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ABSTRACT

A complete series of LISP functions is described, whereby the
ccrmonly recognized' properties of finite groups may be analyzed. The
analysis includes the determination of the subgroups of the group, its
normel subgroups, the H-classes, cosets and double cosets, commutator
subgroup, center, and other specialized subgroups. Factor groups, ‘direct

and semidirect products can be constructed and analyzed in terms of

their constituents. The information required for the analysis is a
definition of the group multiplication, either in terms of a group table
prepared in a certain form or a LISP function yielding the product of

any two group elements.
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GROUP ANALYSIS FROGRAMS

The analysis of the properties of a finite group is a challenging '
task which can conveniently be performed by symbolic manipulation programs
written for an electronic computer. fhe determination of these properties,
such as the enumeration of the subgroups, the calculation of the classes
or of the cosets of a subgroup, can be done with a knowledge of the
group multiplication, usugally gained from the consultation of a table
of possible products. Since the calculations required are not numerical
in nature, but rather logical, involving the searching of lists, comperisor

b of symbols, and so on, the operations can be performed by a programming
1énguage such as LISP, especiallj designed for this purpose.

By a group we mean a set G, tocgether with a multiplication satisfying
the following axioms:

‘1. The set .is closed under the mmltiplication.
2.. The miltiplication is associative.
There exists an identity element.
k. Each element has an inverse.
The properties of a finite group are thoroughly discussed in
s many textbooks on modern algebra to which the reader may refer for the
definitions and concepts .used in this paper.

Since the structure of an abstract group is determined solely by
its multiplication, for purposes of calculation we ha.ve only to define
this multiplication, representing the group elements by any convenient

symbols. For finite groups this can be done in = table, usually of

the following form:
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row and q_th colum corresponds to the product pq;

- Here the group elements are listed across the top commencing with the

element

we shall

generally denote this as the standard form of a group tzble.

One example of a relatively simple finite group to which we shall

refer throughout this paper is the group of symmetries of a square,

Dk, which is the dihedral group of degree

multipliéation table are given below.

/

N

AN
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A2
A3
R
RA
RA2

RA3

four. This group and its

1]

It

identity

90° countérclockwise- rotation
180° counterclockvise rotation
2700 counterclockwise rotation
reflection through axis L
reflection through axis N
reflec;tion through axis M

reflection through axis O

By the product of two symmetries, ab, we mean the symmetry obtained by

applying b first, and then a.

The group table would then be:
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A A2 A3 R RA RA2 RA3

A A2 A3 R RA RA2 RA3
A2 A3 E RA3 R RA RAD
A3 E A RA2 RA3 R RA
E A A2 RA RA2 RA3 R
RA RA2RA3 E A A2 A3
RA2RA3 R A3 E A A2
RA2 | RA2RA3 R RA A2 A3 E A
RA3| RA3 R RARA® A A2 A3 E

&
RIS

-EEE To represent such a function in LISP, it is essential to have a
rapid and convenient access to the product gp for any group elements;
that is, an access ’eo the pth rov and q_th element in that row. We
find that such a representation is most éasily accomplished by the use
of alternating lists. By an alternating list we mean a list
L = (AL Bl A2 B2 ... AN BN) of even length, serving as a dictiomary.
The odd elements IAI serve as references, and the even elements 3T are
their equivalents. To use such a list, a LISP function (ASSOC X L)

is defined to search the odd elements AL, A2, ... in twrn vntil the

desired element AT is found; its successor BI is then taken as the value.

The definition of ASSOC is as follcws:
(assoc (rAMBDA (X L) (TF (EQ X (CAR L)) (CADR %) (ASsoC X (CDIR I)))))
This technique can be emplcyed twice to represent a group table; one
uses the alternating lists to pair the rows of the table with the
corresponding row headings, while the rows are represented bty a 1list

in vhich the column headings alternate with the products themselves.




. .
Thus 1f the group G has the elements (A1 A2 ... AN), the group table
.representation can then be retained as a LISP function of no variablas:
(GROUPNAME (T.AMBDA () (QUOTE
(AL (A1 A1A1 A2 AIA2 ... AN AIAN)
A2 (Al A2A1 A2 A2A2 ... AN A2AN)
AN (Al ANA1 A2 ANA2 ... AN ANAN)
where the symbol ATAJ is u.nderstood t0 nmean the product of AT and AJ.
- In this format the group D4 would be represented as follows:
(Dt (zAMBDA () (QUOTE
| (E (EE A A A2 A2 A3 A3 R R RA RA RA2 RA2 RA3 RA3)
A (EAA A2 A2 A3 A3 E R RA3 RA R RA2 RA RA3 RA2)
A2 (E A2 A A3 A2 E A3 A R RA2 RA RA3 RA2 R RA3 RA)
A3 (E A3 A E-A2 A A3 A2 R RA RA RA2 RA2 RA3 RA3 R)
R (ER A RA A2 RA2 A3 RA3 R E RA A RA2 A2 RA3 A3)
RA (E RA A RA2 A2 RA3 A3 R R A3 RA # RA2 A RA3 A2)
RA2 (E RA2 A RA3 A2 R A3 RA R A2 RA A3 RA2 E RA3 A)

RA3 (E RA3 A R A2 RA A3 RA2 R A RA A2 RA2 A3 RA3 E)))))

B We mey then define a function (GP A B) to calculate the product A B
of two group elements:
(GP (T.AMBDA (A B) (ASSOC B (4SSOC A T))))
The free variable T in the gbove expression refers to the name of the
particular group table ,- and is not bound until g higher level, usually

not until the function is actually executed.



