«U

\«’,; 4 ’ i v > K{x‘f{fiﬁ{fi} o F AL
A . g

2. DATA AND ITS TYPES

2.1 Introductory Definitlons
In order to c¢larify the discussion of LISP II data, we
shall first explain the terminology to be used. We will regard

a datum as an abstract entity whose precise nature 18 irrelévant
to our purposes, and a program as thé specification of an algo-
rithm for processing data. Some data are represented explicitly
1ﬁfthe program; these are constants. Somé?data are desighg%éd
by variables; during the éiecution of a program, the datum (if
any) designatéd by & variable at a given time is known as the
value of the variable (at that time). Some data, such as those
designated by subexpressions of algebraic. formulae, have no
simple designation.

Data may be classified into types, such as "REAL" or
"SYMBOL" (for symbolic expressions). A datum has one and only-
one type. .Tﬁe'type of a constant can always be deduced from
1ts form, e.g., "75" 18 an integer since it consists onhly of
decimal digits; The type of a variable must be declaréd by the
programmer, either explicitly or by omission; the type declared
for a variable restricts but does not necessarily determine the
types of the value of the variable at different times. In particu-
lar, a variable declared to be of type "SYMBOL" may have as values
data of different types at different~timéé; LISP differs from
ALGOL in this respect.

A datum has an internal representation within the computer

DRAFT

as a sequence of bits (or whatever else is appmpriate for the

computer at »ha_nd).. The internal representations of LISP data

will be discussed in Seec. . The standard (external) form
of datum is the externai'represengation that results when the
datum 18 printed, i.e., ﬁ&&@arted from its internal répresenta-
tion., A datum may have external representations other than its
standard form, e.g., "0OT" is an external representation of

the datum whose standard form is "7". Different external repre-

gentation of the same datum are said to be equivalent.

2.1.1. LISP II Character Set. The LISP II reference language.

publication 1énguag€;*and Q32 hardware lénguage are all identical,
and thus 6n1y‘one character set need be defined. Vere LISP IT

to be lmplemented on a different machine, a different hardware
language might be necessary. '

The-L&&? II character set contains a total of €0 characters,
and is a subset of ASCII. In this manual, the space will be
printed as "¥" and the cafriage'return (or, more generally,
end-of-1ine) as '@"'. The characters may be grouped as followss = |

26 letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
10 digits 0123456789

4 vracketers [] ()

7 operators + - ® / e \

& punctuators . , 3

3 relators =< >
4 spesial
delimiters <% # $
-

DRAFT

DRAFT

2 spacers ¥ ®
The five characters
@& ? "
are part of ASCII but are not part of the LISP language.

2.2 Available Data Types
The avdilable data types may be grouped into three cate-

gories: simple types, array types, and formal types. There
are five simple types: "BOOLEAN", "INTEGER", "OCTALY, "REAL",
and "SYMBOL" An array type 1s described by specifying the
types of elements in the array. A formal type is specified by
specifying the type of its value and of its arguments.

2.2.1.1 Boolesn Data. There are two possible values for a
Boolean datum; "TRUE" and "FALSE". "TRUE" and FALSE" are
Boolean constants with the obvious meanings. The constants
®()" and "NIL" are equivalent to "FALSE"; "FALSE" 1s the
standard form.

2.2.1.2 JInteger Data. An integer datum 1s represented either

as a series of decimal @igits preceded by an optional sign and
followed by an optional exponent, or as an exponent standing

by itself. fhe exponeri 18 written as the letter "E" followed

by & series of decimal d1gits, The exponent indicates muitipli-
cation by & power of 10, €.8., "3E2" is equiva;l_ent to "200". When

an exponent stands by itself, 1t represents a power of 10, e .8-2"B5" 18

-

-

DRAFT

Dt 2

DRAFT
equivalent to "100000". "+0" and "-O" are eruivalent. The size

of an integer datum is limited by the word size of the computer
48

(2 -1 in the C&ﬂﬁ of the 032).
Examglesé 279 ’

