i l i t y ;  any 
e f f e c t  t h a t  could be achieved by such a f a c i l i t y ,  however, can a l s o  be achieved 
by preprocessing. 

The address f i e l d  of' an ins t ruct ion may be used t o  a l loca te ,  r e f e r  t o ,  o r  
re lease  temporary storage on t h e  pushdown stack. The address f i e l d s  TOP, and 
POP. a r e  normally used with ins t ruct ions  of t h e  "load" type. Both TOP, and 
POP, r e f e r  t o  the  most recently a l located  pushdown c e l l ,  but POP. has t h e  
addi t ional  e f f e c t  of releasing t h a t  c e l l .  PUSHA. and PUSHP. both cause a new 
pushdown c e l l  t o  be a l located ,  and r e f e r  t o  t h a t  c e l l ;  PUSHA. and PUSHP. a r e  
normally used i n  ins t ruct ions  of t h e  "store" type. PUSHA. i s  used f o r  absolute 
quan t i t i e s  and PUSHP. fo r  symbolic quan t i t i e s ,  so t h a t  a map of t h e  pushdown 
stack can be maintained. 

To i l l u s t r a t e  t h e  use of assembly language, a s  well as t h e  output code produced 
by t h e  compiler, we give t h e  Q-32 assembly language version of the  program 
RANDOM presented as  an example e a r l i e r  i n  the  paper: 

(W (FUNCTION (RANDOM REAL) 
( ( A  REAL) ( B  REAL)) 
(STF TOP.) 
(BEGIN) 
(LDA Y )  
(MUL 3125 ( ~ 5 6 7 . 7  R s ) )  
(STB Y) 
( ARGS ) 
(LDA Y) 
( STF PUSHA. ) 
(LDA (NUMBER 67108864) S)  
( CALL ( REMAINDER . LISP) ) 
(STF Y )  
(LDC A) 
(FAD B) 
(STF PUSHA. ) 
(LDA Y )  
(FLT (ENTRY ~ 4 8 . ) )  
(FDV (NUMBER 6.71088640003-7) ) 
(FMP POP.) (FAD A )  ~09017 (END) (RETURN)) 

( ((REMAINDER . LISP) FUNCTION (FUNCTIONAL INTEGER INTEGER INTEGER) 
NIL) ( Y  OWN INTEGER NIL)) USER) 
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