
t' ,.>

THE IMPLEMENTATION OF

LISP 2

by

Stanley L. Kameny '*
Lowell Hawkinson **
Clark Weissman *

Jeffrey A. Barnett *
Robert A. Saunders **

Erwin Book *
Donna Firth *

Paul W. Abrahams ->H<*

.

* System Development Corpqration, Santa Monica, California
** Information International, Inc., Los Angeles, California

*** Information International, Inc., New York, New York

Produced by SDC and III in performance of contract AF 19(628)-5166
with the Electronic Systems Division, Air Force Systems Command, in
performance of ARPA Order 773 for the Advanced Research Projects Agency
Information Processing Techniques Office and Subcontract 65-107. .

IVO"(,
\ .- .. --.--.~--~~-~--.- .. -.---- r\ --_ ... - ..•. _---_ .. _--- - ..------,---- n -------.. -.-

1

. --.-~

,/

w~~.

. l
·0

THE IMPLEMENTATION OF
LISP 2

by

Stanley L. Kameny *
Lowell Hawkinson **

Clark Weissman *
Jeffrey A. Barnett *

Robert A. Saunders **
Erwin Book *

Donna Firth *
. Paul W. Abrahams ***

Abstract

This paper discusses the internal structure of the LISP 2
programming system and the means by which it was created. The sys
tem is written in its own language. The I/O package transforms
input into a stream of characters, which are converted into tokens
by the finite state machine. The supervisor controls the various
LISP 2 opera tions.. SL is translated to IL by the syntax transla
tor; IL is translated to assembly language by the compiler; and
assembly language is translated to machine language by the LISP 2
assembler, LAP. Machine mobility is achieved through core image
generation. LISP 2 memory management is based on dynamic storage
allocation, with separate areas for different kinds of data. Data
is recovered by garbage collection. The syntax translator is
ge~erated from syntax equations by the META compiler. The compiler
consists of three main parts: the analyzer, the optimizer, and the
user control facilities. LAP handles the manipulation of the push
down stack automatically. LISP 2 is generated by a bootstrap pro
cedure which successively produces LAP, LAP with IL, and full
LISP 2 on the Q-32. A fou~th stage produces LISP 2 on a new
machine, requiring only an octal loader and a system monitor on
the new machine.

* $ystem Development Corporation, Santa Monica, California
** Information International, Inc., Los Angeles, California

*** Information International, Inc., New York, New York

'--t~'C,
. l

INTRODUCTION

In this pa~er we shall discuss the intern81 structure

of, the LISP 2 programming system and the mechanisms by which

it was created. It is assumed that the reader is ~lready
Ujr: ;',_ I (

familiar with the companion paper "The Progr8mming L8ngu8ge·
·1\

Quite early in the design of LISP 2 we decided to write

the LISP 2 system in its own language, and use the existing

LISP 1.5 system on the Q-32 [lJ in order to bootstrap in the

first version. There were a number of reasons for this decision:

(1) Economy in programming. In general, it is more eco-

'nomical to program in a problem-oriented language

than in assembly language. Although we might have

used a problem-oriented language other than LISP 2

cum LISP 1.5, we felt that any advantages of another

language would be offset by extra design, implemen-

tation, maintenance, and tutorial work.

(2) Machine mobility. We wished to be able to transfer

LISP 2 to a new machine as rapidly as possible. This

point is discussed in further detail below.

(3) Dynamic storage allocation. ~~atever language was

used for writing the system needed to have dynamic

storage allocation facilities; these are of course

inherent in the LISP 2 language.

(4) Modularity. By taking advantage of the natural

modularity of LISP, we were able to partition the pro

gramming task easily, and modify different parts of

- 2 -

- . / "-

. ' ''--:: I

" l
the system independently.

(5) Accessibility of system programs to the.user. In the

past, the system programs have appeared to the user to be

an extension of his own program. He can call upon sys-

tern functions as though he had written them himself,'

and he can modify the behavior of the system ~y

changing the system functions. We wished to preserve

this capability.

(6) Previous experience. The project personnel had already

had experience with LISP 1.5, and we wished to take

advantage of that experience.

(7) Capabilities of Q-32 LISP 1.5. The LISP 1.5 system

on the Q-32 had quite useful editing and debugging

capabilities, and it works in an interactive environ

ment. By using Q-32 LISP 1.5 in the first part of the

production of LISP 2, we were able to utlli;e these

capa bili tie s.

SYSTEM OVERVIEW

A diagram of the LISP '2 system, which shows the relationships

among its different components, is shown in Figure 1. Information

enters the system via the I/O package in either SL or IL. The

I/O package transforms the input into a stream of characters in

an internal representation. The stream of characters becomes the

input to the finite state machine, which in turn generates a

stream of tokens. Among other things, the finite state machine

performs the task of linking up a newly received identifier with

a previous copy of the same identifier. The token stream produced

by the finite state machine is routed by the supervisor to either

the syntax translator Qr to a reading program fo~ IL, depending

- 3 -

+:-

1 SOURCE SYNTAX
LANGUAGE .. TRANSLATOR .,

I META
. COMPILER

GARBAGE COLLECTOR

PRIMITIVES

l~

~

G
• .

