i g
o

s Sl A A A D P il 89 oo BBt A

< duiiods s s il A
——

INTERPRETATIVE SYSTEM FCR THE PROGRAMMING
CF RECURSIVE FUNCTIONZ ON A DIGITAL COMPUTER

O by
Jan G Kent

- P R AR e_....mm“u-?}ui"_ji C e
b N : v : e
-2 - -3 - .
CCNTENTS : Page
- Page ‘ 3.7 The greaftest commfm divisor as given by
. ; the Euclidean algorithm 20
PART I RECURGIVE FUNCTICNS IN LISP : 7 ‘ 3.8 Examples of general recursive functions 21
1 INTRCDUCTION 7 4 CONCLUSION) , 22
2 é‘ciﬂﬁ}ggEMA TICAL-LCGICAL INTRODUCTION . F :‘ PART I LISE IMPLEMEN TATION 23
2.1 Form and function 9 il 1 INTRODUCTION 23
2. 1.1 Definition of form 9 ‘ ‘ ’ i .
2.1, 2 Definition of function 9 i 2 CRGANIZATION OF THE SYSTEM 23
2.1.3 A-notation . o . E g 2.1 Crganization of storage ‘ C) . 23
. 2.1.4 The conditional form V 10 v " O 2.2 £rguments and registers : 24
2,1.5 The label function . : 11 2,3 Freeword list : ') 25
2.2 Zrguments _ — 12 2.4 Chject list : 25
2.2.1 Definition of atom - ' ; 12 : v 2.5 Property list 7 ' 25
2,2,2 Definition of S—expressibn) .13 . 2.5.1 Binary markers A 26
s ‘ . 2.5.2 Fullwords : . : 26 -
3 THE DEFINITION OF RECURSIVE FUNCTIONS A h 2.5.3 Srintnames : ' 27
e IN LISP : 13 ! . <o
2.5, 4 Numbers : : 27
3.1 Primitive functions ‘ 13 ! 2.6 Crganization of input and output _ ‘ 27
3,2 Definition of primitive recursive function 14 ; :
3.2.1 41ternate definition of primitive recursive 15 3 ' THE INTERPRETER . . 28
functions : : .
3.3 Examples of primitive recursive funcﬁons 15 3.1 Recursion technique§ . . 28
3.3.1 The function plus (a+b) . 15 ‘ 3.1, 1 The pushdownlist (Stack) : o 28
1 3.3.2 The function difference (azb) and time (a*b) 16 O 3.L2 SEVE 7 29
3.3.3 The functions sg and sg 17 3.1.3 UNSLVE : 23
3.4 Definition of primitive recursive predicate . 17 3.1.4 RGIPCALL . 29
3.4.1 Representing function - B W4 : RN CALL : - 29
T3,4,2 Propositional connectives B : 18 f 316 RETURN - A) 29
: '3.4.3 - Theorem 1 .18 : 3.2 The reader .30
" 3.5 | Examples of primitive recursive predicates : 19 % 3.2.1 D ; ‘ 30
3.6 More examples of primitive recursive functions ; . 3.2.2 GETCHAR : R L 31
. ©: and predicates 20 » 3.2.3 TRYZTCM 31
3.6.1 The absolute value of a difference (|a-b]|) - 20 ‘ 3.2.4 STORATOM ' ' S 33
'3.6.2 . The function remainder rm — 20 : 3.2.5 TRYRPLR Y
e ' o ’ ' 3.2.6 TRYDOT B 33

3.3
3.3.1.
3.3.2

.3.3,3

3.8.1

3.8.2

3.9
3.9, 1
3.9.2
3.10

3.10.1
3.10.2
311

3111
3.11.2
3.11.3

3.11, 4

3012

The printer .

PRINT

CENDATCM

WRLmE1

Cther input and output routines
£LDVANCE

STARTREAD

PRIN1

TERPRI

Routines operating on printnames

PLCK

MKATOM

UNP£LCK ,
Elementary functions
CLR

CDR

CCNS

ATCM

EQ -

The garbage collector .
RECRGARB ‘
The interpreting routines
ERRCR ‘
SPREAD

The trace feature
TRACE

UNTR/ACE

ZLrithmetic functions
CTGRIE

L rithmetic functions in LI5P3600

The PROG feature
SET

SETQ

GC

RETURN

Miscellaneous functions °

Page
34
34
34
34
35
35
35

35
36
36
36
36
36
36

36
37
37
37
37

38

-39
39
40
40
41
41
41
42
42
43
44
45

46
46
46

3.12.1
3.12.2
3.12.3
3.12.4
4

4.1

PART III

SETRIT

" TE3TBIT

CLE/ RBIT
GENEYM

CCNTLUSICN

Fossible extensions of the system

LIGP3600: USER's MANULL

INTRCDUCTION TO THE PROGRZ MMING
LANGULGE LISP
G-expressions
litoms
Dot-notation
List-notation
LISP-functions
QUOTE

