
A·2450 10/62

The views, conclusions, or recommendations expressed in this document do not neces·
sarily reflect the official views or policies of agencies of the United States Government.

This document was produced by SDC in performance of contract _-=S;.=D;,..-..:,9..17 _____ _

System Development Corporation /2500 Colorado Ave./ Santa Monica, California

i~t:l 2260/002/01

RELEASE C#/J~
C. Ballm

for
D. L. Drukey

DATE 9/3/65 PAGE 1 OF~PAGES

This document supersedes TM-2260/002/00

LISP II PROJECT

Memo No.1

LISP II Internal Language

Abstract

This document describes the syntax and semantics of
LISP II Internal language.

3 September 1965 2 'lM-226o/002/01

INDEX

Page

INTRODUCTION 3
Section 1 DATA 5

2 TOP LEVEL OPERATIONS 7
2.1 THE SECTION-DECLARATION 7
2.2 SECTION-LEVEL BINDINGS 9
2·3 FWID-DECIARATION 10
2.4 FUNCTION-DEFINITION 11
2·5 DUMMY-FUNCTION-DECLARATIONS 12
2.6 MACRO-DEFINITION 12
2.7 INSTRUCTIONS-DEFINITION 12
2.8 rAP-DEFINITION 13

3 EXPRESSIONS 13
3.1 ASSIGNMENT-EXPRESSION, LOCATIVES 14
3·2 CONDITIONAL AND BOOLEAN-EXPRESSIONS 16
3·3 EVAWATION OF FORMS 17
3.4 FUNCTIONAL ARGUMENTS 17
3.5 FORMAL VARIABLES 18
3.6 ARGUMENT TRANSMISSION 19
3·7 LISP II ARITHMETIC 22

4 BLOCK 23
4.1 BLOCK-VARIABLES 24
4.2 GO-STATEMENT, LABEL, AND SWI'roH 25
4.3 CONDITIONAL-STATEMENT 26
4.4 RETURN-STATEMENT 27
4.5 CODE-STATEMENT 27
4.6 FOR-STATEMENT 28
4.7 SIMPLE-EXPRESSION USED AS A STATEMENT 29
4.8 TRY-STATEMENT AND EXIT-EXPRESSION 30

Fig. 1 Sections and Default Types 9

-~,
I '.
'0

.3 September 1965 3 TM-226o!002!Ol

*

LISP II INTERNAL IANGUAGE

INTRODUCTION

The LISP II lIiternal Ianguage (or IL) is a complete LISP­
like language that serves three separate functions in LISP II:

The semantics of LISP II are completely defined in terms
of the IL.

Source Language is defined in terms of its translation
into IL. The compilation of LISP II programs is accom­
plished by translating source language into IL, then
compiling and operating the resulting IL program. Macro
expansion and saving of LISP II programs is performed in
terms of IL.

Programs can be input directly in IL, and the entire
system can be operated completely in IL if desired, once
the system has been informed properly. .

The LISP II operating system is designed for on-line use.
The executive program is called LISP and takes two arguments,
which specify the input and output media. At entrance to the*
system, the function LISP (NIL, NIL) is called automatically.
The function LISP accepts a series of 0 erations and performs
them until the particular command STOP j is encountered.
STOP (); causes exit from the innermost LISP. The STOP () j
command has no particular effect unless the LISP function has
been called explicitly by the user, since' after receiving a
STOP 0; at the outermost level, the system calls LISP (NIL, NIL)

. again.

The arguments (NIL, NIL) mean that the standard teletype file (i.e., the
one on which the user is logged in) is to be used. The values of these
parameters in general are quoted names of files corresponding to such
input/output devices as teletypes, disc, and magnetic tape. .

3 September 1965 'lM-226o/002/01

The tem top-level as used in this doC\.DD.ent always refers
to the series of operations given to the LISP function.
The semantics of the IL as given here applies either to
operations. input to the system in IL after the system has
been so infor.med by the operation:

IL(); in source language or

(IL) in internal language

or else applies to the stream of IL generated by the Syntax
Translator from input in the Source Language fom. However,
since IL pennits a wider range 0" expressions than any actual
Syntax Translator will produce, the description of IL applies
more completely to a stream of operations input directly in
IL.

,)
',--/

3 September 1965 5 TM-226o/002/01

1. DATA

LISP II data types are an open ended set of things called datum. The first
implementation will consist of

datum = constant
quoted-expression

constant = Boolean
number
array
function-specifier
string

Boolean = TRUE
false

false = FALSE
NIL
()

number = octal
integer
real

array = real-array
integer-array
s;ymbol-array
formal-array
Boolean-array
octal-array

atom = constant
identifier

S-expression= atom
(S-expression S-expression* (. S-expression I empty})

quoted-expression = (QUOTE S-expression)

Semantics

A constant has a particular representation in the computer, and an external
input/output representation in the LISP II character set. 0 In some cases, there
may be several different input representations for the same constant. If so,
the output representation is arbitrary but definite.

3' September 1965

For example:

FALSE
NIL
()

6 !IM-2260/002/0l

all represent the same constant. As a Boolean, it will print as FALSE. As a
symbol, it will print as (). On the other hand, NIL can be input and means the
same constant. Similarly, .0003 and 3.E-4 represent the same numerical constant,

. which will print out in a standard way, probably as 3.0E .. 4.

A quoted expression is a representation of a list structure similar to LISP 1.5
list st:nucture, except for the existence of a wider spectrum of atoms. The
printed representation of the value of a quoted expression (QUOTEs) is s.

. - -
The syntax of tokens and rep,resentation of constants for the Q-32 implementation
of LISP II is given in LISP II Memo #11, TM-2260/004/00 entitled "The Syntax of
Tokens." .