'("1
~ "

(.' -

CHARACTER STREAM

INTERMEDIATE
LANGUAGE,

t
FINITE
STATE
MACHINE

TOKENS .,
»

SUPERVISOR

t

COMPILER

J~

ASSEMBLY
~" LANGUAGE

ASSEMBLER ---------------
... CORE
v IMAGE GENERATOR

ro

~

BINARY CODE
OCTALSCORE
IMAGE

LISP 2 System Structure Overview Including
Information Flow Under Supervisor Control

Figure 1

upon ·whether SL or IL is expected. In ei ther ca se, the re suI t "

is an expression in IL. The supervisor determines when compila

tion is to take place, and also handles. processing requests and

declaration made by the user and error conditions that arise dur-

ing computation.

The syntax translator takes a stream of SL tokens and trans-

forms it into an IL expression. This expression can be returned

as output, passed to the compiler, or both. The choice is made by

the supervisor under the control of the user. The syntax transla

tor consists of parsing and generating programs that are compiled

from a set of syntax equations. These syntax equations define

SL·in terms of IL.

The compiler, which is the "most complex component of the

system, converts IL into input for LAP, the LISP Asembly Program,

or for the core image generator. Both LAP and the core image

generator accept input in assembly language CAL). If LAP i8 being

used, then the result of assembly is a relocatable segment of

code stored in an area of the machine reserved for· binary program"f'l

If the core image generator is being used, then the· result is 2

string of pairs of binary numbers, each consisting of 8 core

location and the contents of·that location, stored on a magnetic

t~pe or other external medium. The core image generator is only

used when a new system"is being created.

The META compiler, the garbage collector, and the primitives

are all implicitly involved in the operation of the system. The

META compiler is a library program that generates a syntax transl2-

tor from a ~et of syntax equations. The g8rbage collector is the

program that collects dead storage when available storage has been

exhausted. The primitives are the basic library functions in

- 5 -

-':1 ~ ..•

terms of which the entire system is wri·tten.

MACHINE MOBILITY

The bulk of the design and implementation effort to produce

the first LISP 2 system has been directed toward the Q-32 computer.

The Q-32 is a large, military machine o~ considerable power for

its age, even by today's standards; however, it is to be retired

by the close of the year. Why, then direct so much effort toward

a machine with little future? The answer is that it is far easier

to create a LISP 2 system when one already exists than to create

one from scratch, and the Q-32 offered the quickest route to

creating the first one. Given the Q-32 LISP 2 system, we could

then transfer LISP 2 to the two other machines that we 'Were really

interested in--the IBM 360 and the DEC PDP-6. The problem was

complicated further by the fact that th~ 360 and the PDP-6 were

not even available to us when the effort began. Thus, machine

mobility became one of the pr±mary design goals of LISP 2.

The decision to write LISP 2 in LISP 2 achieved the machine

mobility that we desired. In order to create a LISP 2 system on

a new machine, we use an existing LISP 2 system to compile the

new one. This process is known as "core image generation fl , and

it will be 'discussed in detail below. Core image generation achieves

machine mobility in two ways. First, the amount of code that

has to be rewtitten for the new machine is minimized, since most

of it does the same thing that it did on the old m$chine and is

written in the same language. Second, the translating facilities

of the old machine are brought to bear on the task of producing

code for the new machine, and there is virtually no dependence on

the existing software for the new machine.

- 6 -

There were other important consequences of the decision to

write LISP 2 in LISP 2. First, it was necessary that LISP 2

include facilities for referencing machine words, inserting

and extracting bits, and performing type changes on a datum

without changing the datum itself. (~he type-changing requirement

was met through the inclusion of "cheater functions fl
, which

accomplish directly what generations of FORTRAN programmers have

accomplished painfully through EQUIVALENCE statements.) Second,

it was necessary to write an optimizing compiler, so that the

system programs themselves would operate at a tolerable speed.

Although the requirements of the implementation were the primary

reasons for these decisions, they alo~had the side effect of

making additional facilities available to the user.

MEMORY MANAGEMENT

Most of the concepts of memory management used in LISP 1.5

are also used in LISP 2. Memory management in LISP 2 is based

upon several considerations:

(1) LISP 2 data may vary in size by orders of magnitude

at run time, and storage for such data must be al

located automatically.

(2) Since recursion is permitted, many generations of

data must be retained simultaneously.

(3) Programs and data that are no longer needed must be

purged without explicit action on the part of the user.

(4) Numerical data must be stored in such a way as to

permit efficient nUmerical calculations.

- 7 -

~ I (

LISP 2 data may be either variable or fixed in size. The

variable data are arrays and symbolic expressions. Symbolic

expressioris are stored in the form of list· structure, with

each cell of the structure representing a node of a binary tree

that in turn represents the symbolic expression. Arrays are

stored in the form of integer-indexable blocks of consecutive

cells that may contain .numerical or symbolic data. Although

an array, once established, does not change in size, the size

of an array is frequently not known until the occasion arises

to creat it. In the CBse of list structures, the situation is

even more complex; a list structure may be modified in such a

way as to increase or decrease its size.

Arguments of functions and internal parameters of blocks

are stored on a pushdown stack. Since all temporary storage

belonging to LISP 2 functions is recorded on the pushdown

stack, which is maintained by the LISP 2 system, recursion is

permitted with no special user provisions. Unlike LISP 1.5,

LISP 2 stores numbers directly on the pushdown stack as single

cells. Therefore, it is possible to perform efficient arith-

metic without the loss of efficiency that would arise from

packing and unpacking numbers that are referenced indirectly.