CONS

CLR

CDR

EQUAL

ADDI

£ TCM

CCUND

CEFINE

LAMB DA

CPERATING PROCEDURRES

Running a program punched on cards
Prelisting the LIS®-program

Running a program punched on papertape
Stopping a LI5P -program

Tracing in LISP3600

ERRCR DIAGNCSTICS

Syntactical errors

Page
46
46
46
47

47

48

49

49

49
49
49
49
50
50
50

- 51

51
51
52
52
52
53
53

55

55
56
57
58
58

59
53

T e e e b b L s e L) - S S
-6 - %t g
Page
‘3.2 Runtime errors 59
4 DIFFERENCES BETWEEN LISP3600 AND :
i LISP 1.5 : o 62 M
401 Extensions 62 .
4.2 - Cmissions 63
4.3 Differences 63 -
5 EX/MPLES OF THE USE OF LISP 63
5.1 METEOR 64
5.2 PRETTYPRINT 64
.6 INSTALLATION. PROCEDURES 64
Contents of system tape 64
6.2 ~ Running the system tape 65
Appendix I . Flow charts for some of the routines 67
. E used in the implementation of the inter- -
preter
Lppendix II £ ssembly listing of the interpreter,
written in COMPASS-language for the
CDC 3600 (Separate binding) .
Appendix III Description of the indicators in the D- 94
. register used in the interpreting process
Appendix IV Some functions in the interpreter de- 96 .
fined in M-expressions
- Lppendix V Rules for translating functions written 101
! - in M-expressions into S-expressions :
Appendix VI~ £ sample LI3P-run showing the com- 103 "
plete initial object list and
PRETTYPRINT printing itself
References 113 i

-23 -

rd
hocd
B}
+3
=
—
e

ISP IMPLEMENTA TION

INTRODUCTION

This paper dcscribes_t.:hc implementating of LISP 1.5 on CDC 3600

at Kjeller Computer Installation,

- The.CDC 3600 is a 1°s complement binary computer with a 48-bit

word length and 32768 words of storage. Core speed is 1.5 micro-
seconds, SCOPE, the monitor for CDC 3600 occupies 600010 words
of core store,

- The machine has an accumulator 2, an accumulator extension Q and

a fléxg register D. 'A, Q and D are all 48 bits long. In addition there

are six 15-bit index-registers Bl - B6 and various other registers,

LISP3600 as this interpreter is called has been modelled after the
original LISP 1.5 (1) for the IBM 7090, and care has been taken to

ensure compatibility between these two version.

The actual implementation of this interpreter differs in some impor-

tant respects from the original version to increase the efficiency,

The most marked diffei‘ences are in the organization of storage,
where the idea of a separate block for "fullwordstorage'* has been
abandoned, and in the propertylist of each LISP-atom where the indi-
cator PNAME never is needed. Note that the interpreter and 1':he

initial object list is assembled relocatable.

"RGANIZATICN CF THE EYSTEM

Crganization of storage

Core store is distributed according to this figure.

e
- 24 -

0000()8

SCCPE
124008 ;

Pushdownlist
222508

IFreewordstorage
714008

LIS® -interpr
770008

Various drivers
777778

Figure 2.1 Crganization of core store

The boundary between frecwordstorage and the pushdownlist is fixed, ‘

though easy to reset when rcassembling the LISP-system.

The length of the pushdownlist has been set to 4000, = words, The

interpreter occupies about 285010 words and freewigdstorage the rest -
of core store, about 20 00010 words. This compares favourably with
LIS? 1.5 which by excising L/ P and the compiler has 16 30010 words
of free- and fullwordstorage and 256010 words of pushdownl}ish

£Arguments and registers

Between LIGP-functions argumecents are transmitted through the A-

register, (i-register and the standard cells ARG3,.... .

The £ -register is also used for transmitting addresses to and from

the pushdownlist.

The value of a function is always held in A when returning. The D-

register is used to hold several indicators (binary switches) needed

g

2,4

2.5

- stored in the atom’s property list.

-~ 25 -

in the interpreter. Information about the status of the interpreter can
then be read out of the bit for bit displayed D-register on the console.
The reader is referred to Appendix III for a description of the indica-

tors.

Freewordlist

£11 unused words in fre_éwordstcrage are strung together on a list called
the freewordlist, Every time 2 new word is needed it is taken from

this list,
held in a location called FREE.

The address of the first word on the freewordlist is always

Object list

In LISP all predefined atoms are held on a list called the object list,
That part of the object list which contains the standard atoms has been
When an atom is

generated in assembly language. See Appendix VL

encountered by the reader this list is searched to see if the atom al-

- ready exists, if not the atom is appended to the object list. The add-
" ress of the first word on the object list is held in the location GBJECT,

which is accessible to the LISP-programmer as the property APVAL
of the atom CBLIST. ’

Property 1i st

Some atoms have special properties.b Information about atoms is

A typical property list might lock

like this:
U e VS I EE | . —— NIL
EXPR Ll =ty =
') Vb
F_ 01 » NIL LAMBDA [T 3 NIL

Figure 2,2 Property list of the atom with kg{intname FF

T e LT

- 26 -

FF is as we scc a function namely an EXPR which starts this way:
(LAMBDZ (3) ooue.)

Binary markers

£'s the wordlength is 48 bits, and cnly 15 bits are needed to express

an address, 9 bits in the upper halfword and ¢ bits in the lower half-

" word are recleased for other uses.

If bit 47 in a word is set this indicates that the word is an atomhead.
47 46 45 44

N T

~47 46 45 44

= 1 0 0 0 BCD ALFAMER
XM # 1 1 0 0 FIXPOINT
S 3=~ 1 1 1 0 FLOAT POINT
S a 1 1 0 1 LGGICAL
2 L A
O3 50 S
= 02 3 0
< 2 A
Figure 2.3 Markers and their meaning in the atomhead

The bits 46, 45 and 44 refer to the word whose address is in the
upper address of the atomhead, (seec Figures 2.2 and 2. 3).

is the fullword list associated with the atom.

This word

Bit 39 indicates whether
or not a function is to be traced.

When bit 22 is set this indicates that the word in question is a full-

word. Bit 23 is used by the garbage collector to mark active words.

Fullwords

The fullwords in freewordstorage replace the '"fullwordstorage' in
LIGP 1.5,

A fullword is a word with the 24 upper bits occupied by either:

a) Four BCD characters from a printnan';e.

