
(

The views, c~lusions. or recommendations expressed in' this document do not neces-
sarily reflect the officlll views or policies of agencies of the United States Government 11C1 34l7/360/00
The research reported in this paper was sponsored by
the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic Systems Division, Air Force Systems Command
under contract F1962867COoo4, Information Processing
Techniques, with the System Development Corporation. TECHNICAL~

.r:-~~ett
.EWS~J¥2';;:D

C Weis • S D.

D. z
for J. I. Schwartz

System Dnelopment Corporation I 2500 Colorado Avenue I Sinta Monica, CaJlfurnil 90406

Inftnnltion Internltlonal Inc./1l161 Pica Boulevlrd I Los Angeles, Californil 90064
DATE 4/26/67 PAlE 1 OF1L-PAIES

(Page 2 is blank)

LISP 2 Compiler Type Resolver Language and Processor Specifications

ABSTRACT

This document describes the language and processor
required for the Type Resolver pass of the LISP 2
compiler proposed for the IBM S/360 computer. The
Type Resolver (pass III of the LISP 2 compiler) is
used to transform CRIL input into TRIL by making
type conversions and confluence-point branches
explicit.

----- --_._._---

)

)

)

l

C

26 April 1967 3
(Page 4 Blank)

TABLE OF CONTENTS

Section 1. Introduction • • •

2. Type-Resolved Interlude Language

3. Type Resolver •
3.1 Type Resolver utility Functions
3.1.1 CRTYPE • •
3.1.2 PRECISION. :. •
3.1.3 . FORMAT • • •
3.1.4
3.1.5
3.1.6
3.1.7
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.7
3.8

Table 1.
Table 2.
Table 3.

TYPE
INTYPE
TRMST • •
GNFUNC •
Type Resolution of Arithmetic •
Minus • •
Plus and Times •
Type Resolution of Drive • • •
Call it Resolution • •
Predicate Resolution •
Pretum Resolution • •
Pterm Resolution • •
Terminal Resolution
Return Resolution •
Terminal Resolution
Resolution of Conditional Statements •
Resolution of Assignments

Assignment Expression DTYPE Format Actions
Assignment Expression PDTYPE Format Actions •
Type Resolver Public General Variables

.TM-3417/36%o

•

•

•

•

•

•

•

•
•

Page

5

6

9
9
9
9
9

10
10
10
10
10
10
11
11
11
11
11
12
12
12
12
13
13

14
14
16

_J

_J

--------- -- - ------ ---- --------_._---- -. ------

(
\

/

~ ...

26 April 1967 5 TM-34l7/36%o

1. INTRODUCTION

Type-Resolved Interlude Language (TRIL),the output language of the Type Resolver
pass of the LISP 2 compiler, bears a strong resemblance to CRIL. In TRIL, all
confluence point branches and type conversions are explicit. Also, arithmetic
forms such as addition and multiplication have been parsed into floating. fixed,
and general groupings.

A type consists of both a format (integer, general, real, etc.), and a preCision
(the number of bits comprising the datum). Type equality is not a useful
consideration in the description of TRIL t rather, an inclusive relation is
necessary. We say typel £ type2, if and only if one of the following conditions
is met:

let Pl • the preCision of typel

P2 • the precision of type2

fl • the format of typel

f2 • the format of type2

1. fl· f2 and PI ~ P2

2. f l " either signed integer or unsigned integer, and

f2 ,. either signed integer or unsigned integer and Pl ~ P2

3. f 1 ,. array subtype and

f2 • arr~ and Pl ~ P2 (similarly for records and tables)

4. fl. array or record or table, and

f2 • general and Pl ~ P2

If typel t type2, then a need for a datum of type2 may be satisfied by a datum

of typel • This relationship is transitive, i.e., if tl E t2 and t2 £ t 3 , then

tl £ t3'

26 April 1967 6 TM-3417/36%o

2. TYPE-RESOLVED INTERLUDE LANGUAGE

The TRIL language m~ best be described as a series of additions to and
deletions from the CRIL language. The deletions from CRIL are as follows:

plus

times

minus

terminal

pterm

return

preturn

cond

drive

locof (reduces to tfield)

The additions to CRIL (and their syntax and aemantics) are described below.

convert • (CONVERT type type expreBBion)

Convert calls for conversion of the datum produced by evaluating the embedded
expression from the first type specified to the second type specified. For
example.

