N,

APPENDIX C: LISP/360 REFERENCE MANUAL ’

Revised February 1968

Campus Facility USERS MANUAL

e

PREFACE

This paper is intended to provide the LISP 1.5 user
with a reference manual for the LISP 1.5 interpreter
on the Campus Facility 360/67. This manual assumes
that the reader has a working knowledge of LISP 1.5

as implemented on the IBM 7090. Care has been taken
to ensure compatibility between LISP/360 and LISP 1.5.
For those new to LISP 1.5 or for those who feel a need
for a refresher, the LISP 1.5 Programmer's Manual [1] -

is suggested.

The particular implementation to which this refer-
ence manual is directed was started by Mr. J. Kent

while he was at the University of Waterloo [4,5].

. It is modeled after his implementation of LISP 1.5

for the CDC 3600 [4].

Since the last edition of this manual, Messrs. Kent
and Berns have completed the LISP 1.5 Assembler and
Compiler. Information on these processors is in-

cluded in this paper.

Rod Fredrickson

Associate Director,

Campus Facility

Stanford Computation Center

C-ii

Section

TABLE OF CONTENTS

PREFACE
TABLE OF CONTENTS

THE LISP/360 SYSTEM

1.1 Organization of the System

1.1.1 Organization of Storage

.1.2 Object List

.1l.3 Atoms

.1l.4 Property Lists .
.1.5 Binary Markers .
.1.6 Fullcells

1.7 Printnames .
.1.8 Numbers

e i i e

IMPLEMENTED FUNCTIONS
2.1 New Functions .

2.2 New Data Management Functions .
2.3 Atoms with Initial Values .

2.4 Character-objects .
LISP/360 PECULIARITIES .

OPERATING PROCEDURES .

. 4.1 Running a Program Punched on Cards

LISP/360 SYSTEM MESSAGES .
5.1 evalquote Messages

5.2 Tracing in LISP/360 .

5.3 Garbage Collector Message .

5.4 Interruption Message

5.5 FError Diagnostics .
5.5. '
5.5

|..J

Syntax Errors

Runtime Errors .

2
5.5.3 Error Codes and Messages .

6. DATA MANAGEMENT IN LISP/360 .

f(,% 6.1 Data Management Functions . « o « « . .
\\“) 6.1.1 cpen[ddname;dcbdesc;iospec] . .
6.1.2 close[ddname] . .
6.1.3 asa[x]

6.1.4 otll(n]
6.1.5 wrs[ddname] .
6.1.6 inll[n] .

6.1.7 rds[ddname] « « « « « o o . .
6.2 Checkpoint Facilities in LISP/360
6.2,1 chkpoint[ddname]

6.2.2 restore[ddname] .

T THE LISP COMPILER AND ASSEMBLER
7.1 LISP Assembly Program (LAP) . . .+ . . . ,
T.l.1 Differences Between LAP and OS

Assembly Language « o « « o o o 4 .0 .

7.1l.2 Passing Arguments To and From LAP

Routines .« o « o.0c o o o
{f\S - .~ 7.1.3- General Use of Registers . . .
K~/ . T.1.4 Macros o o o o o o o «

7.1.4.1 User Defined Macros
7.1.4.2 System Macros
7.1.5 Sample LAP Program

T.2 Binary Programming Space . -

7.3 The Compiler e o e o o o o o o o & o & s
7T.3.1 Auxiliary Routines Available . . .
7.3.2 Examining the Compiled Code . »
7.3.3 Generating the Compiler
7.3.4 Names of Compiler and Assembler

Routines =« « o o o ¢ o & oiv @ o
APBENDIX « ¢ o o o o o o o 0 oo a0 o v .

REFERENCES o o o o o o o o o o o o o ¢ o o

C-23
Cc-23

c-23
C -2k
c-2b
c-2k
C-25
c-25 -
Cc-25
Cc-26
Cc-26
c-26

c-27
c-28

c-28

O

1. THE LISP/360 SYSTEM

LISP/360 operates under the IBM System/360 Operating System. The actual

implementation of the system differs in some important respects from

the IBM 7090 LISP 1.5. These changes were instituted to increase the

efficiency of the system. The most marked differences are-in the organ-

ization of storage, where the idea of a separate block for 'fullword-

storage’ has been abandoned, and in the organization of the internal

representation of LISP-atoms. Several of the indicators needed on the

property lists in LISP 1.5 have been rendered unnecessary. Also, the

interpreter has been assembled relocatable,

1.1 Organization of the System

1.1.1 Organization of Storage

The interpreter, the stack, and freecellstorage in LISP/560'are'all :

contained in one control section.

Many versions of the system may be -

prepared with the following recommended requirements.

~ VERSION STACK
SIZE
LISPA 4000
LISPB 6000
LISEC 8000

'~ NO. OF
. LISP CELLS

20,500
40,000
65,000

MEMORY
REQUIREMENTS
200K

400K

600K

The current Stanford implementation is one system called LISPA with

6000 stack elements and 40,000 free cells (when the Binary Programming

Space for the compiler is replaced with free cells via the function

bpsz -- otherwise it is 30,000).

A LISP-cell is a double word (64 bits) in LISP/360. A stack unit is
a single word (32 bits). The size of the stack and freecellstorage

can only be changed by reassembling the LISR/36O system.

1.1.2 Object List

That part of the object 1list which contains the standard atoms has been

generated in assembly language.

as in LISP 1.5.

- C-1

The object list is not bucket sorted

1.1.3 Atoms

The atoms and their property lists have been reorganized in LISP/360.
All LISP-cells having bit O set are so-called atomheads. An atomhead
contains in its upper address a pointer to the atom's fullcell list:

and in the lower address a pointer to the atom's property list.

The atom EXAMPLE with‘an empty property list:

1.1.4 Proﬁerty Lists

‘A typical property list might look like this:

T e T e B I =

[rr for_~]

LAMBDA

FF is a function, namely an EXPR which starts this way (LAMBDA (X)...).

)

1.1.5 Binary Markers

Since the LISP-cell length is 64 bits andvonly 24 bits are needed to
express an address, 8 bits in the upper word and 8 bits in the lower
word are released for other uses. As mentioned above, bit O indicates

that the cell is an atomhead.

O 1 2 3 _ _ __ 0 1 2 3

—— 1 0 0 0 BCD ALFAMER
1 1 .0 0 FIXPOINT

X E 9 1 1 1 0 FLOATPOINT

% S B g 1 1 0 1 LOGICAL

o§§§

=] E;]O

<q 1

The bits 1, 2, and 3 refer tc the fullcell 1list associated with the -

atom.