Symbolic expressions and arrays, however, are accessed by

means of pointers stored in the stack. The data thus pointed

to are discarded when the function creating them has completed

its execution; however, they do not disappear, but remain as

garbage until the next garbage collection (see below).

- 8 -

.. ~ '.

In most programming languages, variable-size data structures

are only' created upon entrance to a block, subroutine, or other

program unit; in LISP 2, they may also be created during the

operation of a program unit by, for example, the concatena-

tion of two symbolic data. Therefore, the frequently-used

solution of storing such data on the pushdown stack does not

work in LISP 2. (It also fails, for much the same reasons, in

the case of dynamic own airays in ALGOL 60).

Data Storage Areas -- In LISP 2, data are grouped according

to their storage characteristics and a storage area is set aside

for each group. The groups are:

(1) Elementary symbolic entities (symbolic constants,

function and variable names, etc.)

(2) Compiled programs

(3) List structure

(4) ·Arrays

In addition, a storage area is set a~ide for the pushdown stack.

These storage areas are arranged in pairs, where one member of

the pair grows from the bottom up ahd the other grows from the

top down. Consequently, the allocation of space among the dif-

ferent groups is less critical than it would otherwise be.

The elementary symbolic entities are each stored ·as a symbol

block (three cells in the case of the Q-32). Among the elementary

symbolic entities are identifiers, each of which has a unique

symbolic block associated with it. Each identifier has associated

with it in turn a set of cells, possibly empty, that contain the

values of the identifier. An identifier may have several values

associated with it because it may be used in several different

sections. The values are chained together in a circular list

- 9 -

•

known a s the v-f cha in (where "v-fu stands for "va ria ble-function") .

The values themselves are stored as symbol" blocks. Identifiers

are linked together in bucket-sorted chains, which are in turn

pointed to from an integer-indexed array. The chain in whlch an
. t{ej~~ ';j(.,/:c..(; ... / '. :'".'~ . .! c/ W,1"(' , /

identifier is stored is found by tr~ating the first six characters
1\ .

of its name as an octal number, dividing this number by a. constant,

and' taking the remainder. The purpose of this procedure is to

minimize the time needed to find existing copies of an identifier

upon read-in.

Compiled programs are stored in the form of relocatable

code. Each code segment has relocation bits associated with it

so that it can be moved if necessary. List structure is stored

as a set of nodes~ one node per cell.Each node contains CAR and

CDR of the datum that it represents (With some bits left over).

Arrays are stored as blocks of cells, with a title cell at the

head .. Numbers that are being used in a symbolic context, i.e.,

that ·are governed by a declaration of SYMBOL or are part of a

symbolic expression, are stored as one-element arrays.

Garbage Collection -- In LISP 2, data storage is obtained

by taking storage space from the;:appropriate area until that

area is exhausted (which occurs when its boundary meets the

boundary of the area that is paired with it). At this point,

the garbage collector is invoked. Garbage collection causes all

inaccessible data to be erased, and its space made available for

new data. For instance, if a LISP 2 function has been redefined,

the program corresponding to its old definition is. inaccessible

and thus is erased. During garbage collection, the different

- 10 -

•

areas are compacted, relocating code and/or data if necessary,

so as to eliminate the gaps left by erased data.

The different kinds of data are stored in different areas

because their requirements in terms of garbage collection are

different. For instance, the elementary symbolic entities can-

not be moved, but the other kinds of data can be moved. Similarly,

li~t structure consists of independent single cells, while array2

consist of blocks of different sizes.

At entrance to the garbage collector, the current pushdown

stack location is saved. The marking phase then is executed.

At the beginning of the marking phase, all LISP 2 storage is un

marked. During the marking phase) a mark is placed in a mark bit

in each datum that is aC"cessible to either the user or the system.

A pushdown scanning function applies a marking function to all

pushdown cells pointing to list structure, passing from the begin

ning of the stack to the current stack location. The mark bit is

in a uniform position in all marked words. All list nodes in use

are marked. Arrays in use are marked in the title word. Symbol

blocks are marked in the second word in the case of the Q-32.

A p~ss is then made over all identifiers. Each identifier's

v~f chain is scanned, and unmarked symbol blocks on the chain are

pruned off. If any remain, the identifier is marked if it was not

marked before. Identifiers remaining unmarked are then deleted

from the bucket sort chains. The freed triples are then chained

together, and ihe boundary of the symbol block area adjusted to

point to the end of the area in use.

Next, the list nodes are compacted. A pointer is set to the

- 11 -

~ , ...

top of the list space, and another is set to the bottom. The

pointers are advanced toward each other. When the top pointer

has found an idle, i.e., unmarked, node and the bottom pointer has

found a marked one, the marked node is copied into the idle

position, and the old position is set to a pointer to the new posi-

tion. It will thus be possible at a later time to detect and fix

up references to the vacated area.

It is now possible to tell how much space of each type is

actually in use. During the marking phase, the space occupied by

arrays in use was added to a counter as they were marked. Binary

program space is counted as it is assigned and excised. The other

areas have all been counted by the garbage collector its~lf.

Therefore, it is possibl~ to reallocate storage among areas.

There are three areas to consider: symbol blocks and pushdown,

binary program space, and array and list space. It is clear

that reallocation is much more important if some areas are nearly

full than if all are lightly used, and that as the fullest area

becomes fuller, one can tolerate less and less difference between

the percentage occupancy of the fullest area and the emptiest.