(CONVERT REAL INTEGER (DATUM REAL (NUMBER 3.0») • 3

The following three forms handle fixed-point arithmetic in the obvious way:

iplus • (IPLUS inte8er-.xpressio~+1)

itimes • (ITIMES integer.expreasion_+1)

iminus K (IMINUS integer-expression)

The following three forms handle floating-point arithmetic in the obvious way:

rplus • (RPLUS real-expression.+l)

rtimea • (RTlMES real-expresaion*+l)

rminus • (RMINUS real-expression)

\
)

(

\

26 April 1967 7

The tollowing torms handle general arithmetic in the obvious way:

gm.inus • (aMIBUS general-expression)

TM.3417/36%o

gplus .. (GPLUS atype type general-expression expression)

gtimes • (GTIMES atype type general-expression expression)

gditt • (GDIFF atype type general-expres.ion expression)

diftg • (l)IFFG atype type general-expression expression)
atype • type

Atype is the value type ot a torm tor doing general arithmetic. The other type
is the type ot the expression to be arithmetically combined with the general­
expres.ion. Gminus is tor unary minus, and in tact will be the output ot the
Type Resolver. not gdift and diftg, which will be introduced by the machine
link.

For example, to specify an integer value tor a general minus real expression
requires the tollowing form:

(GPLUS INTEGER REAL general (RMIBUS real»

In the TRIL form,

tork • (FORK boolean-expression {labelimIL} {labelIBIL})

the .. bedded boolean-expressiGn is evaluated. It the value is true, control is
transterred to the tirst label. If BIL is used instead ot a label, the tork
statement talls through. A similar action is taken with the second label it
the result of the evaluation is talse.

The syntax of the TRIL net expression is as tollows:

net • (NET type statement confluence-plex)

contluence-plex • (contluence-point*+l)

confluence-point • (label ctype type {labellmIL})

ctype .. type I datum

evalgo • (EVALGO label expression)

A net is an expression with a very complex rule ot evaluation. The type 'ot
datum produced as a value is explicitly given by the outer type (the one
between the word "BET" and the statement). The embedded statement is executed.
Evalgo's, go's, or computed go's executed within the statement may reterence
labels within the contluence-plex.

26 April 1967 8 TM-3417/36%o

Let (Ll Tl T2 L2) be a member of the confluence-plex. When label Ll is refer­

enced by an evalgo, etc., control is transferred to a place unique to this

label (determined by subsequent compiler passes) with a datum of the type

specified by Tl in the heaven-box. If Tl is an explicit datum, then such a

datum is to be moved to the heaven-box at this time. A conversion of the datum

(in the heaven-box) of type Tl to type T2 is now performed. Program control now

passes to label L2" L2 may designate another label in the confluence-plex or

m~ be NIL. If it is NIL, this implies a fall-through of the entire net. In

the fall-through case, the net-type TN 3 T2 " Also, if the expression body of

an evalgo has type TE, then TE £ Tl "

The syntax of the TRIL pnet expression is as follows:

pnet • (PNET dlabel dlabel elab elab elab elab statement)

elab • labellNIL

dlabel • label I NIL

A pnet m~ be viewed as a traffic director for predicates. The two dlabels
specify places to transfer program control on true and false evaluations.
Either may be NIL, specifying a fall-through of the pterm on the appropriate • condition. The four elabels are to be used for GGO, NGOO, BOO and NBGO.
Further compiler passes will place these labels at appropriate spots and make
the branch test on the contents of the heaven-box (which is loaded with a datum
by an evalgo). Labels outside a pnet are visible to statements within the ~net •

• Reference to the BOO label puts a boolean datum in the heaven-bOX; reference
to the NBGO label puts an inverted boolean datum in the heaven-box; reference
to the 000 label puts a general datum in the heaven-box; reference to the NGGO
label puts an inverted general datum in the heaven-box.

