

I
I

I

[

t
t

'I

*\,$

1
1
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:1
,I

'"hu""tin ttri J • h dt t rt h b' g "]" - " fW - r

LISP 1.5 AND ITS IMPLEMENTATION

ON THE IBM SYSTEM/360 AT RPI

by

Jonathan K. Millen

and

Jack P. Gelb

First edition published January, 1969

Second edition published January, 1970

Addi tional copies of this manual may be purchased by contacting:'
Student Union Bookstore
Rensselaer polytechnic Institute
Troy, New York 12181

January 8, 1970
RPI Computer Laboratory
Pub. # PAD-10

Copyright 1970 by RPI Computer Labora~.ory

._ ,.,_~ __ ~~~."_._" .. _ .. " ~ __ ~_~ __________ ' ________________ ' ""'II:

II

PREFACE TO THE SECOND EDITION

And, thus, is the torch called LISP passed from hand
to hand to hand to ••• ! This new edition of the LISP
manual attempts to correct those errors, present in the
original version, which were gleefully (perhaps too glee­
fully) pointed out (with large fingers) to the authors.
Also worth noting are the increased scope of the PROGram
feature through the addition of SETQ and modifications
to COND; the improved error-checking and error messages
for EXPLODE, IMPLODE, DEFLIST, PRINT, and PRINli and the
availability, under OS, of several debugging aids and
auxiliary programs. lot1ost of these improvements are the
work of Jonathan Millen, to whom this author remains
indebted.

J. P. G.
January 8, 1970

ii

I
I
I

I
.~

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PREFACE

The original LISP system was the brain-child of
Professor John McCarthy. It was completed in 1960 at
M.I.T. Programmed first for the IBM 7090, LISP has
spawned versions for the IBM 7094, PDP-I, PDP-6, and
IBM System/360.

The R.P.I. LISP interpreter for the System/360/50
was written in 1965 by William Lehrman for the degree
of Master of Electrical Engineering. The garbage col­
lector, arithmetic features, and print program were
written by Jonathan Millen. The compiler was written
by Jack Gelb and Jonathan Millen, the authors of sev­
eral lesser functions and this manual. Mel Sabel wrote
the self-relocation routine and the I/O modules to allow
LISP to operate through teletypes.

The authors gratefully acknowledge the encouragement
and advice of Professors Dean Arden and Jack Hollingsworth
of R.P.I.

iii

J. K. M.
J. P. G.

January 10, 1969

Section

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

TABLE OF CONTENTS

Name

Introduction

List structures

Processing of LISP programs

Functions -- Part I

DEFINE and function definition

Functions -- Part II; COND

The technique of recursive
function definition

Arithmetic

Implementation

System size limitations; FSL, PDL

LISP input-output

The LISP Compiler

Operational procedures

APPENDICES

Built-in LISP functions and
Constants

The program feature

Differences between System/360
and 7090 LISP 1.5

LPCP: Parenthesis counting pgm.

Page

1

2

4

5

8

10

12

15

16

21

23

24

28

32

44

45

46

System messages 47

Some LISP functions
(Examples and simple applications) 49

RPLISS: Source program compression 64

LISP debugging hints 66

Index to functions 67

References 69

iv

I
I

[

I
I

_ "am wn "lhdblj""+jILWLilll- -"'''W"'-mT I fogp!,.'

I
I
I
I
I
I
I
I
I
I
I
I
I
.1
I
I .,
I
I

1. INTRODUCTION

This manual has a twofold purpose: to provide an
elementary introduction to the LISP 1.5 language, and
to serve as a specification manual for the implementa­
tion of LISP on the R.P.I. System/360/50. For a more
extensive explanation of LISP 1.5, and information on
other implementations, see references (1, 2).

At R.P.I., LISP is currently available as a self­
relocating program under the Disk Operating System
(DOS). LISP programs may be run in batch (background)
mode through card input, or in foreground via the the
teletypes. In background, LISP is catalogued in a
similar manner to FORTRAN, COBOL, and the assembler,
and programs are executed following standard DOS con­
ventions. In foreground, LISP is invoked through the
CONVERSE teletype monitoring program (in-house). An
Operating System (OS) version of LISP is also available.

The language LISP has proved extremely valuable
in fields in which computer processing of list-struc·t.-;
tured data is required. Some areas in which LISP is
particularly useful include symbol manipulation, tree
searching, graph theory, automata theory (including
formal languages and automata simulation), artificial
intelligence, and natural language processing. Aside
from computer programming, the LISP metalanguage has
also been used as a formal language.

For_programmers not familiar with list processing
techniques, LISP is not an easy language to grasp.
It bears little resemblance to the more common pro­
gramming languages such as FORTRAN and COBOL. The
three main features of LISP which, together, distin­
guish it from these other languages are:

(1) the use of lists and atoms as data
(2) the interpretative nature of the processor
(3) recursive definition of functions.

1

2. LIST STRUCTURES

2.1 A l~t stnucture is an atom or' list. l

2.2 Atoms

2.2.1 An atom is one of a set of objects in one-to-one
correspondence with the set of character strings
over a certain alphabet.

The alphabet used (here) consists of all the char­
acters for which there are keys on a keypunch,
with the exception of the blank, comma, period,
left parenthesis, and right parenthesis.

2.2.2 The string corresponding to a given atom is called
its print ~.

2.2.3 At present, print names must be 72 characters or
less.

2.3 Lists

2.3.1 A list is a finite sequence (n-tuple) of list
structures.

2.3.2 The empty sequence (O-tup~e) is, in particular,
a list. It also happens to be an atom, with the
print name 'NIL'.

2.4 S-expressions

2.4.1 An S-expression is a string of characters (writ­
ten or punched by a programmer) to represent

a list structure.

2.4.2 The S-expression representing an atom is its print
name.

2.4.3 A list can be represented by: a left parenthesis;
followed by the representations of its elements,
in order and separated by blanks; followed by a
right parenthesis.

2.4.4 Other S-expressions representing the same list
structure can be obtained from the one just de­
scribed by adding or deleting blanks which are
adjacent to other blanks or to parentheses.

2.4.5 Blanks and commas are interchangeable.

lDotted pairs are allowable li~t structures, but are not
suggested for beginners. See 4.4.5, 9.3, and reference (1).

2

I
I

I

[

t
t

'I

I
.1
I
I
I
I
I
I'
I
I
I
I
I
I,

I
I
I
I
I

! *±

2.4.6 It is important to remember that placement of
parentheses is critical. (A B), for example,
is a list of two atoms,while «A B» has only
one element, namely, (A B). «A)(B» has two
lists as elements. In LISP,

PARENTHESES ARE

N EVE R 0 P T ION A L.

3

3. PROCESSING OF LISP PROGRAMS

3.1 A LISP program is a sequence of list structures.

3.2 The LISP processor is a ~chine language program
which computes the value of a list structure, ac­
cording to definitions and rules enunciated in the
remainder, of this manual.

3.3 The LISP processor is an interpreter. This means that
when each expression in the program is read, it is
evaluated before the next one is read.

The processor prints the value of each list structure
as it is found.

3.4 Notation

If s is a list structure, we shall, in this manual,
write [s] to signify the value of s. (This notation
is not recognized by the LISP processor).

4

,
t
I!

11

i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4.

[' L i '.'

FUNCTIONS -- PART I

4.1 FWlctions

4.1.1 Functions are implemented in LISP by lists, and
also by machine language subroutin~sG Either
type has zero or more arfuments, and returns a
value. Some functions a so have an effect, such
as printing, punching, or internal changes in
lists or in the values of atoms.

4.1.2 Many functions are built-in; others must be de­
fined by the programmer. The latter are defined
by lists in a manner to be described below. They
may later be transformed into machine-language
subroutines by the COMPILE function~

4.1.3 An atom is referred to as a function if its
print name is the name of a function.

4.1.4 The atom OBLIST is a constant whose value is
the abject list, which includes all built-in
functions. See Appendix 1.10.

4.2 Function calls

4.2.1

4.2.2

A function call is a list (f,al, .•• ,a) where
f is a function. ' n

mf (f,al, •.. ,an) is a function call;
[(f,al, ••• ,an)] is the value returned by the
function f when entered with arguments(all , ... ,[an] ·

4.2.3 ,The LISP processor always evaluates the arguments
in ~ function call in left-to-right order, before
entering the function.

4.2.4 The list structures in a LISP program are mostly
function calls. Even the definition of functions
is accomplished through a function call, on the
special function DEFINE.

4.3 The QUOTE operator.

4.3.1 [(QUOTE s)J = s.

*

4.3.2 The purpose of the QUOTE operator is to avoid the
requirement of evaluation of arguments in a func­
tion call.

-where' f is (the name of)a machine language subroutine~

5

The QUOTE operator is the usual means of
introducing data into ~ LISP program.

QUOTE is used like quotation marks in English.
Just as 'LISP' is a four letter word, while
LISP is not a four letter word, but rather
a programm~n~ language, [(QUOTE OBLIST)] is
an atom and lOBLIST] is a list of over a
hundred elements.

I
I
1

4.4 rThrthee ~d·mpf~rtiatnit bU
b
i1t

1
-in functionths t [] () '~

nee ~n ons e ow, assume a u = a1 , ••• ,an • ,
Each function is defined by stating its value in a typical
function call. (This manner of definition is a conven-l

,
' I:"

ience used in this manual, but is not recognized by the ~,
LISP processor).

4.4.1 [(CAR u)] = a1 ~

4. 4. 2 1 (CDR u)] = (a 2' • · · , an)

4.4.3 If [v] = aO' then [(CONS vu)1 = (ao,a1,··· ,an)·

4.4.4 Examples

[(CAR (QUOTE (A N D») 1 = A

[(CAR (QUOTE «A B» »] = (A B)

[(CAR (-:iUOTE A»] is not defined.

~CDR (QUOTE (A N D»)] = (N D)

[(CDR (QUOTE «A B» »] = () = NIL

[(CDR (QUOTE () »] is not defined.

[(CONS (QUOTE A) (QUOTE (N D»)] = (A N D)

[(CONS (QUOTE (A» (QUOTE (B»)1 = «A) B)

4.4.5 [(CONS (QUOTE A) (QUOTE B))] = (A . B).
This is called a dotted pair, and, although not
a list structure as we have defined it, can be
used as a data structure, and as an element of
a list or another dotted pair.

6

1W1,

.~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I

4.4.6 Frequently a programmer wishes to take a
sequence of CAR's and CDR's, such as

(CAR(CDR(CDR(CAR(CDR u))))).

In the R.P.I. LISP system, the programmer may
simply write

(CADDADR u)

instead of the long composition; where each
'A' stands for a CAR and each 'D' for a CDR.
The system will automatically define the new
function. Any combination of up to seven
CAR's and CDR's can be abbreviated in this
manner.

4.4.7 The names "CAR' and 'CDR' arose from IBM 7090
nomencla.ture. They stand for "Contents of
Address part of Register" and "Contents of
Decrement part of Register", respectively.

'CONS' is short for 'Construct.'

7

5. DEFINE and function definitions

5.1 A function definition is a list of the form:
(f (LAMBDA (xl, ••• ,xn) s»

where f is a non-numeric atom whose print name is
the desired name of the function;
xt;·, ••• ,x are atoms, called the dummy variables of f; n

s is a list structure (usually involving x1' .•• 'xn)
such that it is desired to have

[(f, xl' ... ,xn)1 = [s].

