Prof. Dr. H. Stoyan
Universitat Erlangen-Nirnberg

Institut fir Mathematische Maschinen
und Datenverarbeitung (Informatik VIl
Am Weichselgarten 9

31085 Erisnzen

QUANTUM THECRY PRCJECT
FOR RESEARCH IN ATOMIC, MOLECULAR AND SOLID STATE
CHEMISTRY AND PHYSICS
UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA

AN INTRODUCTION TO LISP

by

Arnold K. Griffith

PREPRINT NO, 31
November 15, 1562

This work was supported in part
by a grant from the
NATICNAL SCIENCE FOUNDATION

INTRODUCTION

This volume is intended to be an introduction to LISP programming.
In addition, the last section constitutes a revision of the HANDBOOK OF
LISP FUNCTIONS (RIAS technical report 61-11).

This volume was prepared during an 8-week summer programming institute
held by Mr., H., V. McIntosh at the University of Florida, summer 1962,

Gratitude is due the University for the use of their 709 to run the
examples of the last section; and to the writers of the aforementioned
MANUAL and Mr. McIntosh from whom all function definitions, certain

function descriptions, and other ideas were lifted verbatim.

Gainesville, Arnold K, Griffith

August, 1962

CONTENTS

LISP....‘."‘ L] . . L] L . L d . * L] L > . - L] . . * . L]
e———

TWO THEORETICAL POINTS ¢ & ¢ v ¢ ¢ ¢ ¢ ¢ o ¢ o o o &

SOME DEBUGGED FUNCTIONS & 4 4 o o o o o o 5 o o o &

I. SET 'IHEORY . s e L] e o * o . & L] « o 0 .« o o
II., PREDICATES TG TEST A LIST FOR A CONFIGURATIONAL

PROPE RTY . e @ 8 8 8 ° o & * & B &6 ¢ & o ¢ o

IIT. FUNCTICONS VHICH APPLY OTHER FUNCTIONS TQ THE

ELEMENTS OF A LIST . o 4 ¢ ¢ ¢ v o o ¢ o o o
IV, PREDICATES WHICH TEST A PREDICATE ON VARIQUS
MEMBERE OF A LIST 4 & v v ¢ v 6 o o o o s o o
V. FUNCTIONS “HICH LIST CERTAIN ELEMENTS OF A
LIST o 4 o 0 v o ¢ ¢ o o o o o o s o s o o o o »
VI. FUNCTIONS WHICH DO VARINUS MANIPULATIONS . . .
VII, ARITHMETIC FUNCTIONS . & ¢ o ¢ ¢ o o o o o o »
VIII, ORDER © &4 4 ¢ o o 4 ¢ o s o o o o o o o o-0 @
IX. MISCELLAMEOUS PUNCTIONS T
X. MISCELLANEQUS PREDICATES . & ¢ ¢ ¢ o ¢ o ¢ o &

INDEX OF DE-BUGGED FUNCTIONS e e s e s e e e e s

-1i-

11
13

13

20

28

37

43
49
57
64
69
77

82

LISP

The notation of LISP consists entirely of lists. A list is a series
of elements which is enclesed in parentheses:
(list element 1list element .,.....)
List elements may be lists or atomic symbols., An atomic symbol is a string
of characters unbroken by spaces or parentheses:
POTRZEBIE
54321BANG
(etc.)
Note that a pair of adjacent atoms on a list nust be separated or they
will be taken as a single atom, This is done with a space. The paren-
theses which must éurround lists will distinguish 1list elements in other
cases, List example:
((APE CALL) C (D (E F)))
- A simple diagram of the type shown in figure 1. may serve to
schematize a list, Each dot, except for the top one which stands for
the whole list, stands for a list element, whose form in list notation
is written by the dot,
,.‘\(((x)z M) V)
Xy @m / NV
N\

(X Y) N (W
/5
VANVA
X YZ ©
FIG. 1.
1

A diagrammatic representation of a list which gives some insight into
how lists are stored in the machine uses a system of rectangles and arrows,
Information is stored in many machines in a series of thousands or tens
of thousands of identical cells, each accessible to the processing section
of the machine by a unigue address. A cell can hold two addresses; and
most cells used by the LISP system are divided in a particular manner
into two halves, in each of which an address is stored, These halves are
differentiated by calling one the left half and the other the right half,
The use of the terms right and left comes from the'system of notation
about to be described, A celf‘is represented by a rectangle; and the
situation of a right or left contents of a cell being the address of
another cell is represented by an arrow from the appropriate side of the
first cell to the second cell. The following illustrates a cell, A,

whose right contents is the address cf the cell B:

A ~,
r
o

A list is represented by a series of cells, one for each element of
the list. For each list element the contents of the right half of its
corresponding cell is the address of the cell corresponding to the next

element of the list: ;

6

AU

An exception is made in the case of the last element, where the right

address is that of a particular cell chosen to indicate the end of a list:

\ ;r—:—}\

<N

I' cell corresponding to
N . last element of the list

The contents of the left half of each cell is an address which indicates
where the cell's corresponding element is stored: if the element is an
atom, the address may be considered to be the address of a cell containing
that atenm; if the element is ancther list, the address is the address of
the cell corresponding to the first element on that list., The relééion—

ships are again denoted by arrows:
1] .

main list elements
sub 1list elements m

A function is a list vhose first element is an atom, the name of
the function; and which is equal, in a sense which will be made clearer
later, to some other list or atom, This second list i; determined by
the definition of the function, by the arguments (the remaining elements
of the list), and sometimes by context,

Following is a description of the five so-called primitive functioms:

1. (ATOM X) is equal to a list containing one element, either T or
F, It takes the value T (true) if X is an atomic symbol, otherwise F:
(ATOM TELEMACHUS) =T
(ATOM (Z0D)}) = F
(ATOM (IBM BAD)) = F

The contents of an empty list is regarded as an atom, This is an example
of a predicate, a function vhich takes the value T or F.
2. (E7 X Y) is another predicate. It is equal to T if and only if
both arguments (X and Y) are equal atoms:
(En ZUP ZUP) = T
(EN SNORT ZEUS) = F
(En (MAD) MAD) = F
It gives weird results if neither argument is an atom.
3. (CAR X) is equal to the first element of the list X, It may be
an atom or a list:
(CAR (AB ZUT)) = AB
(CAR ((A B) ZUT)) = (A B)
CAR of an atem is undefined.
4, (CDR X} is eaual to a list of all the elements of X excent the
first:
(CDR (DON'T GO AWAY)) = (GO AWAY)

(COR (BAH)) = ()

CDR of an atom is undefined.
5. (CONS A Bj} is equal to a list whose first element is A, and whose
subsequent elements are the elements of B:
(CoONS (POT) (RZEBTIE}) =
((PCT) RZ E B I E)
(CONS A B), vhere B is an atom, is undefined.
It will be found, upon writing programs in LISP, that composites of
CAR and CDR are necessary and can cet very lengthy. These cah be

abbreviated in the following manner: (CAR (CDR L)) can be written as

(CADR L), and similarly, (CAR (CAR (CAR (CDR L))})) becomes (CAAADKR L). Such
gbtreviations with up to four letters between the C and the R are defined
and used in the same way as the primitive functions.

Functions which will do other tasks that the primitive functions must
be written in temms of the primitive functions, with the aid of the pro-
gramning functions, in the manner which will now be described. The
programring functions are: DEFINE, LAMBDA, COND, AND, OR, NOT, NULL,
QUOTE, and LIST,

To define a function or series of functions, we write a list whose -
first element is the atom DEFINE:

(DEFINE eeeerconces)
Its subsequent elements are lists of two elements, the first of which is
an atom, the name you wish to give to the function; and the second of
which is that function's definiticn:
(DEFINE
(name definition)
(name definition)
(name definition))
A function's definition is in turn a list of three elements: the atom
LAMBDA, an ordered list of the function's arguments, and the actual
specification:
(LAMBDA {args.) (specification))
The specification is generally* a list whose first element is the atom

COND, and whose subsequent elements are lists of two elements: a predicate,

and an expression:

* If the definition is not conditional, instead of (COND (pred. exp.)

