
."

APPENDIX C: LISP/360 REFERENCE MAl.\l"UAL

Revised February 1968

--",

o

Campus Fi3.cili tyUSERS MANUAL

()

o

PREFACE

This p.aper is intended to provide the LISP 1. 5 user

with a reference manual for the LISP 1,5 interpreter

on the Campus Facility 360/67. This manual assumes

that the reader has a working knowledge of LISP 1.5

as implemented on the IBM 7090. Care has been taken

to ensure compatibility bet"ween LISP/360 and LISP 1.5.

For those new to LISP 1.5 or for those who feel a need

for a refresher, the LISP 1.5 Programmer1s Manual [1]
is suggested.

The particular implementation to which thi's refer­

ence manual is directed. was started by Mr.J. Kent

while he was at the University of Waterloo [4,5].
It is modeled after his implementation of LISP 1.5

for the CDC 3600 [4].

Since the last edition of this manual, Messrs. Kent

and Berns have completed the LISP 1.5 Assembler and

Compiler. Information on these processors i$ in­

cluded in this paper.

Rod Fredrickson
Associate Director,
Campus Facility
Stanford Computation Center

C-ii

'0

TABLE OF CONTENTS

Section

PB.EFACE

TA:BLE OF CONTENTS . ·
L THE LISP/360 SYSTEM

1.1 Organization of the System

1.1.1 Organization of Storage

1.1.2 Object List ..
1.1.3 Atoms

1.1.4 Property Lists

1.1.5 :Binary Markers ·
1.1.6 Fullcells

1.1.7 Printnames ·
1.1.8 Numbers

2. IMPLEMENTED :FUNCTIONS

2.1 New Functions .. D • q • • • It

3·

4.

5.

2.2 New Data Management Functions

2.3 Atoms with Initial Values ••

2.4· Character-objects .

LISP/360 PECULIARITIES

OPERATING PHOC:EDURES . o . 0 0

. 4.1 Running a Program Punched on Cards

LISP/360 SYSTEM MESSAGES ,

5.1 evalquote Messages

5.2 Tracing in LISP/360 •

5.3 Garbage Collector Message ..

5.4 Interruption Message

5 .. 5 Error Diagnostics • . .

5.5~1 Syntax Errors

5.5.2 Runtime Errors

5.5.3 Error Codes and. Messages.

C-iii

oct· ••

· .

·

•
• .

Page

C-ii

C-iii

C-l

C-l

· C-l

C-l

· C-2

· C-2

· C-3

· C-3

· c-4

· c-4

C-5

· c-8

C-ll

• C-12

· C-13·

· c-14

• C-15

C-15

· c-16

• c-16

· c-16

• c-16

· c-16

· C-17

· C-17

C-17

c-18

6. DATA MANAGEMENT IN LIS:P/360 . · · · · · · · · · C-23
I
\ .6.1 Data Management Functions C-23 '0 · · · · ·

6.1.1 ,cP.§.~[ddname; dcbdesc; iospec] C-23 ·
6:1.2 close [ddname] · c-24

6,1.3 ,~~~Jx] · · · · c-24

6.1.4 s;!!!JnJ · c-24

6.1.5 ~[ddname] · C-25

6.1.6 ,inll[nj · · · · · · '. C-25

6.1.7 rd.s [ddname] · • · · · C-25

6.2 Checkpoint Facilities in LISP/360 . · · · · · · · c-26

6.2.1 ch~E9.~[ddname] c-26

6.2.2 res!or.§.[ddname] · c-26

7· THE LISP COMPILER, AND ASSEMBLER · · · · • · C-27

7·1 LISP Assembly Program (LAP) · · • · • · c-28

7·1.1 Differences Between LAP and OS
Assembly Language · · · · · c-28

7·1.2 Passing Arguments To and From LAJ'
B.outines · · · · " · · · · · · · · C-29

/ ' ..

7 ·1.3" General Use of Registers C-30 \ ... --.,. · · · · .. U 7.1.4 If.tacros · C-3l · · · · · · • · · · ·
7.1.4.1 User Defined Macros C-3l

7.1.4.2 System Macros C-3l

7·1.5 Sample LAP Program C-33

7·2 Binary Programming Space · · · · C-35

7·3 The Compiler · · · · · C-36

7·3.1 Auxiliary Routines Available · · • · C-36 ..
7·3.2 Examining the Compiled Code · · · · · C"37 .

7·3·3 Gen.erating the Compiler · · · , . C-37

7·3.4 Names of Compiler and· As s embler
Routines · · · · · · C",;38

A:PPENDIX . · · 0 0 • · C-39

REFERENCES · · · · · · · · · · · · c-40

/

'0 iv

- --------.-~--.-,.-.. -., .. _. " .. , ----,.~~'------~~~~~-

o

.... ---" ('0

LISP/360 ope:r:ates under the IBM System/360 Operating System. The actual

implementation of the system differs in some important respects from

the IBM 7090 LISP 1.5. These changes were instituted to increase the

efficiency of the system. The most marked differences are in the organ­

ization of storage;. where the idea of a separate block for I fullword­

storage: has been abandoned., and in the organization of the internal

representation of LISP-atoms. Several of the indicators needed on the

property lists in LISP 1.5 have been rendered unnecessary. Also, the

interpreter has been assembled relocatable.

1.1 Organization of the System

1.1.1 Organization of Storage

The interpreter, the stack, and freecellstorage in LISP/360 are all

contained in one control section. Many versions of the system may be

prepared with the following recommended requirements.

VERSION STACK NO. OF MEMORY
SIZE LISP CELLS REQUIREMENTS

LISPA 4000 20,500 200K

LISPB 6000 40,000 400K

LISPC 8000 65,000 600K

The current Stanford implementation is one system called LISPA with

6000 stack elements and 40,000 free cells (when the Binary Programming

Space for the compiler is replaced with free cells via the function

bpsz _.- otherwise it is 30,000).

A LISP-cell is a double word (64 bits) in LISP/360. A stack unit is

a single word (32 bits). The size of the stack and freecellstorage

can only be changed by reassembling the LISP/360 system.

1.1.2 Object List

That part of the o'bject list which contains the standard atoms has been

generated in assembly language. The o'bject list is not bucket sorted

as in LISP 1.5.

C-l

-------~ .. ----

()

o

1.1.3 Atoms

The atoms and their property lists have been reorganized in LISP/360.

All LISP-cells having bit 0 set are so-called atomheads. An atomhead

contains in its upper addxess a pointer to the atomtq fullcell list­

and in the lower address a pointer to the atomts property list.

The atom EXAMPLE with an empty property list:

~I EXA~M~I~o~l==j--_~ I PLE 100

1.1.4 Property :Lists

A typical property list might look like this:

1 1
>1 I >1 ! :?1

l
l

>. -. .
EX$

FF 101/21
LAMBDA

FF is a function, namely an EXPR which starts this way (LAMBDA (X) ...).

