
THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM *
Paul W. Abrahams

Jeffrey A. Barnett, Erwin Book, Donna Firth, '

Stanley L, Kameny, Clark Weissman

System Development Corporation, Santa Monica, California

and

. Lowell Hawkinson, Michael I. Levin, Robert A. Saunders

Information International, Znc., Los Angeles, California

INTRODUCTION

LISP 2 is a new programming language designed
for use in problems that require manipulationi of
highly complex data structures as well as lengthy
arithmetic operations. presently implemented on the
AN/FSQ-32V computer at the System Developnient
Corporation in Santa Monica, California, LISP 2 has
two components: the language itself, and the pro-
gramming system in which it is embedded. The sys-
tem programs that define the language are accessible
to and modifiable by the user; thus the user has an
unparalleled ability to shape the language to suit his
own needs and to utilize parts ,of the system as build-
ing blocks in constructing his own programs.

While it provides these capabilities to the do-it-
yourself programmer, LISP 2 also provides the com-

plete and convenient programming facilities of a
ready-made ,system. Typical application areas for
LISP 2 include heuristic programming, algebraic ma-
nipulation, linguistic snalysis and machine transla-
tion of natural and artificial languages, analysis of
particle reactions in high-energy physics, artificial in-
telligence, pattern recognition, mathematical logic
and automata theory, automatic theorem proving,
game-playing, information retrieval, numerical com-
putation, and exploration of new programming tech-
nology.

The primary source materials on LISP 2 are the
LISP 2 Primer,l which provides an introduction to
the language for those with little or no programming
experience, and the LISP 2 Reference M a n ~ a l , ~
which provides a complete specification of the lan-
guage.

* Produced by SDC and 111 in performance of contract The LISP 2 programming system provides not
AF 19(628)-5166 with the Electronic Systems Division, Air only a compiler, but also a large ~ 0 l l e ~ t i 0 n of run-
Force Systems Command, in performance of ARPA Order time facilities, These facilities include the library
773 for the Advanced Research Projects Agency, Informa-
tion Processing Techniquer Office, and Subcontract 65-107, f ~ l l ~ t i ~ n ~ , a monitor for control and on-line interac-

662 PROCEEDINGS-FALL JOINT COMPUTER CONFEIZENCE, 1966

tion, automatic storage management, and communi-
cation with thc monitor system of the machine on
which thc systcnl is operating.

A particularly important part of the program li-
brary is a group of programs for bootstrapping LISP
2 onto a ncw machine. (Bootstrapping is the standard
nlethod for creating a LISP 2 system on a new mil-
chine.) The bootstrapping capability is sufficiently
powcrful so that the new machine requires no resi-
dent programs other than the standard monitor sys-
tem and a binary loader.

LISP 2 includes and extends the capabilities of its
ancestor, LISP 1.5.3 LISP 1.5 has been notable for
its mathematical elegance and symbol-manipulating
capabilities. It is unique among programming lan-
guages in the ease with which programs can be
treated as data, in its "garbage collection" approach
to reclaiming unused storage, and in its ability to
represent programs organized as a collection of small,
easily understood function definitions. Full recursion
without special user provisions is a natural outgrowth
of the structure of the language. However, LISP 1.5
lacks a convenient input language and efficiency in
the treatment of purely arithmetic operations.

LISP 2 was designed to maintain the advantages of

been included, which makes possiblc the definition of
operations in terms of a basic set of open-coded
primitives. These changes made it possible to write
the entire system in its own language without loss of
efficiency. At the same time, the compilations of user
programs are more economical in timc, and to some
extent in space, than they would be without these
facilities. Furthermore, the knowledgeable user can
trade space against time through appropriate re-
definition of system functions.

A fourth major change, the introduction of pat-
tern-driven data manipulation facilities, along the
lines of COMIT and METEOR,O is still in the proc-
ess of implementation. Because of the open-ended
nature of LISP 2, these facilities can be added with-
out disrupting the existing system structure. We men-
tion this facility here, despite the fact that it does not
yet exist, because it is an integral part of the over-all
design of the language. Since the specifications are
not final as of this writing, however, we shall not dis-
cuss them further.

To orient the reader toward the exposition of the
language, we present a short example at this point.
Further examples will be given lgter. The following
program is written in SL:

LISP 1.5 while remedying its deficiencies. The first
major change has been the introduction of two dis-
tinct language levels: Source Language (SL) and In-
termediate Language (IL). The two languages have
different syntaxes but the same semantics (in the
sense that for every SL program there is a computa-
tionally equivalent IL program). The syntax of SL
resembles that of ALGOL 60,4 while the syntax of
IL resembles that of LISP 1.5. IL is designed to have
the same structure as data, and thus to be capable of
being manipulated easily by user (and system) pro-
grams. An advantage of the ALGOL-like source lan-
guage is that the ALGOL algorithms can be utilized
with little change.

. % RANDOM COMPUTES A RANDOM
NUMBER IN THE INTERVAL (A, B)

OWN INTEGER Y;
R E A L F U N C T I O N RANDOM(A,B) ;

REAL A,B;
BEGIN Y t 3 125*Y;

YcY\67108864;
RETURN (Y/67108864.0 * (B-

i
A) +A)

END; i

The only significant difference between this pro-
gram and the ALGOL original is the use of the re-
verse slash "\" to indicate the computation of the

The second major change has been the introduc- remainder. The corresponding program in IL is:
tion of type declarations and new data types, includ-
ing integer-indexed arrays and character strings. At a
future time, packed data tables, which can presently
be simulated through programming techniques, will
be added. Type declarations are necessary to obtain
efficicnt compiled code, particularly for arithmetic
operations, but by using the default mechanisms, a
programmer may omit type declarations entirely (al-
beit at the cost of efficiency).

