
LISP II PROJIi:CT

Memo No. 16

LISP II Input/output

ABSTRACT

Draft '",., ."r' 'C',

TM-2260/00I!OO ,-'
Clark Weissman

This document specifies the philosophy and mechanics of

LISP II I/O. It supersedes LISP II Project Memos 5 and 8.

, ',",'

Draf't

Section

1.

1.1

1.2

2.

4.
4.1
4.2

6.
6.1 .

6.2
6.3
6.4
6.5

i

Contents

INrROOOCTION

Design Objectives

TM-226o/00x/OO

~J... f~~"~
FILE CRFATION: OPEN /.' &v\ 1\-£J.A..A ~
File Name . ./ '(.(~f'..vf1tJ4 l~
File Description it' .
Reserved I/O Jdentjf1~s-- ~~

FILE PURGING: SHUT

Function Call

File Disposition

FILE SELECTION: INPUT, OOTPUT

Funct ipn Calls

Selection Mechanics

TERMINATOR FUNCTIONS: ENDIN, EN1)()Jl',

ENDlNR, EN1)(XJTR

Line Terminators

Record Terminators

~ () ~ &~WJ-
BASIC PRIMITIVES~.-.-- N \) ~A. r f}A I)-f(" ~ ~ _ - '7;i"t ~\ tI\ E., rue...
IDWOCH --~

PRmCH

PRINTOKEN

PRINSTRING

PRIN and PRINT

Draft

Section

6.6
6.7
6.8

7.
7·1
7.2

7·3

e, 8.

11

INDEX (Continued)

Contents

READ
SYMPRrn and SYMPROO'

REAIJlORD and PR1lf.rf(ORD

FILE CONTROL PRIMrl'IVES)1-/
File Positioning: TAB, ROLL, ~ POSrrION

Format Initialization: HORIZON':ML, VERTICAL
....,....and CLEAR

r- Format Interrogation: COLUMN~)IOOTATUS. ,_

"-.' ~~~ .

ClIARACl'ER C<IIVERSIOII TABLES , a~ 0 ppN .
(i~
#.-L h-.,t .

)l2,. filrrtt.f.

Draft -2- TM-2260/00x/OO

1. INTRoroCTION

This memo specifies the philosophy and mechanics of input/output in LISP II.

The design is derived from ideas proposed in earlier memos, but principally

from im~emented ideas contained in the Q-32 LISP 1.5 I/O package.

1.1 DESIGN OBJECTIVES

LISP II is designed for maximum on-line interactive operation WQthin a time

sharing systf'..rn environment. Ttl' principal commtmication and control device

will be a reactive typewriter or on-line keyboard. However, to enable

practical operation with quantities of information than can be conveniently

accommodated by keyboard devices, disc, tape, and other bulk memory stores

must be accessable to LISP II users, and in a uniform and convenient form.

furthermore, the language implementnt ion must not be biased toward any

particular I/O con:figuration by preempting, a priori, valuable core storage

for particular device buffering. Finally, I/O must be machine independent

from the user's point of view, thereby allowing program compatibility between

various LISP II implementations.

1.2 DESIGN CHARACTERISTICS

In keeping with the functional logic of LISP, I/O will be performed by

evaluation of pseudo functions and LAP primitives; but evaluation for effect

rather than for value. The effect will be to configure or manipulate internal

I/O data structures. Time-sharing systems recognize the organizational

elegance of blocking data into files, and they provide extensive I/O facilities

for I/O file management. LISP II I/O will capitalize on these facilities by

representing its r/o data as files. By so interfacing with the monitoring

environment, LISP II gains the advantage of simplified I/O mechanics, and
,

standardization of I/O functions.

A file is the princiJal data structure for addressing LISP II input and outplt

data. The user, through the provided r/o functions, will be able to create,

delete, poSition, select, and read or print files dynamically, at rtm-time,

Draft -3- TM-2260/00x/OO

for the canplete spectrum of physical devices available to his system. A file

is device-dependent, but direction-independent, and may be used as both an

inp..tt and an output file; and with caution, both simultaneously.