-5-

To find the inverse of a group element AT from this teble format,
we need the element in the AIth row which when multipled by A gives the
unit element. In our alternating list structure, T = (Ai Bl ...),
where BJ = AIAJ. Ve then need to search the BJ's for the identity”
and select the corresponding AJ; this is done by the function (ASSOC¥ X L):
(assoc* (TaMBDA (X I) (TF (EqQ X (CAIR X)) (CAR X) (Assoc* X (CDIR L))))).

~ Letting the identity element be represented by a specific function,
(UNIT), our definition of the inverse of an element X, (A-1 ¥) would
be as follows:
| (A-1 (TaMBDA (X) (Assoc# (UNIT (ASSOC X T))))

Finally, in the calculation of various group properties, we often
need to have a list of the group elements,to .which end we define a functicr,
(GELEMENTS), to provide such a list. It may be extracted from the.goup
table as follows: -

(GEIEMENTS (LAMBDA () (GELEMENTS¥* T)))

(GELEMENTS* (LAMBDA. (L)

(IF (WULL L) T (coms (CAR L) (GELEMENTS* (CDDR L))))))
e To enable the progfan; to be as flexible as possible, we must allow

it to accept all types of groups--where the miltiplication may not be
given in a single table, but perhaps in a ccun'biné.tion of tables, or
even as a rule. We therefore choose to base the entire prograin on a
foundation of the four functions GP, A-1, UNIT, and GELEMENTS.  For

each means of describing a group we require that only these four functions

be redefined for the particular purpose.
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This idea becames especially useful when we desire to reéresen‘b
"the direct or semi-direct product of two groups in LISP. All we
essentially need to do is define a multiplication for ordered pairs (A R),
and thé same program may be used intact for this new group.

From the central function GP, various othef types of group products
can be defined. The function (MULTIGP Al A2 ... AN) will calculate
the ;produgt of an arbitrary number of group elements, not being restricted
to simply two. The functions (IGP X L) and (RGP X L) calculate respec-

G tively the left and right translations xL and Lx, of the complex L by
the element x, while the function (COMPLEXGP L M) calculates the complex
product of the subsets L and M. (The definitions and some examples
of these functions may be found in the appendix.)

One can analyze the structure of a group according to three main
classifications; its .substructure » factor structure, and prodﬁét struc~
ture. |

The first of these, the substructure, deals mainly with the study
of the subgroups of a group and the internal group structure within

.'f’-‘-'-‘-‘- the group itself. The problems then deal with such calculations as

listing all of the subgroups of a group, or of camputing particular sub-
groups such as the normsl subgroups, the comﬁutator.subgrwp , the center
of the group, and perhaps the normalizer and stabilizers of certain
elements and complexes.

One of the primary functions necessary in this area is one to

calculate the hull of & camplex, C, which is the smallest subgroup
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containing the camplex, denoted by ((C)). Since a necessary and
sufficient condition that & complex C of a finite group be a subgroup
is thaf it be closed under multiplication, we have that
() =¢c & cFce .
An explicit way to calculate the hull would be to square the complex,
testing to see whether or not the result was the same set. If not,
we adjoin all of the new elements so obtained, and again compute all
possible products. Since the group is finite, and the supply of addi-
tional elements available for adjupction is limited, we must eventually
arrive at the 'desired subgroup.
The calculation involved in this "squaring" of the complex can
be materially simplified by eliminating scme of the redundant products.
If C is the camplex, and if C' is the new set of elements obtained u:g'w '
squaring C, then when we again square the resulting complex C UC!,
there is no need to again recalculate the products in Ca. Consequently,
(cucn® = (cuc) VIl(crcucer U@l
The LISP function (HULL C), which calculates the hull of the complex
o C, works on exactly this principle. For an example we calculate the

hull of the elements (RA2 R), yielding the subgroup (E A2 RA2 R).

(APPLY (LaMBDA (X) ((ZAMBDA (T) (HULL X)) (D)) ((Ra2 R)))
(A2 E RA2 #)

With the use of this function we can proceed to a ecalculation of
all the subgroups of a group.