5.2 A function definition may not be placed by itself in
a LISP program. A definition is brought into effect
by a call on the function DEFINE.

5.3 If dl, ••• ,dn are function definitions of functions
f 1, ... ,fn , then

[(DEFINE (QUOTE (d1 , ••• ,dn »)] c (f1 , ••• ,fn).

Furthermore, the act of evaluating this function call
makes the definitions of the functions f 1 , ••• ,fn known
to the system.

5.4 Example

(DEFINE (~OTE (
(F (LAMBDA (X Y) (CONS (CAR X) (CDR Y)) »

»)] := (F)

[(F (QUOTE (A B» (QUOTE (C DE» >1 = (A D E)

[<F (QUOTE (I'M RIGHT» (QUOTE (HE'S WRONG»)]

= (1 1M WRONG)

8.

I
I
I
1;1,'

I I

(

I
1
1
a
[

1
a
[

[

[

t
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5.5 LAMBDA-expressions

5.5.1 A LAMBDA-expression is a list of the form
(LAMBDA (x1 , ••• ,xn) s),

where x1 , ••. ,xn are non-numeric atoms.

5.5.2 A LAMBDA-expression is a function, and may be
the first element of a function call.

5.5.3 [«LAMBDA~xl' ••• ,xn) s),a1, .•• ,an)] = [s] under
the conditions r xl] = [al] , • • ., [xn 1 = [anJ.

5.5.4 If a function f was defined by (f(LAMBDA(xl, ••• ,xn)s», then

5.5.5

[(f,al,···,an)] = [«LAMBDA(xl,···,xn)s),al,···,an)]·

The binding of each value [a.J to the corresponding
x. in 5.5.3 is recorded by t~e processor on an
internal list called the association list (a-list).
Such a value takes precedence over any constant
value that Xi may have.

9

6. FUNCTIONS -- PART II

6.1 Boolean expressions

6.1.1 a list structure whose
truth) of NIL (repre-

6.1.2 [TJ -T and [NIL] - NIL. Thus, T and NIL are
Boolean expressions.

6.2 Predicates

6.2.1 A predicate is a function Which returns a value
which 18 always either T or NIL.

6.2.2 If f is a predicate, the function call (f,al~ ••• ,an)
is a Boolean expression.

6.3 Conditional expressions.

6.3.1 A conditional expression is a list structure of
the form

(COND (bl , al),.~·,(bn' sn».

6.3.2 Let bl, ••• ,bn be Boolean expressions. Then

[(COND(b1'Sl),···,(bn,sn»]

- if (bl] then [Sl] , else
if (b2] then [s2J , else

6.3.3 The Boolean expressions are evaluated only
until the first true one is hit. At least
one is required to be true; to ensure this,
it is customary to let b - T. Only one
of the siis evaluated, n the one with the
first true bi -

10

I
I
I
r
I
[

[

1
I
~

OC

~.

II
~
I

'(

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

i I

I

, IWII,I d - I ",J b' 4='" ".1" dhHl" "T r "6 W" gUU Drown rPJ"" "!"u'.rqif"P'!/f!)

6.4 Some important built-in predicates

6.4.1 [(ATOM u)] = T if [u]is an atom, otherwise NIL.

6.4.2 [(EQUAL u v)] = T if [u] = [v], otherwise NIL.

6.4.3 If [u] or [v1 is a non-numeric atom,
[(EQ u v)] - T if [u J -= [v J, NIL if r u J " [v] •

EQ is undefined when [uJ and [v] are lists or
numbers. Its advantage over EQUAL is in speed.

6.4.4 [(NULL u)] = T if [u] - NIL, NIL otherwise.

i.e., [(NULL u)] = [(EQ u NIL»).

6.4.5 These may be combined with AND, OR, NOT, etc.
See Appendix 1.3.

6.5 Example

[(DEFINE (QUOTE (

(F (LAMBDA (X Y)

(COND ,

»)

«(EQ (CAR X) (CAR Y»(QUOTE WHOOPEE»

(T (QUOTE (NO MATCH»)

»)] = (F)

[(F (QUOTE (HELP ME»(QUOTE(HIT ME}»] = (NO MATCH)

[(F (QUOTE (ZIP CODE» (QUOTE (Z IP ME UP»)] = WHOOPEE

11

....

._-- -_._--------------.-_._ _--_._--------_._----_._ .. -

7. THE TECHNIQUE OF RECURSIVE FUNCTION DEFINITION

One naturally wishes to take as much advantage as
possible of built-in functions. For example, to construct
(x2, ... ,xn ,xl) from [X] - (x1, .•. ,xn), it suffices to take
the value of

(APPEND (CDR X) (LIST (CAR X»).
We could, then, define a function ROTATE LEFT this way:

[(DEfINE (QUOTE (
(ROTATELEFT (LAMBDA (X)

(APPEND (CDR X) (LIST (CAR X») » .
»)] = (ROTATELEFT)

[(ROTATELEFT (QUOTE (Xl X2 X3»)] = (X2 X3 Xl).

But any interesting program is bound to require a
construction or test which cannot be fabricated out of
existing functions. Suppose, for example, we wanted a
function ROTATERIGHT which would construct from
(x1, ... ,xn) the list (xn ,x

1
, ... ,xn _l). Such a function

requires a recursive definition. (How does one know?
Familiarity with the built-in functions).

Here is a recursive definition of ROTATERIGHT:

(ROTATERIGHT (LAMBDA (X)
(COND

»)

«NULL (CDR X» X)
(T (CONS

(CAR (ROTATERIGHT (CDR X»)

»
(CONS (CAR X) (CDR (ROTATERIGHT (CDR X»»

Rather than try to explain why it works, let us show
how it was constructed. It has a simple form, which may
be summarized thus:

if shortest case, then easy answer,

else reduce the problem to a shorter case.

The 'else' clause in the example was based on the
observation that is not hard to obtain (xn ,x1 , ••• ,xn_1)

12

I
I
[

I}

I
I
[[

[,
~

[

J:
[

[

I
,[

[

I
~ I:

!\\ • ...e...p.L., h H,,!

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

from xl (i. e., [(CAR X)]), and (xn ,x2, .•. ,xn _l) (i. e.,
[(ROTATERIGHT (CDR X»].). This is done by CONSing xn
(that is, [(CAR (1tOTATERIGHT (CDR Xl»]) to the result of
CONSing xl onto (x2, ••. ,xn _l).

It would seem that the shortest case is not when
[(CDR X)] is NIL but rather when [X] itself is NIL. But
if the former test is omitted, then if [X] = (A), say,
the 'else' case involves (CAR(ROTATERIGHT NIL)], which
would be [(CAR NIL)], and certainly not desirable (as
well as undefined).

Still, it would not hurt to include the case [X] =NIL
anyway, since the definition above will not handle it~
Thus, there may be more than one 'shortest case', or cases
which, for one reason or another (such as efficiency) are
accorded individual clauses. There may even be several
ways of reducing the problem to a shorter case, depending
on the form of the argument.

Including the case [X] = NIL makes the definition:

(ROTATERIGHT (LAMBDA (X)
(COND

«NULL X) NIL)
«NULL (CDR X» X)
(T (CONS

(CAR (ROTATERIGHT (CDR X»)
(CONS (CAR X) (CDR (ROTATERIGHT (CDR X»»

» »)
The efficiency-minded reader will want to know whether

he can avoid evaluating (ROTATERIGHT (CDR X» twice. Yes:
one way is to define another function:

(PUTSECOND (LAMBDA (Z Y)
(CONS (CAR Y) (CONS Z (CDR Y») »

(ROTATERIGHT (LAMBDA (X)
(COND

»)

«NULL X) NIL)
«NULL (CDR X» X)
(T (PUTSECOND (CAR X) (ROTATERIGHT (CDR X» »

The other way is to abbreviate the above by making
use of a LAMBDA-expression (see 5.5).

13

Instead of calling PUTSECOND by name, its LAMBDA-expression
is used in its place:

(ROTATERIGHT (LAMBDA (X)
(COND

»)

«NULL X) NIL)
«NULL (CDR X» X)
(T «LAMBDA (Z Y)(CONS(CAR Y)(CONS Z(CDR Y»»

(CAR X) (ROTATERIGHT (CDR X» »

14

I
I ,
I
I
I
II
I
1
I
l
I·
[

[

l[

I:
I
I
I

I
I
I
I
I
I,
I
I
'I
I
I
I
I
I
I
'I
I
'I
I

8. ARITHMETIC

8.1 Notation

8.1.1 Numbers in the LISP system are atoms, and are
treated as constants.

8.1.2 Numbers are 'self-defining'; that is, the value
of a number is itself, hence numbers need not be
quoted.

8.1.3 Presently, only integers and integer arithmetic
are supported by LISP. Positive integers are
represented by strings of digits preceded optional­
ly by a plus (+) sign.

Negative integers are represented by strings of
digits immediately preceded by a minus (-) sign.

8.1.4 The range of LISP numbers follows the rules for
System/360 integers. That is, any integer i must
satisfy: 31 3

-2 ~ i ~ 2 1_1.

8.1.5 All arithmetic is performed modulo 231.

8.2 The LISP arithmetic functions do not check whether
their arguments are numbers. When there is a question,
the programmer should use the predicate NUMBERP to test.

NUMBERP takes one argument. If the value of the argument
is a number, the value of the function is T. Otherwise,
the value is NIL.

8.3 Details of the arithmetic functions are given in
Appendix 1.2.

8.4 Examples

[(NUMBERP 24)] = T
[(NUMBERP (QUOTE A»] = NIL
[(NUMBERP (QUOTE 24»1 = T
[(PLUS 2 4 6 8 10)1 = 30
[(PLUSL (LIST 2 4 6 8 10»J= 30
[(QUOTIENT 5 3)J = 1

R QUOTIENT (TIMES 3 5) 5)] = 3

15

9. IMPLEMENTATION

9.1 Lists

The implementation of a list is as a 'linked list'
or chain of double words, pictured below.

H(
+

t+ ... -..[INIL I
t

The first word of each double word points to the
implementation of the corresponding element. The
second word points to the remainder of the list
(which is empty, or NIL, at the end).

Atoms are also linked lists; see 9.2. In diagrams
such as the above, pointers to atoms are often in­
dicated by the print name of the atom.

Examples

(A) -1 A I NILI

(A B) 4 A I HB I NILI

«A»

~ A NIL

(F (LAMBDA (X Y) (CONS (CAR X) (CDR Y»»

16

I
I'
I
I
I
I
I
I
1
~

~

1
~
[I

I
(

[

I
I 1

. .~

."l:Ii.8f+ "",Uiibi:+i· fOb.

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Q.2 Atoms and property lists

9.2.1 The implementation of an atom is a linked
list, called a property list.

9.2.2 The property list of a non-numeric atom has
the form:

-1 ind~

rint name

9.2.3 The property list of a number has the form:

~X' 60 ,; I n I (n fixed-point)
lit ~te

9.2.4 The system indicators are: PNAME, EXPR, FEXPR,
SUBR, FSUBR, and APVAL.

The information under EXPR or FEXPR is a pointer
to the implementation of a LAMBDA-expression.

The information under SUBR or FSUBR is a pointer
to the entry of a machine language subroutine.