(DECLARE (Y OWN INTEGER))
(FUNCTION (RANDOM REAL)

((A REAL) (B REAL))
(BLOCK NIL (SET Y (TIMES 3125 Y))

(SET Y (REMAINDER Y 67 108864))
(RETURN (PLUS (TIMES (QUOTIENT

Y 6.7108864000E+7)
(DIFFERENCE B A)) A))))

The third major change has been the introduction The process of converting SL programs into com-
of partial-word extraction and insertion operators. piled code is shown in Fif;. 1. SL is first translated
Further, an IL-level macro expassion capability has into IL by syntax translator. IL is then translated

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM

into assembly language by a compiler. Finally, the unsigned
assembIy language is translated into machine lan- integer 1 2 3E5
guage by an assembly program. The process is en- unsigned
tirely accessible to the user, in that he can write pro- octal 120 14Q6
grams in IL or assembly language if he so chooses. unsigned

The remainder of this paper is divided into two real -87 12. 4.5E5 2.E-10
parts, one dealing with the language and the other
with the implementation. Certain aspects of the lan- Signed numbers are like these, but are preceded by a
guage that were intended primarily as implementa- sign. Other examples of tokens are:

SL *
\.

tion tools, e.g., open subroutines, are discussed in
identifier connection with the implementation. AB H21 GO.TO

In discussing the language, we shall present simul- operator * / = > = \ + +

Figure 1 . System organization. SL = source language: IL -- intermediate language; AL - assembly language.

taneous discussions of the syntax of SL and IL, ac-
companied by discussion of the semantics of both. In
this way the semantic equivalence of SL and IL will
become apparent. It should be borne in mind that the
primary use of SL is for programs written by people,
while the primary use of IL is for programs written
by machines. Thus the syntax of SL is designed for
convenience in writing, while the syntax of IL is
designed to reflect in its form the structure of the
program that it represents.

-I

COMPILER

L

SYNTAX
TRANSLATOR

THE LISP 2 LANGUAGE

'
LISP 2

ASSEMBLY
PROGRAM

,

AL

I

; IL
' ,

A string consists of a sequence of characters delim-
ited at each end by "#". The character " ' " inside a
string causes the character following to be entered in

COMPIIJZD
CODE

*
DATA

STRUCTURES

the string. Some examples of strings are:

An identifier may be created from a string by preced-
ing it with the escape character. This character is
changeable within the system but will usually be
"% ." If "%" is the escape character, the following is

Tokens an identifier:

Tokens are the smallest units of input or output
data with which LISP 2 programs ordinarily deal and An identifier created in this way is said to have an
are significant because of their role in defining the 66unusual spelling,,, since, in general, such identifiers
standard inputloutput conventions with regard to will be created only when they cannot be written in
both programs and data. The major categories of any other way unambiguously.
tokens are:

1. Delimiters Data
2. Numbers
3. Simple strings ' The most general form of a LISP 2 datum is an S-
4. Identifiers expression, where the S stands for "symbolic." S-
5. Operators expressions are built up from atoms, which may be

The delimiter tokens are: numbers, strings, identifiers, function specifiers, and
arrays. As in LISP 1.5, the class of S-expressions is

() [I cr defined recursively as follows:

Numbers as tokens may be either signed or unsigned 1. Every atom is an S-expression.
in IL, but must be unsigned in SL since a preceding 2. If el and eZ are S-expressions, then
sign is interpreted as an operator. Some examples of

I.- unsigned numbers are: (el . &)

1

663 PROCEEDINGS-FALL JOINT

is an S-expression. Thus, for instance,

(+- ((A . B) (C Dl)

is an S-cxpression.
S-expressions of the form:

(el . (e, (e,, . NIL) . . .))

are known as lists, and can be written in the abbrevi-
ated form:

(el e2 . . . e,,)

The e, are called the elements of the list. The two
notations may be intermixed; thus

((A . 1) (B . 2) . . . (2 . 26))

is an S-expression in the form of a list, but the ele-
ments of the list are not themselves in the form of
lists. The atom NIL can also be written in the form
(), and designates the empty list.

The LISP functions CAR, CDR, and CONS are
defined by:

CAR applied to (el . e2) yields el
CDR applied to (e, . e,) yields e,
CONS applied to e, and ez yields (e, . e,)

In terms of the list notation, CAR finds the first
element of a list and CDR removes the first element c- from a list. Thus CAR applied to the list (A B C D)
yields A, and CDR applied to the same list yields the
list (B C D). CDR applied to a list of one element
yields the empty list (). The function NULL has
value TRUE for the empty list () (also represented
as NIL2 and value FALSE for anything else. The
function CONS of two arguments can be used to add
an element at the head of a list; thus CONS applied
to the element A and the list (B C D) yields the list
(A B C D). CONS is the basic operator used for

. constructing lists.
IL programs are written in the form of S-expres-

sions, and therefore can be treated as data. The abil-
+ ity to treat programs as data in a natural way is 'an

essential feature of L1SP:SL programs can also be
treated as data, because of the existence of strings;
however, this is not nearly so natural as it is with IL.

Arrays are atoms because CAR and CDR are not
defined for them. Constant arrays are written by en-
closing their elements in brackets. For example:

is a one-dimensional array of integers, and:

[[A B C] [A1 Bl Cl] [A2 B2 C2J [A3 B3 C3JJ
is a two-dimensional array of S-expressions.

C . '*

COMPUTER CONFERENCE, 1966

Duta Types. Although every LISP 2 datum is an
S-expression, it is useful to pick out certain subsets
of the set of all S-expressions and to designate these
subsets by data type names. The data type names and
the subsets they denote are:

BOOLEAN

INTEGER
OCTAL

REAL
FUNCTIONAL
SYMBOL

type ARRAY

Truth value data, rzpresented by
TRUE and FALSE. The empty
list (), the atom NIL, and the
Boolean value FALSE are re-
garded as synonymous.
Signed integers.
Another form of integer, basic-
ally regarded as unsigned, that
prints in an octal output format.
Floating-point decimals.
LISP 2 function.
The entire set of S-expressions.
Strings and identifiers must be of
this type.
An array whose elements are of
the specified type, where type is
either BOOLEAN, INTEGER,
OCTAL, REAL, FUNCTION-
AL, or SYMBOL.

The different data types are not mutually exclu-
sive, in that the class of data of type SYMBOL in-
cludes all other classes of data. Except for SYM-
BOL, all of the data classes include atomic data only.

Expressions

An expression is a designation of a datum. The
datum designated by an expression is the value of
the expression. The elementary components from
which expressions are built up are constants, vari-
ables, and operational forms. We shall first discuss
these, and then show how they are combined to form
more complex expressions.

Constants. A constant is a datum appearing in a pro-
gram context that denotes itself, i.e., its representa-
tion is both its name and its value. Consequently, a
constant cannot change value during the execution
of a program. A symbolic constant is denoted by a
quoted S-expression. In SL, an S-expression is
quoted by preceding it with a prime, e.g., 'ALPHA
or '(Ll L2). In IL, an S-expression is quoted by pre-
ceding it with QUOTE in a list, c,g., (QUOTE
ALPHA) or (QUOTE(L1 L2)). Quotation is neces-
sary for identifiers and lists to prevent them from
being interpreted as variables or operational forms.