Every subgroup is a union of certain of its cyclic subgroups. This
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can be seen by considering the ull of one of the elements of Vthe su'b-‘
"group, that is s the cyelic subgroup geherated f)y this element. If this
hll yields the entire su‘bgroui:, then the subgroup itself was cyclic
and we are through. Otherwise,pick an element not in this hull and
proceed in the same fashion. Since every subgroup is so generated, we can
first caleulate all of the eyclic subgroups of the group, and consider
only their distinet unions. By testing in each case as to whether or
not a particﬁiar union actually forms a subgroup, we may in this fashion
obtain all the possible sutgroups. The LISP function (SUBGROUPS) is
based on this idea; the subgroups of D4 are computed as an example:
(APPLY (TAMBDA () ((TAMBDA (T) (SUBGROUPS)) (D4))) ())
(() (rA3 B (RA2 E) (RA E) (RA3 RA A2 E) (R E) (RA3 RA2RARAA2A3 E)
(RAQ R A2 E) (A2 E) (A A2 A3 E))

In addition to HULL, two subsidiary functions are used in the defi-;
nition of SUBGROUPS, (CYCIE X), and (CYCLICGROUPS). The first"of these
calculates the cyclic subgroup generated by the elements X, whiie the
second yields all the distinet cyclic subgroups of the group., For
example, in Dk, we calculate the cycle generatéd by the element A, and

..... the cyclic subgroups of Dk,

(ArPLY (1AMBDA (X) ((TAMBDA (T) (CYCIE X) (DU))) (&)
(A A2 A3 E)

(aerry (1AMBDA () ((TAMBDA (T) (cycrIcseroups)) (D)) ()
((e) (rA3 E) (rA2 E) (RA E) (R E) (A2 E) (A A2 A3 E))

Another important problem is that of calculating the inveriant,
or normal subgroups of the group. By its defining property a normal

subgroup is a subgroup stable under conjugation by all the elements
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of the group. Consequently, it must be a union of certain of the classeé
of the group, since the classes are the only cdmplexes stable under
conjugation. Moreover, two elements sif in the same class 1f and only
if their inverses do, and if a particular union of classes 1s to be a
subgroup, the inverse classes must be present as well. Therefore to |
calculate the normal subgroups we first adjoin eaéh class to 1ts inverse
class and consider all possible unions of the resulting set. By testing
to see if each individual such union is a subgroup, and discarding those
vhich are not, we have g method to give all the possible normal subgrovmds
of the group. ' The LISP function (NSUBGROUPS) performs this calculation,
giving a list of the normal subgroups. For an example we calculate the
normal subgroups of Dl.
EAPPLY (zavepa () ((zAepA (T) (WsuBGROUPS)) (DM))) () |
(E) (E A2 A A3) (E A2) (E R RA2 A2) (E RA RA3 A2) (E RA RA3 R RA2 A2
A A3))
Finally the functions (CENTER, (COMSGROUP), (NORMALIZER X),
(STABILIZER C), and (CENTRALIZER C) calculate the center of a group,
the commutetor subgroup, the normalizer of en element, and the stabilizer
and centralizer of any camplex respectively. By the stabilizer of
C we mean the subgroup of éll those elements in the group which conjugate
the complex into itself, while the centralizer of C is the subgroup whose
elements commuite with all the elements of C. The folldwing are examples

of these functions.

(apPLY (TAMBDA () ((TAMBDA (T) (CENTER)) (D)) ())
(E 42)

gAPPLgr (ravB0A () ((TAMBDA (T) (coMsGROUP)) (Dh))) ()
E A2)
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(aprLy (rAMBDA (X) ((T.AMBDA (T) (NORMALIZER X)) (p4))) (Ra))
_(E A2 RA RA3)
(arPLy (TAMBDA (C) ({TAMBDA (T) (STABILIZER c)) (o¥)) ((a a2)))
(2 A A2 A3)

(APPLY (zamBpa (x) ((rAMBDA (T) (CENTRALIZER X)) (D)) ((R A2)))
(E A2 R RA2)

The second main classification of the structure of a group is according
to its factor structure. By this we mean the possible equivalence relations
defina‘ble' on a group such as the cosets of a subgroup or the classes
and systems derivable from the equivalence structure, such as factor-

n | groups.. Since an .eq_uivalence relation on a group partitions the group
into disjoint fibers, after calculating the elements in the first fiber,
we need consider only those elements of the group not in that fiber for
the next calculation, and so on ﬁntil :bhe group elements are exhausted.
The principal function used in the calcuation of such equivalence classes
is the function (EQREMION R L) which is defined: |
(EQRETATION (LAMBMA (R L) (IF (NUIL L) T (( LAMBDA (W)
(cons W (EQRELATION R (ERASE W L)))) (R (C4R 1))))))
In this case, R is a function of one variable which yields all the elemsrts

equivalent to a given element. Using this function we can define the -

........

function (LCOSETS S) to calculate the left cosets of the subgroup S,
(LCOSETS (LAMBDA (S) (LCOSETS* (GEIEMENTS))))