.~ .. ,~ .'

f

3 September 1965 7 TM-226o!OO2/01

2. TOP LEVEL OPERATIONS

The LISP IL is written as a series of operations in S-expression format.

operation = declarative
expression

declarative = section-dec1aration./
fluid-declaration
function definition
durnmy-function-declaration
macro-definition
instructions-definition
lAP-definition

Of the operations input at the top level, expressions constitute commands to
the system to evaluate the expression and print out the resulting value (if any).
Dec1aratives are simply absorbed by the system with some degree of error­
checking being performed; thus a section declaration is simply accepted; a fluid­
declaration or a durnmy-functional declaration must be checked for inconsistency
and be absorbed if correct; a function, macro-, or instruction-definition must
be checked for syntax and consistency and then must be compiled. A definition
to be compiled consists of an expression. plus some declaration information.
This section describes declarations made at the section level. The subjects of
expreSSions and their evaluation are covered in sections 3 and 4.

2.1 THE SECTION-DECLARATION

section-declaration = (SECTION section-name type-option)

section-name = identifier

type-option = type
empty

type = simple-type

simple-type =

array-type =
f-type =

formal-type =
value-type =

array-type
formal-type

BOOLEAN I INTEGER I OCTAL I REALI SYMBOL

(ARRAY f-type)

FORMAL
simp~ /""
(FORMAL value-type irid~f-par-t:yp~ parameter-:tYP®

NOVALUE
f-type

indef-par-type = (f-type transmission-mode INDEF)
empty

3 September 1965

transmission-mode = LOC
empty

parameter-type = f-type
(f-type transmission-mode)

semantics

'IN-226o/002/01

The . section declaration can be done only at top level of LISP. SECTION sets
fluid variables in LISP which LISP has ini tializedto (SECTION NIL SYMBOL).
A new section declaration·replaces the old, and at exit from the function LISP,
the previous section declaration is restored.

The use of an identifier as a section-name cannot conflict with any other uses
of that identifier.

The section-name is used in compilation of all functions and in establishing all
fluid bindings within the section. Bindings established within the NIL section
are visible throughout other sections without tailing, unless there is a conflict
with a binding made within the section. Bindings established within a named
section are visible only wi.thin that section, or when tailed.

The type-option is a default declaration for all functions and fluid-variable
declarations. Empty type-option implies SYMBOL by default. Example of the
scope of section declarations is given in Fig. 1.

The type information contained in f-type and used in parameter-type, formal-type,
array-type and value-type is a collapsed form of the more specific information
contained in ~. For every occurrence of array-type in~, SYMBOL is used
iIl f .. type. For every occurrence of formal-type in ~, FORMAL is used in
f-type. The c~plete specification of ~ occurs only in section declarations
and in actual variable declarations. The abbreviated form f-type is used in
dummy-function-declarations, value-type, and as sub-type information inside of
array-type and formal-type.

2.2 SECTION-LEVEL BINDINGS

All of the following declarations, made at section level, establish bindings
for identifiers, denoted in the syntax equations by f-name, and for variables,
which can be tailed identifiers. .

f-name = identifier

variable = f-name
(EXTERNAL f-name)
(EXTERNAL f-name section-name)

3 September 1965 9 !lM-226o/002/0l

o
this is section () of default-type SYMBOL

(SECTION NIL REAL)

still section () but default type is REAL

{SEC'l'lON AA rR1
section AA, default-type INTEGER

(SECTION BB SYMBOL)

-}
section BB, default-type SYMBOL

(SECTION AA SYMBOL)

-} back in section AA, but default-type is SYMBOL

(LISP input output)

-} section (), default-type SYMBOL

. (SECTION AA REAL)

-} section AA, default-type REAL

(STOP)

-} return to section AA, default-type SYMBOL

Fig. 1 Sections and default-types

3 September 1965 10 TM-2260/002/01

A simple f-name variable refers to a variable declared in the current section,
or in section NIL, with the current section declaration taking precedence. The
form (EXTERNAL f-name) always refers to a variable declared in section NIL.
The form (EXTERNAL f-name section-name) refers to a variable in the named
section.

The tailed form of a variable may be used to establish variable declarations in
any" section, as well as to obtain the binding of the variable.

A variable must belong toone of the following mutually-exclusive classes:

reserved identifier: Words such as FUNCTION, IF, DECLARE,
SECTION, REAL, BLOCK, etc., are permanently reserved for
system functions, and can never be declared in any other
way, except that they may have property lists.

fluid variable Once a variable is declared to be fluid,
the declaration cannot be changed without recompiling the ' .

. entire section. The variable may be used as the name of a
fluid parameter within a function declaration, but the fluid
parameter must agree in type and mode with the prior fluid­
declaration.

function name : A variable used as a function name within
a section can have only a single function declaration.
There may be many dummy declarations for. the same function
name, but all must agree and must agree with the actual
function declar.ation. A function may be excised and then
redefined, but the new definition must agree in formal
type with the old if the function is used by any other
function in the section.

macro or instructions name Macros and instructions must
be declared before use.

unbound variables : Variables which are not yet declared
at the section level in one of the above classes constitute
a pool of available names Which ~an be used at section
level to name fluid variables, functions, macros and
instructions.

2.3 FLUID-DECLARATION

* fluid-declaration = (DECLARE (fluid-variable-declaration)
\

fluid-variable-declaration = variable
(variable type-option storage-mode

transmission-mode)

/ ..

o
3 September 1965

transmission-mode = LaC
empty

Semantics

1'1 TM-226o!002!Ol

A ~luid-variable-declaration is required ~or all variables used ~ree within a
section, except for those which have been declared in section NIL, where the
outer declaration is to hold within the named section.

