
•

•

•

SP-(L)-2856

~ ~ a professional paper

ALGORITHMIC COMPILATION OF PREDICATES

by

Jeffrey A. Barnett

16 February 1968

~ Copyright 1968 by System Development Corporation •

A·1162 REV. 4/65

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA
90406

a

I

,

•

•

16 February 1968 1
(page 2 blank)

ABSTRACT

A special technique for the algorithmic compilation of
predicates is used by the LISP 2 and COMETA compilers
produced at System Development Corporation. This
technique generates highly efficient code; in addition,
it has the further advantages of being easy to imple
ment and of providing increased power and flexibility
to the processor. This paper describes that technique
by defining a model language, machine, and compiler,
and then demonstrating briefly how the technique
operates •

•

•

t

16 February 1968 3 SP-(L)-2856

INTRODUCTION

A special technique for the algorithmic compilation of predicates is used by
the LISP 2 and COMETA compilers produced at System Development Corporation.*
This technique generates highly efficient code; in addition, it has the
further advantages of being easy to implement and of providing increased power
and flexibility to the processor. This paper describes that technique by
defining a model language, machine, and compiler, and then demonstrating
briefly how the technique operates.

Predicates are defined as forms that conditionally place program control, rather
than evaluating as a datum. They are most often used as the antecedents of
conditional forms and for the evaluation of some Boolean-valued forms. The
distinction between a predicate and a Boolean expression can best be shown by
the following examples:

1. (SETQ B(AND X Y»

2. (COND «AND X y) R) •••)

In the first example, the AND form is used as a Boolean expression; B is set to
T or NIL, depending on the evaluation of the form. In the second example, the
AND form is used as a predicate; evaluating the AND form merely determines what
is to be evaluated next. A copy of the value of (AND X y) is not desired, only
the action of placing program control •

Predicates can be further understood by considering some of the classes of
evaluation. The evaluation of forms may be divided into disjoint classes.
As an example, (PLUS A B) is in the value class. The value of A is added to
the value of B, producing a third value. Forms normally used as statements,
e.g., (GO L), produce no value and therefore are in the novalue class. The
predicate class consists of a group of forms for which the evaluation produces,
like statements, no value. Predicate-class forms, however, place program
control in some conditional manner. They should also be differentiated from
locative-class forms, which are found on the left side of assignment expressions.

MODEL LANGUAGE

This paper deals with the compilation of AND, OR, and NOT forms used as predi
cates. Boolean constants and variables are also included in the language. The
syntax of the model language is given below in BNF:

* This work was supported in part by the Advanced Research Projects Agency.

16 February 1968

<predicate> =
<negation> =
<conjunction> =
<union> =
<intersection> =
<pstring> =
<variable> =
<boolean> =

4 SP-(L)-2856

<negation> I <conjunction> I <variable> I <boolean>

(NOT <predicate»

<union> I <intersection>

(OR <pstring»

(AND <pstring»

<empty> I <predicate> <pstring>

<identifier>

TINIL

Syntactically, predicates have the same form as Boolean expressions. Semantic
ally, the evaluation of predicates may be defined in terms of the evaluation of
the corresponding Boolean expression. If the value of the corresponding Boolean
expression is NIL, the value of the predicate is FALSE; otherwise, the value of
the predicate is TRUE. Note that T and NIL are data. True and false, on the
other hand, are not data; they merely indicate the placement of program control.

The boolean T is the constant for true evaluation; the boolean NIL is the
constant for false evaluation.

A boolean variable is an identifier--that is, any atom that would be a legal
LISP variable name. If the value of the variable is NIL, the evaluation is
false; it is true otherwise.

An intersection has the value true if none of its arguments evaluate to false;
it is false otherwise. The evaluation need only proceed far enough to deter
mine the value. If any of the arguments are false, the value of the inter
section is false and the remaining arguments need not be evaluated.

Similarly for union, the value is true if any of the arguments evaluates true.
The evaluation may cease when the first true argument is encountered.

A negation evaluates to true if its argument evaluates to false; it evaluates
false otherwise.

MODEL MACHINE

The code generated by the example compiler will operate on any machine with an
accumulator and directly addressable variables and instructions. Only four
order codes are used:

1. LOAD (load accumulator). The address portion of a LOAD
instruction is a variable. The action is to copy the
value of the variable into the accumulator.

16 February 1968 5 SP-(L)-2856

~~J
~ ~-.~ .. ::-:.-.-.•. ~ .. ~- ..• -.. ~--.~ .. -~~.-, ...• -.. ~-.-.--.. -.~ •.. --.--.. , .. -

-- ~
BUC (branch unconditional). The address portion of a ~

3.

4.