(LCOSETS* (T.AMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X)
(IeP X 8))) @)))

and in en identical way, the function (RCOSETS S) to calculate the right
cosets of S. As an example, we coampute the left and right ccsets cf

the subgroup (E RA) of Dk.
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(APPLY (zAMBDA (X) ((rAMBDA (T) (ICOSETS X)) (p4))) ((E RA)))
((E rA)(A R) (A2 RA3) (A3 RA2))

(aPPLY (zAMBDA (X) ((zAMBDA (T) (RCOSETS X)) (D)) ((E RA)))
((E ra)(A RA2) (A2 RA3) (A3 R))

The double cosets of two subgroups H and K are the complexes of

the form HaK. They are the fibers of an equivalence relation so that

we may in similar fashion define the function (DBLCOSETS H X) to compute

the double cosets.
(DBLCOSETS (IAMBDA (H X) (DBLCOSETS* (GELEMENTS))))

(DBLCOSETS* (L.AMBDA (G)

(EQREIATION (FUNCTION (i.AMBDA (X) (coMPLEXGP H (IGP X K)))) &)))

Again, for an example, we calculate the double cosets of the subgroups
(E RA) and (E RA2) of Dh.

(aPPLY (1AMBDA (X ¥Y) ((raMBDA (T) (DBLCOSETS X7Y)) (ph)))
((E ra)E RA2)))

((E rA2 RA A) (A2 R RA3 A3))

' One of the equivalence relations of greatest importance is that
defining the classes of a group. In order to find all the classes, we
need to be gble to compute the class of a given element. ‘ To co this
effectively we make use of- the theorem that two elements p and g con-
Jugate an element a into the same element if and only if they lie in
the same right coset of the normalizer of a. That is,

-1 -1 A -1 -1
P & = q ag © g &a = agp
-1 -
< gp " € I\Ia & qe Nap
To find the equivalence class of an element, or the distinct

conjugates of that element, we need only conjugate the element by one
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member in each right coset of the normalizer of that element. -Conse-
‘quently, again using the function EQREIATION, we define the LISP function
(CLASSES), to calculate the classes of the group.

(c1assEs (LaMBDA () (CLASSES* (GELEMENTS))))

(CLASSES* (TAMBDA (G) (EQRELATION (FUNCTION (LAMBDA (X)

(CONJUGATES X (XSECTION (RCOSETS (NORMALIZER X}))))) G)))

Ea.ch class is thus obtained by conjugating the element X by each of
the elements ;.?;n a cross section of the right cosets_of the normalizer

......

G of X. Using this fumction we compute the classes of Dh:

(apPrY (TAMBDA () ((TAMBDA (T) (crAsses)) (o)) ()
((E) (A A3) (42) (R RA2) (RA RA3))

Analogously, with the function (HCLASSES H) we can calculate tke
H-classes of the group. These are the classes in which the conjugating
element corﬁes from a particular subgroup H. In this case we obtain distinct
con,jugatés of an element a by selecting the conjugating elements from
a cross section of the right cosets of N (\H, in H. As an excmpls
we calculate the H-classes of the subgroup (E A A2 A3).

(aremy (TAMBDA (X) ((1AMBDA (T) (HCLASSES X)) (D)) ((E A 22 .A3)))
i ((E) (4) (22) (a3) (R RrA2) (RA RA3)) -

Finally, there is the problem of camputing the group table of a
factor group of G by same normal subgroup N of G. Bjr selecting a cross
section of the cosets of N, we can discover which coset any particular
product of these elements is in, and consequently generate the multi-
plication table of the cosets. This table is obtained in the LISP

format for a group table, so that we may be able to deal with factor
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groups by using the same LISP fu;n;*bions as for groups. The LISP function

(FACTORGROUP N), where N is the normal subgroup, performs this calculation.

As an example we compute the factor groﬁp of the normal subgroup (E A2)

of Dk.

(apPLY (TAMBDA (%) ((TAMBDA (T) (FACTORGROUP X)) (D)) ((E A2)))

(F(EEAARRRAR) A(EAAERRARAR)R(ERARARERAA) RA

(ERAARRARAE))

By rebinding the free variable T to this group table after it has been

calculated, we may extract properties such as the classes from this
factor group.

(APPLY (TAMBDA (N) ((TAMBDA (T) ((TAMBDA (T) (CLASSES)) (FACTORGROUP N)))

(1)) ((= A2)))

((E) () (R) (RA))

The final classification of the grou;g; structure is its proc"ru:ct
structure.. An important element of this structure concerns the questicn
of whether o’r’ not the group may be a direct or semi'-direct product of
certain of its constituent subgroups. If this is the case, we need
o.nly the multiplication tables of these smaller subgroups, and henee
quite large groups can he handled b}lr giving thzir product decomposition.

s Another case where this decomposition is useful is in calculsting repre-

sentations since the matrix representations of a semi-direct product
may often be obtained from the subgroup factors themselves.