1.2.2 Records

Files are blocked into records that are themselves blocked into lines. Records

and lines are of variable size and number, depending on the user's choice and

the physical device being addressed. Only one record for each different fil~

can be in core at anyone time to reduce buffer storage averhea.d.. One may

consider the data record as a "cursor" positioned appropriately over the f¥c.:'

For symbolic data files the record is structured internally as 8 LISP II Jtring •

Binary data files are structured as octal arrays.

Lines

Blocking of symbolic records into lines is a necessary concession for format

ccmpatibility with printing hardware. Thus, all symbolic data files will be

formatted and can be listed)subject to time-sharing monitor limitations. Line

length is fixed for each file when it is created. The number of characters

may be specified by the user, within meaningful limits for the device in

question, or by default will be assumed to be 72, the maximum number compatible

with all printer devices.

Since line formatting is usually controlled by special characters imbedded in

the data, and since there are no standards for these characters for different

devices at a given installation, line formatting will be controlled internally

by LISP II with an appropriate collection of control words stored in an integer

array associated with each file. These control words will be used to remove

or insert control characters of the appropriate type for the device being

accessed ~t such times as the string representation of the data record is

transferred into or out of core. We call this "post string processing" and

it is the only I/O area dependent upon machine, monitor, or device configuration.

Post-string-processing permltsus to represent data records as strings that

Draft -4- TM-2260/00x/oo

contain no control characters, and thus are device independent. By segregating

control from data, device independent record-strings provide a high degree of

processing freedom necessary for uniform and powerfUl I/O.

1.2.4 Words

Binary record's are not blocked. Such records are, however, composed of machine

words. By equating words with lines, fUe control may be likened to that for

symbolic records. Externally J binary data records do not contain any control
information.

Draft TM-2260/00x!OO

2. FILE CREATION: OPEN

A file may be created at any time by evaluating the function OPm. OPEN

establishes all necessary communication linkages between LISP II and the

time-sharing monitor. In particular it does the following things, though
not necessarily in the order given:

1. It creates an internal STRING, of size sufficient to contain

one data record for the designated file. ~

- oon".1, -O/~ ~I~~~.
2. It creates 1-INTEG~Y and set. it. content. with

format control information for the file.

3. It creates a FORMAL array and sets its contents with necessary

primitives for formatting and post-string-processing.

4. It declares information to the time-sharing monitor for it

to allocate and establish camnunication linkages with the

external storage medium designated for the file.

5. It appends to the property list of the file's name, under

the property "I/O," a list of descriptive information about
the file.

6. It maintains a list of all OPENed file names, as the value

of FWID variable Fn..ES., which it returns as the value of

OPEN and uses to check for redundant or conflicting file names.

OPEN is'8 function of two arguments and has the form,

(OPEN filename, file description)

Drai't -6- TM-2260/00x/OO

2.1 FILE NAME

The first argument o:f OPEN is the name of the file being created. This name

must be a 'quoted LISP II identifier. The first~Characters of the name will

./

~~ .
be used bYALISP II as the internal. name for the file in eatabl.ishing its ~
canmunication linkages with the time-sharing monitor. Therefore, the first.K

characters must be unique among all previously OPENed files. For file names

less than t6'haracters, OPEN will still use a nharacter name by :filling the

remaining character positions with blanks.

2.2 FILE DESCRIPTION

. The second argmnent o:f OPEN is a list of flags and dotted pairs o:f attributes

and values, in property list format, completely describing the file in all its

dimensions. A file's dimensions are given by its Unit, Fonn, Connection,

Protection, Identi:fication, arid Fonnat.

Except :for special, non-standard I/O operations, the user need not concern

himself with the construction o:f a :fUe description list, for he may use one

o:f a set o:f reserved I/O identifiers for the second argument of OPEN. There

is one identifier for each type o:f I/O unit available to the system, and each

evaluates to a preset :file description list for that Wlit type. This file

description l.ist is su:f:ficient :for most standard r/o operations.

The current reserved I/O identifiers are:

TrY.

DISC.

TAPE.

CORE.

CRT.