A function that is to‘be traced has bit 7 set. This means that thé
indicator TRACE is not needed.

When bit 33 is set, this indicates that the word in question is a
fullcell. Bit 32 is used by the garbage collector to mark active
cells,

Bit 34 is now set in a fullcell when its upper 32 bits contain BCD
characters or a number. Bit 34 is not set in a fullcell when its
upper 32 bits is an address. This relocation marker is used in
chkpoint to determine whét fullcélls should have its car parts made

relocatable.

1.1.6 Fullcells

The fullcells in free cell storage replace the 'fullwordstorage' in
LISP 1.5.

A fullcell is a LISP-cell with Dbit 33 set and the upper 32 bits occu-

pied by either: Co-
a. Four BCD characters from a printname (if need be, filled in

from the right with zeros), or

C-3

b. a 32 bit number, or
c. ‘The address of a binary LISP-routine (SUBR or FSUBR).

1.1.7 Printnames

All non-numeric atcms have in the upper address of their atomhead the
address of a linear list containing their BCD printnames. For instance,

the atom DIFFERENCE has this fullzell list:

| prer | 01 —— | EREN | 0O1——>| cE |01 /|

1.1.8 Numbers | .

There are three kinds of numbers:
a. Fixed-point (integers)
b. Floating-point

c. Logical

All numbers are stored as 32 bit binary<numbers with the help of a full-
cell, and must be converted to BCD on input and output. (The BCD repre-

sentation of a number is not stored.)

The correct form of a logical or hexadecimal number is as follows:
1) The number must start with a decimal digit.
2) The number should terminate with the letter X.
3) A scale factor may follow the X. The scale factor must be a
decimal integer, no sign allowed. The number is shifted left
L4 bits times the scale factor. Thus the scale factor is an

exponent to the base 16.

Examples:
' External form . Internal form
OFFX6 FFO00000
OFFFFFFEFX . .. FFFFFFFF
QA6X2 0009A600
i "")"‘

S(’O

2. IMPLEMENTED FUNCTIONS

The functions that are marked by an asterisk are new functions or func-
tions that are different from the functions with the same name in IBM
7090 LISP 1.5. See Section 2.1 for details on these differences. In-

formation about the other functions can be found in McCarthy [l].

addl[n!

and[xl;xgg.u.;xn]

append[x;y]
* appendl{x;y)

apply[fn;args;a)
atom{x]
attrib[x;y]
breakp(ch]
car[x]
caar({x]
cazar[x]
caadr[x]
cadar{x]
caddr[x]
cadr[x]
cdaar[xj
cdadr[x]
cdar[x]
cddar|x]
cdddr[x]
cddr|x]
cdrix]
cond[pl—aei;p2—>e2;.,.;pk—9ek]
cons[x;y}
cset{x;y]
csetq[x;yl v -
define[x]
deflist[x;ind]
difference[x;y]

-5

@)

‘liSt[Xl;X2;.oo3X

digp[ch]
eject[]
eq(x;yk”
equallx;y]
error[x]

eval[form;al]

« evenp[n]

evcon[x;a]

evlis[x;al

¥ explode[x]
* expt{n;m]

¢ fix[n]

fixp[n]
flag[x;flag]
flagp[x;flag]
float[n]
floatp[n]

function[x]

% gensyml|x]

get[x;ind]
go[labél}
greaterp[x;y]
label[name;fn]
last[x]
leftshift[m;n]
length[x]
litp[chl
lessp[x;y]

logand[nl;ngg.uosnkl
logor[nl;ngg...;nk]

logp[n]
logxor[nl;neg.,.;nk]
mapcar[x;fn]

c-6

O
._.//' g

.maplist[x;fn]

max[nl;ngga.ognk]
member[x;y]
min{nl;n2;...;nk]
minus{n]

minusp[n]

¢« mkatom[]

nconc[x3y)

not[x]

null[x]
numberp[x]
or[xl;xgg.,.;xk]
orderp[x;y]
pair[x;y]
plus[nl;n ;...;nk]
prbuffer|x]
prinl{x]

print|x])
prog[varlist;statlist]
prog2[x;y]
quote[x]
quotient[x;y]
read[|

readch[x]
recip(n]

reclaim[]
remainder[n;m)
remflag[x;flag]

remob|x]

remprop[x;ind]
¢ rlit[ch]

¢ rnumb[ch)!

rplaca(x;yi

rplacd[x;y]

o

* rtoken[fn]

sassoc[x;a;
Q set[x;y]
setq[x;y]
subl[n]
terpri[]

fn]

times[nl;n ;..,;nk]

“trace[x]
* ttabin]

untrace[x]

verbos[x]
¥ xtabln]

zerop[n]

2.1 New Functions

‘appendl[x;y] =

nconc[x;cons[y;NIL]]

breakp[x] is a predicate. If its argument is

(i) ter-objggts:

(
)

>

blank

its value is T; otherwise its value

digp[ch] is a predicate.

ter-objects:

If its argument is
O: l) 23

> 9

its value is T; otherwise its value

evenp[n] takes an integer as an argument and

if the number is even, otherwise F.

one of these charac-

is F.

one of these charac-

is F.

returns the value T

explode[x] takes an atom as an argument and has as its value a list

of the characters in the atom's printname.

- : m
expt[n;m] computes n .

expt will only accept an integer exponent.

The value of expt when the exporent is negative is a

floating-point number, e.g., expt[2;-1] = 0.5.

- fix[n] will convert a floating-point number into a fixed;point

ﬁ::) | number .,

c-8

float[n]

gensyml[x]

last[x]

letp[x]

Litplch]

Logp(x]

mkatom|[]

prbuffer[x]

readch[x]

will convert a fixed-point number into a floating-point

number.

generates nsw, distinct atomic symbols. Its argument
should be an atom and the first four characters in this
atom's printname will be used as the four first charac-
ters in the new atom'’s printname. TFor example:

gensyml[ALPHA| = ALPHOOOL
= [null{ecdr[x]- x;last{cdr(x]]]]
is a predicate. If its argument is one of these letters
A, B, oo , Z its value is T; otherwise its value is F.
= not[or[breakp[x];digp[x]]]
is a predicate with the value T if its argument is a log-
ical number, otherwise F.
This function with no arguments is used to make atoms out

of information put into the internal character buffer by

rlit or rnumb.

induces an arbitrary canonical order among atomic symbols. .