As a ~luid-variable-declaration, a variable alone means that the de~ault-type
applies, and all free use of the variable mean a fluid-variable of that type.
A declaration of the form (variable~) is the same, except that a specific
type has been declared for the fluid variable.

storage-mode of FLUID means that all uses of this variable are fluid, namely
that the current binding of the variable can be seen if the variable is used
free (unbound) within an expression. If the variable is bound by a function in
which the storage mode is not stated or it is declared FLUID, then the fluid
storage mechanism applies to that variable. On entrance into the function, the
'previous value of the variable is stored and the new binding takes effect. On
exit, the old binding is restored.

The transmission-mode LaC in a fluid-variable-declaration means that this
variable is never used to hold a value directly, but instead always holds a
locative pointer to a value of the specified type.

2.4 FUNCTION-DEFINITION

function-definition = (FUNCTION (variable\(variable value~type)}}

p-list expression)

* p-list = (indef-param param)

indef-param = (p-name type-option storage-mode transmission-mode

INDEF p-name)' empty

p-name = variable

param = p-name
(p-name type-option storage-mode transmission-mode)

Semantics

A function-definition in which type is not specified assumes the default-type
of the section. All functions have an expression as a body.

In general, the value of the expression, converted to the proper type, is the
value of the function. In NOVAWE functions, the value of the expression is
not used.

3 September 1965

The transmission-mode LOC means that this variable is to be transmitted by
location rather than value (see section 3.5).

The parameter-storage-mode designation FLUID in a variable used as a parameter
to a function affects the method of binding of that variable used in the
function. If no F~IID mode has been designated at the section level and none

. is given in the function definition, the variable is strictly local and its
binding cannot be referenced outside of the function itself. A FLUID declara­
tion at the section level has the same effect as a FLUID declaration at the
function-definition level. If a fluid-declaration is made at both the section
level and the function definition, the type and transmission-mode declarations
must agree. (See section 4.3, except that OWN storage mode is not possible
for parameter-storage-mode.)

2.5 DUMMY-FUNCTION-DECLARATIONS

dummy-function-declaration = (FUNCTION (variable value-type

* indef-par-type parameter-type)

A dummy-function-declaration provides information to the compiler sufficient to
set up the calling sequence and value conversion. The actual function­
definition must be consistent with all dummy-fUnction-declarations.

Dummy-function-declarations contain transmission-mode information but do not
contain storage-mode information. The correspondence between the type infor­
mation in a dummy-function-declaration and the actual function declaration is
given in section 2.1.

2.6 MACRO-DEFINITION

macro-definition = (MACRO variable (p-name) expression)

A macro-definition behaves like a function-definition of type SYMBOL and with
one argument of type SYMBOL. A macro is a function which is applied by the
compiler to the IL string before compilation.

Macros must be defined before use. Consequently, m~cros cannot be recursive, .
although a macro may be defined using a subsidiary, recursive function.

2.7 INSTRUCTIONS-DEFINITION

instructions-definition = (INSTRUCTION S (variable NOVALUE) () expression)

An instructions-definition generates LAP code for the function it defines.
The expression is intimately associated with the compiler, and makes use of
the fluid variables and functions of the compiler. (See document on LISP II
Compiler (to be published).)

o

o

3 September 1965 13

2.8 lAP-DEFINITION

LAP-definition ::; (lAP listing d-list section-name)

* list!ng = (desc-type f-name p-list item)

desc-type = FUNCTION
MACRO
INSTRUCTIONS

item is as defined in the lAP II memo.

~-22601002/01

lAP and its use is described in LISP II Memo #10. A rAP-definition may be
used to define a function, macro or instructions, depending upon the value
of de sc-type •

EXPRESSIONS

ExpreSSions are the basic building block of LISP II. Syntactically, LISP II
IL is written as a series of S-expressions, defined in section 1. An
expression is the basic semantic unit of the language, and is one of a
restricted set of S-expressions. Unlike declaratives, which are used at
the top level, expressions are consistent at all levels of the LISP II
language.

expression = simple-expression
conditional-expression
block-eXI>.I'~l?~ion

.,. "'0_'

simple-expression .,:t datwn\
(variabJ,e
\ form //
'" _~"d'"

This section will defs'c-ribe only simple-expressions and conditional-expressions.
Block-expressions are described in section 1.

Datum was covered in section 1. A datum represents a constant or quoted
eXJ?ression. The value of a datwn is the constant or, quoted expression it
represents.

The value of a variable is the binding of that variable at the level.at which
the evaluation takes place. Binding of variables at the top level is accom­
plished by declaring the variable FLUID and then using an assignment expres­
sion or evaluating an expression in which the variable is used free and set.

3 September 1965

Syntactically,

form = * (form-name argument)

form-name = variable

argument = expression
functional

14 TM-226o!002/01

Semantically, the value and effect of a form depends upon the form-name.

form-name = array-variable
function-name
macro-name
instruction-name
formal-variable

These are semantic distinctions only and depend upon prior history, definitions
and local context.

The following description of semantics of forms will cover assignment expressions,
locatives, conditional and Boolean expreSSions, general evaluation of forms,
and functional arguments.

3.1 ASSIGNMENT-EXPRESSION, LOCATIVES

assignment-expression = (SET locative expression)

locative = word-locative
list-locative .

word-locative a full-locative
,(BIT subscript subscript word-locative)
~\BYTE subscript subscript expression)

list-locative = (PROP-expression),
(CAR expression)
(CDR expression)
~ C.tilC~ ~ l~<;0(ibC}tJj)C{'37 -tv.;mO'3'l:otJ)

full-locative = variable *
(array-name subscript subscript)

f:J!!:::;c-;,;r;:;r0C'Jr,:JC~c:.r:{:ff2t30t'J G ee.·(?Q.<;!'J]' &O@t>tJOQ,ccl!Q r-CI1e~&:·t.,.(li:r,yq/!,r:)
The value of an assignment-expression is that of the expreSSion contained wi thin.

