(Eétc. No@/\Ar\/)

MADIoN AeAdEmic n . CaTR.
(PO WEST DAWTSM S,

D sar, WIS . S2 705

This report describes the implementation of LISP on the Univac 1108. f

The primary purpose of this‘report is to show how certain of the more _

.stiéky problems were solved in this implementation. These, or similar

tectiniques could be used in the implementation of other languages.
Secondarily, this report will also serve azs the maintenance docunent for

1108 LISP and should be read by anyone before he peeks into the systea.

Familiarity with the 1108 is not a requirement to understand what is

contained here. I have attempted to describe what is going on in nachine

independent concepts,

' Familiarity with LISP is required. Beforo.any cne reads this, he
should read the 1108 LISP Reference Manual, or at least have scme idea of

what LISP 1iu all about;

The LISPY system on the 1108 is essentially an Incerpreter that the
user uses to evaluate expressions. Wnen he needs more speed, he nzy use
a compiler to generate machine cede. The code generated by the compiler

is plaéed directly in core and replaces the source language that ias

interpreted. There are also facilities for saving objects that have been i

constructed (like compiled functions) for use at a later date.

DRI,

When originally pondering this implementation of LISP, X paid parti-~

a?

cular attention to two problems., Flrst, I wanted a dynamic ncrory
allocation scheme. There are wmany different types of objects Ln LISP (like
numbers, lists, atomic symbols, ccerpfled code. eﬁc.). It Js fupessible

to predict in advance nhow much space would be necded for these different
types of information.e I wanted a2 systemu that could allocate whatcver

space was needed and'yet still be able co keep traclk of what is geing cn

so that - cay - garbage collections can be performed.

Sccondly, I wanted a good and speedy lambda-calculus tvpe evaluation
scheme. ' The one normally used is terribly slow (spends too much time
looking up things con preperty lizts), and someebat massy (in sore contekts

PR =

v
a symbcl names a function while in others it wight name sorething else).

e

-,
A,
™y,

In order to solve the memory allocation problem, I considered core

chopped into pages. Each page is 128 words long (this can be casily

' changed). This means that words O through 01778 are on one page, as are

words 0170008 through 0171778
way toward 03777778. So what, you ask.

, and so forth. These pages extend all the

Well, the big rul is that we can put any type of information on any

paée as long as we put only that type of information on that page. For

instance, words 0170008
atomic symbols, words 0172008
and so forth, After the systen runs a while, memory will be chopped up

through 0171778 might be allocated for storing
through 0173778 might be used for integers

into pages of integers, pages of list structure; pages of compiled code,

etc. In this way, the system adjusts to how much of ecach type of information

18 needed.

! Now, the next problem is that given a pointer, we need to be able to

tell what kind of information it points to. Therefore, a page table is

maintaincd that contains an entry for ecach page. Each entry looks like:

TYPE

Type is a code'indicating the type of information contained on the
assoclated page. E.g. word at PAGTAB + 0 describes the page from O to
0177g, PAGTAB + 074, describes 017000, thrcugh 017177, etc. The page
size is a power of two so that this association can be affected easily
with a shift. That-is, given a pointer, we find out what kind of fellow
is being pointed at by shifting off the low order 7 1ius and uninp this

as an index into the page tablec,

The other fields of the page table are currently not used, but are

reserved for possible future goodies, For instance, we might want to do

a virtual memory scheme someday. Then we would need a field to indicate
the presence or absence of the page in’core as well as well as a field

glving the actual address.

e R B s

Notice that the available pages are all words from address O
through 03777778. In reality, many of these are not really availiable;
like only words 0100008 through maybe 0451778 might really be avzilable
for holding information. These are the only pages linked together in an
available page 1list. Turthermore, notice that the largest possible address
Qs 03777778 instead of 07777778. This 1s because a pointer in 1138 LISP
can be either positive or negative. At one time, the big plan was to
run this garbage collector in parallel with everything else. If this
were done, the garbage collector could mark activity by complemen:ing

pointers and not hurt anybody because pointers are grabbed with 2 load-

magnitude. Tricky, huh? too bad I never did ig.