takes T or NIL as an argument. Erbuffer[T] will cause
read and readch to print the input buffer everytime a new
card is moved into it. A => in the margin of a line in- »
dicates that the line is a buffer printout. prbuffer[NIL]
will stop the printing of the input buffer. prbuffer is
used when it is important to show exactly what was given

as input to LISP.

takes T or NIL as arguments. . If the argument is NIL,

value of readch[NIL] after a readch[T] has been executed
will be the same as that returned by the previous
readch[NIL]. The value of readch[T] is the same as that
returned by the next to last readch[NIL]. readch[T]
should only be executed once before calling readch[NIL].

c-9

,[")

[58 A

A

riit[x]

rnumb(x]

rtoken[fn]

)

takes a character-object as an argument and puts the
corresponding character into an internal character buffer.
Executing rlit sequentially will cause a string of char-
acters to be constructed in the character buffer. mkatom

can then b= called to makg a literal atom out of it.

takes one of these character-objects as an argument:

+

B |

0, 1,2, ..., 9.
rnumb will construct a partially translated number in thé
internal character buffer. Remember that the character-
objects 0, 1, 2, ..., 9 are different from the ngmbers
0, 1, 2, «vo5 9. The sequence of character-objects pre-
sented to rnumb, one at a time, must represent a meaning-
ful integer or floating-point number. mkatom can then 1 “
be called to make a numeric atom out of the information

in the character buffern

As can be seen from the following definition rtoken takes
a functional argument. The function supplied as an argu-. -
ment should have character-objects as values, and should
have the same backspace facilities as readch has. Depen-
ding on the character-objects supplied by rtoken's func-
tional argument, rtoken will give a literal atom, a nu-
meric atom, or one of the character-objects -- blank

+ -, . () --as a value.

~ rtoken[fn]=progf[ch;cht];

A

che=fn[NIL];

[eq[ch;BLANK]— go[A]]s
[or[eq[ch;-];eq[ch;+]]— go[NAS]T;
[eqlch;$]— go[$1];

litp[ch]— go[LA]s D -
digp[ch]— go[NA];

breakp[ch]— return{ch]l];

Cc-10

O

O

~ ttab[n]

xtab[n]

LA
o

LB
NA

NAS

$1

$2
$3

v

rlitichl;
chy=fn[NIL];
[breakp[ch]— prog2[fn[T];go[LBl1];
gol{IA]3
return{mkatom] ;
rnumb[ch] ;
ch:=fn[NIL];
[andtbreakp[ch];not{eq{ch;o]]]—agO[LB]];
go[NA];
[breakp[fn[NIL]]- prog2[rlit[ch];go[LBl]];
ch:=fn[T]; '
go[NALs
chi=fn[NIL];
feqlch;$i— go[$2]];
r1it[$];
Tl
go[ICl;
chts=fn[NIL] ;
ch:=fn[NIL};
[eq[ch;cht]— return[mkatom]] ;
rlit{ch];
gol[$3)13
will set the first n positioné in the output buffer to

blanks.

will insert n blanks in the line currently being built

up in the output buffer.

xtab and ttab will only affect cne line at a time. ttab must be

repeated for each line outputted to get a margin on the page.

2.2 New Data Management Functions

asa[x]

bpsz[n}

chkpoint|ddname]

close| ddname]

inll{n]

letp[x] "
open[ddname;dcbdesc;iospec]
otll[n]

rds[ddname]

restore[ddname]

wrs[ddname]

A detailed explanation of these functions can be found in Section 6.

2.3 Atoms with Initial Values

Several atoms have predefined values (APVALS) in LISP/360. -These atoms

and their corresponding values are:.

L

Atom

NIL

F

T
OBLIST -
ALIST
DOLLAR
SLASH
LPAR
RPAR
COMMA
PERICD
. PLUSS
DASH
STAR
BLANK
EQSIGN

. Value
- NIL

“NIL
T

Object list

Association-list

$

y
(
)

O

O

2.4 Character-objects

The following character-objects are defined in the system.

. | X

blank (L
A + $ Y 5
B I * Z 6
c &) unprintable 7
D J 5 R 8
E K - % 9
F L - _ :
G M / > #
H N S ? @
I o) T 0 '
¢ P U 1 =

Q v 2 "
< R W 3

The ‘unprintable' character has no graphic symbol on the printer. . Its
punched card code is 12-11. readch will translate any one of the 256
characters available on the IBM System/360 into one of the above-
mentioned 64 chéracter-objeéts° Small letters are translated into

capital letters.

.C-13

O

LISP/360 PECULIARITIES

L.

2.

10.

Alpﬁémeric atoms in LISP/36O may have up to 80 characters.
Fixed-point numbers may ha&e absolute values up to 251.
Floatingwpoiht significance on input is 6 digits.
Floating-point numbers may have absolute values between 1075

and 10717 (and 0).

Numbers are considered equal if the absolute value of their

difference is less than 10 .

CAR of an atom is not junk as in LISP 1.5, but the address of
the fullcell list of that atom. ‘

No control cards of any type exist in LISP/560;
Signs are ignored in reading logical numbers.

If a print is executed after prinl, the list generated by

print follows the data output by prinl.

go can only be given atomic labels.

C-1k

L, OPERATING PROCEDURES

4,1 Running a Program Punched on Cards

The LISP program can be punched on cards free field in columns 1-72.
The following control cards are necessary to run the LISP program from
cards:

<JPB Card>

//JPBLIB DD -DSNAME=SYS2.PRAGLIB,DISP=fLD

//stepname EXEC PGM=LISPA

//LISPAUT DD SYSPUT=A

//LISPIN DD *

LISP Program
/*
A LISP program that has been punched on an IBM 026 keypunch (BCD) can

still be interpreted by this interpreter by introducing the parameter
BCD in the EXEC statement. The EXEC statement would then be

//stepname EXEC PGM=LISPA,PARM=BCD

() + are the only characters translated from BCD to EBCDIC by the
interpreter when the BCD parameter is included in the EXEC card. The
character = is represented differently in BCD and EBCDIC and is not

translated by the above-mentioned technique.

No translation is performed by the readch function even if the BCD

parameter is included in the EXEC statement.

c-15

L

gy

C

Sy

5, TLISP/360 SYSTEM MESSAGES

5.1 evalquote Messages

The message ARGUMENTS FOR EVALQUOTE... and the two S-expressions in the
last doublet are always printed before entering evalguote.

If no errors occur during the evaluation of the doublet, the message
TIME xxxxMS, VALUE IS... and the value of evalquote for this doublet
is printed upon return from evalguote. The time indicated in the above

message gives the time spent in evalquote. The time is in milliseconds.

