e s e g fpem—— - me—

. 'r‘ i » B - N e . . B - - ST T ———————— -

THE TMPLEMENTATION OF

LISP 2
by

Stanley L. Kameny *
Lowell Hawkinson **
Clark Weissman %
Jeffrey A. Barnett ¥
Robert A. Saunders ¥¥
Erwin Book *
Donna Firth *
Paul W. Abrahams *¥¥

* System Development Corporation, Santa Monica , California
*¥¥% Information International, Inc., Los Angeles, California
¥¥%% Information International, Inc., New York, New York

Produced by SDC and III in performance of contract AF 19(628)-5166
with the Electronic Systems Division, Air Force Systems Command, in
performance of ARPA Order TT73 for the Advanced Research Projects Agency
Information Processing Technigues Office and Subcontract 65-107.

THE IMPLEMENTATION OF
LISP 2

by

Stanley L. Kameny ¥
Lowell Hawkinson ¥%¥
Clark Weissman *
Jeffrey A. Barnett ¥
Robert A. Saunders **
Erwin Book *

_ Donna Firth *
. Paul W. Abrahams #*¥¥%

Abstract

This paper discusses the internal structure of the LISP 2
programming system and the means by which it was created. The sys-
tem is written in its own language. The I/0 package transforms
input into a stream of characters, which are converted into tokens
by the finite state machine. The supervisor controls the various
LISP 2 operations. SL is translated to IL by the syntax transla-
tor; IL is translated to assembly language by the compiler; and
assembly language is translated to machine language by the LISP 2
assembler, LAP. Machine mobility is achieved through core image
generation. LISP 2 memory management is based on dynamic storage
allocation, with separate areas for different kinds of data. Data
1s recovered by garbage collection. The syntax translator is
generated from syntax equations by the META compiler. The compiler
consists of three main parts: the analyzer, the optimizer, and the
user control facilities. LAP handles the manipulation of the push-
down stack automatically. LISP 2 is generated by a bootstrap pro-
cedure which successively produces LAP, LAP with IL, and full
LISP 2 on the Q-32. A fourth stage produces LISP 2 on a new
machine, requiring only an octal loader and a system monitor on
the new machine.

* System Development Corporation, Santa Monica, California
*¥¥%¥ Information International, Inc., Los Angeles, California
*¥¥% Information International, Inc., New York, New York

TNTRODUCTION

In this paper we shall discuss the internal structure
of the LISP 2 programming system and the mechanisms by which

it was created. It is assumed that the reader is already

' Lises L. /7
familiar with the companion paper "The\Programming Language »
i .
LISPi2%.
Quite early in the design of LISP 2 we decided to write
the LISP 2 system in its own language, and use the existing

LISP 1.5 system on the Q-32 [1] in order to bootstrap in the

first version. There were a number of reasons for this decision:

(1) Economy in programming. In general, it is more eco-

“nomical to program in a problem-oriented language
than in assembly language. Although we might have
used a problem-oriented language other than LISP 2
cum LISP 1.5, we felt that any advantages of another
language would be offset by extra design, implemen-

v tation, maintenance, and tutorial wprk.

(2) Machine mobility. We wished to be able to transfer

LISP 2 to a new machine as rapidly as possible. This
point 1s discussed in further detail below.

(3) Dynamic storage allocation. Whatever language waé

used for writing the system needed to have dynamic
storage allocation facilities; these are of course
inherent in the LISP 2 language.

(4) Modularity. By taking advantage of the natural

modularity of LISP, we were able to partition the pro-

gramming task easily, and modify different parts of

- o -

the system independently.
(5) Accessibility of system programs to the.user. In the

past, the system programé have appeared to the user to be
an extension.of his own program. He can call upon sys-
tem functions és though he had written them himself,
and he can modify the behavior of the system by
changing the system functions. We'wished to preserve
thils capability. |

(6) Previous experience. The project personnel had already

had experience with LISP 1.5, and we wished to take
advantage of that experience.

(7) Capabilities of @-32 LISP 1.5. The LISP 1.5 system

on the Q-32 had quite useful edltling and debugging
capabllities, and it works 1in an interactlve environ-
ment. By using Q-32 LISP 1.5 1n the first part of the
production of LISP 2, we were able to utili e these
capabilities.

SYSTEM OVERVIEW

A diagram of the LISP 2 system, which shows the relationships
among 1ts different components, is shoWwn in Figure 1. Information

enters the system via the I/O'package in eilther SL or IL. The

’I/O package transforms the input into a stream of characters in

an internal representation. The stream of characters becomes the
input to the finite state machine, which in turn generates a
stream of tokens. Among other things, the finite state machine
performs the task of linking up a newly received identifier with

a previous copy of the same identifier. The token stream produced

by the finite state machine 1s routed by the supervisor to either

the syntax’translator or to a reading program for IL, depending

(_\‘
1,/0
}
CHARACTER STREAM
FINITE
, STATE
MACHINE
I~ X
TOKENS
¥
SUPERVISOR
$
SOURCE SYNTAX INTERMEDIATE | Gonpiimm ASSEMBLY ASSEMBLER ____ | —>BINARY CODE
LANGUAGE . | TRANSLATOR LANGUAGE | ¢ LANGUAGE CORE |, OCTALCORE
IMAGE GENERATOR| * IMAGE
META
COMPILER

GARBAGE COLLECTOR

PRIMITIVES

LISP 2 System Structure Overview Including
Information Flow Under Supervisor Control

Figure 1

upon whether SL or IL is expected.