C-2

-~-- ---------------

. -

,~

U

(0

b

LL5 Binary Markers

Since the LISP-cell length is 64 bits and only 24 bits are needed to

express an address, 8 bits in the upper vTord and 8 bits in the lower

word are released for other uses. As mentioned above, bit o indicates

that the cell is an atornhead,
0 1 2 :2 - --- 0 1 2 3

I I I I 1 0 0 0 BCD ALFAMER ---- .J...

1 1 0 0 FIXPOINT
~ 1 1 1 0 FLOATPOINT ~ ~

~ i
p:< ~

I 8 ~ 1 1 0 1 LOGICAL
0 Ci (5
8 ~ 0
c::x: H

The bits 1, 2, and 3 refer to the fullcell list associated with the

atom,

A function that is to be t~aced has bit 7 set. This means that the

indicator TRACE is not needed.

When bit 33 is set, t4is indicates that the word in question is a

fullcell, Bit 32 is used by the garbage collector to mark active

cells.

Bit 34 is now set in a fullcell when its upper 32 bits contain BCD

characters or a number. Bit 34 is not set in a fullcell when its

upper 32 bits is an address. This relocation marker is used in

chkpoint to determine what fullcells should have its ~ parts made

relocatable,

10 L 6 Fullcells

The fullcells in free cell storage replace the 'fullwordstorage' in

LISP L5.

A fullcell is a LISP-cell with bit 33 set and the upper 32 bits occu­

pied by either:

a, Four BCD characters from a printname (if need be" filled in

from the right with zeros), or

C-3

b. a 32 bit number.9 or

c. the address of a binary LISP-·routine (SU'BR or FSUBR).
,"

1.1.7 Printnames

All non-·numeric atoms have in the upper address of their atomhead the

address of a linear list containing their BCD printnames. For instance,

the atom DIF.FERENCE has this full·:!ell list~

LLJ1D~IF[]F~1 ..Q0i.l..:=Jr--~~ EREN CE 101 71

1.1.8 Numbers'

There are three kind.s of numbers:

a. Fixed-point (integers)

b. Floating-point

c. Logical

All numbers are stored as 32 bit binary numbers with the help of a full­

cell, and. must be converted to BCD on input and. output. (The BCD repre­

sentati.on of a number is not stored.)

The correct form of a logical or hexadecimal number is as follows:

l) The number must start "dth a decimal digit.

2) The number should termina.tewith the letter X.

3) A scale factor may follow the X. The scale factor must be a

decimal integer, no sign allowed. The number is shifted left

4 bits times the scale factor. Thus'the scale factor is an

exponent to the ba.se 16.

:Examples ~
External form Internal form

OFFX6 FFOOOOOO

OFFFFFFFFX FFFFFFFF

9A6X2 0009A600

o
2 • IM"P1EMENTED FUNe TIONS

The functions that are marked by an asterisk are new functions or func­

tions that are different from the functions with the same name in IBM

7090 LISP 1.5. See Section 2.1 for details on these differences. In­

formation about the other functions can be found in McCarthy [1].

addl[nl

and[xl ,x2;··· ;xn]

append[x;y]

* appendl[x;y]

apply[fn,args;a]

.atom[x]

attrib[x;y]

breakp[chJ

car[x]

caar[x]

caaar(x]

caadr[x]

cadar[x]

caddr(x]

cadr[x]

cdaar(x]

cdadr[x]

cdar[x]

cddar[x]

cdddr[x]

cddr[x]

cdr[xl

cond[pl~ el;p2~ e2;··· ,Pk ~ ek]

cons[x;y"j

cset[x;yJ

csetq[x;yJ

define[x]

deflist(x, ind]

difference [x; yJ

'C-5

*" digp[ch]

-~
eject[J

C) eq[x~yl"

equal[x; yJ

error[x]

eval[form:;a]

* evenp[n]

evcon[x;a]

evlis[x;a]

* explode [x]

* expt[n;m]

* fix [n}

fixp[nJ

flag[x; flag]

flagp[x; flag]

* float[n]

floatp[n]

function[x]

, ~----,\ .* gensyml[x]

(~) get[x; indj

go[label]

greaterp[x; yJ

label[name:; fnJ

* last[xJ

leftshift[m; n]

length[x]

* litp[chJ

lessp[x; y]

list[xl ,x2 ; . , ,;xk]

logand[nl ;n2 ,·"· ;~]

logor[nl ,n2 ,··· ;~]

.* logp[nl

logxor [nl ,; n2 ; ... ,; D..,K,]

mapcar[x; fn]

!O c-6

---------- ._._--_._-----_ .. _"-,,--_._._-,, -_._--._-------------_._----_._--- ,,------~~~--

o

maplist[x;fn]

max [n1 ; n2 .; 0 • 0 ; ~]
,

membe~[x;y]

min[nl;n2;···;~1

minus [nl

minusp[n]

* mkatom[]

nconc[x;y]

not[x]

null[x]

numberp[x]

or[x1 ;x2 ,··· ;xk]

.* orderp[x,y]

pair[x,y]

plus[n1 ;n2 ;··· ;~]

* prbuffer[x]

prinl[x]

print[xJ

prog[varlist;statlist]

prog2[x,y]

quote [x]

quotient[x;y]

read[]

* readch[x]

reci.p[n]

reclaim[]

remainder [n; m]

remflag [x; flag]

remo'b[x]

remprop [x; ind]

.lE- rlit[ch]

* rnumb[ch]

rplaca[x,y]

rplacd[x;y]

i/,,') \~

* rtoken[fnJ

sassoc[x;a;fnJ

set[x;y'j

setq[x;yJ

sUbl[n'1 .J

terpri[

ti,me s [nl ; n2 ; ... ; ~]

, trace[x]

* ttab[n]

untrace[xJ

verbos[xJ

"* xtab[nJ

zerop[n]

201 New Functions

brea~[x]

eXl2![n;m]

, !ix[n]

= nconc[x;cons[y;NIL]J

is a predicate. If its argument is one of these charac-

ter-objects: blank
(
)

its value is T; otherwise its value is F.

is a predicate 0 If its argument is one of these charac-

ter-objects: 0, 1, 2, .. 0 , 9

its value is T; otherwise its value is F.

takes an integer as an argument and returns the value T

if the number is even, otherwise F 0

takes an atom as an argument and has as its value a list

of the characters in the atom's printname.

m computes n 0 ex£!. will only accept a.n integer exponent.

The value of exp~ when the exponent is negative is a

floating-point number, e.go, expt[2;-1] = 0.5.

will convert a floating-poi.nt number into a fixed-point

number.

c-8

float[nJ

las!J:~c]

ietp[x]

lit;e[ch]

logE[x]

mkatom[]

J2!buffer[x]

~adch[x]

".

'will convert a fixed"point number into a floating-point

number.

generates new:) distinct atomic symbols. Its argument

should "be an atom and the first four characters in this

atom i s printname will be used. as the four first charac­

ters i.n. the new atom: s printname. For example:

gensyml[ALPHA:! :: ALPHOOOl

- [null[cdr[x]~ x;last[cdr[x]]] J

is a predicate. If its argument is one of these letters

A, B, .•• , Z its value is T, otherwise its value is F.

