
DRAFT
S. L. KAMENY
30 September 1965

INTERNAL STORAGE CONVENTIONS FOR Q-32 LISP II

1. GENERAL ORGANIZATION OF CORE STORAGE

~le general organization of core storage in LISP II is, as shown in Fig. 1,

composed of seven different areas called Fixed Program Space, Character Atoms,

Triples, Pushdo"WIl Stack, Binary Program Space, Array Space, a.'1d Li at Space.

The pushdown pointer, PDP, kept in index register 8, together with a set of

fluid variables, defined in section SYS, serves to define the current core map

at any point. Each of the fluid variable.s is of type OCTAL and contains a
\

core address whose meaning is shown in Figo 1. The core address contained in

each variable is just higher than t.he corresponding boundary of the core map.

Thus, Fixed Program Space, which is built toward higher addresses, starts at

location FPO a.nd extends to the cell Just lower than the location FPP.

Similarly, the PushdOwn Stack, 'which is built towards lower addresses, starts

at the address ,just lo-wer than location BPO, and extends approximately to the
I

location PDP. The boundaries FPO, CITO and TRO are f'ixed in the system and

cannot be changed exc.ept by reassembling the entire system. Garbage collection

reclaims 'I'riple Space, Array Space, and List Space, and repacks Array

List Spaee. Bins.ry Program Space is a1s6 reclaimable and reusable.

:1.'
:~:'~>;<" ,

.:,;'-,'" "' c

.,,' FLUID variable in
section, SIS

2

FPO -"';;;~----:F:-i""xe-d:-:p:-r-o-gram--:---:Sp:--ac-e:----l-E;---f ixed program origin ,

FPP--~~--~~~/7·-;~,7·~~~~~r-~:i~-----fixed program pointer
,/'

CHo---~~~c:ha--r-a-c~te-Wr-A~t~am~s--~~~----~~----Character origin

TRO--..;;;~ ---- triple cell origin

TRP--..rT7/~r7--:.,.4"'7"""77J~~:'-'--trlple cell pointer

Pushdown Stack

1-oIE--pushdow pointer (PDP)
(Index Register 8)

BPO-----~~~I--~7--~~----~---------~~---binary program origin
Binary Program Space

Bpp----.:~7-/7/-7, ~r7~, ~r-;:77-71_~--binary program pointer
,/ ,/ j/

.I" .l
l' /~ ./

.I / /

./

Array Space ---array space origin

ARP--~ ~------a:rray space pointer

- ---list space pointer

{~~----list space origin

Fig. 1 LISP II Core Allocation

3

2. CORE AREAS

Fixed ~ Space

Fixed Program Space, \lhich starts at the fixed progl"8lll origin (FPO) is used

to hold tixed, non-re1ocatable constants and subroutines. Only those essential

elements of the system \lhich cannot be deleted should be put here, using lAP

'With an ORG pseudo-instruction (see lAP II memo for fUrther details).

Character Identifier

Character identifiers, vhichat&rt at the character origin (CHO) are all identi­

tiers who .. print names condst of a single character. The character whose

print name has the ASCII code !! is located at .!! + CHO. The structure of a

character 1denti:f'1er 1s shown in Fig. 2.

Triple Space

Triple cell space, organized in groups of' three cells, 1s used for t~e storage

of identifiers, fluid eells, ow cells (including fUnction descriptors) and

quote cells. Triple cell space starts at location TRO (immediately after the

character identifiers). The triple cell pointer TRP points to th.first higher

address not occupied by triple cells. Within triple cell spaee, structures are'

never moved, but it a triple cell 119 abandoned it 1s converted to an empty triple'

cell and linked onto the (possibly empty) free-triple chain. A new triple cell

1s taken fran th.e tree-triple chain or if the free-triple c'1ain is empty, the

triple cell is placed at the end of triple cell space, and the boundary TRO is.

moved.