(pred. exp.) - - - _ sinmply an expression appears. cf.

e od A e i 2 TH G LR s §

(COND (predicate expression)
(predicate expression)

®oasedePe
(rredicate expression)
The function takes the value of the expression following the first true

predicate. The total structure of a DEFINE function is, then:

{DEFINE

(FUNCTA (LAMBDA (args.) (COND
(predicate exnression)
(predicate expression)

be e s 0esr0bVveROO

(predicate expression))))

@e s eee PP eEanORr PO StOOOES

(FUNCTA (LAMBLA (args.) (COND
(predicate exvpression)
(predicate expression)

(predicate expreséion)))))

The predicates and expressions are composites of primitive functicns; of
the predicates AND, OR, MOT and NULL; and of the functions QUOTE and LIST,
(AND predicatel rredicate, predicates,.} is a predicate
which is equal to true if and only if all its arguments are true predicates.

It examines its arguments sequentially and become§ equal to F upon finding
an argument which is not a true predicate, if it does.

(CR predicate, predicate, predicatez) is a predicate which
is equal to true if and only if any of its arguments is a true predicate.
It examines its arguments sequentially in the same way that AND does.

(NOT predicate) is equal to T if its argument is a false prédicate,
and F if its argument is a true one,

(NULL L) is equal to T if L is a null list, otherwise false.

(QUOTE atomic symbol) is equal to its atomic symbol argument, if the
argument is an atomic symbol.

(LIST arg., arg.2 arg., vesssess) 1is equal to a list of its arguments,

B R 8 s 0K i A TR O it s AN WA vy b riit ot

gt oo AN A 4 ey e i s

As was said before, a function is equal (in a sense which has been
partially illustrated) to some list or atom., The function DEFINE nay be

thought of as equal to one of the functions it defines, the particular

" one, and its particular arguments being determined by context. The

context is the rest of the LISP program in which the DEFINE expression
appé ars.

The totality of a LISP program consists of a DEFINE expression, just
described, an APPLY expression, which will shortly be explained, and
possibly TRACLIS or UNTRACLIS expressions, which will be defined later.

The first two types of expressions might correspend to:

£(x) = g(x) + 3m(x) + 4

g(x) = x*

m(x) = 3g(x}
and

£(5)=254
respectively., |

An APPLY statement is a list of three elements: the atom-name
APPLY; the atom-nane oflthe function which the program is interested in
evaluating; and a list of the arguments for that function, In the
context of the program, the DEFINE exnression becomes equal to the function
specified by the APPLY, and the APPLY expression becomes the vaiue of
that function for the civen arouments.

An example of what has so far been presented, let us write the

following program:

il
|
i
%

520 W T e RS i L8 ORI AR VR il 955N lebi s b 4 e

TTO

b i
3
1
1
|
E |
4
1
g |
]
3

(DEFINE
(TRANSLATE (LAMBDA (A B) (COND
({NULL A) (LIST)
((T) (CONS (LOOKUP (CAR A) B)
(TRANSLATE (CDR A) B))))))
(LOOKUP (LAMBDA (A B) (COND
((EQ A (CAAR B)) (CDAR B))
((T) (LOOKUP A (CDR B)))))))

(APPLY TRANSLATE ((THE DOG ATE THE STEAK)
((STEAK VIFTEK) (DCG CHIEN) (ATE MANGEAIT) (THE LE))))

The result of this program will be TRANSLATE of the two arguments
given. To evaluate TRANSLATE we first test the first predicate of its
definition. Since the first argument is not a null list, the predicate is
false, and we try the next cne, T in this case is a pseudo-predicate,
which is alsays true. (it may be read as "otherwise'.) In this case,
since no prier predicate of the definition was true, it causes the
definition paired with it tc be the definiticn of TRANSLATE, and ultimately
of APPLY, TRANSLATE is then equal to LOOKUP of the first element of the
first argument CONSed with TRANSLATE of the remainder of the first argu-
ment, This second TRANSLATE is similarly evaluated., Uhen we get to the
point when we rust take TRANSLATE of a list of only one atom, we again .o
CONS LOOKUP of that atom with translate of CDR of the list, which is the
empty list, To evaluate this TRANSLATE, we again go down the list of
predicates, but this time (NULL A) is true, Thus TRANSLATE id defined
equal to the list, which needs no further evaluation. TRANSLATE is then
equal to a list in one to one correspondence with the first argument.

Each element of this list is equal to LOOYUP of the corresponding element
on the first argument. LOOKUP of the atoms of the first argument must

now be evaluated. Given an atomic symbol from the first argument, it

looks to see if it is equal to the first element of the first element of

he second argument. If so, LOOKUP in that case is equal to the second

= atom in that element, which would be its correspond in the other language.

R e Pl SRt s

- If the first predicate is not true, LOOKUP is equal to LOOKUP of the atom

“and of COR of the second aroument, This process must eventually come upon
" the right pair-in the second argument, assuming it exists and make LOOKUP

:equal to the other-language correspond of the given atom-word. Thus,

- TRANSLATE gives a word for word translation of a list of atoms.

In conclusion, let us look at some slightly more specialized pre-defined

functions. The distinction between pre-defined functions and functions

defined by a define statement may here be more clearly described, and should

be understood: pre-defined functions may appear in a program without

definition in the DEFINE expression: they are recognized and appropriately

dealt with by whatever cperates on the LISP program; all other functions
used in a program must be defined in the DEFINE expression of that program.
TRACLIS aids in debugging programs. To use the function TRACLIS,

one inserts a TRACLIS expression in the program along with DEFINE and

APPLY expressiens. It constist of a list whose first element in the atom

TRACLIS, and whose subsequent elements are names of functions to be
TRACLISed:

(TRACLIS FUNCTA FUNCTB)
(APPLY FUNCTA)

(DEFINE .
(FUNCTA..-.o...)
(FUNCTBu.eeaunn_

*s8s dev e e

A AL S PO SOt £ S

b b

(FUI\ECTZOQQOo c.))

TRACLIS applied to a function will list the successive values the function

|
!
i
;

0 e B o e L0500 35 s A S R M i b ot b

i o I, N4 e R

bbbl 20 106 s

10

B takes as it is being evaluated.

UNTRACLIS may be used if there are several APPLYs to keep from

TRACLISing all of them. All APPLYs after a TRACLIS but before the following
UNTRACLIS will be TRACLISed, others will not,

DISINTEGRATE is a function of an atom, and is eaual to a list of

> symbols in that atom:

(DISINTEGRATE SCUTH)=(S 0 U T H)

REINTEGRATE is similarly defined for the opposite purpose:

(REINTEGRATE (D © G)) = B0OG
FUNCTION and LAMBDA must be used when a function appears as an argument
of another functicn, as in the case of FORODD which is a function of a
predicate and a list:
<o+ (FCRODD (FUNCTION (LAMBDA (X} (ATOM X))) L).....
instead of
++..(FORCDD ATCM L)
as might be expected..
LAMBDA is also used in function definitions to avoid the re-evaluation
of certain expressions. A good ‘example is the function EXTRACT:
(EXTRACT (LAMBDA (P L) (COND
((NULL L) (LIST (LIST) (LIST))
{(P (CAR L)) ((LAMBDA (X) (CCNS (CONS (CAR L) (CAR X))
(COR X))} (EXTRACT P (CDR L))))
{((T) ({LAMBDA (X} (LIST (CAR X) (CONS (CAR L) (CADR X3)))
(EXTRACT P (CDR L)))))))
Here, ({LAMBDA (X) (CONS (CONS (CAR L) (CAR X)) (CPR X))) (EXTRACT P
(CDR L))} is used in place of (CONS (CONS (CAR L) (CAR (EXTRACT P (CDR L))))

(CDR (EXTRACT P (CDR L)))) to avoid calculation (EXTRACT P (CDR L)) twice.

11

T10 THEORETICAL POINTS

At this point we may bring up a fundamental fact shout LISP which has

uired the preceding discussion as illustration, Notice that in LISP

function may be defined in terms of itself, This is not possible in

fﬁost languages, which are iterative (one instruction after another).
py

e This self-definition, or recursion, marks the fundamental difference

between LISP and most other programming languages, Some experience with

,programming in LISP may be required before the reader will fully appreciate
3&3 importanée and elegance of recursien.