Given two groups G and G', the elements of a direct or semi-direct
product are elements of the cartesian product (}_xG’ , and thus can best Ze
handled as ordered pairs {a b) vhere a ¢ G, b € G'. As was mentioned

before, all thaet is necessary to use such elements in the program is
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to redefine the multiplication and inverses, GP and A-1, along with
(GELEMENTS) and (UNIT) for such ordered pairs.
~ For a direct product this might be done as follows: we let the

free variable T be (Tl T2) where, if G = G1xG2, then Tl is the group
table for Gl, and T2 the group teble for G2. Since multiplication for
the direct product is defined coordinatewise:

| (a2 b)(a®' b*') = (aa' bb')
the function GP would then be:

G (cp (rAMBDA (A B) (LIST

(assoc (CAR B) (Assoc (CAR A) (CAR T)))

(assoc (CADR B) (AssoC (CADR A) (CADR T))))))
and similarly for A-1l, etc. |

In the case of the semi-direct product, the situation is scmewhat
more complicated sinceé three group tables need to be specified."» if
G = G:G' = [(ab)laecCd éG‘], then G' is an operator group
on G wi'bh the multiplication defined:
(a b)(a®' p!) = (abla') bb').

Consequently, along witﬁ the group tables of G and G' respectively,

we also need a table of the group G' acting on G. This latter table

mey be kept in the standard form by extracting b(a) from the table as
though it were a nroduct b-a. By letting T = (T1 T2 T3) be a list

of the three tables in question, with Tl the table of G, T2 the table

of G!', and T3 the table of G! acting on G, we have the somewhat complicsted,

but nevertheless adequate definition for the function GP:



(cP (raMBDA (A B) (LIST
(Assoc (Assoc (CAR B)‘ (Assoc (CADR A) (CADIR T)
(Assoc (CAR A) (CAR T)))

(4ssoc (CATR B) (ASsoc (CATR A) (CAIR 7))))))
An example of this is again in the group D4, which is the semi-direct
product of the two su;ngrcrups A = (EAA24A3) andR = (E R); that
is, Db = A:ﬁ?‘ where the_‘automomhismé oi’ R on A are glven by conju-
gation., If x ¢ A, and y ¢ R, then y(x) = y'lxy. For an example,

We compute the functions (GELEMENTS), (CLASSES), and (CENTER) of Dh

in the semi-direct product notation.

(APPLY (IAMBDA () ((raMEDA (T) (GELEMENTS)) (D4))) ())
((EE) (ER) (A E) (AR) (a2 E) (A2 R) (A3.E) »(A3 R))

APPLY (TAMBDA () ((rAMBDA (T) (crassEs)) (p4))) ()
é(( EE)) ((B R))(Ag R)) ((5& %)((A3 E>>)2(§33 2A3 R)) ((a2 E)))

gAPPLY (Lavma () ((ramoa (7) (CENTER)) (D4))) ()
(EE) (A2E)) .

bazesees
.......
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APPENDIX

I. General List Processing Functions

(BEquar (raMBDA (X ¥) (OR
- (EQ XY)
(avD (NULL X) (NULL ¥))
(anD (NOT (OR (NULL X) (NULL Y) (ATOM X) (ATOM Y)))
 (BEQUAL (CAR X) (CAR Y))
(EQUAL (CDR X) (CIR ¥))))))

The time required for computing group theory functions can be

significantly decreased by using instead of EQUAL, a function EQUAL¥,

EE which is to be defined in each case to test equality of group elements
which are of a specific form. For example, if it is known that the
group elements are atoms, the definition |

(EQUAL¥* EQ)
will suffice.
(LIST (LAMDDA L L))

(APPEND (TAMBDA (L M)
(I (wuLL ©) M (cons (CAR L) (APPEND (CIR L) M)))))

(ELEM (TAMBDA (X L) (AND
(woT (WULL L))
(orR (Equal* X (CAR L)) (ELEMX (cor L))))))

i (SUBSET (1.AMBDA (S L) (OR
(NULL S)
(AND (ELEM (ch 8) 1) (SUBSET (CIR S) L)))))

(savE* (TAMBDA (L M) (AND (SUBSET L M) (SUBSET M L))))

(MEMBER (1.AMBDA (L M) (AND
(voT (WULL M))
(OR (sAME* L (CAR M)) (MEMBER L (CIR M))))))

(REMOVE (TIAMBDA (X L)
(IF (WULL L) L (IF (EQUAL* X (CAR L)) (CDR L) (CONS (CAR L) (REMOVE X
(corR 1)))N))
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(ERASE (LAMBDA (L M) |
(IF (WULL L) M (ERASE (CIR L) (REMOVE (CAR 1) M)))))

(avong* (TAMBDA (X L) (IF (ELEMX L) L '(coms x 1))))

(TALLYCOMPLEMENT (LAMEDA (L M) _
(IF (NULL L) M (TALLYCOMPLEMENT (CIR L) (CIR M)))))

(AMONGLIST (IAMBDA (L M)
(rF (WULL L) M (IF (EIEM (CAR L) M) (AMONGLIST (CDR L) M)
(cons (CAR L) (AMONGLIST (CDR L) M))))))

( INTERSECTION (LAMBDA (L M)
(IF (NULL L) L (IF (ELEM (CAR L) M) (CONS (CAR L) (INTERSECTION
(cDR L)Y M)) (INTERSECTION (CIR L) M)))))

e (unzoNs (rAMBDA (L) (UNIONS* L (LIST))))

R ttereid

.......