¢t7 I v-f-U.t I t I property :rae _ list

t = 22 for alphabetic characters A-Z (identifier with standard spelling)

t. = 32 for other characters (identifier with unusual spelling)

Fig. 2 Character Identifier

....... contents --- :'~
depends on type of' structure first cell

second cell
~ type I I t I - ! -" c:--. ~ indic tag •

I link third cell

no. of bits 6 18 6 18

---:>;;!!r link or symbol pointers

-; : non-identifier reference from binary program
space or formal array

Fig. 3 Triple space structure­
general

5

A triple spo.ce structu...-e eonsists ot three conseeutlve cells in memory, as

aho'Wll in Fig. 3. Pointers in general go to the second cell of a triple.

These pointers include the Unk pointer and symbol pointers. This is sho'WZl

by the single arrow _.-.;;>~ in the figure.

References to non-identifier triples fran binary program space, particularly

d1 !'ect or indirect loa.d and store instructions and BOO indirect instructions

uee the address of the first cell, as show by the double s...l'TOW

the figure.

==::::;>~ of

tit . Triple cells other than quote cells are organized into a free-triple chain

plus a series of "buckets. tI The frce-tri"ple chain is a chain of empty triples

pointed to from va.r1&b1e Tnt in section SYS. '!'he ehein is tied together

through the Unk pointer of the third cell, 'With NIL in the last Unk. Each

non-empty "buckett! is a chain of identifiers of vhich the first. identifier is

in (pointed to by) the OBL1ST~ a snIDOL array in section SYS. The 'bucket is.

tied together through the Unk pointer.

6

Each identIfier i8 tied through the v-f-chain pointer in the left half' of its

second vord to a variable-and-tunction chain composed of those fluid eells and

own cells having it as a neme. The v .. 1.'-chaln is a ci1"eular list strung by means

of the link pointer, with the last triple in the chain pointing haek to the

identifier. An identIfier also contains a property-list pOinter. The propert~r ..

list i8 by convention a list containing any mixture of flags and property pairs.

nMe (an atom) and whose CDR i8 the property value (any symbol).

The structure 01' buckets and v-t-chains is shown in Pig. 4.

Quote cells, also conte.1ned in triple cell space, have no Unked structure.

Genid., or generated identifier" are generated by the 'function GENII) of no

arguments in section NIL. Genid.s have the same structure as identifiers except

that they have a genid indicator bit in the tag. They are strung in buckets

fran GDLIST, a SYMBOL array in section SYS, instead of tlBLI~. Geoids are

produced by GENID with no p-name, i.e., the first word is all zero. The first

time that a specific genid is printed out, it is suppUed a name by the function

GENPNAME in section SYS, and this name perSists for the life ot the gentd.

Further detaIl on the contents of triple space 1s given in section 4.

"
. ~~c,::.'.>.'j,.

, . ;:1:·~:{;,i..·,("

7

OBLIST u arra.y
OBLIST~

" -
-:;,. buckets

/' (empty bucket)
...
~

,~
"

~ I

bucket

~ one bucket.

identifier

~ ... --

identifier
property

I--..,....._-.,.---..--_~/ Jist

v-f-list

for a single

identifier
eozrta1n1ng fl.\I1d

cells and own cells

...

Fig. 4 Buckets and v-f-l1sts

identifier

Pushdown stack

The pushdown stack and i t.s organizat.ion are gi ve,n in t.he LAP II document.

Binary Program Space

Binary program space consists of a packed eeries ot assembled fUnctions each

ot which consists ot a header 'WOrd, assembled code, and relocat.ion information,

as shown in Fig. 5.

The size conta1ned in the header word is t.he total length ot the assembled­

fUnetion, including the reloea.t1on information, whieh i. packed trom lett to

right into a series ot 'WOrds starting with the last vord alld working toward

the header '\lOrd ot the assembled function. The tlft) bits refer to the lett halt

and the "right halt of words of assembled code, and refer to the assembled code

\ starting with the first 'WOrd and extending to the cell immediately preceding

the relocation information. The coding employed is the following:

_ means no relocation or count

1 means that it the address 11e.8 within this assembled-function

it i8 a reloeatable address. It the addrees does not lie within this assembled ..

£'unction, then it points into triple cell space. The! in this bit means that

the count in the triple is to be incremented when this assembled-function 1s

loaded and decremented 'When the f'unction is exc1sed. A triple 18 excised if' its

count is zero and there are no 8)'!I1bol or loeat1vereterences to it.