In either case, the result

is an expression in IL. The supervisor determines when compila-

tion is to take place, and also handles processing requests and

declaration made by the user and error conditions that arise dur-

ing computation.

The syntax translator takes a

stream of SL tokens and trans-

forms it into an IL expression. This expression can be returned

as output, passed to the coﬁpiler,

or both. The choice is made by

the supervisor under the control of the user. The syntax transla-

tor consists of parsing and generatihg programs that are compiled

SL in terms of IL.

‘from a set of syntax equations. These syntax equations define

The compiler, which is the most complex component of the

system, converts IL into input for

LAP, the LISP Asembly Program,

or for the core image generator. Both LAP and the core image

generator accept input in assémbly

language (AL). If LAP is being

used, then the result of ascembly 1s é relocatable segment of

code stored in an area of the machine reserved for

binary programs-.

If the core image generator is being used, then the result is =2

string of pairs of binary numbers,

each consisting of a core

location and the contents of that location, stored on a magnetic

tape or other external medium. The core image generator is only

used when a new system 1s being created.

The META compiler, the garbage collector, and the primitives

are all implicitly involved in the
META compiler is a 1ibfary program
tor from a set of syntax'equations.
program that collects dead storage

exhausted. The primitives are the

5

operation of the system. The

that generates a syntax transle-
The garbage collector is the

when available storage has been

bagic library functions in

terms of which the entire system is written.

MACHINE MOBILITY

The bulk of the design and implementation effort to produce
the first LISP 2 gystem has been directed toward the Q-32 computer.

The Q-32 is a large military machine of considerable power for

~1its age, even by today's standards; however, 1t is to be retired

by the close of the year. Why, then direct so much effort toward
a machine with little futuré? The answer is that it is far easier
to create a LISP 2 system when one already exists than to créate
one from scratéh, and the Q-32 offered the quickest route to
creating the first one. Given the Q-32 LISP 2 system, we could |
then transfer LISP 2 to the two other machines that we were really
interested in--the IBM 360 and the DEC PDP-6. The problem was
complicated further by the fact that the 360 and the PDP-6 were
not even avallable to us'when the effort began. Thus, machine
mobility became one of the primary design goals of LISP 2.

The decision to write LISP 2 in LISP 2 achieved the machine
mobility that we desired. In order to create a LISP 2 system on
a new machine, we use an existing LISP 2 system to compile the
new one. This process is known as "core image generation", and
i1t will be discussed in detail below. Core image generatioh achileves

machine mobility in two ways. PFirst, the amount of code fhat

- has to be rewritten for the new machine is minimized, since most

of 1t does the same thing that it did on the old machine and is
written in the same language. Second, the translating facilities
of the old machine are brought to bear on the task of producing
code for the new machine, and there is virtually no dependence on

the existing software for the new machine.

-6 -

There were other important consequences of the decision to

write LISP 2 in_LISP 2. First, it was necessary that LISP 2

include facilities for referencing machine words, inserting
and extracting bits, and performing type changes on a datum
without changing the datum itself. (The type-changing requirement

was met through the inclusion of "cheater functions", which

_ accomplish directly what generations of FORTRAN programmers have

accomplished painfully thréugh EQUIVALENCE statements.) Second,
it was neceséary to write an optimizing compiler, so that the
system programs themselves would operate at a tolerable speed.
Although the requirements of the implementation were the primary
reasons for these decisions, they a10§§had the side effect of
making addltional facilities available to the user.

MEMORY MANAGEMENT

Most of the concepts of memory management used in LISP 1.5
are also used in LISP 2. DMemory management in LISP 2 is based
upon several considerations:

(1) LISP 2 data may vary in size by orders of magnitude

at run time, and storage. for such data muét be al-
located automatically.

(2) Since recursion is permitted, many generations of -

data must be retained simultaneously.

(3) Programs and data that are no longer needed must be

purged without explicit action on the part of the user.

(4) Numerical data must be stored in such a way as to

permit efficient numerical calculations.

-7

1

(

LISP 2 date may be either variable or fixed in size. The
variable data are arrays and symbolic expressions. Symbolic
expressions are stored in the form of 1list structure, with
each cell of the structure representing a node of a binary tree
that in turn represents the symbolic.expression. Arrays are
stored in the form of integer-indexable blocks of éonsecutive
oellé that may contain numerical or symbollic data. Although
an array, once eétablished, does not change in size, the size
of an array is frequently not known untill the occasion ariées
to creat it. In the case of list structures, the situation is
even more complex; a list structure may be modified in such a
way as to increase or decrease 1ts silze.

Arguments of functions and internal parameters of blocks
are stored on a pushdown stack. Since all temporary storage
belonging to LISP 2 functions is recorded on the pushdown
stack, which 1s maintained by the LISP 2 system, recursion is
permitted with no special user provisidns. Unlike LISP 1.5,
LISP 2 stores numbers directly on the pushdown stack as single
cells. Therefore, 1t is possible to perform efficient arith-

metic without the loss of efficiency that would arise from

~ packing and unpacking numbers that azre referenced indirectly.

Symbolic expressions and arrays, however, are accessed by
means of pointers stored in the stack. The data thus pointed
to are discarded when the function creating them has completed
its execution; however, they do not disappear, but remain as

garbage until the next garbage collection (see below).