:; not[or[breakp[x] ;digp[xlll

is a predicate with the value T if its a;rgument is a log­

ical number, otherwise F.

induces.an arbitrary canonical order among atomic symbols ..

takes T or NIL as an argument. ~rbuffer[T] will cause

read and readch to print the input buffer every time a new

card is moved into it. A => in the margin of a line in­

dicates that the line is a buffer printout. prbuffer[NIL]

will stop the printing of the input buffer. prbuffer is

used. when it is important to show exactly what was given

as input to LISP.

takes T or NIL as arguments. If the argument is NIL,

,Eeadc3. will read the next character from the input buffer

and return with the corresponding character-object as a

value. ,Eea~£~[T] causes a simuiated backspace. The

value of ,Eeadch[NIL] after a readch[T] has been executed

wi.ll be the same as that return.~d by the previous

E.~adch[NIL]. The value of readch[T] is the same as that

returned by the next to last readch[NIL]. readch[T]

should only be executed once before calling readch[NIL].

. C-9

()

rlit[x]

rnumb[x]

rtoken[fnJ

takes a character-object as an argument and puts the

corresPQnding character into an internal character buffer.

" Executing rl~! sequentially will CaUse a string of char­

acters to be cons'tructed in the character buffer. mkatom

can then 'b,; called to make a literal atom out of it.

takes one of these character-objects as an argument:

+

E
0,1,2, ... ,9.

~mb will construct a partially translated number in the

internal character buffer. Remember that the character-

objects 0, 1, 2, 9 are different from the numbers

A., 1, 2, ... , 9. The sequence of charac'ter-objects pre~

sented to rnumb, one at a time, must represent a meaning-.,

ful integer or floating-point number. mkatom can then

be called to make a numeric atom out of the information

in the character buffer.

As can ~e seen from the following definition rtoken takes

a functional argument. The function supplied as an argu-I.

ment should. have character-objects as values, and. should

have the same backspace facilities as readch has. Dep~n­

ding on the character-o'bjects supplied by rtoken's func­

tional argument,rtoken will give a literal atom~ a nu­

meric atom, or one of the character-object~ -- blank

+-.,.() as a value.

rtoken[fn]=prog[[ch;cht];

A ch~:::;fn[NIL];

[eq[ch;BLANK]~ go[AJ] ,

[or[eq[ch;-] ;eq[ch;+]]~ go(NAS]'];

[eq[ch;$]~go[$l],

litp[ch]~go[LA];

digp(ch]~ go[NA];

breakp[ch]~return[ch]];

C-lO

o

o

:LA rl:i.t L chl;

LC ,:;h~ =fn[NII~J ;

[breakp[eh]~ prog2[fn[T]; go[:LB]:I];

gaL LAJ :;
L:8 return[mkatom];

NA rnumo [en];

ch:=fn[NIL];

[and[breakp[eh] ; not [eq[ch, .]]J ~ go[L8]] ;

go[NA];

NAS [breakp[fn[NILJJ~prog2[rlit[chJ;go[LBJ]];

ch:=fn[T]:;

go[NA1,

$1 ch~=fn[NI1J;

$2

$3

[eq[chi$]~ go[$2]];

rlit[$];

fn[TJ "

go[LC];

eht~=fn[NIL]; ,

ch~=fn[NILJ ,;

[eq[ch; eht] ~ return[mkatom]] ;

rlit[ch];

go[$3]];

will set the first n positions in the output buffer to

'blanks.

will insert n blank.s in the line currently being 'built

up in the output buffer.

xtab and :9.!:.ab 'will only affect one line at a time. ttab must be

repeated for each line outputted to get a margin on the page.

2.2 New. Data Management Functions

. asa[xJ

bpsz[nJ

chkpoint[ddnamej

closer ddname]

C-ll

o

inll[n]

letp[x] ,.

open[ddname; d.cbdesc ;iospec]

otll[n]

rds [ddnameJ

restore [ddname]

wrs[ddname]

A detailed explanation of these functJ.onscan be found in S~ction 6.

2.3 Atoms 'with Initial Values

Several atoms have predefined values (APVALS) inLISP/360, .. These atoms

and their corresponding values

Atom

NIL

F

T

OBLIST

ALIST

DOLLAR

SLASH

LPAR

RPAR

COMMA

PERIOD

.PLUSS

DASH

STAR

BLANK

EQSIGN

are: ..

Value

NIL

NIL

T

Object list

. ,.

. Association list

$

/
(

)

+

*
blank.·

.'

/----..."

r"
2.4 Character-objects

:~)
The followi.ng character-objects are defined in the system.

blank (X 4

A + $ y 5
B * z 6

0 C &) unprintable 7

D J 8

E K -, % 9

F L

G M / > #
H N S ? @

I fJ T 0

P p U 1 ;;::

Q, V 2 II

< R W 3

The lunprintable i character has no graphic symbol on the printer. Its
r') punched card code is 12-1l. ~adch will translate anyone of the 256 U

characters available on the IBM System/360 into one of the above-

mentioned 64 ch~racter-objects. Small letters are translated into

capital letters.

C-13

to

o

3, LISti360 PECULIARITIES

10 ALphameric atoms i.n :LISP/360 may have up to 80 characters.

2. Fixed·-point numbers may have absolute values up to 231 .

3, F1oating-·point significance on input is 6 digits,

4. Floating-point nurribers may have absolute values between 1075

and 10-75 (and 0),

5, Numbers are considered eCJ.ual if the absolute value of their

difference is less than 10-6,

6, CAB. of an atom is not junk as in LISP 105, but the address of

the fullcell list of that atom,

7. No control cards of any type exist in LISP/360.

8. Signs are ignored in reading logical numbers.

9, If a ,Erint is executed after prinl, the list generated by

print follows the data output by prinl,

10, .go can only be. given atomic labels.

c-14

-- ------- --~--

4. OPERATING PROCEDUR.ES

4.1 Runni.ng"a Program Punched on Cards

The LISP program can be punched on cards free field in columns 1-72.

The following control cards are necessary to run the LISP program from

cards:

<Jf6B Card>

/ / JP:BLIB DD -DSNAME=SYS2.PRpGLIB,DISP=¢LD

//stepname EXEC PGM=LISPA

//LISP¢UT DD SYS¢UT=A

//LISPIN DD *
LISP P:l:'ogram

/*
A LISP program that has been punched on an IBM 026 keypunch (BCD) can

still be interpreted by this interpreter by introducing the parameter

BCD in the EXEC statement. The EXEC statement would then be

//stepname EXEC PGM=LISPA,PARM=BCD

() + are the only characters translated from BCD to EBCDIC by the

i.nterpreter when the BCD parameter is includ.ed in the EXEC card. The

character = is represented differently in BCD and EBCDIC and is not

translated by the above-mentioned technique.

No translation is performed by the readch function even if the BCD

parameter is included in the EXEC statement.