- -------_._------ ---------------

)

)

)

26 April 1967 9 TM-34l7/36%0

3. TYPE RESOLVER

The Type Resolver is a one-pass transducer that changes CRIL input to TRlt
output. A major amount of branch optimization is done. and the number of type
conversions produced is minimal. As type resolution proceeds. tailing of form
operators is changed from CRIL. to TRIL •• Arbitrary nesting of CRIL and TRIL
may exist through this pass. However. at completion of this pass. only TRIL
will be left. The input CRIL listing is assumed to be made ot totally unique
list structures, and as such may be RPLACA'ed and RPLACD'ed. The output ot the
Type Resolver is also unique list structure, so that subsequent compiler passes
m~ change the contents ot nodes. Appropriate error checking is done and diag­
nostics are issued.

TYPE RESOLVER UTILITY FUNCTIONS

3.1.1 CRTYPE

The CRTYPE function is provided with the following declaration:

(FUNCTION (CRTYPE GENERAL)«CR GENERAL»)

CRTYPE takes as an argument a CRIt expression, CR, and deduces the natural type
of the value of the expression. This function is used by many parts ot the
Type Resolver to make initial guesses. For example. the natural type of

(+ (DATUM REAL (NUMBER 5.3» (FIELD INTEGER ••• »

is real.

PRECISION

The PRECISION function is provided with the following declaration:

(FUNCTION (PRECISION INTEGER) «T GENERAL»)

PRECISION takes as an argument any legal type, T. and deduces the preCision
(number of bits) of T, whether it is stated implicitly or explicitly.

FORMAT

The FORMAT function is provided with the following declaration:

{FUNCTION (FORMAT GENERAL) «T GENERAL»)

FORMAT takes as an argument any legal type. T. and deduces the format ot T.
whether it is stated implicitly or explicitly.

26 April 1967 10 TM-3417/360/00

3.1.4 TYPE -
The function TYPE with an argument T is provided:

(FUNCTION (TYPE GENERAL) «T GENERAL» (CONS (FORMAT T)

(PRECISION T»)

INTYPE

The INTYPE function is provided with the following declaration:

(FUNCTION (INTYPE BOOLEAN) «Tl GENERAL» (T2 GENERAL»

The arguments Tl and T2 are anY' legitimate types. INTYPE has value true if
Tl & T2, and false otherwise.

TRMST

The TRMST function is provided with the following declaration:

(FUNCTION (TRMST GENERAL) «EX GENERAL»)

TRMST has as an argument a mixed CRIL-TRIL statement. If the statement is a
COND, the TRMST of the embedded statement is returned. If the statement is a
COMPOUND, etc., the TRMST of the last statement embedded in the COMPOUND, etc.,
is returned.

3.1.7 GNFUNC

The function GNFUNC is provided with the following declaration:

(FUNCTION (GNFUNC GENERAL) «NAM GENERAL) (DEC GENERAL)

(ARG GENERAL»)

GNFUHC generates an appropriate TRIL function call to the function NAM with the
declaration DEC and lilt of TRIL arguments ARG.

3.2 TYPE RESOLUTION OF ARITHMETIC

Minus
• The resolution of minus consists of the resolution of the argument with DTYPE

and PDTYPE. the same as for the minus itself. The form name is then changed to
iminus if the embedded expression is fixed pOint. to rminus if the embedded
expression is floatins point. and to gminus if the expression is general format.

* Refer to Table 3 (page 16 of this document) for the use of public variables.

)

)

26 April 1967 11 TM-3417/360/oo

3.2.2 Plus and Times

~n the following discussion about addition. all remarks and algorithms apply
equally to multiplication.) If either an argument of plus has natural type
real or DTYPE is real, the arguments are resolved with DTYPE real and no PDTYPE.
If there is a PDTYPE. it is used. otherwise PDTYPE is made the old DTYPE and
DTYPE is not used for argument resolution. Arguments of general type should be
resolved first. If any original general type argument resolves as real,
resolution should continue for the rest of the arguments with DTYPE real and
no PDTYPE. This introduces an order-dependency on the quality of produced code,
but to do a better job could cause resolution time to rise exponentially with
the depth of nesting of forms. All data should be collected and summed before
the resolution commences. The resolved arguments are then parsed into fixed­
point, floating-point, and general forms. These forms and necessary conversions
are merged to produce the final result for the resolution. The values of DTYPE
and PDTYPE are investigated for information concerning type optimization. The
algorithms for this are not complicated but are extremely long, so will not be
included here.