Hence we calculate the fraction of occupancy, of each areaj

calculate the largest and smallest of these, and reallocate

if unity minus the largest is less than the largest minus the

smallest. If reallocation is done, the available space is divided

so as to equalize the percentage of occupancy. The areas are cop

ied into their hew positions, taking care to copy in such an order

tha t no informa'tion is lost.

Now array space is reallocated. A pass over array space

notes which arrays are marked. An address-sized field in each'

- 12 -

;"

array title word is set to the position at which the array will

finally be put. It is then possible to do a general sweep of

storage, and update all references to arrays and list nodes.

Binary program space is then reallocated and relocated, using the

relocation bits included in the code. Finally, array space and

binary program space are moved to their final positions.

Garbage collection as a means of storage recovery has sig

nificant advantages over its competitors, which are explicit

erasure [2J and the use of reference counts [3]. In a system

utilizing explicit erasure, the programmer designates those data

to be returned to free space, and the data so designated are re

turned immediately. However, the programmer must be sure that

when he erases a structure that there are no references to it in

existence. In such a system, the results of either too little or

too much erasure can be disastrous. (The LISP 2 programmer can,

in effect, explicitly erase a list by setting all pointers to it

to the null list.) In a system utilizing reference counts,

each datum (or list node) has a count associated with it that

specifies the number of times that it is currently referenced;

when the reference count of a storage structure goes to zero, the

structure can be erased. However, in this case more elaborate

storage structures are required, and complicated up,dating must

be done whenever a list is assigned to a variable. Reference

counts are used to some extent in LISP 2 for symbol blocks, since

updating these counts is straightforward and does not occur

frequently, and the storage structure of symbol blocks is fairly

complex in any case.

- 13 -

." I

Garbage collection also simplifies many of the problems involved

in dynamic creation of arrays.

There are two-principal disadvantages to garbage collection:

the overhead that it adds to the cost of creating list structure,

and the fact that it occurs all at once and takes considerable

time. The overhead is a direct consequence of the fact that the

system rather than the user determines what storage is needed and

what storage is not needed. The difficulty with having garbage

collection occur all at once is that while the process is going

on, the system is immobilized. If LISP 2 is being used for a

real-time application, then the immobilization becomes intolerable

if its duration exceeds the response time required.

THE SYNTAX TRANSLATOR AND THE META COMPILER

The translation from SL to IL is performed by a syntax

translator which was generated by the META compiler. The META

compiler is based upon a program developed by the Los Angeles

SIGPLAN of the ACM (4J. The META compiler takes as input a

specification of the syntax of SL, together with instructions

on how each syntactic entity is to be transformed to IL. It

produces an IL program that actually carries out the translation

from SL to IL. The description of the syntax. of SL is given in

an extended version of Backus-Naur Form [5]. The extension

allows both for the designation of things like indefinite numbers

of occurrences and for the designation of the LISP program cor

responding to a syntactic entity.

The META compiler produces top to bottom compilers with a

controlled backup feature and an interface with the finite state

machine. Both the controlled backup and the finite state machine

- 14 -

/

are efficiency features. The controlled backup allows the designer

of a language to. specify in the syntax equations when the state

of the machine must be saved because two or more alternatives

start with the same construct or constructs. The finite state

machine enables the syntax translator to parse expressions

consisting of basic tokens of the source language instead of

having to spend time reading expressions made up of characters.

Since a large amount of the time of these compilers is spent

examining characters the savings are considerable.

As it is possible to regenerate the syntax translator with

new syntax equations at any time J the syntax and semantics of SL

are not in principle ri~idly fixed. In practice J variants on

the syntax translator will be used in order to translate ~ther

languages into LISP 2 IL. These other languages J unlike SL J will

normally not be semantically equivalent to IL.

INPUT-OUTPUT

One of the primary design aims in LISP 2 I/O has been the

maintenance of machine independence as far as possible. This is

accomplished by dtstinguishing user interfaces from system

interfaces and insulating the user from the system interfaces.

This effect is achieved by creating machine-independent data

aggregates called flfiles rT
J and permitting the user to operate

with files by means of LISP 2 functions.

To the user J a file is a source or sink for information J

which is filled on output and emptied on input. A file itself

is both device and direction independent. The relationship of

a file to an external device is determined by the user at run

time J ·when he specifies whether the file is to be an input file J

- 15 -

.. I '" J

an output file} or both an input and an output file.

To the system} a file consists of a sequence of records}

represented internally as an array of type OCTAL if the file is

binary} and as a string if the file is composed of characters.

(ASCII 8-bit characters are used internally throughout LISP 2.)

To reduce buffer storage overhead} only one record for a given

file can be in main memory at a time. String records are further

structured into lines. The number of characters per line and

lines per. record are specified by the user} but mUGt be consistent

with the conventions used by the external monitor system.

When a. record in a file is moved. from an external device

into core} it is transformed into a LISP 2 string. The transforma-

tion may involve character code co"nversions and insertion or

deletion of control characters. The transformation is governed

by a collection of control words associated with the file.

During output this transformation} known as "string post-proces-

sing"} is reversed.

File Activation and Deactivation. -- A file may be either

active or inactive; an active file} in turn} may be either

selected or deselected. No record is kept within LISP of inactive ,

files; however} many files may be active concurrently.