Another aspect which differentiates LISP from many other languages

jis the fact that a "universal' function may be written in the language,

A universal function in a language is one which will take a program in

;hat language as input, and give as output the value expected from that
program, In LISP this amounts tc a definition of APPLY written in LISP:

(APPLY (LAMBDA (E)
(EVAL (CONS (CAR E) (APFQ (CDR E))) (ALIST*))))
(EVAL (LAMBDA (5 ALIST) -(COND
((NULL E) {LICT))
((ATOM E) (ASSOC E ALIST))
((NULL (CAR E)) (CADR E))
((ATOM (CAR E)) ((LAMBDA (X) (COND
((EQ X (QUOTE T)) (T))
((EQ X (QUOTE F)) (F))
((EQ X (NUOTE CAR)) (CAR (EVAL (CADR E) ALIST)))
((EQ X (QUOTE CDR)) (CDR (EVAL (CADR E) ALIST)})

((EQ X (QUOTE
((E9 X (NUOTE
((EQ X (NUOTE
((E0 X (NBOTE
((EQ X (ouoTE
((EQ X (QUOTE
((EO X (QUCTE
((EQ X (QUOTE
((EQ X (QUOTE
((EQ X (QUOTE

CONS)) (CONS (EVAL (CADR E) ALIST) (EVAL (CADDR E) ALIST)))
ATOIN) (ATOM (EVAL (CADR E) ALIST)))

EN)) (ET (EVAL (CADR E) ALIST) (EVAL (CADDR E) ALIST)))
NUOTE)) (CADR E))

LIST)) (EVLIS (CDR E) ALIST))

COND)) (EVCON (CDR E) ALIST))

NULL)) (NULL (EVAL (CADR E) ALIST)))

FUNCTION)) (LIST (QUOTE FINARG) (CADR E) ALIST))

AND)) (EVAND (CDR E) ALIST))

OR)) (EVOR (CDR E) ALIST))

12

B (ATOM X) (EVAL (CONS (ASSOC X ALIST) (CDR E)) ALIST))

B (50 (CAAR E) (QUOTE LAMBDA)) (EVAL (CADDAR E) (EVLAPPEND (CADAR E) (CDR E) ALIST)))
((EQ (CAAR E) (QUOTE LABEL)) (EVAL (CONS (CADDAR E) (CDR E)) (CONS

b (CADR E) (CONS (CADDAR E) ALIST))))

((E0 (CAAR E) (QUOTE FUNARG)) (EVAL (CONS (CADAR E) (EVAPR (CDR E)

E ALIST))) (CADDAR E}))

B((T) (EVAL (CONS (EVAL (CAR E) ALIST) (CDR E}) ALIST)))))

, .,§EVLIS (LAMBDA (L ALIST) (COND
£ ((NULL L) (L3ST))
((T) (CONS (EVAL (CAR L) ALIST) (EVLIS (CDR L) ALIST)))))))

EVCON (LAMBDA (L ALIST) (COND

((NULL L) (PRINT (OUOTE (UNSATISFIED CONDITIONAL))))
((EVAL (CAAR L) ALIST (EVAL (CADAR L) ALIST))

((T) (EVCON (CDR L) ALIST)})))

EVAND (LAMBDA (L ALIST)
(OR (NULL L) (AND (EVAL (CAR L) ALIST) (EVAND (CDR L) ALIST)))))

F (EVOR (LAMBDA (L ALIST)
© (AND (NOT (NULL L)) (OR (EVAL (CAR L) ALIST) (EVOR (CDR L) ALIST)})))

" (EVALAPPEND (LAMBDA (U V L) (COND

~ ((AND (NULL U) (NULL V)) L)

((NULL U) (LIST (QUOTE (SXCESS ARGIRENTS)) V))

((NULL V) (LIST (QUOTE (EXEESS VARIABLES)) U))

((T) (CONS (CAR U) (CONS (EVAL {CAR V) ALIST) (EVALAPPEND (CDR U) (CDR V) L)))))))

(ASSOC (LAMBDA (X L) (COND

~ ((NULL L) (LIST (QUOTE (UNDEFINED ATOM)) X (QUOTE ALIST) ALIST))
{(EQ X (CAR L)) (CADR L)) .
((T) (ASSOC X (CDDR L)}))))

| (APq (LAMBDA (L) (COND
(NULL L) (LIST))
((T) (CONS (LIST (QUOTE QUCTE) (CAR L)) (APN (CDR L))))))I))

ool e e oo b o i 20 5 3 A e i At i A i3 A

3

{

]
i
A‘%
i
|

13

SOME DEBUGGED FUMCTIONS

SBT TX'IEORY.QQQ.IOQ

SET mEORY‘OOQ‘.IQOO

I.

I1.

|
i
i
i
3
i

I1I.

(ELEMENT X L)

ELEMENT takes the value T if the given element is an element of
the given list; otherwise it takes the value F,
ELEMENT is a nredicate of:
X, a list element,
L, a list,
definition:
(ELEMENT (LAMBDA (X L)
(AND (NOT (NULL L))
(OR (EQUAL X (CAR L)) (ELEMENT X (CDR L))))))
ELEMENT uses only pre-defined functiens

examples:

(APPLY ELEMENT ((E L) ((EL) E (M (EN)) ™))
T

(APPLY ELEMENT (L ((EL) E (M (E M)) T)))

3

(APPLY ELEMENT (() ((E L) E (M (E N)) T)))
F

14

I.

1I.

III.

IV.

V.

15

(INTEPSECTICN L)

INTERSECTION makes a list of all elements common to all the given

listS .
INTERSECTION is a function of:
L, a list of any number of lists.
definition:
(INTERSECTION (LAMBDA (L) (COND
((NULL L) (QUCTE UNIVERSAL))
((T) (POSSESSING (FUNCTION (LAMBDA (U) (FORALL (FUNCTION (LAMBDA (V)

(ELEMENT U V))) L))) (CAR L))))))
INTERSECTION uses:

POSSESSING, FORALL,
examples:

(APPLY INTERSECTION (((BLEST) (E AT $))))
(EST

(APFLY INTERSECTION ((() ())))
0

(APPLY INTERSECTION (((IBM IDB UBB) (BAM BUM IBM))))
(IBM)

(APPLY INMTERSECTION ((}))
UNIVERSAL '

I.
II.

III.

1v.

V.

16

(UNION L)

UNION makes a list of all the elements on the given lists,
UNION is a function of:
L, a list of any number of lists.
definition:
(UKION (LAMBDA (L) (COND
((NULL L) (LIST))
((NULL (CDR L)) (CAR L))
((T) (UNION (CONZ (ACCUMULATE (CADR L) (CAR L)) (CDDR L)))))))
UNION uses:
ACCUMULATE,

examples:

(APPLY UNION (({(T AN) (UNRE S T))))
(SERUTAN

(APPLY UNION (((AB CDE) (CDEFG))))
(CFABCDE)

(APPLY UNION (((A B C B E} ()))
(A3 CDE)

17

_f (DELTA L)
ikx, DELTA makes a list of all the elements on an odd number of the given
lists.
v:?'II, DELTA is a function of:
L, a list of any number of 1lists.
111. definitionL
(DELTA (LAMBDA (L)
(POSSESSING (FUNCTION (LAMBDA (U)
(FORODD (FUNCTION (LAMBDA (V) ELEMENT U V))) L))) (UNION L))))
1V, DELTA uses:

POSSESSING, FORODD, and ELEMENT.

V. examnples:

(APPLY DELTA (((ZEBRA) (ROD) (DCT) (DAB) (T CE))))
(b 0 2)

i
3

i
-
§ |
4
|
3

18

SUBSET S L)
SUBSET takes the value T if all the elements of the first list are
elements of the second, F otherwise,
I. SUBSET is a nredicate of:
S, a list,
L, a list,
»»"5 ITI., definition:
(SUBSET (LAMBDA (S5°L) (COND
(QULL S) (7))
((ELEMENT (CAR S L)} (SUBSET (CDR S) L))
«m (¥)))))
IvV. SUBSET uses:
ELEMENT,

V. examples:

(APPLY SUBSET ((A) (A B C D)))
T

(APPLY SUBSET (() (ANYTHTI N G)))
T

i b e an bt e i ittt bl o b il i aninsebbints -+ i . dibin esiudaibiiiich > ¥ i b s Sidiixdi bt casioiiac . ki ! s K S AU e

19

(cARTBSIAN L)

1..