~-05821E4

El€

+490

2.2.1.2 Qctal Data. A&n octal datum is a 48—bit ruantity, ¢
Octal constants are written as an optional sign followed by a
series of octal digifs followéd by tﬁe letter Q followed by an
optional sca;;.factor.' The scale facto§;§pec1fies the number
of trailing 6ﬁtai‘zéros to be added, emé:, "1507" is equivalent
‘to "150000000Q". A plus sign 1s ignored,.and & minus sign 18
OR'ed into tﬁe{ieffﬁoat vit. The octalfagta "+0" and "-o";é@e
distinet. | TR |
Exa ilcﬁs ~7j777012_
_ T Oé. .

oolq

-00000Q2

+12245€7001

2.2.1.4 Real Data. A real datum is répresented internally as
a floating péant number, Real constants are written &s an
optional sign foilowed by a mantissg followed by an optionagl
'“ezponent. Thie m@ntiﬂSa consists of a series of decimal digits

containing an interspersed decimal point: the decimgl point

e
DRAFT

DRAFT

may be at the beginning or at %he end as well as in the milddle.
The exponent 13 represented as the letter "E" followed by a
signed integer, and indicates multiplicatlon (for a positive
exponent) or division (for a negative exponent) by a power of
10. The integer 1n the exponent cannot itself be exponented
A real constant can be distinguished from an integer constant |
because only a real constant can contain a decimal point. "o "
and "+0." are equivalent.
Examples: 245.9

367.E-014

. 00005

2.2.1.5 Symbolic Data. A symbolic datum, i.e., a datum of
type "SYMBOL", is the LISP II analogy to the S-expression of
LISP 1.5. "SYMBOL" as a data tyﬁe reaily means "spmbolic", and
does not imply that the d&tum 1s &_gingle symbol.> The relation-
ship between symbolic data and 8ym£§110 constants will be discussed
in Sec. 2.2.1.5.3. |

Symbolic data are built up from atoms, which are of two

kinds: inherent and derived. An inherent gtom is elther an identi-
fier (Sec. 2.2.1.5.1) or a string (Sec. 2.2.1.5.2). A derived

atom 18 a symbolic datum resulting from the type conversion of

g

DRAFT

e R

a nonsymbolic'datum. Every nonsymbolic Qatum has a correspond-
ing symbolic datum. If an operation is dgfiﬁed for a nonsymbolic
datum, then 1t 1s defined for the corresponding symbolic datum
and has the same result. Thus a symbolic datum 1s essentislly
1somorphic to the nonsymbolic datum from which 1t 1z derived. T
Furthermore, when a nonéymbolic datum 18 converted to a symbolic

datum its external representation remains the same but its inter-

nal representation differs.

"SYMBOL" serves as & universal type in the sense that a

datum of any other type may be treated as though 1t were of

type "SYMBOL". When & variable is declared to be of type "SYMBOL",
the values assumed by the variable may be of other types. How-
ever,'if an operation 1s performed upon a variable declared to

Le of type "SYMBOL" and the value of the variable‘13;&ﬂmnnsymbolic
datum, then the datum will automatilcally be convertéég%b,a‘sym_

bolic datum.

Deprlved atoms ars pecullar in that they cannot be written

a8 constants except as part of a larger symbolie datum. In other
words, although "7" 18 an integer constant, there is no way to

write a corresponding symbolie constant. In the context "(& 7",
however, "7" represents a symbolic datum.

| The fact that derived atoms cannot be written as constants

is of no practical dimadvantage since a derived atom is inter-
changeable with the datum from which it was derived in virtually
'anyveontext. Alfbeugh deriged;atoms cannot be written as censtants

T 3o

DRAFT

they can be printed. When printed, a derived atom 1s
indistingulshable from the datum from which it 1is derived.

2.2.1.5.1 Strings. A string is a sequence of characters. Any
member of the character set of the machine may be an element

of the Sequence. A distinctjon must be made between a string
and the sequence of characters that represents 1t externally.
The represent@tion of a string uses thevcharacter "#" as a
~delimiter and the character "'" as a quoter.

