e

@

ﬂ%\

DRAFT
5. L. KAMENY
30 September 1965

INTERNAL STORAGE CONVENTIONS FOR Q-32 LISP II

1. GENERAL ORGANIZATION OF CORE STORAGE

The general organization of core storage in LISP II is, as shown in Fig. 1,
composed of seven different areas called Fixed Program Space, Character Atoms,
Triples, Pushdown Stack, Binary Prograﬁ Space, Array Space, and List Space.
The pushdown pointer, PDP, kept in index register 8, together with a set of
fluid variables, defined in section SYS, serves to define the current core map
at any point. Each of the fluid variables is of type OCTAL and contains a
core address whose meaning is shown in Fig° 1. The core address contained in
each variable is just higher than the corresponding boundary of the core map.
Thus, Fixed Program Space, which is built toward higher addresses, starts at

location FPO and extends to the cell just lower than the locaticn FFPP.

Similarly, the Pushdown Stack, which is built towards lower addresses, starts

at the addresa Just lower than location BPO, and extends approximately to the
location ;DP. The boundaries ¥PQ, CHO and TRO are fixed in the system and
cannot be changed except by reassembling the entire system. Garbage collection
reclaims Triple Space, Array Space, and List Space, and repacks Array Space and

Ligt Space. Binary Program Space is also reclaimable and reusable.

FPO—= Fixed Program Space
Fe—>{ T S T T T

) FA S ’ :(;/ /"/
CHO——== Character Atoms
TRO ——=| Triples J,]
TRP v rg 7 //' /! o / ,

i 7 ’ K / ,.:‘;/
~ : YA A,
kY
Pushdown Stack

BPO-—2

ARO——=>
ARP.._...W;;. / //) ,1‘7) > 7
VA A
S o ‘

Lso--—-->-/ V4

FLUID variable in
section S8YS

p<———fixed program pointer

e character origin

~<———+triple cell origin

se—————triple cell pointer

|e=——— pushéown pointer (PDP)

(Index Register §)

Binary Progrsm Space

pez————binary progrem origin

BPP ~———>{ / N !,/ /r E A binary program pointer
& e & 3 e & / S
£ Vi / 'j' ’
3"’ ¢ ‘ /(‘ d
!v // o~

Array Space

. TYTRY Space origin

i
j/‘ ¢ ;/(;’ 2 ;"- J)

e ——array space pointer

List Space

haz—-—-118t space pointer

77 77777
High addresses outside /
of LISP II f

/e———1ist space origin

V /4 [/]y VZ//J

Fig. 1 LISP II Core Allocation

emem—fixed program origin

2, CORE AREAS

Fixed Progrem Space
Fixed Program Space, which starts at the fixed program origin (FPO) is used

to hold fixed, non-relocatable constants and subroutines. Only those essential
elements of the system which cannot be deleted should be put here, using IAP

with an ORG pseudo-instruction (see IAP IT memo for further details).

Character Identifier

Chareacter identifiers, which start at the character origin (CC) are all identi-
fiers whose print nsmes consist of & single charascter. The character whose
print name has the ASCII code aa is located at aa + CHO. The structure of &

character identifier is shown in Fig. 2.

Triple Space

Triple cell space, orgenized in groups of three cells, is used for the storage

of identifiers, fluid cells, own cells (including function descriptors) and
qno%e cells. Triple cell space starts at location TRO (immediately after the
character identifiers). The triple cell pointer TRP points to the first higher
address not occﬁpiud by triple cells. Within triple cell space, structures are
never moved, but 1f a triple cell is abandoned it is converted to an empty triple
cell and linked onto the (possibly empty) free-triple chain. A new triple cell
is taken fram the free-triple chain or if the free-triple chain is empty, the
triple cell is placed at the end of triple cell space, and the boundarvy TRO is

moved.

#7 | v-f-list t property
Tag list

t - 22 for alphabetic characters A-Z (identifier with standard spelling)

t = 32 for other characters (identifier with unusual spelling)

4

Fig. 2 Character Identifier

mm=====3 contents depends on type of structure first cell
V"“‘“‘i-?ﬁc 2&8 é second cell
link third cell

ro. of bits 6 | 18 6 - 18

~rm—meZ2e 1ink or symbol pointers

—.:::-..—% non-identifier reference from binary progran
space or formal array

Fig. 3 Triple space structure-
general

A triple space gtructure consists of three consecutive eells in memory, 88

ghown in Fig. 3. Polnters in general go to the aecond cell of & triple.
These pointers include the link pointer and symbol pointers. This is shown

by the single axrrov —p in the figure.