A file is activated by evaluating tne function OPEN which

establishes all necessary communication linkages bet\'Jeen LISP 2 ..

and the monitor. The file is named by ah identifier that is its

referent throughout its active life. The user.fu~ther specifies

the desired file description at this time. This description is

given only once and consists of a list of file properti~s desired

by the user such ~s the unit (tape} disc} teleiype} CRT} etc.)}

- 16 -

form (binary, ASCII, BCD, etc.), format (line, and record sizes),

and various protection and identification parameters.

Deactivation of a file is achieved by evaluating the function

SHUT. SHUT breaks all the communication linkages and deletes all

internal struct-ures such as arrays, strings, and variables that

were dyriamically established by OPEN. The user may specify at

this ti~e the disposition of the file, e.g., save the tape or

insert file in disc inventory. The external monitor is informed

of such aotions by LISP 2.

File Selection -- At any given time, exactly one file is select~

ed for input and one for output; all other active files are dese

lected. ~he LISP 2 reading functions all operate on the currently

selected input ~ile; the printing ~unctions all operAte on the

currently selected output file. The functions INPUT and OUTPUT

are used for selecting the input file and the output file respective
)

lye '

When a file.is selected, the record, line and column controls

for the deselected file are preserved, and the new file record,

line, and column controls are reestablished. Once a file is

selected, all I/O primitives act only on that file. Thus it is

possible to write a LISP 2 program that is independent of form,

format, and device by supplying the n8me of the file as an argument

of the program at run time. This scheme allows a LISP program

to be debugged with files generated on-line, and subsequently

run with bU'lk aata from tape or disc files simply by changing

the selected file.

- 17 -

.,. I .,

Other I/O Functions -- A variety of I/O functions are avail

able for reading ~nd"writing binary and symbolic data. There are

character level primitives that permit testing, printing, read~ng

2nd transforming characters. Other functions call upon the

finite state machine to allow reading at the LISP "2 tok~n level,
.,

with equivalent token printing capability. There are also func-

tions that read and print entire~ S-expressions. Additional

features permit the user to control the form of printing and

reading. By these means one can obtain formatted printing of

S-expre~sions and special printing of tok~ns with unusual spellings

that would ordinarily foil the finite state machine's p~rsing

algorithms. There are special character mappings permitted so

LISP 2 can accept legal input from restricted character-set

devices.

Finite State Machine -- The finite state machine (FSM) is a

token parsing program used by the syntax translator and the S-expres-

sion reader. Reading LISP 2 entities is expensive, not only in

the origin~l creation of the internal structures, but also in the

time spent in garbage-collecting the space when they are discarded.

Consequently, it is desirable to avoid backup at the character

level with the resultihg recreation of duplicate structures.

Since backup must be used by the syntax translator, the F$M was

imposed between it and the character stream to eliminate reproces

sing of tokens. Having the bottom-to-top FSM interface with the

top-to-bottom syntax translator eliminates. a large portion of the

overhead associated with reaciing in the LISP 2 system. The S-expres

s.ion reader does not require backup, but since the FSM existed, it

was convenient to use tokens for building S-expressions also.

- 18 -

t ,

The FSM behaves like a Turing machine. It moves from state

to state as it reads characters; when a terminal state is reached

it "prints" a character from its output alphabet (tokens) and sets

its state to the initial one. Parsing and manufacture of struc-

ture are done simultaneously as characters are recognized. No re-

processing of the parsed characters i2 ever necessary since in a

terminal state the token is already complete (except for a final

action, such as combining the parts of a real number).

THE LISP 2 COMPILER

The LISP 2 compiler is a large one-pass optimizing transla-

tor whose input is a function definition in IL and whose output

is an assembly-languege list of instructions suitable for input

to LAP.
(,

M6st of the compiler is independent of the target machine,

since the compilation concepts themselves are machine independent.

The declarations of all fluid variables appearing within the func-

tion are written into the output listing, since these must agree

with fluid variable declarations made elsewhere. Checks are

made for both format and semantic errors during compilation. The

compiler consists of three major sections: the analyzer, the

optimizer, and the user control functions. Each of these will

now be described.

Analyzer -- The top-level control of the compiler resides in

the analyzer, which operates recursively. Each item to be com-

piled is passed to the analyzer either directly or indirectly.

If the item is a variable, a~ appropriate declaration is found

and code for retrieving the variable is generated; otherwise the

code for a function call is generated, a macro expansion is

performed and the result compiled, or linkege to an appropriate

- 19 -

code generator is made. The analyzer is implemented by means of

a pattern-matching function that compares an expression to be

compiled against a pattern. The patterns are written in a

modified form of Backus-Naur Form (not the same as the One used

in the syntax translator). The pa ttern-ma tching functiorLehecks
.' "

for synt~ctic correctness and distinguishes among different forms

at the sam~ time.

The analyzer needs to make special provision for ~ituations

where a GO statement transfers control from within the scope of

a fluid variable declaration to outside that scope. This situa-

tion arises when a fluid variable is declared as an internal

parameter of a block 2nd a transfer takes place from within the

block tb a location outside the block. In this case, the '~ur

rent binding of the fluid variable disappears at the ti~e of

tr8nsfer and the previous bil1:ding must be restored.

As compilation proceeds, a list is kept of all labels to

which transfers can be made. A list of all currently un's'atis-.

fied GO statements is also maintained. At the end of comp11a~

tion of each block, checks are made for undefined labels. If

any transfers out of a block are requested, a subroutine is

genera ted to unbind the fluid va ria ble s of the block,' restore

their old values, and complete the transfer. When a forw2rd

transfer is requested which goes through one or more blocks, the

check for label definition and fluid variable restoration may

be made several·'~times. When the appropriate information is

finally obtained, the compiler patches the listing with the

appropriate code.