<.

ie

Drai't -7- TM-2260/00x/OO

2.2.1 Unit
A file is unit dependent, as LISP II uses the unit type of a file for

establishing the proper communication linkages with the ttme-sharing monitor,

and for setting up the correct post-string-processing for the file. Thus,

one element of the file description list must be a dotted pair designating

the unit type. For example, the dotted pair

(UNIT • TrY)
will designate the on-line typewriter or Teletype as the unit for a particular

file by the presence of the identifier TrY as the CDR of the dotted pair. This

dotted pair may exist as any top-level element of the file description list

because a search is performed on the elements of file description lists for an

element whose CAR is the identifier UNIT. Similarly,

(UNIT • DISC)

(UNIT • TAPE)

(UNIT • CORE)

(UNIT • CRr)

will designate disc, tape, core, and CRr (SCOPE display), respectively, as

the unit for a file.

The ability to specify core as a unit enriches LISP II I/O. With this

capability it is possible to print inplt files, read outplt files, copy I/O

files, and perform text formatting ccmpl,etely within LISP II source language,

to name but a fEnt of the possible applications. (It is also possible to

perform these techniques without core as a unit; however, the nexibility is

provided with a mintmum of cost.)

2.2.2 ~
Symbolic data will be represented internally in LISP II as 8-bit ASCII

cha.ra.cters. However, not all external media use thiS standard and conversion

will be required. These conversions will be performed by prtmitives as part

tIa of post-string-processing-

"'

Draft -8- TM-2260/00x/OO

For Q-32 LISP II, we will need at least two types of symbolic converters,

ope f9. @iM8P~ 8~a. These converters are designated by the value of the

attribute FORM in the file description list. These values may be ASCII, BCD,

or BlliARY, which specify the FORM of the data on the external device. Q-32

Teletypes use a 12-bit representation of ASCII 8-bit code. The dotted pair

(FORM • ASCII)

will be used to call forth a 12-bit to 8-bit (for input) or a 8-bit to 12-bit

(for output) converter. Similarly,

(FORM • BCn)

will be used to call forth a 6-bit to 8-bit, or 8-bit to 6-bit converter. The

specific conversions are given in section 8.
(FORM. BINARY)

specifies a binary file, and no conversion is necessary.as a simple binary
(:I.Mj f.-.ikM .,

record will be transferred to~the file.

Connection

When OPEN establishes comrmmication linkages with the time-sharing monitor,

it is necessary for LISP to tell the monitor how to "connect" with the external

file. If the file is a ~ file, that is, one being created by LISP, the monitor

will allocate storage for the file on the requested external device, and connect

LISP to the file 60 created. On the other hand, if the file already exists

and is in the monitor's file inventory, it is an old file, and LISP must be

connected to that particular file. For LISP II to make known its connection

intent to the monitor, a flag is optionally placed on the file de~c~i~~~

list. The flag is the quoted identifier NEW or OLD. If no such flag is
" found, NEW is assumed by default.

2.2.4 Protection

File security' is a fierce problem in time-sharing systems and data files must

be protected by the monitor from inadvertent and malicious acquisition by

Wlauthorized persons. In LISP II, the presence of the dotted plir

(PRC1l'ECT • }).

in the fUe descxiptio\.l.1Gt, is used to convey nece ry "keys" to lock

(R£I'r1) w~tTE)

Draf't -9- TM-2260/00x/OO

or wil.ock various protected files. The nature of the variable X is dependent

upon the protection schemes provided by the monitor.

The Q-32 time-sharing monitor does not, currently, possess any protection

mechanisms, and so the dotted pair designating file protection will be ignored

in Q-32 LISP II. For other LISP II implementations, the variable X can

designate a password, a protection code, an executable protection function,

a change of protection code, or combinations of these, as permitted by the

monitor.

2.2.5 Identification

This p:Ll'ameter is optional, and used where it is desired to identify a specific

physi~ unit. The dotted pair is of the form

(y • z)

where y and z may take on the following values for Q-32 LISP II.

Unit y z Caoment

TAPE REEL n ~ 9999 Physical reel number.

CRT SCOPE 1~ns;6 Physical. scope number.

DISC NAME identifier Disc file name where different

fran the first argument of

0Pm, will be used as the

name of the file.

For other LISP II implementat ions, y and z may take on other values and

meanings as necessary.
)

2.2.6 Format

The last dimension of a file to be considered is its format. By format, we

mean the exterrial organization of the fUe, particularly its blocked structure

and its printed structure. Within the physical l:1.m1tations of the hardware,

the user J.JJ8:3, optlon.ally, control these formats; otherwise by default, the

-

Draft -10- TM-2260/00x/oo

system will set the necessary parameters.