An assignment-expression has the crucial side-effect of planting the value of
the expreSSion into the location specified by j;llelocative, after making any
necessary conversions, provided that the transformation is possible.

u

G

3 September 1965 15 1JM-226o!002/01

A full-locative translates into the ad9;t:e,ss......of a full word of memory. If the
variable or array-name 4.J~?t of type@YMBO~\ then the address contains a value
directly. In this case the ~ssi@iliept'::.-expression places the value of the
expression directly into the address. If the variable or array-name is of type
SYMBOL, then a pointer to the value of the expression is placed into the loca­
tive address.

A word-locative having BIT modifiers means in general that only a portion of a
word is to be set. If the variable or array-name is not of type SYMBOL, BIT
specifies a portion of the word at the locative address. If the variable or
array-name is of type SYMBOL, the BIT modifi~I.~ is not penni tte~~ .J D., ~i .. r,/\P).lir I)

J2.;u:',r ':"wrt'<·\XUN'1V..I\'p·\ '- (l

~
_ UII ~

The first subscript in BIT specifies the i -most starting bit starting with "\
~. The second subscript specifies the num er of bits. Nested BIT modifiers \ IJ"
are applied sequentially fram inside out, the outer working on the portion It.'f .1rA(,v'f""·;:'"
remaining after the inner has had effect. I

I
I Thus:

(BIT 2 5 (BIT1~ 8 a» =' (BIT 12 5 a)

BYTE-modified word-locativeS are defined only when the expression modified by
that BYTE is a full-locative that points to a constant, qI".~.~ .. J1. .. ~.Q!!.~:x.;­
pression:!;;hatpoints to a siJring. In the first case mentioned, BYTE works
just like BIT, except that (BYTE 3 2 ~) is equivalent to (BIT 3n 2n ~)
where n = number of bits per byte.

j
!

In the second case, BYTE finds or sets the appropriate'number of charact~rs in !
the string pointed to by ~, and its value is the selected number of bytes,.
left-justified into a word. Note that even though BYTE can find or set bytes I
in a string which occupies more than one word, it cannot set more than one word /' .
of data. at one time, because its value must fit into one word.

Th~ first subscript of BYTE specifies the left-most byte of a string. The \.
second subscript specifies the number of bytes. 1 ,
When used ~n an expression rather than a locative, the value of a BIT or BYTE
modified expression is the right justified result of the bit or byte masking of
the expression to which it is applied. \
Th'I.l,s, assuming a 48-bit word, with A initially zero
'; ~L/

(SET (BIT 2 2 A) (BIT 2 2 15»
~.-

would set A to 12 and yield the value 3. v

t

\
~~.-J

3 September 1965 16 'lM-2260/002/01

List-locatives work on SYMBOL type variables and manipulate list structure.
Within a list-locative, the eraression must produce a value of type SYMBOL.
(CAR X) is defined then (SET CAR X) B) replaces the pointer (CAR X) by a
pointe .. to the value of B. Similar results apply for CDR and the general
c{A1D} R functions.

The expression given as an argument to PROP must evaluate to an identifier.
The value of (PROP expression) is the property list of the identifier. As a
locative, PROP may be used to set the property list.

3.2 CONDITIONAL AND BOOLEAN-EXPRESSIONS

If

Conditional and Boolean expressions are special forms having a unique method of
evaluation.

* conditional-expression = (IF predicate expression {predicate expression}

{expression\empty})

predicate = expression

A predicate is an expression which is subject to Boolean evaluation. The value
of a predicate is FALSE if the expression it contains evaluates to FALSE or the
empty list (), and is equivalent to TRUE otherwise.

In evaluating the conditional-expression (IF Pl e l P2 e2 ••• Pn en eo)' the
predicates Pi are evaluated in turn from left to right, until one,~y, Pj' is
found that is TRUE (not FALSE). The value of the conditional expression~s the
value of the corresponding expression e.. If none are true, then the value is
e. Ife is absent, and no predicate fS true, the result will be a run-time o 0 error.

Except for any side effects that may occur in the evaluation of the Pi' the
entire conditional-expression has the same effect as if it were replaced by the
single e. or e which is its value.

J 0

* Boolean expression = (AND predicat,i)
(OR predicate)

(AND p~ P2 ••• Pn) is TRUE if all Pi are TRUE (Le., not FALSE) and FALSE
othe~se. The expression is evaluated from left. to right only far enough to
determine its value, i.e., if any Pi is FALSE, the remaining Pj for j > i are
not evaluated. (AND) is TRUE.

(OR Pl P2 ••• P) is FALSE if all p. are FALSE, and TRUE otherwise. The ex­
preSSion is eva~uated from left to ~ight only far enough to determine its
value, Le., if any Pi is TRUE, the remaining Pj for j > i are not evaluated.
(OR) is FALSE.

o 3 september 1965 17 'IM-226o/002/01

3.3 EVAlliATION OF FORMS

For normal forms (function-name arg*), where all of the arguments are expressions,
the evaluation of the form is done by evaluating all arguments, then passing the
arguments to the function and operating the function.