(If need be, filled in
from the right with blanks.)) A

2.5.3. Printnames

. 2.5.4 " Numbers

: ' R 1] ' , - 28 -
27 - . .
3 THE INTERPRETER
or . The following chapter is a description of the main subroutines in the
b) 24 bits from a 48-bit number. ' L interpreter which cannot be described in LIS®. Note that flow charts
or : : v m for some of these routines are given in Appendix I. Jn this descrip-

- tion all words written with cap'ital letters (except the register mne-
c) The address of a binary LI3P-routine (SUBR or FSUBR). & . . . -
s . Ao o monics) refer to symbolic addresses in the interpreter, or to the

» names of indicators in the D-register. {See Appendix II for a listing

of the interpreter and Appendix III for a description of the indicators.)
£11 nonnumeric atoms have in the upper half of their atomhead the R § B 211 functions which can be definéd in LISP are given in M-expressions
address of a linear list of their BCD printnames. For instance the - : in the manual LISP3600: Users Manual. ‘

atom DIFFERENCE had this fullwordlist:

DIFE| 01 3{ EREN |01 A CE |01 NIL

Figure 2,4 The fullwordlist of the atom DIFFERENCE L the fact that a LISP function may call the LISP-interpreter which
) :) . then in effcct has to interpret a call to.itself. A.llimpbrtant in all this
recursion ig the pushdownlist and the bookkeeping (SAVE and UNSAVE)

Recursion techniques

LISP is a very recursive programming system as can be seen from

of the pushdownlist.

There are three kinds of numbers: : .
. ‘ . 3.1,1 The pushdownlist (Stack)
. a) Fixed point
The whole system uses only onc pushdownlist. . This pusthMIist

b} Floating point
-) then has to hold:

c) Logical .
L . L | O a) frguments of recursive routines. (Always in the form of pointers
All are stored as 48-bit binary numbers with the help of two fullwords, o ~ to lists in freewordstorage.)
- and must be converted from or to BCD in input and output. (The BCD o " b) Return address for routines entered by a recursive call.

" representation of a number is not stored.)
‘) : ¢) fddresscs of specific operations to be performed in combined
routines, when these haveto call the interpreter to ecvaluate their
arguments (see under arithmetic routines). '

Crganization of input and output

Note that the pushdownlist is just a linear block of storage with no list-
Input and output operations in the interpreter always refer to so-called s ‘ structure.
logical units. The concept of logical units is introduced by SCOPE to k

- help all programmers achieve flexibility in input and output, - A logi-

cal unit is independent of actual units in a given machine-configuration,

The LISP-programmer chooses his actual input and output units at

27 run-time., A1l output in the interpreter goes to logical unit 11 and all

o Doy s R

-
R v
e e rre
i AT T P

input-is from logical unit 10.

St

- increases the pointer which points to the top.

- 29.-

SAVE

This subroutine puts thef‘ A-register on top of the pushdownlist and
If the stack is exceeded
control is transferred to ERRCR.

UNGAVE

This subroutine decreases the pointer to the top of the pushdowhlist,
If the bottom of the pushdownlist
is recached control is transferred to ERROR.

ani lnads £ with the word on top.

The recursive call on, and return from, a routine is handled by two

subroutines named CALL and RETURN, Within the interpreter the

_ calling sequence needed for calling a routine by the help of CALL is

inserted by a macro called RGJPCALL,

‘RGJPZALL

This macro has a single argument namely the name (symbolic address)

of the routine to be called. The macro also preserves index register

Bl. - This has proven very useful because it means that Bl can be used

~ freely in all routines entered by CALL.

" RGJPCALL retains control if the argument is CAR or CDR and

codes in the necessary 5 instructions which perform CAR or CDR,

CALL

This subroutine is entered by a return jump (from RGJPCALL

" usually) which means that a jump back to the calling routine is stored

_in the very first location in CA LL,

‘This location is then saved by the

" help of SAVE. The A-register is preserved in this operation, Lastly

" control is transferred to the routine which was to be called,

RETURN

" This subroutine unsaves the jump mentioned under 3. 1.5 and executes

it, thereby returning control to the calling routine.

3.2.1

- 30 -

The rcader

£ 11 symbolic analysis is done in LISP by the reader, which is usually
The reader consists of the routine RE/. D which uses
GETCHLE, TRY/ZTCM, TRYRPLR, TRYBOT and STCRATCM.

written first,

When control is transferred to RELD a single C-expression is read
from logical unit 10, The address cf the first word in the internally

generated list is held in 4 when returning from RE/ L.

RIIAD SUBR pseudofunction

In the flow chart for RE/ 7 some LICP-terms arc used to explain the
working of the reader. However, no LISP-functions are actually used

in RE/ D, mainly because the reader was written first,

RELD is a recursive subrcutine, The recursion is performed by a
subset of RE/.2 with two entry points UPPER and LOWER. The
subset is called recursively each time ;3. leftparenthesis is encountered
in the ir}put string. If the leftparenthesis is the first character after .
a dot the entry point LOWER is used, otherwise the enfry point UPPER

is used,

The statement "Try to read atem into car {{£)]" means that TRY2ZTCM

is called which, as the name implies, seeks to make an atom out of the

next characters in the input string.

Control is returned to RE/,D if a nonalphameric character (except
preceding blanks) is encountered. The same holds for the other "Try
to" except that these routines only read a single character (though

skipping preceding blanks) and exits successfully or unsuccessfully,

READ also checks for syntactical errors and puts in an errortext at
the point where the error was enccuntered.

indicator ERRIND is set,

£t the same time the error-
This indicator is checked before entering
SVLLPULTE and if it is on EVALOUCTRE is skipped and an error-

rrintout effected.