There are eight types of information in 1108 LISP and they are
indicated by the following codes:

3

=]list structure, i.e. consed nodes;

= integers;

octals or print-name characters; o

= floating point numbers;

&> WN = O
B

= addresses out of bounds, f.e. address within system coding,

pages not yet allocated, or pages not even part of the system;

v
a

compiled code;
6 = linkage nodes (see below):

7 = atomic symbols.
CONSED, type O

1 word each, 128 per page.

*] \
¥ v
CAR POINTER CCR POINTER

1 word, 128 per page.

Numbers, types 1, 2, 3

1 word each, 122 per page.

BINARY NUMBER

-A
The reason that there are only 122 per page is that every 327" word is

‘set aside as a bit table to that the garbage collector can mark the
31 words following it,

COMPILED CODE, type 5

H

, F |3 |a] x|} U
. 1
NEXT INSTRUCTION
ETC,
LINKAGE, type 6
2 words each: 64 per page.
mMI - XL, JUMPTO
INFO

L4
- The general reason for linkage nodes is that we need to alloczte little

tiny pleces of executable code. I will go into more detail lzter.

ATOMIC SYMBOLS, type 7

2 words each, 64 per page.

Thls means that the

VALUE PROPERTY LIST
HASH LINK PRINT NAME
where:
VALUE = pointer to value of this atomic sy=bol 1if it has 2
constant binding, 0 if it does not;
PROPERTY LIST = pointer to property list;
' HASH LINK = pointer to next atomic symbol that has the same
hash total (see chapter on input);
¢ .
PRINT NAME = pointer to print name (a list of octals, cach one

containing six characters of the print-name in fieldata),
Picture of an atomic Symbol (1ike DIFFERENCE) might lock like:’

to system subtraction routine

TYPE O

L e g

I}

—

L, T
Y v
ATTRIBUTE VALUE
0

IFFER__ |

e

TYPE O TYPE O

|:0 R R I - T [7]

9
M L T]

\ Y
TO ATOM (FLAG) ATTRIBUTE VkT-UE

_ . mHerea “]

If we consider a given point In time, the 1108 LIsp system actually

contains many available space lists,

each type of information along

there are two available page lists

There 1s an available space list for

with an available page list. Now really,

» on2 for the I-bank and ore for the

D-bank, but this 1s due to the 1108 hardware; let's pretend that there 1is

oniy one,

BRI

The idea for allocating storage 1s that when we need a certain type
of node, we extract one from the available space list for that type, or
if the available space list for that type is empty, then we take an

available page and build an appropriate available space list on it.

All this magic is effected like so: there is a table of 3 word items,

one item for each of the 8 types. Each item looks like:

IMJ XR, _GETPAGE .
GP (X) " PUT(X)
BANK | SIZE| TYPE AVAIL

wvhere:

GETPAGE = the page extraction routine (see below)

'GP(x) = page initialization routine for this type.
PUT(x) = node storage routine for this type.
AVAIL = available space list for this type.

BANK = preferred bank, 1 for compiled code.
SIZE = size of node of this type.
TYPE = type, what did you expect?

Note to non-1108 folk. LMJ is the subroutine linkape instruction,

i.e. put program counter into index register and Juwp.

In a virgin system, there is only an available page 1list; the avail-—
able space list for each type is empty. When we want to create a node of
a given type we load up appropriate registers with what 1s going to be
put into the node and then deo an LMJ XL, TYPTAB+3*type. This gets us to
the first word of the item for this type which immediately links off to
the page gétting routine (CETPAGE above). This is z ccmmon routine that
each tyée entry pdints to whenever there is no available space list for

this type. This routine will: extract a page from the available page

W

list (a garbage'collection‘happens if noné are available), builds an
available space list for this type on it usiné code pointed to by GP(x),
points to it with AVAIL, puts the type in tbe page table, and finally
changes the first word of the item so that it points to the normal
storage routine. (i,e. it now says LMJ XR,PUT(x)). Now we can start over,
. Instead of linking to GETPAGE we enter the normal storage routine which
will extract a node from the available space list, £11l it in, and set a
new availaglc space list, But just before leaving it checks to see if
the available space list for this type is now empty, and 1f it is, the
first word is-reset to point to GETPAG so that if we need another node

of this type, another page is allocated.