MODEL COMPILER

BUC instruction is a program label. The BUC transfers)
control to that label. _/./

BOF (~~~nc h _~~_M';~-~':-).'~-'~; a~~;:;~-;~~tionOf--a--BOF
instruction is a program label. The BOF transfers
program control to that label if the contents of the
accumulator is NIL; it "falls through" otherwise.

BOT (branch on true). The address portion of a BOT
instruction is a program label. If the contents of
the accumulator is NIL, the instruction "falls through."
Otherwise, control is transferred to the label.

Several trivial simplifications are first done by the example compiler (see
Appendix A):

1. (OR) -+- NIL

2. (AND) -+- T

3. (OR PI) -+- PI

4. (AND PI) -+- PI

5. (OR Pl··· PN) -+- (OR PI (OR P2 ••• PN» N ~ 2

6. (AND Pl ••• PN) -+- (AND PI (AND P2 ••• PN» N ~ 2

where Pl ••• PN are arbitrary predicates.

The transformations are all consistent with the evaluation rules for union and
intersection given above.

Several special variables are used in the example compiler. FGO holds a label
to which program control is transferred if the predicate evaluation is false.
TGO holds a label to which program control is transferred if the predicate
evaluation is true. Either TGO or FGO, but not both, may be NIL. This indi
cates that program control of the generated code should "fall through" for the
appropriate evaluation. EXP holds the symbolic form that is being compiled.
CLASS is set to indicate the class of evaluation of a compiled form. In the
example compiler, PRED (predicate) and VALUE are the only possible classes.

LISTING holds a list of symbolic machine instructions and labels. This list is
built in reverse order and needs to be reversed before assembly.

16 February 1968 6 SP-(L)-2856

The main routine of the predicate compiler is COMPRED, a function of three
arguments: a form to compile as a predicate; a label to transfer to on true
evaluation; and a label to transfer to on false evaluation. The form is com
piled; if the class of evaluation is not PRED, the appropriate test and branch
instructions are added to the listing.

COMNOT compiles negations. The imbedded predicate is compiled with the branch
on.true and branch on false labels reversed. An alternative to label reversion
is exchanging the use of the opcodes BOF and BOT. However, the latter method
is not easy and takes much extra work to produce code of the same quality.

COMMAND and COMOR compile intersections and unions, respectively, and use the
subsidiary function COMBOOL.

COMBOOL has one argument, which is T for compilation of intersections and NIL
for compilation of unions. The six simplification transformations listed
above are used by COMBOOL. The actual compilation is done using only unions
and intersections of two arguments. The first argument "falls through" on true
or false for intersection and union, respectively. If the first argument is
true for a union or false for an intersection, the evaluation ceases and program
control is transferred to either TGO or FGO. If the appropriate label is NIL,
indicating a "fall-through" of the entire conjunction, a label must be genera
ted and placed at the end of the code produced for the conjunction. This label
may be used for either TGO or FGO while compiling the first argument of the
conjunction. The second argument is compiled with the same TGO and FGO as is
used for the entire conjunction.

COMPILE is the master switch which directs all recursion within the compilation
process. The argument to COMPILE is a form to be compiled. The appropriate
function COMMAND, COMOR, COMNOT or COMATM is evoked for intersections, unions,
negations, or Boolean constants and variables, respectively.

COMATM compiles atomic form. If the atom is a Boolean constant, an appropriate
unconditional branch, BUC, is added to the LISTING. If a "fall-through" is
indicated, no code is generated. For Boolean constants, CLASS is set to PRED.
For variable forms, the, code necessary to copy the value of the variable in the
accumulator is generated and CLASS is set to VALUE.

ATTACH and ATTACHI are functions used to tack instructions and labels onto
LISTING.

PREDICATE TRANSFORMATION

The example compiler has an interesting property: forms that are equivalent
under DeMorgan transformations produce identical code sequences. The DeMorgan
transformations are:

"

J

.. '

a

J

16 February 1968 7 SP-(L)-2856

1.

2.

(NOT(AND PI P2 »

(NOT(OR PI P2 »

=
=

where PI and P2 are any predicates.

(OR(NOT Pl)(NOT P2»

(AND(NOT Pl)(NOT P2»

A sketch of the proof is given here. Note that it is necessary to consider
only conjunctions of two arguments, since conjunctions of more (or less) than
two arguments can be simplified according to the six simplification rules given
above. There are two cases to be considered: when neither the original TGO nor
FGO is NIL, and when one or the other is. Also, it is sufficient to show that
if either side of the DeMorgan equality is compiled, COMPRED will receive PI
and P2 with the same TGO and FGO.

Consider the first DeMorgan transformation with an initial TGO of TL and an
initial FGO of FL (see Table 1).