The information under APVAL is a constant value,
depressed one level as shown:

... --1 APVALI

~U~NILr'"
9.2.5 The basic property-list modification functions

are DEFLIST, REMPROP, and GET. Programmers may
use DEFLIST to add indicator-information pairs,
REMPROP to remove them, and GET to retrieve infor-
mation under a given indicator.

DEFLIST changes the information under an existing
indicator, or, if the indicator is not present,
inserts the indicator-information pair as the
third and fourth elements of the property list.

REMPROP removes only the first occurence of an
indicator. Note that its value is the informa~
tion formerly carried under the indicator 8

17

~ ...

----~- ------------------

9.3 Dotted pairs

9.3.1 The implementation of a dotted pair is a double
word whose first word points to the implementation
of the first element, and whose second word points
to the implementation of the second element.

9.3.2 Examples

(A • B) -{£[B I
(A • (B • C») -{AI ~r1 B 1 C J

(A B) = (A. (B. NIL»)~AI :=oH B lNIL\

9.4 List-changing functions

The functions RPLACA~ RPLACD, NCONC, and EFFACE manipulate
list structures in core. Their effects are diagrammed
below.

Let [xl =-{ xIl :J- ... -1xn \ NIL!

and [Y] ={Y 1\ ~~ 6 •• --{Y m \ NIL)

The effect of (RPLACA X Y) is:

The effect of (RPLACD X Y) is:

The effect of (NCONC X Y) is:

[Xl-fiTJ-··· -\ xnl ~l I ~"'-I Ym I NILI

[YJ

18

I
I
I
I
I,
I
[I,

[

I
rt
~

~
[

I
I
I:
I
I
I~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Let [zJ -= xk (some element of [X]).

Then the effect of (EFFACE Z X) is:

19

9.5 FEXPR's

If a LAMBDA-expression is placed on the property list
of an atom f under the indicator FEXPR, the evaluation
of a function call with first element f differs from
that in the case of an ordinary EXPR.

9.5.1 The effect of evaluating

9.5.2

9.5.3

(DEFLIST (QUOTE (
(f (LAMBDA (v) s»

» (QUOTE FEXPR» where f and v are non-numeric
atoms ,

is that subsequently

[(f,a1, ••. ,an>] = [sJunder the condition that

[v] = (a1 , ... ,a). . n ...

Motivation for defining FEXPR's:

(1)

(2)

The programmer chooses which of a1, ... ,an to evaluate;

Such functions do not have a fixed number
of arguments, but can handle any number.

Example

CSETQ,.,is actually an FEXPR. The LAMBDA-expression
for CSETQ is:

(LAMBDA (X) (CSET (CAR X) (EVAL (CADR X» ».

20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

did b tf aiM),i' Hl,tb\llit,j -+. 18+,1"+"'*&4: ·· ... · ... "T'T11.·1pW··"¥,, 't'lUP·'..,·wrJ

10. SYSTEM SIZE LIMITATIONS

10.1 The size of the LISP processor is about 40,000 bytes
(not counting FSL or BPS), about a third of which is
the compiler.

10.2 The Free Storage List (FSL) is a chain of 'available'
double words from whtch all list structures are built -­
including property lists, and lists which have been
read in, as well as those constructed by the programmer
with CONS (or APPEND, or LIST, etc.). Ultimately, all
lists are created through calls to CONS, which detaches
one double word from the FSL each time.

The function SIZE can be used to check the number of
double words remaining in the FSL at any time.

10.3 The Garbage Collector

Eventually, the FSL may be emptied. If this happens,
the next calIon CONS initiates a garbage collection.
A garbage collection has two phases: the marking
phase, and the linear sweep.

The marking phase traces through all list structures
currently in use. (Those not in use include top-level
lists previously evaluated and their values, plus all
lists created in the process.) Each item is marked
by turning on the high-order bit of the first word of
the double word.

The linear sweep makes one pass through the FSL area,
turning off the marking bit on the marked items, and
chaining the rest into a new FSL. If everythihg was
marked, i. e., nothing is available for inclusion into
the new FSL, a message is printed and the run terminated.

Most of the time taken by a garbage collection is in
the marking phase. Garbage collection times range
from less than a second to several seconds.

10.4 The push-down list (PDL) is not a list, but a fixed
area used as a push-down stack for processing recursion.
Its size is currently 1300 words. The size of ' the
push-down stack lim±ts depth of recursion to about
100 for EXPR's and about 1000 for SUBR's (hence,
compilation pays in depth of recursion as well as speed).

Exhausting the PDL is an unrecoverable error. If it
happens while executing a function which is not debugged,
it may be due to a divergent loop in the function.

21

._--- ~- - .. -~~---.-- ... ~---.-.--------.--------~--.-.--.-----.. - .. ---,

10.5 The storage area for print names of atoms holds
5000 characters.

10.6 Core map of the LISP system

,00
"1II~'BPS

partition t

equal size""
initially", FSL

lot K

1
LISP part
~-- -------
~aW~b!eIfi~We

~ - - ---- --~
~~8f8ti!~Reiime

.5 K DOS I/O module

+ -,.

6.3 K Additional built-
in functions

Garbage collector
... ----------PDL 1"'------- -----

22.2 K Character stor~ge
I-- ---.- ----.~

Interpreter,
LISP I/O

22

".

~
""

>

CSECT RPLISC
(the c,ompiler)

CSECT IJJCPDl(DOS 'only)

CSECT RPLISQ

CSECT RPLISP

I
I
I
I
I
I
I
I
I
~

~

I
[

I
I
I
I
I
I

t' j

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tHifll"' IT- VI"" "I" " Fei. tf¥¥8lf"J!fR1FH!U¥tWlJl ['''ff" rtI"lWFUlIl!!eli*"'WUYP min IF" TfJZ

11. LISP Input-Output

11.1 Normally, the programmer does not have to perform
any input or output operations. Data is read in as
QUOTEd expressions in the LISP program, and the only
output is the final value of a list structure, which
is printed automatically.

However, if additional or formatted printing is de­
sired, list structures are to be read under program
control, or cards are to be punched, the functions
PRINT, PRINl, TERPRI, EJECT, READ, PUNCHI and TERPCH
are available.

11.2 READ has no arguments. Its value is one list struc­
ture read from SYSIPT under DOS, or the SYSIN data
set under as (i.e., the same place as the program),
just as the LISP processor would do it. Note that
only one list structure is read -- in particular, only
one atom (isolated) per line.

11.3 PRINT has one argument, which it prints just as the
processor would do it. Its value is its argument.

11.4 EJECT spaces the printer to the top of the next
page. It cannot be used-in DOS foreground.

11.5 The remaining functions make use of a 100-character
common buffer.

11.5.1 TERPRI prints the contents of the buffer and
empties it.

11.5.2 TERPCH punches the first 72 characters in the
buffer and empties it (producing one card).

11.5.3 PRINI and PUNCHI add the print name of their
atomic argument to the buffer, starting at the
first unused location. PUNCHI may not be used in
DOS foreground{see 13.).

An overfaaw (more than 100 characters for PRINI
in background, 72 for PRINI in foreground, 72
for PUNCHl) causes an automatic calIon TERPRI
or TERPCH, respectively. This is done in such
a way that print names of atoms are never split
unless they are longer than one line (or card,
respectively) .

23

12. The LISP COMPILER

12.1 Introduction

In addition to processing functions interpretively, the
RPI LISP system provides for the translation of defined
functions directly into machine code. This facility is
made available' through a built-in package of LISP func­
tions and machine-language subroutines known collectively
as the LISP Compiler.

The effect of the LISP Compiler is to transform the
LAMBDA-expression of a function into an equivalent
machine language subroutine. This compiled code is
constl:ucted in an area of core (called Binary Program
Space, or BPS) above the free storage list. Functional
expressions (FEXPR's) are not presently compilable;
however, it is expected that a future OS version '\?
will permit such operations. LISP subroutines (SUBR's)
and functional subroutines (FSUBR's, such as LIST, PLUS,
etc.) may not be compiled since they already exist in
machine language form. Functions which contain
references to PROG or to FEXPR's other than CSETQ are
not presently compilable.

The compiler is invoked by evaluating the function
COMPILE with a single argument whose value is the
list of functions to be compiled. The value of COMPILE
is the value of its argument.

12.2 Compiler functions

12.2.1 COMPILE

The action of COMPILE is to produce the equivalent
machine code of the LAMBDA-expression under the
EXPR indicator on the property list of each func­
tion in the argument list, and replace the EXPR
indicator with a SUBR indicator. The value under
the new indicator is the address, in BPS, of the
first instruction of the compiled function.
Standard LISP linkage conventions (roughly the
same as' DOS linkage conventions) for subroutines
are observed.

To perform the actual compilation, COMPILE invokes
several LISP functions to handle special cases and
housekeeping procedures. These functions, in turn,
call several machine language routines to produce
the actual code. Since LISP functions are, in
general, recursive, both the compiler and the
compiled code are reentrant.

24

I
I
I
I
I
I
I
[[

I:
I
I
I
[

~
[

I
I
I
I

i.Hrd

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

±bi t:riib"ftWdel1!rtTWWW r'ff .'" U··-W'·_, wrr!! ··tll ······,"W'U!·LW*!HIW[Jj·liPW·!!llQlIiI 'nW"w"II!!!!W"'l'

12.2.2 DECK and NODECK

A future version of the LISP Co~i1er is expected to
produce object decks at the user s option, and accept
object decks as input. Toward this end, the DECK and
NODECK control functions are included in the compiler
package. Execution of the NODECK function turns on a
bit in the compiler. Subsequently-compiled functions
will demonstrate faster execution times than compara­
ble functions previously compiled, owing to a result­
ant decrease in the use of built-in bookkeeping pro­
cedures. Execution of the DECK function turns off the
control bit. Hence, the subsequent compilation of
functions will produce code with 'normal' execution
speed. The value of both DECK and NODECK is NIL.

Note that the execution of DECK or NODECK after a
function has been compiled has no effect on the
compiled code of that function.--

The compiler operate£ in DECK mode unless NODECK IS
specified.

12.2.3 THECOMPILER

THECOMPILER is an atom in the LISP system whose value
is a list of the LISP functions contained in the compiler
package. The execution of the list structure
(COMPILE THECOMPILER) results in the compilation of
the LISP part of the compiler. Subsequent use of the
COMPILE function will utilize the compiled compiler.

12.2.4 ADDBPS

At initialization time of the LISP system, BPS and FSL
are of approximately equal size. The ADDBPS function
permits the user to modify the size of both of these
core areas during program execution. The single argu­
ment of ADDBPS is a positive (or negative) integer.
The effect of ADDBPS is to add (subtract) that number
of double words to (from) the lower end of BPS. The
additional storage locations are taken from,(added to)
the top of the free storage list. The value of ADDBPS
is the new size, in double words, of binary program
space.

ADDBPS should only be invoked when the prior contents
of BPS and the FSL are no longer needed~ since the
function involves a garbage collection and repositioning
of system pointers. It is usually called immediately
after system initialization.

25

12.2.5 CLEARBPS

The CLEARBPS function is called with no arguments.
Its effect is to set the pointer to the next free
area in BPS equal to the beginning of BPS. Hence,
previously compiled functions may be "destroyed by
future compilations. The value of CLEARBPS is the
size, in double words, of binary program space.