5.2 Tracing in LISP/360 {

Tracing is controlled by the pseudo-function trace, whose argument is

a list of functions to be traced. After trace has been executed, tra-
cing will occur whenever these functions are entered. The trace-handlerv
prints out the name of a function and a list of its arguments when it is
entered, and its name and value when it is finished. When tracing of
certain functions is no longer desired, it can be terminated by the
pseudo-function untrace whose argument is a list of functions that are

no longer to be traced.

5.3 Garbage Collector Message

The message COLLECTED xxxxx CELLS AND STACK HAS xxxx UNIISvLEFT is
printed after every garbage collzsction. The message gives an’ indica-
tion cf the amount of freecellstorage freed, and the depth of récursion
at each garbage collection. The system parameters are defined so that
there are 4000 units in the stack and 20000 LISP cells available for

programmer use in freecellstcocrage in LISPA.

5.4 Interruption Message

An interrupt supervisor takes care of all program interruptions in
LISP/36C. See the IBM reference [3] for information about System/360
interrupticns. The program status word (PSW), the contents of registers
1-16 and the message ¥#¥ERROR: CAR TAKEN OF FﬁLLCELL is printed if the
interruption code is 1 to 7. Thereafter a trace back follows of the

same type as described in Section 5.5.2. This interruption type is

C-16

usually caused by indiscriminate use of car and cdr past the atomic level.
The execution of the doublet that caused the interruption is halted and
a new doublet is read in for evaluation. An interruption code of 8 to F
means that an overflow or underflow occurred. This interruption type
causes the message ¥#*¥QVER~-COR UNDERFLOW OF TYPE xx to be printed. xx is
the interruption code. Execution of the doublet that caused the over-

flow or underfiow is resumed after the interruption.

5.5 Error Diagnostics

_5°5,l Syntax Errors

If the reader finds syntactical errors in an S-expression, it inserts
special atoms at appropriate places in the S-expression. The special

atoms have the following meaning.

ATOM | MEANING

ERRB . (dot) encountered as first non-blank character
after a (.

DOTEERRL The second S-2xpression in a dotted pair is not

followed by & right parenthesis.
DOTERR2 A . or) encountered as first non-blank character
after a dot.
The message *¥¥R1-SYNTAX ERROR precedes the printing of the S-expression
with the error. A doublet containing one or more syntactical errors
causes the following message to appear *¥¥ERRORS ENCOUNTERED WHILE
READING. CONTINUING WITH NEXT DOUBLET and evaluation of the doublet is

- skipped.

5.5.2 Runtim= Errors

When an error occurs during a LISP run, the following type of error
diagnostic occurs.
¥¥xerror code-error message
- S-expression 1 .
S-expression 2
*%%¥TRACE BACK FOLLOWS - -
S-expression 3

o
o

Q

-17

()

S-expressions 1 and 2 are related to the type of error encountered and
are described below with the error messages. The trace back is a print-
ing of the lists bound on the stack af the time the error occurred. The
most fecently used 1ist in the stack (the list on top) is printed first.
The first few printed lists will therefore give a good indication of

what caused the error.

Let us assume that none of the functions being interpreted are using the
prog-feature, and that trace has not been execuﬁed. Under these condi-
tions. the lists bound on the stack will be alternately function calls or
definitions and association lists. When reading the stack, keep in mind
that the innermost functions are evaluated first, even though the
functions are interpreted from the outside in. Thus, the call on the
function being evaluated when the error occurred will be near the top

éf the stack.

If trace is executed within a LISP job, the name of an EXPR called will
be found on the stack between the EXPR's definition and the corresponding
association list. The call on a function using the prog-feature will
cause the following lists to appear in the stack printout.
a. The complete function definition (omitting the name of the
function).
b, A list of the uninterpreted statements in the function starting

with the one being evaluated when the error occurred.

c. The go-list (see reference [L4]).

d. The association list.

5.5.3 Error Codes and Messages

~Al-CALL TO ERROR
This message 1s glven if a LISP program calls error. The argument
(if any) of error is printed (S-expression 1). The trace back is

not given with this message.

- A2-FUNCTICN NOT DEFINED

This message occurs when an atom given as the first argument of
apply dces not have a function definition either on its property

1ist or on the association list.

c-18

S-expression 1 is the atom in question.

S-expression 2 is the association list.

A3-NO ARGS OF CCND TRUE
None cf the propositions following cond are true.
S-expression 1 is the list of the arguments given cond.

S-expression 2 is the association list.

A5-SET VARIABLE UNDEF
The function set or setq was given an undefined program variable.
S-expression 1 is the program variable.
S-expression 2 is the association list.

A6-UNDEF ZABEL IN GO
The label given as the argument of go has not been defined.
S-expression 1 is the label. \

S-expression 2 is the list of the labeled statements.,

A7~-MCORE THAN 22 ARGS
More than 22 arguments given to an. EXPR or a SUBR.

S-expression 1 is the 1list of arguments to the function.

. AB-UNDEFINED VARTABLE

A variable is not bound on the association list, nor does it have
an APVAL. This errcr occurs in eval.
S-expression 1 is the variable in question.

S-expression 2 is the association list.

A9-FUNCTION NOT DEFINED
The form given as the first argument to eval has as its first ele-
ment an atom with no function definition either on its property
list or on ﬁhe association list.
S-expression 1 is the atom in question.
S-expression 2 is the association list.

D2-FILE CANNOT BE CPENED - NO STORAGE AVLBL
.éggg'was asked to open a data set (file) when there was no stor-
.age available in which to put the DCB-fSr that data set. close

‘releases the space taken up by the DCB of the data set that it

is closing.

€-19

S-expression 1 is the ddname given as the first argument to open.

D3-RDS FILE NOT OPENED

D4 ~-WRS FILEfﬁOT OPENED
A data set (file) must be opened by open before LISP/360 can
write cr read from it.

S-expressiorn 1 is the ddname given as the argument to rds or wrs.

D5-CHKPOINT FILE NOT OPENED

D6-RESTORE FILE NOT OPENED
A data set (file) must be opened by open before chkpoint or
restore can use it.
S-expression 1 is the ddname given as the argument to chkpoint

or restore.

D7-RESTORE GIVEN FILE INCOMPATIBLE WITH'SYSTEM SPECIFIED
A data set (file) produced by chkpoint under LISPA cannot be

restored under LISPB or LISPC, or vice versa.

F2-T00 MANY ARGUMENTS-EXPR

F3-TOO FEW ARGUMENTS-EXPR
The wrong number of arguments has been given to a defined function.
S-exprassion 1 is the 1list of the function variables. '

S~expression 2 is the list of supplied arguments.