References to non-identifier triples from binary program sSpace, particularly
direct or indirect 1oed and store instructions and BUC indirect instructions
use the address of the first cell, as shovn by the double arrov =—=—=—>> of

the figure.

Triple cells other than quote cells are organized into a Pree-triple chain
plus a series of "wuckets.” The free-triple chein 1s a ehein of empty triples
pointed to from varisble TRL in section SYS. The chein is tied together
through the link pointer of the third cell, with NIL in the last link. BRach
non-empty "bucket” is a chain of identifiers of vhich the first identifier is
in (pointed to by) the OBLIST, s SYMBOL array in section SYS. The bucket 18

tied together through the link pointer.

Each identifier is tied through the v-f-chain pointer in the left half of 1its
second vord to a variable-and-function chain composed of those fluid cells and
ovn cells having it as a name. The vef-chain is a cirsular list strung by means
of the link pointer, with the last triple in the chain pointing hack to the
identifier. An identifier also contains a propertv-list pointer. The propert:-
list is by convention a 1list containing any mixture of flags and property pairs.
A flag is any atom, vhile a property pair is a dotted pair whose CAR is the propertyixﬁu

name (an atom) and whose CDR is the property value (any symbol).
The structure of buckets and v-f-chains is shown in Fig. k.

Quote cells, also contained in triple cell space, have no linked structure.

Genids, or generated identifiers, are generated by the function GENID of no
argumentes in section NIL. Genids have the same structure as identifiers except
that they have a genid indicator bit in the tag. They are strung in buckets
from GENLIST, & SYMBOL array in section 8SYS, instead of UBLIST. Genids are
produced by GENID with no p-name, i.e., the first word is all zero. The first
time that a specific genid is printed out, it is supplied a name by the function vjﬁ

GENPNAME in section SYS, and this name persists for the life of the genid.

Further detail on the contents of triple space is given in section k.

OBLIST &rray

OBLIST ——

—>>
—y buckets

; (empty
IO

jb'uc‘ket

bucket)

| propert;

+ 1ist
i

e el
x’"‘w
&= one bucket —_— 5.\
identifier identifier identifier
N property property
4 — ! I]
/ L~
A
v-f=list v-f-1list

v-f=list
for a single
identifier

containing fluid
cells and own cells

Fig. 4 Buckets and v-f-lists

Pushdown Steck

The pushdown stack and its organization are given in the 1AP II document.

Binary Program Space

Binary program space consists of a packed series of assembled functions each

of vhich consists of a header word, assembled code, and relocation information,

as shown in Fig. 5.

The size contained in the header word is the total length of the asssembled-
function, including the relocation information, vhich is packed from left to
right intoc a serles of words starting with the last word and working toward
the heeder word of the assembled function. The two bits refer to the left half
and the right half of words of assembled code, and refer to the assembled code
stax;ting with the first word and extending to the cell immediately preceding

the relocation information. The coding employed is the following:

means no relocation or count

1 means that if the address lles within this assembled-function
it is a mlocatgble address. If the addrees does not lie within this assembled-
function, then it points into triple cell space. The 1 in thig bit means t.hé‘t
the count in the triple is to be incremented when this assembled-function is
loaded and decremented when the function is excised. A triple is excised if its

count is zero and there are no symbol or locative references to it.

- —>>pointer to
PP | size |P1 function-descriptor

pointer from e

function-descriptor
f .

assembled code

Relocation
information

size = +total number of cells

Fig. 5 Assembled Function

Array Space

Array space is used to hold arrays, nuibers, and strings, of vhich the latter
two are regarded as a special case of array. The three structures are showmn
in Fig. 6. One-dinensional arrays containing n elsmentsc have size = n + 1.
The self-pointer, vhich is alweys contsined in an array header word, 1s used
by the garbage collector. Bit *'ah of the tag portion of the header is used
by the garbage collector for marking the erray structure curing garbage

collection, and t, = $ otnervise.

The neaning of the type indicator is given in section 3 below. In particular,
the type indicetor 2§ wesns a symbol array vhose elements consist of a single
symbol in the address portion (the rightmost 18 bits), the rest of the word
being zerc. Each element of formal array, type indicator 25, is 8 pointer

to the firet werd of a function-descriptor with ite indirect bit set (tag of
2#), so that the function can be opersted by a branch indirect through the

formal ervay element.

Strings contain six 8-bit ASCII character bytes per vord, filled from the left
end, as shova by €y, Cpy €5 «ee in Pig. 6. Unused bytes are filled with the

mull-character P The tag portion of the array heeder shows the mmber of

15°
characters in the lasgt word of the array.