‘Specifically, the representation ofmg string beg1n3~andw
ends with the character "#". 1In obtaining an actual string
from its representation, any occurence of the character "'"
within the string indicates that the neit character is to be
taken 1iterally and the "'" itself 18 to be deleted. The
characters "'", ¥#", and "%" must be preceded by "'" if they
are part of the string.

Two particﬁiar cases of interest are "'#" and "',
which are transformed respectively into "#" and "V, Thus,
the string datum "ISN'T ##5 $" could be represented external-
1y as "#ISNU'T '#'#5 $#" or possibly by "FIS'N''T '#'#5 $#"; 1In
the latter example the first prime used 18 redundant but permis-
si‘bie. Any occurence of '®" within a string is ignored unless
the preceding character is a "'", in which case the "®" is
included within the string. Thué a string can be spread over

geveral linesg.

DRAFT

Examples: #''''" ' #¢H ASYTHREE¥CHARACTERSH
' e

#ASEH

#4884 (equivalent to #AIB#)

2. 2 1.5.2 Identifiers. An 1dent1fier is a sequence of charac-

ters congisting elther of the character g £ollowed by 8
string as defined in the previous section, or of a letter
followed by a sequenee of characters each of which is elther
2 letter, a digit, or ".". The 1dent1£i§rs "4BCY anq"%#ABc#"
- are 1dent1ca1. ‘Identifiers differ. ffomﬁétrings'ih th&%‘ﬁhéyz

can be used to name funetions and variables, and ean have

'property lists associated with them.. On'the other ha

’ss,storage space than 1aent1f1e?s,°ﬁw

_ strings take up. 1 |
| "TRHE“? "FALSE"K and "NIL" are not 1dentifiers. "%#ﬁifBE#f

is an 1dentif1er but is not a Boolean constapt,
Examples: YES WEQHAVEONO BANANAS

A257 |

98

HH#ZOUNDS FORSOOTH#

EH)#

2 ,2.1.5.3 Sggbolic Constants, In order to diatinguiah the

variable "A" ‘from the symbolic datum "A"; a guoting mechanism
is meeded. Agsymbolic datum is quoggqrpggpreceding it}m;;k ,

the character "'". Any S-expression in the sense of LISP 1.5

DRAFT

may be quoted. Derived atoms and strings need not but may be
quoted, since they can be interpreted without ambiguity. How-
ever, ildentifiers and nonatomic S-expressions must be gquoted.
The quoted indentifler A could be written either as "'A"

or as "'Z#A#". In the case of the single-character identifier
corresponding to “)",‘6n1y the second alternative could be used.
Since single-charactér 1dentifiers are useful in character
manipulation, an additional ﬁechaniem has been provided for
writing them, but only within LI' Within LI’ a one—character
jdentifier may be weitten simply by preceding 1t with a fam,
Any singie character can be treated in this way. Since the
""" 9igo introduces 2 symbblic datum, 1.e., an expression in
Lys "'1)" 18 a'perfectly permissible way to write "'%#)#", and
of course a more convelent way to write it.
Examples:. 'G®A

F#STRING CONSTANTH

(e . 1) (4. 2)

*IDENT

#IDENT#

2.2.2 'Array{?ypes.» An n-dimensional array datum is a set of
data such thatény.element of the set can be singled out by giv-
ing n subsceripts. Each subscript is an Integer whosé‘permissible
range 1s'defiﬁed»by'the dimenslons of the array. fhus‘in a
3 x 12 x 2 array the first subseript ranges between 1 and 3,
the second between 1 and 12, and the third between 1 and 2.

-9~
DRAFT

DRAFT

At present, the lower bound of a subscript of a LISP II array
must be 1, though this constraint will probably be removed in
the future. When the subscripts specifying an array element
are given, the element can be retrieved using efficient table
lookup operations; though in principle 1lists could always be
used in place of arrays, arrays are far more efficient both in
retrieval time for specified elements and‘iﬁ space requirements,
The elements of an array must all be of the same type.