10 ' £ TCMIND

GETCHAR

This subroutine ioads & with the next character from the input buffer
BUFF (0-10). /s the input is alwa;/s cards or cardimages a new card
is read each time 72 characters have been read. The number of cha-
racters read within a card is held in TEMP+2. If the character in £
is an apéstrophe, the running of the interpreter is stopped and control
returned to the monitor SCCPIT, (That is to say, apostrophe acts

like "end of file"-mark to LISP3600). -

TRYATCM

This subroutine tries to forra a string of BCD characters or a half

cenverted number in BUFF(11-20), If the next characters in the input

. string makes this possible. TRYZTCM calls STCRATOM which makes

atoms out of the information in BUFF(11-20). To aid TRY/ATCM in
the understanding of the input string and STORATOM in the making of

" atoms several indicators in the De-register is used by TRYATOM, Al

these indicators are cleared when entering TRYZTCM.

. The possible indicators used by TRYZTCM are:

Bit no Name Usage

This is set if the first character (skip-
ping preceding blanks) is alphamerical,
and is used to tell TRYATCM that the

construction of an atom is in progress.

Set if first character is a digit. Used
to tell TRY/ATCM that the constructicn

11 - NUMBIND -

of 2 number is in progress, and to tell
CTCOR/S TCM that a numeric atom must

be made.

Set if first character is 2 minus. Tells

. MINUSIND
’ ' CTCPLTCH that the number must be

‘complemented before atommaking.

s

- 32 -

13 FLOLTIND This is set if a decimal point is encoun-
tered under the construction af a number,
Tells TRYZTCM that the number encoun-
tered is floating point, and STCRATCM
that floating~point conversion must be

done,

14 EXSPIND Set'if the letter I¥ is encountered while
assembling a floating-point number.
Gignzls TRYATCOM and STORA TOM that

the number has an exponent. -

15 LCGIND Set if the letter O is enco_';xntered while

assembling a number. Signals TRY/ATCM
and STOR/ATOM that this is an octal 7
number with a possible scale factor after

the

Set if a minus is encountered while the
FWKIPIND is on. Signals that the ex-

16 NEGEXSING

pconent is negative.

17 LETTIND Cet if first character is a letter. Indi-

cates that the atom is nonnumeric.

- Note that the characters are brought by GETCHZ/AR, and the last brought

is always held in LASTCHR. The first non-blank character encounter-
ed by TRYZTOWM in the input string determines if it is possible to make
an atom or not, namely if the character is alphameric or not. VI.f atem-
making is possible the mode of conversion is also set by the first charac-
ter. /. special mode is sct if the first twe characters are 5%. The
character follewing $$ is preserved (called DELIMITR) and all charac-
ters after this put into the conversion area without checking until SELI-
MITR is encountered again. This provides for making atoms contain-

ing arbitrary characters.

Exits from TRY/ TCM ‘are also governed by the first non-blank charac-

ter encountered as can be seen from the following table.

3.2.4

L6

- 33 -

£ddress of the instruction calling TRYATCWM is called C/LLING,

Condition Returnaddress
SCuccessful atommaking CALLING + 1

Corama C/.LLING + 2

Tot and right parenthesis CLLLING + 3

Left parenthesis ‘CL LLING + 4

If an atem has been made its address is in 2 when returning to

RELD,
STCRLTCM

This subroutine converts -and makes an atom out of information in
the conversion area BUFF(11-20) according to the indicators in the

D-register set by TRYATCM, These indicators are also used to set

; the correct markers in the atomss head. Vhen the constructicn is

finished the entire object list is scanned to see if this atom has been
generated before. If the atom already exists the address of the elder
atom is in /A when returning. If the atom is new it is appended to the

object list and its address held in /£ when returning,

TRYRPLE

" This subroutine compares the first character {skipping preceding

blanks) with a right parenthesis, and if they are equal returns to CAL-
LING + 1, otherwise return is to CALLING + 2, (CALLING is as be-
fore the address of the instruction calling the subroutine in questicn,)
Characters are brcught by 'GETCHAR, and the last brought held in
LASTCHE, ' '

~ TRYDCT

This subroutine checks for a dot, in the same way as TRYRPAR.

s

3.3.1

3.3.3

. £.lmost 211 cutput of S-cxpressions is handled by the printer.' The

printer consists of the SUBR PRINT which uses the subroutine

SENDATCOM and WRLINE,

- PRINT CUBR psecudofunction

If the argument of PRINT is ncnatomic 4 is set to minus zero and
saved, thereafter PRINT starts an iteration the ‘end of which is

signalled by an unsaving of minus zero. In this iteration the list-

structure which is the argument of PRINT is converted to S-expres~ -

sions and placed in the output buffer C‘UTBUFF(O-IS) for later
printing by WRLINE, /s the G-expressions may be longer than 15
words there is a check for end of line. If the werd CUTBUE‘F + 10
is filled, bit 3 in the D-register (CVERIND) is set, the line termi-
natzd'and printed before a new atom or a new sublist is built up. The
conversicn to L-expressiens then continues from CUTBUFF + 1

again,

This subroutine sends a printname to the cutput buffer after per-
forming the necessary conversicns. The arguments are the atom-
head of the 1tom in question held in 2 and a pointer te its fullwordlist
in B2, SEN.L/TCi uses bit 15 in the D-register (LCGIND) to indi-
cate that a logical number is under conversion. The subrcutines for
converting internal binary rcpresentation of logical, fixed point and
floating pzint numbers tc external BCD representation are all stan-
dard Ijeller Computer Instzllation routines. The routine for cutput
of floating point numbers gives in this version 1 digit before the deci-
roal point and 6 after. Trailing zercs in the mantissa are omitted

and the same holds for leading zeros in the exponent.