F2-T00C MANY ARGUMENTS-SUBR
F3-TCO FEW ARGUMENTS-SUBR
The wrong number of arguments has-been given to a SUBR.

S-expression 1 is the function.

S-expression 2 is the list of arguments.

G2-PUSHDOWN STACK OVERFLOW
Recursion is very deep. Non-terminating recursion will cause this
error. S-expression 1 and 2 will, if given, depend on where in
the interpreter the stack was last used. The traceback is not
given on this error. The message IN THE GARBAGECOLLECTOR may
follow immediately after this message. - This meéhs that there
was not enough stack left for the garbage collector to work
with, when the garbage collector was called. This is a fatal
error, and LISP/360 gives up control to 0S/360.

C-20

GC2~STORAGE EXHAUSTED
The garbage collector is unable to find any unused cells in free-
cellst'c;rage° S-expression 1 and 2 are the arguments of cons.
The traceback is not given on this error. This.is a fatal error,

and LISP/360 gives up control to 08/360.

I3-BAD ARITHMETIC ARGUMENT
_An arithmetic routine was given a non-arithmetic argument. S-
expression 1 and 2 will depend on which arithmetic routine found

the error. '

I5-ATTEMPT TC RAISE O TO O
This error is caused by trying to execute either exgt[O;O] or
expt[0.0;0].

I6-ATTEMPT TO RAISE O TO NEGATIVE POWER
This error is caused by trying to execute either exgt[o;n] or

expt[0.03n], where n is negative.

I8-EXPT CANNOT TAKE REAL EXPONENT
This error occurs when the second argument of expt is a floating-

point number.

R1-SYNTAX ERRCR
A syntax error hes occurred while reading an S-expression.
~ S-expression 1 is the S-expression in question. The traceback

is not given on this error.

R2-BAD BRACKET COUNT
An end~of-file was reached while reading an S- expre531on. v
S-expression 1 is the 1ist as read with needed brackets generated.
The traceback is not given on this error. This is a fatal error

and LISP/360 gives up control to 08/360.

'R3-BAD BRACKET COUNT ON USER FILE

An end-of-file was reached while reading an S-expression from a
data set other than LISPIN. S-expression 1 is the list as read
with needed brackets generated. The traceback is not given on

this error. The error causes LISP to start reading from LISPIN.

c-21

FRPNY

a(\/).

R5-NAME OR NUMBER TOO LONG

A BCD "printname or a number is longer than that accepted by the

interpreter. Truncation occurs on the right.

appears with this error.

c-22

Only the message

o)

6. DATA MANAGEMENT IN LISP/380

6.1 Data Management Functions

TISP/360 can read or write data sets on any 08/360 supported device with
the aid of the functions open, close, wrs, and rds. LISP's handling of
its buffers can bz modified by the functions asa, inll, and otll. It

is assumed in the following that the reader has a working knowledge of

0S/360 Data Management.

6.1.1 open[ddname;dcbdesc;iospec]

All data ssts must be ‘opened’ by the functicn open before they are
used. A DD card is used to define the data set and open uses the ddname
on the card to refer to the data set. The ddname is the first arguemnt
of open. The record length (LRECL), the blocksize (BLKSIZE), and
whether or not the record's first character is a control character (A),
can be specified in the seccnd argument of open. The third argument

of open specifies whether the data set is to be used for input (IPUT)
or output (OUTPUT).

An example of the opening of the data set defined on the DD card named

DATA:
OPEN(DATA ((LRECL.100;(BLKSIZE.1000)(A))OUTPUT,

The second and third argument of this open indicates that the data set
has a record length of 100 bytes, a block size of 1000 bytes, that the
first character in each record is a control character, and that the

data set is going to be used for output. The record length and the

blocksize can be given on the DD card instead of in open. All other - ‘
DCB parameters are fixed by open and they cannot be changed by a LISP
user. The record format is set to fixed blocked, and the error option

is 'accept' on input, and 'skip' on cutput.

The three ddrames LISPIN, LISPOUT., and LISPUNCH are given special signif-
icance in open. LISPIN and LISPOUT are opened automatically by the in-
terpreter and therefore need not be opened. ~The second and third argu-

ment is implied by LISPUNCH, and they are therefore ignored when open

is given LISPUNCH as its first argument. LISPUNCH implies a record
length of 80 bytes, a blocksize of 80 bytes, that the first character
in each record is data and not a control character, and that the data

set is to be used for output.

One of the atoms SYSIN, SYSOUT, SYSPUNCH and SYSFILE can be used as
the second argument of open.

SYSIN implies a record length of 80 bytes, a blocksize of 80 bytes, and
that the data set will be used for 1nput ’

SYSOUT implies a record length of 1%% bytes, a blocksize of 665.bytes,
that the first character in each record is a control chafacter, and that:

the data set will be used for output.

SYSPUNCH implies a record length of 80 bytes, a blocksize of 80 bytes,;'«.
and that the data set will be used for output o

SYSFILE implies a reocrd length of 80 bytes and.a blocksize of 1600 '
bytes. SYSFILE should be specified for all data sets used by chk201nt

or restore.

6.1.2 close[ddname]

All data sets should be ‘closed' by the function close after use, close,,
takes as its argument the ddname on the DD card that defines the data -

| set. The two ddnames LISPIN and LISPOUT refer to data sets that remain

open throughout a LISP job. LISPIN and LISPOUT cannot be closed by
close. They are, however, closed automatically at the end of a LISP job. -

6.1.3 asa[x]

A control character is normally prefixed to all output records produced
by LISP/360. Executing asa[NIL] stops the prefixing of control charac-.
ters. This is useful when LISP/56O is used to .produce output that will:
be input to LISP/360 later on. Executing asa[T] will cause LISP/36O to.

start prefixing control characters again.
6.1.4 otll[n]

0<n<120. otll (out-line-length) specifies how many character posi-

c-2k

O

tions LISP/360 can use in each output record. LISP/360 will, after
otll[n] has been evaluated, fill in exactly n positions in each output
recocrd. AtémS'will,'whenever necessary, be split across two outputb
records so that precisely n positions are filled in each output record.
This is useful when LISP/360 is used to produce output that will be

input to LISP/36C later on. In a few cases, Otll ié called automatically

by wrs.
6.1.5 wrs{ddname]

wrs (write-select) is an output directing function and takes as its
argument the ddname cn the DD card that defines the desired output data
set. All output from LISP/36O will go to the data set associated with
the ddname after Egﬁ[ddname} has been executed. The two ddnames LISP-
OUT and LISPUNCH are given special significance in E£§° Executing
E{g[LISPOUT] will, in addition to directing the output to LISPCUT, have
an effect similar to executing asa[T] and otl11[100]. Executing
yzﬁ[LISPUNCH} will, in addition to directing the output to LISPUNCH, have
an effect similar to executing asa[NIL] and otll{72]. wrs will open
LISPUNCH if it was not already opened. A data set produced by print
when LISPUNCH was write selected is in SYSIN format.