- 20 -

• 1

I

I

Optimizer -- Optimization of ~he code produced by the

LISP 2 compiler is handled by many groups of routines, each re-

sponsible for certain'actions. The communicative mechanisms be

tween these various parts and the rest of the compiler will be

described in same detail below:

The movers are a highly machine dep~ndent set of, functions.

They produce code that alters the state of a compilation in a

specified way, such as mov.ing an object 'to an accumulator or con

verting a,datum to a specific type. Embodied in the movers is a

predicate capability that answers ,the qu~stion fils this move

possible :under these conditions (say one machine instruction)?"

The movers are used to build all address and modifier fields of

generated instructions. Associated with the movers is a post-

processor that rewrites the output code after the main compiler

has produced it. Red.undant load-store sequences and some unneces-

sary branches are removed from the listing. Also, certain groups

of instructions are rewritten to make use of machine-speci,fic

instructions.

The arithmetic optimization package handles code generation

for addition and. multiplication. The algorithm that is used is a

standard one, namely, first sorting the arguments by type and then

by priori ty sequence wi thin a particula r type. The sequenc'e depends

on whether the arguments are memory or accumulator references.

A single set of functions handles both multiplication and addi-

tion, with the aid of several functional arguments.

Another kind of optimization is handled by the conditional

- 21 -

expression processor. An example of a conditional expression is

(IF PI e l P2 e 2 - - Pn en e n+l)·

The p~ are called the antecedents and the e i are called the con-

sequents. The value of this expression is defined thusly:

evaluate the Pi in order, 1 to ri, until one, say Px' has the

. value TRUE. If such an x is found, e is the value of the entire x
IF expression. Otherwise the value is en+l . The code to imple-

ment this kind of ex~ress~on would evaluate the Pi in order until

one is found that is TRUE, and then evaluate the corresponding

expression, say ex. The value of- ex is brought to a standard

accumulator, and program control is transferred forward. The

transfer must be made to the same point, no matter which e i is

used for the valtie of the conditional expression. The point to

which control is transferred is a confluence point.

Consider the following example;

For e 2 through·em+l the code g~neration is as described above.

However an interesting case arises if PI has value TRUE. The Pli

are then evaluated until one of these, say PIx' is found to have

value TRUE. sIx is then both the,value of the embedded conditional

expression and, the value of the embedding expression. Therefore

the embedded exp~ession can share the confluence point of the

embedding expression. Confluence points can be combined in this

way for embedded conditional expressions nested to an arbitrary

depth. In order to handle confluence points efficiently, the

compiler is capable of operating in anyone of five modes. When

tQe analyzer is called, internal variables of the compiler are

- 2'2 -

I'
!

set so as to indicate which mode is applicable.. In each mode,

confluence points are handled differently. These modes are:

(1)- Expression mode. In this mode of compilation, and expres

sion is to be compiled 'and no confluence 'point ha's been est3blished.

If the expression to be compiled is a conditional expression or a

block expression, a confluence point is established and compilation

continues, in the terminal expression mode.

(2) Terminal expression mode. In this mode of compilation,

an expression is being compiled and a confluence point has been

established by some higher-level embedding form.

(3) Statement mode. In this mode, a statement is being compiled

that is not itself a consequent of a conditional statement. Such

a statement produces a sidff effect but no value. If the state-

ment is a conditional ~tatement or a block statement, a confluence

point is established and compilation continues in terminal state-

ment mode.

(4) Terminal statement mode. In this mode, a consequent of a

conditional statement is being compiled and a confluence. point has

already been established. As with conditional expressions, "the

confluence point may be shared by conditional statements enbedded

to an arbitrary depth.

(5) Predicate mode. This mode is in effect when an ante-

cedent of a conditional expression or conditional statement is

being compiled. Tn this situation, the value of the antecedent

is not used as a datum, but does affect the place to which program

control must go. Therefore, two new confluence points are estab-

lished: one for TRUE and one for FALSE. These confluence' pOints

are used in the compilation of AND and OR; if the.predicate begins

- f?3 -

· .

with NOT, the two confluence points are reversed. Ne sted compo- ---------

sitions of AND, OR, and NOT that are equivalent under De MorgaK-?i:t=·-· .. ··

transformations produce the same code.

, It is interesting to note that in compiling a BLOCK expres-

sion, an expression confluence point must be established since

more than one RETURN statement may exist. The procedures for

compiling IF expressions and BLOCK expressions are quite similar.

However, the procedures for IF statements and BLOCK statements

are different because BLOCK statements have neither an expression

confluence point nor a statement confluence point.

When an expression is compiled, the characteristics of the

value that it is to produce must be specified. These character-

istics include its data type, whether it is in a special register

or in an ordinary memory cell,its address modifier (direct or

indirect), which registers it may be left in, whether the actual

value is needed or whether the negative or reciprocal of the

value will do, etc. These characteristics are specified by

state variables, which are bound for each call to the analyzer.

As a statement or expression is compiled, a listing is generated

and the state variables set to reflect the state of the compila-

tien. The compiler is passive in the sense that a compilation

produces the minimum amount of code necessary to achieve the

results required by the state variables.