C-15

C)

/0----~ ,{
"

5 . LI~360 SYSTEM MESSAGES

5.1 evalquote Messages

The message ARGOMEiNTS FOR EVALQUOTE ..• and the two S-expressions in the

last doublet are always printed before entering evalquote.

If no errors occur during the evaluation of the doublet, the message

TIME xxxxMS, VALUE IS .•. and the value of 'evalquote for this doublet

is printed upon return from evalguote. The time indicated in the above

message gives the time spent in ~val9.uote. The time is in milliseconds.

5.2 Tracing in LISP/360

Tracing is controlled by the pseudo-function trace, whose argument is

a list of functions to be traced. After trace has been executed, tra­

cing will OCC'Lil' whenever these functions are entered. The trace-handler

prints out the name of a function and a list of its arguments when it is

entered, and its name and value 'when it is finished. When tracing of

certain functions is no longer desired, it can be terminated by the

pseudo-function untrace whose argument is a list of functions that are

no longer to be traced.

5.3 ,Garbage Collector Message

The message COLLECTED xxxxx CELLS AND STACK HAS xxxx UNITS LEFT is

printed after every garbage collection. The message gives an',indica­

tion of the amount of freecellstorage freed, and the depth of recursion

at each garbage collection. The system parameters are defined so that

there are 4000 units i.n the stack and 20000 LISP cells available for

programmer use in freecellstorage in LISPA.

An interrupt supervisor takes care of all program interruptions in

LISP/360. See the IBM reference [3] for information about System/360

interruptions. The program status word (PSW), the contents of registers

1,-16 and the message ***EBROR~ CAR TAKEN OF FULLCELL is printed if the

interruption code is 1 to 7. Thereafter, a trace back follows of the

same type as described in Section 5.5.2. This int'erruption type is

c-16

o

usually ,:;aused by i.ndiscriminate use of .car and cdr past the atomic level.

The execution of the doublet that caused the interruption is halted and

a n,=h' doublst is read in for evaluation" An interruption code of 8 to F

means t.hat an overflow or underflow occurred.,. This interruption type

causes the message ·)h>('*OI[E;R-OR. UND1!:RFLOW OF TYPE xx to be printed. xx is

the i.nterruption ':;ode 0 Execution of the doublet that caused. the over­

flow or underflow is resumed after the interruption.

If the reader fi.nds syntactical errors in an S-expression, it inserts

special atoms at appropriate places in the S-expression. The special

atoms have the following meaning.

ATOM

ERRB

DOTERRl

DOTERR2

MEANING

o (dot) encountered as first non-blank character
after a (0

The second S-'expression in a dotted pair is not
followed by a right parenthesis.

A , or) encountered as first non-blank character
after a doto

The message ***RhSYNI'AX ERROR precedes the printing of the S-expression

with the error. A dOliblet containing one or more syntactical errors

causes the following message to appear ***ERRORSENCOUNTERED WHILE

READING. CONTINUING WITH NEXT DOuBLET and evaluation of the doublet is

skipped.

50502 Runtim2 Errors

When an error occurs during a LISP run, the following type of error

diagnostic occurs 0

·lE .. jHi'error code-error message

S-expression 1

S-·expression 2

***TRACE BACK FOLLOWS

S·-expression 3

C·-17

. ()

S-expre.ssions 1 and 2 are related to the type of error encountered and

are des~ri~lJed below with the error messages. The trace back is a print­

ing of the h:sts bound on the stack at· the time the error occurred. The

most recently used list in the stack (the list on top) is printed first.

The first few printed. lists will therefore give a good indication of

what caused the error 0

Let uS assume that none of the functions being interpreted are using the

.gog-·feature, and that tr~.s::::. has not been executedo Under these condi­

ti.ons. the lists bound on the stack 'fNill be alternately function calls or

definitions and association listso When reading the stack, keep in mind

that the :innermost functions are evaluated first, even though the

functions are interpreted from the outside in. Thus, the callan the

function 'being evaluated when the error occurred will be near the top

of the sta~k.

If trace is executed within a LISP job, the name of an EXPR called will

'be found on the stack 'bet:('ieen the EXPR! s definition and the corresponding

association listo The calIon a function using the ~-feature will

cause the following lists to appear in the stack printout .

a 0 The complete function defi.nition (omitting the name of the

function) 0

D, A list of the uninterpreted statements in the function starting

with the one being evaluated 'when the .error occurred.

c. The go-list (see reference [4]).
do The association list.

5.5.3 Error Codes and Messages

Al·-CA11 TO ERROR.

This mes sage is given if a LISP program calls err2!,. The argument·

(if any) of .:::EE~E. i.s printed ('3-·expression 1). The trace back is

not given with this message.

A2-FUNCTION NOT DEFINED

This message occurs w'hen an atom given as the first argument of

.§J2121y dces not have a function d-2fini tion either on its property

list or on the association list.

c-18

o

S···expression 1 is "the a"tom in question.

S-expression 2 is the association list.

A3·-NO ARUS OF COND TRITE

None cf the propositions following cond are true.

S-expression 1 is the list of the arguments given condo

~-expression 2 is the association list.

A5 ,- SET VARIABLE UNDEF

'ifhe function set or setq was given an undefined program variable.

S-expression 1 is the program variable.

S-expression 2 is the association list.

A6-UNDEF IABEL IN GO

The label given as the argument of go has not been defined.

S-expression 1 is the label.

S-expression 2 is the list of the labeled statements.

A7-MORE THAN 22 ARGS

More than 22 arguments given to anEX1P.R ora SUER.

S-expression 1 is the list of arguments to the function •

. A8-UNDEFINED VARIABLE

A variable is not bound on the association list, nor does it have

. an APVAL.. This error occurs in eval.

S-expression 1 is the variable in question.

S-expression 2 is the association list.

A9-FUNCTION NOT DEFINED

The fcrm given a.s the first argument to eval has as its first el.e­

ment an atom with no function definition either on its property

list or on the association list.

S···expression 1 is the atom in qllestion.

S-expression 2 is the association list.

D2-FItE CANl\lOT BE OPENED - NO STORAGE AVLBL
.:.~ .

. ~~!! was asked to open a d.ata set (file) when there was no stor-

.age available in which to put the DCB for that data set. close

releases the space taken up by the DeB of the data set that it

is closi.ng.

C-19

---'-------_._-_ .. - - -----------'------------

... -.

o
S-expression 1 is the ddname given as the first argument to open •

D3-RDS FILE NOT OPENED ,.-
D4,..WRS FILE NOT OPENED

A dat.a set (file) must be opened by open before LISP/360 can

write or read from it.

,s'-express1.or:, 1 is the ddname given as the argument to rds or wrs.

D5-CHKPOINT FILE NOT OPENED

D6-RESTORE FILE NOT OPENED

A data set (file) must be opened by open before chkpoint or

restore can use it.

S'-expression 1 is the ddname given as the argument to chkpoint

or restore.