9

¢¢ I size I¢l I
pointer from >-
;unction-descri~tor

Relocation

information

...

)

i.J

> pointer to
function-descriptor

a ssembled code

size = total number of cells

Fig. 5 Assembled Function

10

A.p:8-y. ~e.ce

Array tJpaCe 1s used to hold arra.ys, m.rnbers, and strings, of which the latter

t'-'O are regarded as a specia.l case of array. The three structures are SllO\tn

in Fig. 6. Q3e-d1mens1onal arrays containing E elements have size = n + 1-

'rho self-pointer, which is always contained in an array header vord, 113 used

by the garbage collector. Bit t24 of the tag portion of the headel' is used.

by the garbage collector for marking the array structuI-e d:ur1ng garbage

collection, and t24 • ¢ othe]."'1.1.se.

The T.lesl'ling of' the type indicator i6 giwn in section 3 belove In part1eul.a:r,

the ty:pe il1clicator 2¢ means a symbol array \-/hose elements consist of a single

symbol in the address 'Portion (the rightmost 18 b1 ts), the rest of' the vord

'being zero. Each element of formal array, type indicator 25, is a pointer

to the firot ¥lOrd of a. function-descriptor ",'1th its indirect bit set (tR~ of

2¢) , so that the:f'unction can be OIJerated 'by a branch indirect through t."le

formal array element.

Strings contain six a-bit ASCII character bytes per 1N'Ord, filled from the lett

end, 8.S shcnm by c l ' c2' c3 .. 0 in Fig. 6. Unused bytes are tilled 'With the

null-character t¢16. The tag JlOrtion of the a.rra.y header shows the mlr.'loor of

chare.ct.ers in the last \lOrd of the array"

The nU:lerical value contained in a tl'I.I1lber is a real number for type indicator

fJ4, an octal integer for type indicator fJ2 and eo signed integer for type

indioa.tor fJ3.

-.'

I-

~

11

One dimensional array AA

-,
I

Size

type indicator = 20, 21, 22, 23, 24, 25

mnnber
"

type t
indica.tor 2 H

numeric value

type indicator = '/12, ¢3, ¢4

string

¢ 6 Size t
;n

Cl C2 C3 C4

self­
pointer

self-
pointer

self-
ointer

C5

./

C6

I C7 etc. I L __________________________ ~

Fig. 6 Arr~ Space Structures

size = n+l

(AA 1)

(AA 2)

(AA 3)

(AA n)

n :: no. of
characters
in last vord

12

List Space

List Space consists of a series of list nodes, ea.ch of' which contains two

s~'bols corresponding to the car and cdr a.s shown in the following figure:

I ~ I ~bol I ~ I symbol I
car car

t • ~ except for t 24, used by garbage collector, normal~ ~.

A Sj'mbol 1s one of the following:

1. NIL.repreaented by ~

2. TRUI represented by' ~l

3. An octal number ~ in the :range ~ ~ f !:: lT77f(Q,

represented by f + 2Q5.

4. An integer n in the range -2Q5 oS: n ~ rrrrrrQ
represented by' n +. 6Q5

5. A pointer to a. list node, an array hea.d, or a character

identifier

6. A pointer to an identifier, fluid cell, quote cell, or

own cell in triple space. Symbol pointers a.lways point

to the second word of a. triple.

• \

13

TYPE INDICATORS

A type indicator is a six-bit code which occurs in two distinct contextso

First, it is used as an identification tag to distinguish types of storage

structures. Gi Yen a legitimate pointer to data structure, one can detemine

the data structure type by looking at the type indicator. Second, type

indicators are used to record type declaration information for variables and

functions.

The current assig:r.rnent of values of type indica.tors tor these two uses is

gi Yen in ~ble 1. Dashes indicate type indicator values 'Which are currentlJr

u:na.sGigned.