2.2.6.1 RECORD. The first format puoameter, RECORD, specifies the nwnber

of lines to be blocked in each record. This parameter can not be changed

crver the life of a file. The dotted p1ir is of the form

(?3CCP.:J • :;.)

"here n is t.be int.eger number of :"ines.

For Q-32 LISP II, and most time-sharing systems in general, it 1s desirable

to read or write maximum. sized records for faster I/O. The folloving table

specifies the upper bound on n for Q-32 LISP II units.

Unit

TTY

TAPE

DISC

CRT

CORE

nMa.x

1

30
20

optional

50

J~
680 n

optional

n Default

1

30

680
1.

Camnent

Record = 1 line of 72 characters.

~rf . e = card image of 72 characters.

= 120 characters.

= binary word.

L e = card image of 72 characters.

L e = 120 characters.
/.... AlE. ;; ~~tl .

. L ne = binary word; 1 s; n s; 3
:,'fa.u.ltwill consider a CORE
tile =1 record = 1 line of
option8J. character size

2.2.6.2 Page Format. For symbolic files only, the ~ormat can stipulate

the structure of a printed :page. The:page is logically considered to have .

two directions:"~~~nt:J.Pfeasured in columna fran 1 to 120, and vertical
1\

measured in lines :fran 1 to ,O-""W'ith three control points in each direction

as shown in Figure 1.

e

L:mES
11
2
3 LMJ
4

•

•

: 1

• !

•

•
0

50

-11- TM-2260!00x! 00

o

TOP

I...L-_--- C1A../t I.. IN e..

Bar

PAGE

Figure 1. Page Format Controls

In the horizontal direction these control points are (1) the left margin (IMG),
~1~Mtj M~~

(2) the right margin (RMG), (3) and the maximum ebNl884;e1" (i.R!). The vertical

direction can be considered symmetric with the horizontal direction and the

controls are TOP, BOT, and PAGE, respectively. In all cases, these contro1s

are integer quantities which refer to column or line numbers. Though,

appu"ently more valuable for fomatting outplt, these cmtrols are also

effective for reading formatted input information.

Draft -12- TM-226o/00x/oo

Horizontal Control. LMG specifies the left most character position

for each line, and all tabbing operations, as specified by primitive TAB below,

are relative to this margin. It is, therefore, possible to format a line of

text on output and position that format, lett Justified, a.t any colwnn on the

page by' appropriate setting of IM'}.

RMG acts like the bell on a typewriter and warns the user that be is nearing

the maximum column of the line. The user may respond to such a Rm averfiOW'

condition by taking remedial actions such as hypenat1on, restoring the carriage,

entering further characters until a blank occurs, etc. The procedure for

responding to RMG overflow is discussed in paragraph 2.2.6.5 below.

~1J'f..Co '-
~ specifies the highest column in a line, and thus gives the maximum number

of characters per line. Whereas I.M; and RMG may vary to a.chieve variOUS for-
jVt4)(co,- .

matting effects, L*NE as with RECORD will be constant over the life of' a f'Ue,

as these two parameters are used by LISP for structUring the internal string

representation of a fUe.

To specit'y these parameters, the dotted pair has the f'orm

(HORIZONTAL • (X y z» AAfr Co (... - I'! L C
where XI y, and z are the integer values for Jl.I;, m-n, and ~ respecti~{y~

2.2.6.4 Vertical Control. TOP specifies the first line of a page, and

may be used to position a group of lines of text any wh:;re on the page. The

primitive ROLL, as noted below, will advance the line controls relative to

TOP.

B01' des ignates the last line of a page, in 8. f'a.shion analogous to RMG. Upon

BCIl' overflow the user may desire to extend the number of lines, or he may
" ,

desire to advance to the next page. He may desire to print a header on the

next page or a trailer on the current page prior to canplet1ng the printing

(Ill that induced the overflow. (See pu-agraph 2.2.6.5.)

Draft -13- TM-2260/eox/oo

CR PAGE designates the highest line of a page and thus the maximum number of lines

per page • PAGE overflow can occur and Is treated like Bar overflow.

To specify these -parameters, the dotted pair has the form

(VERTICAL. (X y z»
where X, y, and z are the integer values for TOP, BOT, and PAGE, respectively.