D7-RESTORE GIVEN FILE INCOMPATIBLE WITH SYSTEM SPECIFIED

A data set (file) produced by chkpoint under LISPA cannot be

~stored under LISPB or LISPC, or vice versa.

F2-TOO MANY ARGG'lIJENTS-EXPR

F3-TOO FEW AR.GOMENTS,-EXPR

The wrong number of arguments has been given to a defined.function.

S-expression 1 is the list of the function variables.

Soa·expressi.on 2 is the list of supplied arguments.

F2-TOO lflANY' ARGON.tENTS.,.Su:BR

F3-TOO FEW ARGUMENTS-SUBR

The wrong number of arguments has "been given to a SUER.

S-expressi.on 1 is the function.

S-expression 2 is the list of arguments.

G2-FJSHDOWN STACK OVERFLOW

Recursion is very deep. Non-terminating recursion will cause this

error. S··,expression 1 and 2 will, if given, depend on where in

the interpreter the stack was last used. The traceback is not

given on this error. The message IN THE GARBAGECOLLECTOR may
(

follow immediately after this messEl-ge-. -. This means that there

was not enough stack left for the garbage collector to work

with, when the gar"bage collector was called. This is a fatal

error, and LISP/360gives up control to OS/360.

C-20

----------------_ ... _--_._---_.- --_._ ... _----,--_. ---------

()

o

GC2-STORAGE EXHAUSTED

The garbage collector is unable to find any unused cells in free­

cellstorage, S-expression 1 and 2 are the arguments of cons.

The traceback is not given on this error. This is a fatal error,

and LISP/360 gives up control to OS/360.

I3-BAD ARITHMETIC ARGUlVJEN'l'

An arithmetic routine was given a non-arithmetic argument. S­

expression 1 and 2 will depend on which arithmetic routine found

the error,

I5-ATTN~ TO RAISE 0 TO 0

This error is caused by trying to execute either expt[O;O] q~

expt[O.O;O] .

I6-ATTEMPT TO RAISE 0 TO NEGATIVE POWER

This error is caused by trying to execute either expt[O;nJ or

expt[O,O,n], where n is negative.

I8-EXPT CANNOT TAKE REAL EXPONENT

This error occurs when the second argument of expt is a floating­

point number,

Rl-SYNTAX ERROR

A syntax error has occurred while reading an S-expression.

S-expression 1 is the S-expression in question. The traceback

is not given on this error ..

R2-BAD BRACKET COUlIJ""T

. An end-of-file was reached while reading an S-expression.

S-expression 1 is the list as read with needed brackets generated.

The traceback is not given on this error. This is a fatal error

and LISP/360 gives up control to 08/360.

B,3-BAD BRACKET COUNT ON" USER FILE

An end-of-file was reached while reading an S-expression from a

data set other than LISPIN, S-expression 1 is the list as read

with needed brackets generated. The traceback is not given on

this error, The error causes LISP to start reading from LISPIN.

C-21

R5-NAME OR NUMBER TOO LONG

. A BCD~rintname or a number is longer than that accepted by the

interpreter. Truncation occurs on the right. Only the message

appears with this error.

C-22

()

.()

6, DATA MANAGEMENT IN L::::SP[36g.

TJISP/360 can read or write data sets on any 08/360 supported device with

the aid of the functions open~ close, wr~, and .rd~. LISp! s handling of

its buffers can b" modified by the functions asa, 2:nll:; and otll. It

is a,ssumed in the following that the reader has a working knowledge of

08/360 Data Management,

6,1.1 ~pen[ddname;dcbdesc;iospecJ

All data sets must be :opened! by. the function open before they are

used, A DD card is used to define the data set and open uses the ddname

on the card to refer to the data set. The ddname is the first arguemnt

of open, The record length (LRECI,), the blocksize (BLKSIZE), ~nd

whether or not the record's first character is a control character (A),

can be specified in the second argument of open, The third argument

of open specifies whether the data set is to be used for input (INPUT)

or output (o-UTFUT).

An example of the opening of the data set defined on the DD card named

DATA~

OPEN(DATA ((LRECL.100) (BLKSIZE, 10qO) (A)) OUTPUT)

The second and third argument of this open indicates that the data set

has a record length of 100 bytes, a block size of 1000 bytes, that the

first character in each recox'd is a control character, and that the

data set is going to be uS'2d for output, The record length and the

blocksize can be given on the DD card instead of in 2pen, All other

DCB parameters are fixed by open and they cannot be changed by a LISP

user. The record format is set to fixed blocked, and the error option

is i accept 1 on input j and 1 sk:ip t on output,

The three ddn.ames LISPIN, LISPOU'I'" and I,ISPUNCH are given special signif­

icance in open. LISPIN and LISPOUT are opened automatically by the in­

terpreter and therefore need not be opened, ~'The second and third argu­

ment is implied by LISPLTNCH, and they are therefore ignored when open

C·-23

o
is given LISPUNCH as its first argument. LISPUNCH i~plies a record

length of 80 bytes, a blocksize of 80 bytes, that the first character

in each recor'd is data and not a control character, and that the data

det is to be used for output.

One of the atoms SYSIN, SYSOUT, SYSPUNCH and SYSFILE can be used as

the second argument of open.

SYSIN implies a record length of 80 bytes, a blocksize of 80 bytes, and

that the data set will be used. for input.

SYSOUT implies a record length of 133 bytes, a blocksize of 665 bytes,

that the first character in each record is a control characte~, and that

the data set will be used for output.

SYSPUNCH implies a record length of 80 bytes, a blocksize of 80 bytes, ..

and that the data set will be used for outP1,l.t.

SYSFILE implies a reocrd length of 80 bytes and .. a blocksize of 1600

bytes. SYSFILE should be specified for all data sets used. by chkpoint·

or restore.

6.1.2 close [ddname]

". ;

All data sets should be 'closed I by the function close after use. close.

takes as its argument the ddname on the DD card that defines the data

set. The two ddnames LISPIN and LISPOUT refer to data sets that remain

open throughout a LISP job. LISPIN and LISPOUT cannot be closed by

clos e • They are·, however, closed automatically at the elld of a LISP job.

6.1.3 asa[x]

A control character is normally prefixed to all output records produced

by LISP/360. Executing asa[NIL] stops the prefixing of control charac-.

ters. This is useful when LISP/360 is used to.produce output that will

be input to LISP/360 later on. Executing ~[T] will cause LISP/,60 to

start prefixing control characters again.

6.1.4 otll[n]

o < n < 120. otll (out-line-length) specifies how many character posi-

c-24.