WRLINTE

This subroutine transmits a line to logical unit 11. Argument is the

address (in /:) of the control word tc be used. If this is the standard

3.4

i 3401

C342

: :;‘(3' ‘.1',13;:. .

i e, A Tt e P B

- 35 -

control word for printing frem CUTBUFF, the words containing the

 line (CUTBUFF (0-15)) is transmitted to CUTBUFF (20-35) and print-

ing initiated from CUTBUFF + 20, /.t the same time CUTBUFF (0-15)
is reset tc blanks, '

If the contrcl word address is the address of any other control word,

WRLINE only initiates printing and returns control.

Cther input and output routines

RELD will read a BCD list from logical unit 10, PRINT will write
an internal list-structure on logical unit 11, In order to proceés non-
list input and cutput, LI3P has several generalized input and output
routines, ‘’hen using these routines together with the routines which
cperates on the printnames, extreme generality can be achieved in

input and cutput.

LDVLANCE SUBR pseudofunction

ADVLNCE reads the next character from the card currently in the in-
put buffer and returns with it made into an atem. This is done by

first calling GIZRTHAR and then sending the character to BUFF + 11,
after which GSTCR/A TCM is called. 4ADVANCIE checks TEMP + 2 to

find ~ut hew many characters have been read, If the 72 characters

- have been read ADVANCE increases TEMP + 2 and returns with the

atom EOR as value. /fter reading EOR, the next ADVANCE will
bring the first character on the next card by calling GETCHAR etc,

STZRTRELD SUBR pseudofunction

" STARTR™ELD always brings the first character on the next card. This
" is done by setting TEMP + 2 tc 80 and jumping to ADVANCE,

PRIN1 GUBR pseudofunction

| PRINI» has an atom as argument which it sends to the output buffer.

0 This is done by calling SENDATCM, As SEND/ATOM has checking for

.44

3.5.1

3.5.3

3.6

S 361

- 36 -

end of line, executing successive PRIN1’'s will fill up and print out line

after line.

TERPRI SUBR pscudofunction

TEP PRI prints out the output buffer by calling WRLINE.

Routines operating on printnames

TACK SUBR pseudofunction

The argument of PACK should be an atom, and the effect of PACK is
to place the first character in this atom’s printname in the output-

buffer.

MKz TOM SUBR pseudofunction

MKZATOM makes an atom out of the characters placed in the output- .
buffer by PACK. This is donc by calling STOR/Z TOM. The value cf
MKATCM is the newly created atom (see STCR/TOM for details). 7
Executing MK/ TCM without first having executed PACK gives the atom
BL/NK., MKATOM is a new function in LISP3600, and in terms of
LIS® 1.5 its effect is: MKATCM = INTERN (MKNAM).

UNPACK 3UBR pseudofunction

The argument of UNPACK should be an atom. The value of UNPACK
is a string cf atoms each having as printname a single character from
the original atom. This is done by calling SENDATCM and thgn trans-
_mitting the characters in the printname one by one to BUFF + 11 while
calling STGRATCM. o

Fleraentary functicns

C/LR 3UBR

C/R loads /- with the upper address of the word, whose address was

the argument of CAR.

Ke

:
B
{
i
}

. 6.2

3,6.3

Ts6.4

- 37 -

CDR 5UBR

CDR loads £ with the upper address of the word, whose address was
the argument of CDR. !

CONS SUBR

a) CCNG obtains a new word from the freewordlist by taking the first
- ~word on the freewordlist.

b) If this word is not the last word on the freewordlist FRBEv is set
.tc CTOR of the freewordlist.

c) Thereafter CUNGS places its two arguments in upper and lower
address of the new word, and returns with the address of this word
as a value.

d) If the new word was the last on the freewordlist, the garbage collec-
tor is called. Upon return to CON3 FREX is checked for zero and
if zero, ERRGR is called with the remark "store is full"., If non-
zero the first word is again tested for being the last and 1f not, CONS.
proceeds as described under a), b) and c)

If the freewordlist ‘again contained only a single word ERROR is
called with the same remark as under d).

Note: Wherever an unused word is needed from freewordstorage
in the interpreter CONS is used to bring it. This also applies to
fullwords, see 2. 5. 2.

This also means that the garbage collector can only be called from
.. CONG, .

ATOM GUBR predicate

Bit 47 in the word, whose address was the argument of ATOM is
checked. If zero the value of ATCGM is F, if nonzero the value is T,
see 2. 5. 1. ‘

ET SUBR predicate

If the two addresses which are the arguments of ET. are equal, the

value of EZ is T, otherwise F.

i

- 38 -

The garbage collector

The garbage collector is called from CCNS5 whenever the freewordlist

has been exhausted, and unless the computation is tco large for the sys-

tem, thers arc many words in freewordstorage that are no longer needed.

The garbage ccllector uses these to make a new freewordlist.

7o find the unuscd words, the garbage collector sets bit 23 in all needed

words.

Since it is important that all necded lists be marked, the garbage collec-

tor starts marking from several base positions:

a) The object list, whose starting address is in the location CBJECT.
This protects the atomic symbols, and all list-structures that hang
on the propertylists of atomic symbols. ’

b) The portion of the pushdcwnlist that is currently bemg used. This
protects most of the results of the computation that is in progress.