Table 1. Arguments of COMPRED for First Transformation
With Both TGO and FGO Non-Nil

Predicate TGO FGO Predicate TGO

..

(N orr (AN D PIP 2)) TL FL (OR(NOT pi(NOT P2» TL

(AND PI P
2

) FL TL (NOT PI) TL

PI NIL TL PI NIL

P2 FL TL (NOT P2) TL

P2 FL

FGO

FL

NIL

TL

FL

TL

Note that in Table 1, PI and P2 have been compiled by COMPRED for both forms

with identical TGO's and FGO's; they are compiled in the same order, and there
fore must generate precisely the same code.

Consider next the case (as shown in Table 2) where TGO is originally NIL.
(gentab is a generated label placed at the end of the code produced for the
entire compilation.)

16 February 1968 8

Table 2. Arguments of COMPRED for First Transformation
with TGO NIL

Predicate TGO FGO Predicate TGO

(NOT(AND PI P2» NIL FL (OR (NOT Pi< NOT P 2)) NIL

(AND'P
I

P
2

) FL NIL (NOT PI) genlab

PI NIL genlab PI NIL

P2
FL NIL (NOT P2) .NIL

P2 FL

SP-(L)-2856

FGO

FL

NIL

genlab

FL

NIL

---- - --.-~

\

Agllin. the TGO's and F'GO' s for the compilation of PI and P 2 are identical.

Similarly. the case whe~e FGO is NIL is shovrn in Table 3. Once again, the

TGO's and FCO's are identjcal for PI and P2 for the-equivalent forms.

Table 3. Arguments of CO~WRED for First Transformation
with FGO NIL

Predicate 'I' CO FGO Predicate TGO

(NOT (AN D PIP 2)) TL NIL (OR(NOT PI)(NOT P2» TL

(AND PI P2) NIL TL (NOT PI) TL

PI NIL TL Pl NIL

P2 NIL TL (NOT P
2

) TL

P2 NIL

FGO

NIL

NIL

TL

NIL

TL

-----_ ... _---- -

-

,

.. '

rI

16 February 1968 9 SP-(L)-2856

A similar argument applies to the second DeMorgan transformation:

=

but is not shown here for the sake of brevity. Therefore, the code produced
by the example compiler is invariant under DeMorgan transformations. Further,
it is self-evident that the code generated for either the double negation,
(NOT(NOT PI»' or PI is identical (where PI is any predicate). Also, it is

evident that the code sequences produced by conjunctions equivalent under an
"arbitrary-nesting" transformation are identical. For example, the code
produced for

is identical to the code produced for

CONCLUSION

Using a model language, machine, and compiler, a technique for the compilation
of predicates has been described. It has been shown that predicates which are
identical under DeMorgan transformations, double negation and arbitrary
nesting produce equivalent code when compiled. Several advantages of using
this technique are: (1) it can be implemented easily in many compilers;
(2) it has been found to interact naturally with components of complex processors
(such as LISP); (3) it allows the programmer to employ anyone of several source
language forms (that may be "natural" to him), and yet produces identical code;
(4) the code produced (see examples in Appendix B), is highly efficient.
Algorithmic compilation of predicates is presently being used in LISP 2 and
COMETA compilers at System Development Corporation. The techniques employed,
however, are applicable to the compilation of predicates in any high-level
programming language.

16 February 1968 10

APPENDIX A

Listing of Example Compiler

SPECIAL«CLASS EXP LISTING TGO FGO?)

PFFI \\11:.(« GOMPRED (LAMBDA (X TGO F'GO)
(PROG NIL (COMPILE X)

(CONO «NOT (EQ CLASS (QUOTE PRED»)
(pr~()G ~IL (COND (TGO (ATTACHI (QUOTE BOT) TGO»)

(CONO (FGO (ATTACHI (QUOTE BOr) F"GO»)
(SETQ CLASS (QUOTE PREO»»»»

(CO,"1NOT (LAi'1BDA NIL (COMPRED (CADR EXP) FGO TGO»)
(C!)t-1AND (LAMBDA NIL (COMBOOL T»)
(COMOR (LAMBDA NIL (COMBOOL NIL»)
(COMBOOL (LAMBDA (8)

(COND «NULL (CDR EXP» (COMPRED B TGO FGO»
«NULL (COOR EXP» (COMPRED (CADR EXP) TGO FGO»
(T « L At.., 8 0 A (L A B)

(PROG NIL (COMPRED (CAUR ~XP)

(CO NO (B NIL) (T GO T GO) (T LAB»
(CONO «NOT 8) NIL) (FGO FGO) (T LAB»)

(COMPRED (CONS (CAR EXP) (CODR EXP» TGO FGO)
(ATTACH LAB») (GENSY~'1»»»