The order of evaluation of arguments is not guaranteed. If it is desired to
evaluate the arguments of form (f abc d) in order, the block mechanism can be
used, viz.,

(BLOCK ((A a) (B b) (C c) (D d)) (RETURN (f ABC D)))

3.4 FUNCTIONAL ARGUMENTS

functional = (FUNCTION [NIL\ variable \ ([variable \ empty} value-type)}

p-list expression funarg-variables)

formal-expression
(FUNCTIONAL formal-expression funarg-variables)

formal-expression = function-name
expression

* funarg-variables = (variable variable)
empty

Semantics

A functional is a formal valued expression used as the argument of a function
which requires a formal-type parameter, or to set or preset a formal variable
or a variable of type SYMBOL.

The f:i.rst format shown above creates a local function definition. The functional
need have no name (i.e., can be of form (FUNCTION NIL) if it is not
recursive. If the functional is used in setting a formal variable, presetting a)
formal variable, or as a formal argument of a function, there need not be any l
type information given in the functional, since the full type information is)
available to the compiler. '

Any applicable FLUID storage mode information for parameters must be supplied,
~owever.

The default type information for a functional is derived fran the formal
parameter in which it is used. For example, given

(FUNCTION (FF SYMBOL) SYMBOL (FORMAL INTEGER REAL (REAL LOC)))

if FF is called with

3 September 1965 18 1lM-2260/002/0l

(FF A (FUNCTION B (X Y) • •• »

then the functional B has value-type INTEGER and parameter types (X REAL) and.
(Y REAL LOC).

If the functional is used for setting a symbol type variable or a formal array,
then full parameter type infor.m.ation is required.

Funarg-variables is an optional list of fluid variables. A variable is placed
in the list if it is used free within the functional and if it is desired to
save the binding of the fluid variable at the point at which the functional
is bound and to use the saved value in evaluating any expression in which the
for.m.al variable is used, so that the functional binding is not affected by any
intervening fluid bindings of the free variables. This is usually, but not
always the desired interpretation for the free variable.

For example, consider

(FUNCTION (MAPCAR SYMBOL) «X FWID) (FN (FORMAL SYMBOL SYMBOL»)

(IF (NULL X) NIL (CONS (FN (CAR X» (MAPCAR (CDR X) FN»)

(FUNCTION (JX SYMBOL) (L (X FLUID»

(MAPCAR L (FUNCTION () (K) (CONS K X) (X»»

(JX (QUarE (A BCD» (QUOTE M»

Here, the use of the funarg-variable (X) was necessary in the definition of
JX, to assure that the functional argument uses the value of X bound in JX,
so that the re sult is «A. M) (B • M) (C • M» .

Without the funarg-variable declaration, the call to MAPCAR, as defined here
wi th (X FWID), would cause the binding of X in MAPCAR to be seen wi thin the
functional, and the result would be « A ABC D) (n BCD) (C C D) (D D»
independent of the second argument of JX. '

Although this example is artificial in that MAPCAR does not require (X FWID),
the principle applies to other cases of functional arguments.

3.5 FORMAL VARIABLES

A formal variable is a variable which has been declared for.m.al so that it can
receive a functional binding. A bound for.m.al variable can be used in the same
manner as a function-name. The fomal-type declaration informs the compiler
of the value-type and calling parameters of any functional which can be bound
to the formal variable.

. :,'

,/' --"

3 September 1965 19 TM-226oj002jOl

Once the formal-type has been declared, a formal variable can accept functional
expressions of that type only.

In LISP II, unlike LISP 1.5, a functional expression cannot be applied to its
arguments directly. Instead, the functional argument must first be set into
a formal variable, aLd the formal variable then applied.

To operate a program at the top level of LISP II, one uses a formal variable
and a functional expression '\-,here one would have used a LABEL IJIMBDA expression
and *FUNC in Q-32 LISP 1.5. For example:

(DECLARE (FF (FORMAL SYMBOL SYMBOL SYMBOL)))

(SET FF (FUNCTION () (A B) (PLUS (TIMES A A) (TIMES B B))))

(FF 3 4)

would result in a printout of the value 25.

3.6 ARGUMENT TRANSMISSION

The arguments of a function are characterized by type and transmission mode.
The expression that is used as the argument to a function must be consistent
in type and mode .dth the argument declaration as follows:

1. Locative transmission:

LOC. If the transmission mode LOC is specified for an
argument of a function, then any expression used to
supply the value of that argument must be a full-locative
of the same type.

For example:

(FUNCTION (REALSET REAL) «X LOC) Y) (SET X Y))

is a function of two arguments (X REAL Lcic) and (Y REAL)
that sets the locative binding of X to the value of the
expression Y.

It is possible to call FN as follows:

(REALSET A 3.5) (which sets A to 3.5), or

(REALSET(AA i) 3.5) (which sets the ith element of AA to 3.5),

where A is a variable of type REAL and AA is a real array,
but (REALSET 3.¢ 3.5) would be illegal and meaningless.

3 September 1965 20 'lM-2260/002/01'

(In place of 3.5, ~y real-valued expression would suffice.)

In general, a variable must be declared LOC if the full­
locative used as its argument is to be set as the variable
itself is set.

A variable of array type must be declared LOC if the entire
array is to be set by an assignment statement but not if
only single cells in the array are to be changed. For
example:
(FUNCTION (ARRAYSET SYMBOL) «X (ARRAY REAL) LOC) (Y (ARRAY REAL»))

(SET X Y»
which sets a real array variable X to a real array Y, must have a
LOC declaration on X, since its result is to make the array
variable specified byX point to an array Y.

However,

(FUNCTION (ARRAYSETl SYMBOL) (X (ARRAY REAL»

(BLOCK « M INTEGER»

(FOR M (N STEP-l UNTIL 1) (SET (XM) Y» ,

(RETURN X»)

which sets N elementsof the real array X to the value Y,
does not require that X be LOC, since X will end up
pointing to the same array at the end, but the values of
the elements of the array will have been changed.