-8 -

In most programming languages, variable-size data structures
are only'created upon entrance to a block, subroutine, or other
program unit; in LISP 2, they may also be created during the
operation of a program unit by, for example, the concatena-
tion of two symbolic data. Therefore, the frequently-used
solution of storing such data on the pushdown stack does not
work in LISP 2. (It also fails, for much the same reasons, in
the case of dynamic own arrays in ALGOL 60).

Data Storage Areas -- In LISP 2, data are grouped accdrding

to thelr storage characteristics and a storage area is set aside
for each group. The groups are:

(1) Elementary symbolic entities (symbolic constants,

function and variable names, etc.)

(2) Compiled programs |

(3) List structure

(4) ‘Arrays
In addition, a storage area is set aside for the pushdown stack.
These sforage areas are arranged in pairs, where one member of
the pair grows from the bottom up and the other grows from the
top down. Consequently, the allocation of space among the dif-
ferent groups is less critical than it would otherwise be.

The elementary symbolic entities are each stored as a symbol
block (three cells in the case of the Q—32). Among the elementary
symbolic entities are identifiers, each of which has a unique
symbolic block associated with it. Each identifier has associated
with 1t in turn a set of cells, possibly empty, that contain the
values of the identifier. An identifier may have several values
associated with it because it may be used in several different
sections. The values are chained together in a circular list

9

known as the v-f chain (where "v-f" stands for "variable-function").
The values themselves are stored as symbol blocks. Identifiers
are linked together in bucket-sorted chains, which are in turn

pointed to from an integer-indexed array. The chain in which an

% tt E)
e /ﬁ,méw ,,,4 At ».--/

i@éntifier is Stored is found b%ktreatlng the first six characters
of its name as an octal number, dividing this number by a constant,
andvtaking'theAremainder. The purpose of this procedure is to
minimize the time needed to find existiﬁg coples of an identifier
upon read-in.

Compiled programs are stored in the form of relocatable
code. Each code segment has relocation bits associated with it
. 8o that it can be moved if necessary. List structure is stored
as a set of nodes, one node per cell.Each node contalns CAR and
CDR of the datum that it represents (with some bits 1eft over)
Arrays are stored as blocks of cells, with a title cell at the
head.. Numbers that are being used in a symbolic context, i.e.,
that are governed by a declaration of SYMBOL or are part of a
symbolic expression, are stored as one-element arrays.

Garbage Collection -- In LISP 2, data storage is obtained

‘by taking storage space from the appropriate area until that

area 1s exhausted (which occurs when its boundary meets the
boundary of the area that is paired with it). At this point,

the garbage collector is invoked. Garbage collection causes all
inaccessible data to be erased, and its space made availaﬁlé for
new data. For instance, if a LISP 2 function has been redefined,
the program corresponding to its old definition 1s, inaccessible

and thus is erased. During garbage collection, the different

- 10 -

areas are eompacted, relocating code and/or data if necessary,
so as to eliminate the gaps left by erased data.

The different kinds of data are stored in different areas
because their requirements in terms of garbage collection are
different. For instance, the elementary symbolic entities can-
not be moved, but the other kinds of data can be moved. Similarly,
118t structure consists of independent single cells, while arrays
congist of blocks of different sizes.

At entrance to the garbage collector, the current pushdbwn
stack location 1s saved. The marking phase then is executed.

At the beginning of the marking phase, all LISP 2 storage 1s un-
marked. During the marking phase, a mark is placed in a mark bit
in each datum that is accessible to either the user or the system.
A pushdown scanning function applies a marking function to all
pushdown cells pointing to list structure, passing from the begin-
ning of the stack to the current stack location. The mark bit is
in a uniform position in all marked words. All list nodes in use
are marked. Arrays in use are marked in the title word. Symbol
blocks are marked in the second word in the case of the Q-32.

A pass is then made over all identifiers. Each identifier's
v-f chain is scanned, and unmarked symbol blocks on the chain are
pruned off. If»any remain, the identifier is marked if it was not
marked before. Identifiers remaining unmarked are then deleted
from the bucket sort chains. The freed triples are then chéined
together, and the boundary of the symbol block area adjusted to
point to the end of the area in use.

Next, the 1list nodes are compacted. A pointer is set to the

- 11 -

top of fhe list space, énd another 1s set to the bottom. The
pointers are advanced'toward each other. When the top pointer

has found an idle, i1.e., unmarked, node and the bottom pointer has
found a marked one, the marked node is copied into the idle
pbsition, and the old position 1s set to a pointer to the new posi-
tion. It will thus be possible at a later time to detect and fix
up references to the vacated area.

" It 1s now possible to tell how much space of each type is
actually in use. During the marking phase, the space occupied by
arrays in use was added to a counter as they were marked. Binary
progfam épace is counted as it is assigned and excised. The other
areas have all been counted by the garbage collector itself.
Therefore, it 1s possible to reallocate storage among areas.

There are three areas to consider: symbol blocks and puéhdown,
binary program space, and array and list space. It is clear

that rea}location is much more important if some areas are nearly
full than if all are lightly used, and that as the fulleét area
becomes fuller, one can tolerate less and less difference between
the percentage occupancy of the fullest area and the emptiest.
Hence we calculate the fraction of occupancy, of each area,
calculate the largest and smallest of these, and reallocate

if unity minus the largest is less than the largest minus the

smallest. If reallocation is done, the available gpace is divided

S0 as to equalize the percentage of occupahoy. The areas-are cop-
iled into their new positions, taking care.to copy in such an order
that no information is lost.