(COMPII_E (LAMBDA (EXP)
(COND «ATOM EXP) (COMATM»

(T (SE.L ECl (CAR EXP)
((·:JUOTE AND) (COMANO»

SP-(L)-2856

. «QU0TF. OR) (crHv10R» «(,)UOTE NOT) (COMNOT» (ERHOR»»»
(C(H'1ATM (LAI'J]8D.L\ NIL (SELECT EXP (NIL (PROG NI~ (COND (FGO (ATTACHI

(QUOTE BUC) FGO») (SETG) CLASS (QUOTE PHED»»
(T (r'r.::t)G NIL (COND (TGO (ATTACHI (QUOTE BUC) TGO»)

(S[10 CLASS (QUOTE PREO»»
(Pi~(JC \IlL (ATI"ACHI «()U()TE LOAD) EXP)

(S[T(') CL.ASS ('JUOrE VALUE»»»
(A·fTACHI (I_At1BDA (OP ADR) (ATTACH (LIST OP ADr~»»
(AT TAr. H (L A 1''1 R J) A (I) (S E T (l LIS 1 I i\j G (C 0 N S I LIS TIN G))))))

..

•

•

1

16 February 1968 11 SP-(L)-2856

APPENDIX B

Code Produced By Example Compiler

The function DRIVER is an example supervisor for interacting with the model
compiler.

DEFINE «(DRIVER (LAMBDA NIL (PROG (EXP TGO FGO CLASS)
L (PROG (LISTING)

(COMPRED (READ) (QUOTE TRUE) (QUOTE FALSE»
(TEREAD) (PRINT (REVERSE LISTING» (TERPRI» (GO L»»»

DHIVER was used in conjunction with the model compiler to generate the code
shown in the examples below.

'FoXAMPLF. 1: Equivalence of Code Produced Under Arbitrary Nesting

(OR (OR (OR PI P2) P3)
(OR (OR (OR (OR r4»»)

« LOAD PI)
(BOT TRUE)
(LOAD P2)
(BOT TRUE)

GEN3(LOAD P3)
(BOT TRUE)

GEN2(LOAD p4)
(BOT TRUE)
(BOF FALSE)

G1"'Nl)

(OR PI P2 P3 p4)

«LOAD PI)
(BOT TRUE)
(LOAD P2)
(BOT TRUE)
(LOAD P3)
(BOT TRUE)
(LOAD p4)
(BOT TRUE)
(BOF FALSE)

GEN3 GEN2 GENI)

Note thRt the spuriously generated labels (GENI. GEN2. and GEN3) may appear in
different places for the equivalent input forms. However. if the labels were
referenced, they would appear at the same relative location in the code
sequences produced.

16 February 1968 12
(last page)

APPENDIX B (Cont.)

SP-(L)-2856

EXAMPLE 2: Equivalence of Code Produced Under DeMorgan Transformation and
Double Negation

(OR (AND (NOT PI) (NOT P2)(NOT P3»(NOT p4»
(NOT (AND (OR Pl P2 P3) p4»

«LOAD PI)
(BOT GEN2)
(LOAD P2)
(BOT GEN3)
(LOAD P3)
(BOF TRUE)

GEN3 GEN2
(LOAD p4)
(BOT FALSE)
(BOF TRUE)

GENl)

EXAMPLE 3: Code Produced For a Complicated Predicate

(AND (NOT (OR PI P2 P3»
(OR p4 (NOT PS)(AND p6 (NOT P7»)
(OR pB (AND P9 PIO»)

((I/OAn PI)
(BOT FALSE)
(LOAD P2)
(BO'l1 FALSE)
(LOAD P3)
(BOT FALSE)

GEN3 GEN2
(LOAD p4)
(BO'l1 GENS)
(LOAD PS)
(BOF GEN6)
(LOAD p6)
(BOF FALSE)
(LOAD P7)
(BOT FAlSE)

GEN7 GEN6 GENS
(LOAD FB)
(BOT TRUE)
(LOAD P9)
(BOF FALSE)
(LOAD PIO)
(BOT TRUE)
(BOF FALSE)

GEN9 GEN 8 GEN 4 GENl)

	SDC-SP_L_28560001_a
	SDC-SP_L_28560001_b
	SDC-SP_L_28560002_a
	SDC-SP_L_28560002_b
	SDC-SP_L_28560003_a
	SDC-SP_L_28560003_b
	SDC-SP_L_28560004_a
	SDC-SP_L_28560004_b
	SDC-SP_L_28560005_a
	SDC-SP_L_28560005_b
	SDC-SP_L_28560006_a
	SDC-SP_L_28560006_b
	SDC-SP_L_28560007_a
	SDC-SP_L_28560007_b