The mmerical value contained in & maber is a resl mucber for tﬁrp@ indicator
#i, an octal integer for type indicator 2 and e sigmed integer for type

indicator $3.

./I\-

11

One dimensional array AA

type t self-
"indicator Size ¢¢ pointer
type indicator = 20, 21, 22, 23, 24, 25
numbgy, - il
type t self-
indicator 2 ¢¢ pointer
numeric value
type indicator = g2, #3, gk
string
P 6 Size t gelf-
fn pointer
Cl 02 C3 Ch CS 06
IC7 ete.

. w— - o wowe e e e e G ot e s e s Gmm s ww e et e eme mw e s

Fig. 6 Array Space Structures

n+l

size

(AA 1)
(AA 2)

(4A 3)

(AA n)

w*‘mt:> n = no. of

characters
in last word

List ce

List Space consists of a series of list nodes, cach of whieh contains twvo

symbols corresponding to the car and cdr as shown in the following figure:

o) symbol t symbol
tag

car cdr
t = § except for t,,, used by garbage collector, normally P.

A symbol is one of the following:

2.

3.

5

(92
o

NIL represented by $ofddd

TRUE represented by SffgpL

An octal mmber § in the range #Q < ¢ < 1TTTTIQ,
represented by z + 2Q5.

An integer n in the range -2Q5 < n < 1TTTTIQ
represented by n + 6Q5

A pointer to a list node, an erray head, or 2 character
identifier

A pointer to an ider;tifier, fluid cell, quote cell, or
owvn cell in triple space. Symbol pointers always point

to the second word of a triple.

3. TYPE INDICATQRS

A type indicator is a six-bit code which occurs in two distinct contexts.
First, it is used as an identification tag to distinguish types of storage
structures. Given a legitimate pointer to data structure, one can determine
the date structure type by looking at the type indicator. | Second, type

indicators are used to record type declaration information for variables and

functions.

The curreant assizrment of wvalues of type indicators for these two uses is

given in Table 1. Dashes indicate type indicator values which are currently

unassigned.

In general, within type declaration information, the coding is as follows:
the baslc range #8 - #5 is used for simple types. To each simple type, 1
is added to indicate LOC, 2f is added to indicate ARRAY, end Lff is added to
show sub-specification. B8ince functions and FORMAL variables must be sub-
specified, their declarations sre described by a sequence of type indicators,
as detailed in section k4.

Table 1. Type Indicators

Meaning as Meaning as
Octal Value Structure Type
Identifier Declaration
gp . list node . SYMBOL
#1 - BOOLEAN
g2 octal OCTAL
#3 integer INTEGER
real REAL
@5 formel FORMAL
g6 string -
&1 identifier .
18 quote cell ~ (SYMBOL LOC)
11 fluid cell (BOOLEAN LOC)
12 function descriptor (OCTAL LOC)
13 empty triple (INTEGER LOC)
14 - (REAL LOC)
15 ‘ - (FORMAL LOC)
16 - -
17 - -
og symbol array (ARRAY SYMBOL)
21 boolean array (ARRAY BOOLEAN)
22 octal array (ARRAY OCTAL)
23 integer array (ARRAY INTEGER)
24 real array (ARRAY REAL)
25 formal array (ARRAY FORMAL)
26 - -
27 - -
3¢ - (ARRAY SYMBOL LOC)
31 - (ARRAY BOOLEAN LOC)
32 - (ARRAY OCTAL I1.OC)

Meaning as Meaning as
i Octeal Value Structure Type
Identifier Declaration
33 - (ARRAY INTEGER LOC)
3h - (ARRAY REAL LOC)
35 - (ARRAY REAL LOC)
36 - -
37 - NOVALUE or INDEF
Lo-44 unassigned unassigned
ks - FORMAL sub-specified
LE6-76 unassigned unassigned
T - stop code

L, DETAILED USE (F TRIPLE-SPACE STRUCTURE

Triple space structures include empty triples, quote cells, identiflers,
fluid cells, and owvn cells. Each triple cell structure is {dentified by
the type indicetor and the tag portion of its second wvord. The type
indieator velues of #7, 1f, 11, 12 and 13 distinguish identifiers, quote

cells, fluid cells, own cells, and empty triples, respectively.

The tag occupies bit positions 2k thru 29 in the word (counted fram ¢ at the

left end), and the tag-bits will be designated t21& through t29 respectively.