CLEARBPS is primarily invoked when previously compiled
functions are no longer needed and the full BPS is
required for future functions.

12.2.6 EXCISE

The EXCISE function provides for the removal of part
or all of the LISP Compiler from the system, and the
conversion of the space it occupied into additional
free storage. EXCISE takes one argument which has
either the value T or the value NIL. With an argu­
ment of NIL, EXCISE removes that part of the compiler
which performs the actual compilation. BPS is not
changed, and execution time routines resieing in the
compiler remain. With an argument of T, EXCISE
removes the entire compiler and destroys BPS. In
either case, the vacated core positions are added to
the FSL, and further compilation is impossible.

The value of EXCISE is its argument.

12.3 Efficiency

Compiled functions average the same size as their
equivalent expressions, but run approximately eight times
faster. Each compiled function is implicitly addressed,
permitting the maximum size of a compilable LISP function
to be limited only by the size of BPS. At present, no
code optimization is performed, although it is expected
that future versions will provide for it.

Compiling the compiler in DOS background took 35 seconds
on our System/3601S0.

26

- ----- ---~------------------~--.-- ---

I
I
I
I
I
I
I

[

~
[I

[

I
I
II

I
I
I
I
I

•
I
I
I
I
I
11

I
I
I
I
I
I
I

12.4 Error messages

12.4.1 COMPILE

Message:

Reason:

Action:

12.4.2 ADD BPS

OUT OF BINARY PROGRAM SPACE. RUN
TERMINATED.

The space remaining in BPS is not
sufficient to compile the function.

Remaining input cards will be read
but not evaluated. The job is terminated .

Message: SPACE REQUESTED NOT AVAILABLE.

Reason: An attempt has been made to decrease
BPS below zero or increase it above the
maximum available core size.

Action: BPS is not changed, and processing
continues normally.

27

13. OPERATIONAL PROCEDURES

13.1 Deck setup for DOS ba'ckground

13.1.1 List structures are evaluated merely by
placing them in the program •• They are eval­
uated in order of appearance. The order is
unimportant, except that a function defined
by the programmer must be named before the
function is evaluated by name.

13.1.2 The deck submitted consists of two control
cards, the list structures to evaluate (i. e.,
the LISP program), and a /* and, finally, a
/& card, as illustrated.

13.1.3 The format of the program cards containing
the list structures is not critical. Spaces
may be inserted for readability wherever
desj.red, and list structures may extend over
any number of cards.

Blank cards may appear only inside a list
structure. Blank cards otherwise inserted
will result in an error.

13.1.4 Only the first 72 colunns of a card may be
used for list structures; the remaining columns
are ignored, and hence may used for sequencing
or identification purposes.

LISP treats column 72 of each card as adjacent
to co1unn 1 of the following card.

13.1.5 Any card with an asterisk in column 1, with
the exception of the LISP option cards (see
13.2), isa comment card, which is printed but
otherwise ignored. The computer laboratory
requires that each LISP vrogram contain a comment
card with the programmer s name and lab number
on it, and that this card be placed at the begin­
ning of the program.

28

I
I
I
I
[

I
1:

[[

[

~:

[

[

I
I~

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/1&
1*

list structures

name labnumber

II EXEC RPLISP

II JOB jobname labno. name time pgs. cds.

Background Deck Setup

13.2 Running under DOS foreground - teletype

LISP may be uses in foreground via the CONVERSE
teletype monitor, an RPI in-house program.
System control cards are not necessary; instead,
CONVERSE will request control information from the
user. The use and order of list structures comprising
a LISP program are the same as for background (see
13.1); LISP treats teletype input as card images.

13.3 LISP option cards

All LISP option cards contain an asterisk (*) in
column 1 (so that they will not be evaluated), followed
by a key word starting in column 2. They may appear
anywhere in the program, and affect the system opera­
tion from that point on.

13.3.1 NOLABEL

Under normal operation, the LISP interpreter will
print the line 'THE VALUE OF THE ABOVE LIST STRUCTURE
IS' beneath every evaluated list structure. When
the system is operating via a teletype, the printing
of this line is time-consuming; in background, it
may spoil the appearance of the output. Hence,
the NOLABEL option suppresses the printing of the
value message.

29

.- . __ .. _-----_ .. _._---_. __ . __ . - ... - ------..

13.3.2 NODLM

The character period (.) has special meaning in
the LISP system. Commas (,) are treated as blanks,
and are not printed in output unless specifically
requested. The NODLM option permits periods and
commas to be treated as any other character ac­
ceptable in print names of atoms.

13.3.3 NOLIST and LIST

NOLIST suppresses the printing of the input text.
LIST restores the printing of the input text.

13.3.4 SUPERLISP

SUPERLISP has an effect in background only. It
provides for the inclusion of the entire partition
in FSL and BPS, instead of the normal l28K CPU
core. It makes available approximately one million
bytes of bulk core storage. While desirable for
programs requiring large list structures and heavy
use of recursion, it increases processing time
by as much as a factor of four.

13.3.5 COMPLAIN and QUIET

COMPLAIN will I cause the system to print a message
every time a garbage collection occurs, indicating
the number of available free storage items.
QUIET suppresses the printing of the message.

13.3.6 NOAUTOCR

NOAUTOCR suppresses the automatic recognition of
functions of the form CDADR (see 4.4.6). DEFCR
may then be used to define functions of this type
if desired.

13.3.7 STOP

STOP should be the last statement in a LISP pro­
gram entered via the teletype. It indicates
program termination, and is handled similarly to
a /* card in background.

13.3.8 Standard options (assumed initially) are LIST
and QUIET.

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

13.4 Deck Setup for as

The deck setup for as is the same as that for DOS
background (13.1), except for the control cards described
in 13.1.2. Refer to the illustration below for the OS
control cards and deck setup.

fll

J/*
~list structures
I ----~----------

IILISP.SYSIN DD *

II EXEC RPLISP

/Ijobname JOB labnumber,name,MSGLEVEL=1

OS DECK SETUP

If the function TERPCH is used in the program, to
produce punched output, the E~C card must be changed to
read:

II EXEC RPLISP,PARM.LISP=PUNCH

31

APPENDIX I

Built-in LISP functions and constants

This appendix contains descriptions of all functions and
constants defined in the LISP system. Below is a summary
of their classification in this appendix.

1.1 General functions

1.2 Arithmetic functions

1.3 Logical functions

1.4 System functions

1.5 Property-list functions

1.6 List-modifying functions

1.7 I/O functions

1.8 Program feature functions

1.9 Compiler functions

1.10 Constants

Functions are defined in this appendix by stating their
value in a function call of the form (f, al, •.. ,an).

32

I
I
I
I
I
I
I
1:
[

[I

[

[

[

I:
[

I
I
I
I

~~-~-~--.-.--~--~-~~-~----------~~--~-----

w,"',,·

I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I
I

I. 1 GENERAL FUNCTIONS

Function Arguments

APPEND [a1]a (u1, .•• ,un)
[a2]= (v1, •.• ,vn)

ATOM [a1]

CAR [a1] = (u1, ••• , un)

CDR [a1]= (ul, •.• ,un)

COND al, ••. ,an, where
ai = (bi,fi)

CONS [a1J
[a 2] = (v 1, ... , vn)

CR [a1J
[a2Jis a list of
O's and 4' s

EQ [ail or [a2] atomic
and non-numeric

EQUAL [a:(l [a 2}

EVAL [alJ

EXPLODE [aLI atomic

GENSYM none

IMPLODE [a1J = (ul, •.• , un)
ui at9mic

LABEL a1 atomic
a2

Value Effect

(u1, . • • , un , vI, • • • , vn)

T if [a 1] is an atom
NIL otherwise

u1

(u2, •.• ,un)

[fa where (bJ], ••• ,lbi-lj
are NIL and [bi] = T

([a1J,v1, •.. ,vn) Uses up one
double word
from FSL

Takes CAR's and CDR's
of [a 1] in the order in
¥.~ich they are indicated
~n[a2]by O's and 4's,
respectively.

T if [al] = [a2J
NIL otherwise
(see 6.4.3)

T if [alJ = f.a2J
NIL if [a1] '1= [a2J

[[a1JJ

a list of atoms whose
print names are the individual
characters in the print
name of a1

a new atom with
a print name of the
form Xnnnnn, n a digit

an atom whose print
name is the concatenation
of those of u1, ..• ,un

(a1)

33

[a1J= a2
5~I~Seed on

GENERAL FUNCTIONS (cont'd.)

Function Arguments

LENGTH [a1] = (u1, .•. , un)

LIST [a i), ••• ,ran]

MAP CAR [ail a function
[a2J= (vI, ••• ,vn)

MEMBER [a1]
[a2]= (vI, ••• ,vn)

NULL [a1]

PROG2 [ail, [a21

QUOTE a1

SASSOC [aU atomic
[a2J = (vI, ..• , vn)

Value

n

([a1J , , [an])

([([a 1J v1)J , • • • ,
[([al] vn)J)

T if [a 1] = vi, some i
NIL otherwise

T if [all = NIL
NIL otherwise

Effect

Uses up n double
words from FSL

~21 (evaluates al

34

a1

the first element
vi of [a2J whose CAR
is[a1], or NIL if
none.

and a2 in that
order)

I
I
I
I
I
I
[(

[

[

It
[

.~

~

[

I:
[

[

I
II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'I"i' uill'/l

1.2 ARITHMETIC FUNCTIONS

Function Arguments

ADD 1 [a1]

DIFFERENCE [a1] , (a2J

EXPT [a1] , [a2]

GREATERP [a1] , [a2]

LESSP [a1] , [a2]

MAX [all ••• , [an]

MAXL [a1J- (u1, ••• ,un)

MIN [atl , ••• , [an]

MINL [all c: (u1, ••• ,un)

MINUS [a 1]

MINUSP [a11

NUMBERP [a1]

ONEP [a1]

PLUS [a 1] , ••• , [an]

PLUSL a1 - (u1 , ••• ,un)

QUOTIENT(a1] , (a2]

SUB1 [a1]

TIMES, [a1] , ••. , [an]

TIMESL [a11 = (u1, ••• , un)

ZEROP [a1}

b*,.·m1·d·d·,rl·rl· ... Mdtbi .. ·t"' .I".,._;t.t;di;",gj+li.lli.+:i....4i.f.".. 1liltTI······:1IHjJSLI1l·'"jltJ·' .. .,,··f I"WJ"'¥lliJll[!l!!ILj,IPt'w'i'!r-ry;ill,qr

Value

[a1]+ 1

[a1] - [a2J

([a1])[a2J

T if [a1]>[a2]
NIL otherwise

T if [a 11< [a2]
NIL otherwise

max([a1J , ••• , [an])

max(u1, ••• ,un)

min ([a1] , ••• , [an])

min(u1, ••• ,un)

-[a11

T if [a1] is negative
NIL otherwise

T if [a 1] is a number
NIL otherwise

T if [a 11 = 1
NIL otherwise

[all + + [an]

u1 + . . . +un

greatest integer in Cal]

[a1]- 1

[a11* * [an1

u1 * *un

T if [a1]= 0
NIL otherwise

35

[a2J

Effect

1.3 LOGICAL FUNCTIONS

Function Arguments

AND al , •.• , an

ANDL [a 1] = (ul, ••• , un)

NOT Cal]

OR al, ••. ,an

ORL [a 1] = (ul, ••• , un)

Value

T if [ai] = T, for
all i, NIL otherwise

T if ui = T, for
all i, NIL otherwise

T if[alJ= NIL
NIL otherwise

Effect

Evaluates the
ai only to
the first NIL

T if [ai]= T, some i Evaluates
NIL otherwise to first T

T if ui = T, some i
NIL otherwise

36

-,"."--"'-'--'-'-'",------'-----".-

------------------------.-.- ... -------~--~--- ----

I
I
I
I
I
I
[[

[

l[

~
[[

1I
[

I:
[

[

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.4 SYSTEM FUNCTIONS

Function Arguments Value Effect

ADDBPS [al]an integer New size of BPS (see 12.2.3)

(see 12.2.6) EXCISE Cal]

RECLAIM none

[alJ

NIL Forces garbage
collection

SIZE ** BPS/FSL/ALL Size, in double words
COMPILER/PARTITION
or [a 1] , al not any
of the above

TIME none

** BPS

FSL

COMPILER

PARTITION

ALL

Cal]

Interval time elapsed (in seconds)
since last called;
first call produces
value zero.