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 665

Variables. A variable is also an elementary dcsigna- variablc indicates whether a value or a location of
tion of a datum. Howcvcr, the value of a variable a value is bcing passed. If a location is bcing passed, C . may be chanzcd during the execution of a program. then the transn~ission mode is said to be locative;
A variable is nornlally denoted by a single idcntificr. otherwise the transmission modc is said to be by
Associated with every variable is a collection of bind- value.
ings, each of which is a location containing a value.
Bindings are created by declarations, which may ap-
pear in blocks, in functions, or on the supervisor
level (see below). Blocks and functions are the two
different kinds of program units. At execution time,
a program unit may be activated either by the super-

Operational Forms. An operational form is used to
apply a function to its arguments, to invoke a macro
transformation, to alter thc Row of a program, or to
locate an elemcnt of an array. An operational form
in SL is written:

visor or by another program unit; thus there is a f k , e2,. . . , en)
hierarchy of active program units. where f is the form operator and the e, are its oper-

When execution of a Program unit commences, a ands. In IL the operational form is written as:
binding is created for each variable declared by the
program unit. When execution of the program unit (f e, e,. . .en)
is completed, these bindings disappear. Thus, each
active program unit has a set of bindings associated
with it, and the hierarchy of bindings corresponds to
the hierarchy of active program units, In general, the
value of a variable is the value attached to the most
recently created and still existing binding of that
variable. It is possible to use an assignment action to
change the value associated with the current binding
of a variable.

Associated with every variable is a type, a storage
mode, and a transmission mode. The type of a vari-
able restricts but does not necessarily determine the
types of the data that are its values at different times.
In particular, a variable whose type is SYMBOL
may assume values of any type whatsoever.

There are three storage modes for variables: fluid,
owi.1, and lexical. A fluid variable can be referred to
from outside the program unit that binds it, while a
lsxical variable cannot. Thus, fluid variables are
more general but are also more prone to conflicts of
names. Ruid variables are primarily used as a means
of communication among separately compiled pro-
grams. An own variable is like a fluid variable except
that only one binding can exist for it, and that bind-
ing must be made by a supervisor action. Own vari-
ables are designed primarily for communication with
non-LISP 2 programs.

A variable may designate a datum either directly
or indirectly. If the variable 'designates the datum
directly, then it designates the actual value of the
datum; if the variable designates the datum indi-
rectly, then it designates the location in which the
value is stored. This distinction is significant chiefly
when a datum is being passed as an argument to a
function;. the transmission mode of the argument

If the form operator designates a function, then to
obtain the value of the operational form, the oper-
ands are first evaluated, and then the function is ap-
plied to the values so obtained. An array is handled
similarly; the subscripts are treated as arguments of
a function that finds the desired element of the array.

Each function has associated with it a value type
and a set of argument types. Any argument that is
not of the expected type is converted to that type
when the conversion is legal. The value type re-
stricts the type of the result of the evaluation in the
same way that the type of a variable restricts the
values that the variable may assume.

In general, the order of evaluation of the operands
of an operational form is not guaranteed. This is a
departure from most other problem-oriented lan-
guages, but leads to improved compiled code. Also,
with the advent of parallel processing computers it
may be desirable to have several arguments evalu-
ated simultaneously. If evaluating an operand has
any side effect on the evaluation of any other oper-
and, then the results of the evaluations will be un-
predictable. However, the operator ORDER applied
to an operational form will cause the operands to
be evaluated in order of appearance.

Macros may be used to effect transformations of a
program after it has been translated from SL to IL
and before it has been compiled, When a macro
name appears as a form operator, the effect at com-
pile time is to cause the entire operational form to
be replaced by a new form. The new form is calcu-
lated by o function associated with the macro; the
;irgument of this function is the 1L version of the op-
erational form. Much of the task of compilation is

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 667

sion, rt block statcmcnt, or a compound statcnlcnt vnluc, dcpcnding on the typc, is used. A block decla-
,' dcpcnds on both the contcxt of the block and what is ration causcs all the spccificd variablcs to bc intcrnal

, contained within the block.
in SL, a block is written in thc form:

BEGIN d,; d,; . . . d,; s,; s,; . . . s,, END

paramctcrs of the block and to have the propertics
spccificd by the p i .

In IL, cach declaration specifics thc properties of
one and only onc variable; thus, in the translation

wherc the d, are block declarations and the Si are from SL to IL, it is necessary to break up cach dcc-
statements. Each block declaration specifies one or laration that declares more than one variable into a
more internal parameters, which are variables that sequcnce of declarations (with appropriate factoring
are bound while the block is active. The correspond- of properties). An IL declaration is in the form:
ing form in IL is:

(BLOCK(d, d, . . . dk) s1 s, . . . s,,) where one of the properties is the initial value, if any.
A statement is an action to be taken. Any expres- The various types of statements and their effects

sion (other than a variable) can be used as a state- may be summarized as follows:
ment, but not evcry statement can be used as an ex-
pression. When an expression appears in a context
where a statement is expected, the expression is eval-
uated, but the value is discarded. A statement may
have one or more labels associated with it; these are
referred to in GO statements (see below) and in-
dicate where to transfer control. Variables can not
be statements because of the conflict with labels.

When evaluation of a block begins, bindings are
simultaneously created for each internal parameter
specified by a block declaration. These bindings re-
main in existence until the evaluation of the block is
completed, at which time they disappear. Each bind-
ing contains a value for the variable that it binds.
The nature of the binding is specified by the block
declaration that creates it. After the bindings have
been made, execution of the statements in the block
begins. The statements are executed in turn unless
the sequence of control is altered by a GO statement
or by a RETURN statement. Execution of the block
is terminated either by executing a RETURN state-
ment or by executing the last statement of the block
without a transfer of control.

A block declaration in SL is in the form:

1. GO statement-transfers control to the named
statement.

2. RETURN stutement-terminates evaluation of
a block and determincs the value of a block expres-
sion.

3. Compound statement-permits the insertion of
a sequence of statements in a context where only a
single statement is expected. A compound statement
is in the form of a block with no declarations.

4. Conrlitionul statement-sclccts one of several
possible statements to be executed on the basis of
the truth or falsity of a sequence of Boolean expres-
sions.