Of these bits, teu is used by the garbage collector only, and is normally ¢
The remaining bits t25 through t29 are used in differing fashion depending

upon the type indicator.

Empty triples
The structure of an empty triple as shown in the following figure, is eupty

(a1l) except for the link portion of the third word and the type indicator
13 in the second word.

13

3
g

17

Quote Cell .

A quote cell contains a single symbol datum in its first vord, a type indicator
of 1¢ and & count of Pl in ite second word, and all zeros in the third word,
as shown in the following figure.

symbol

Identifier Triples

The structure of an identifier triple is shown in Pig. 7. It is a triple
vwhose second word resembles a character identifier, except thet t.. 1s §.
Other bits of the tag are used to designate genids to indicate non-collect-
ability, and to deacr:;be the relationship of the first word to the printname
(pname) of the identifier. The third word contaeins a link used, as described
in section 2, to chain the identifier buckets together. It also contains a
count of the mumber of direct code references to this identifier. The
identifier can be reclaimed by the garbage collector if, at any garbage
collection, the count is zero, the property list is NIL, the vef-chain is
empty (self-pointer), the identifier is not pointed to from umcollectable

list structure, and bit t,g of the tag of the second word is g.

Ifr t27 = B, the pname of the identifier is contained in the first word, and

the tag of the third word contains the mmber of cheracters in the pname. If

t27 = 1, only the first three characters of the pname are in the first word,

and the pneme is a string pointed to by the first word, as shown in Fig. 8.

) "q

19

character identifier

t property
#7 | v=f-chain teg | list

t,, used by garbage collector, nomally [

t,- = 1 meaning character identifier

25

tyg = § for A-Z (identifiers with standard spelling)
1 for other characters (identifiers with umusual spelling)

t28 =1 meaning never collectable by garbage collector

identifier triple

print-name-information first word
all ——y #7 | v-f-chain :ag pﬁﬂy ~ second word
pointers
#$ | count #n link third word

t,), used by garbage collector, normally)

tyg = ¢ meaning not character identifier

tyg = # for identifier with standard spelling
1 for umisual spelling

t27 = @ pname in triple (no p-name array)
1 p-name array exists (pointer in third word)

t28 = 1 1f never collectable by gaerbage collector
othervise

t29 = 1 for genid (genersted identifier)
§ for normal identifier

fn = nuber of charscters in first word if tyr = #

Pig. 7 Identifier

20

identifier pname < 6 characters

TG G TG 5 %
7 i s — T R
. | @7 | v-f-chain tac | list
) count @ 1ink

n = no. of characters in pname

t27a¢

cifori>nareull¢’s

identifier pname > 6 cheracters

v phame
cl c2 03 m array
Pe t property t =1
f7 | v-f-chain tag | list 27
pe count pp, | Unmk
-.nmﬂ-"‘"./:»
seif-
¢6 Size ﬁn pointer
n = no. of characters €y g‘“’a 03 €y, 05 Cs
in last word c ete.
T
! '
e e e o oo o - - - — e v e}

Fig. 8

name of identifiers

j‘,é,v‘-.

Fluid Cells and Own Cells

An identifier can have on its v-f-chain at most one fluid cell or ovn cell
for any given section. Fluid cells and own cells are shown in Fig. 9.

Fluid cells are used to hold fluid bindings of variables, while own cells
are used to hold constant or own settings, particularly function descriptors.
A fluid cell contains a full locative in its first word, and a structure
ijndicator of 1l in its second word. An own cell contains its datum directly
in its Pirst word, and e structure indicator of 12 in its second word. The

contents of the second and third words are gimilar for both kinds of triples.

The second word contains the structure indicator of 11 or 12, the section
name (NIL or an identifier), and a count of the mmber of code references to
this fluid or owvn cell. The tag bits are not used, except for teh’ which is
used by the garbage collector, and t25’ used to designate a varisble for

which a top-level FIUID declarative exists.

The third word contains type information and a link.