(unzoNS* (TAMBDA (L M) -
(IF (NULL L) M (uNIONS* (CDR L) (coNS (CAR L) (APPEND (UNIONS**
(car L) M) M))))))

(uwIONS** (LAMBDA (X L) -
(IF (WULL T) (LIST (CONS (APPEND X (CAR L)) (UNIONS** X (CIR L))))))

(assoc (TAMBDA (X L)
(IF (EquaL* X (CAR L)) (CADR L) (ASSOC X (CDIR L)))))

(Assoc* (LAMBDA (X L)
(IF (EQUAL* X (CADR L)) (CAR L).(aSsoc* X (CDIR L)))))

II. Basic Group Theory Functions |
(GP (LAMBEDA (A B) (ASSOC Y (4SSOC X T))))

(A-1 (LavEDA (X) (ASSOC* (UNTT) (ASSOC X T))))
(unviT (TAMEDA () (CAR T))).
(GELEMENTS (IAMBDA () (GELEMENTS* T)))

(GELEMENTS* (LAMBDA (L)
(IF (NULL L) L (CONS (CAR L) (GELEMENTS* (CDDR L))))))

(16P (1AMBDA (X L)
(77 (vurL L) L (coNs (GP X (CAR L)) (IGP X (CIR L))))))




.......
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(RGP (TAMBDA (X L)
(¢ (WULL L) L (cows (GP (CAR I) X) (RGP X (cIR L))))))

(MULTIGP (LAMBDA L (MONOGP L))

(vonoGP (rAMBDA (L) (GP (CAR L) (IF (NULL (CDIR L)) (CADR L) (MONOGP
(CIr 1)))))) .

(COMPIEXGP (LAMBDA (I M)
(7 (WULL L) L (AMONGLIST (LGP (CAR L) M) (COMPLEXGP (CDR L) M)))))

(comnmon (zaMEDA (A B) (MULTIGP A B (A-1 4) (A-1 B))))
(CONTUGATE (mm (P X) (MULTIGP (A-1 P) X P)))

(INVERSES (LAMBDA (L) ' .
(IFr (WULL L) L (cous (A-1 (caR 1)) (INVERSES (CIR L))))))

(CONJUGATES (IAMBDA (X L)
(IF (WULL L) T (cons (MULTIGP (A-1 (cAR 1)) (coNJUGATES (CDR L))))))

(6P X Y);

(ﬁgmy (LAMBDA (x YY) ((zamBpa (T) (6P X ¥Y)XDL))) (A RA3))
A-1 X);

ngPL'}Y()(LAMBDA (x) ((zamBpA (T) (A-1 X)) (DW))) (a3))

(GELRMENTS);
(appry (1AMBDA () ((TAMBDA (T) (GELEMENTS)) (D4))) ()
(E A A2 A3 R RA RAZ2 RA3)

(IGP X L);
(APPrY (TAMBDA (X Y) ((1aMBDA (T) (IGP X ¥)) (DB))) (R (A A2 A3)))
(RA RA2 RA3)

GP X 1L);
giPllzLY (I?AMBDA (x YY) ((12aMBDA (T) (RGP X Y)) (DY) (R (A A2 A3 )))
(RA3 RA2 RA)

(MULTIGP X Y 2 W ve.);
(APPLY)§LAM.BDA (x Y 7 W) ((ramMBpa (T) (MULTIGP Z W Y X)) (D4))) (A R A2
RA

(COMPLEXGP X Y);
(APPLY (1.AMBDA (x Y) ((LAMBDA (T) (COMPLEXGP X Y)) (Dh))) ((rR rA) (A RA2)))
(RA A2 RA2 A)
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IIT. Substructure Functions
(1L (zaMBDA (€) ((ramBpa (W) (HULLL C (ERASE C W))) (COMPLEXGP ¢ C))))

(Hurzl (TAMBDA (U V)
(IF (3uLL V) U ((zAMBDA (X) (HULLL X (HU'LL2 X V))) (APPEND V U)))))

(rurL2 (LAMBDA (C1 C2) (ERASE Cl (AMONGLIST (COMPLEXGP Cl C2) (COMPLEXGP
c2 1)))))

(cYcIE (raMBDA (A) (CYCIE* A)))

(cYCIE* (LAMBDA (X)
(7 (BEquaL* X (UNIT) (LIST X) (cons X (cYCIE* (GP A X))))))

(cYCLICSGROUPS (TAMBDA () (CYCLICSGROUPS* (REMOVE (UNIT) (GELEMENTS))
(LIST))))

(CYCLICSGROUPS* (IAMBDA (G L)
(Ir (WULL G) T ((1AMBDA (X) (IF (MEMBER X L) (CYCLICSGROUPS* (coR @) 1)
(comNs X 1))) (CYCIE (CAR G))))))

[
.......