Now array space is reallocated. A pass over array space

notes which arrays are marked. An address-sized field in each’

- 12 -

array title word is set to the positioh at which the array will
finally be put. It is then possible to do a general sweep of
storége, and update all references to arrays and 1ist nodes.
Binary program space is then reallocated and relocated, using the
relocation bits included in the code. ‘Finally, array space and
binary program space are moved to their final positions.

Garbage collection as a means of storage recovery has =sig-
nificant advantages over its competitors, which ére explicit
erasurev[E] and the use of reference counts [3]. In a system
utilizing explicit erasure, the programmer designates those data
to be returned to free space, and the data so designated are re-
turned immediately. However, the programmer must be sure that
when he erases a structure that there are no references to it in
existence. In such a system, the results of either too little or
too much erasure can be disastrous. (The LISP 2 programmer can,
in effect, explicitly erése a list by setting all pointers to it
to the null list.) In a system utilizing reference counts,
each datum (or list node) has a count associated with it that
specifies the number of times that it is currently referenced;
when the reference count of a storage structure goes to zero, the
structure can be erased. However, in this case more elaborate
storage structures are required, and complicated updating must
be done whenever a 1list is assigned to a variable. Reference
counts are used to some extent in LISP 2 for symbol blocks, since
updating these counts is straightforward and does not occur
frequently, and the storage structure of symbol blocks is fairly

complex in any case.

- 13-

Garbage collection also simplifies many of fhe problems involved
in dynamic creation of arrays.

There are two.principal disadvantages to garbage collection:
the overhead that it adds to the cost of creating list structure,
and the fact that 1t occurs all at once and takes considerable
time. The overhead is a direct consequence of the fact that the
system rather than the user determines what storage 1s needed and
what storage is not needed. . The difficulty with having garbage
collection ocecur all at once is that while the process 1is going
on, the system is immobilized. If LISP 2 is belng used for a
real-time application, then the lmmobllization becomes 1ntolerable
if its duration exceeds the response time required.

THE SYNTAX TRANSLATOR AND THE META COMPILER

The translation from SL to IL is performed by a syntax
translator which was generated by the META compiler. The META
compiler is based upon a program developed by the Los Angeles
SIGPLAN of.the ACM (4]. The META compiler takes as input a
specification of the syntax of SL, together with instructions
on how each syntactic entity is to be transformed to IL. It
produces an IL program that actually carries out the translation
from SL to IL. The description of the syntax of SL is given in
an extended version of Backus-Naur Form [5]. The extension
allows both for the designation of things like indefinite numbers
of occurrences aﬁd for the designation of the LISP program cor-
responding to a syntactic entity.

The META compile? produces top to bottom compilers with a
confrolled backup feature and an interface with the finite state

machine. Both the controlled backup and the finite state machine

- 14 -

are efficiency features. The controlled baékup allows the designer
of a language to specify in the syntax equations when the state

of the machine must be saved because two or more alternatives

start with the same'construct or constructs. The finite state
machine enables thé syntax translator to parse expressions
consisting of basic tokens of the source language instead of

having to spend time reading expressions made up of characters.
Since a large amount of the time of these compilers 1is spent
examining characters the savings are considerable.

As it 1s possible to regenerate the syntax translator with
new syntax equations at any time, the syntax and semantics of SL
are not in principle rigidly fixed. In practice, variants on
the syntax translator will be used in order to translate ¢ther
languages into LISP 2 IL. These other languages, unlike SL, will
normally not be semantically equivalent to IL.

INPUT-OUTPUT

One of the primary design aims in LISP 2 I/O has been the
maintenance of machine independence as far as possible. This is
accomplished by distinguishing user interfaces from system
interfaces and insulating the user from the system interfaces.
This effect is'achieved by creating machine-independent data
aggregates called "files", and permitting the user to operate
with files by means of LISP 2 functions.

To the user, a file 1s a source or sink for information,
which is filled on output and emptied on input. A file itself
~ 1s Dboth device and direction independent. The relationship of
a file to an external device is determined by the user at run
time, when he specifies whether the file is to be an input file,

- 15 -

an output file, or both an input and an output file.

To the system, a file consists of a sequence of records,
represented internally as an array of type OCTAL if the file is
binary, and as a string if the file is composed of characters.
(ASCII 8-bit characters are used internally throughout LISP 2.)

To reduce buffer storage overhead, only one record for a given
file can be in main memory at a time. String records are further
structured into lines. The number of characters per lline and
lines per‘record are specified by the user, but must be consistent
with the conventions used by the external monitor system.

When a record in a file 1s moved from an external device
into core, it 1s tranéformed into a LISP 2 string. The transforma-
tion may involve charaefer code conversions and insertion or
deletion of contro; characters. The transformation is governed
by a collection of control words associated with thé file.
During output this transformation, known as ”string.post—proces—

sing", is reversed.

File Activation and Deéctivation‘—— A file may be either
active or inactive; an active file, in turn, may be either
selected or deselected. No record is kept within LISP of inactive
files; however, mény files may be active concurrently.

A file is activated by evaluating the function OPEN which
establishes all necessary communication linkages between LISP 2.
and the monitor. The file is named by anh identifier that is its
referent throughout its active 1life. The user further specifies
the desired file description at this time. This description is
given only oﬁce and consists of a list of file properties desired

by the user such as the unit (tape, disc, teleéype, CRT, etc.);

- 16 -

form (binary, ASCII, BCD, etc.), format (line and record sizes),
andjvarioué protection and identification parameters.