¢) The two arguments for CCNI, when the garbage collector was called.

d) The location REALDTEMP + 3 which hold the startiﬁg address cf
cither the list-structurc under construction by REZ D, or the last
read list-structure,

e) The locations TEMPORZ U (0-5) which holds intermediate results
in computations involving CUNS,

f) The locations ALIST and £ RG3 (0-20) which holds arguments for
the interpreter or LISP-functions. .

Before using any of the addresses in the base positions, they are tested
for being pointing into freewzrdstorage, If they are pointing into frec-
wordstorage RECRGARE is called, if not the next base position is tested
and 52 en. Y/hen all base pasitions have been run through‘the garbage
collect.r scans frcewordstorage linearly, setting bit 23 to zero in all
marked words, and stringing all unmarked words together intc a new
frecwordlist, whose starting address is put into FREE before returning.
If the end cf freewordstorage is reached without discovering; a single

unmarked werd, FREE is set to zero before returning.

The garbage collector is also used to initialize freewordstorage. Be-

forc entering the garbage collector for this initializing, bit 46 in the D~

3,7.1

or by reaching a fullword (bit 22 set).

V register is set. This bit tells the garbage collector that it need only
“mark the object list. '

RECRGARB

This recursive subroutine is used by the garbage collector to perform

the actual markingof a needed list, whose starting address is in Bl -
when entering,

Marking proceeds as fcllows:

First every needed word within freewordstorage that can be reached
through a C/.R-CDR chain from a base position is marked by setting
bit 23, Whenever a word with bit 23 set is reached in a chain during

this process, the garbage collector knows that the rest of the list in-

" volving this word has already been markéd, and does not mark again.

A CDR chain is stopped by either NIL or zero in the lower address of

a word.

£, CAR chain is stopped by either zero in the upper address of a word

The marking of a fullwordlist
is done by a special part of RECRGARB which never takes CLR of a
word. This is necessary because the upper address of a fullword
must never be used as a pointer (see 2.5.2). The testing for zero is
necessary because the garbage collector can be called from routines
such as READ which constructs lists, and all pointers in a list-

structure may not be known at the time. The fact that the address in

a word will be put in later is signalled by setting the address to zero.

- 4 garbage collection can be recognised by bit 47 in the D-register.

This bit is set upon entering the garbage collector, and cleared befcre
returning control to COND,

' 'The interpreting routines

"¢ Some of the functions that can be defined in LISP are given in M-expres-

*"sions in fppendix IL

=

181

i8.2

-~ 40 -

The LISP definiticn of these functions have been fcllowed with one ex-
ception, EVLI3, To make the rcutines faster all unneeded recursicn
as indicated by the LISP definitions has been changed to iteration.
This left only four places where recursion was needed, one place in
APPLY and three in EVAL. In these places: recursion were needed

because of having to call EVAL or EVLIS before applying AP‘PLY..

To eliminate recursion in EVLIS a new routine APPENDI] was written,
This routine has been very uscful and is used in PROG, DEFINE and
APDEND apart from in EVLIG.

EVLIS and LIST are in effect the same binary program.

The routine ERRCR is always called directly in the interpreter, and
a special section of ERROR takes care of these calls.
ERRCR GUBR

The
argument (if any) of ERROR will be printed. ERRCR is of some use

The function ERRCR will cause an error diagnostic to occur.

as a debugging aid.

28 menticned above a special section of ERRGR gets control if an
error occurs in the interpreter, Before transferring control to this
section £ and 2 must be loaded with a specification cf the error such
as "7 GPRE/LD!, YV hen entering the special section /A and Q are
stored in a standard error diagnostic line and printed out. Thereafter

all lists bound on the pushdownlist are printed out,

ERRCR always stops interpreting and gives contrcl back to the main
program, to read the next doublet. 3ec LISP3600: Users Manual for

a complete listing of all error diagnostics.

SPRE/LD

This subroutine is not available to the LISP-programmer. BPRELD
can be regarded as a pseudofunction of one argument. The argument
is a list. SPREAD puts the individual items of this list into the stan-

dard cells £, %, LRG3, ... for transmitting arguments to functions.

3.9

39,1

The ¢race feature

This‘feat'.:re nas been implernented in an unconventional way in
LISP360G. Though externally operating in much the same way as in

LISP 1.5, internally the difference is marked. At present only EXPRs

. can be traced, and the EXPRs are only checked for tracing in EVAL.

The checking is only perfcrmed if the TRA CEIND (bit 7 in the D=

register) is on. If this indicator is off the checking is skipped and all

EXPRs are evaluated faster.

The TRAZEIND can be set by executing SETBIT (7) and cleared by
exccuting CLEARBIT (7). '

Tracing is also controlled by the pseudofunctions TRACE and UNTRACE:

If an F¥PR has been the argument of TRACE and the TRACEIND is

_on, the name and arguments of this EXPR will be printed when it is
" entered recursively and its name and value when it is finished, Thus

‘there are in EVAL two checks for tracing of an EXPR. The first is

after evaluating its arguments, to see if they should be printed, and
the other is when returning with its value from APPLY, to see if this
should be printed. Arguments are printed out via the subroutine

TRACEARG and value via the subroutine TRACEOUT., Both subroutin-

es also print the name of the EXPR. The check for tracing is made

possible by saving a pointer to the EXPR in question while evaluating
its arguments and while finding its value. This pointer is also utilized

by TRACEARG and TRACECUT when they print the EXPRs name.

TRALCE SUBR

. The argument of TRACE is a list of functions to be traced. TRACE set

bit 39 in the atomheads of all of them and this bit is then checked in
EVLL if the TRACEIND is on.

UNTRACE GUBR

This function removes tracing from all the functions in the list, which

"is the argument of UNTRACE. This is done by clearing bit 39 in the

atornheads of these functions.