I

o

·0

tions LISP/360 can use i.n each output record, LISP/360 will, after

ot11J n; has been evaluated, fill in exactly n positions in each output

record. Atoms 'wiTl, ·itihenever neces;3ary J be split acros s two output

records so that precisely n positions are filled in each output record,

This is uS·2ful·when LISP/360 is used to produce output that v7ill be

input to LISP/36C lat2r on, In a few cases;. otll is called. automatically

by wrs,

6. L 5 wrs [ddnameJ

vIrs (wri te'-select) is an output directing function and takes as its

argument the ddname cn the DD card that defines the desired output data

set. All output from LISP/360 will go to the data set associated with

the ddname after :!'!.rs[ddname] has been executed. The two ddnames LISP­

OUT and LISPUNCH are gi.ven special significance in wrs, Executing

-~Trs[LISPOUT] will.~ in addition to directing the output to LISPOUT, have

an effect similar to executing .~sa[TJ and otll[lOO]. Executing

wrs [LISPUNeH] will, in addition to directing the output to LISPUNCH, have

an effect similar to executing asa[NIL] and otl~J72J. ~ will open

LISPUNCH if it was n0i:: already opened, A data set produced by .print

when LISPUNCH was "write selected is in SYSIN format.

6.1.6 inllJnJ

inll (in·-line--length) specifies how many character positions LISP/360 ---- .

should scan in each input record. This is useful when LISP/360 is re­

quired to read data sets that are not in SYSIN format.

rds[ddname' l -- "

rds (read--select) is an input selecti.ng function and takes as its argu­

ment the ddname on the DD card that defines the desired input data set.

All input to LISP/360 will be taken from the data set associated with

the ddname after Ed.s[ddname] has been executed, The ddname LISPIN is

given special significance in rda., Executing....,rds[LISPIN] will, in

ad.dition to selecting input from LISPIN) have an effect similar to

executing inll[72].

C-25

----_._-_._. __ .. _-_ ... _._-_ ...

6.2 Checkpoint Facilities in LISP/360
,

Freecellstorage and binary program space can be preserved at any time

l)y executing chkpoint. Freecellstorage and binary program space can

then be reset to the state it was in when preserved by executing

restore. chkpoint and restore should only use data sets opened by

using the DCB descriptor SYSFILE.

6.2.1 chkpoint[ddname]

Execution of chkpoint[ddname] will cause freecellstorage and binary

program space to be written into the data set associated with the ddname.

A data set created. by chkpoint under LISPA requires about 30 tracks on

an IBM 2314 d.isk pack .. Only the data sets associated with LISPIN,

LISPOUT, LISPUNCH and the ddname given as an argument to chkpoint should

be open when chkpoint is executed.

6.2.2 ~tore[ddname]

Execution of restore[ddname] will cause-freecellstorage and binary

program space to be overwritten by the contents of the data set associ­

ated with the ddname. restore will check whether the data set is com­

patible with the LISP system that executes restore. A data set check­

pointed under LISPA cannot be restored under LISPB or LISEe, or vice

versa. The function bpsz must be used with caution when chkpoint or

restore appear in the same run as bpsz. A data set created by chkpoint

can only be restored when the binary program space has the same size

as when the ,chkpoint was executed. The LISP compiler and LAP will be

made available as checkpointed data sets. Only the data sets associated

with LISPIN, LISPOUT, LISPUNCH a.nd the ddname given as an argument to

restore should. 'be open when restore is executed.

c-26

------'----_. __ ._._-_.

/" ,
r" \ O! 7· The LISP Compiler and Assembler

The addition of the LISP assembler (LAP) and

running time of a LISP program (formerly run

compiler can decrease the

interpretively) by a factor

of from eight to twelve depending upon the particular application. How­

ever, the theoretical differences between compilers and interpreters

impose certain restrictions on what can be compiled. These restrictions

are easily bypassed and are mentioned below so that the user will be

aware of them as they come up.

The compiler itself calls upon the LISP assembler so that once a func­

tion is compiled it is immediately available for execution. LAP was

written to closely resemble the OS Assembly Language on the IBM System/

360 with certain modifications. It should be remembered. that LAP is

not only used by the compiler but may be used independently by the LISP

user.

C-27

7.1.1 Differences Between LAP and OS Assembly Language

Of the i.nstructions avai.lable in OS Assembly Language, a select few

have 'been emitted _.-. it was felt that they were unnecessary for LISP

users. These were~ Set Program Mask (SPM); Set System Mask (SSM);

Supervisor Call (SVC); Start I/O (SIO); 'l'est and Set (TS); Test Channel

(TCH),; Test. I/O (TIO); Read Direct (RDD); Write Direct (WRD); Insert

Storage Key (ISK); Set Storage Key (SSK). While these instructions are

not directly available they sti.ll may be generated via the "Define

Constant" (DC) instruction described. later. Also no extend.ed. mnemonics

are available. All sixteen of the registers are available in LAP but

t.hey must be referenced with an R prefi.x~ Le., RO, Rl .•. R14, R15. In

addition one may refer to registers RB, R9, H10 as A, Q, M respectively;

R5 as NILE; R.4 as K4, R.15 as PDL; and R7 as PDS. These aliases will

become clear as LAP is described.

Perhaps the major difference b!2tween LAP and OS Assembly Language is

the availability of quote cells and special cells. Quoted. and specialed

cells are assembled as pointers to the particular quantities they repre­

sent. (See the LISP 1,5 programmers manual) These will be used in

examples later so that the user may become familiar with them. Care

must be taken in using them. Macros have been prepared to aid in their

use.

"Define Constant" and. "Address Constant" are defined in LAP in a limited

form. They may appear as (DC -logical number·-) or (AC -name of location-).

No multiplicative factors or variations are allowable. DC's and AC's

must be on full word boundaries and this is done in LAP by assembling

a NO,-OP i.n front of them if necessary. If the user desires other

instructions on full word boundaries he may specify (CNOP) which in-

serts a half word NO;-OP instruction (BCR R.O RQ) if necessary to put

the next instruction on a full word boundary. Also a reference to an

i'immed.iate" field, such as an MVI, can only be a logical number, e.g.,

(MVI4(R1J., OBX).

There is no i.ndirect referencing in LAP such as the use of * and * +.4,

c-·28

()

I·C)

(J

etc.) in L A, ii, + 4 or eyen L A,NAM + 4, That is, all locations refer­

enced must b.e labeled at the point of reference.

LAP i.s invoked by calling the routine LAP360. It takes two arguments.

The first is a li.st of LAP instructd.ons, the second is a list of dotted

pairs representing an initial symbol table or nil (usually nil, for

other uses see the LISP 1.5 programmers manual). The first member of

the first argument is a list of three elements; first, the name of the

routine being defined; second, the type of function either Su:BR or

FSUBR; and the third, the number of arguments. After this member comes

the rest of the instructions, each enclosed in parentheses.

7.1.2 Passing ·Arguments to and from LAP Routines

For passing arguments between two user defined routines you may use

any technique you prefer. HOvi' ever , since it is sometimes necessary to

cOmrllunicate 'with the interpreter routines, the following scheme is

preferred as it is the method employed by the interpreter. As for the

actual call to another routine (once the arguments are established)

this is done via a macro *LINK which will be described later.