l.3 TYPE RESOLUTION OF DRIVE

If the natural type of the embedded expression' is of the type specified by the
embedded type, the drive is discarded and resolution continues for the argument

(as if the drive had never been in the CRIL. Otherwise, the argument is resolved
\ with the embedded type as DTYPE and no PDTYPE. If the type of the expression

after _resol~ltion TR £ TD, the drive type, then the resolution is finished;

otherwise an appropriate conversion replaces the drive. Care must be exercised
so that drives that are desired allow confluence point branches to be optimized
appropriately.

3.4 CALLIT RESOLUTION

Callit does no top-drivi~ while resolving its argument. However, in almost
all cases, it will be a self-typing expression even in CRIL form.

PREDICATE RESOLUTION

3.5.1 Preturn Resolution

If the expression body of a preturn is a pterm, the preturn and pterm are thrown
a~ and the statement body of the pterm shares the confluence points of an
outer pterm. Otherwise. the argument is resolved. A pointer to the evalgo
(which replaces the preturn) is then added to either TGO, FGO, BGO, or GGO.

----------------- ---------

26 April 1967 12 TM ... 3417/36%o

3.5.2 Fterm Resolution

The statement body' is resolved, with the variables TOO, FOO, BGO, NBOO, GOO,
and NOGO rebound to NIL. Things referencing TOO and FOO are then patched to
reference the appropriate labels. According to the number of references from
each ot BGO. NBGO, GGO and NGGO, the following action is taken: If the number
ot references trom. say, BGO is greater than one, the references are changed
to a genid. If the number of references is one, the test branching is patched
into the referenced evalgo. If any of BGO, NBGO, GGO, or NGGO are referenced
more than once, a pnet is created. It is assumed that whenever a pterm is
encountered, a TGO and FGO are in existence.

3.6

3.6.1

TGO collects evaluations known to be true

!GO collects evaluations known to be false

GGO collects general values to be tested as predicates

NGGO collects general values to be tested as inverted predicates

BGO collects 'ooolean values to be tested as predicates

NBGO collects boolean values to be tested as inverted predicates

TERMINAL RESOLUTION

Return Resolution

If the argument ot a return is a terminal, the return and the terminal are
discarded so that the embedded statement may share outer confluence points.
Otherwise, the argument of return is resolved with the same DTYPE and PDTYPE
as the embedding terminal. The type of the argument is now examined and the
return is added to a confluence point in TRMLST.

3.6.2 Terminal Resolution

The embedded statement is resolved, thus accumulating various entities on
TRMLST. TRMLST is then sorted by format and precision. PTYPE and PDTYPE are
examined. based on their values and the types in TRMLST, a decision is made as
to what type the terminal will produce. The net is then made. If there is
only one element of TRMLST of a particular type, and that is not the type pro­
duced by the terminal, the conversion is introduced at the fork or return
referenced. The other forks are then updated to specify the label in the net
to use. and returns are changed to evalgos with the appropriate label.

)

(
26 April 1967 13 TM-3417/36%o

PDTYPE is important in resolution of terminals. If it has a value, the terminal
is known to be in arithmetic, and therefore may produce a numeric rather than
general value in many instances.

3.7 RESOLUTION OF CONDITIONAL STATEMENTS

The consequences of a conditional statement and the next statement (if in a
compound) are checked. If either is a go, preturn, or a return of a datum,
special action is taken in the resolution of the predicate. A TOO and Foo, etc.
may be picked up from an embedding pterm or a datum return label used from a
terminal (in TRMLST). If the consequence is a return false, TGO is rebound to
FGO, NBGO to BGO, etc. It the predicate is to fall through on transfer to TGO
or FGO. then the variable is bound to NIL to indicate this. If the predicate
behaves as a pterm, and a preturn or go is the consequence. no fork need be
generated. If no special conditions exist. a fork is generated and the con­
sequence is moved to the "fall-through" position. If a go statement is found,
the label becomes the appropriate label of the fork.