2.2.6.5 Overflow. There are five overflow conditions: Rm overflow, LINE

overflow, Bar overflow, PAGE overflow, and RECORD overflow. Except for LINE

and RECORD overflow, which are LISP's responsibility, overflow responses are,

optionally, under the user's control by specification of procedures to be

evaluated at overflow time. The form for this specification is

(OVERFLCM • (X y z»
where X, y, and z are FORMAL parameters, corresponding to the procedures for

RMG overflow, Bar overflow, and PAGE overflow 1 respect! vely.

4it: ~,,",--~~~~
A FORMAL parameter for overflow'~!;:t::Xt-~e 1she' .. ~ ill " , •• Uade 'f

with s ide effects. The s ide effects are the effects the user is after, such as "

Changing the IIBrgins, or pr~r or.trailer." 'Ib~~re

r::~~~:;;ti!~~:;~ :=:::t~
indUCed tAe e\ezfiow di'iQ'"c<m'eilitie ~~lWtct:i,QA \J]Aa "alue iiAIS'F

~gl' tDe :ppeahato:Je 1I2±eiil*~"ed ,,8 a WQP, BRi }tI"~~ ~ie 'hl5Qp :tllM

~Muced "5a{~QY~~~~~)Js\~~1;l\if~t~te of all control

parameters. The state of these parameters will be unchanged unless, they have

been modified by such primitives as TAB, ROLLI, ENIXUl', ENDm, ENDOUTR, ENDINR,

PRINCH, READeH, etc., evaluated as the side effect of the overflow procedure.

The primitives HORIZONTAL and VERTICAL, as described later, permit dynamic

settins of a file t s format contro1s, including the overflow procedures.

e

Draft -14- TM-2260!00x!OO

2.2.6.6 Format Defaults. If sane or all format parameters are absent,

default values will be set autOOl8tically by OPEN as noted below.

~ Default Value

RECORD See paragraph 2.2.6.1

LMG 1

RID ~fff!l "1~

LlNE 72

TOP 1

BCII' -PAGE" 51
PAGE 50

RMG overflow ~ f.Jo P
BC11' overflow BQl!f) NOP'

PAGE overflow Be'f9 NOt'"

The overflow functions RMGO and BC11'O access and adjust four system parameters

that control the internal colwnn, line, and record logic. These parameters are:

The actions

)M}O:

line number of this page

location current line of this
record

Draf't -15- TM-2260/00x!oo

th. (WPL) • *

B01'O: 1..

2.

The system actions for LINE and RECORD overflow are similar to JM:10 and B01'O

except that necessary mechanisms for loading or dumping of records from or to

the external medium must be activated conditionally by use of the functions

ENDIN, ENDOOT, ENDINR, and mDOOTR.

2.3 RESERVED I/O IDENTIFIERS

This paragraph gives the complete structure of the file description list

(second argument of 0Pm) for each reserved I/O identifier.

«UNrr • TTY) (FORM. ASCII) (RECORD. 1)

(HORIZONTAL. (1 72 72»)

2.3.2 DISC.

«UNIT • DISC) (FORM. ASCII) (RECORD. 50)

(HORIZOOTAL • (1 72 72» (VERTICAL • (1 50 50»

(OVERFLOW • (RMGO :BOTO :ooro)))

* WPL is a fUe pu"ameter set to 1 for binary fUes and cCIIlplted once by OPEN

for symbolic ~Ues as 0=-1) + 1, where CPW (characters per word) iea

system constant equal to 6 tor Q-32 LISP II.

I

..

Draft -16-

2·3·3 ~.

«UNIT • TAPE) (FORM. ASCII) (RECORD. 30)

(HORIZONTAL. (1 72 72» (VERTICAL _ (1 50 50»
(OV'ERFLQI • (1000 Baro BOl'O)))

2.3.4 22M-

«UNrr • CORE) (FORM. ASCII) (RECORD. 1»

TM-2260/00x/oo

NCIl'E: CORE may be treated like other II 0 units j however, cons Idering that all

internal files are a string of record size, CORE as an 110 unit, if restricted

to a file of one record in size, with the record being only one line of

characters, can be used to create internal strings for special formatting

purposes. Thus CORE. contains no HORIZONTAL, VERTICAL, orOV'ERFLQl parameters.