Deactivation of a file is achieved by evaluating the function
SHUT. SHUT breaks all the communication linkages and deletes all
iﬁternalistructures such as arrays, strings, and variables that
weré dynémicélly established by OPEN. The user may specify at
this timerthe disposition of the file, e.g., save the tape or
insertifiié in dilsc inventory. The exﬁernal monitor 1is 1informed
of such actlons by LISP 2.

File Selection -- At any gilven time, exactly one flle 1s select-

ed for input and one for output; all other active flles are dese-
lected. The LISP 2 reading functions all operate on the currently
selected ihput file; the printing functions all operate on thé
curréntly selected puﬁput file. The functions INPUT and OUTPUT
are'usedjfor selecting the input file and the output filejrespective—
ly."

| When a file.1is sélécted, the record, line and column controls
.for the deselected file are preserved, and the new file record,
iine,.énd:Column controls are reestablished. Once a file is
selected, all I/0 primitives act only on that file. Thus it is
possible to write akLISP 2 program that is independent of form,
format, and device by supplying the nsme of the file as_ah'argument
of the program at run time. This scheme allows a LISP program
to be debugged With files generated on-line, and subsequently
run with bulk data from tape or disc files gimply by changing
the selected file. - |

- 17 -

Other I/0 Functions -- A variety of I/0 functions are avall-

able for reading and.writing binary and symbolic data. There are
eharacter level primitives that permit testing, printing, reading
end transferming characters. Other functiens call upon the

finite state machine to allow reading at the LISP 2 token level,
with equivalent token printlng capability. There are also func-
tions that read and print entire: S-expressions. Additional
featureefpermit the user to control the.form of printing and
reading. By these means one can'obtain formatted printing of
S-expressions and specilal printing of tokens with unusual spellings
that would ordinarily foll the finite state machine's parslng |
algorithms. There are specilal charzscter mappings permitted ao

LISP 2 can accept legal input from restricted character-set

devices.

' Finite State Machine -- The finite state machine (FSM) is a
token'parsing program used by the syntax translator and.thevS—expres—
sion readef.’-Reading LISP 2 entities is expensive, not only in
the ofiginal creation of the internal structures, but also in the

time speht in garbage-collecting the space when thej are discarded.

"~ Consequently, it is desirable to avoid baekup at the character

level with the resulting recreation of duplicate atructures

Since backup must be used by the syntax translator, the FSM was
ilmposed between it and the character stream to eliminate reproces-
sing of tokens. HaVing the bottom-to-top FSM interface with the
top-to-bottom syntax translator eliminates a large portion of the
overhead associated with reading in the LISP 2 system. The S-expres-
slon reader does not require’backup, but since the FSM existed, it

was convenient to use tokens for building S-expressions also.

- 18 -

The FSM behaves like a Turing machine. It moves from state
to statevas it reads characters; when a terminal state is reached
it "prints" a character from its output alphabet (tokens) and sets

its state>to the initial one. Parsing and manufacture of struc-

ture are done simultaneously as characters are recognized. No re-

processing of the parsed characters is ever necessary since in a
terminal state the token is already complete (except for a final
action, such as combining the parts of a real number) .

THE LISP 2 COMPILER

The LISP 2 compiler is avlarge one-pass optimizing transla-
tor whose input 1s a function definition in IL and whose output
is an assembly-languzge llst of instructions sultable for input
to LAP. Most of the compliler is independent of the taﬁget machine,
since the compilation concepts themselves are machine independent.
The déélarations of all fluid variables appearing within the func-
tion are written into the output listing, since these must agree
with fluid variable declarations made elsewhere. Checks are
made for bbth format and semantic errofs during compilation. The
compiler consists of three major sections: the analyzer, the
optimizer, and the user control functions. FEach of these will
now be described.

Analyzer -- The top-level control of the compiler resides iﬁ
the analyzer, which operates recursively. Each item to be com-
piled 1s passed to the analyzer either direcfly or indirectly.

If the item is a variable, an appropriate declaration is found

_and code for retrieving the variable is generated; otherwise the

code for a function call is generated, a macro expansion is

performed and the result compiled, or linkege to an appropriate

- 19 -

|

code generator is made. The analyzer 1s implemented by means of
a.pattefh;matching function that compares an expression to be
compiled against a pattern. The pétterns are written in a
modified form of Backus-Naur Form (not the same as the one used
in the syntax translator). The pattern-matching functiop;checks
for syﬁtactic correcfness and diséinguishes among different forms
at the same time. '

The analyzer needs to make special proviéion for.éi%uétions
where a GO statement transfers control from within @he scope of
@ fluild variable declarestion tdtopﬁside that scope; This siltua-
tion arisés when a fluid Variable‘is declared as an internal
parameter of a block and a transfer takes place from within the
block to a locatlion outside the block. In this case, the'bur-
rent binding of the fluld varlsble disappears at the time of
transfer and the previous binding must be restored. ‘

As compllation proceeds, a list 1g kept of.all labels to.
which transfers can be made. A list of all currently unsatis-
fled GO statements is also maintained. At the end of compila-
tion of each block, checks are made for undefined 1ébe1s; If
any transfers‘out of a block are requested, ajsubroutiné is
generated to unbind the fluid variables of the block, restore
theilr old values, and complete the transfer. When a forward
transfer is requested which goes through one or more blocks, the
check for label definition and fluid variable restoration may
be made several“times. When the appropriate information is
finally obtained, the compiler‘ﬁatches the listing with thé
appropriaté code. |