References to TGO, BGO, etc. are shown by using the labels TGO •• BGO., etc.
If the generated fork is to be referenced by a net or pnet. it is added to the
appropriate plex. In all eases of resolution of the predicate of the conditional,
a TGO and FGO must be established.

3.8 RESOLUTION OF ASSIGNMENTS

The left member of an assignment is resolved. Its type and the values of
DTYPE and PDTYPE are then examined to determine further action.

The following two tables list actions taken for various formats within assign­
ment expressions. If. after resolution, the format of the right and left member
differs. a terminal holding a binder is created. In the binder, a genid
variable is introduced and preset to the unconverted value of the right member.
The statement body of the binder is an assignment of the left member to an
explicit conversion of the genid. All terminals created in the process must be
resolved into nets.

Assignment statements always wrap drives around their right members before
resolution.

26 April 1967 14

Table 1. Assignment Expression DTYPE Format Actions

Format of Left Member Format of DTYPE

INTEGER REAL GENERAL FUNCTIONAL

INTEGER DTint Preal () err

REAL Dint DTreal () err

GENERAL Dgen Dgen DTgeneral Dgeneral

FUNCTIONAL err err () DTfunctional

BOOLEAN DTint DTreal () DTfunctional
ST ST ST

Table 2. Assignment Expression PDTYPE Format Actions

Format of Le:ft Member Format of PDTYPE

INTEGER REAL GENERAL FUNCTIONAL

INTEGER () Preal () err

REAL Preal DTreal () err

GENERAL () () DTgeneral ()

FUNCTIONAL err err () DTfunctional

BOOLEAN Preal Preal () DTfunctional
ST ST ST

TM-34l7/36%o

BOOLEAN

DTint
RT

DTreal
RT

Dgeneral

DTfunctional
RT

DTboolean

BOOLEAN

DTint
RT

DTreal
RT

()

DTfunctional
RT

DTboolean

\ ,;

26 April 1967 15 TM-34l7/36%o

DT+ • resolve right member wrapped with a drive to type +

P+ • resolve right member with PDTYPE • +

D+ • resolve right member with DTYPE = +

() • resolve right member with no top driving

RT • make right member into assignment statement in terminal and
return value true

ST • make into terminal, setting left member true and returning
the driven left member as value

err • an impossible condition met

---"_ ---------------------_._--

26 April 1967 16
(Last page)

TM-34l7/36%o

Table 3. Type Fesolver Public General Variables

Name Transmission

D'l'YPE VALUE

PDTYPE VALUE

TRMlBT VALUE

TGO LaC

roo LaC

GGO LOC

NGGO LOC

BGO LaC

NBGO toC

Usage

contains the top-driving type; may be NIL, meaning
not known, or NOVALUE, meaning that no conversions
are to be done.

Contains a passive top-driving type; the drive
induced by this variable is merely a suggestion
to belp certain resolutions make choices

TRMLST has the following format:
({typeldatum} {returnlfork~+n!i the elements
of TRMLST are pointers into t e CRIL-TRIL forms
that use a particular terminal

TGO has format ({preturnlforklgo}*); the elements
of TGO are pOinters into the CFIL-TFIL forms that
use a particular pterm

FGO has format ({preturnlforklgo}*); the elements
of FGO are pointers into the CFIL-TFIL forms that
use a particular pterm

GGO has format ({preturnlforklgo}*); the elements
of GGO are pOinters into the CFIL-TFIL forms that
use a particular pterm

NGGO bas format ({preturnlforklgo}*); the elements
of NGGO are pOinters into the CFIL-TFIL forms that
use a particular pterm

BGO has format ({preturnlforklgo}*); the elements
of BGO are pOinters into the CFIL-TFIL forms that
use a particular pterm

NBGO has format ({preturnlforklgo}*); the elements
of NBGO are pOinters into the CFIL-TFIL forms that
use a particular pterm

)

\

)
-

)
/

/