(suBGroUPS (1AMBDA () (coNs (LIsT (uwIT)) (( LAMBDA (X)
(SUBGROUPSL X X (1IST))) (CDR {CYCLICSGROUPS))))))

(SUBGROUPS1 (LAMBDA (C* C L)
(I (zvuLL ¢) ¢ ((raMBDA (X)
(SUBGROUPSE (caRr ¢) X X)) (surgrOUPS1 (CDR ¢*) (CDR C) I)))))

(SUBGROUPS2 (LAMBDA (C I* L)
(IF (WULL 1¥) (cons ¢ 1) ((rAMBDA (H)
(7 (OR (MEMBER H I) (MEMBER H C¥)) (SUBGROUPS2 c CIR I*) L)
(SUBGROUPS2 C (CIR L¥ (cons H L)))) (HUIL (AMONGLIST C (CAR I¥))))))))

(WsuBGROUPS (LAMBDA () (cows (LIST (UNIT)) (NSUBGROUPS* (CLASSPATRS
(unzoNs (CDR (CLASSES))) (LIST)))))
(MSUBGROUPS* (TAMBDA (L M)
(¢ (WULL L) M ((1AMBDA (X)
(Ir (WULL (TALLYCOMPLEMENT X (COMPLEXGP X X))) (NSUBGROUPS* (CIR L)
(cows x M)) (NSUBGROUPS* (CDR L) M))) (cows (uwIT) (CAR L)))))))

(CLASSPATRS (TAMBDA (L)
(rr (vUuLL L) L (TF (EIEM (A-1 (CAAR L)) (CAR L)) (cows (CAR L) '
(C1ASSPATRS (CIR L)) ((raMBDA (Z) (CONS (CAR Z) (CIASSPAIRS (CIR z)))) ,
(PAIR (CAR L) (CIR L)))))))
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(PATR (IAMBDA (X L)
(rF (oL X) L (IF (ELEM (A-1 (CAR X)) (CAR L))
(cons (APPEND X (CAR L)) (PAIR (LIST) (CIR L)))
(cows (CAR 1) (PAIR X (CDR IL)))))))

(CENTER (TaMBDA () ((TAMBDA (X) (CENTER* (CAR X) (CIR X))) (GELEMENTS))))

- (CENTER* (LAMBDA (A G L)
(IF (NULL @) (cows (UNIT) L) (CENTER* (CAR G) (CDR G) (NORMALIZER* 1)))))

(NORMALIZER (LAMBDA (A) (NORMALIZER* (GELEMENTS))))

(NORMALIZER* (LAMBDA (G)
(zF (NvULL G) ¢ (IF (Eoqual* (GP (CcAR G) A) (GP A (CAR G)))
(conNs (CAR G) (NORMALIZER* (CIR G))) (NORMALIZER¥* Y(CDR aINN

(comsGroUP (TAMBDA () (m (coMSGROUP* (GELEMENTS)))))

......

.......

(coMseroUP* (1AMBDA (G)
(IF (VULL G) G (AMONGLIST (coMOP (CAR G) (CDR G)) (COMSGROUP* (CIR G))))))

(corvoP (TLAMBDA (X L)
(rr (WULL 1) L (conNs (COMMUTATOR X. (CAR L)) (comP X (CIR 1))))))

(STABILIZFR (TAMBDA (C) (STABILIZER* (GELEMENTS))))

(STABILIZER* (LAMBDA (G)
(rF (ZvuLL 6) ¢ (IF (saME* (IGP (CAR G) ¢) (RGP (CAR G) c))
(coNs (cAR G) (STABILIZER* (CIR G))) (STABILIZER* (CDR G)) ))))

(CENTRALIZER (ILAMBDA (C) (CENTRALIZER¥* (GELEMENTS))))

(CENTRALIZER* (LAMBDA (G)
(IF (WU G) ¢ (IF (CENTRAL (CAR G) C) (CONS (CAR G) (CENTRALIZER¥
(CIR G))) (CENTRALIZER¥* (CDR G))))))

R (CENTRAL (1AMBDA (A ¢) (OR (NULL c) '
(AnD (EquaL* (GP A (cAR ¢)) ((GP (CAR C) A)) (CENTRAL A (cor ¢))N))

IV, TFactor Structure Functions
(EQRELATION (LAMBDA (R L)

