LISP II m:ec't April 13, 1965
Memo 8

INPUTLOUTPgT FCR LISP IX
y
Paul Abrahams

1. INTRODUCTION

This memo 18 intended as an augmentation and modification
of the input-output system proposed by Clark Weissman in an
earlier memo. By and large I have followed a similar or-
ganizational scheme, which should make comparisons easy.

I have also used Clark's functions and conventions where=
ever possible.

There are three eriteria that the input-output scheme
presented here has been designed to fulfill:

(2) It must be possible to convert an input program ra-
pldly into a stream of tokens that form the input
of a syntax translator.

(b) It must be possible to read =nd write formatted
data a la FORTRAN. The FORTRAN capabilities in
this area are a bare minimum; NPL 18 a far better .
comparison.

(c) There must be a set of primitive operations that
enable the programmer to position input~-output
deviées and main memory without performing any
interpretation of ¢he meaping of the data being
read or written, or of the meaning of record
gaps, file marks, ete.

The first area covered by this<propos§1 is a set of in~
put-output primitives for the selection, deselection, po-
sitioning, reading and writing of input-output devises and
for the allocation of buffer space for these devices, The
second are. is the definition of the finite stace machine
that is used to convert eharacter streams into tokens. Un-
like the earlier propos:zl, the finite state machine makes
explicit use of format information, and is designed to han-
dle both the reading of programs to be translated and the
reading of data called for by the program. The finite state
machine takes as its input an atom of type stﬁing together
with a procedure for obtaining a new string when the old
one 18 exhausted. There is thus no necessary logical con-
nection between the input-output primitives per se and the
finite state machine, even though they ordinarily will be
used in tandem.

One area that 1s not treated here 1s the preparation of

output strings. It may prove desirable, when this

problem has been analyzed further, to modify the present fi-
nite state machine scheme 30 as to have greater symmetry
between input and output. <his possibility will be dis-
cussed in connection, with the finite state machine.

The primitives proposed here are quite specifically
oriented towards the structure if not the details of the
input-output system used by the Q32 time-sharing system.
Some modifications would be required if it were to be meshed
with an input-output environment such as IBM's JOCS or
IBSYS; however, both IOCS and IB3YS are strongly ori-
ented towards bateh processing rather than interactive
computing. The essential difference between TS3 and
IBSYS in this area is that in IBSYS one can release a
file without releasing the physical unit housing that
file; in TSS one cannot. However, the major purpose in
releasing files but not units in IBSYS is communication
between successive segments of a Job; and ordinarily.
that necessity does not arise in 2 time-shared environ-
ment .

2. DEFINITION OF THE ENVIRONMENT
2.1 Files and Buffers

The term file will in general be used here in the same
sense that it is used by the Q32 dispatcher, namely, as a
unified collection of data stored on an external medium.
Some Input-output devices; such as dises, can have more
than one file on a physical unit; others, such as tapes,
cannot. Each file will have a logical name, which cor-
responds with the name wsed by the Q32 file call. For
names of more than six characters, LISP wlll automati-
cally substitute a generated name. CTSS (Project MAC)
file designations, which consist of a first name and a
last name, can be made into a single name by concatenating
the two names with a period between them.

A particular file may be either actlve or inactive. A
file 1s active if it has beenh requested through a Q32 dise
patcher file call and not released. The user will define
a file before he activates 1t and the definition will per-
gist after he releases 1t; thus he may also have inactive
files. An active file may or may not have buffer space
assigned to it. Buffers for files will be dynamically
relocatable arrays, and will be assigned at run time.,
Binary files will use arrays of type integer and BCD
files will use arrays of type string. attempt to read
from or write onto a device without assigned buffer space
will cause an error complaint; however, such z device ecan
be repositioned without causing an error.

2.2 Data Format and Types

Three kinds of delimiters will be recognized by the
input-output primitives: record marks, file marks, and
data terminators (e.g., end of tape). These delimiters
will correspond to physical rather than logical delimi-
tations of the data. The input-output primitives will
operate independently of whether the data being handled
is binary or BCD, except for the definition of a file,.
BCD data will be assumed to be packed eight €-bit chaip-
acters to & word for the Q32 system and will be modified
appropriately for other systems.