In gene:re.l, within type declaration intonnation, the coding is as follows:

the basic range ¢t/J - t/J5 1s used for simple types. To each simple type, 1;­

is added to indicate Lre, 2~ is added to indicate ARRAY, and 4~ is added to

show sub-specification. Since f\metions and 'OR4AL varia.bles must be sub­

specified, their declarations are described by a se~ence of type indicators,

as detailed in section 4 •

Table 1- Type Indicators

Meaning as Meaning as
Octal Value Structure Type

Identifier Declaration

¢fJ list node., SYMBOL

¢l BooIEAN

'/J2 octal OCTAL

¢3 integer IN'l!EGER

¢4 real REAL

¢5 formal FOBiAL

rIJ5 string

t/J7 identifier

l¢ quote cell (SYMBOL toe)

11 fluid cell (BOOIEAN 100)

12 function descriptor (OCTAL LOC)

13 empty triple (INTEGER 100)

14 (REAL LOC)

15 (FORMAL LOC)

16

17 ..;

2¢ symbol array (ARRAY SYMBOL)

21 boolean array (ARRAY BOOIEAN)

22 octal array (ARRAY OCTAL)

23 integer array (ARRAY IIfl'.EGER)

24 real array (ARRAY REAL)

25 formal array (ARRAY FORMAL)

26

27

3¢ (ARRAY SYMBOL LOC)

31 (ARRAY BOOLEAN LOC)

32 (ARRAY OCTAL toe)

Meaning as Mea.n1ng as
Octal Value structure· Type

Identifier Declaration

33 (ARRAY INTEGER LOC)

34 (ARRAY REAL LOC)

35 (ARRAY REAL LOC)

36

31 NOVAWE or IJmEP'

4o-"'~ unassigned unassigned

45 FORMAL sub .. spee1t1ed

46-76 una.ssigned UD8.ssigned

Tf stop code

,.,'~ . .,

Triple space stru.ctu:rea include empty triples, quote eells, identifiers,

fluid cells, and ow cells. Each triple cell structure is identified by

the t;ype indicator and the tag portion of its second vord. The type

ind1c:ator whles of (Jr, 1_, ll, 12 and 13 distinguish identifiers, quote

cells, i.Wd eells, ow cells, and empty triples, respectively.

The tag occupies bit positions 24 thru 29 in the word (counted fran ¢ at the

left end), and the tag-bits will be designated t24 through t29 respectively.

Of' these bits, t24 is used by the garbage collector onJs', and is nonnally ¢.

The remaining bits t25 through t29 are used in differing fashion depending

upon the type indicator.

Empty triples

The st1'llcture of an enpty triple as sho'Wn in the follov1ng figure, i8 anpty

(all _) except tor the link portion of' the third word and the type indicator

13 in the second word.

I~I : 1:1

17

Quote CeU

A quote cell contains a single symbol datum in its first vord, a type indicator

of ~ and a count of ~l in its second 'Word, and all zeros in the third word,

as shown in the folloWing figure.

,e

18

Identifier Triples

The etructv.re of an identifier triple i8 abovn in Pig. 7. It i8 a triple

whose second word resembles a cllaracter identifier, except that t25 18 ~.

Other bits of the tag are ueed to de81gDe.te gen1ds to indicate DOn-collect­

e.biUty, and to describe the relationship at the f1rst word to the printname ,

(praame) of the identifier. The third verd contains a UDk used, as described

in eection 2, to cba.in the identifier buckets together. It also contains a

count of' the mmiber or direct code references to this identifier. '!'be

identifier can be reela1med by the garbage collector if, at a.n.T gar~e

collection, the count is zero, the property Ust i8 NIL, the v-f-eha1n is

empty (aelf'..po1xxter), the identifier is not pointed to fran uncollectable

Ullt structure, and bit t 28 ot the tag of the second word is ~.

If t27 • ~, the pname of the identifier is contained in the tirst vord, and

the tag of' the third word contains the number 01' cha.:racters in the pname. If

t21 • 1, on4r the first three eharaetera ot tbe pD8me are in the first word,

and the pneme is a string pointed to by the tirst word, as ahovn in 1ig. 8.