6.1.6 inllin]

inll (in-line-length) specifies how many character positions LISP/360
should scan in each input recocrd. This is useful when LISE736O is re-

quired to read data sets that are not in SYSIN format.

6.1.7 rds[ddname!

rds (read-select) is an input selecting function and takes as its argu-
ment the ddname on the DD card that defines the desired input data set.
A1l input to LISP/360 will be taken from the data set associated with |
the ddname afterlggé[ddname] has been executed. The ddname LISPIN is
given special significance in rds. Executingwggg[LISPIN] will, in
addition to selecting input from LISPIN, have an effect similar to

executing inll[72].

6.2 Checkpoint Facilities in LISP/360

2k~> : Freecellsto£ége and binary program space can be preserved at any time
by executing chkpoint. Freecellstorage and binary program space can
then be reset to the state it was in when preserved by executing
restore. chkpoint and restore should only use data sets opened by

using the DCB descriptor SYSFILE.

6.2.1 chkpoint[ddname]

Execution of chkpoigz[ddname] will cause freecellstorage and binary
program space to be written into the data set associated with the ddname..
A data set created by chkpoint under LISPA requires about 30 tracks on
an IBM 2314 disk pack. Only the data sets associated with LISPIN,
LISPOUT, LISPUNCH and the ddname given as an argument to chkpoint should
be open when chkpoint is executed.

6.2.2 restore[ddname]

ﬁ/~> Execution of restore[ddname] will cause freecellstorage and binary

*gv program space to be overwritten by the contents of the data set associ-
ated with the ddname. restore will check whether the data set is com-
patible with the LISP system that executes restore. A data set check-
pointed under LISPA cannot be restored under LISPB or LISPC, or vice
versa. The function bpsz must be used with caution when chkpoint or
restore appear in the same run as bpsz. A data set created by chkpoint -
can only be restored when the binary program space has the same size
as when the chkpoint was executed. The LISP compiler and LAP will be
made available as checkpointed data sets. Only the data sets associated
with LISPIN, LISPOUT, LISPUNCH and the ddname given as an argument to

restore should be open when restore is executed.

- o c-26

@

e

7. The LISP Compiler and Assembler

.

The addition of the LISP assembler (LAP) and compiler can decrease the
running time of a LISP program (formerly run interpretively) by a factor
of from eight to twelve depending upon the particular application. How-
ever, the theoretical differences between compilers and interpreters
impose certain restrictions on what can be compiled. These restrictions
are easily bypassed and are mentioned below so that the user will be

aware of them as they come up.

The compiler itself calls upon the LISP assembler so that once a func-
tion is compiled it is immediately available for execution. LAP was
written to closely resemble the OS Assembly Language on the IBM System/
360 with certain modifications. It should be remembered.that LAP is
not only used by the compiler but may be used independently by the LISP

USET .

c-27

Q)
L

7.1 LISP Assembly Program (LAP)

T.1L.1 Differences Between LAP and 0OS Assembly Language

-)
v

Of the instructions available in O3S Assembly Language, a select few

have been cmitted -- it was felt that they were unnecessary for LISP
users. These were: Set Program Mask (SPM); Set System Mask (SSM);
Supervisor Call (SVC); Start I/0 (SIO); Test and Set (TS); Test Channel
(TCH); Test I/0 (TIO); Read Direct {(RDD); Write Direct (WRD); Insert
Storage Key (ISK); Set Storage Key (SSK). While these instructions are
not directly available they still may beé generated via the "Define
Constant' (DC) instruction described later. Also no extended mnemonics
are available. All sixteen of the registers are available in LAP but
fhey must be referenced with an R prefix, i.e., RO, Rl ... Rl4k, R15. 1In
addition one'may refer to registers R8, R9, R10 as A, Q, M respectively;
R5 as NILR; R4 as Kby R15 as PDL; and R7 as PDS. These aliases will

become clear as LAP is described.

Perhaps the major difference between LAP and OS Assembly Language is

the availability of quote cells and special cells. Quoted and'specialed
cells are assembled as pointers to the particular quantities they repre-
sent. (See the LISP i,5 programmers manual) These will be used in
examples later so that the user may become familiar with them. Care
must be taken in using them. Macros have been prepared to aid in their

use,

"Define Constant" and '"Address Constant" are defined in LAP in a limited
form. They may appear as (DC -logical number-) or (AC -name of location-).
No multiplicative factors or variations are allowable. DC's and AC's

must be on full word boundaries and this is done in LAP by assembling

a NO-OP in front of them if necessary. If the user desires other
instructions on full word boundaries he may specify (CNOP) which in-

serts a half word NO-OP instruction (BCR RO RO) if necessary to put

the next instruction on a full word boundary. Also a reference to an

S mmediate" field, such as an MVI, can only be a logical number, e.g.,

{MvI 4(R1), OBXj.

e

There is no indirect referaencing in LAP such as the use of * and * + k4,

c-28

{
TN

)

etc., in L A,* + 4 or even I, A,NAM + 4. That is, all locations refer-

enced must be labeled at the point of reference,

LAP is invcked by calling the routine LAP360. It takes two arguments.
The first is a list of LAP instructdions, the second is a list of dotted
pairs representing an initial symbol table or nil (usually nil, for
other uses see the LISP 1.5 programmers manual). The first member of
the first argument 1s a list of three elements; first, the name of the
routine being defined; second, the type of function either SUBR or
FSUBR; and the third, the number of arguments. After this member comes

the rest of the instructions, each enclosed in parentheses.

T.1l.2 Passing-Arguments to and from LAP Routines

For passing arguments between two user defined routines you may use
any technique you prefer. However, since it is sometimes necessary to
communicate with the interpreter routines, the following scheme is
preferred as it 1s the method employed by the interpreter. As for the
actual call to another routine (once the arguments are established)

this i1s done via a macro ¥LINK which will be described later.