S A % 51 e A

- 42 -

Arithmetic functions

The arithmetic functions in LICP3600 needs special mentioning. To
save space all functions which are equal in all respects save the actual
operation involved are combined into a single routine with different
entrypcints. For instance the function PLUS and TIMES uses the

same routine called PLUSTIME, with the two entrypoints PLUS and

'TI.MES. FLUSTIME (as the cther combined routines) performs the

cerrect operation by executing it indirectly through the location /DR,
which is loaded with the address of the correct instruction at the entry-
point. In other wcrds the address cf an addinstruction is placed in
AD?™,at the entrypoint PLUS prior tc transferring control to PLUS-
CItZT. If the functions to be combined into single routines are FJUEBR,
the adiress in Z DR.must be saved before evaluating an argument and
unsaved afterwards. The reason is obvious; fcor instance PLUS may
very well have TIMES as an argument, and as they both use PLUS-
TIME something must be done tc preserve the operation while evalua-

ting arguments,

For the same reason intermediate results are saved, and unsaved while

evaluating arguments.

Functicns with numbers as values transfer control to the routine

CTCORE, when they have finished the computation. [lhe result must be

placed in PLUGSL + 1 and some indicators set prior to jumping to STORE.

STCRI then generates a ncn-unique numberatom with the binary mar-

kers in the atomhead set acccerding to the indicators in the D-register.

STCRIN
This subrcutine generates a non-unique number, -

If the FLCATIND is on, the FLC AT marker is set in the number’s

atomhead.
If the LCGIND is on, the LG marker is set in the number'ék atomhead.

If none of these are on a fixpsint number will always be geherated.

3102

Arithmetic funciions in

Function

- PLUS

REMAINDER

TIMEGS -

DIFFERENCE

MU TIENT

201
GUB1

EXPT

LEFTSHIFT

" MINUS

- LESSP

GREATIER

T ZERCP

. MINUCP

. EQUAL

I2S Siden

N DI

- 43 -

LIG™3600

Type Routine

us‘ed
FZUBR PLUSTIME
FSCUBR PLUSTIME
SUBR SIFFQUCT
CUBPR DIFFNUCT
SUBR ADTI5UBL
SUBR £ DD1GUBI
CUBR EXPT -
ZUBR LWF TSHIF
SUBR REMAINDE
GUBR I/ INUS
SUBR,pred GT.LT.
SUBR,pred GT.LT.
SUBR,pred ZEROP
SUBR,pred MINUGP
SUBR, pred NUMBED
GUBR,pred FIYP

Numb
of
args

indefi-
nite

indefi-
nite

Result Remarks
X, +x,+.
e
x1~ xz' .o
©x,
X1 -XZ
Xl+1
xl-l
x
X1 2 Result is
always
floating
point
x
Xy 2 2

Remain- Takes only
der of fixed-point

x1 /%) args
-x) ‘

x1 < x,

X] > Xy

x) = 0

x1<0

‘x1=x2

x is a fix-
point-
number

*
I
" - 44 -
Function Type Reoutine Numb - Result ‘Remarks
usecd of
args
. FLCLTP GUBR,pred FLCATP 1 xis a
i : float-
: point-
number
LCGP SUBR,pred LCGP 1 x is a
logical
number
LCGAND FSUBR LCGFUNG inde- XA xZA <X
: finite
LCGOR FSUBR LCGFUNC inde- x,V X,v..VX
H L. 1 2 n
f O finite
LCGXOR FGUBR LOGFUNC inde- x, v X,v..vx,
finite -

The 22.CG feature

The PRCG feature gets control when EVAL discovers the atom PROG

as the first element of a form.

a) /.s soon as PROG is entered the PROGIND (bit 4 in the D-register)
is set and the list of its program variables is uscd to make a new
list in which each one is paired with NIL. [his list is then put on
top of the current association list. (The association list is a sort
of working stack used by the interpreter to find the values of va-

O) riables.) Thus all program variables have the value NIL at the
entrance to the prograr. S :

b) The remainder of the program is searched for atomic symbols that
are understcod to be labels. £ go-list is formed in which each
label is paired with a pointer into the remainder of the prcgram,

Then the execution of the program proper is started. If we skip
the two first elements (P2 CG and the list of program variables)
from the program, it can be regarded as a list of statements.

The statements may be precceded by a label. Since labels are al-
ways atomic and statements are not, a test for atom is necessary
to discern between them. ‘ :

Before exccuting a statement by calling EVAL, the go-list, the asscci- -
ation list and a pointer tc the statement in question followed by the rest

of the program, is saved.

- 45 -

A1l statements are executed by calling EVAL and ignoring the value.

‘This also applies to the functions SET, SET(Q, GG and RETURN, all

of ‘which can only be used in PRCG.

The function CCND is acting somewhat differently inside a PROG
featurc, i ¢, if CCND runs out sf clauses error diagnostic A3 will
However, as all

not occur. Instead the next statement is executed.

_ statements are exccuted by calling EVAL, EVCON is used to evaluate

the COND in both cases,

EVCON tests the PRCGIND to see if it should call ERROR or simply

rcturn if there are no true clauses.

Zut the PTRCCIND is turned :ff when leaving a PTROG, and Z'VCCM may
call upon a new TROG when evaluating an if-clause, This problem
was solved by making EVCCN savethe D-register before evaluating

an if-clause.

-The use cf EVCCN to evaluate both types of COND introduces a new

. problem: if a conventional function (not using PROG) is used within

function is evaluated.