19

character ldentifler

¢7 I v-i-chaln l;ag I ~r:rrty I
t24 used ,by garbage collector I normally ¢

t25 • 1 meaning character identlfier

t - (J for A-Z (ldentiflers with standard spelling)
26 '1 for other characters (identifiers 'With W1U.8\JS.l S'p01Ung)

t 28 • 1 me&Ding rJever collectable by garbage collector ,

identifier triple

all
pain :tera

print-name-informatlon

"- ;rr v-i-chain t property

" tag llst

'/IIJ count ~ link

t24 used by garbage collector I nomally ~

t25 • ¢ meaning not ch&raeter ldentlfier

first 'WOrd

second word

t},1lrd word

t26 • ¢ for identlfier with standard spelling
1 tor l21'IWRI&.l spelling

t • ~ pname in triple (no p-name array)
27 1 p-name array exists (polnter in third vord)

t 28 • 1 if ne'Nr collectable by garbage collector
¢ otherw.J.ae

t29 • 1 for gen1d (generated identifier)
¢ fer normal identifier

'/In • number of cha:rs.cters in first word it t27 .. ¢ .

Pig. 7 Identifier

identifier pname s 6 CharaCters

fI/J count ~: Unk

n 1:11 no. of characters 1n pname -
t27 1:11 _

Ci for 1 > n are all ¢'s

identifier pname > 6 characters

C1 C2 C

fJ1 v-f-chain

'H count

n -no. ot cb.e.ra.eters
in last vord

I~
pname
a.rra;

,t propex '!
I
I list

'/IIJ; link

C etc.

.'

t27 is 1

I
~ __ ~ _______ ~ __ ~~~_t

Fig. 8 Pn.mae ot identifiers

21

Fluid Cells and Own Cells

An identifier can have on its v-f-chain at most one fluid cell or own cell

for MY given section. Fluid cells and own cells are sho'wn in Fig. 9·

Fluid cells are used to hold fluid bindings of variables, 'While own cells

are used to hold constant or ow settings, particularly fUnction descriptors.

A fluid cell contains a full locative in its first word, and a structure

indicator of II in its second word. An own cell contains its datum directly

in its first \TOrd, and a structure indicator of 12 in its second word. The

contE=nts of the second and third vords are similar tor both kinds 01' triples.

The seeond word contains the stnlCture indicator of' 11 or 12, the section

name (ilL or an identifier), and a count of the maher of eode references to

this fluid or own cell. The tag bits are not used, except for t 24, whieh is

used by the garbage collector, and t 25, used to designate a variable for

vhich a top-lewl FWID declarative exists.

The third verd contains type information and a link.

22

P'lu.1d Cell

tull-locati ve tirst 'Word

section count second word

t information link: third "'Ord

Own Cell

- datum

- 12 1 section I~ count -
type information link

===~::» l1li reference tran code

---"';;:::>!!I> • symbol or link pointer

t24 used by garbage collector, no:rma.lly fJ

t25 • 1 it FLUID declarative exists, t/J otherwise

Fig. 9 Fluid Cell aad OWn Cell

·e

~ .. '.'"

23

'!'be contents of a tull-loc&tive is shown in Fig. 10. A full-locative

ma.y point to the pushdown list, an array head, or an. identifier, in vhich

case it consists of a single pointer. Alternatively, a tull-lccatiw may

point into an e:rray, in whic...'1 ca.se it contains two pointers. In particular,

the full locative contained in a. fluid cell (of' a val'iable whose transmission

mo<le is not u:c) is initialized to point to the first element of a UDiq\118

one-element a.nay of the aeme type as the var1abla. This o:rrs.y 1s uaed to

hold top-le'gel free settings of the tWd variable.

24

array
element

~ I ~ I pointer to cell on
¢¢ I N I-->~ pushdo1>1n list or

1.. ___ .1.... ____L.. ___ -I-. ____I pointer to 1st word

of' O'Wll ce 11

* FO'l'na1 locatives have indirect
bit set (tag • 2¢ in this word)

Fig. 10 Full-locative

a.rray

25

Function Description

Tha function descriptor contained in the first 'WOrd of an OVIl cell ean

exist in one of three states, as shown in Fig. 11. A normal funet10n in

ready state, i.e., one that can be operated directly, contains a code

pointer in the address portion of the i'unction descriptor, a tag of ¢,

decrement of fJ, and a prefix of ~ tor a FUNC'rION, 1 for a MACRO, or 2

for INS'l.'ROOTIONS code.