If there is only one argument, it is passed in register A or R8. If

there are two arguments, they are passed in A and Q, or R8 and R9. If

there are more than two arguments (up to a maximum of twenty-two), there

is a reserved area in core twenty 'words long called ARGS in which you

can place the third, fourth, etc" arguments. ARGS may not be referred

to directly, but its address is permanently located at eight bytes past

R12, Therefore, to store the contents of RO as the third argument:

(L M 8(RO R12)) (ST RO O(RO M)) the value of a function is always

returned in A.

C·-29

7.1.3 General Use of Registers

Although alJ':" registers have been defined as usable, care must be taken

in the use of some of them. Those of special interest are described

below:

R3

R5 or NILR

A, Q,

M

R4 or K4

R7 or PDS

R6

Rll, R12, R13

RO, Rl, R2, R14

.- used. as base regi.ster to cover extent of LAP

Routine.

- contains NIL and should never be altered from

that value, but may be used to store NIL in

locations or load other registers with NIL.

- as mentioned above are used to pass arguments

but may be used freely in routines and need

not be restored.

- completely free for any general use.

- contains the number 4. May be used locally

but must be restored outside the scope of the

immediate routine.

- this register has meaning only for the compiler

and may be used freely in LAP. It must be re­

stored. if it is used in conjuction vli th the

compiler.

- points to the next available free cell. It

should never be changed.

- used as base registers for the interpreter -­

they must be restored.

- completely free for general use.

It should never be assumed that any free register will be preserved in

calling another function, even between two LAP defined user routines.

C-30

'0

7.1.4 Macros

Macros may be defined for LAP by doing a DEFLIST of a LAMJ3DA definition

with the property NC. The LAMJ3DA definition must have one argument

which will become a list of the arguments to the macro. The value of

the macro should be a list of instructions to be inserted.

For example:

DEFLIST(((*SAVE (LAMBDA (x) (LIST (CONS (QUOTE ST) (CONS (CAR X)

(QUOTE (0 (R7»))) (QUOTE (J3XH R7 K4 0 (R12»))))))MC)

Then the instruction (*SAVE R15) becomes

(ST Rl5 0 (R7))

(BXH R7 K4 0 (R12))

Macros may be given any name that the user desires, except, of course,

it cannot be the same as a valid instruction mnemonic. The system

defined macros all begin with fI*fI for ease of recognition.

7.1.4.2 System Macros

(*SAVE Rx)

(*UNSA VE Ry)

- saves register x on an internal push down

stack. It should be used with care.

- pops up top item on stack and stores it

in register y.

(*SAVE Rx) and (*UNSAVE Ry) are used principally in recursive functions.

(*LOAD Rx (Q.UOTE .•.))

(*10AD F~ (Special Z)

- used. to load quote cells. Quote cells

are in core relative to NIL hence this

macro expands to

(1 Rx (QUOTE ...))

(AR Rx NI1R)

- when loading special cells, the macro

expands to

L Rx (Special Z))

(L Rx O(NI1R Rx))

C-31

o
(*STORE Rx (Special Z))

C*RETURN NIL)

C*LINK FN i)

- for stori,ng special cells. The macro

expands to

(L M (Special Z»)

(ST Rx O(NILR M))

NOTE: M is changed when using this macro.

- used to exit a LAP routine. It branches

to a particular place in the interpreter.

Expands to (BCI5 48 (RO RI2»)

NOTE: *RETURN is the only way to end a

LAP routine. ":B'alling through the end" of

a routine is incorrect.

used to call function FN wi th i arguments.

TWo other macros *MOVE and *REMOVE are used principally by the compiler

and will be described in that section.

C-32

--- ----,--------,- ------, --- --------- ------ .. ---.. -----.. --------~------

7.1.5 ~~mp1e LAP_~~ogra~

Define SETC .such that (SETC X ((A,l) (X,2) (Y,L)) 7) modifies the second . .
argument to ((A,l) (X.,7) (Y,L)) Le •.• if the second argument is the

ALIST, we are changing the binding of variable X.

LAP360(((SETC SuEB. 3) 1-

(L M 8 (RO R12») 2.

(L RO O(RO M)) 3·
1

(ST RO TEMP) 4.

(ST NILR O(RO M)) 5 .
(*LINK SASSOC 3) 6.

(L B.O TEMP) 7·
(ST B.O 4(RO A)) 8.
(*RETURN NIL) 9·

TEMP (DC OX) 10.

) NIL) 11.

Explanation~

1. Defines SETC as a SUER with 3 arguments.

2. Picks up the address of ARGS to find the 3rdargument.

3. Puts 3rd argument in RO.

4. Stores RO in temporary location.

5. Sets 3rd argument to NIL.

6. Calls SASSOC which has the same first two arguments as does SETC,

hence they remain in A and Q and SASSOC's third argument remains

in NIL for this case. SASSOC will return a pointer to the dotted

pair whose CAB. contains the first argument.

7. Picks up the saved. value in RO (this was SETC IS 3rd argument), and

8. stores it in CDR of the dotted pair.

9. B.eturns from the fQDctions. Note that SETC's value is the dotted

pair since that is what is in A.

10. Definition of the temporary location.

11. Closes the routine with NIL in the symbol table.

C-33

(~

(--'\
\.~:::::::~

At thi.s point i.t should 'be pointed out that the value of LAP360 is the

final symbo:~. table of local labels relati,ve to the beginning of the

routine in bytes --, hence, in the a'bove example., LAP360 returns

((TEMP,24x)) assume that *LINK takes 8 bytes,

C-34

o

o

7.2 ~~nary Programmi.~~~E~~~

An area is '~ow set asid.e for binary programs produced by LAP. The size

of this area is set when LISP/360 is assembled.. However, the area may

be eliminated by calling the function E~~ which increases free cell

storage. The atom BPS has two painters indicating how much binary pro­

gram space is available at any given moment.

The atom BPS mentioned above is slightly different from most atoms as

is seen from the following:

11
~

d ~I J d >1 I i~
J

l:sPS I;?] APVAL

t
IADDRI iADDR2

ADDRl and ADDR2 are pointers to the beginning and the end of Binary

Program Space, respectively.

C-35

o

7.3 The Compiler

The compiler takes a list of previously defined EXPR l s and FEXPR.'s as ,.

its argument and returns a list of the ne,mes of the routines compiled.

The major restrictions to the compiler are the following:

a. G¢ statements 'within :PR.¢G2 i s are not allowedo

b. G¢ statements wi thin C¢ND is 'which are wi thin C¢ND I S are not

allowed 0

c. Free variables must be declared. SPECIAL before compilation.

A function called SPECIAL (described later) can be used.

d.. Variables used which communicate with the interpreter must be

declared. C¢MM¢N before compilation. A function called C¢MM¢N

(described later) can be uSed.

At the time of publication, these are the major restrictions to the

compiler which have been found.

Once compiled, the function is called exactly as it would have been

called before compilation.

7.3.1 Auxiliary R.outines Available

excise[x]

ovoff[]

comm9,g[l] & uncommon[l]

- one argument. If NIL, the compiler is
EXCISED and the space added to free cell
storage. If the argument is true the
compiler and LAP are EXCISED. One may call
excise twice, Le'.1 EXCISE (NIL) EXCISE (T).