(rr (WULL 1) T ((TAMBDA (W)

(coNs W (EQRELATION R (ERASE W L))) (R (CAR I))))))
(1COSETS (TLAMBDA (S) (LCOSETS* (GELEMENTS))))

(LCOSETS* (TLAMBDA (G) (EQRELATION (FUNCTION (ILAMBDA (X) (IGP X s))) ¢)))
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(RCOSETS (IAMBDA (S) (RCOSETS* (GELEMENTS)))) |
(RCOSETS* (IAMBDA (G) (EQRELATION (FUNC'?ION (Mm (%) (RGP X 5))) @)))
(DBLCOSETS™(IAMBDA (H X) (DBILCOSETS*(GELEMENTS)))) |

(DBLCOSETS* (IAMBDA (G) (EQREIATION (FUNCTION (LAMBDA (X)
(COMPIEXGP H (IGP X K)))) @)))

(cLASSES (1AMPDA () (CIASSES* (GELEMENTS))))

(CrassEs* (LAMBDA (G) (EQRELATTON (FUNCTION (LAMBDA (X)
(CONJUGATES X (XSECTION (RCOSETS (NORMALIZER X)))))) G)))

(HCTASSES (LAMBDA (H) (HCIASSES* (GELEMENTS))))

HE (HCIASSES* (LAMBDA (G) (EQRELATION (FUNCTION (LAMBIA (X)
- (CONJUGATES X (XSECTION ((LAMBDA (A) ((TAMBDA (s)
(LCOSETS* H)) (NORMALIZER* H))) X))))) ©)))

(FACTORGROUP (LAMBDA () ((rAMBDA (C¥) ((TAMBDA (G¥*) (FACTORGROUP¥* G¥))
~ (XSECTION c*))) (LCOSETS N)))) :

(FACTORGROUP* (LAMBDA (G)
(IF (NULL G) G (CONS (CAR G) (CONS (FACTORROW (CAR G) G¥)
(FACTORGROUP* (CIR G))))))) '

(FACTORROW (LAMBDA- (A @)
(TP (NULL G) G (coNS (CAR G) (CONS (COSETREP (GP A (CAR G)) C¥)
(FACTORROW A (CTR G))))))) '

(COSETREP (LAMBDA (X L)
(I (ELEM X (CAR L)) (CAAR L) (COSETREP X (CIR 1)))))

R V. Produet Structure Functions
A. Direct Product Functions

(cP (r.AMBDA (A B) (LIST (Assoc (CAR B) (Assoc (CAR A) (CAR T)))
(assoc (CADR B) (ASsoC (CADR A) (CADR T))))))

(A-1 (TAMBDA (X) (LIST (Assoc* (CAAR T) (ASSCC (CAR X)(CAR T)))
(assoc* (CAADR T) (Assoc (CADR X) (CADR T))))))

(unzr (zaMBPA () (TLIST (CAAR T) (CAATR T))))

(GELEMENTS (ZAMBDA () (CARTESIAN (GELEMENTS* (CAR T)) (GELEMENTS* (CAIR T)))))
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(CARTESIAN (TAMBDA (L)
— (IF (WurL 1) (LIST L) (BICARTESIAN (CAR L) (CARTESIAN (CIR L))))))

( BICARTESIAN (LAMBDA (U V)
(rF (WuLL U) U ((1AMBDA (U*) (BICARTESIAN* V)) (CAR 1))

" (BICARTESTAN* (TLAMBDA (V)
(IF (NULL v*) (BICARTESIAN (CIR U) V)
(cons (coNs U* (CAR V%)) (BICARTESIAN¥* (CDR V*))))))

B. Semi-Direct Product Functions

(cp (LAMBDA (A B) (TIST (assoc (Assoc (CAR B) (AssoC (CADR A) (CAIR T)))
(assoc (CAR A) (CAR T))) .
(assoc (CADR B) (Assoc (CADR A) (CAIR T))))))

.........

(A-1 (TaMBDA (X) ((rAMBDA (Z) (LIST '
(assoc (ASsoc* (CAAR T)) §I)§SSC))(§)(CAR A) (CAR T))) (AssoC Z (CADDR
T7))) 2

(Assoc* (cAADR T) (Assoc (CADR A) (catr T))))))
(untT (1AMBDA () (TLIST (CAAR T) (CRATR T))))

(GELEMENTS (IAMBDA () (CARTESIAN (GELEMENTS* (CAR T)) (GELEMENTS*

(capr T)))))
(D4 (T.AMBDA () (QUOTE
((B (EE A A A2 A2 A3 A3)
A (EAAA2 A2 A3 A3 E)
A2 (E A2 A A3 A3 E A3 A)
A3 (E A3 A} A2 A A3 A2))
(E (EERR)
R(ERRE))
(E(EEAAA2 A2 A3 A3)
e R (E E 4 A3 A2 A2 A3 4))))))