The last two items would be meaningless for a one-line fUej however, HORIZCif'TAL

is necessary to specify the parameter LINE. We shall discuss how this and ather

parameters can be appended to the reserved I/O identifier in paragraph 2.3.6.

2·3.5 £m:.

«UNIT. CRT) (FORM. BmARY) (RECORD. 680»

2.3.6 Extensions

The reserved I/O identifiers do not necessarily satiSfy all the required

parameters of a file description. For example, if the UNIT of a file to be

OPENed is TAPE, a REEL parameter is required. Similarly, it the tile is CORE,

LINE must be given as part of the parameter HORlZOfiTAL. These extensions can

be provided by CONSing them to the value of the reserved I/O identifier when

OPEN is called. For the above exam'Dles
{p",..) (~u..'"

(OPEN~TAPEOl (CONS" (REEL.1234). TAPE.» U"-" . will OPEN a fUe named TAPEOl ~ ~Sical reel numbered 1234. 81mUarly,

(OPEH(~~) (CONS ~~0RIZ<m.'AL • (1 360 360) »CORE. » .
will open a core file named PRE'rl'IP that is a line (a character string) of

360 characters •

,"

Draf't -11- TM-2260/00x/OO

This technique of CooSing lBrameters to the reserved I/O identifier 1s also

quite useful for OPENing non-standard dimensioned files. For example

(OPEN 'DISCFILE (COOS 'OLD DISC.))

will OPEN a disc file named DISCFILE by connecting to an existing permanent

disc file in the Time-Sharing System inventory, as the flag OLD designates

the OLD connection mode. The absence of a connection mode flag in DISC. and

other reserved I/O identifiers allows them to be used for CJ.Pming new files,

as NEW is implied by default. Other examples such as those below are also

possible.

(OPEN 'TAPEB (COOS I (FORM. BmARY) TAPE.»
(OPEN 'TTYFILE (CONS '(HORIzafrAL • (10 60 12» i'l'Y.»

Draft -18- TM-2260/00x/60

3· Fn.E PURGING: SHUT

A file created by OPEN may be p.u-ged f'ran LISP II by evaluating the function

SHUT. SHUT breaks all the canmunication linkages and deletes all internal

structures--e.rrays, strings, and variables--dynamically established by OPEN.

Before purging the file, SHUT communicates to the ttme-sharing monitor the

disposition of the file; i.e., add file to permanent inventory, delete all

file references, change protection mode of file, change file name, etc. The
I

value of SHUT is the value of the FLUID variable FILES., which is a list of the

names of all currently OPENed files.

3.1 FUNCTION CALL

SHC1l' is a runction of two arguments, and has the form.

(SIlUT flle-name~ flle.-diBposition)

The fUe name must be a quoted LISP II identifier nam1ne an actively OPENed

fUe; I.e., a file name previously used with OPEN. If

(MEMBER file -nametrILES.) • FALSE

SHUT acts as a ,NOP. r
3.2 FILE DISPOSITION

The second argument of SRUT is a list of dotted pairs of attributes and values

specifying the disposition of the file.

3.2.1 FILE
The dotted 18ir

(FILE • X)
is used to cammunicate to the time-sharing monitor the inventory action desired

for the fUe. The action desired is specified by variable X. For Q-32 LISP II,

X may take on the values SAVE or DELETE • SAVEd. fUes are inventoried and may

be accessed at a later date by the use of the flag OLD as the connection mode

of an OPEN call. DEIBl'Ed files vill not be inventoried and will d1sappear. If

the, CDR of the FILE pair is DELETE, no further disposition parameters are meaning-:

tul.

'," ··.·,~i . .:}x··.

":> ':. -.\ '~+; f~',~:

, ...

Draft -19- TM-2260/00x/oo

NAME -
The dotted pair

(NAME • file name)

may be used to change the name of the SAVEd file in the Time -Sharing System

inventory. If this parameter is absent, the file name under which the file

was OPENed, will be used. In either case, SHUT may be forced to query the

on-ltne user for a new file name 11' the file name (a name local to LISP)

conflicts with a file already existant in the inventory.

PROTECT

The dotted pair

(PR<7rECT • y)

may be used to change the file protection of the SAVEd file. If this parameter

is absent, the protection mode under which the file was OPENed will be used.