E 11,

f 111,

Iv,

CARTESIAN writes a list of all possible n-tuples such that the first
eiement of an n-tuple is from the first list n of the given list,
the second from the second, etc.
CARTESIAN is a function of:
L, a list of any number of lists,
definition:

(CARTESIAN (LAMBDA (L)

((NULL L) (LIST))

((NULL (CDR L)) (MAPCAR (QUOTE LIST) (CAR L}))

((T) ((LAMBDA (X) (CARTESIAN* (CAR L) X X)) (CARTESIAN (CDR L)))))))
CARTESIAN uses:
CARTESIAN* MAPCAR

examples:

((APPLY CARTESIAN (((I) (ST N T))))

((1s)y IT AN (ITY

(APPLY CARTESIAN (((M SS S& PP) (I))))
(M 1) (88 1) (s (3 (PP I))

(APPLY CARTESIAN (((1 23)-(ABC) XY 2))

((LAX) (LAY) (1AZ) (1BX)(LBY) (1B2Z) (1CX)
(ICY) (LCY) (2AX) (2AY) (2A2) (2BX) (2BY) (2Bz
}(2CX) (2CY) (2C2) BAX) (BAY) (3A2) (3BX)
(3BY) 3BZ)(3CX)(3CY) (3C2Z))

20

PREDICATES TO TEST A LIST

FOR A CONFIGURATIONAL PROPERTY...s.

) (= TRIPLET

E (uLTRasINGLET L)

1.

f . -

E 111,

ULTRASINGLET takes the value T if a given list has at least one
element; F otherwise.

ULTRASINGLET is & predicate of:

L, a list,

definition:

(ULTRASINGLET (LAMBDA (L)
(NOT (OR (ATOM L) (NULL L)))))

ULTRASINGLET uses only pre-defined functions,
examples:

(APPLY ULTRASINGLET ((A B)))
T

(APPLY ULTPASINGLET ((A)))
T

(APPLY ULTRASINGLET (A))
F

21

g 11,

- III.

4
=
E
=1
S G
g 3
4
2

ULTRADOUBLET L)

22

ULTRADOUBLET takes the value T if the given list has at least two

elements; F othervise,
ULTRADOUBLET is a predicate of:
L, a list,

definition:

(ULTRADCUSLET (LAMBDA (L)
(NOT (OR (ATOM L) (NULL' L) (MULL (CDR L))))))

ULTRADOUBLET uses only pre-defined functions.
examples:

(APPLY ULTRADOUBLET ((A)))
F

(APPLY ULTRADCUBLET (A))
F

(APPLY ULTRADOUBLET ({A B)))
T

1.
11.

111,

(ULTRATRIPLET L)

ULTRATRIPLET takes the wvalue T if the given list has three or more

elenents; F othervise,
ULTRATRIPLET is a predicate of:
L, a list,

definition:

(ULTRATRIPLET (LAMBDA (L)
(AND (ULTRADOUBLET L) (NOT (NULL (CDDR L))))))

ULTRATRIPLET uses only pre-defined functions.
examples:

(APPLY ULTRATRIPLET ((A 3 C)))
1 :

(APPLY ULTRATRIPLET ((A B)))
F

(APPLY ULTRATRIPLET ({(A B)}))
F

(APPLY ULTRATRIPLET ((A)))
F

23

II.

IiI.

24

SINGLET L)

SINGLET takes the value T if the given list has exactly one element;
F ctherwise.

SiNGLET is a predicate of:

L, a list,

definition:

(SINGLET (LAMBDA (L)
(AND (ULTRASINGLET L) (NULL (CDR L)))))

SINGLET USES:
ULTRASINGLET.
examples:

(APPLY SINGLET ((A)))
T

(APPLY SINGLET (A))
F

(APPLY LINGLET ((A B)))
F

F(DOUBLET L)

; DOUBLET takes the value T if the given list has exactly two
elements; F otherwise,

DOUBLET is a predicate of:

L, a list.

definition:

(DCUBLET (LAMBDA (L)
(AND (ULTRADOUBLET L) (NULL (CDDR L)))))

DOUBLET uses;
ULTRADQUBLET.
examples:

(APPLY DOUBLET ((A B)))
T

(APPLY DOUBLET ((A B C)))
F

26

(TRIPLET L)

TRIPLET takes the value T if and only if the given list has
exactly three elements; F otherwise.

TRIPLET is a predicate of:

L, a list,

I1I. definition:

(TRIPLET (LAMBDA (L)
(AND (ULTRATRIPLET L) (NULL (CDDDR L)))))

TRIPLET uses:
ULTRATRIPLET.
examples:

(APPLY TRIPLET ((A B C)))
T

(APPLY TRIPLET ((A B C D)))
F

27

§ (ODDPLET L)
k1. ODDPLET takes the value 'T if the given list han an odd number
of elements F otherwise,
II. ODDPLET is a predicate of:
L, a list,
ITI. definition:

(ODDPLET (LAMBDA (L)
NOT (OR (NULL L) (CDDPLET (CDR L))))))

ODPLET uses only pre-defined functions.,
exarmles:

(APPLY ODPPLET ((A B C D)))
F

(APPLY CDDPLET ((A B C D E)))
T

(APPLY ODDPLET (((A B C D E))))
T

28

FUNCTIONS WHICH APPLY OTHER
FUNCTIONS TO THE ELEMENTS OF

A LIST.‘.‘...C'Q“

F 1.

,éQII.

111,

29

: (MAPCAR G L)

MAPCAR applies a given function to every element of a given list
and lists the results.
MAPCAR is a function of:
G, a function,
L, a list,
definition:
(MAPCAR (LAMBDA (G L) (COND
((NULL L) (LIST))
((T) (CONS (G (CAR L)) (MAPCAR G (CDR L)))))))
MAPCAR uses only pre-defined functions.

examples:

(APPLY MAPCAR ((FUNCTION (LAMBDA (X) (CAR X))} €(I C) (B) (M))))
(I B M)

(APPLY MAPCAR ((FUNCTION (LAMBDA (X) (EO X (QUCTE Y)))) (A B C Y D)))
(FFFTF)

30

E (APCON G L)
E*I. MAPCON applies a function to a whole list, then to CDR of the
list, and so on. The lists resulting are joined together.
f 11. MAPCON is a function of:
G, a function,
L, a list,
111, definition:
(MAPCON (LAMBDA (G L) (COND
((NULL L) (LIST))
((T) (APPEND (G L) (MAPCON G (CDR L))}))))
v, MAPCON uses:
APPEND,
V. examples:

(APPLY MAPCON (CDR (A B C D)))
(BCDCDD)

(APPLY MAPCON ((FUNCTION (LAMBDA (X) (CDR XJ)) (A B C D)))
(BCDCDD)

I.

II.

111,

v,

V.

31

(MAPLIST G L)

MAPLIST applies a function to a list, then to CDR of the list,
and so on., The results of each application form the elements of
a new list,
MAPLIST is a function of:
G, a funceion,
L, a list,
definition:
(MAPLIST (LAMBDA (G L) (COND
((NULL L) (LIST))
((T) (CoNS (G L) (MAPLIST G (CDR Lynn»
MAPLIST uses only pre-defined functions.

examples:

(APPLY MAPLIST ((FUNCTION (LAMBDA (X) (ATCM X))) (A B CD)))
(FFFF)

(APPLY MAPLIST ({FUNCTION (LAMBDA (X) (CAR X))) (A B C D)))
(A B C D)

32

(FOREACH G X L)
;;I. FOREACH applies a function of two arguments to the successive
4 elements of a given list and simultaneocusly to a second list;
and lists the results,
FOREACH is a function of:.
G, a function
X, a list,
L, a list,
I1TI. definition:
(FOREACH (LAMBDA (G X L) (COND
((NULL X (LIST))
((T) (CONS (G (CAR X) L) (FOREACH G (CDR X) L))))))
FOREACH uses only pre-defined functiéns,

examples:

(APPLY FOREACH ((FUNCTION (LAMBDA (X L) (CONS L X))) (S N T) (I)))
(I} (1)) (N

(APPLY FOREACH ((FUNCTION (LAMBDA (X L) (ELEMENT (L))) (U S A) .
(TTT (RUSSIA))

33

‘ ;%FCREACH* G X L)
. FOREACH* applies a function of two arguments to the first element
of the first given list, and to another list., This other list
is the given function applied to the second element of the first
given list and to another list similarly defined, The second
argument in the case where the first argument is the last element
of the first given list is the second given list.
FOREACH* is a function of:
G, a function of two arguments,
X, a list
L, a list,
definition:
(FOREACH* (LAMBDA (G X L) (COND
((NULL X) L)
((T) (G (CAR X) (FCREACH* G (CDR X) L))I)))
FOREACHE* uses only pre-defined functions.

examples:

(APPLY FOREACH* ((FUNCTIOM (LAMBDA (X L) (CONS X L))) (ABCD) (EF GH)))
(ABCDEFGH)

1.