- no arguments. In compiling,. a TYPE 8 over or
underflow error may occur frequently. This
is not an error but Qvoff will stop the error
message from printing.

,- no arguments restores overflow message.

takes a list of variables as arguments and
gives or takes away the property Ifspecial"
to each of them.

- save as a'bove, except that the property
"C¢lVJM,e)N" is used.

bpsz[) - no arguments. Returns all BPS to free cell
storage (for jobs requiring a lot of free
cell storage and not needing trJ.e compiler

'\ or LAP;.

7.3.2 Examining the Compiled Code

If the user wishes to see the code produced by a compiled function he

can do this by saying TRACE((ASSEMBLE)) before the compilation. Two

compiler macros *MOVE and *REMOVE will be noticeable in all compiled

routines. These set up and restore the push down list upon entering

and leaving the routines. The user·will also notice many BALis to a

number of bytes past R12. These are interpreter defined routines to

handle things like SPECIAL, COMMON and FUNCTIONAL arguments.

7.3..3 Generating the Compiler

The compiler is defined in LISP as is LAP, therefore, to use a compiled

version of the compiler and. LAP, the compiler is d.irected to compile it­

self and this compiled version is used for all future work. This com­

piled. compiler should be checkpointed. onto a data set using LISP/360

data management and then restored whenever necessary.

C-37

...• "--"--' •. -.~-; .. '.~-' -' _._. -' -.---.:.

(0

(0
,.,::;7

7.3.4 Names of Compiler and Assembler Routi.nes

The followin'g table is a list of the names of the routines used by the

compiler and. assembler. Care should be taken in using routines with the

same names as these, for if they are redefined by the user, the compiler

would call the wrong routine.

LAP360 COMPROG PA14

ASSEMBLE COMVAL PAFORM

LABLER DELE TEL PAFORMl

LOCAL PAAAONE PAIRMAP

LONG PHASE2 PALAt'v1

Q,TCL PA9 SELECT

LOOK PIl

REGSET PI2

Q,SET PI3

SK!L PROGITER

CHeOMP SPECIAL

OVOFF STORE

OVON UNCOMMON

REVERSE UNSPECIAL

CONC COMl

MAP COMLIS

V..AK!ON LAC

COMPILE LOCATE

ATTACH PAl

CALL PA2

C:EQ, PA3

COM2 PA4

COMBOOL PA5

COMCOND PA6

COMMON PA7

COMP PA8

COMPACT PAll

COMPLY PA12

.C-38

, ''', :0

~

THE L1 SP INl'ERPRETER

evulquotc[fn;arcsl = [get[f'n;F'EXPH] V get[fn;FSUBRh

eval(cons(fn;args];N1L]

T4apply[fn;args;NILll

~(fn;largs;al = (

null(fnl NIL;'

atom(fn]4 [get(fn;EXPR]4 apply[expr;largs;al;

~pread (argSl)'
get[fn;SUBR]4 $AL1ST:=~;

TSX subr , 4

T apply(cdr(sllssoc(fn;a;A. (l;error(A2]]ll ;args;a];

i!q[car[fn] ;LABEL]--. apply(caddr(fn] jargs;cons[conE(cadr(fn] jCllddr(~ll ja]] j

eq(carl'/n] ;FUNARG]4 apply(cadr(fn] ja1'gsjcaddr(fnll;

eq[car(fn] jLAMBDA]--. eval[cadd1'(fn] ;nconc[pai1'(cadr[fn] ;args] jall;

T--.applY(eval[fnja]jargs;a]]

~(form;a] ',= [

null(form]4 NILj

numberp(fo1'm]-> formj

atom(fo1'm]4 (get(fo1'm;APVAL]--.ca1'[apvall]j

T--. ~dr(sassoc(fo1'm;a;A. ([];e1'ro1'(A8llll]j

eq(car[fo;mi;QUOTE]--.cadr[form];2

eq(car[fc;rm] ;FUNCTION]--.list(FUNARG;cadr(form;a] j2

eq[car(forml;COND1 evcon(cdr[forml;a];

eq(car(form] ;PROGF-. prog(cdr(form] ;a] j2

atom[car[:forml]--. (get[car(form] ;EXPR]--. apply[exprjlevlis(cdr[formjal ja];

get[carr form] ;F'EXPR] apply(fexpr; llist [cdr[form] ja] ;Il] j

~p1'ead(eVliS(Cdr(form] ;all;)

get(car(form] jSUBR] $AL1ST:=ai ' j,

TSX subr, 4

~C:=Cdr[fOrm]) -
get(car[form];FSUBR MQ:=$ALIST~=a ;

SX fsubr, 4

T4eval[cons(cdr(sassoc[car(form1;ajA [[1;error(A91111;

cdr(1'01'011] jS]] ;

T4apply[cllr[form];evlis(cdr[fo1'm];a];a]l

,~(c;aJ = (null(c] erro1'(A3];

eval(caar(c] ;a]--. eval[clldar[a1 ;al;

T4 eveon[cdr[c] jall

~[m;a] '[null(m1-> NIL;

T cons[eval(car(m1;a1jevlis[cdr(m1;a111

lThe value of get is set aside. This is the meaning of the apparent free
or undefined variable.

2In th', actual system this is handled by an FSUBR rather than as the
separate special case shown·here.

C-39

[lJ Mc Carthy, J., et al.

[2] Kent, J. G.

[3J IBM, Corp.

[.4] Kent, J. G.

[5J BoIce, J. F.

\
,

REl!li::RENCES

.1:I~~-.l::..~_ Programmer: s Manual. If.lIT Press.

Cambridge) Massacbusetts (1966).

Interpretive System for the Programming

of Recursive Functions on a Digital

.QomJ.2uter. Intern Rapport E-88.

NOI"vl'egian Defence Research Establishment,

Kj eller; Norway (1966) .

.I~~ S;vs_tem,[360 PrinciJ.2:!:.es of.-2J.2eration.

Form numb'2r~ A22-·682l-5 (1966).

fiLlS? 1.5 Implementation on the CD 3600

and the IBM System/360 Series." Paper

in The Nature, Uses and Implementation

of the Computer Language LISP, (editor

E. C. Berkeley). Information Interna­

tional Inc., 200 Sixty Street, Cambridge,

Massachusetts. The expected date of

publication is October, 1967.

LISP/360. The University of Waterloo,

Waterloo, Ontario (1967).

G-40

	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680001_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680002_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680003_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680004_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680005_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680006_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680007_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680008_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680009_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680010_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680011_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680012_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680013_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680014_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680015_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680016_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680017_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680018_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680019_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680020_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680021_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680022_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680023_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680024_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680025_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680026_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680027_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680028_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680029_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680030_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680031_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680032_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680033_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680034_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680035_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680036_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680037_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680038_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680039_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680040_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680041_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680042_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680043_a
	Stanford_CCF_App_C-LISP_360_Ref_Manual-19680044_a