One might ask if it is possible for ‘an available space list for a
type to reside on more than one page. Of course, but only after at least
one garbage collection has happened. The garbage collector will create a
new available space list for each type aﬁa these lists will be exhausted

before any new pages are allocated for that type.

Garbage collection is a two phase process and is started whenever we
need another page and none is available. First, all active structure is
marked by a recursive subroutine. The base cells from which marking
starts are: all cells on the value stack (see chapter on stacks); the
hash table; and whatever polnters were to be stored in the node being
éreated. After all active structure is marked, memory is swept and

available space lists are built for each type of information.

Numbers (types 1, 2, and 3) are marked by setting a bit in a bit
table which can be found by dividing the address of the number by 32.
The quotient times 32 addresses the bit word and the reralnder tells us
which bit. '

Nodes with pointe;s (tyres C, 6, and 7) are marked by complementing
an address contained therein, i.e. car pointer for consed nodes, jump-to
address for linkage nodes, and hash link for atomic symbols. Then each

pointer in such a node is marked recursively.

Complled code (type 5) Ls marked by setting the lower half of the

associated page table entyy non-zero and then marking from the address

field of each Instruction, -Note: thhse inctructione that 4n not ceontain

a valid pointer will appear to point out of bounds so that we do not.éeé i
hurt by assuming they are all addresses. Obviously, addresses out of
bounds (type 4) are not marked.

. Sweeping is accomplished by scanning through the page table. For
each entry therein, a sweeping routine is entered for the type of
o informatlon contained on that page. Each such routine wiil unmark all
‘marked nodes and tie all unmarked nodes together in an avzilable space
list. When done, we check to see if there was anything active on the
page, If thert was, then the available space list for this page is added :
to the available space list for this type of information. But if the f!

entire page is garbage, then we reset it to type 4 and add it to the
available page list.

When done sweeping, we fix up the node storage table by plugging in o
+ L i
the avallable space lists for each type and setting the Jjuzp addresses
in the first words to the right thing. Finally, we check to see if the

- : node being created can now be stored; i.e. it can if its type has a non-

empty available space list or 1f a page is available. Obviously, if there

~ 1s no room for the node, then we bring the world to an end.

A few general remarks are worth mentioning. First, notice that
compiled code does get collected somewhat. That Is, if encugh compiled

code becomes inaccessable that spans a page then the page is released and
the code disappears. .

Second, we notice that this method has a small tendency to pack
memory without havihg to change pointers, That fs, after ve collect
garbage, we are going to end up with an avallable epace 1isr for each
type of information that 4is scattered across 511 paces contzaining this
type, this available space list will be completely exhaused before-a new
page has to be obtained. This method is not fool proof though. For
example, ve could run a job that begins by allocating 200 ncdes for

integers but only 2 of them remain active, one in each page of integers

created, If the run never needs to create another integer rade, then we
are wasting 1238 words 1.e. the page that,weuld te released if one of the

integers were moved to the other pare,

-

Due to the way LISP operates, garbage tends to be released in large blocks
and will therefore tend to span pages so that quite a few pages are

usually released during a garbage collection.

So maybe you ask, 'Why don't you compact memory so that everything
is nice and tidy?" This seems like an unnecessary waste of time here.
The normal reason for compacting memory during a garbage collection is
that two things, like free storage and compiled code space, are growing

toward each other. In 1108 LISP, T do not have this problem due to my

superduper dynamic allocation scheme, It might be wise if I compacted
memory as a last resort, but I just have not done it yet (there are minor
problems about making surc what is and what {sn't a pointer in compiled

code), !

Now to move on to bigger and better things, we still have the problem
of evaluating LISP expressions. This means that we have to implement the
lambda-calculus, well, we all know that LISP does not usce the real lambda-
calculus, but it comes reasonably close. Anyway, in essence the problem
is binding arguments to which a function i; being applied to the variables
used In the definitioﬁ of the function, correspondence of actual and !

formal parameters, if you wish.