User Control Facilities The user can give the compiler

explicit instructions to aid in the compilation process. As in

LISP 1.5, macros are an integral part ~f the language. Many of

the facilities of the language, e.g., FOR statements and relational

- 24 -

• I

expressions, are implemented by means of system macros. These

expand in terms of highly optimized compiler controlling functions.

Thus it is essential to produQe good code for a small, selected

number of things in terms of which'everything else i2 defined.

Certain machine-dependent operators are particularly useful

as primitives in compilation. CORE is an operator that acts

like an array whose contents is all of the machine memory.

Therefore CORE(x) is the content~ of location x. BIT is an oper-

ator that specifies a certain contiguous portion of a word. There

are also several operators that permit an expression to be forced

to a certain type or permit a datum of one type to be used as

through it were of another type. Though such mechanisms are in

most compilers, LISP 2::has made these items available' through

the language.

The user may instruct the compiler to creat~ open subroutines

for certain LISP functions. Open subroutines are specified by
<

instruction sequences. The user defines the instruction sequence

by giving a function that constructs the seq~ence. This function

uses the internal variables of the compiler (which are fluid for

just that reason). The input to the function is the operational

form that specifies the open subroutine; the output is a sequence

of instructions to be included in the compiler output. The

instruction sequence for a particular function is inserted

whenever an operational form is encountered that has the function

as its operator; at .this point the compiler invoke2 the function

that generates the instruction sequ~nce. The LISP functions

CAR and CDR are implemented in this way, and the code generated

,for them is no longer thah that for a closed stihroutine.cell.

- 25 -

· .

THE LISP 2 ASSEMBLY PROGRAM

The LISP 2 Assembly Program, LAP, is a program that generates

a code segment from a list of symbolic instructions and: labels.

LAP also allocates storage for variables on the pushdown stack,

and insures that references to fluid and own variables are con

sistent among different compiled functions. LAP do~s more than

mo~t assemblers, in that it handles all aspects of pushdown stack

mechanics; consequently, references to variables are made by

naming the variable in the appropriate field of any instruction

that references it. Thus, the pushdown stack need never be refer

enced explicitly. ,

LAP includes a number of; system macros specifically designed

for LISP 2 programming. The prologue and epilogue of a function

are generated by BEGIN and RETURN respectively; CALL is used to

generate a call to a LISP 2 function in the standard format.

Storage allocation on the pushdown stack is performed by the

BLOCK, DECLARE, and END macros; FLBIND creates any necessary bind

ings for fluid variables. LAP does not have a generalized macro

facility; any effect that could'be achieved by such a'facility,

however, can also be achieved by preprocessing.

The actual workings and structure of the pushdown stack

could be changed considerably without affecting the LAP input

language. For that reason, even the bulk of LAP itself is machine

~dependent. At any time, LAP is aware of the most recently allocated

cellon the pushdown stack. Allocation or release of a pushdown

cell is purely a matter of internal LAP housekeeping; it does not

cause a~y extra ins·tructions to be generated. ,The address field

of an instruction may be used to affect pushdown storage alloca

tion. The address::. fd.elds TOP. and POP. are normally used wi th

26 -

load-type instructions. Both TOP. and POP. ·refer to the most re

c~ntly allocated pushdown cell, but POP. has the additional effect

of releasing that cell. PUSHA. and,PUSHP. both cause a new push

down cell"to be allocated, and refer to that cell; PUSHA. and

PUSHP. are normally used in store-type instructions. PUSHA. is

used for absolute quantities and PUSHP. for symbolic quantities,

so that a map of the pushdown stack can be maintained.

Unlike function definitions in either SL or IL, LAP programs

are context·independent~ While function definitions derive much

of their declaratory information from the current environment,

.programs in LAP do not. All such information is included in the

LAP program generate~ by a compilation. Thus, a library of LAP

programs can be maintained, and any program in~-the library can be

read in at anytime with complete consistency checks on declarations.

LISP 2 PRIMITIVES

The LISP 2 primitives are a set of basic functions, routines,

macros, and instruction sequences in terms of which all other

LISP 2 programs. are written. The primitives are used both by the

system itself (since the, system is written in terms of ~hem) and by

the user. All of the LISP 2 primitives were programmed directly

in LISP 2. The primitive CONS, for example, is defined by:

SYlYIBOL SECTION SYS;
r-..

FUNCTION CONS $LISP (A, B);

BEGIN SYlYIBOL S - OHEAT(INTEGERJ SYlYIBOLJ LSP - LSP -1);

CORE(CHEAT(SYMBOL,INTEGERJS)) - CHEAT(SYlYIBOLJOCTALJB);
CAR S - A;

IF ARP >= LSP THEN RECLAIM(l); RETURN(S);END

where ARP and LSP are system variables conta~ning the upper bound-

ary of array space and the lower boundary of list storage respectively.

- 27 -

CREATION OF LISP 2 SYSTEMS

Bootstrapping from LISP 1.5 to LISP 2 on the Q-32 proceeded

in three stages. At the end of the first stage, a LISP 2 system

was produced that only accepted input in LAP. At the end of the

second stage the system accepted input in LAP and IL, and at the

end of the third stage it accepted input in LAP, IL, or SL. A

fourth stage is required to obtain LISP 2 on a new machine. The

successive stages are illustrated in Figures 2 through 5, and

are discussed below. Each of the figures shows a succession of

steps in the bootstrap. The notation used in the diagrams will

become obvious from the exposition.