5. Simple expression-causes the evaluation of
the expression; the value is discarded.

6. FOR statement-causes an iteration to be per-
formed for a sequcnce of values of a named variable.

7. TRY statement-causes control to be returned
to itself if an exit condition is detected during the
execution of a statement within the TRY statcmcnt.

8. Block statement-like a compou~ld statement,
except that internal parameters may bc dcclarcd in
the same manner as in a block expression.

PI P2 Pa S1, Sz, . . -, St, 9. CASE statement-selects one of several pos-
sible statements to be executed on the basis of the

The pi consist of a type, a storage mode, and a trans- value of an integer-valued expression.
mission mode (in any order). Lexical storage and 10. Empty statement-can be used to place a
transmission by value are specified by omission; if label; contains nothing and makes no action.
the type is omitted, a default type is used. If all pi
are empty, the symbol DECLARE must be used. The FOR statement has some unusual features
Each of the s, is either the name of a variable or in that merit further discussion. The statement:
the form:

v + e F O R v I N x D O s

where e is an expression giving an initial value for causes the statement s to be executed for each ele-
the variable v. If no initial value is given,' a default ment of the list x, with v assuming the succrssive

C

668 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

elements as its value in each execution of s. If ON
is used instead of IN, v first assumes as values the
entire list x, then its succcssive terminal segments
CDR x, CDDR x, etc., until the list x is exhausted.
The clause:

UNLESS b

may be inserted as part of a FOR statement to in-
hibit execution of the statement s whenever the
Boolean expression b is TRUE. The UNTIL clause ,

of ALGOL, used in conjunction with STEP, is re-
placed by a relational operator and an expression;
iteration continues until the variable of iteration no
longer satisfies the specified relation. This approach
avoids the need to recompute the sign of the incre-
ment for each iteration.

Functions

A function definition is a specification of a com-
putational procedure; the procedure itself is a func-
tion. A function definition in SL is in the form:

t FUNCTION n (xl, x,, . . . , x,) ; dl, . . . dr; e

where t is the type of the value of the function, n is -
the name of the function, the xi are dummy variables
that stand for its arguments, the d l are declarations
governing the arguments, and e is an expression
whose value is the value of the function.

The corresponding form in IL is :

routine; the input is the function to be integrated,
and the output is the integrand. An example oriented
more closely to symbolic data processing would be
the use of the LISP function MAPCAR, whose argu-
ments are a list to be transformed and a transforma-
tion function. The output of MAPCAR is the trans-
formed list. Thus

MAPCAR ('(2 5 4 9) , FUNCTION ADDER
(J) ; INTEGER J; J+2)

would evaluate to the list:
(4 7 6 11)

Since a function is itself a datum, it can be used
in any context where a datum is expected. Thus,
functions can themselves be used as arguments of
other functions, and functions can be values of vari-
ables. A function can be designated by its definition,
by its name, or by a variable having the function as
its value.

There are two contexts in which a function may be
referenced-as a datum, as we have just said, and
as a form operator. When a function is used as a
form operator, it must be designated either by a
functional variable (i.e., a variable whose values are
functions) or by a function name. The effect of using
a function definition as a form operator can be
achieved by assigning the function definition to a
functional variable (which is legitimate, since the
function definitiori then appears in a data context)
and then by using the functional variable as the form
operator.

(FUNCTION (n t) (dl dz . . . dk) e)
Functions of an I n w n i t e Number of Arguments. It

where a declaration is given for each argument. Thus is possible to define functions that expect an indefi-
the not give the properties of the nite number of arguments, In defining such a func-
arguments but name If the of tion, there is no way to enumerate the names of the
the function is omitted, then the name can be writ" arguments; therefore an argument vector, i.e,, a one-
ten without parentheses and the default type will be dimensional array having a single variable name v,
used.

The argument parameters are used to denote the
values of the actual arguments within the body of the
function definition. The body of the function defini-
tion e is the expression that defines the value of the
function. The argument declarations specify the type,
transmission mode, and storage, mode of the argu-

4

ments.

Functional Data. A function may be used in either of
two ways: as an operator or as a datum. We have
already seen how functions can be used as form
operators. An example of the use of a function as a
datum would be the input to a numerical integration

designates the set of arguments. The length of the
vector is specified by a second variable k. In the
argument list, the argument vector (which must be
the first argument) is designated by writing v(k) in
SL and (V INDEF k) in IL. When the function is
entered, the value of v is the vector of arguments,
and the value of k is the length of this vector. The
different elements of the argument vector can then
be referred to within the body of the definition by
subscripted occurrences of v.

For example, the function SUMSQUARE might
be written to take the sum of the squares of its argu-
ments. We would then define it in SL as follows:

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 669

REAL FUNCTION SUbISQUARE(X(1)) ; Sir per visor Level Operat iorls
BEGIN INTEGER J; REAL Y ;

FOR J c l STEP 1 UNTIL > I DO LISP 2 is controlled by a supervisor program that
YcY + X(J)T2; is itself named LISP and that can bc called as a

RETURN Y function. When thc user starts up the LISP system,
END the supervisor is called immediately. The supervisor

accepts commands to perform various operations.
Here X is the argument-vect0r Parameter and I is The actions taken by the supervisor in response to

its length. The corresponding IL definition is: these commands are known as top-level operations.
%(FUNCTION (SUMSQUARE REAL) ((X The following top-level operations are possible :

INDEF I))
(BLOCK ((J INTEGER) (Y REAL)) 1. Evaluate an expression

(FOR J (STEP 1 1 GR I) 2. Establish a current section with given
(SET Y(PLUS Y (EXPT (X J) 2)))) name and default type

(RETURN Y))) 3. Create a fluid or own variable of speci-

An actual use of SUMSQUARE might look like: fied type aqd transmission mode
4. Define a function

SUMSQUARE (2, 7, 4) 5. Define a dummy function (used to
in SL, and: establish type information in certain

(SUMSQUARE 2 7 4)

in IL.

Sections

A section is a collection of declarations and defini-
tions that operate as a unit. Dividing a large program
into sections makes it possible to write different parts
of the program independently without name conflicts.
It also makes it possible for one user to refer to pro-
grams written by another user without name con-
flicts. A section is designated by its section name,
which is an identifier. Each section is associated with
a set of variables that designate the various entities
defined within the section. At any given time there is
a single active section, which is known as the current
section; all other sections are external sections. A
variable in a particular section, whether current or
not, can be referred to by tailing (often called "quali-
fying") e.g., "JOE$SAM" refers to the variable JOE
in section SAM.