Suppose we have a function defined by a lambda-expression say
(LAMBﬁA(X Y) EXPR)+, and we apply it to some arguments, maybe by ((LAMBDA
(X Y) EXPR)ARGl ARG2). What this means is that we have to evaluate
EXPR and during this evaluation something has to tell us that X is bound
to ("means') ARGl and Y is bound to ARG2, The technique I chose is the
famous old association list. An assoclation 1fst 15 a Vst of consed
palrs (Vl'Al)(Vz'Az)...) where the V's are v?riablcs and the A's are
arguments, The current assoclation list Is always pointed to be a fixed
register, In the above cxample during the evaluation of EXPR, the current
association list starts out like ((Y.AEG2)(X.ARGl)...). Any time that
we encounter X during the evaluation of EXPR, we will go peek into the

current assoclation list and discover that its valve is ARG1,

The only trouble with the association list f& that it is not too

efficiont; cne can gpend quite 2 bit of time looking things up on it.

o

/..g'q ’

It is usually more efficient, but has another dréwback, it just doesn't E

' for LISP is some sort of stacking mechanism to keep everything under

" control. 1In 1108 LISP there arc two stacks. The primary one I call the

In some other implementations of LISP, the "special cell” trick is used.”:j”

work! For instance, using special cells, it is just impossible to define o
a function that composes two other functions, i.e., COMPOSE=(LAXBDA (F1 F2)
(FUNCTION(LAMBDA(X) (F1(F2 X))))), By using the association list, along

with some other trickery, the above function can indeed be defined.

-

Furthermore, the inefficiency doesn't bother me at all. One of the

design goals of 1108 LISP was to provide a compilier that could be used to

-augment the Interpreter by translating interpreted code into machine code.

One of the compiler's main job is to notice which variables do not have

to be looked up on the association list and generate code to load their ;

’

values directly.

The only other thing that is needed to realize an evaluation schene

value stack and always contalns pointers, namely, arguments for functilons,
local variables, return addresses, and the like. The other stack is the
control stack and contains non-pointers, usually indexes into the value

stack.

In 1108 LISP, a function is represented by a pointer to the code to
execute in order to compute whatever result is to be computed. That is,
the code for a function diddles the stack so that the result of the
function is sitting on top of it. buring execution of the code for a

function, the value stack looks like this:

T

LT

)

. \TEER 2
| TEXP 1
ARG n
-]

JARG 2
| (ARG 1
OLD A-LTST \RETUPL J—xr

XF and XT are the index registers confrolling the value stack; XT always
points to the next available word and XF points to the current function

base, i.e. the word where the result of the function will eventually be

ﬁ‘, A stored, During execution of the function, this word holds the return

, address and the old association list (the current one is pointed to by

another register, XL).

The other words are the arguments of the function and any local
"variables that it might require. For instance, the code compilzd for a
function that was defined by (LAMBDA(ARCI ARG2...ARGN) (PROG(TR/?21 TEMP2...

TEMPM) .4y)) would assume that_the stack looked as above,

Now what we need to do is to be able to apply another function.

The general rule in 1108 LISP for evaluating.an expression like (FMN Al A2...AX)
T is to stack the value of everything, including the function. This reans
that when we finish stacking everything and wanf to apply the fuaction,
- .we have to know where it 1Is in the stack., So the very first thing that
| we do before starting the evaluation is to mark the stack. This is done
by putting a pointer to the top of the value stack (current valve of XT)
into the top of the control stack. Lets draw some pictures; lets suppose
that the value stack looks like:

<—XT

- ') Wi l
: A2 |

Al |
SAVED A-LIST RET <—XF

and we want to evaluate (TN A B) and leave {te value on top of the value
stack. We mark the stack and move the valuck nf M, A, end R onto it,
Now it lools like:

e <---XT
value of B
value of A
value of FN

!
l
!
Wl !
L
1

A2

- L1 [|
SAVED A-LISV| RETURN |[4—XF , I] |

VALUT - CONTROT,

Now, we link to the function application routine. This routine moVeaf |

up the stack pointers. That is, XF 1s saved in the control stack, the
address of the code representing the function is picked up (top of
control stack points to word containing it), the return address and
association 1list are saved in this word, X7 is changed to the new base, -

end the function is jumped to. Now the stacks look like:

4-XT

B
A

SAVED A~LIST RETURN |+ XF¢
Wl '

A2 <XC
Al

SAVED A~LIST RETURN (01d XF) |

CONTROL
VALUL

Now the stacks have been pushed up and we can execute the code for
the function that was just entered. When we have the result conputed,
we leave it In a specified register and leap to the exit routine. The
exit routine simply undoes everything and leaves the stacks Just like
they were before with the result pushed into the top of the value stack
(it is also possible to simply leave it in its register without pushing
it into the value stack).