Unused Binary Program Space

Free Storage List (remaining for use)

All parts of the compiler (excluding BPS)

The foreground or background partition in
which the program is being run

Area above start of compiler

Double words in the implementation of [a 1)

Any or all of BPS, FSL, COMPILER, PARTITION, ALL may appear
as arguments, or the argument may be a single list structure,
but the keywords and list structures may not be mixed.

37

1.5 PROPERTY-LIST FUNCTIONS

Function

CSET

CSETQ

DEFCR

DEFINE

DEFLIST

GET

REMPROP

Argt.ttnents

[a1] atomic, [a2] «(a1J)

a1 , a2 (a1)

[.a1] == eDAAR, e. g. [aIJ

Value Effect

. [[a1JJ= (a2J

[a1]= a2

[([al] u)] = [(CDR (CAR
(CAR u»)J, etc.
see 4.4.6, 13.3.6

[a1J = «ul, vI) , •.• ,
(un, vn»

(u1, .•• , un) [(ui , aI, ... ,an)] =
[(vi,a1, ••. ,an)]

see 5.

[a1] = «u1, vI), (ul, ... ,un)
..• , (un,vn»

[a2]atomic

[a1] = (ul" •• .;,un) if ui =[a2J for

[(GET(QUOTE ui)a2)]
= vi (see 5.)

(usually a property some i, then
list) ui+1, else NIL

[a2Jatomic (an (the value under
indicator) the indicator)

[all atomic
[a2]atomic

[(GET a1 a2)1 l(GET a1 a2)] = NIL

38

I
I
I
I
I
I
I,
I
1I

~

l
[

I:
[

[

I
I:
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.6 LIST-CHANGING FUNCTIONS

Function Arguments

EFFACE [a 1]
[a2]- (v1, ••• ,vn)

NCONC [a1]= (ul, .•. , un~
(a2]- (v1, .•. , vm

RPLACA [a1J- (u1, .•. , un)
[a2]

RP LAC D [a1] - ~ul, ••• ,un)
[a2]- v1, .•. , vm)

39

Value Effect

if vi == [a 1] (see 9.4)
then (v1, ••• ,vi-1,vi+1, .•. ,vn)
else [a2]

(u1, • • • , un , v 1, • . • , vm) "

([a 21 , u2, . • • , un) ff

(u1 , v 1 , ••. , vm) "

I
1.7 I/O FUNCTIONS I
Function Arguments Value Effect I
EJECT none NIL spaces printer to I top of next page

PRINT [a 1] [al] prints [a1]

I PRINI [a 1] atomic [alJ adds·the print name
of [all to buffer

PUNCH 1 [aU atomic [alJ adds the print name I:
of Cal] to buffer

READ none a list reads the next I: structure complete list
read in structure from

I SYSIPT (or from
teletype, in fg)

TERPCH none NIL punches the contents ~ of the buffer on
one card

TERPRI none NIL prints the contents
of the buffer on

l[
one line

[

I
I:
I:
I
I
I
I

40 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1.8 PROGRAM FEATURE FUNCTIONS

Function

GO

PROG

SETQ

Arguments

a1 atomic

a1, •.• ,an

al atomic, a2

41

Value Effect

(see Appendix II)

"
[a 2] Binds [a 2]

to al on a-list

1.9 COMPILER FUNCTIONS

Function Arguments

CLEARBPS none

COMPILE [a1)= (v1, ••• ,vn)

DECK none

NODECK none

42

Value

Size, in double
words, of BPS

(v1, ••• ,vn)

NIL

NIL

Effect

See 12.2.1

See 12.2.2

See 12.2.2

I
I
I
I
I
I
I
I
I
I
I
I:
I:
I
I
I
I
I
I

,t'fMWdIM t 1*

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

It' !

1.10 CONSTANTS

Constant

T

NIL

BLANK

COMMA

PERIOD

LPAR

RPAR

OBLIST

THECOMPILER

\"" ... ". Ia:t 'H"". 'tW WtiHfuw"m" IzHHdb*FwmWld1*¥mUjfljjtWjJiYrNi'W'""-¥i r"" - -p'nEll!"","

Value

T

NIL

,

(

)

The list of atoms in the system,
including all built-in functions
and constants, followed by those
supplied (since the start of a
run) by the programmer.

A list of the functions which make
up the LISP Compiler.

43

--- .. -----_. __ ... _._-_ ... _ .. ------"--------_. __ .. _. __ ._-.-_ .. _-- ... , ... __ -...... _" ,

APPENDIX II

The LISP program feature

11.1 The LISP program feature helps the user to write
programs containing many interdependent variables.
It mimics conventional programming languages by
executing list structures for the sake of their
effects rather than their values.

11.2 A PROG-expressionis a list of the form:

(PROG (vI' .•• ' v) s 1 ' ..• , s) n m

where vl, •.• ,vn are program variables (perhaps none),

and sl, ••• ,sm are statements or labels.

A statement is a function call.

A label is a non~numeric atom.

A program variable is a non-numeric atom.

11.3 As soon as the statement (RETURN s) is executed,
evaluation of the PROG-expression is completed and
it returns a value of [s].

11.4 To branch to a location in the program designated
by a label a, execute (GO a).

11.5 Program variables are atoms whose values are set by SETQ
during execution of the PROG. SETQ takes two arguments; it
assigns its unevaluated first argument the value of its
second argument. Unlike CSETQ, the value assigned by SETQ
is recorded on the a-list and hence disappears at the con­
clusion of the PROG; thus, LAMBDA-variables may be SETQd,
too. The value of SETQ is the value of its second argument.

11.6 COND statements appearing within a PROG need not contain
at least one true condition. If no true condition is encount­
ered, control passes to the next sequential list structure
following the COND. If a true condition is found, and the
corresponding statement is not a GO or RETURN, the statement
is evaluated and then control is passed.

11.7 Example: (DEFINE (QUOTE (
(FACTORIAL (LAMBDA (N) (PROG (v W)

(SETQ v N)
(SETQ w 1)

LOOP (COND «ZEROP V) (RETURN W»)
(SETQ W (TIMES W V))
(SETQ V (SUBI V»
(GO LOOP)

») »)

44

I
I
I
I
I
I
[[

I

I
I
I
I
I
I

I NiiA'" hli,," !I!

I
I
I
I
I
I
I
I
I]

I
I
I
I
I
I]

Il
I
I
I

tfH!

APPENDIX III

Differences between System/360 LISP 1.5 and 7090 LISP 1.5

111.1 Functions which differ (in number of arguments, or
value, or effect) from the 7090 function of the
same name:

COMPILE
CSET
CSETQ
EFFACE
EVAL

GENSYM
PROG
REMPROP
RETURN
SASSOC

111.2 Functions not in 7090 LISP 1.5

111.3

111.4

ADDBPS
ANDL
CLEARBPS
CR
DECK
DEFCR
IMPLODE
MAP CAR
MAXL

MINL
ORL
NODECK
PLUSL
PUNCH1
TERPCH
TIME
TlMESL

There are many functions in 7090 LISP not in System/360
LISP.

Print names of atoms are not restricted to 7090 'atomic
symbols' .

45

• ____ .•• _ .•..• 0.- _ . _____ •. __ .••. __ . _____ •• _
••••• _" , •• _ ••••••••• , •••• _ •• __ • ,._._._ •• _. ____ 0 ••••• _......... • •• _ •• _________ •••• _~. 0" .• --

~ - ------- --------- -

APPENDIX IV

LPCP: LISP Parenthesis counting Program

A program to' aid the user in matching parentheses in
LISP programs has been written, and is available, under OS,
in the LISP disk library.

It produces a listing of the LIS]? deck with a number or
letter below each parenthesis, so that the first (left)
parenthesis is numbered 1 and the symbols under matching
parentheses are, the same. The count proceeds:i, ••. ,9,A,B.,

Your LISP program may be checked by LPCP, and then turned
over to the LISP system for processing, by using the deck
setup shown below:

//jobname JOB labnumber,name,MSGLEVEL=l

//JOBLIB DO DSNAME=LISP,DISP=SHR

//COUNT EXEC PGM=LPCP

//SYSOUT DO SYSOUT=A

//SYSUT DO DSNAME=&LISPIN,DISP=(,PASS),UNIT=231l,

/ / SPACE= (TRK, (50,10) ,RLSE)

//SYSIN

/*

//GO

//SYSIN

II

DO *
(LISP deck)

EXEC RPLISP

DO DSNAME=&LISPIN,DISP=(OLD,DELETE)

46

I
I
I

I
I
I
11
~

1
[[

[[

I:
[

I
I
I
I
I
I
I
I
I
I
I
I
I
11

I
I
'I
I
I

APPENDIX V

System Messages

1. ***GARBAGE COLLECTION. FSL REMAINING -
See 10.3, 13.3.5

2. THE VALUE OF THE ABOVE LIST STRUCTURE IS -
See 13.3.1

3 • (MSG TOO LONG) RETURN =
See a LISP system programme.r.

4. ERR 0 R UNSAVE ENTERED MORE THAN SAVE. RETURN =
See 13.1.3

5. ERR 0 R PUSH DOWN LIST FULL. RETURN =
See 10.4

6. ERR 0 R NON-BLANK CHARACTER AFTER MATCHING RIGHT
PARENTHESIS
See 2.4

7. ERR 0 R IMPROPER PARENTHESIS COUNT
See 2.4

8. ERR 0 R ITEM NOT UNSAVED ON RESET =
Seea LISP system programmer.

9. ERR 0 R UNBOUND ATOM
See 5.5.5

10. ERR 0 R UNDEFINED FUNCTION
See 4., 5.

11. END 0 F LIS P RUN
Sign-off message.

12. ERR 0 R CHARACTER STORAGE SPACE EXHAUSTED RUN TERMINATED
See 10.5

13. ERR 0 R ILLEGAL PERIOD
See 13.3.2, 4.4.4

14. ERR 0 R ATOMIC SYMBOL EXCEEDING 72 CHARACTERS
See 2.2.3

15 • S TAR T 0 F LIS P RUN
Sign-on message.