The section mechanism permits parts of LISP 2
programs to be written and checked out independ-
ently. At merge time, attention need be paid only to
variables used for names of common functions and
communication variables. Since the system programs
are in a special section, the user need not worry
about name conflicts; at the same time, the system
programs are accessible to the user through the tail-
ing mechanism. Thus the user can, if he chooses,
treat the system programs as an extension of his own
program rather than as a black box,

(

cases)
6 . Define a macro
7. Define an instruction sequence to be

used in compilation
8, Define an assembly-language program
9. Declare a variable to be synonymous

with another variable.

The user can specify the input and output devices
to be used; the on-line typewriter is taken as the de-
fault case. After each operation the system sends
any necessary output to the output device and pro-
ceeds to the next operation.

Input/Output. One of the primary design aims in
LISP 2 1/0 has been the maintenance of as much
machine independence as possible. This is accom-
plished by distinguishing user interfaces from system
interfaces and insulating the user from the system
interfaces. This effect is achieved by creating ma-
chine-independent data aggregates called "files," and
permitting the user to operate with files by means of
LISP 2 functions.

To the user, a file is a source or sink for informa-
tion, which is filled on output and emptied on input.
A file itself is both device- and direction-independ-
ent. The relationship of a file to an external device
is determined by the user at run time, when he
specifies whether the file is to be an input file, an
output file, or both.

To the system, a file consists of a sequence of
records, represented internally as an array of type
OCTAL if the file is binary, and as a string if the file

670 I'ROCEEDINGS-FALL JOINT C OLI PUTER CONFERENCE, 1966

is conlposcci of characters. (ASCII 8-bit charactcrs
arc uscd inicrn:il/y tl~roughor!t LISP 2.) To reduce
b11fi'c.r S~OI-agc avclahe;ld, 011ly OIIC record for a given
filc can be in ni:lin rncmory at a timc. String records
arc further stn.uciiircd into lirlcs. Thc nurr~bcr of c11;lr-
actcrs pcr lint ;inL! lincs pcr rccorcl nl;ty be spccificd
by the 1isCr, b u t must bc: C O I ~ S ~ S ~ C I ~ ~ with the conven-
tions uscd by thc cxtornal monitor systcrn,

When a record in a filc is ~noved from an external
clcvicc irlto Core, it is ti-ansforrncd into a LISP 2
string. The trnnsfo1.nlatio11 may involve ch;iractcr
code ~onvcrsions and inscrtion or dclction of control
charactcrs. Thc trans for ma ti or^ is governed by a col-
lcction of control words associated with the file.
During output, this transformation, known as "string
post-processing," is reversed.

File Artivrctiorl l l~~cl Decictivation. A file may be ei-
ther active or in;ictivc; an active filc, in turn, may be
ciiher selectcd or dcselectcd. No record is kcpt within
LISP 2 of inactive files; however, many files may be
active concurrcntly .

A filc is activated by evaluating the function
OPEN which establishes all necessary comrnunica-
tion linkages between LISP 2 and the monitor. The
filc is nan~ed by an identifier that is its referent
throughout its ;~ctive life. The user further specifics
thc desired file description at this time, This descrip-
tion is given only once and consists of a list of file
propertics dcsircd by the uscr, such as the unit (tape,
disc, teletype, CRT, etc.), form (binary, ASCII,
BCD, etc.), format (line and record sizes), and vari-
ous protection and identification parameters.

Deactivation of a file is achieved by evaluating the
function SHUT. SHUT breaks all the comxnunication
linkages and dclctcs all internal structures such as
arrays, strings, and variables that were dynamically
established by OPEN. The uscr may specify thc dis-
position of the file, e.g., the saving of the tape or the
insertion of the file in disc inventory. The external
monitor is informed of such actions by LISP 2.

File Seiectiotz. At any given time, exactly one file is
selected for input and one for output; all other active
files are deselected. The LISP 2 reading functions all
operate on the currently selected input file; the print-
ing functions all operate on the currently selected
output file. The functions INPUT and OUTPUT are
uscd for selecting the input file and the output filc,
rcspcctivcly.

Whcn a new filc is selectcd, the record, line, and
colun~n controls for the dcselccted (replaced) filc are
preserved, and the new file record, line, and column

controls arc rccst;lblishcd. Once a filc is sclcctcd, all
1/0 prinlitivcs 3ct i>llly on that filc. Thus i t is pos-
sible to write a LISP 2 progr-an1 that is indcpcndcnt
of form, format, rind cIcvicc by supplying the nnmc of
t l~c iile :is an :ir'gurncnt of the progranl at run timc.
This schcn~c :~llo\vs a LISP program to bc debugged
wit11 files gc~;cr;itcd on-line and subsequently run
with bulk dat:i from tape or disc files simply by
changing the sclcctcd file.

O f l ~ ~ r I /O F u r l c t i ~ t l ~ . A variety of I /O functions arc
available for rcading and writing binary and syn~bolic
data. 'Therc are character-level primitives that permit
testing, printing, rcading, and transforming char-
acters. Other functions allow reading and printing at
the token and S-expression levels. Character map-
pings permit LISP 2 to communicate with restricted
character-set devices.

Examples

An example is now given of a complete SL pro-
gram. The example includes not only the program
itself but also the control actions necessary to test it:

SYMlt3OL SECTION EXAMPLES, LISP;
96 LCS FINDS THE LONGEST COMMON SEG-
% MENT OF TWO LISTS L1 AND L2
FUNCTION LCS(L1 ,L2); SYMBOL L1, L2;

BEGIN SYMBOL X, Y, BEST t NIL; INTE-
GER Kt-0 , N, LXcLENGTH(L1);

FOR X ON L1 WHILE LX > K DO
BEGIN INTEGER LY t LENGTH (L2);

FOR Y ON L2 WHILE LY > K DO
BEGIN N c COMSEGL (X,Y);

IF N < = K THEN GO A;
K t- N;
BEST c COMSEG (X,Y);

A : E Y t L Y - 1
END;
L X +- LX - 1

END;
RETURN BEST;

END;
% COMSEGL FINDS THE LENGTH OF T H E
% LONGEST INITIAL COMMON SEGMENT
% OF
% TWO LISTS X AND Y.