The wost important thing to nitice bere ts that the tusction Lo be
applied was moved onto the stack in exactly the sawe manner as {ts
arguments. That 1s, the function can be looked up on the ansociation
Hat, computed by some other expression, or retrfeved as the constant
value of an atomic symbol (the usual case). This gives an elegance to
1108 LISP that is missing in other systems. 1In other systems, one looks
up the indicator EXPR for functions and APVAL for arguments. A symbol

can mean two different things depending on wihere it 15 used -~ for shame!

‘

Then to make things worse sometimes the function is desired as argument
and we have to fake the system out by saying (FUNCTIION PLUS) or worse
yet, (QUOTE PLUS), yechhhi In 1108 LISP, whenever you write PLUS, you

mean that function that computes the sum of its arguments, that's all
" there is to it.

As a sidelight, we can say (FUNCTION FN) in 1108 LISP, but the

purpose is simply to solve the free variable problem; it in no way acts
as a 'quoting' mechanism. As a matter of fact, as long as I a=m editor-
falizing, this shouldn't even be necessary; the purpose served by

FUNCTION should be done automatically when we handle LAMEDA.

In 1108 LISP, I could have done this very easily. I didn't because
I wanted to maintain some compatability with other systems. Now I wish
that I had; I also wish I had changed CAR and CDPR to something reasonable

like FIRST and REST, O well, the world probably isn't ready for something
. quite so radical. '

Lets proceed, The cvaluation algorithm in 1168 LISP essentially

looks at an expression and manipulates the stack in the indicated manner.
We can describe this process very easily with a simple flow chart. Let

E represent the expression to be evaluated. This means that we enter the

evaluator with the stack looking like:

+~XT

~¥, expresslon to be evaluated

4 XF

‘ : EVAL : » é
| 2 %-_
r oAl
S IS E AN NO IS (CAR E) A |YES JUMP TO o
‘ ATOMIC? ?| SPECTIAL-FOR? [| HANDLE IT [T}
YES L
B N W4 P
B IS E AN NO EXIT, E AR
- ATOMIC SYMBOL [IS RESULT THE S1sch
~ 1 ¥ES
C . e L
IS E A NO
CONSTANT? (EVAL (C£2 E) K
1 YEs 1)
LOAD CONSTANT LOOKUP ON E <« (CDR E)
VALUE A-LIST
o : 5 N1 i
EXIT EXIT 7ROFRILY
S
F -
’ |) CALL
| : THE FULCTION
> ENTRY
e I
EXIT
NOTES:

A - E is an atom {f its type # O.

B~ I fa an atomic symbol 1 type 7.
-4

C - E 1s a constant 1f (CAR) # O;

- (CAR E) is the value, see description of atomic symbols.

D - I.e. is an expression like (QUOTZ x) or (COND (P E) ...), or
© (LAMBDA (V) L), ete. This Is signaled by o ncpat fve pofater
in the value part of the atomlec svmbol represocnting the npecial

’

foim. For instance, tine atomic svmbol LAMIDA looks like;

—EVLAM

NIL

> PRINT-X

—
Lo N

AME

wvhere EVLAM is the routine to do whatever we do for LAMBDA.

E - (EVAL (CAR E)) stacks the value of (CAR E), i.e. calls EVAL

recursively.

F - when all done evaluating the stacks look like:

XC—>

CONTROL

which evaluates to itself.

C)/)\,.'.(C -

~—5XT
/
—> etc.
—>Value
—3> Value
- Y NIL
OLD ALIST] PETUR)N +H—XF

gtack and then evaluate each element of the list.

that we find its valuc on the associatlon list,

VALUE

form, so we are going to apply a function to arguments.

So we come back in to

exits, and we come back into EVAL and we are done.