- 20 -

Optimizer -- Optimization of @he code produced by the
LISP 2 compiler is handled by many groups of routines, each re-
gpongible for certain actions. The communicetive mechanisms be-
tween these varlous parts and the rest of the Qompiler will be
described in some detaill below:

lThevmovers are a highly machine dependent set ofvfunctions.
They produce code that alters the state of a compilation in a
Specified way, such as moving an objectxtoian accumulator or con-
vérting a.datum to a specific type. Embodied in the movers is a
predicéte capability that answers the question "Is this move
possible under these conditions (say one machine instruction)?"
Thé movers are used to build all address and modifier’fields of
generated instfuctions. Associated with the movers is a post-
processor that rewriﬁes the outpué code after the main compiler
has produced it; Redundant load-store sequences and sémé unneces-
‘sary -branches ére removed from the listing. Also, certailn groups
of instructions are réwritten to make use of machiné—spécific
instructions. o

The arithmetic optimization packége handles code geﬁeration
for additioh and multiplication. The algorithm that ié used is a
standard one, namely, first sorting the arguments by type and then
by priority sequence within a particular type. The seduenéé depends
on whethef the arguments are memory or accumulator references.
A single set of functions handles both multiplication and addi-
tion, with the aid of several functional arguments.

Another kind of optimization is handled by the conditional

- 2] -

expression processor. - An example of a conditional expression is

(IF Py €1 Po o 7 = Py ©y en+l)’

are called the con-

The py are called the antecedents and the ey
segueﬁts. The value of this expression 1s defined thusly:
“evaluate the by in Qrder, 1l to n, unti; one, say D> has the
“value TRUE. If such an X 1s fouhd, ey is the value of the entire

IF expression. Otherwise the value is e The code to imple-

n+l’
ment:this kind of expression would evaluate the p; in brder until
one is found that 1s TRUE, and thén evaluate the correspondihg
expression, say e, - The value ofveX is brought to a standard
accumulator, and program control is transferred forward. The
transfer must be made to the same point, no matter which ey is
used for the Vaer of the conditional expression. The point to

which control is transferred is a confluence point.

Consider the following example;

(IF p; (IF pyy eyq === Py, €95 ©3(ne1)) Po € -+ Py € Cpus)

For e, through'em ;1 the code generation is as described above.

+ i
However an interestlng case arises if Py has value TRUE. The Py 4
are then evaluated until ahe of these, say P17 i1s found td have

value TRUE. g is then both the, value of the embedded conditional -

1x
expressioﬁ and, the value of the embédding expression. Therefore
the embedded expresSion can share the confluence point of the
embedding expression. Confluence points can be combined in this
way for embedded oonditional expressions nested to an arbitrary
depth. In order to handle confluence points efficiently, the

compiler is capable of operating in any one of five modes. When

‘the analyzer is called, internal variables of the compiler are

- o>

set so as to indicate which mode is applicable. In each mode,

confluence points are handled differently. These modes are:

(1) Expression mode. In this mode of compilation, and expres-
sion.iéitb be compiled‘and'no confluence‘point has been.established.
If the expression to be compiled 1is a Qonditional expression or a
block expression, a confluence point 1s established and compilation
continueé in the terminal expression mode.

(2) Terminal expfession mode. In this mode of compllation,

an expression is being compiled and a confluence poilnt has been
established by some higher-level embedding form.

(3) Statement mode. In this mode, a statement is being compiled

‘that is not itself a consequent of a conditional statement. Such
a statement produces a side effect but no value.- If the state-
ment is a conditional sﬁaéement or a block statement, a confluence
point is estéblished and‘compilation continues.in terminal state-
ment mode.

(4) Terminal statement mode. In this mode, a consequent of a

'conditional statement is belng compiled and a confluence point has
already been established. As with conditional expressioﬁs,‘the
confluenqe point may be shared by conditional statements enbedded
to an arbitrary depth.

(5) Predicate mode. This mode is in effect when an ante-

cedent of a conditional expression or conditional statement is

being compiled. Tn this situation, the value of the antecedent

‘is not used as a datum, but does affect the place to which program

control must go. Therefore, two new confluence points are estab-

lished: one for TRUE and one for FALSE. These confluence: points

are used in the compilation of AND and OR; if the predicate begins
_t 23 -

with NOT, the two confluence points are reversed. Nested compo-

T =
sitions of AND, OR, and NOT that are equivalent under De MorgaL‘fi;u,

transformations producé the same code.

. It is inferesting to note that in compiling a BLOCK expres-
sion, an expression confluence point must be established since
more than one RETURN statement may exist. The procedures for
compiling IF expressions and BLOCK expressions are quite similar.
However, the procedures for IF statements and BLOCK statements
are different because BLOCK statements have neither an expreésion
confluence point nor a statement confluence point.

When an expression is compiled, the characteristics of the
value that it is to produce must be specified. These character-
istics include 1its data type, whethef it is in a‘Speoial register
or in an ordinary memory éell,its address modifier (direct or
indirect), which registers it may be left in, whether the actual
value is needed or whether the negative or reciprocal of the
value will do,.etc. These characteristics are specified by

state variables, which are bound for each call to the analyzer.

As a statement or expression is compiled, a listing is génerated
and the state variables set to reflect the state of the compila-
tion. The compiler is passive in the sense that a compilation
produces the minimum amount of code necessary to achieve the
results required by the state vériables.