INTEGER FUNCTION COMSEGL (X,Y);
IF NULL X OR NULL Y OR CAR X /=

CAR Y
THEN 0 ELSE COMSEGL (CDR X, CDR

Y) + 1;

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM

% COMSEG FINDS THE LONGEST INITIAL that stands for the LISP function CONS. The state-
% COMMON SEGMENT OF TWO LISTS X ment "FOR X ON L1" causcs iteration to take
% AND Y place on the -successive tcrminal segments of L1.

SYMBOL FUNCTION COMSEG (X, Y); Thus, if L1 is the list (A B C D), then iteration takes
I F NULL X OR NULL Y OR CAR X /= place successively on (A B C D), (B C D), (C D),

CAR Y and (D). The function LENGTH, defined here, is
THEN NIL ELSE CAR X . COMSEG(CDR available as a system function and is redefined only

X, CDR Y); as an illustration.
% LENGTH COMPUTES THE LENGTH OF L

INTEGER FUNC~ION LENGTH (L); - SYM- THE PROGRAMMING SYSTEM
BOL L;

BEGIN INTEGER K e 0; SYMBOL L1; System Overview

F O R L 1 I N L D O K + K + l ;
RETURN K;

END;
LCS (' (A B C B C D E) , ' (B C D A B C D E F)) ;

STOP
machine: (B C D E)

This example illustrates the use of list processing
capabilities combined with integer arithmetic and
iteration. The operator "< =" means "less than or
equal to," and the operator "/=" means "not equal
to." The LISP operators CAR, CDR, and NULL are
all used as prefix operators without parentheses. The
dot in the third line of COMSEG is an infix operator

A diagram of the LISP 2 system which shows the
relationship among its different components is
shown in Fig. 2. Information enters the system via
the 1/0 package in either SL or IL. The 1/0 pack-
age transforms the input into a stream of characters
-the input to the finite state machine-which in
turn generates a stream of tokens. Among other
things, the finite state machine performs the task of
linking up a newly received identifier with a previous
copy of the same identifier. The token stream pro-
duced by the finite state machine is routed by the
supervisor to either the syntax translator or to a
reading program for IL, depending on whether SL
or IL is expected. In either case, the result is an ex-

SHARIIG

pE%ziE'

Figure 2. System components and information flow paths (unlabeled connections designate control paths).

PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

pression in IL. The supervisor determines when 4. Nunlerical data must be stored in such
compilation is to take place, and also handles proc- a way as to pcrmit efficient numcrical
essing requests. calculations.

. Thc syntax translator takes a strcam of SL tokens
and transforms it into an IL expression. This expres-
sion can be returned as output, passed to the com-
piler, or both. The choice is made by the supervisor
under the control of the user. The syntax translator
consists of parsing and generating progranls that are
compiled from a set of syntax equations. Thcse syn-
tax equations define SL in terms of IL.

The compiler, which is the most complex compo-
ncnt of the system, converts IL into input for LAP,
the LISP Assembly Program, or for the core image
generator. Both LAP and thc core image generator
accept input in assembly language (AL). If LAP is
being used, then the result of assembly is a relocat-

. abIe segment of code stored in an area of the ma-
chine reserved for binary program. If the core image
generator is being used, then the result is a string of
pairs of binary numbers, each consisting of a core
location and the contents of that location, stored on a
magnetic tape or other external medium. The core
image generator is only used when a new system is
being created.

The META compiler, the garbage collector, and
the primitives are all implicitly involved in the opera-
tion of the system. The META compiler is a library
program that generates a syntax translator from a
set of syntax equations. The garbage collector is the
program that collects dead storage when available
storage has been exhausted. The primitives are the
basic library functions in terms of which the entire
system is written.

Memory Management

Most of the concepts of memory management
used in LISP 1.5 are also used in LISP 2. Memory
management in LISP 2 is based on several consid-

' erations:

1. LISP 2 data structures may vary in
size by orders of magnitude at run
time, and storage for such data struc-
tures must be allocated automatically.

2. , Since recursion is permitted, successive
generations of data structures must be
retained simultaneously.

3. Programs and data structures that are
no longer needed must be purged with-
out explicit action on the part of the
user.

LISP 2 data structures may bc cittlcr variable or
fixed in size. Thc variable data structures are arrays,
strings, and symbolic cxprcssions. Although an array,
oncc established, does not change in size, the size of
an array is frequently not known until the occasion
arises to create'it. In the case of list structures, the
situation is even more complex; a list structure may
be modified in such a way as to increase or decrease
its size.

Arguments of functions and internal parameters of
blocks are stored on a pushdown stack. Since all
temporary storage belonging to LISP 2 functions is
recorded on the pushdown stack, which is main-
tained by the LISP 2 system, recursion is permitted
with no special user provisions. Unlike LISP 1.5,
LISP 2 stores numbers directly on the pushdown
stack as single cells. Therefore, it is possible to per-
form arithmetic without the loss of efficiency that
would arise from packing and unpacking numbers
referenced indirectly. Symbolic expressions, strings,
and arrays, however, are accessed by means of
pointers stored in the stack. The data structures thus
pointed to are discarded when the function creating
them has completed its execution; however, they do
not disappear, but remain as garbage until the next
garbage collection, the description of which follows.

In LISP 2, data structures are grouped according
to their storage characteristics and a storage area is
set aside for each group. The groups are:

1. Elementary symbolic entities (symbolic
constants, function and variable names,
etc.)

2. Compiled programs
3. List structures
4. Arrays and strings

In addition, a storage area is set aside for the
pushdown stack. These storage areas are arranged in
pairs, where one member of the pair grows from the
bottom up and the other grows from the top down.
Data storage is obtained by taking storage space from
the appropriate area until that area is exhausted
(which occurs when its boundary meets the boundary
of the area that is paircd with it). At this point, the
garbage collector is invoked. Gnrbagc collection
erases all inaccessible data structures and reclaims
the emptied space for new structures. For instance,
if a LISP 2 function has been redefined, the program

/
4

I

THE LISP 2 PROGRAMMING LANGUAGE A'NW SYSTEM

corresponding to its old definition is inacccssiblc and
thus is crascd. During garbage collection, the diffcr-
cnt arcas arc compacted, relocating code and/or data
structures, if necessary, so as to eliminate the gaps
left by erased structurcs.