If there is only one argument, it is passed in register A or R8. If
there are two arguments, they are passed in A and Q or R8 and R9. If
there are more than two arguments {up to a maximum of twenty-two), there
1s a reserved area in core twenty words long called ARGS in which you
can place the third, fourth, etc., arguments. ARGS may not be referred
to directly, but its address is permanently located at eight bytes past
R12. Therefore, to store the contents of RO as the third argument:

(L M 8(RO R12)) (ST RO O(RO M)) the value of a function is always

returned in A.

T.1.3 General Use of Registers

() Although alI.registers have been defined as usable, care must be taken

in the use of some of them. Those of special interest are described

used as base register to cover extent of LAP

Routine.

contains NIL and should never be altered from
that value, but may be used to store NIL in

locations or load other fegisters with NIL.

‘as mentioned above are used to pass arguments

but may be used freely in routines and need

not be restored.
completely free for any general use.

contains the numbervh. May be used locally
but must be restored outside the scope of the

immediate routine.

this register has meaning only for the compiler
and may be used freely in LAP. It must be re-
stored if it is used in conjuction with the

compiler.

points to the next available free cell. It

should never be changed.

used as base registers for the interpreter --

they must be restored.

completely free for general use.

It should never be assumed that any free register will be preserved in

calling another function, even between two LAP defined user routines.

below:
R3
R5 or NILR
A, Q
‘M
Rt or K4
:;\\.\
R7 or PDS
R6
R11l, R12, R13
RO, R1, R2, R14
,(*\
_J

C-30

O

7.1.4 Macros

7.1.4.1 User Defined Macros

Macros may be defined for LAP by doing a DEFLIST of a LAMBDA definition
with the property MC. The LAMBDA definition must have one argument
which will become a list of the arguments to the macro. The value of
the macro should be a list of instructions to be inserted.

For example:

DEFLIST(((*SAVE (LAMBDA (x) (LIST (CONS (QUOTE ST) (CONS (CAR X)
(quoTE (0 (R7))))) (QUOTE (BXH R7 K& O (R12)))))))MC)

Then the instruction (¥SAVE R15) becomes

(ST R15 0 (R7))
(BXH R7 K4+ 0(R12))

Macros may be given any name that the user desires, except, of course,
it cannot be the same as a valid instruction mnemonic. The system

defined macros all begin with "#*" for ease of recognition.

7.1.4.2 System Macros

(¥SAVE Rx) - saves register x on an internal push down

stack. It should be used with care.

(¥UNSAVE Ry) - pops up top item on stack and stores it

in register y.
(¥SAVE Rx) and (¥UNSAVE Ry) are used principally in recursive functions.

(*LOAD Rx (QUOTE...)) - used to load guote cells. Quote cells
are in core relative to NIL hence this
macrovexpands to
(L Rx (QUOTE...))

(AR Rx NILR) '

(*LOAD Rx (Special Z)) - when loading special cells, the macro
expands to C
(L Rx (Special Z))

(L Rx O(NILR Rx))

C-31

" (¥STORE Rx (Special 7))

v

(*RETURN NIL)

(*LINK FN i)

- for storing special cells. The macro

expands to
(L M (Special Z))
(ST Rx O(NILR M))

NOTE: M is changed when using this macro.

used to exit a LAP routine. It branches
to a particular place in the interpreter.
Expends to (BC 15 48 (RO R12))

NOTE: *RETURN is the only way to end a
LAP routine. - "Falling through the end" of

a routine is incorrect.

- used to call function FN-with 1 arguments.

Two other macros *MOVE and ¥REMOVE are used principally by the compiler

and will be described in that section.

C-32

T.1.5 Sample LAP Prcgram

Define SETC .such that (SETC X ((4,1) (X,2) (Y,L)) 7) modifies the second
argument to ((4,1) (X,7) (Y,L)) i.e., if the second argument is the
ALIST, we are changing the binding of variable X.

LAP360(((SETC SUBR 3) 1.
(L M 8(RO R12)) 2.

(L RO O(RO M)) 3.

(sf RO TEMP) L,

(ST NILR O(RO Mj) 5,
(#LINK SASSOC 3) 6.

(L RO TEM?) 7.

(ST RO 4L(RO A)) 8.
(¥RETURN NIL) 9.

TEMP (DC OX) 10.
) NIL) 11.

Explanation:
1. Defines SETC as a SUBR with 3 arguments.

2. Picks up the addréss of ARGS to find the 3rd argument.

W

Puts 3rd argument in RO.

=

Stores RO in temporary location.
Sets 3rd argument to NIL.

6. Calls SASSOC which has the same first two arguments as does SEIC,
hence they remain in A and Q and SASSOC's third argument remains
in NIL for this case. BSASSCC will return a pointer to the dotted

pair whose CAR contains the first argument.
7. Picks up the saved value in RO (this was SETC's 3rd argument), and
8. stores it in CDR of the dotted pair.

9. Returns from the functions. Note that SETC's Value is the dotted

pair since that is what 1s in A.
10. Definition of the temporary location.

11. (Closes the routine with NIL in the symbol table.

C-33

e

9,

At this point it should be pointed out that the value of LAP360 is the
final symbol table of local labels relative to the beginning of the

routine in bytes -- hence, in the above example, LAP360 returns
((TEMP.2LkX)) -- assume that ¥LINK takes 8 bytes.

C-3k

oF

7.2 Binary Programming Space

An area is now set aside for binary programs produced by LAP. The size

cf this area is set when LISP/56O is assembled. However, Tthe area may
be eliminated by cailing the function bpsz which increases free cell
storage. The atom BPS has two pointers indicating how much binary pro-

gram space is available at any given moment.

The atom BPS mentioned above is slightly different from most atoms as

is seen from the followilng:

I I e N B e]

R AL 1]

\
{aDDR: [ADDRZ |

ADDRL and ADDR2 are pointers to the beginning and the end of Binary

Program Space, respectively.

O

o

7.3 The Compiler

The compiler takes a list of previously defined EXPR's and FEXPR's as

its argument and returns a list of the names of the routines compiled.

The major restrictions to the compiler are the following:

a., Gp statements within PRPG2's are not allowed.

b. GP statements within COND's which are within CPND's are not

allowed.

c. Free variables must be declared SPECIAL before compilation.

A function called SPECIAL (described later) can be used.

d. Variables used which communicate with the interpreter must be

declared CPMMPN before compilation., A function called CHMMON

(described later) can be used.

At the time of publication, these are the major restrictions to the

compiler which have been found.

Once compiled, the function is called exactly as 1t would have been

called before compilation.