II.

III.

RN o i B o

34

f (FOREACH** G X L)

FOREACH** writes a list whose first element is the given function
of two arguments applied to the first element of the first given
list, and to the second given list., Its second element is the given
function applied to the second element of the first given list,
and to the element described in the last sentence., Its third
element is the function applied to the third element of the first
given list, and to the element described in the previous sentence,
and so on, |
FOREACH** is a function of:
G, a function of two arguments,
X, a list,
L, a list,
definition:
(FOREACH** (LAMBDA (G X L) (COND

(QNULL X) (LIST))

((T) (CCNS (G CAR X) L) (FOREACH** G (CDR X) (G (CAR X) L))
FOREACH** uses only pre-defined functions.
examples:
(APPLY FOREACH** ((FUNCTION (LAMBDA (X L)
(EXPUNGE X L))) (ACD) (ABCDEF)))
(BCDEF) (BDEF) (BEF))
(APPLY FCREACH** ((FUNCTION (LAMBDA (X L)
(APPEND X L))) ((A} (B) (C) (D) (E)) ((BEEP)}))

((A (BEEP)) (B A (BEEP)) (C B A (BEEP))
(D C B A (BEEP)) (E D C B A (BEEP)))

35

e
43

£ (PERMEATE G L)

4 1. PERMEATE applies a given function to each atomic symbol in a list,
It then applies the function to each list of the resulting list,
in one to one correspondence with the original list, which corres-
ponds to a list which contained just atoms. It continues in this
way until it anplies the function to a list corresponding to the
original list,

1I. PERMEATE is a function of:

G, a function,
L, a list,
I1II. definition:
(PERMEATE (LAMBDA (G L) (COND
((ATOM L) (G L)) .
({T) (G (MAPCAR (FUNCTION (LAMBDA (L) (PERMEATE G L))) L))

Iv. PERMEATE uses:

MAPCAR,

V. examples:

(APPLY PERMEATE ((FONCTION (LAMBDA (L) (CONS L (QUOTE B)))) (B (B (B

(A)113))
(((B) (((B) (((®) (((A))3))I)))

0 D4 0 et AN 0 e

111,

36

B (PERCOLATE 6 L)

PERCOLATE is defined like permeate, but starts by applying the
function to lists of only atomic symbols,
PERCOLATE is a function of:
G, a function,
L, a list.
definition:
(PERCOLATE (LAMBDA (G L) (COND
((ATOM L) L)
((T) (G (MAPCAR (FUNCTION (LAMBDA (L) (PERCOLATE G L)}) L))))))
PERCOLATE uses:
MAPCAR.
examples:
(APPLY PERCOLATE ((FUNCTION (LAMBDA (L) (APPEND L

(QUCTE B)})) (B (B (B (B (A)))))))
(8 (B (B (B (A))}))

PREDICATES WHICH TEST A PREDICATE

ON VARIOUS MEMBERS OF A LIST

FORBLL

37

38

k', (FORALL L P)
% I. FOR ALL takes the value T if the given predicate is true for
| all the elements of a given list, and F otherwise,
11, FORALL is a predicate of:
L, a list,
P, a predicate,

111, definition:

(FORALL (LAMBDA (P L)
(OR (NULL L) (AND (P (CAR L)) (FORALL P (CDR L)})))))

v, FORALL uses only nre-defined functions,
V. examples:

(APPLY FORALL ((FUNCTION (LAMBDA (X) (ATOM X))) (A A A)))
T

(APPLY FORALL ((FUMCTION (LAMBDA (X) {ATOM X))) ((XIC) B M)))
F

39

(FORSOME L P)

I. FORSOME takes the value T if the given predicate is true for
any element of the given list, F otherwise.

11. FORSOME is a predicate of:)
L, a list,
P, a predicate.

III. definition:

(FORSOME (LAMBDA (P L)
(AND (NOT (NULL L)) (OR (P (CAR L)) (FORSCME P (CDR L})))))

Iv. FCRSCME uses only pre-defined functions,

V. examples:

(APPLY FORSOME ((FUNCTION (LAMBDA (X) (ATOM X))) (A (A A))))
T

(APPLY FCRSOME ({FUNCTION (LAMBDA (X) (ATOM X))) ({A) (A) (A))))
F

40

£ (FORODD L P)

1.

;%II.

1v.

V.

FORODD takes the value true if a given predicate is true for an

odd number of elements of a given list.

FORODD is a predicate if:

L, a list of lists,

P, a predicate.

definition:

(FORODD (LAMBDA (P L)

(AND (NOT (NULL L)) (OR (AND (P (CAR L)) (NOT (FORCDD P

(CDR L)))) (AND (NOT (P (CAR L))) (FORODD P
(CDR L)))3)))

FORCDD uses only pre-defined functions.

examples:

(APPLY FORODD ((FUNCTION (LAMBDA (X) (ATOM X))) (C (ON) F (US) I (NG))))

T

(APFLY FORODD ((FUNCTION (LAMBDA (X) (ATOM X))} ((CC) N (FU) S (ED))))
F

41

© (SUCHTHAT* L P Al A2)

1.

II.

III.

SUCHTHAT is a function which takes a given value (or anplies a
given function) if there is an element on the given list such that
the given prEperty is true. Otherwise it takes the second given
value (or function),
SUCHTHAT is a function of:
L, a list of lists;
P, a predicate,
Al, a function, atom, or list,
A2, a function, atom, or list.
definition:
(SUCHTHAT* (LAMBDA (L P Al A2) (COND
((uuLL L) A1)
((P (CAR L)) A2)
((T) (SUCHTHAT* (CDR L) P Al A2)))))
SUCHTHAT uses only pre-defined functions,
exanples:
(APPLY SUCHTHAT* (({A) (B) C (D)) (FUNCTION (LAMBDA (S)

(ATOM S))) (NCPE) (YUP)))
(Yup)

P-sssaame

crrTrm e EmEete ‘

(SUCHTHAT** L P PUNCTION)
- 1, SUCHTHAT** takes the value of (PUNCTION L) if there exists an f;:
| element on the given list such that a given pronesty is true;
otherwise it is a null list,
II. SUCHTHAT** is & function of: i 8
L, a list of lists,
P, a predicate,

PUNCTION, a function,

III. definition:

((SUCHTHAT** (LAMBDA (L P PUNCTION} (COND
((NULL L) (LIST))

((P (CAR L)) (PUNCTION L)) L
((T) (SUCHTHAT** (CDR L) P PUNCTION))))) L

IvV. SUCHTHAT** uses only pre-defired functions.

V. examples:

(APPLY SUCHTHAT** (((A B C D) (A B)) (FUNCTION (LAMBDA (S)
(ULTRATRIPLET S))) (FUNCTION (LAMBDA (S) (MAPCAR {FUNCTION
(LAMBDA (X) (COND ((NOT (ULTRATRIPLET X)) X) ((T) (LIST (CAR X}
(CADR X) (CADDR X)})))) S)1))))

43

FUNCTIONS YHICH LIST

CERTAIN ELEMENTS OF A LIST...

77—

\
|

NN
Sy ~

.,

i (SUCHTHAT P L)
?QII. SUCHTHAT lists the first element in a given list for which a
given predicate is true,
II. SUCHTHAT is a function of
L, a list,
P, a predicate,
IIT, definition:
(SUCHTHAT (LAMBDA (P L) (COND
((NULL L) (LIST))
((P (CAR L)) (CAR L))
((T) (SUCHTHAT P) (CDR L)))))
IV, SUCHTHAT uses only pre-defined functions.

V. examples:

(APPLY SUCHTHAT ((FUNCTION (LAMBDA (L) (ATOM L))) (A (B C) D)))
A

44

II.

111,

45

© (POSSESSING P L)

POSSESSING writes a list of all the elements of a given list
for which a given predicate is true,
POSSESSING is a function of:
P, a predicate,
L, a list,
definition:
(POSSESSING {LAMBDA (P L) (COND
((NULL L) (LIST))
((P (CAR L)) {(CONS (CAR L) (POSSESSING P (CDR L})))
((T) (POSSESSING P (CDR L)M))))
POSSESSING uses only pre~defined functions.
examples:
(APPLY POSSESSING ((FUNCTION (LAMBDA (L) (ATOM L)}) (P (0 S) (E S S)

ING)))
(P ING)

(APPLY POSSESSING ((FUNCTION (LAMBDA (L) (ATOM L))) (A (B C) D)))
(A D)

I.