2.3 Unit Identiflers

For each type of device that can be read or written
by the system, a LISP object will exiast. This obJect will
have on its property list the necessary information
about devices of the specified type such as record
length, direction(s) of data flow, and binary or BCD data
type. The objJect will be known as a unit identifier: it
can be used as an identifier in other contexts with the
restriction that certain of its properties cannot be de-
leted or modified. (There may be times when one wishes
to .change these properties deliberately, e.g., to change
the record length definition for reading a tape vwith non-
standard blocking; and this kind of change 1s perfectly

permissible.) Among the unit identifiers may be TAPE
%for«symbolic magnetic tape), BTAPE (for binary magnetic
tape), PTAPE (for symbolic paper tape)s; BPTAPE (for
speed data link), COMPUTER, DRUM, CARD (reader or punch),
PRINTER, and RANDTABLET.

3. JINPUT-OUTPYUT PRIMITIVES e e

The primitives presentad here have been designed so
as to maximize their independence. Thus, operations have
been arranged as far as possible so as not to utilize each
other or wmuch of the aspparatus of LISP. Some LISP appa-
ratus will be needed for searching property lists and
similar tasks. The primitives are divided into three
groups: the file definition primitive, the file activation
primitives, and the file manipulation primitives.

3.1 Flle Definition Primitive

3.1.1 Q%QgAREéLN U P) - This functlon creates a file defi-
nition for ile with name LN on a unit of type U with
additional parameters P. All relevant properties of the
file are stored on the property list associated with the
file name. This function is really not a primitive

since it probably can be programmed in LISP, but it 1is pre-
sented here nevertheless to make the conception of the
system clearer.

3.2 File Activation Primitives

3,2,1 REGFESTQLNQ - This primitive requests the activation

of the e named LN, and causes 3 file call to be sent to

the dispatcher. All informatlon necessary to construct the
file call is contained on the property list of LN. No bvuf-
fer space 1s assigned by this primitive.

3.262 RE&EASE(LNE ~ The file named LN is deactivated,
and a call is sent to the dispatcher., Buffer space
held by the file is given back to LISP for eanmnibalization.

30203 W - The array A is assigned ss buffer
space for e named LN. If A is not sufficlently large,
an error complaint results. The programmer must obtain

the array A via LISP.

3020#'E§EEEEE§§%§1 - The buffer space held by file LN is
released to o

2:.2.5 SAVEDSOELH IN1) -~ The disc file named LN is stored per-
manently on the s¢ under the name LN1. This and the next
two file primitives have been included so that the LISP IX
user can gain access £o the full faellities of the dis-
patcher. I would suggest that as new dispatcher calls are
added; new LISP primitives be created. I propose this re-
luctantly, but there does not seem to be any satisfactory
framework into which all the file calls can be fitted in a
genepral way.

3o2.& RENAMEDSC(LN LNI, - The permanent disc file LNl is
made into the private file LN, using the dispatcher REFILE

call. LN must have been declared; the RENAMEDSC call auto-
matically activates LN as if 1t had been RE WESTed.

3.2.7 DELETEDSC(IN1) - The permanent disc file LNl is de-
leted from the disc. The name LNl cannot have more than
81x characters, or whatever other limitation 1s imposed by
the file call. LNl will not ordinarily correspond with a
file requested by the programmer; in fact; no check will

be made as to whether the programmer has activated such a
file. The motivation here is that DELETEDSC should be used
fog sgratching 1ibrary files and RELEASE for scratching pri-
vate files,

3.3 File Manipulation Primitives

3.3.1 POSITIONR(LN N) - The device assigned to LN is ad-
vanced by N physical records if N is positive and backed up
by N physical records if N is negative. If a file mark is
encountered the device is not moved further. The value of
the function is EOF 1f a file mark is encountered, ECT 1if
end of logical file (i.e., the entire data file) ias en-
countered, BOT if beginning of loglcal file 18 encountered,
and NIL otherwise.

3.3.2 W - The device assigned to LN ie ad-
vanced by N physical files if N is positive and backed up
by N physical files if N 1s negative. The count 18 advanced
by one whenever a file mark is encountered; when the

count equals N, the device is positioned just after the file
mark. The value of the function 1s EOT if the end of the
logical file is encountered, BOT if the beginning of the
Jogical file is encountered, and NIL otherwise.

3.3.3 MOVEIN&LN! - One physical record is moved from the
device assigned to LN into the buffer assigned to LN. An

error complaint results 1f no buffer has been assigned. The
value of the function is the same as for POSITIONR, except
that REDUND indicates an unreadable file. If no buffer sp:c-e
has been assigned to the file, an error complaint results.
An alternative approach would be to have MOVEIN automati-
cally obtain duffer space if the file 1s not assigned

any; however; this alternative would permit buffer-eating
programs to survive undetected. The programmer, of course,
can always write a function MOVEIN1 that test. to see if

LN has buffer space and 1f not assigns it, so that the error
complaint can be circumvented if one wishes,

3.3.4 MOVEOUT(LNE - One physical record is moved from the
buffer a2ssigned to LN to the device assigned to LN. An er-
ror complaint results 1f no buffer has been assigned. The
value of the function is REDUND if the record cannot be
written, and NIL otherwise.