11 saection :as count second word

m;%{ full-locative first vord

type information Link third word

Own Cell

' —_.._———._.—:% | ’ datun
| —

t
12 section count
tag

type information link

m—.:.% = mference from code

————2> = gymbol or link pointer

t;), used by garbage collector, normally §

Y55 = 1 if FLUID declarative exists, f§ othervise

Flg. 9 Fluid Cell and Ovn Cell

The contents of a full-locative is shovn in Fig. 10. A full-locative

may point to the pushdown list, an array head, or an identifier, in which
case it consists of a single pointer. Alternatively, a full-locative may
point into an array, in which case it conteins two pointers. In particular,
the full locative contained in a fluid cell (of a varisble whose transmiseion
code 1 not LOC) 1s initialized to polnt to the first element of & unique
one-element arrsy of the seme type as the variable. This arrsy is used to

hold top-level free settings of the £luid varisble.

ki

* Pomal locatives have indirect
bit set (tag « 2f in this word)

Fig. 10 Full-locatlve

pointer to cell on
pushdown list or
pointer to lst word
of own cell

Function Description

The Punction descriptor contained in the first word of an own cell ean
exist in one of three states, as shown in Fig. 11. A normal function in
ready state, i.e., one that can be operated directly, contains a code
pointer in the address portion of the function deseriptor, a tag of f,
decrement of P, snd a prefix of P for a FUNCTION, 1 for a MACRO, or 2
for INSTRUCTIONS code.

A Punction with a formal trap, €.Z., a function that is being traced, has
the code pointer in its decrement, a formal trep in its address portion,
and the indirect bit in the tag is set, so that transfers to this function
deseriptor vill go indirectly through the formal trap code. The prefix
of 18 indicstes this condition, with S having the same meaning as for a

ready function.

The third case of a function descriptor, for an unready fumnction, hes =
prefix of 28 and & symbol in its decrement portion. The prefix 25 is used
by the garbsge collector to indicate that the left half of this word is to
be marked during garbage collection. The symbol is used to hold informetion
as to the location of symbolic code for this function, and the fomal trap
points to another function which is to be used to obtain or campile the

unready function. S has the same meaning as for a ready function.

agsembled function

code
¢B ¢ M pointer
function in ready state
code Tormal
s pointer 2f trap
function with trap
formal
) 28 symbol 2p trap

unready function

8 = ¢ for FUNCTION
1 for MACRO
2 for INSTRUCTIONS

Fig. 11 Function Descriptor (first word of own cell)

Tvpe Encoding

Type encoding is contained either directly in the third word of a fluid
or own cell or indirectly in an array or triple cell pointed to by the
type infomat‘ion, the various possibilities are distinguished by the

value of the prefix, as shown in Fig. 12,

A prefix of #¥ indicates a fluid cell other then FORMAL where no sub-
specification is required in the type information. In thic case, a single
type indicator, contained in the tag of the word, is used. The rest of the

word is P except for the link.

The prefix #2 is used to indicate that the fluid cell or own cell is a
synonym. In this case, the decrement of the third eell conteins a pointer
to another fluid cell or own cell, in which the type and value are to be

found.

A fluid FORMAL, or an own cell used as a functiorn descriptor, and used for a
function of fewer than 3 arguments has its type infommation encoded directly
in the third word. The prefix of 45 shows thet a sub-specified FORMAL is to

be repregented. The coding fl f2 f3 fh is used to specify the type.

The prefix #l is used for fluid FORMALS and own cells which require more than
four type indieators to encode their type information. 1In this case, the
decrement of the third word countains a pointer to an octal array (structure

identifier = 22) which then contains the type coding.

® 28

fluid eell other then PORMAL type

t
i g tod, | Limk
synonym
2] o link

' ————pointer to fluid cell or own cell

fluid FORMAL or own function descriptor (#, 1, or 2 args)

L5 f‘l f2 i'3 fli- link

i

£luid FORMAL or own function descriptor (3 or more args)

1 ¢ | link
seif~
e Size M pointer
fl f2 f3 fh fi f6 f7 f8
f9 ete.

Fig., 12 Type Information

The type coding of a formal or function is as follows:
fl specifies value-type
37 meens NOVAIUE
 #¢ - #5 mean SYMBOL, BOOLEAN, OCTAL, INTEGER, REAL, FORMAL

Other values-types are not implemented at present.

f,, specifies type of Tirst argument
TT means no arguments

37 means INTEF with type given by fa

#p - #5, 14 - 15, 2f - 25, 3P - 35 mean parameter type,
according to Table 1.

f3, f.!‘. ees MY e
¢ - ¢5, 18 - 15, 28 - 25, 3P - 35 vhich mean parameter

types, according to Table 1.

The stop code T7 means that there are no more arguments. Hence, a function
of n argunents requires n + 3 £'s if the first arpument is IITEF or n + 2
arguments 1f the first argument is not INDEF. However, the stop code 1s not
required if the type information campletely fills its allotted space. Ience,
the third word of a triple can encodeba formal or function containing up to
3 argunents (2 if INDEP), and an array of n cells can store type information
for a function of 6n - 7 arguments (or 6 n - 8 if INDEF).