User Control Facilities -- The user can give the compiler

explicit instructions to aid in the compilation process. As in

LISP 1.5, macros are an integral part of the language. Many of

the facilities of the language, e.g., FOR statements and relational

- 24 -

——

expressions, are implemented by means of system macros. These
expénd in terms of highly optimized compiler controlling functions.
Thus it is essentlal to produce good code for a small, selected
number of'thiﬁgs in terms of which everything else is defined.

Ceftéin machine—dependent opérators are particularly useful
és primitives in compilation. CORE is an operator that acts
like an array whose contents is all of the machine memory.
Therefore CORE(x) is the contents of location x. BIT i1s an oper-
ator that specifies a certain contiguous portion of a word. There
are also several operators that permit an expression to be forced
to a certain type or permit a datum.of one type to be used as
through it were of another type. Though such mechanisms are in
most compilers,_LiSP 2 has made these items available through
the language.

The uéer may instruct the compiler to create open subroutines
for certain LISP functions. Open Suéroutines are specified by
instruction seduences. The user defines the instruction sequence
by giving a function that construgts}the gsequence. This function
uses the internal variables of the compiler (which are fluid for
just that reason). The input to the function is the operational
form that specifies the open subroutiﬁe; the output is a sequence
of instructions to be included in the compiler output. The
instruction sequence for a particular function is inserted
whenever an operational form is encountered that has the function
as its operator; at this péint the compller invokes the function
that generates the instruction sequence. The LISP functions
CAR and CDR are implemented in tﬁié way, and the code generated
for them is no longer thah that for a closed subroutine. cell.

- 25 -

THE LISP 2 ASSEMBLY PROGRAM

The LISP.2 Assembly Program, LAP, 1s a program that generates
a code segment ffom a list of symbolic instrucfions and. 1abels.
LAP also allocates storage for variables on the pushdown sﬁaek,
and insures that references to fluid and own variables are con-
sistent among differeht compiled functions. LAP does more thap
most aesemblers, in that it handles all aspects of pushdown stack
meehanicsj consequently, references to variables are made by
naming the variable in the appropriate field of any instruction
that references it. Thus, the pushdown stack need never be refer-
enced explicitly..

LAP includes a number of i system macros specifically designed
for LISP 2 programming. The prologue and epilogue of a function
are generated by BEGIN and RETURN respectiVely; CALL is wused to
generate a callyto a LISP 2 function in the standard format.
Storage allocation on the pushdown stack is performed by the
BLOCK, DECLARE; and END macros; FLBIND creates any necessary bind-
ings fer fluid variables. LAP does not have a generalized macro
facility; any effect that could be achieved by such a facility,
however, can‘alse be achieved by preprocessing.

The actual workings and structure of the pushdown stack
could be changed considerably without affecting the LAP input

language. For that reason, even the bulk of LAP itself is machine

»~dependent. At any time, LAP is aware of the most recently allocated

cell on the pushdown stack. Allocation or release of a pushdown
cell is purely a matter of internal LAP housekeeping; it does not
cause any extra instructions to beAgenerated.’ The address field
of an instruction may be used to affect pushdown storage alloca-

tion. The address.fdelds TOP. and POP. are normally used with

- 26 -

load-type instructions. Both TOP. and POP. refer to the most re-
céntly allocated pushdown cell, but POP. has the additional effect
of releasing that cell. PUSHA. and.PUSHP. both cause a new push-
down cell to be ailocated, and nefer to that cell; PUSHA. and
PUSHP. are normally used in stote—type instructions. PUSHA. is
'used for absolute quantities and PUSHP. for symbolic quantities,
so that a map of the pushdown stack can be maintéined.

Unlike function definitions in either SL or IL, LAP programs
are context independent. VWhile function definitions derive mnch
of their'declaratory information from the current enfironment,
.programs in LAP do not. All such information is 1lncluded in the
LAP program generated by a compilation. Thus, a 11brary of LAP
programs can be maintained, and any program int: the 11brary can be
read in at any time with complete consistency checks on declarations.

LISP 2 PRIMITIVES

" The LISP 2 primitives are a set of basic functions, routines,
macros, and instruction sequences in terms of which’all other
LISP 2 programs. are written. The primitives are used both by the
system itself (since the system is written in terms of them) and by
the user. All of the LISP 2 primitives were programmed directly
in LISP 2. The primitive CONS, for example, is defined Dby:

SYMBOL SECTION SYS;

FUNCTION CONS $LISP (A, B);

BEGIN SYMBOL S - CHEAT(INTEGER, SYMBOL, LSP « LSP -1);
CORE(CHEAT (SYMBOL , INTEGER, S)) ~ CHEAT(SYMBOL,OCTAL,B);
CAR S « A; _

IF ARP >= LSP THEN RECLAINM(1); RETURN(S);END

where ARP and LSP are system variables containing the upper bound-

ary of array space and the lower boundary of 1ist storage respectively.

- 27 -

CREATION OF LISP 2 SYSTEMS

Bootstrapping from LISP 1.5 to LISP 2 on the Q-32 proceeded
in three stages. ‘At the end of the first stage, a LISP 2 system
was produced that only accepted input in LAP. At the end of the
second stage the system accepted input in LAP and IL, and at the
end of the third stage 1t acceptéd inpuf in LAP, IL, or SL. A
fourth stage is required to obtain LISP 2 on a new machine. The
’successive stages are illustrated in Figures 2 through 5, and
are discussed below. Each of the figures shows a succession of
steps in the bootstrap. The notatidn used 1n fhe dlagrams will
become obvious from the exposition.