A fUnction 'With a. formal trap, e.g., a :f'unction that is being traced, has

the code pointer in its decrement, a formal trap in 1ts address portion,

and the indirect bit in the tag is set, so that transfers to this fu:nct1on

descriptor w'ill go indirectly through the form&l. trap codeo The prefiX

of IS indicates this condition, \lith S having the same mea.n1ng a.s for a

ready fUnction.

The third case of a function descriptor, for an Ul'U"eady function" has a.

prefix of 2S and a. symbol in its decrement portion. The prefix 28 is used

'by the garbage collector to indicate that the left halt of' this vord 1s to

be marked during garbege collection. 'Jlle symbol 1s used to hold 1nf'orms:t.1on

as to the location of symboUc code for this i\tnct1on, and the formal trap

points to another f'U:nct1on which is to be used to obtain or ccmpil.e t..'1e

unready f'unct1on. S has the same meaning as for a. reaq f'\mction.

hnction in re~ state

function with trap

28 r,;mbol

s • f; for J'UB'CTION

1 tor MACRO

2 tor INS'OfRtK:TIONS

assembled f\mc:tion

:ria. 11 hnction Descriptor (tirst word ot ovn cell)

Type encoding is contained either directly in the third word of a fluid

or own cell or indirectly in an array or triple cell pointed to by the
I

type infomation, the various possibilities are dist1n&u1shed by the

value of the prefix, &8 shoWn in Fig. 12.

A prefix of ~ indicates a. fluid cell other than FORMAL 'Where no sub-

specifica.tion is required in the type in:f'oma.tion. In. this case, a Bingle

tytJe indicator, contaiMd in the tag of the '1IOrd., is used. The rest of the

'\mrd is fJ except for the link.

The prefix fJ2. is used to indicate that the fluid cell or own cell 1s a

GynI)~. In thi s ca.se, the decrement of the third ee 11 conte.ins a pointer

to another fluid cell or ow cell, in Vh1ch the type and value are to be

found •.

A fluid FORMAL, or an own cell used as a ttmction de 8Criptor , aud used for a

tunction of fever than 3 argument. has its type information encoded directly

in the third word. The prefix of 45 shows that a sub-specified FORMAL is to

be represented. The coding fl f'2 f3 f'4 is used to specify the type.

The prefix ¢l is used for fluid rOPHALS and o"Wn cells vhicn requ:1.l'I! more than

four type indicators to encode their tY'.[)e information. In this case, the

decrement of' the third word cO'fita.ins a pointer to an octal array (strv.eture

ldentU"1er .. 22) \&ich then contains the type coding.

28

fluid oe 11 other than FORMAL type

link

synonym.

link

'-----~pointer to fluid cell or own cell

fluid FORMAL or own function descriptor (¢, 1, or 2 ergs)

link

flUid FORMAL or own function descriptor (3 or mol.'e arga)

link

fete.

P1g.12 Type Information

•

The type coding of a fomal or function is as follows:

t 1 specifies value-type

37 means NOVALUE

fJ¢ .. '/;5 mean SYMBOL, BOOLEAN, OOTAL, INTEGER, REAL, FORMAL

Other val.ues-'types are not implemented at present.

t ~ specifies type of first argtInent
c;.

77 means no arg\mlents

37 means nllEF with type g1 ven by f 3

'/Ill - ~5, l~ .. 15, 2¢ ... 25, 3¢ - 35 mean parameter t~,

acCording to Table 1.

1'3' t4 ••• may be

f;/; ... ¢5, l/J - 15, 2'/1 - 25, 3¢ - 35 which mean pe.remeter

types, a.ecording to Table 1.

The stop code TI means that there are no more arguments 0 Ifence, a. f\mction

of n arguments requires n + 3 f's if the first a.:rg\I:Ilent ia INJlEF or n + 2

8.rg\Inents if the first argument is not INnJ.I.':F. Hawver, the stop code is not­

requ1red. if the type infomation canpletely fills its allotted space. lIenee,

't.i}e third word of e. triple can encode a fOl'm8.1 or function eonta.in1ng up to

3 argwnents (2 if ImlIF), and an array of n cells can store type intol'm8.tion

for a f\mcUon of 6n - 7 argments (or 6 n ... 8 if DmBP) •