The type of an array 1s specified by specifying the typé of
1ts elements by means of an f-type. An f-type 1s elther the
name of a simple type or "FORMAL". "RORMAL" is not a true type,
but rather an abbreviation for the‘family of formal types.
Thus the permissible array types are:

BOOLEAN ARRAY

INTEGER ARRAY

OCTAL ARRAY

REAL ARRAY

SYMBOL ARRAY

FORMAL ARRAY
If the elements of an array are themSelves arrays, then the
array must be declared as "SYMBOL ARRAY". An array constant
1s written as a left bracket‘foilowed by a data typé name
followed by the elements of the array followed by a right
. bracket. For a 1—dimensionél array the elements afé merely

enumerated, e.g., "[REAL 3.5 72.9'", which is a single datum of

-10-
DRAFT -

FRAFT

type "REAL ARRAY". The dimension of the array, which 1s 2,

can be deduced from its form. If any of fhe explicitly_given-

elements »f an array are not of the same type as the arra& 1tself,

they are_ﬁésdmed to be converted to the type of-theiarray,itself

according to the conversion rules8 given in Sac 2.3.‘"Thus tﬁe

arrays "[INTEGER 4,71" and "[INTEGER 4.8,7. 11" are 1dent*cal
When an array is of type "S@MBOL ARRAY", then 1t3 elements

are already *ssumedwto be syﬁholic constants and shcuid not ‘be

quoted by using tke "+ In the context of a symbolic array,-

the "'" is ‘used to indicate an array element that 1is 1tself ‘an

array and thus 48 given a different 1nterpretation than in apy.

other context. “ ‘

k The procedure for ordgfing the elements of an arraj

 can best be lllusﬁféted_by the folidwingréxamples: |

14d1me§§ibnal; fINTEGER 2,55759,3]

2-dimengional: [INTEGER [2,71,(4,91, [0,21,[5,9]}

3-dimengional; [INTEGER ~
ST 1,501,001, 14,71,

[[0,91,[1,21,[3,31];
C[11,21,02,715 09,411,
[18,8]1,[8,4),[4,0]11
fhe second example 1s a 2 x 4 array and the third example is
a 2 x 3 x4 array. The first subscript varies most rapldly and
the last subscript least rapldly.
The procedure for enumerating the elements of an array

-11-~
DRAFT

DRAFT

can be stated more formally. We define a subarray of order

k to be the set of elements obtained when the last k subseripts
are allowed to vary over their entire range and the remainder

are held fixed. Thus a subarray of order O is a single elemeht;

" a subarray of order n of an n-dimensional array is the entire
array. In listing an array of dimension n we 1list the succes-
glve éubarrays of order n-l1l, separating them by commas and enclos-
ing each one in brackets. Within each aubarray of order n-1 we
l1ist the successive subarrays of order ﬁ-é; again separating_#hem
by commas and énclosing them in brackets. We continue in this
way until we reach the subarrays of brder'o, which are not to

be enclosed in brackets.

2.2.6 Formal data. A formal datum 1s a LISP IT function. A

formal constant is written either in the form of a function
declaration, in the form of a 1ambda~expfession, or in the

form "FUNCTTON‘QQQQ", where name 1s an identifier whose value
1s a formal constant. We shall not attempt a detailed explana-
tion at this point because an understanding of formal constants
requires an ﬁnderstanding of function definitions. Function
definitions will be discussed in Sec. > and formal constants
will be discussed in full in Sec. . For the moment, we
merely point out that a formal constant always begins with
either "LAMBDA", "FUNCTION", or a data type name followed by

- "FUNCTION". |

-12-
DRAFT

—————— S

DRAFT
2.3 Type Converslions

A datum can be converted from one type to another explicit-
1y or implicitly. Explicit converasion results from the explicit
use of a conversicn functlion; implieit conversion results frem
the appearance of 3 datum of one type In & context where a datum
of a different type 18 expected. Conversion can take place only
if certain compatibility requirements are satisfied. These
requirements are given in Table 1, which also specifies the
nature of the conversion.
Impliclt conversions occuf under the followlng specific
eircumstances: |
(1) A Gatum 1s assigned as the value of a variable
of a different type.