30.3.5 WEOFlLN) ~ A flle mark 1s written on the device asso-

-6~

ciated with LN. LN need not have buffer space.

3.3.6% - The device sssigned to LN 18 moved to its
initial position,

3.4 Specification of Current File

The programmer, if he wishes; can create own variables
INFILE and OUTFILE whose values are the specific files ocur-
rently being used for input and output respectively., He can
also create auxiliary input-output functions that lack the
parameter LN and substitute for it the bound variable
INFILE or the bound variable OUTFILE. Thus he need not
specify the unit involved when he calls for input-output.
(It should be noted that he will need some way to indlocate
whether positioning is to be done on the input file or on
the output file.) ‘ ,

3. FINITE STATE MACKINES

The input-output primitives given in the previous

- section enable the programmer to bring data from an
external source into . the computer in the form of string
arrays, but do not provide him with a mechanism for
interpreting these strings. Such a mechanism could be
built using LISP string manipulation functions and not
using finite state machines at all; in fact, 1t may be
helpful to avoid the finite state machine during some
stages of bootstrapping. The finite staté machine is
intended to make the process of interpreting input strings
more efficient, and at the same time fto provide a lan-
guage for specifying the interpretation in a convenient
waye.

A finite state machine takes a character stream as
input and produces 4 token atream as output. There are
three subprocesses required to do this: unpacking of
single characters from the input stream, delimitation
of tokens, and translation of character strings that
stand for tokens into the tokens themselves. In the
scheme proposed here, unpacking and delimitation are
performed more or less simultaneously, and translation
is performed as a subsequent operation. This arrangement
is quite efficient since -very little saving and restoring

of the accumulator is needed.

Finite state machines are intended to apply only %o
data of type string. Thus they will not ordinarily be
used in conjunction with binary files. However, .should
the need arise one can always redeclare the type' of the
resulting array using the LISP type conversion functions,
and thus apply a finite state machine to binary data
gwgic? will, of course, be grouped into character-sized

ytes). ,

4.1 Specification of a Finite State Machine

The system proposed here consists not of a single
finite state machine but rather of a finite state machine
iInterpreter. In order tq create a specific finite state
machine one provides the interpreter with an apppropriate
collection of tables and procedures. For cases where the
interpretation loss is critical, a particular finite
state machine can be hand-coded, using the same progtem
structure as in the more general case. - However, the
interpretation process is sufficiently simple so that:
not much loss of efficliency occurs.

The finite state machine interpreter is invoked as a
function of no arguments; its value is the next token on
the input string. In reality, the interpreter has six
arguments, which exlst in the form of own variables;
for a specific character string and finite state machine
these variables are set before interpretation is begun,

-8

and need not be chancsc from one token to the next. This
appangement avoids the need for spending time in communi-
cating arpuments., Its disccdvantage is that when two finite
state machines are operating simultaneously these variables
must be saved and restored for each token; however, this
case 1s sufficiently rare so that LISP can live with

this particular inefficlency without great discomfort.

The central part of the specification of a finite
stote machine may be viewed as a set of quintuples of the
form

in whieh 8y and 8_ are states, g, is a type of input
character,”f, 18 B format symbol§ and a is an action.

When the macﬁine is about to process a char cter it .1s in
state s,. It determines that the charazcter 1is of type ¢
and obt&ina from a format procedure a2 state £, . with~eaéh
valid triple (s, q, £,) there is associated akpair (sm £)e
The machine exedutés ¥he action a (which may consist
simply of storing the input character on a stack), enters
the state s , and processes the next character.

Associated with each state 18 a table of character
types, in the form of a €ii-word table. Any number of
states may use the same table, and in faet a particular
table may even be used by different finite state machines.
A type is assoclated with each of the €4 possible char-
acters, and this type (a small integer) can be obtained
by table lookup. ‘

Now we c2n state what the own variables of the finite
state machine interpreter cre:

(1) An array representing the set of quintuples for
the machine. , ' : 4

(2) A procedure for obtaining a new string when the
present one is exhausted.

(3) A procedure for obtaining a format code.

(4) The location of the current string head.

{5) The current character count within the string.
(€) The number of charscters in the string.

The procedure that obtains the format code can be useéd
for counting; in particular, 1t can be used to handle
fixed-length data fields and as a means of bypassing
identification fields such as the last eight c¢olumns of
a card. The format procedure can be given access to the
variables of the finite state machine; including the
current character, and thus can be used for many different
purposes, It can be as elaborate or as simple as the
situation requires.