II.

II1.

(REMOVE I L)

REMOVE writes a list of all the elements of a given list except
the first occurrence of a given element.
REMOVE is a function of:
I, a list element,
L, a list.
definition:

(REMOVE (LAMBDA (I L) (COND

((NULL L) (LIST))

((EQUAL I (CAR L)) (CDR L))

((T) (CONS (CAR L) (REMOVE I (CDR L})))))))
REMOVE uses only pre-defined functionms.

examples:

(APPLY REMOVE ((B) ((B) (A) (L) (E))))
(A @ E)

(APPLY REMOVE (B (B A L E)))
(AL E)

46

L s e e

47

(EXPUNGE X L)

I. EXPUNGE writes a list of all the elements on a given list

except all those equal to a given element,
II, EXPUNGE is a function of;
X, a list element,
L, a list,
II1. definition:
(EXPUNGE (LAMBDA (X L) (COND
((NULL L) {risT))

((EQUAL X (CAR L)) (EXPUNGE X (CDR L)))
((T) (CONS (CAR L) {EXPUNGE X (CDR L)I))I))

IV, EXPUNGE uses only pfeiﬁefined functions,

V. examples:

(APPLY EXPUNGE (I (M I SSISSIPPI))
(MSSSSPD)

T LR TN T

| (ALTERNATE L)
f; I. ALTERNATE makes a list of all the odd elements of a given list.
11, ALTERNATE is a function of:
L, a list.
III. definition:
(ALTERNATE (LAMBDA (L) (COND
((NULL L) (LIST))
((NULL (CDR L)) (LIST))
((T) (CONS (CAR L) (ALTERNATE (CDDR L}))))))
1v. ALTERNATE uses only pre-defined functions.

V. examples:

(APPLY ALTERNATE ({U S S R)))
(U s)

(APPLY ALTERNATE ((A A B B C C)))
(AB Q) ‘

48

S SR EEERG T e L s

49

FUNCTIONS WHICH DO

VARIOUS MANIPULATIONS,..

\ N
AN
(‘xg:::zzé\ WD [T

50

(REVERSE L)

I. REVERSE rewrites a given list with the order of the elements
reversed.
REVERSE is a function of:

L, a list,

definition:
(REVERSE (LAMBDA (L) (REVERSE* L (LIST))))
(REVERSE* (LAMBDA (L M) (COND

((NULL L) M)

((T) (REVERSE* (CDR L) (CONS (CAR L) M})))))
REVERSE uses:
The auxiliary function REVERSE*
examples:

(APPLY REVERSE ((SE RU T A N)))
(NATURES)

(APPLY REVERSE ((EM B AR G 0 S)))
(SOGRABME)

.‘
1.
A

f 11

E 111,

IV(

51

 (COLLECT L)

COLLECT regroups the elements of a list so that all reoccurrences
of each element, if any, are made immediately after the first
occurrence,)
COLLECT is a function of:
L, a list of any number of elements.
definition:

(COLLECT (LAMBDA (L) (COND

((NULL L) (LIST))

((ELEMENT (CAR L) (CDR L)) {COMS (CAR L) (COLLECT

(CONS (CAR L) (REMOVE (CAR L) (CDR L))})))

((T) (CONS (CAR L) (COLLECT (CDR L)}I))))
COLLECT uses:
ELEMENT, REMOVE,
examples:

(APPLY COLLECT ((N I X O N))}
(NNIXO)

I.

II.

I1I1.

52

(REALTERNATE L M)

REALTERNATE places the given list element after each element
of a given iist,
REALTERNATE is a function of:
L, a list,
M, a list element,
definition:
(REALTERNATE (LAMBDA (L M) (COND
((NULL L) (LIST))
(ENULL (CPR'L)) L)
((T) (CONS (CAR L) (CONS M (REALTERNATE (CDR L) 1)})))))
REALTERNATE uses only nre-defined functions.,
examples:

(APPLY REALTERNATE ((B N N S) A)) .
(BANANAS)

(APPLY REALTEPNATE ((A B C) (1)))
AMMs3M@Oo

e g 1A i e

(APPEND A B)

I.
II.

III.

1V,

v,

APPEND makes a list of the elements of two lists,
APPEND is a function of:
A, a list,
5, a list,
definition:
(APPEND (LAMBDA (A B) {(COND
((NULL A) B)
((T) (CONS (CAR A) (APPEND (CDR A) B))))))
APPEND uses only pre-defined functioms.

examples:

(APPLY APPEND ((D O G) (H O U S E)))
(DOGHOUS E)

53

‘‘‘‘‘‘‘‘

- (SUBSTITUTE X Y L)

28

E 11,

III.

1V,

SUBSTITUTE replaces every occurrence of one given element on
a given list by a second given element,
SUBSTITUTE is a function of:
X, a list element
Y, a list element
L, a list.
definition:
{SUBSTITUTE (LAMBPA (X Y L) (COND
((NULL L) (LIST))
((EQUAL Y (CAR L)) (CONS X (SUBSTITUTE X Y (CDR L))))
((T) (CoNS (CAR L) (SUBSTITUTE X Y (CDR L)))))))
SUBSTITUTE uses:
EQUAL.
examples:

(APPLY SUBSTITUTE (B A (A (A (A (A))))))
B (A (A M)

(APPLY SUBSTITUTE (B A (A A A)))
(B B B)

54

55

éﬁ(gXTRACT P L)

i 1.
E 11,

I1I.

1v,

V.

EXTRACT makes a list of two elements, The first is composed of
all the elements of a given list with a given pronerty; the
second is composed of all the remaining elements,
EXTRACT is a function of:
P, a predicate,
L, a list,
definition:
(EXTRACT (LAMBDA (P L) (COND
((NULL L) (LIST (LIST) (LIST))
((P (CAR L)) ((LAMBDA (X) (CONS (CONS (CAR L) (CAR X))
(CDR X))) (EXTRACT P (CDR L})))
((T) ((LAMBDA (X) (LIST (CAR X) (CONS (CAR L) (CADR X))))
(EXTRACT P (CDR L))))I)3
EXTRACT uses only pre-defined functions,

exanples:

(APPLY EXTRACT ((LAMBDA (L) (SINGLET L)} (B (D) 0 M (A) (T) (0) (M) B)))
(C(0) (A) (T) (0) D) (B O M B))

-

- (AMONG X L)

1.

E 11,

1v.

AMONG adds the given list element to the given list if it is not
on the list,
AMONG is a functionubf:
X, a list element
L, a list,
definition:
(AMONG (LAMBDA (X L) (COND
((NULL L) (LIST X))
((EQUAL X (CAR L)) L)
((T) (CONS (CAR L) (AMONG X (CDR L)))))))
AMONG uses:
EQUAL,

examples:

(APPLY AMONG (X (D A R)))
(DARK)

(APPLY AYONG (B (B I T)))
(BIT

56

57

ARITHMETIC FUNCTICNS.....

1.
11,

III.

~ (BINARY L)

BINARY writes the binary equivalent of a given octal number

expressed as a list of its {(atomic) digits.

BINARY is a function of:
L, a list of octal digits.
definition:

(BINARY (LAMBDA (L) (COND
((NULL L) (LIST))

((EQUAL (CAR L) (QUCTE 7)) (CONS (QUOTE
(CONS (QUOTE 1) (BINARY (CDR L))))))
((ENUAL (CAR L) (QUOTE 6)) (CONS (NUOTE
(CONS (NUOTE 0) (BINARY (CDR L))))))
((EQUAL (CAR L) (QUOTE 5)) (CONS (NUOTE
(CONS (QUOTE 1) (BINARY (CDR L))))))
((EQUAL (CAR L) (QUCTE 4)) (CONS (QUOTE
(CONS (QUCTE 0) (BINARY, (CDR L)}))))
((EQUAL (CAR L) (OUQTE 3)) (CONS (NUOTE
(CONS (QUOTE 1) (BINARY (CDR L))))))
((EQUAL (CAR L) (QUOTE 2)) (CONS (NUOTE
(CONS (QUOTE 0) (BINARY (CBR L))))))
((EOUAL (CAR L) (QUOTE 1)) (CONS (NUOTE
{CONS (QUOTE 1) (BINARY (CDR L))))))
((EQUAL (CAR L) (NUCTE 0)) (CONS (QUOTE
(CONS (QUOTE 0} (BINARY (CDR L))))))

BINARY uses only pre-defined functions.
examples:

(APPLY BINARY ((7)))
(111

(APPLY BINARY ((6 3)))
(11001 1)

Y
1y
1
1)
0)
0)
0

0)

(CONS
(coNs
(CONS
(CONS
(CONS
(CONS
(CONS

(CONS

(QUOTE
(QUOTE
(NUOTE
(OUOTE
(QUOTE
(QUOTE
(QUOTE

(QUOTE

1)
0)
0)
1)

0)

0)

58

59

 (COUNT L)
mgll. COUNT writes a list of ones equal in number tc the numerical
vaiue of the first given list, a binary number in list form,
i iI. COUNT is a function of:
L, a list whose elements are the (atomic) digits of a binary nunber,
C, a list element,
III, definiticn:
(COUNT (LAMBDA (L)
(COUNT* (REVERSE L) (LEST (QUUTE 2))))))
(COUNT* (LAMBDA (A B) (COND
((NULL A) (LIST))
((EQ (CAR A) (QUOTE 1)) (APPEND B (COUNT*
(CDR A) (APPEND B B))))
((T) (COUNT* (CDR A} (APPEND B B)}))))
1v, COUNT uses:
APPEND, REVERSE, and the auxiliary found in COUNT*,

V. examples:

(APPLY COUNT (
(1111111

60

;(ENGLISH L)

vffi. ENGLISH rewrites a list so that the first element of the given list
; is placed after each of the remaining elements of the list. :
II. ENGLISH is a function of: | o
L, a list,

111, definition:

(ENGLISH (LAMBDA (L)
(REALTERNATE (CDR L) (CAR L))))

1v. ENGLISH uses:
REALTERNATE
V. examples:

(APPLY ENGLISH ((- A B C)))
(A-B-0

(APPLY ENGLISH ((A B N N S)))
(BANANAS)

‘fil.

I1I.

II1.

61

f (POLISH L)

POLISH takes an algebraic expression (of only one operation) in
list form and converts it to Polish notation,
POLISH is a function of:
L, a list of the (atomic) symbols of an algebraic expression of
one operation,
definition:
(POLISH (LAMBDA (L) (COND
((AND (ULTRATRIPLET L) (ODDPLET L) (UNIFORM L (CADR L)))

(CONS (CADR L) (ALTERNATE L)))
((T) LN

POLISH uses:
ULTRATRIPLET, ODDPLET, UNIFORM, ALTERNATE.
examples:

(APPLY POLISH ((A - B * C = D - E)))
(A-B*C-D-=-E)

(APPLY POLISH ((A - B~ C - D - E)}))
(-ABCD

62

(POSPOLISH L)

1.

II.

I11.

Iv,

V.

POSTPOLISH changes an algebraic expression (of one operation) to

postnolish form,

POSTPOLISH is a function of:

L, a list of any length with an odd number of terms s and whose

even terms are identical, (if the argument is not of this form,

(POSTPOLISH L) is equal to L.)

definition:

(POSTPOLISH (LAMBDA (L) (COND

((AND (ULTRATRIPLET L) (ODDPLET L) (UNIFORM L {CADR L)))
(APPEND (ALTERNATE L) (LIST (CADR 1))))

((Mm L))

POSTPOLISH uses:

f’
F

#

ULTRATRIPLET, ODDPLET, UNIFORM, APPEND, ALTERNATE.
examples:

(APPLY POSTPOLISH ((A - B - C - D - E)))
(ABCD-)

(APPLY POSTPOLISH ((A - B = C = D * E)))
(A-B-C-D*E)

63

f (INTEGERS)

11,

- II.

1v.

V.

INTEGERS is eqUél to a list of the integers from 1 to €0,
INTEGERS is a function of no arguments.
definition:
{INTEGERS (LAMBDA ()
(QUOTE (0 1 2 3

23 24 25 26 27 2
45 46 47 48 49 5

4567891011 1213 14.15 16 17 18 19 20 21 22
8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
0 51 52 53 54 55 56 57 58 59 60))))

INTEGERS uses only pre-defined functions,

examples:

(APPLY INTEGERS ()

(012345678910 111213 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)

64

ORDER. LN]

I.

II.

1II.

IV,

65

(RANK L D)

RANK rewrites a given list so that its elements are ovdered’
according to a second li;t.
RANK 1is a function of:
L, a list,
0, a list,
definition:
(RANE (LAMBDA (L 0) (COND
((NULL L) (LIST))
((T) (CONS (MINIMWM L 0) (RANK (REMOVE (MINIMUM L 0)) L) 0))))))
RANK uses:
MINIMUM, REMOVE.
examples:
(APPLY RANK ((NEST) (SOLEMNITY)))

(GC)
sy () M) (1))

(APPLY RANK ((ALE) (SOLEMNITY)))
(W & (A)

ot

I.

I1I.,

IV,

(ORDER X Y L)
ORDER takes the value T if the first given element is on the
given list, and the second is not; or if both are on the list,

and the first comes before the second;

ORDER is a function of:

X, a list element,

Y, a list element,

L, a list.

definition:

(ORDER (LAMBDA (X Y L) (COND
((NnULL L) F)
((EQUAL X (CAR L)) T)
((BEQUAL Y (CAR L)) F)
((T) (ORDER X Y (CDR L))))))

ORDER uses:

EQUAL,

examples:

¢APPLY ORDER (B A (A L E)))
F ,

(APPLY ORDER (A B (A L E)))
T

éAPPLY ORDER (A B (B AL E)))

66

F otherwise.

OO A Il kil S Rl S Dl R AR Sl

. (MINIMUM L 0)

? I.

II.

III.

1v,

67

MINIMUM selects the smallest element on a list according to a

second given list,

MINIMUM is a function of:

L, a list,

"ﬁ, a 1ist'

definition:
(MINIMUM (LAMBDA (L O) (COND
{(NULL L) (LIST))
((NULL (CDR L)) L)
((ORDER (CAR L) (CADR L) 0) (MINIMUM (CONS (CAR L) (CDDR L)) 0))
((T) (MINIMUM (CDR L) 0)))))
MINIMUL! uses:
ORDER,

examples:

(APPLY MINIMUM ((A C E) (A B C D E)))
A

(APPLY MINIMUM ((F G H) (A B C D E)))
(H)

68

(LEXORDER X Y L)

I.

II.

III.

1v.

LEXCRDER takes the value T if, for the first pair of non-equal
corresponding elements in two given lists, the element of the
first list precedes the corresponding element of the second list
in the corresponding element of the third list; otherwise F.
LEXORDER is a predicate of:
X, a list element,
Y, a list élement,
L, a list,
definition:
(LEXORDER (LAMBDA (X Y L) (COND
((NULL L) B)
((NOT (EQUAL (CAR X) (CAR Y))) (ORDER (CAR X) (CAR Y) (CAR L)))
((T) (LEXORDER (CDR X) (CDR Y) (CDR L))))))
LEXORCER uses:
ORDER.

examples:

%AF?LY LEXORDER ((A B C) (A B Dj ((PQOR) (STU) (ABCD))))

69

O

70

(ACCUMULATE L M)

I.

II.

III,

1v,

V.

ACCUMULATE will make a list of distinct items from two given lists,
if the second list is of distinct items.
ACCUMULATE is a function of:
L, a list,
.M, a list of distinct elements,
definition:
{ACCUMULATE (LAMBDA (L M) (COND
((NULL L) M)
((ELEMENT (CAR L) M) (ACCUMULATE {CDR L} ™))
((T) (ACCUMULATE (EXPUNGE (CAR L) (CDR L)) (CONS (CAR L) M))))))
ACCUMULATE uses:
ELEMENT, EXPUNGE.

examples:

(APPLY ACCUMULATE ((AL AB AMA) (AB CD)))
(MLABCD)

(APPLY ACCUMULATE ((A A B C D) (B C D))
(ABCD

I.

II.

I1I,

Iv.