= occur in the conventional function ecither.

a function using ROG, the PRCGIND will be on while the conventional
This means that error diagnostic A3 will not

This problem has not yet

" been solved,

L1111

SIET CUBR

The first argument of ST should be the name of a variable. The

seccond argument is the new value to be given to this variable.

ST locates the name of the variable on the association list, and re-

places its old value with the new.

I ZET cannot find the variable on the association list, control is trans-

" ferred to ERZCR,

L2

CooT FIUBR

 GETT evaluates its second arguraent (the value) and jumps to CET.

R T e s

3. 11.3

3,11, 4

3.12

3121

3.12.2

3.12,3

- 46 -

GO FPUUE™

GC unsaves from the pushdownlist until the address in ®RCG which
calls TV L to evaluate statements is found. Thi§ address is set

aside and the next three locations, containing statement under execu-
tion, associaticn list and ge-list respectively, un.saved. The GC locat-
es its argument cn the go-list and preserves the pointer it finds there.
The pushdownlist is then built up again by saving the go-list, the asso-
ciation list, the preserved peinter (the new statement tc be executed)
and the abovementicned address. Lastly control is returned to EV/A L,
with the preserved pointer in the £ -register, and EVAL starts execut-
cannct

ing th» corresnonding statement. I the label occurring in GU

be found :nthe pgo-list, conirzl is transferred to I'XROR.

RETUR2N SUZX

RETULN as the GC unsaves from the pushdownlist until the address

When

2CG which calls EVAL to evaluate statements is found.
this address is found and focur more locations have been unsaved,
contrcl is returned to EVAL with the argument of RETURN in the A-
register. This will in fact return control ts the function calling PRCG,

with the argurnent of RETU.”N as value.

Miscellanecus functions

CETEIT 3UBR

SETBIT sets bit no x in the J-register, where x is the argument of
SETEIT.

TESTBIT ZURR

TTZOTRBIT has value T if bit no x in the D-register is on, and F .if it is

cff, x is the argument of TESTRIT.

CLIEARBIT JUBR

CLEALNEIT clears bit no x in the D-register, where x is the argument
of TLVMARRIT.

e @

31

[

© duced has increased the speed of the interpreter,

‘with only trivial changes.

:‘changes,

- 47 -

CETBIT, TESTBIT and CLEARBIT should nct use the bits 0-5 and

10-17 in the D-register as they are reserved for other uses. Their

arguments should be fixpoint numbers.
GENSYM CUBR

GENSYM generates a uniquc atom each time it is called, and returns

_ with this as its value.

The new atom is of the form Girxxxxx where xxxxxxx is a number in
the range 0-99999%9. GENIYwiM works by having a number in the speci-

fied range in the location SY®BCL. This number is initially zero.

"~ The number is then converted to decimal and prefixed a G, GENSYM

then changes an instruction in STURE, and calls it. The modifying of
“TOME makes this routine generate the new symbol as an alphameric

atom not attached to the object list, When control is returned to

GENGSYM the instruction in STCRIT is corrected and the number in

SYMBCL increased with 1, Thereafter control is returned to the call-

ing function,

.STATUC CF THE SYSTEM

CBT 3600 has an instruction repertoire which is particularly well
suited to list-processing, and this together with the new idcas intro-

The functions that

-are implemented as SUBR and FGUBRs are chosen so that all LSI® 1.5

_functiens can be defined in LISP3600.

There are five major excep-

tions to this rule: AFPRAY, ENRCRCET, CCUNT, UNCGUNT and

- SPE/ K have not been implemented.

211 LIG? 1. 5 programs not using these functions can be run in LI5®3600,

See LIGP3600: Users Manual for particulars.

Geveral LISP 1.5 programs have in fact been run on CDC 3600 with no

Some notes absut these and other LIS®-programs can be

feund in LIZP3600: Users Manual

Dossibie extensicns of the system

The unwritten funciicans mentioned above, should be implemented. A
control card interarctar should be written. The control card should
be optional, and might contain a time limit, and some controlwords,

such as TR£CE, CET and SETIET.

A routine should be written which weuld call ERRCR when the pre-

scrited time had clapsed.

The contrclword TR CTE should indicate that the TRACEIND should
be set, and SET and SETSET would write cut on tape the freeword-
set, Il

storage after coemputation.

£ controlword for reading in such a tape made by SET should also be

intr-Jduced.

There are provisions in LI5>™3600 for using the usual mathematical

symbols +, -, /, * ana *¥ meaning exponentiation. An interpreting func-
’ -

tion that could take arithmetic expressions in infix notation using these

symbols might be written.

LISP3600 was written for a one-bank CDC 3600, and must be used as

such on multibank versions of CDT 3600.

Jn a CHC 3600 with two or more banks, numbered commen (the push-
downlist) may be placed in its own bank, if SAVF and UNSAVE are
slightly modificd. By doing this it should be possible to increase

freewordstorage to about 29 001’)10 words.

The main nroblems connected with the ideas mentioned above have all
been solved in theory, but unfortunately there has been no time to try

them out in practice.

	Kent-Interpretive_System0001_a
	Kent-Interpretive_System0002_a
	Kent-Interpretive_System0003_a
	Kent-Interpretive_System0004_a
	Kent-Interpretive_System0005_a
	Kent-Interpretive_System0006_a
	Kent-Interpretive_System0007_a
	Kent-Interpretive_System0008_a
	Kent-Interpretive_System0009_a
	Kent-Interpretive_System0010_a
	Kent-Interpretive_System0011_a
	Kent-Interpretive_System0012_a
	Kent-Interpretive_System0013_a
	Kent-Interpretive_System0014_a
	Kent-Interpretive_System0015_a
	Kent-Interpretive_System0016_a
	Kent-Interpretive_System0017_a