The differcnt kinds of structures are stored in
different areas because their requirements in terms
of garbage colIection are different. For instance, the
elementary symbolic entities cannot be moved, but
other kinds of data can be moved. Similarly, list
structures consist of independent nodes, while arrays

garbage collecting whcn the structurcs are discarded.
Conscqucntly, it is desirable to avoid backup at the
character level and its resulting re-creation of dupli-
catc structurcs. Sincc backup must bc used by the
syntax translator, the FSM was imposed between it
and the character stream to eliminate reprocessing of
tokens. Having the bottom-to-top FSM interface with
the top-to-bottom syntax translator eliminates a large
portion of the overhead associated with reading in
the LISP 2 system.' The S-expression rcader does not
require backup, but since the FSM existed, it was

consist of blocks of different sizes. convenient to use tokens for building S-expressions
also.

The Syntax Translator and
the META Compiler

The translation from SL to IL is performed by a
syntax translator that was generated by the META
compiler. The META compiler is based upon a pro-
gram developed by Special Interest Group for Pro-
gramming Languages of the Los Angeles Chapter of
ACM.S The META compiler takes as input a speci-
fication of the syntax of SL, together with instruc-
tions on how each syntactic entity is to be trans-
formed to IL. It produces an IL program that
actually carries out the translation from SL to IL.
The description of the syntax of SL is given in an
extended version of Backus-Naur Forme4

The META compiler produces top-to-bottom
compilers with a controIled backup feature and an
interface with the finite state machine (see below).
Both the controlled backup and the finite state ma-
chine are efficiency features. The controlled backup
allows the designer of a language to specify in the
syntax equations when the state of the machine must
be saved because two or more parsings start with the
same construction.

As it is possible to regenerate the syntax translator
with new syntax equations at any time, the syntax
and semantics of SL are not, in principle, rigidly
fixed. In practice, variants on the syntax translator
will be used in order to translate other languages into
LISP 2 IL. These other languages, unlike SL, will
normally not be semantically equivalent to IL.

Finite State Machine

The finitc state machine (FSM) is a token-parsing
program used by the syntax translator and the S-
expression rcader. Reading LISP 2 entities is ex-
pensive, not only in the original creation of the

#J'--
internal structures, but also in the time spent in

(+

The FSM behaves like a Turing machine. It moves
from state to state as it reads characters; when a
terminal state is reached, it "prints" a charactcr from
its output alphabet (tokens) and sets its state to the
initial one. Parsing and manufacture of structures are
done sin~ultaneously as characters are recognized.
No reprocessing of the parsed characters is ever nec-
essary, since in a terminal state the token is already '

complete (except for a final action, such as combin-
ing the parts of a real number). t

The LISP 2 Compiler

The LISP 2 compiler is a large, one-pass, optimiz-
ing translator whose input is a function definition in
IL and whose output is an assembly-language list of
instructions suitable for input to LAP. Most of the
compiler is independent of the target machine, since
the compilation concepts themselves are machine-
independent. The declarations of all fluid variables
appearing within the function are written into the
output listing, since these must agree with fluid vari-
able declarations made elsewhere. Checks are made
for both format and semantic errors during compila-
tion. The compiler consists of three major sections:
the analyzer, the optimizer, and the user control
functions.

Analyzer. The top-level control of the compiler re-
sides in the analyzer, which operates recursively.
Each item to be compiled is passed to the analyzer
either directly or indirectly. If the item is a variable,
an appropriate declaration is found and code for
retrieving the variable is generated; otherwise the
code for a function call is generated, a macro expan-
sion is performed and the result compiled, or linkage
to an appropriate code generator is made. A pattern-
matching function has been implemented for use in
the LISP 2 compiler. The patterns are written in a
modified form of Backus-Naur Form (not the same

674 PROCEEDINGSFALL' JOINT COMPIJTER CONFERENCE, 1966

3s t h ~ one U S C ~ in the syntax translator). T'he pat- thc entire expression. Analogous considerations hold
tcms arc matched to an S-expression and the value of for conditional statements. Confluence points arc also (..- "/ mntch is cithcr TRUE or FALSE. The pattern- hereditary with respect to RETURN statements of
nlatc]ling function checks for syntactic correctness blocks, i.e., the confluence point of a RETURN

distinguishes atnong different forms at the same statement is the same as that of the block in which it
time. appears.

Optimizer. Optimization of the code produced by the
LISP 2 compiler is handled by many groups of
routines, each responsible for certain actions. The

, communicative mechanisms between these various
parts and the rest of the compiler will be described in
some detail below.

The movers, a highly machine-dependent set of
functions, produce code that alters the state of a
compilation in a specified way, such as moving an
object to an accunlulator or converting a datum to a
specific type. Embodied in the movers is a predicate
capability that answers the question, "Is this move
possible under these conditions (say, one machine
instruction)?" The movers are used to build all ad*
dress and modifier fields of generated instructions.
Associated with the movers is a post-processor that
rewrites the output code after the main compiler has
produced it. ' Redundant load-store sequences and
some unnecessary branches are removed from the
listing. Also, certain groups of instructions are re-
written to make use of machine-specific instructions.

The arithmetic optimization package handles code
generation for addition and multiplication. The algo-
rithm that is used is a standard one, namely, first
sorting the arguments by type and then by priority
sequence within a particular type. The sequence de-
pends on whether the arguments are memory or ac-
cumulator references. A single set of functions
handles both multiplication and addition, with the
aid of several functional arguments.

A second kind of optimization has to do with the
elimination of unnecessary transfer instructions. This
task is accomplished through the analysis of conflu-

When an expression is compiled, the character-
istics of the value that is produced must be specified.
These characteristics include type, whether it is in a
special register or in an ordinary memory cell, its
address modifier (direct or indirect), which registers
it may be left in, whether the actual value is needed
or whether the negative or reciprocal of the value is
so described, etc. These characteristics are remem-
bered by a set of state variables, which are bound
for each call to the analyzer. As a statement or ex-
pression is compiled, a listing is generated and the
state variables set to reflect the state of the compila-
tion. The compiler is passive in the sense that a com-
pilation produces only the minimum amount of code
necessary to allow the result to be described by the
state variables.