16. ERR 0 R NO PRINT NAME FOUND FOR ATOM
See a LISP system programmer.

47

17. EaR 0 R NO TRUE CONDITION IN CONDITIONAL EXPRESSION
See 6.3.3

18. ERR 0 R ARGUMENT LIST FOR 'LAMBDA' SHORTER THAN
VARIABLE LIST
See 5.

19. ERR 0 R EXCESS RIGHT PARENTHESIS.
See 2.4

20. ERR 0 R VARIABLE LIST FOR 'LAMBDA' SHORrER THAN
ARGUMENT LIST
See 5.

21. ERR 0 R NO FSL RECLAIMABLE. RUN TERMINATED.
See 10.3

22. ERR 0 R NUMBER USED AS FUNCTION
See 5.1

23. ERR 0 R CDR OF NIL
See 4.4.4

24. ERR 0 R CAR OF AN ATOM ATTEMPTED
See 4.4.4

25. SPACE REQUESTED NOT AVAILABLE
See 12.4.2

26. UNPRINTABLE.
A function has been called with an argument for which it
is undefined.

27. PRIN1 HAS BEEN ENTERED WITH AN IMPROPER ARGUMENT.
See 11.4.3

28. ERR 0 R SYSTEM ATOMS MAY NOT BE REDEFINED*
See appendices I and VI for a list of system atoms~

29. ERR 0 R OUT OF BINARY PROGRAM SPACE. RUN TERMINATED
See 12.4.1

30. ERR 0 R EXPLODE HAS BEEN ENTERED WITH AN IMPROPER ARGUMENT
Ar'gument for EXPLODE is not atomic.

31. ERR 0 R IMPLODE HAS BEEN ENTERED WITH AN IMPROPER ARGUMENT
Argument for IMPLODE is not a list of atoms.

Note: a value printed after a recoverable error is whatever
caused the error (unless NIL or UNPRINTABLE).

*Function definitions following the improper one in the same
calIon DEFINE are not recorded.

48

I
I
I
I
I
I
I:
[[

I:
IJ
IT'
i&

WI'!"!!'!!! llU4f¥ iliWhW.:hwiJ+:,;j··rjl.iJHlfl.!Jl!fAAA+![!" .. · .. ··JfiHllLI[jdllH/l·· ·1 il$jp'PWfI']J\TIiPiI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX VI

Some LISP functions

VI.l A few simple examples

(DEFINE (QUOTE (
(REMAINDER (LAMBDA (M N)

(DIFFERENCE M (TIMES N (QUOTIENT M N») »
(LASTELEMENT (LAMBDA (L)

(COND
«NULL (CDR L» (CAR L»
(T (LASTELEMENT (CDR L»)

»)

(SELECT (LAMBDA (MASK L)
(COND

«NULL L) NIL)
«ONEP(CAR MASK»(CONS (CAR L)(SELECT(CDR MASK) (CDR L»»
(T(SELECT (CDR MASK) (CDR L»)

»)

(REVERSE (LAMBDA (L REVL)
(COND

«NULL L) REVL)
(T (REVERSE (CDR L)(CONS(CAR L)REVL»)

»)

(MERGE (LAMBDA (X Y)
(COND

«NULL X) Y)
«NULL Y) X)
«LESSP(CAR X) (CAR Y»

(CONS(CAR X) (MERGE (CDR X) Y»)
(T (CONS (CAR Y) (MERGE X (CDR Y»))

»)

»)
THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(REMAINDER LASTELEMENT SELECT REVERSE MERGE)

The five functions above are independent. Some examples
of what each is supposed to do are given below.

49

(REMAINDER 8 2)] = 0, [(REMAINDER 11 3)J= 2

[(LASTELEMENT(QUOTE(A B C»)]· C,

[(LASTELEMENT (QUOTE «A»))]-= (A)

f(SELECT(QUOTE(l 0 1 1 0 0 1»(QUOTE (A BCD E F G»)]
= (A C D G)

(REVERSE(QUOTE(A (B C) D» NIL)]= (D (B C) A)

[(MERGE(QUOTE(2 5 7 8»(QUOTE(3 6 7 9 10»)]
= (2 3 5 6 7 7 8 9 10)

VI.2 Some simple applications

On the following pages are listings and illustrations
of some simple applications of LISP. The functions
shown have been stored as teletype files.

Several applications which are more extensive (and thus
too long to reproduce here) are available at RPI, including:
symbolic differentiation, reduction of finite state automata,
production of syntactic monoids, and polynomial manipulations.

50

- ~---~---~-- - ------~-~-------~----- ---

I
I
I
I
I
I
[

I
I
IJ
[[

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

''';::ME r .. M····I.!.ri'"H+;,,¥ .. Llh\f··!LlI&t+L+·We±WttH+j;+¥ijjiJ .. ·· .. j j+fi1i±i+IN"·H .. ··¥· .. S "·T·'··!· ··n··) ! CU"V· [!!'FTfJl j·ij'it:r;Br··j18;uT"· DHlf'P'!wlI!IjIIlIldllli:tlliiltf

VI.2.1 DIVIDE finds the quotient of two integers to any
desired number of places (the third argument -1),
expressed as a list. PUTPOINT turns the result
of DIVIDE into an atom that looks like a fixed
point number.

$F'ILE 'DIVID'
LOADED
05: $EXECUTEP
01: (DEFINE(QUOTE(
02: (DIVIDE(LAMBDA(N D P)
03: «LAOOBDA(Q)
04: (COND
05: «ZKROP P)NIL)
06: «ZEROP Q)(CONS O(DIVID[(TIMES 10 N)D(SUBI P»»
07: (TCCONS Q(DIVIDE
08: (TIMES IO(DIFFERENCE N(TIMES Q D») D (SUBt P»»
09: »(QUOTIENT N D» »
10: (PU1POIII(LAMBDA(X)
II: (IMPLODE(CONS(CAR X)(CONS PERIOD(CDR X»» »
12: »)

THE VALUE OF' THE ABOVE LIST STRUCTURE IS -

(DIVIDE PUTPOINT)

12: $EDITSTARI
01: (DIVIDK 23 13 10)

tHE VALUE OF THE ABOVE LIST STRUCTURE IS -

(1 7 6 9 2 3 0 1 6 9)

02: (PUTPOINT(QUOTE(l 7 6 9 2 3 0 7 6 9»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

1 ~769230769

03~ (PUTPOINT(DIVIDE 57900 491 63»

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

11.189409368635431881873727087'7631414541751527494908350305498981

04:

51

-_._------------------ . __ .. _._-_ --------_ .. _.- -------

VI.2.2 CONCLUSION finds the conclusion of a syllogism.
Its two arguments are the major and minor premise,
respectively.

5: $FILE "SYLLl"
OADED
5: SEXECUTEP
1: (DEFINE (QUOTE (
2: .(PARTAFTER (LAMBDA (WORD PHRASE)
3: (CONO
4: «NULL PHRASE) NIL)
5: «EQ (CAR PHRASE) WORD)(CDR PHRASE»
i: (T (PARTAFIER WORD (CDR PHRASE»))))
': (CLASS (LAMBDA(PREMIS[) (PARTAFTER (QUOTE IS) PREMISE»)
: (SUBCLASS (LAMBDA(PREMISE)(CAR (PARTAFTER(QUOTE EVERY) PREMISE»»
: (INDIVIDUAL (LAMBDA(PREMISE) (CAR PREMISE»)
: (INDIVIDUALSCLASS (LAMBDA(PREMISE)(CAR(CDR(CLASS PREMISE»»)
: (CONCLUSION (LAMBDA (PREMISEl PREMISE2)
.: (COND
': «EQ (INDIVIDUALSCLASS PREMISE2) (SUBCLASS PREMISE!»
I: (CONS(INDIVIDUAL PREMISE2)(CONS(QUOTE IS)(CLASS PREMISEl»»
>: (T (QUOTE (NO CONCLUSION»»»»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

PARTAFTER CLASS SUBCLASS INDIVIDUAL INDIVIDUALSCLASS CONCLUSION)

>: (CONCLUSION (QUOTE(EVERY MAN IS MORTAL»
j: (QUOTE(SOCRATES IS A MAN»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

;OCRATES IS MORTAL)

;: $EDITSTART
,: (CONCLUSION(QUOTE(EVERY SEAGULL IS A BIRD»
~: (QUOTE{THIS IS A BIRD»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

10 CONCLUSION)

>: (CONCLUSION (QUOT[(EVERY RPI/PROGRAM IS DEBUGGED AND RUNNING»
~: (QUOTE«lHE LISP SYSTEM) IS AN HPI/PROGRAM»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

THE LISP SYSTEM) IS DEBUGGED AND RUNNING)

• •

52

I
I
I
I
I
I
I
[[

I
I
[

I
I
I
I
I
I
I
I!

I
,j

iHiiiiW ''i£ r ± .ifdbdditni+Ydil.W'jliJJ-t''U!l:IlIll!iUi·'rr yv ··w'glll!1""·,,,,r""TO'W59!W

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VI.2.3 POLISH converts a character string (expressed as a
list of atoms) representing an algebraic expression
in FORTRAN notation into the Lukaszewicz ('Polish')
postfix form.

$FILE "POLSH"
LOADED
27: $EXECUTEP
01: (CSETQ OPERPREC (QUOTE«+ 1)(- 1)(* 2)(/ 2)(** 3»»

THE VALUE OF THE ABOVE LIST STRUCTURE IS •

(OPERPREC)

02: (CSETQ OPERATORS (QUOTE(+ - * / **»)
THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(OPERATORS)

03: (DEFINE(QUOTE(
04: (PRECEDENCE(LAMBDA(OPERATOR PRECLIST)
05: (COND
06: «NULL PRECLIST)(PROG2(PRINT(QUOTE(ILLEGAL OPERATOR IN
07: INPUT STRIHG»)4»
08: «EQ OPERATOR (CAAR PRECLIST»(CADAR PRECLI~T»
09: (T(PRECEDENCE OPERATOR (CDR PRECLIST») »)
10: (POLISHl(LAMBDA(X OPSTACK)
11: (COND
12: «NULL X) OPSTACK)
13: «ATOM X) X)
14: «NOT(ATOM(CAR X»)(APPENO(POLISH(CAR X»(POLlSHl (CDR X)
15: OPSTACK»)
16: «NOT(MEMBER(CAR X)OPERATORS»(CONS(CAR X)(POLISHl(CDR X)
17: OPSTACK)})
18: (T«LAMBDA(G)
19: (COND
20: «NULL OPSTACK)(POLISH1(CDR X) G»
21: «NOT(GREATERP (PRECEDENCE (CAR X) OPERPREC)
22: (PRECEDENCE (CAR OPSTACK) OPERPREC»)
23: (CONS(CAR OPSTACK)(POLISHI X (CDR OPSTACK»»
24: (T(POLISHl (CDR X) G}»)(CONS(CAR X)OPS1ACK»)
25: »)
2~: (POLISH(LAMBDA(X) (POLISHI X NIL»)
27: »)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(PRECEDENCE POLISHI POLISH)

27:

53

$EDITCONI
- 28: (POLISH (QUOTE (A + B»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(A B +)

29: (POLISH (QUOTE (A + B - C + 0 -. E»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(A B + C - D + E -)

30: (POLISH (QUOTE (A / B+ (C ** (E -'(F *~G»»»

THE VALUE OF THE ABOVE LIST ~TRUCTURi IS -

(A B / C E F G * - ** +)

31 :

54

I
I
I
I
I
I
I
I
I
I
[

[[

I
I
I
I
I
I
I

.,I*, WHlllilt,ub" e ""'MiN ,. l·" . 'iiiit.H .• ·¥it'f* jltdiH ·AHb .. /1 .•. u·" ·d')fd±tiH .. "&&"·dlhHttitidYWihilf,l"*HiiJiWiff·· i5tI. P r· .. · ""MHffi .. wtmU' ~bi!tia'L""·Bil¥WIijI b·T' '·!I!·ufln· iVY IwgIW8+l m ! j""··p§HI""··CHlbtiH··"iLW·\ .. +±h .. ··r·i/l It·!"T ·nhfllli4JluW&t! ·HtjWlilWijljll1jlfiE'liitii.W;'ii*W· •• ·+

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VI.2.4 CANONICAL finds a canonical form for logical
expressions in LISP prefix notation. The result
is dependent on an brdering of the variables
in the expression, which is specified by its
second argument. OlJ'IFORM, EXPAND, and their
subfunctions CAL and DIST turn the canonical
form into the conventional 'sum-of-products'.