. «Q-

The array of quintuples 18 in a machine~dependent
form, designed specifically to work in conjunction with a
z;gticular interpretation progr:m. However, for any given

P implementation the rules for constructing the array
are fixed and explicit. '

One of the actions available to a quintuple 1s
ejection of a token. This action temporarily halts the
operation of the finite state machine. When operation is
" presumed the last character examined is read again. The
motivation for this convention i8 that often the first
charzcter of the (n + 1)th token is the terminal delimiter
of the n'th token, and in very few cases is the terminal
delimiter of a token actually part of the token itself.
For these few cases it 1s easy enough to force the reading
of an additional character. .

.2 A Specific Finite State Machine Interpreter

In this section we shall present a sketch of the code
for the Q32 finite state machine interpreter. The code
is admittedly lavish In its use of index registers, and I
have omitted much of the housekeeping. However, the purpose
of this code 18 not so much to present a realistic im-
plementation as to 1llustrate more or less how efficient
the interpretation 18 and what the conventlons are.

We shall use index registers as follows:

XR1l -~ current byte within word
XR2 - word within array
XRE « gtate :

-~ type of current character

XRS5 - format code-
XR6 - character staek pointer

The poasible actions are.

(1) Place the current character in the stack.

(2) Call & procedure and reg@art the stack.

(3) éall a procedure and leave the stack nndisturbed.

(u) Call a procedure and return its value as 2 token.
‘The character stack 18 simply an array with one character
per word. In the code given here we have not dealt with
the problem of stack overflow, which can occur since the
size of the stack must be fixed. If the stack overflows,
the program ¢an requisition a larger array; but figuring
out just how -to do this. seemed premature at this stage of
the specificatian.

In order to@;ind the last two elements of a quintuple

-10-

from the first three, we execute the: instruction
LDB JVINTS,I |

The cell JUINTS gives the start of the quintuple array,
which 18 used for a three-stage lookup using:three levels
of indirect addressing. ' The first lével:uses the state

as sn’ index, the second uses’the symnbol type:as an index,
and the third uses the format code és an tndex,afwhe-actual
contents of QUINTS are ST

PZE LOCL,3,I

where LOC1 18 the first of a block of cells, one for each
state. Thus, if XR3 contains:1i, the state number, the
first level of indirectness will lead us to the ecell
reserved for this state. Its contents are

PZE LOC,4,1
where Loca 18 the first of a block Of cells reserved for
state 1. &'th cell of this blouk, which will be

referenced by 4", will be assigned to the state-
symbol type pair (1,3) Its contents in turn will be

PZE L0C3,5

where LOC3 18 the first of a block 9f cellse reserved for
state 1 paired with symbol J. "LOC3,5" will, of course,
reference the cell within the block corresponding to the
format code and giving the last two elements of the quintuple.
The actual code word will contain the sction code in

byte 0, the new state in bytes 1, 2,a2nd 3, and the
location of the procedure to be invoked, if any, in bytes
5, 6, and 7. Thus the array of guintuples is divided
into three parts: the Lirst for states; the second for
state-aymbol type palirs, and the third for the state-
symbol fype-format code triples, The thirvd part sctually
containg the code words.

In addition, we need .rn opeey of cells, one for each
state, 21vins the tanle v“wﬁ e ﬂnﬂgde un*x ~2ers into

::al 1" R 4 l' it, '3v ".;Z : E .El <;:L) e e »:»:; '-.ut.
PZE TYPLKP, A

where TYPIKP 1s the beginning of the table for this state.
We will ossume that the locaticn of this array is in cell
TYPTAB. The rough code for the finite state machine
interpreter, then, ic the follouing:

LOOP

%DSQ B7,G07 CHPOSN

DX, 1 $a
LbA CHPOSN
SFA {3)R
LDX,2 A
BUC FMTPR, 1
LDX,5 $A
XEC GETEYT,1
Lng "l' WPTABQ 3) I
LDB JINTS, I
STB TEMP

Al
E &
BUC) ﬁ
STA STAK, €
BAX,6,1
LDX, € (STAKL)R
BUC TEMP, 1
é.}g TEMP, I
BOC TEMP,I
(return code
* CHPOSN
CMA . CHLIM
Be 3
BoC +2
BUC LOOP
BUC NEWSTR
STZ CHPOSE
BUC LOOP
I.DA,H) m:2

get format code

get character
get character type

store char in stack

get new string

character ccunt

no. of char.'s in st: .w

loc. of quintuple table

loc. of pointers to
char. type tables

begimning of stack