User Control Facilities. The user can give the com-
piler explicit instructions to aid in the compilation
process. As in LISP 1.5, macros are an integral part
of the language. Many of the facilities of the lan-
guage, e.g., FOR statements, are implemented by
means of system macros. When a FOR statement (in
IL form) is encountered during compilation, it ap-
pears as an operational form whose operator is FOR.
Thc compiler tests each form operator to see if a
macro is defined for it. In the case of FOR, there is
such a macro. The macro is invoked with the FOR
statement (in the form of an S-expression) as input.
The output is a block containing an equivalent itera-
tive loop. This block is then compiled in place of the
FOR statement. Macros may also be defined by the
user, and no distinction is made between system
macros and user macros.

ence points, i.e,, places in the program at which Certain machine-dependent operators are partic-
several paths of control converge. For instance, con- ularly useful as primitives in compilation. CORE is
sider the conditional expression: an operator that acts like an array whose content is

(IF P i el pz % . . . PI, en)
all of the machine memory. Therefore CORE(x) is
the content of location x. BIT is an operator that

The appearance of this conditional expression specifies a certain contiguous portion of a word.
establishes a confluence point at the end of the corn- There are also several operators that permit an ex-
piled code that represents it. After the execution of pression to be forced to a certain type or permit a
any of the e,, control goes to this confluence point. datum of one type to be used as though it were of
Moreover, the confluence point is hereditary for each another type. Although such mechanisms exist in
of the e,, i.e., if one of the e, is a conditional expres- most compilers, LISP 2 has made these items avail-

(--
siun, then its confluence point is the same as that of able through the language.

THE LISP 2 PROGRAMMING LANGUAGE AND SYSTEM 675

The LISP 2 Assembly Program

The LISP 2' Assembly Program, LAP, is a pro-
gram that generates a code segment from a list of
symbolic instructions and labels. LAP also allocates
storage for variables on the pushdown stack, and
insures that references to fluid and own variables are
consistent among different compiled functions. LAP
does more than most assemblers, in that it handles all
aspects of pushdown stack mechanics; consequently,
references to variables are made by naming the vari-
able in the appropriate field of any instruction that
references it. Thus, the pushdown stack need never
be referenced explicitly.

LAP includes a number of system macros specifi-
cally designed for LISP 2 programming. The pro-
logue and epilogue of a function are generated by
BEGIN and RETURN respectively; CALL is used
to generate a call to a LISP 2 function in the stand-
ard format. Storage allocation on the pushdown stack
is performed by the BLOCK, DECLARE, and END
macros; FLBIND creates any necessary bindings for
fluid variables. LAP does not have a generalized
macro facility; any effect that could be achieved by
such a facility, however, can also be achieved by
preprocessing.

The address field of an instruction may be used to

(ARGS)
(LDA Y)
(STF PUSHA.)
(LDA (NUMBER 671 05864) S)
(CALL (REMAINDER . LTSP))
(STF Y)
(LDC A)
(FAD B)
(STF PUSHA.)
(LDA Y)
(FLT (ENTRY B4 8 .))
(FDV (NUMBER 6.7 108864000E-7))
(FMP POP.) (FAD A) GO901 7 (END) (RE-

TURN))
(((REMAINDER . LTSP) FUNCTION) (FUNC-

TIONAL INTEGER INTEGER INTEGER)
NIL) (Y OWN INTEGER NIL)) USER)

ACKNOWLEDGMENTS

allocate, refer to, or release temporary storage on the
pushdown stack. The address fields TOP. and POP.
are normally used with instructions of the "load"
type. Both TOP. and POP. refer to the most recently
allocated pushdown cell, but POP. has the additional
effect of releasing that cell. PUSHA. and PUSHP.
both cause a new pushdown cell to be allocated, and
refer to that cell; PUSHA. and PUSHP. are normally
used in instructions of the "store" type. PUSHA, is
used for absolute quantities and PUSHP. for sym-

LISP 2 is being developed jointly by Information
International, Inc., and System Development Corpo-
ration, with contractual support from the Advanced
Research Projects Agency of the Department of De-
fense. Personnel actively participating in this pro-
gram include:

bolic quantities, so &at a map of the pushdown stack
can be maintained.

To illustrate the use of assembly language, as well
as the output code produced by the compiler, we give
the Q32 assembly language version of the program
RANDOM presented as an example earlier in the
paper:

Dr. Paul W. Abrahams (111)
Mr. Jeffrey A. Barnett (SDC)
Mr. Erwin Book (SDC)
Mrs. Donna Firth (SDC)
Mr. Lowell Hawkinson (111)
Dr. Stanley L. Kameny (SDC)
Mr. Michael 1. Levin (111)
Mr. Robert A. Saunders (111)
Mr. Clark Weissman (SDC)

In addition, we wish to acknowledge the volun-
tary support and contributions received from Profes-
sor Marvin Minsky and his associates at MIT, Pro-
fessor John McCarthy and his associates at Stanford
University, Dr. Daniel G. Bobrow of Bolt, Beranek
and Newman, and many others.

(LAP (FUNCTION (RANDOM REAL) REFERENCES
((A REAL) (B REAL))
(STF TOP.) 1. M. Lcvin, "LISP 2 Primer," SDC Document
(BEGIN) TM-2710/101/00(July15,1966),
(LDA Y)
(MUL 3125 (L567.7 R S)) 2. T. Abrahams, "LISP 2 Reference Manual,"
(ST& Y) SDC document in preparation.

676 PROCEEDINGS-FALL JOINT COMPUTER CONFERENCE, 1966

,-- 3. M. I. Levin, LISP 1.5 Programmers Manual. for String Transformation," in "The Programming
MIT Prcss, Cambridge, Mass., 1962. Language LISP," Information International, Inc.,

4. "Revised Report on the Algorithmic Language Cambridge, Mass, 1964, pp. 161-90.
ALGOL 60," Conzm. ACM, vol. 6, no. 1, pp. 1-17 7. "ALGOL algorithm #266," Comm. ACM,

' (1963). vol. 8, no. 10, 'p. 605 (1965).
5. V . Yngve, COMIT Reference Manual, MIT 8. D. V. Schorre, "META 11, a syntax-directed

Press, Cambridge, Mass., 1962. ' compiler writing language," Proc. ACM, p. D l .3-1
6, D. G. Bobrow, "METEOR, a LISP Interpreter (1964).

(I.

	LISP 2 Paper.tif
	LISP 2 Paper1.tif
	LISP 2 Paper2.tif
	LISP 2 Paper3.tif
	LISP 2 Paper4.tif
	LISP 2 Paper5.tif
	LISP 2 Paper6.tif
	LISP 2 Paper7.tif
	LISP 2 Paper8.tif
	LISP 2 Paper9.tif
	LISP 2 Paper10.tif
	LISP 2 Paper11.tif
	LISP 2 Paper12.tif
	LISP 2 Paper13.tif
	LISP 2 Paper14.tif