"BOOLE I $FlLE
LOADED
38: $EXECUTEP
01: (DEFINE(QUOTE(

(CANONICAL(LAMBDA(X V)
(COND

02:
03:
04:
05:
06:
07:
08:
09:
10:
11 :
12:
13:
14:
1;:
16:
17:

«NULL V)(EVAL X»
(T(LIST

(PnOG2(CSET(CAR
(PROG2CCSET(CAR

))

V)T)(CANONICAL X(COR V»)
V)NIL)(CANONICAL X(CDR V»)

)))

(EXPAND(LAMBDA(X V)
(COND

«NULL V)X)
(T(APPEND

CDISTCCAR V)(EXPAND(CAR X)(CDR V»)
CDISTCLIST(QUOTE NOT)(CAR V»(EXPANDCCADR X)(CD~ V»)

))
18: »)
19: (DIST(LAMBDA(X Y)
20: (COND
21: «NULL Y)NIL)
22: «EQ Y T)CLIST(LIST X»)
23: (T«LAMBDA(DXCY)
24: (COND
25: «EQ(CAR Y)T)(CONS(LIST X)DXCY»
26: «NULL(CAR Y»DXCY)
27: (T(CONS(CONS X(CAR Y»DXCY»»
28: (OISI X(CDR V»~))
29: »)
30: (OUTFO~M(LAMBDA(X)
31: (CONS(QUOT£ OR)CCAL X»»
32: (CAL(LAMBDA(X)
33: (COND
34: «NULL X)NIL)
35: (T(CONS(CONS(QUOTE AND)(CAR X»(CAL(CDR X»»
36: »)
37:
33: »)

T H}t \I A L \I r; "" T H " ~ Q 0 \1" LIS T S T R U r, T U rl E IS -

(CANONICAL EXPAND DIST OUTF'ORM CAl)

38 :

55

$EDITCONT
45: (CSETQ VARLIST (QUOTE(A Be»)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(VARLIST)

46: (CANONICAL (QUOTE(AND A(OR BCNOT C»» VARLIST)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

«(1 T) (NIL T» «NIL NIL) (NIL NIL»)

41: (DEFINE(QUOTEC
48: ClOGICALLYEQUIVALENTCLAMBDA(X Y)
49: (EQUAL(CANONICAL x VARLIST) (CANONICAL Y VARLIST»
50: » »)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(LOGICALLYEQUIVALENT)

51: (LOGICALLYEQUIVALENT
52: (QUOTE(AND A(OR B (NOT e»))
53: (QUQTE(OR (AND A B)(AND A(NOT B)eNOT C»> >
54:)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

T

55: (OUTFORM(EXPAND(CANONICAL
56: (QUOTE(AND A(OR BCNOT C»>)VARLIST)VARLIST) >

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(OR (AND A B C) (AND A B (NOT e» (AND A (NOT B) (NOT C»)

57:

56

I
I
I
I
I
[

I
[(

I
I
I
I:
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
,I

I
I
I

VI.2.S ATURING simulates and traces the operation of '8

Turing machine (specified by a transition table)
on any given tape. It prints the current state,
the non-blank part of the tape, and indicates
the position of the head, at each step. The
example shows a Turing machine for the Euclidean
Algorithm.

$,ILE 'TUR5 '
LOADED
15: $EXECUTEP
01: (OEFINE(QUOTE(
02- (ATURING (LAMBDA(A BCD) <TURING (PRINl A) B (PRL C)
03 (PRR D) »)
04 (TURING (LAMBDA (P TM L R) (SUBTURING (MATCH P R TM) »)
05 (MATCH (LAMBDA (P R TM)
06 (COND
01 «NULL TM)(QUOTE (*»)
08 «EQUAL (LIST P (CAR R»(CAAR TM»(CDAR TM»
09 (1 (MATCH P R (CDR TM») »)
10 (SUBTURING (LAMBDA (W)
11 (CONO
12. «EQ (CAR W)(QUOTE *»(QUOTE HALTED»
13: (T (TURING (PRINl (CADDR W» TM
14: (PRL
15 (CONO
16 (CEQ (CADR W)(QUOTE R»(CONS (CAR W) L»
11 (T (COND
18 «NULL L)(QUOTE (0»)
19 (T (CDR L»))))
20 (PRR
21 (CONO
22 (CEQ (CADR W)(QU01E L»(CONS
23 (COND

.24. {(NULL L)(QUOTE 0»
25: (1 (CAR L»)
26: (CONS (CAR W)(CDR R» »
21: (T (COND
28: «NULL (CDR R»(QUOTE (0»)
29: (T (CDR R»)))) ») »
29: $FILE 'TURS'
LOADED
29: * TUR6 CONTAINS THE PRINTING FUNCTIONS PRK, PRR, AND PRA.
29: $EXECUTE

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(ATURING TURING MATCH SUBTURING PRL PRR PRA)

29:

57

(CSETQ TMM (QUOTE (
29 : «A Z}Z L A)«A 1)1 L A)«A 0)0 L A)«A 2)1 R B)«A
29: «B Z)Z R B)«B 1)1 R B)«8 0)0 R 8)«8 Y)Y L C)
29: «C 0)0 L C)«C 1)0 L D)«D 1) 1 L A)«D Z)1 L)i)

29: «E 1)2 R E)«E Z)Z L A)
29: «F 1)1 L F)«F' 2)2 R G)«F' X}X R H)
29: (CG I)Z L A}(CH 1)0 R I)) })

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(TMM)

29: (ATURINGCQUOTE E)TMM(QUOTE(X»(QUOTE(l 1 Z 1 V»~)
E X*1 *1 Z 1 Y
E X 2*I*Z 1 Y
E X 2 2*Z*1 Y
A X 2*2*Z 1 Y
B X 2 I*Z*1 Y
B X 2 1 Z*l*Y
B X 2 'I Z l*Y*
C X 2 1 Z*I*Y
D X 2 I*Z*O Y
F' X 2*1*1 0 Y
F' X*2*1 lOY
G X 2*1*1 0 Y
A X*2*Z lOY
B X I*Z*1 0 Y
B X 1 Z*I*O Y
B X 1 Z I*O*Y
B X 1 Z 1 o*y*
C X 1 Z I*O*Y
C X 1 Z*I*O Y
D X l*Z*O 0 Y
F' X* 1 *1 0 0 Y
F*X*l 1 0 0 Y
H X*l*l 0 0 Y
I X 0*1*0 0 Y

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

HALTED

29:

58

X)X R E)

I
I
I
I
I
I
I:
I
I
I
I
I
I
I
[

[

I
I

II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VI.3 Utilities

VI.3.1 TRACE

If argl is a function, the effect of evaluating
(TRACE argl) is to produce trace printing whenever
the function is entered subsequently. The function
is modified so that it prints the values of the
arguments in each function call, and also the value
that it returns. Each message is indented a number
of columns equal to the depth of recursion at the
time.

Any number of functions can be in the trace condition
at one time, and any function can be returned to
normal by the function UNTRACE.

Below are some illustrations of the use of TRACE
and UNTRACE.

(DEFINEeQUOTEe
04: (ROTATERIGHT(LAMBDAeX)
05: (COND
06: e(NULL(CDR X»X)
07: (T(PUTSECOND(CAR X)(ROTATERIGHT(CDR X»»
08: »)
09: (PUTSEeOND(LAMBDA(Z Y)
10: (CONS(CAR Y)(CONS Z(CDR V»~)
11: »
12: »)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(HOTATERIGHT PUTSEeOND)

13: (TRAeE(QUOTE ROTATERIGHT»

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(ROTATERIGHT)

14: (ROTATERIGHT(QUOTE(A Be»)
(ROTATERIGHT ENTERED WITH)
CA B C)

(ROTATERIGHT ENTERED WITH)
(B C)

(ROTATERIGHT ENTERED WITH)
ee)
VALUE
ee)

VALUE
(e B)

VALUE
(C A B)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(e A B)

15:
59

-- _ .. _._• _---------_ .. _--_ ..

(TRACECQUOTE PUTSEeOND»

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(PUTSEeOND)

70: (ROTATERIGHTCQUOTECA Be»)
(ROTATERIGHT ENTERED WITH)
(A B C)

(ROTATERIGHT ENTERED WITH)
(B C)

(ROTATERIGHT ENTERED WITH)
(e)
VALUE
(e)
(PUTSECOND ENTERED WITH)
B
(e)
VALUE
(C B)

VALUE
(C B)
(PUTSECOND ENTERED WITH)
A
(C B)
VALUE
(C A B)'

VALUE
(e A B)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

CC A B)

11: (UNTRACE(QUOTE ROTATERIGHT»

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(ROTATERIGHT)

12: (ROTATERIGHT(QUOTE(A Be»)
CPUTSEeOND ENTERED WITH)
B
(e)
VALUE
(C B)
CPUTSEeOND ENTERED WITH)
A
(C B)
VALUE
CC A B)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(C A B)

13: 60

I
I
I
I
I
I
(

I
I;

I
I
I
I
I
I
I
I
I
I~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Only functions defined by the programm~r can p~
traced by the function TRAC~. A function in the trace
condition cannot be compiled, because it refers to th~
FSUBR PROG.

Below are the definitions of TRACE and UN'l'RACE.
Some functions called by TRACE refer to a constant
RECLEV, which is set to zero before the first evaluation
of TRACE.

(TRACE (LAMBDA (F)
((LAMBDA (G)

(DEFINE (LIST
(LIST F(LIST(QUOTE LAMBDA) (CADE G)

(LIST(QUOTE PROG)NIL
(LIST(QUOTE PRIND)

(LIST(QUOTE QUOTE) (CONS r(QUOTE
(ENTERED WITH»»)

(LIST(QUOTE PRA) (CONS (QUOTE LIST) (CADR G»)
(LIST(QUOTE PRV) (CADDR G» » »))

(GET F(QUOTE EXPR» »)

(PRA(LAMBDA(L) (COND«NULL L) (CSETQ RECLEV(ADDl RECLEV»)
(T(PROG2(PR~ND(CAR L» (PRA(CDR L»»

)))

(PRV (LAMBDA (X)

))

(PROG2(CSETQ RECLEV(SUal RECLEV»
(PROG2(PRIND(QUOTE VALUE»

(PRIND X»)

(PRIND(LAMBDA(X) (PROG2(INDENT RECLEV) (PRINT X»»

(INDENT (LAMBDA(N)
(COND ((ZEROP N) NIL) (T (PROG2 (PRINI BLANK) (INDENT (SUBl N»»)

))

(UNTRACE(LAMBDA(F) «LAMBDA(G)
(DEFINE(LIST(LIST F(LIST(QUOTE LAMaDA) (CADR G)

(CADR(CADDDDR(CADDR G») »») (GET F(QUOTE EXPR»
)))

61

." The e~fect of evaluating (PRETTYPRINT s c) is
to print the list structure s in a. readable
format, with column c as the left margin.