2. Arguments transmitted by value:

For arguments transmitted by value, any expression may be
supplied in the function call,provided that the types
are interconveTtible.

The penni tted conversions are show, in the following
, table:

G

C

3' 8eptemper 1965 21 TM-2260/002/0l

Rema.rks:

X -
-

8 -
'!'RUE -
p -
A =
F =
Ie -
IR --
or --
OR =
RI :-

RO =
8Y ::

80 =
8R, :-

SA =

SF =-

A

F

TYPE

FRClv1

BOOu::AN

INTEGER

OCTAL

REAL

SYMBOL

rray-type

ormal-type

B

X

TRUE

TRUE

TRUE

P

TRUE

TRUE

I o

- -
X IO

or X

RI RO

8I SO

- -
- -

exact, no conversion needed
not permitted

R 8

.. $'
o/~

IR S

OR 8

X S

SR X

- X

•. S

symbol of approp.riate type t ran smi tted
all non-Boolean value s are TRUE

a-t
..

-
-
-

SA

A

-

predicate evaluati.on: (). ... FALSE, else TRUE
array-types must agree, else illegal

foot

-
-
-
-

SF

-
F

formal-types must agree, else illegal
integer-to-octal conversion, exact, except -¢ ... +¢
integer-to-real conversion, done by floating the integer
octal-to-integer conversion, exact
octal-to-real conversion, done by floating the equivalent integer
real-to-integer conversion, rounded
real-to-octal conversion, rounded
if symbol is a number, convert to integer, else illegal
if symbol is, a number, convert to octal, else illega.l
if symbol is a number, convert to real, else illegal
if symbol is an array and array types agree" transmit
the value, else illegal

if symbol is a formal_type and formal-types agree, transmit
the formal, else illegal

3 September 1965 22

3 .7 LISP II ARITHMETIC

Arithmetic functions in LISP II IL consist of the primitive special forms PLUS,
TIMES, MINUS, and DIFFERENCE which cannot be defined as functions, together with
a set of primitive functions such as QUOTIENT, IQUOTIENT, REMAINDER, SIGN, etc.,
which are well-behaved functions.

In LISP II, arithmetic using PLUS, TIMES, MINUS, and DIFFERENCE is guaranteed
to produce the same numeric values as if all arguments were of type symbol.

MINUS has one argument and produces a result of the same tVl)e as its argument,
except that an octal input produces an INTEGER output. PLUS and TIMES take an
indefinite number of arguments. DIF'FERENCE takes two arguments.

The type of the results of PLUS, TIMES, and DIFFERENCE is related to the input
type by the following table:

INTEGER OCTAL REAL SYMBOL-IO SYMBOL-R

INTEGER INTEGER INTEGER REAL SYMBOL-I SYMBOL-R

OCTAL INTEGER INTEGER REAL SYMBOL-I SYMBOL-R

REAL REAL REAL REAL
r1,.l;'::~""'L~ /':;1.% /ic"=

~S¥Mff~-'R' S¥MB0I:;:R""

SYMBOL-IO SYMBOL-I SYMBOL-I
let=::NC;'"

""S¥MBOI;;;R= SYMBOL-I SYMBOL~R

SYMBOL-R SYMBOL-R SYMBOL-R
~t,'1"c>
. " B0]";;-R SYMBOL-R SYMBOL-R

In the table SYMBOL-IO means either SYMBOL INTEGER or SYMBOL OCTAL, SYMBOL-I
means SYMBOL INTEGER, and SYMBOL-R means SYMBOL-REAL.

The output type of PLUS and TIMES can be obtained by successive applications
of the table to the partial sums or products.

The order of combination of the arguments in PLUS and TIMES is not guaranteed.

The function QUOTIENT in LISP II has arguments and value of type REAL.

IQUOTIENT and REMAINDER have arguments and value of type INTEGER.

The predicates
(EQUAL x y) meaning is X = Y
(GR x y) meaning is X > Y
(LS x y) meaning is X < Y
(GQ x y) meaning is X ~ Y
(LQ x y) meaning is X ~ Y
(NQ x y) meaning is X f Y

are all exact. While EQUAL and NQ work on all types of arguments, the compiler
compiles these predicates open and produces efficient code for them where possible.

C)

o

3 September 1965 23 TM-226o!002!Ol

4. BLOCK

* * block-expression = (BLOCK (block-declaration) (label\statement})
,~~~ -"~-"-"¥""-"",I~"'~! .• -,,,,,,,,,,,,--.-,.,,~.--

block-declaration = (/;wi tch-declaratio~ ~.-"~ .. «."\
.block-variable-declaration)

. /

label = identifier

statement = compound-statement
block-statement
go-statement
conditional-statement
return-statement
code-statement
simple-expression
(LABEL label statement)

* * compound-sta.tement = (BLOCK (switch-declaration) (label I statement})

* block-statement = (BLOCK block-stat-decls (labellstatement})
for-statement
try-statement

* . ' block-stat-decls = (block-declaration block-variable-declaration

block = block-statement
block-expression

* ' block-declaration)

--- - ------------~--- -_ .. --_._.

3 September 1965 24 '!M-226o!002!Ol

Semantics

A block-expression is a block or compound-statement used where ar expression
is called for, and in general evaluated to produce a value. statements occur
only inside of block-expressions.

A block-statement differs from a compound-statement only in that a block~~
statement must contain at least one block-variable-declaration, while a
compound-statement can not contain any block-variable-declarations. other
forms of block-statements are form-statement, which is macro-expanded into a
block-statement that may contain a block-variable-declaration (see section
4.6) and try-statement (see section 4.8).