71

(CCMPCSITE A B S)

COMPOSITE makes a2 list of all doublets £X Z) such that there
exists a doublet (X Y) on the first given list, there exists
a doublet (X Z) on the second given list, and X, Y, Z are all
on the third given list.
COMPOSITE is a function of:
A, a list of doublets,
B, a list of doublets,
S, a list,
definition:

(COMPOSITE (LAMBDA (A B S)

(PCSSESSING (FUMCTION (LAMRDA (U) (FORSOME (FUNCTION (LAMBDA (V)

(AND (ELEMENT (LIST (CAR U) V) A) (ELEMENT

(LIST V (CADR U)) B)))) S})) (CARTESIAN (LIST S S)))))

COMPOSITE uses:
POSSESSING, FORSOME, ELEMENT, CARTESIAN.

examples:

(APPLY COMPGSITE (((A B) (C D) (E F)) ((P A) (BE) (FC)) (ABCDE)))
((AE) (C A))

72

(REPEAT X I)
I. REPEAT makes a list of the first given list repeated as many
times as there are eiements on the second given list.
II. REPEAT is a function of:
X, a list,
I, a list,
111, definition:
(REPEAT (LAMBDA (X I) (COND
((NULL I) LIST))
{(T) (CONS X (REPCAT X (CDR I)))))))
IV. REPEAT uses only pre-defined functions,
V. examples:

(APPLY REPEAT ((HE L P) (A B C D)))
(MELP) (HELP) MELP) (HE L P))

I.

11,

III.

1V,

73

(TALLYCOPY L M)

TALLYCOPY lists as many elements from the second given list,
starting from the left, as there are elements on the first
given list.
TALLYCOPY is a function of:
L, a list,
M, a list with at least as many elements as L.
definition:

(TALLYCOPY (LAMBDA (L M) (COND

((NULL L) (LIST))

((T) (CONS (CAR) (TALLYCOPY (CDR L) (CDR)))))))
TALLYCOPY ﬁaeé only pre-defined functioms,

examples:

(APPLY TALLYCOPY ((D A R K) (K X X)))
(K X K)

74

(TALLYCOMPLEMENT L M)

I. TALLYCOMPLEMENT lists the ¢lements of the second given list
with as many elements removed, starting from the left, as there
are elements on the first given list,

II. TALLYCOMPLEMENT is a function. of:

L, a list,
M, a list of at least as many elements as L.

111, definition:

(TALLYCOMPLEMENT (LAMBDA (L.M) (COND
((NULL L) M)
((T) (TALLYCOMPLEMENT (CDR L) (CDR M))))))
v, TALLYCOMPLEMENT uses only pre-defined functioms.

V. examples:

(APPLY TALLYCOMPLEMENT ((D A R K) (R A I N)))
0 .

I.

1I1.

I11.

(FRAGIENT N L)

FRAGMENT 1lists the elements of the given list up to the first
occurrence of the given list element,
FRAGMENT is a function of:
N, a list element,
L, a list,
definition:
(FRAGMENT (LAMBDA (N L) (COND
((EQ N (CAR L}) (LIST))
((T) (CONS (CAR L) (FRAGMENT N (CDR L)))))))
FRAGMENT uses only pre-defined functions.

examples:

(APPLY FRAGMENT (P (E GG PLANT)))
(E GG)

75

76

(CARTESIAN* A B X)
I. CARTESIAM* forms a list of all possible doubtlets whose: first
element is CAR of A, and whose second element is an element of
B; first element is an element of CDR of A, and whose second
element is an element of X,
11, CARTESIAN* is a function of:
A, a list,
B, a list,
X, a list,
III. definition:
(CARTESIAN* (LAMBDA (A B X) (COND
((NULL A) (LIST))

((NULL B) (CARTESIAN* (CDR A) X X))
((T) (COMS (CONS (CAR A) (CAR B)) (CARTESIAN* A (CDR B) X))))))

1v, CARTESIAN* uses only pre-defined functions.

. MISCELLANEOUS PREDICATES,....

78

(EQUIVALENT X Y L)

I.

II.

111,

IV o«

EQUIVALENT takes the value T if the two given elements are contained
in the same sub-list of the given list; otherwise F,
EQUIVALENT is a predicate of:
X, a list element
Y, a list element,
L, a list,
definition:
(EQUIVALENT (LAMBDA (X Y L) (COND
((NULL L) F) ‘ ~
((ELEMENT X (CAR L)) (ELEMENT ¥ (CAR L)))
((T) (EQUIVALENT X Y (CDR L))))))
EQUIVALENT uses:
ELEMENT.

examples:

(APPLY ENUIVALENT ((A) (B) ((AC) (B D) (R C) (AB)))
F o

79

(UNIFCDM L M)

I.

11,

111,

iv,

UNIFORM takes the value T if all the even terms of the given
list are the same as a given element; otherwise F.
UNIFOPM is a predicate of:
L, a list of at least three, and an odd number of elements,
M, a list element,
definition:
(UNIFORM (LAMBDA (L M)
(OR (AND (TRIPLET L) (EQUAL (CADR L) M))
(AND (ULTRATRIPLET L) (EQUAL {CADR L) 1) (UNIFCRM (CDDR L)} M)))))
UNIFORM uses:
TRIPLET, ETWAL, ULTRATRIPLET.

examples:

(APPLY UNIFORM ({A - B - C) (=)))

T F

(APPLY UNIFORM ((A - B = C = D) -))
T

80

XY)
EQUAL takes the value T if the two given lists are identical.

ENUAL is a predicate of:

X, a list,
Y, a list.
I11. definition:
(EQUAL (LAMBDA (X Y)
(OR (EQ X Y) (AND (NULL X) (NULL Y)) (AND (NOT

(OR (NULL X) (NULL Y) (ATOM X) (ATOM Y))) (EQUAL (CDR X} (CDR Y))
(EQUAL (CAR X) (CAR Y))))))

Iv, EQUAL uses only rre-defined functions.

V. examples:

(APPLY EQUAL ((A B C D) (A B CD)))
T

(APPLY EQUAL (A A})
T

81

(SINILAR X L)

I. SIMILAR--two lists or list elements are SIMILAR if: they are both
null; they are identical; the first is the atom---or corresponding
elements up to the atom--in the first are similar.

11, SIMILAR is a predicate of:

X, a list,
L, a list.

III, definition:

(SIMILAR (LAMBDA (X L)
(OR
(EQ X (QUOTE -))
(B0 X L)
(AND (WULL X) (NULL L))
(AND
(NOT (ATOM X)) (NOT (NULL X))
(OR (AND (EN (CAR X) {(MUOTE ---)) (OR (NULL L) (NOT (ATOM L}))))
(AND (NOT (ATOM L)) (NOT (WULL L) (SI}TLAR (CDR X) (CDR L))
(SIMILAR (CAR X) (CAR LN

SIMILAR uses only pre-defined functions.
examples:

(APPLY SIMILAR (A A))
T

(APPLY SIMILAR (() O))
T

(APPLY SIMILAR ({A (B (C D) E) (FG)) (A (B (CD) E) (FG)))
T

(APPLY SIMILAR ((A (B (C D) E) (F G)) (A (B (C D) E) (F G))))
F

ACCUNULATE
ALTERNATE
AMONG
APPEND
BINARY
CARTESIAN
CARTESIAN*
COLLECT
COMPOSITE
COUNT
DELTA
DOUBLET
ELEMENT
ENGLISH
EOUAL
EQUVALENT
EXPUNGE
EXTRACT
FORALL
FOREACH
FOREACH*

FOREACH**

FORODD

48
56
52
58
18
78
51
71
59
17
25
14
60
80
78
47
55
38
32
34

40

INDEX OF DE-BUGGED FUNCTIONS

FORSCHE
FRAGMENT
INTEGERS
INTERSECTION
INVERT
LEXORCER
MAPCAR
MAPCON
MAPLIST
MINIMUM
ODDPLET
OTHER
PERMEATE
PERCOLATE
POLISH
POSSESSING
POSTPOLISH
RANK
REALTERNATE
REMCVE
REPEAT
SIMILAR

SINGLET

39
75

63
15

50
68
29
30
31
67
27
66
35
36
61
45
62

65

46
72
81

24

82

SUBSET
SUBSTITUTE
SUCHTHAT
SUCHTHAT*
SUCHTHAT**
TALLYCOMPLEMENT
TALLYCOPY
TRIPLET
ULTRADOUBLET
ULTRASINGLET
ULTRATRIPLET
UNIFORM

UNICN

18
54
44
41
42
74

73

22
21
23
79

16

33

	Contents
	1. Lisp
	2. Two Theoretical Points
	3. Some Debugged Functions
	I. Set Theory
	II. Test a List for a Configurational Property
	III. Apply Functions to Elements of a List
	IV. Test Predicate on Various Members of a List
	V. List Certain Elements of a List
	VI. Various Manipulation
	VII. Arithmetic Functions
	VIII. Order
	IX. Miscellaneous Functions
	X. Miscellaneous Predicates

	4. Index