(2) A datum 4s used ag an argument of a function
when the function expects a datum of a different
type. |

(3) A datum 1s combined with a datum of a different

h type by an operator that can accept data of more
than one type. |

'In the case of (1) and (2), the datum to be assigned is con-
verted toAthe type of the variable to which it 18 assigned.
Thus, if a datum of type "REAL" is assigned to a variable of
type "SYMBOL", a "REAL" to "SYMBOL" conversion is generated
by the compiler. In the case of (3), all data are converted
to the most breferréd type; tﬁg'brder of preference 18, from

least preferred to most preferred:

-13-

e

DRATT

FRQﬁ,\\\x B I 0 R 8 a-t -t

BOOLEAN X - - - -
IN?EGER X | 10 - |
7 0T | X - |-

RI | RO - -

syigon | P | st | So

Array~type | TRUE | - -

Formal-type| TRUE | - - -8 t- F |

Remarks:

O O O I A I I

il

gal . o
o except ~00 =+ +¢°
y floating the inf@ger

al-to-real conversion, done by: floatlng the equili
real-fo-integer conversion, rounded
real-to~octal conversion, rounded A =

1f symbol 18 a number, convert to integer, else illepal
if symbol is a number, convert To. cctal, eise illegail
if symbol 1is a number, convert to real, else 1ilegal

if symbol 18 an array and avvay t¥pes agree, transmit
the value,: else 1llegal . i

if symbol is a formal-type and formal types agree,
transmit the formal, else 1llegal

dent Integer

~il4~
DRAFTD

DREFT

OCTAL

IKTEGER

REAL,

SYMBOL~0

SYMBOL-T

SYREOL-R
ﬂexe "SYMBOL-0" indicates a symbolié datum derived ffom an
octal datum, and similarly for "SYMEOL-I" and "SYMBOL-R". If
any of the dafa being @ambined are ncn»arithmetic, then a1l

data are converted to type "SYMBOL".

2.4 Pormil vnta* of Constants

_ - The Symzax;eqmaﬁions for constants, i.e., the rules for
writing them down, are ag follows: | B
letter - alslciofelrlclufzls gfi,'éz.%m{z\é%b%?sogalsw%g‘iviw}xi@fiz
octai-aigit = glifefzlalsle |
digit - oetal-digit|8 o | |
string-characier = Kéﬁﬁe?ééigitgf_}Ef@‘é+§*§*§/§\£?ﬂ¢€s§°§¢%<§%§”§$Qy
L ,

@, '.#%, and ; are not str ng-chgracters.)

character = string-character | %ﬁ%ﬁé

Boolean = f’f"’ﬁ:ﬁ%..sse

false = PALSE fWin ()

number = 1nteger | real

integer = ce&&i% decimal '

octal = 8lgn octal-digit zeciai digigy ¥ O {uns 0 §~J€“ima1;§€
sign = +§-§@mpﬁy

TREFT

unsigned desimal = decimal-digit {deeimal-digiﬁ‘*
sign unsigned decimal {emptyaE E unsignéd-decimal]

decimal

neal-object;e‘unsigned-decimalValbun81gned decimallunaigned decimal

-,unsigne@wdecimal'
real =. sign»rea1~object'{empt§l§@§éal§}
scale %é sign unsigned«decimal o
- gtring = #{ ai:ring-characterﬁ o] 'a #ﬁ %l @} i
1dentifier églettgrg{letter'digitid‘*I%ﬁStrﬁng1

TRUE; FALSE'and NIL are not ldentiffefs. .,
unquoted conétant¢q numberlBoolg&ﬁ%gr@@yﬁstringthnctionespééifier
atom zeouhQﬁdhmwfpnstant‘icharacfgﬁ ' |
S-expression= atom : | ‘
E(S—expresaion {s-expresaicn}* ¥ . ¥ S-expression)
E((S-eXpressicn}*)
constant = ! S~expressiongunquoted—constant
In these: syntax equations there arg two' undefined term3°‘

function-Specifier "array” cannot easily e

“arpay" andi
defined invtﬁ?{ﬁmﬁgnotation we have-use&lhere;tmt the"expigna~
tion in See. 2.2.2 1s sufficient to specify the conventions: for
writing arrags. "function-speeiffer” will be defined in Sec.

gy