4.1 BLOCK-VARIABLES

block-variable-declaration = variable ' , ~""l,-",,,
(variable t~~oPt~,~,) storage-m0C!e)

A var-pres~'c-laratl.on)~ r
var-preset-declaration = ~r~able type-o~t1on ~torage-mode~:xpression)

" (variablE; ASSIGNE~~expression)
(variab~;type~6ption)storage-mode LOC full-locative)

,.~ \"';~.~;~t::~;~;,ft~~~.f"!·;':";·<·"'-~·
Semantics "",~'d",,_,

Block variables, or variables declared at the block level, are initialized at
entrance into the block. If type-option is empty, and the variable has not
been declared FLUID at a higher level, then the type'is the default-type of
the function or section, as in the case of parameter declarations. If a
section-level FLUID declaration is in effect for the variable, the type is
determined by the previous declaration, and the block-level declaration must
be consistent ~ntype with the previous declaration.

Initialization of FWID variables causes fluid binding to occur; namely, the
old value of the fluid variable is stored on the pushdown list. When the
block is exited in any manner, the bindings of all FLUID variables are restored
to the previously stored values.

A variable declared with OWN is a fluid variable but is used free wi thin the
block, and is neither fluid-bound at entrance'to the block, nor restored at
exit.

Except for OWN variables, all variables that are declared at block level are
preset upon entrance to the block. Ifa var-preset-declaration is given, the
preset value is the value of the expression given in the declaration. Variables
whose transmission-Mode is LOC must be preset to a full-locative.

\

/

I

,I

~ September 1965 25 'lM-2260!002!01

An. OWN variable declaration must contain a preset expression; however, the OWN
variable is preset only if the variable has not previously been set.

If no preset infonnatj.on is given, a variable is set to NIL or zero at the
entrance to the block.

Thefonn (variable ASSIGNED expression) implies both a type and a preset. The
variable, which must be local, is set to the same type as the value of the
expression used to preset it.

Local variables, (Le., those not FLUID or OWN) are visible only within the
block in which the.y are declared and wi thin all inner blocks in which they are
used free. They cannot be used in functional arguments, and cannot conflict
with any other local or fluid variables of the same name.

4.2 GO-STATEMENT, LABEL, AND SWITCH

go-statement' = (GO label)
s.v:i. tch-call .. ~-

* switch-declaration = (switchname SWITCH s-label)

switchname = identifier

s-label = label
NIL

switch-call =(G~l",-tchna!n" subscr_i~ l)
Semantics

A label or switchname must be unique within the single functional or within the
single top-level expression or definition in which it resides. The use of an
identifier as a label or switchname cannot conflict with any other use of that
identifier.

A label is regarded as a symbolic name for the first statement that follows it,
and is used to transfer control to that statement. A label located after the
last statement in a block or compound-statement is used to cause control to
"fall through."

The scope of a label consists of all statements contained within the innennost
block in which the label occurs, but excluding all expressions contained within
the block. It is possible to "go to" a label (Le., (GO label) is legal)
from anywhere within the scope of the label.

3 September 1965 26 'JlfJ.-226o!002!Ol

A switch-declaration can contain a label only if it lies within the scope of
that labell or the s-label can be NIL. The scope of a switch is the same as
that of a label at the top level of the block or compound-expression.

Apart from binding of variables, the evaluation of a block or compound­
statement consists of operating each statement in turn, until either the
control "falls through" after the final statement in the block or compound­
statementJdor until a go-statement, return-statement, or an exit-exPression is encountere • .
If the control 'ifalls through" in a block-expres'sion, the value of the block­
expression is NIL. If the control "falls through" a block-statement or
compound-statement control passes to the next statement outside of that
block-statement or compound-statement.

A go-statement encountered within a block or compound-statement causes control
to be transferred to the label contained in the go-statement. If the label
lies outside of a block-statement, a block-exit is performed before the control
is actually transferred. The scope definition for label permits "going out of"
a block but prohibits "going into" a block.

A switch-call causes a transfer of control to one of the labels in a switch­
declaration, or .:.r.aus-thr.Qygh" depending upon the switch-declaration and value
of its subscript~· The s-labels on a switch-declaration can be NIL or they can
be any labels in whose scope the switch-declaration occurs.

When a switch call is encountered, the subscript expression is evaluated to
yield an integer l and the integer is used to select one of the s-labels in ~~e~
switch. "The"'"S-l:B.bels in the swi tchdeclaration correspond to subsc:dpt"C'va.~e.s
1, 2, ••• , n. If an s-label exists for the particular value of the' subscript,
then the effect of the switch call is the same as (GO s-label). If no s-label

/~e*i-st,~ i.e. 1 if subscript < 1 or subscript> n or if the corres'Ponding s-label·. '.
(~ is NIL,)then the switch call is not defined. ' ,

... ____ ---',.,..". ._" '"'C:, .' "_";"~ :"~.-,"~,~., ,,- .';'J~":::::-:"';;:::".-::!':~."-"'" -',,-, .~~, """"'''''''''''-''.''''_''-'~''''",""",~" .

4.3 CONDITIONAL-STATEMENT
''* conditional-statement = (IF predicate statement (:predicate statement}

(statement I empty})

Semantics'

A conditional-statement is evaluated by evaluating the predicates from left to
right until the first TRUE (non-NIL) predicate is found. If one is found, the'
following statement is operated. If all predicates are FALSE, the final state­
ment is operatedl or if there is no final statement, control "falls through"
to the next dynamic statement outside of the conditional statement.

,.