.PRETTYPRINT is intended for use with function
:. ,definit:ions (which may be obtained even' after

definition by;the use of GET). "

Below is a sample of PRETTYPRltff output •.

(PRETTYPRINT(LIST(QUOTE PRETTYPRINT)(GET(QUQTE PRETTYPRINT)
02: (QUOTE EXPR») 0)

(PRETTYPRINT
(LAMBDA

)
)

(U LEFT)
(COND

)

«OR :(AlOMU) (LESSP (WIDTH U) '(DIFF"ERENCE 70 LEFT»)
(PROG2 (INDENT (SUBtLEFT» (PRINT U»

)

(([Q (CARP (CAR U»(QUOT E LAMBDA»

)

(T

)

(LIST ',', .

)

(INDENT (SUBl LEFT)
(PRINT LPAR)
CPRETTYPRINT (CAR U) (ADD! LEFT»
(PPL (CDR U) LEFT)

(LIST

)

(INDENT LEFT)
(PRINt LPAR)
(PRINT (CAR U»

. lfPL (CDR U) LEFT)

THE VALUE OF THE ABOVE LIST STRUCTURE IS -

(NIL (PRETTYPRINT»

03:

62

I
I
I
I
I
I
I
[(

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Vlo3.3 LAYOUT

The LAYOUT function is used to print or punch a
sequence of assembly-language address constants
which, when assembled, result in the implementa­
tion of the list structure which was its argument.
LAYOUT is used by the LISP system programmers to
add built-in EXPRS. (Because of its restricted
application, no examples are given).

63

APPENDIX VII

RPLISS

To improve readability, LISP programs are usually
written with blanks freely interspersed among list struc­
tures and line indentations to indicate list levels.
However, in the case of large, frequently used programs
which are debugged to the programmer's satisfaction, the
associated punched card deck may be unmanageably large and
may take a long time to input. In order to facilitate
efficient deck handling, the separate program RPLISS is
available under DOS.

RPLISS accepts, as input, a standardrLISP program, and
produces a punched card deck as output. he output deck is
equivalent to the input deck, with all unnecessary blanks
removed. Comment cards (those with an asterisk in column 1)
in the input deck remain unchanged, and hence may be used
to separate the output list structures.

RPLISS utilizes two optional control cards which govern
the output. Both cards must contain an equal sign (=, 6-8
punch) in column 1. The control information begins in
column 2:

1) =LIST
This card will cause RPLISS to produce a listing of
the output deck on the device corresponding to SYSLST.

2) =SEQL sequences tart increment
This card causes the identification field (columns
73-80) of the output deck to be sequenced. The

'sequencestart' field should contain a 4-character
identification name beginning in column 7, immediately
followed by the 4-digit sequence number of the first
output card. Columns 16 and 17 should contain the
2-digit sequencing increment.

The output deck is produced on the device corresponding
to SYSPCH.

The deck structure for an RPLISS run follows:

D* 1/&
,* ~ LISP deck r--I-----~~~~--~~------.--------~

, =SEQL LISPOOOO 01
I-LIST r E EC RPt""":;:I:;;S-;:;-S----~------

II JOB jobname number name time pgs. c s.

64

Il
I
I
I
I
I

I
IJ

I
I
I
I
I

I
I APPENDIX VII

Index to functions in the RPI system

I Function Indicator Classification Text
section

I ADDBPS SUBR System(I.4) 12.2.4
ADD1 SUBR Arithmetic (I. 2)

I
AND FSUBR Logica1(I.3)
ANDL SUBR Logica1(I.3)
APPEND SUBR Genera1(I.1)
ATOM SUBR Genera1(I.1) 6.4.1

I CAR SUBR Genera1(I.1) 4.4.1
CDR SUBR Genera1(I.l) 4.4.2
CLEAR BPS SUBR Compi1er(I.9) 12.2.5

I COMPILE EXPR Compi1er(I.9) 12.2.1
COND FSUBR Genera1(1.1) 6.3,II.6
CONS SUBR Genera1(I.1)

I CR SUBR Genera1(I.1)
CSET EXPR pr0p,erty-1ist(1.5) 9.2.7
CSETQ FEXPR rr

I DECK SUBR Compi1er(i.9) 12.2.2
DEFCR SUBR Genera1(I.1) 4.4.6,

13.3.6

I
DEFINE EXPR Pr0p,erty-1ist(1.5) 5.
DEFLIST SUBR 9.2.5
DIFFERENCE SUBR Arithmetic (I. 2)

I EFFACE SUBR List-modifying(I.6) 9.4
EJECT SUBR 1/0(1.7) 11.4
EQ SUBR Genera1(1.1) 6.4.3
EQUAL SUBR II 6.4.2

I EVAL SUBR " EXCISE SUBR System(I.4) 12.2.6
EXPLODE SUBR Genera1(1.1)

I EXPT SUBR Arithmetic (I. 2)
GENSYM SUBR Genera1(I.1)
GET SUBR Property-1ist(1.5) 9.2.5

I GO SUBR Program feature(1.8) 11.4
GREATERP SUBR Arithmetic (I. 2)
IMPLODE SUBR Genera1(I.1)

I LABEL FSUBR Genera1(1.1)
LENGTH SUBR II

I
LESSP SUBR Arithmetic (I. 2)
LIST FSUBR Genera1(1.1)

I
I
I 65

The RPLISS program may also be used under as. The same
effects and internal control cards appear; the deck structure
is below:

Iljobname JOB labnumber,name,MSGLEVEL=l

IIJOBLIB DD DSNAME=LISP,DISP=SHR

Iistepname EXEC PGM=RPLISS

IISYSPRINT DD SYSOUT=A

IISYSPUNCH DD SYSOUT=B

IISYSIN DD *
(LISP deck)

1*

II

66

------------ -- -----------~~------------------~-------

:~ II
I
I
I

I
I
I:

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX VIII

LISP Debugging Hints

Whenever the LISP processor discovers an error, a
recovery process is initiated. In most cases, this procedure
results in the printing of an error message (cf. Appendix V) ,
the aborting of attempts to evaluate the current list structure,
and the continued processing of the remaining list structures.
Some errors are so severe as to necessitate job termination;
when this occurs under OS, a user completion code is printed
(corresponding to an error message number in Appendix V) and,
if a SYSUDUMP card is present, a dump will appear. (Since
a LISP dump is extremely long, it is advised that a LISP
system programmer be acquainted with the problem before the
dump is requested.) If an error message is, indeed, printed,
the best procedure is to locate the message in Appendix V
and examine the accompanying reference section.

If no error message is printed and 'END OF LISP RUN'
appears, but function calls are printed without evaluation, a
parenthesis miscount is indicated; that is, there is at
least one missing right parenthesis, or extra left parentheses.
If your functions do not contain too complicated list structures,
you may wish to check matching parentheses by hand. LPCP
(Appendix IV) may be used to allow the computer to check
for you.

The appearance of system completion code 106 advises that
your IIJOBLIB card should be removed. A system completion code
of 322 means your program ran out of time. If you feel that
the time allotted was sufficient, then your program is most
likely looping indefinitely. Under OS, whenever your job ends
with a non-zero system completion code, not all of your output
may be printed. To guarantee that you get all your output,
include the following control card just before your IILISP.SYSIN

IILISP.SYSPRINT DD DCB=(BLKSIZE=121,BUFNO=l)

Trqcing your program logic is an effective way of
discovering problem spots. The LISP TRACE function (as
described in Appendix VI) can be used for this purpose. Under
OS, this function can automatically be added to your deck by
r,epiacing the IILISP. SYSIN DD * card wi th the two cards:

IILISP.SYSIN DD DSNAME=LISP(TRACE),DISP=SHR

II DD *,DCB=BLKSIZE=80

67

Function Indicator

MAP CAR SUBR
MAX FSUBR
MAXL SUBR
MEMBER SUBR
MIN FSUBR
MINL SUBR
MINUS SUBR
MINUSP SUBR
NCONC SUBR
NODECK SUBR
NOT SUBR
NULL SUBR
NUMBERP SUBR
ONEP SUBR
OR FSUBR
ORL SUBR
PLUS FSUBR
PLUSL SUBR
PRINT SUBR
PRINI SUBR
PROG FSUBR
PROG2 SUBR
PUNCH 1 SUBR
QUOTE FSUBR
QUOTIENT SUBR
READ SUBR
RECLAIM SUBR
REMPROP SUBR
RPLACA SUBR
RPLACD SUBR
SASSOC SUBR
SETQ FSUBR
SIZE FSUBR
SUB1 SUBR
TERPCH SUBR
TERPRI SUBR
TIME SUBR
TIMES FSUBR
TIMESL SUBR
ZEROP SUBR

68

~~~"-~ .. ~-... _ ..... __ .. _. _.--~-.-~-~~~~~-... __ .. 

Classification Text 
section 

Genera1(I.1) 
Arithmetic (1.2) 

rr 

Genera1(I.1) 
Arithmetic (I. 2) 

n 

" 
" 

List-modifying(I.6) 9.4 
Compi1er(I.9) 12.2.2 
Logica1(I.3) 
Genera1(I.1) 6.4.4 
Arithmetic (1.2) 8.2 
Arithmetic (I. 2) 
Logica1(I.3) 

" 
Arithmetic (I. 2) 

" 
1/0(1.7) 11.3 

" 11.5.3 
Program feature(I.8) 11.2 
Genera1(I.1) 
1/0(1.7) 11.5.3 
Gernra1(I.1) 4.3 
Arithmetic (1.2) 
1/0(1.7) 11.2 . 
System(I.4) 
Property-1ist(I.5) 9.2.5 
List-modifying(I.6) 9.4 

" n 

Genera1(I.1) 
Program feature(I.8) 11.5 
System(I.4) 
Arithmetic (I. 2) 
1/0(1.7) 11.5.2 

" 11.5.1 
System(I.1) 
Arithmetic (I. 2) 

" 
Arithmetic (1.2) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_._-_ ... __ ._-------------- -.-------.---.. ----~.... ----~------~---- .. -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(1) 

(2) 

(3) 

(4) 

REFERENCES 

McCarthy, J., et al. LISP 1.5 Programmer's Manual. 
The MIT Press, Cambridge, Massachusetts, 1965. 

Berkeley, E. C. and Bobrow, D. G., editors. The 
pro~ramming lan~ua§e LISP: Its 0seration and---
A~E ications. T eIT Press:-Cam ridge, Massachusetts, 
1 6. 

McCarthy, J. 'Recursive functions of Symbolic expressions 
and their I computation by machine'. Communications of the 
ACM, April, 1960. -- ---

Rosen, Saul, editor. Programming Systems and Languages, 
McGraW-Hill Book Company, New York; 1967 

69 