Stage 1

A. The compiler, which translates IL into LAP, is written in LISP 1.5.

B. The core image generator, which translates the LAP language
into an octal core image, is written in LISP 1.5. The core
lmage 1is a ﬁemory map, in octal, of all code and associated
storage structures required by the input to the core image

Vgenerator. It can be loaded into the‘Q—32 by a simble octal
loader, and produces executable code for the programs that were
fed into 1it. |

C. LAP, which translates the LAP language into Q-32 machine lan-
guage, is written in Lisg%gzg} Most bf this program is the
same as the core image generator B.

D. The primitives are writtén in IL. These include the garbage
collector, the input-output functions, and the primitives re-
quired for creating, testing, and manipulating LISP 2 data.

E. The primitives are combined with LAP to produce a LAP-level.
system written in IL.

- 28 -

"

1]

mn

@ Ll @ (compiler)
@ Ll. Cﬂ (core image generator)

LAPy—= @ (assembler)

Primitives in IL

C| D eV//?;AP-level LISP 2 in IL)

Ty = ©20
F L} E| (LAP-level LISP 2 in ML)
L1.5

Stage I of LISP 2 Bootstrap

Figure 2

- 29 -

-

O

L1.5

N g@
L1.5 |

G| : | J, <:::) ML .%ff>(IL—1evel LISP 2 in ML)
| \

L2

Stage II of LISP 2 Bootstrap

Figure 3

- 30 -

() —(z)

N =

sl M
L2

N s | L

K 0

K

@ ML!C:>

@@
M (Full LISP 2 in ML)

-Stage III of LISP 2 Bootstrap

Figure 4

- 31 -

Hl

‘n

1]

1]

[l

SL__ (01X

Primitives for X in SL

Q

(e

L2

L2

L2

(IL-level LISP 2 for X in IL)

(Full LISP 2 for X in IL)

(Full LISP 2 for X in LAPX)

(Full LISP 2 for X in CIX

Stage IV of LISP 2 Bootstrap

Figure 5

- 32 -

F. The compiler and the core image generator are combined to
produce a LISP 1.5 program that translates IL into a core
image.

G. The program F 1s applied to the program E.in order to obtain
a core image of a LAP—lével.LISP 2 system. The operation is
performed in the LISP 1.5 environment. This core 1image is
then loaded into the Q-32 in order to oﬁtain the system ip
working form.

Stage 2

H. A program that translates LISP 1.5 into IL 1s written in

LISP 1.5. |

The program H 1is applied to thé program A in order to obtain

a version of the compller written in IL. The operatlion 1s
performed in the LISP 1.5 environment.' ’

The program A 1s applied to tﬁe program I in order to obtaln a
version of the compiller written in LAP. The operation is

performed in the LISP 1.5 environment.

K. LAP-level LISP 2 is used in order to assemble the compller,

which was wriltten in LAP as a result of Stage J. This opera-
tion and all>succeeding operations, are performed in the LISP
2 environment. This operation could also have been performed

through core image generation in the LISP 1.5 environment.

Stage 3

L.

M.

The syntax translation Specificatibns for translating SL to
IL are written in the META language.

The META‘compiler, which produces a syntax translator in IL
from a set of syntax translation specifications, is written

in IL.
_-33 _

N. The compller is applied to the META compiler 1n order td obtailn
an operating version of the META compller in machline language.

0. The META compiler is used 1in ofder to obtain an IL program
that translates SL to IL.

P. The IL program just obtained 1s compiled, and incorporated into
the system. The result is a complete LISP 2 system on the
Q-32.

Stage ﬁ

Q. An SL version of the existing compiler 1s modifiled so as to pro-
duce LAP for machine X (the new machine) rather than for the
Q-32.

R. An SL version of LAP for the Q-32 is modified so as to produce
machine language for machine X.

S. The SL version of LAP for the Q-32 is also modified so as to
produce a core image for machine X.

T. The primitives for machine X are written in SL.

U. The compiler, LAP, and the primitives, now all written in SIL,
are jolned together to produce IL-level LISP 2 for machine X.
The program U is translated into IL.

W. META and the SL-to-IL translator are joined with V to produce
full LISP 2 for machine X in IL.

X. LISP 2 for machine X 1s compiled on the Q-32.

Y. LISP 2 for machine X is assembled on the Q-32 to obtain a core
image. This core image, when loaded into machine X by an
octal loader, produces a complete and wérking version of |

LISP 2 on machine X.

- 34 -

REFERENCES

1.

Saunders, R.A., "The LISP System for the Q-32 Computer," in

The Programming Language LISP, Information International, Inc.

Cambridge, Massachusetts, 19€4, pp. 220-238.

. Kelly, H.S., and Newell, A., (ED) Information Processing

Language-V Manual . (Prentice—Hall, Inc., Englewood Cliffs,

N. J. 1964), ond ed.

Collins, G. E., "REFCO III, A Reference Count List Processing
System for the IBM 709L4," IBM Research Report RC-1436, (1965).
Schorre, D.V., "META II A Syntax-Directed Compiler Writing
Language,h Proc. ACM p. D1.3-1 (196€4).

"Revised Report on the Algorithmic Language ALGOL €0, "

Comm. ACM 6, 1 (19€3).

o .

]’\Y,». . L / . Iy
Vv ot e e T e AL
i I IR

35