Stage 1

A. The compiler, which translates IL into LAP~ is written in LISP' 1.5.

B. The core image generator, which translates the LAP language

into an octal core image, is written in LISP 1.5. The core

image is a memory map, in octal~ of all code and associated

storage structures required by the input to the core image

generator. It can be loaded into the Q-32 by a simple octal

loader, and produces executable code for the programs that were

fed into it.

C. LAP, which translates the LAP language into Q-32 machine lan
v

guage, is written in LISP(~ Most of this program is the·

same as the core image generator B.

D. The primitives are written in IL. These include the garbage

collector, the input-output functions, and the primitives re

quired for creating, testing, and manipulating LISP 2 dat~.

E. The p~imitives are combined with LAP to produce a LAP-level.

system written in IL.

- 28 -

.(), I

(compiler)

(core image generator)

(assembler)

Primitives in IL

~LAP-level LISP 2 in IL)

[!J - I A I BI - @_L_I---.. 5_~

o -0·:0 (LAP-level LISP 2 in ML)
LI.5

Stage I of LISP 2 Bootstrap

Figure 2

- 29 -

-€), i •

0 -

IT] -

CD -

0 -

e Ll·5 G
0

W

0

:[!J -
Ll·5

:[2] -®~ Ll.5

:Q] G ML e (IL-level LISP 2 -
L2

Stage II of LISP '2 Bootstrap

Figure 3

- 30 -

in'ML)

8, I'" ,

ill META -

0 IL -

0 - [D :·0 ~ . L2

0 :1'
~. 0 :[£] = @~

CD - ~ :0 = ~ (Full LISP 2 in ML)

·Stage III of LISP 2 Bootstrap

Figure 4

- 31 -

'8 ·

. ,

l!J -

~ -

'li1 --

@] -

~, -

~ -

~ -

[!] -

i '"
,[2] .-

. '

!

@ SL)8
SL

e SL .§
.

Primitives for X in SL

'QIRITf

~ : f U I (IL-level LISP 2 for X in IL)
L2

IvlMlol (Full LISP 2 for X in IL)

[§J: [~J (Full LISP 2 for X in LAPX)
L2

0:~ (Full LISP 2 for X in CIX
L2

Stage IV of LISP '2 Bootstrap
Figure 5

- 32 -

F. The compiler and the core image generator are·combined to

produce a LISP 1.5 program that translates IL into a core

image.

G. The program F is applied to the program E.in order to obtain

a core image of a LAP-level LISP 2 system. The operation is

performed in the LISP 1.5 environment. This core image is

then loaded into the Q-32 in order to obtain the system in

working form.

Stage 2

H. A program that translates LISP 1.5 into IL is written in

LISP 1.5.

I. The program H is applied to the program A in order to obtain

a version of the compiler written in IL. The operation is

performed in the LISP 1.5 environment.

J. The program A is applied to the program I in order to obtain a

version of the compiler written in LAB. The operation is

performed in the LISP 1.5 environment.

K. LAP-level LISP 2 is used in order to assemble the compiler,

which was written in LAP as a result of Stage J. This opera

tion and all succeeding operations, are performed in the LISP

2 environment. This operation could also have been performed

through core image generation in the LISP 1.5 environment.

Stage 3
i

L. The syntax translation specifications for translating SL to

IL are written in the META language.

M. The META compiler, which produces a syntax translator in IL

from a set of syntax translation specifications, is written

in IL.

- ,.' -·33

N. The compiler is applied to the META compiler in order to obtain

an operating version of the META compiler in machine language.

O. The META compiler is used in order to obtain an IL program

that translates SL to IL.

P. The IL program just obtained is compiled, and incorporated into

the system. The result is a. complete LISP 2 system on the

Q,-32.

Stage 4

Q. An SL version of the existing compiler is modified so as to pro

duce LAP for machine X (the new machine) rather than for the

Q-32.

R. An SL version of LAP for the Q-32 is modified so as to produce

machine language for machine X.

s. The SL version of LAP for the Q-32 is also modified so as to

produce a core image-for machine X.

T. The primitives for ma.chine X are written in SL.

U. The compiler, LAP, and the primitives, now all written in SL,

are-joined together to produce IL-Ievel LISP 2 for machine X.

V. The program U is translated into IL.

w. META and the SL-to-IL translator are joined with V to produce

full LISP 2 for machine X in IL.

X. LISP 2 fo~ machine X is compiled on the Q-32.

Y. LISP ~ fdr machine X is assembled on the Q-32 to obtain a core

image. This core image, when loaded into machine X by an

octal loader, produces a complete and working version of

LISP 2 on machine X.

- 34 -

REFERENCES

1. Saunders, R.A,., "The LISP System for the Q-32 Computer," in

The Programming Language LISP, Information International, Inc.

Cambridge, Massachusetts, 1964, pp. 220-238.

2. Kelly, H.S., and Newell, A., (ED) Information Processing

Language-V Manual, (Prentice-Hall, Inc., Englewood Cliffs,

N. ,J.. 1964), 2nd ed.

3. Collins, G. E., "REFCq III, A Reference Count List Processing

System for the IBM 7094,H IBM Research Report RC-1436, (1965).

4. Schorre, D.V., "META II A Syntax-Directed Compiler Writing

Language," Proc. ACM p. Dl.3-1 (1964).

5. "Revised Report on the Algorithmic Language ALGOL 60,"

Comm. ACM 6, 1 (1963).

_. -t,' -i ' • ~J. ,

"
" 1(;-/

- 35 -