T.3.1 Auxiliary Routines Available

excise[x]

ovoff[]

ovon[]

special[l] & unspecialll]

common{1l} & uncommon[l]

one argument., If NIL, the compiler is
EXCISED and the space added to free cell
storage. If the argument is true the
compiler and LAP are EXCISED. One may call

excise twice, i.e., EXCISE (NIL) EXCISE (T).

nc arguments. In compiling, a TYPE 8 over or
underflow error may occur frequently. This
is not an error but ovoff will stop the error
message from printing.

no arguments -- rzstores overflow message.

takes a list of Vériables as arguments and
gives or takes away the property "special”

to each of them.

save as above, except that the property
"COMMPN" is used.

C~36

bpsz[] - no arguments. Returns all BPS to free cell
storage (for jobs requiring a lot of free
cell storage and not needing the compiler
or LAP).

7.3.2 BExamining the Compiled Code

If the user wishes to see the code produced by a compiled function he
can do this by saying TRACE((ASSEMBLE)) before the compilation. Two
compiler macros *MOVE and *REMOVE will be noticeable in all compiled
routines. These set up and restore the push down list upon entering
and leaving the routines. The user will also notice many BAL's to a
number of bytes past R12. These are interpreter defined routines to
handle things like SPECIAL, COMMON and FUNCTIONAL arguments.

T7.3.3 Generating the Compiler

The compiler is defined in LISP as is LAP, therefore, to use a compiled
yersion of the compiler and LAP, the compiler is directed to compile it-
self and this compiled version is used for all future work. This com-
piled compiler should be checkpointed onto a data set using LISP/56O

data management and then restored whenever necessary.

C-37

T34 Names of Compiler and Assembler Routines

The following table is a list of the names of thevroutines used by the
compiler and assembler. Care should be taken in using routines with the
same names as these, for if they are redefined by the user, the compiler

would call the wrong routine.

.c-38

LAP360 COMPROG PALL
ASSEMBLE COMVAL PAFORM
LABLER DELETEL PAFORML
LOCAL PAAAONE PATRMAP
LONG PHASE2 PALAM
QICL PA9 SELECT
LOOK PI1
REGSET PI2
QSET PI3
SECL PROGITER
CHCOMP SPECIAL
(:) OVOFF STORE
OVON UNCOMMON
REVERSE UNSPECIAL
CONC COML
MAP COMLIS
MAPCON LAC
COMPILE LOCATE
ATTACH PAL
CALL PA2
CEQ PA3
coM2 PAL
COMBOOL PAS
COMCOND PAG
COMMON " PAT7
COMP PA8 -
COMPACT PA1l
COMPLY PA12

THE LISP INTERPRETER

cva]guote[fn,arg] = [get[fn;FEXPR] V get[fn;FSUBR]—
eval{cons[fnjargs] ;NIL]
" T- apply[fnjargs;NIL]]
apply[fujargsial = [
nuli[fn]—sNIL;
atom(fn]- [get[tn;EXPR] - apply[expr;largs;a] H
spread[args];
get[fn;SUBR] - ($ALIST:=a; 3
TSX subrl, k4
T-s apply[cdr[sassoc[fnja; A [[1; error[AQ]]]],args al;
eq[car{ fn] ;LABEL]— apply[caddr(fn] ;args;cons[cons[cadr[fn] ;caddr(fn]] ,a]],
eq[car{fn] ; FUNARG] > apply[cadr(fn];args;caddr(fn]];
eq[car[fn] LAMBDA]-» eval[caddr[fn] ;nconc[pair[cadr{fn]; args] all;
T apply[eval[fn aljargs;all

evall[form;al] -= [
null[foi-m]—y NIL;
numberp[form]— form;
atom[form]- [get[form;APVAL]— car[apvall] B
T cdr[sassoc[form;as;N [[];error[A8]]11];

Yn"*\\ » eq[car[form] ;QUOTE] - cadr[form] ;2
\/\) eq[car[form] ; FUNCTION] - 1ist[FUNARG;cadr[form;a) ;2

eq[car[form] ;COND]— eveon[cdr[form] ; a],
eq[car[form] ; PROG]— prog[cdr[form] ; a] H
atom[car[form]]- [get{car[form] ; EXPR] - apply[expr,levlls[cdr[form,a] a] H
get[car[form] ; FEXPR]— apply[fexpr,lllst[cdr[form] ;al;al;
spread[evlis[cdr[form];all;
get[car[form]; SUBR]—{ $ALIST:=a;) ;
' 78X subr,” b '
AC:=cdr[form];
get[car[form) ; FSUBR-{ MQ:=$ALIST:=a B
SX fsu'br,l i
T eval[cons[cdr[sassoc[car[forn]sa;N [[];error(A9]1]1];
) cdr[form]];all;
T— apply[car[form] ;evlis[cdr[form];al;al]
_gxggg[‘c;a] = [r;ull[c]-e error[A3];
eval[caar[c];al- eval[cadar[al;al;
T eveon[cdr[c];al]
evlis[m;al ='[null{m]- NIL;
) T cons[eval[car[m];al;evliis[cdr[m];a]l]

1The value of get is set aside. This is the meaning of the apparent free
or undefined variable.) .

2In the actual system this is handled by an FSUBR rather than as the

separate specml case shown-here.

C-39

[1] Mc Carthy, J., et al.

[2] Kent, J. G.

[3] IBM, Corp.

[4] Kent, J. G.

REFERENCES

- LISP 1.5 Programmer’s Manual. MIT Press.

Cambridge, Massachusetts (1966).

- Interpretive System for the Programming

of Recursive Functions on a Digital

Computer. Intern Rapport E-88.
Norwegian Defence Research Establishment,

Kjeller, Norway (1966).

-~ IBM System/360 Principles of Operation.
Form number: A22-6821-5 (1966).

- "L,ISP 1.5 Implementation on the CD 3600
and the IBM System/360 Series." Paper

in The Nature, Uses and Implementation

of the Computer Language LISP, (editor

E. O. Berkeley). Information Interna-

tional Inc., 200 Sixty Street, Cambridge,

Massachusetts. The expected date of

publication is October, 1967.

- LISP/360. The University of Waterloo,
Waterloo, Ontario (1967).

	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680001_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680002_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680003_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680004_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680005_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680006_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680007_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680008_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680009_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680010_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680011_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680012_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680013_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680014_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680015_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680016_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680017_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680018_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680019_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680020_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680021_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680022_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680023_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680024_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680025_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680026_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680027_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680028_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680029_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680030_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680031_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680032_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680033_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680034_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680035_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680036_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680037_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680038_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680039_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680040_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680041_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680042_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680043_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680044_a