, I
,

f .

c

3 September 1965 27 'lM- 2260/002/01

Any top-level stat~ent inside of a conditional-statement may be labelled by
the form (IABEL label statement). SUch a label is. visible at the same level
as that of the conditional-statement itself. If control is transferred into
a conditional-statement by (GO label), the statement immediately following
the label is operated, and (if it was not a go-statement or a return-statement)
control "falls through" to the next dynamic statement outside of the condi tional­
statement.

4.4 RETURN -STATEMENT

return-statement = (RETURN expression)

Semantics

The hierarchy of statements in LISP II assures that every return-statement lies
inside of a block-expression (i .eo, -one which is being used and evaluated as
an expression).

Whenever a return-statement (RETURN expression) is encountered in the flow of
control within a block or compound-expression, the effect is the following:

1. The expression is evaluated.

-2. Exi t is made from all compound-statements and block:"statements
in which this return-statement occurs, with restoration of
fluid variables occurring at each level, until the block­
expression is reached.

3. The value of the evaluated expression, appropriately converted
to the proper value type, is the value of the block-expression.

4.5 CODE-S~TEMENT
- * code-statement = (CODE item)

item-- -. = label
instruction
pseudo-instruction

Semantics

-Instructions and pseudo instructions and the use of code-statements are
defined in the rAP· II memorandum.

Code-statement are used to enter machine coded instructions into a program.
The labels that occur within code-statements are visible at the same level as
the code-statement itself.

3 September 1965 28 'lM-226o/002/01
'. ."

4.6 FOR-STATEMENT
. *

for-statement = (FOR variable for-element for-element sta~ement). A 1-
~.Ji~ ~J-CfJLt.(,,' , .. f ;f:..e.M

for-element = expression ;'
(a-expr STEP a-expr {term-element \ UNTIL a-exp }) ~t{)J
(expression {RESET expressioIl\empty) term- ent "',..,--
({IN\ ON) expression tem-element)

tem-element = WHILE predicate
UNLESS predicate
empty

a-expr = expression

An a-expr is an expression whose value is numeric.

Semantics

1. A for-statement is a statement, not an expression. The variable in
the for-statement can be any variable bound at a higher level. The
statement which forms the body of the for-statement may be any
statement, including another for-statement. If, at any iteration, a
statement to be executed as the body of the for-statement collapses
into a go-statement or return-statement, it causes an unconditional
exit fram the for-statement.

2. A single for-statement with more than one for-element is exactly
equivalent to a sequence of primitive for-statements having the
same variable and statement body, e.g. ,

(FOR v fl f2 f3 ••• fn s)

where .! is a variable, fl' f2 ••• f'n are f'or-elements,

and s is a statement, is precisely equivalent to the sequence of
for-statements: .

(FOR v f'l s) (FOR v f2 s) ••• (FOR y f s)
n

The semantics of any for-statement can therefore be described in terms
of the primitive for-statement (or p.f.s.)

(FOR v f s)

Which depends upon the for-element f as follows:

3 September 1965 29 'lM-226o/002/0l

(6&()~~ (j

3. If f is an expression, then the p.f.s. is equivalent to (SET'v f) s)
A

40 If f = (al STEP a2 UNTIL a3),

where a l , a2 , and a3 are a-expr, then the p.f.s. is equivalent to:

(BLOCK «g ASSIGNED al)) (SET v g)~ a2)

(IF (GR (;-]}IES (~GN G) (DIFFERENCE (PillS v g) a3 i)¢)
. (GO 1,2) (SET v (PLUS v g) (GO 1,1) 1,2)
(6~oc{(. () .)

5· If f =C\ (e l [STEP a21RESET e2lempty} [WHIm p\UNIESS p\empty}),)

the f.p.s. is equivalent to:

(SET vel) 1,1 s [(IF [NOT p)\p} (GO 1,2»\empty}

[(SET v (PLUS v a2»)\(SET v e2)lempty} (GO i,l) 1,2

where 1,1 and 1,2 are generated labels and (NOT p) corresponds to
WHIIE.

6. If f = ([INION} el (WHILE p\UNLESS p\empty}),

the p.f.s. is equivalent to

(BLOCK «g SYMBOL el)

(SET v {(CAR e~\el}f1,l (IF (NULL (SET v (CDR v»)) (GO 1,2)

[(NOT p)\p\empty} (GO .t2) (GO 1,1) 1,2)

Where 1,1' 1,2 and g are generated identifiers, and IN corresponds
to (CAR g), ON to g and the three choices in t;he conditional
statement correspond to the WHIlE/UNIESS/empty cases •.

The compiler will actually implement most forms'of for-statement
by means of macro expansion similar to that indicated here.

4.7 STh1PIE EXPRESSION USED AS A STATEMENT

Any expression can be used as a statement. The expression used in this
way is evaluated and the value discarded. Thus this form of statement
is useful only if it produces side effects, such as setting variables
and performing input-output functions.

(Syntactically, only simple-expression is included in the definition of
statement, since compound-expression and conditional-expressions are already
subsumed as special cases of compound-statements and conditional-statements.)

--_ __ .. -

3 September 1965 30
(last page)

4.8 TRY-STATEMENT AND EXIT-EXPRESSION

try-statement = (TRY statement full-locative statement)

exit-expression = (EXIT expression)

Semantics

'lM-2260/002/0l

A try-statement is a block containing two statements and a full-locative.

The first statement is executed normally unless an exit-e~ression is
encountered within it. If no exit is encountered, the second statement
is bypassed, and if the first statement "falls through," the try-statement
"falls through."

If an exit-expression is encountered, control reverts to the innermost
try-statement in which the exit-expression occurs, and the effect is the
same as

(SET full-locative expression)

statement, where full-locative and statement are those given in the try­
statement, and the expression used is that given in the exit-expression.

The full-locative used in the try-statement should be of type SYMBOL, so
that it can accept the value of the expression.

/