Lets look at an example, suppose our expression to evaluate is

We mark the

evaluate PLUS; it is a constant and its value is the address of the

Finiitly ve evaluate 3,
Now that the function and all its arpuments
are evaluated, we leap into the function entry routine which pushes up

the stack as mentioned above and jumps to the addition routine. The
-]

type conversions, adds them, stores the result in a new node in memory,

(Garp

of (CADR

of (CAR q
i

|

(PLUS X 3). This expression is not atomic and PLUS does not say special-

accition function in the system. Now we have to evaluate X; we can assuxme

addition routine grabs its arguments from the stack, performs any necessary

1f, for example, our expression were (COND (Pl El) e (Pn En)), we
would notice the negative pointer in the atomic symbol COND and scurcy
off to the routine to handle conditionals. This routine evaluates each
predicate in turn until a true one is found, evaluates the associated

expression, and exits.

Now, the only exciting thing that remains is to see how a user

defined function gets interpreted. Suppose we define a function like so:

(CSET 'ADD3 (LAMBDA (X) (PLUS X 3))).

To evaluate this we evaluate CSET (system‘constant), evalute
(QUOTE ADD3) (special-form), and finally we have to evaluate (LAMBDA(X)
(PLUS X 3)). The value of this must be a function that adds three to its
argument. In 1108 LISP, a function is represented by a pointer to
" executable code. This is the raison d'etfc of the linkage node - type

6 above.

Whaglwe need here is a little piece of executable code that will get

us back into the interpreter whenever the function being defined is applied.

Ergo, evaluation of (LAMBDA(X) (PLUS X3)) creates a linkage node that looks

like:
6
. IMJ XL, l APPLY j
el | . ’
e | ((X) (PLUS X 3))
When we apply the pscudo~function CSET, thia linlage nede pets set

aé the constant value of ADD3, so that the atorite symbol AUDI now looks

like: . A
7 6 | |
0 [LMJ XL, APPLY N
| | | -
2 | ¢ '
; l S - ()Y (PLUS X 3)

-of ADD3 (linkage node above) and 6 into the stack and jump to the functiom,

7 system at the APPLY. The APPLY routine has available the definition of

“required.

R

Now we can evaluate something like (ADD3 6). We move the value
which jumps to the linkage node, wnich immediately links back into the
the function in the linkage node and the arguments in the stack. It

extracts the variable list from the definition lict and goes thru a

1little loop consing each variable to its corresponding argument and

- adding this pair to the current association list, when done it returns

to EVAL. glving it the body of the function, (PLUS X 3), and evaluates
this in an environment where X means 6, i.e. association list starts with

(X,6)..). This evaluation computes the result of applying ADD3 as was

¢

The advantages of using the linkage node are tuofold. First, it
“makes the interpreter lightning fast. That is whenever we apply a function,

we do not have to go looking down the property list for some indicator

- 1ike EXPR or SUBR. 1In 1108 LISP we just go merrily leaping into the code

for the function. If the function is one supplied by the system, then we
jump into the system. On the other hand, if it is a user function that
needs to be interpreted, then there is a linkage node sitting there to

route us back into APPLY to do the right thing.

The second beauty of the linkage node is that it solves the problem
‘0f linkage between compiled and interpreted code. Namely, the 1108 LISP
compller generates machine code directly into mermory and puts the address
of this code into the value part of the atomic symbql naming the function.
Thereafter, application of the functlon will Jump to cowplied code (Just

like a system function) instead of a linkage node. .

-]

e e s e e Bt Ve ab e — e

[

- pan

	Norman_Lisp_1108_Impl-19690001_a
	Norman_Lisp_1108_Impl-19690002_a
	Norman_Lisp_1108_Impl-19690003_a
	Norman_Lisp_1108_Impl-19690004_a
	Norman_Lisp_1108_Impl-19690005_a
	Norman_Lisp_1108_Impl-19690006_a
	Norman_Lisp_1108_Impl-19690007_a
	Norman_Lisp_1108_Impl-19690008_a
	Norman_Lisp_1108_Impl-19690009_a
	Norman_Lisp_1108_Impl-19690010_a
	Norman_Lisp_1108_Impl-19690011_a
	Norman_Lisp_1108_Impl-19690012_a
	Norman_Lisp_1108_Impl-19690013_a
	Norman_Lisp_1108_Impl-19690014_a
	Norman_Lisp_1108_Impl-19690015_a
	Norman_Lisp_1108_Impl-19690016_a
	Norman_Lisp_1108_Impl-19690017_a