For Q-32 LISP II, this parameter will be ignored until such time as file

protection mechanisms are installed in the time-sharing monitor.

3.2.4 !&Q.

The dotted pair

(LOG • z)

may be used to log a one line message on the operator's console. The variable

z is that message, in the form of an S-express10n. LOG is usefUl for giving

directions, labels to tapes, etc. to console operators when necessary.

Dra:rt -20- TM-2260/00x/OO

4. FILE SELECTION: 1NPUT~ OOTPUT

Once a file has been OPENed it may be selected as the current input or output

file by evaluating one of the fUnctions 1NPUT or OOTPUT. Once a file is

selected, all r/o primitives act only on that file. Thus it is possible to

compose a LISP II program that is unit, farm, format, etc. independent by

supplying the name of a file as the argument for the program. Such a capability

is quite powerful for debugging purposes where the checkout is simplified with

an on-line Teletype file for a program that ulttmately requires a tape or disc

file.

4.1 FUNCTION CALLS

The file selection calls are of the for,m

(INPUT file name)

(00'l'PUT file name)

where file name is the name of the file used in a previOUS OPEN call. lNPUT is ,
the function used for selecting input files for reading. OUTPUT is the function

used for selecting outplt files for printing. The value of INPl1.I' or OUTPUT is

the file name" previouslY" selected. By using INPUT or 0l7l.'PUT as the right part

of an assignment statement, one can save the name of the prior selected file

for subsequent reselectionj e.g.,

x <: (00TPl1r 'TTYFILE)

(OOTPUTx)

.,

Draft

4.2 SELECTION MECHANICS

When a file is OPENed, three internal arrays are created and initialized by

OPEN and placed on the property list of the file name. They are:

1. The data record string

2. An INTEGER array of format control variables

3· A FORMAL array of overflow, and post-string processing functions.

When a file is selected, INPUT or OUTPUT retrieves the locations of these arrays
t'\\

from the property list of the file, and binds various locations within these

arrays to a family of FLUID, LocMr...,., variables. Subsequent use of read and

print functions chain through these FLUID, LOCATIVE variables to reference and

change the stored data values. In this way no extraneous data copying is

necessary, and" yet all control variables ar~fected at a common location

relative to each file, i.e., the i~ternal arrays.

Since all modified control variables are unifOrml~ected at one point,

selection and de-selection of fi~es has no~ect itself on the state of the

filej i.e., the state of its control parameters. This is required if de

selection of files is to be permitted freely in the middle of lines and records.

Recall, that a partial line or record exists only by the state of the file's

control parameters.

Finally, there exist a number of r/o functions that allow the user to adjust

a file I s control parameters explicitly; e.g., TAB, ROLL, HORIZONTAL, VERTICAL,

etc. These functions affect the file's internal arrays directly and may be

used without concern a5 to whether the file 1s or 1s not selected •

7

,: ~ ..•.. '.
>-,:,~ Draf't -22- TM-226o/00x/OO

5·. TERMINATORFUNCTlctlS: ENDIN, ENIXXJT, ENDINR, ENDOO1'R

There are four I/O functions--ENDIN" ENDOUT" ENDINR, ENDOOTR--'W'hose sole Pp"PO$e

is to keep I/O data flowing through the system. They relate to line and record .J

control for input and output of the selected file.

in t out t
line ENPIN

record ENDINR ENDOOTR

In effect, they ~re similar to the actions of TERPRI and TEREAD of LISP 1.5.
They are functions of !!2. arguments and !!2. values, and are evaluated for their

side effects only. When evaluated they chain through the FLUID, LOCATIVE

variables set up by INPUT or OUTPUT to housekeep the three primary file control

parameters, CURQOL" SUMLINE" and LINELOC.

5.1 LINE TERMINATORS

The functions ENDIN and ENDOOT are used to terminate reading and printing,

respectively, the current line of a file, and advance the control logic to the

next line, if it exists. If it does exist, i.e., SUMLINE > RECORD, we have

recat"d overflow and the appropriate record terminator--ENDINR or ENDOOTR for

inp.lt and output, respectively--is invoked.

Realizing that mDm chains through FLUID, LOCATIVE variables set up by :rnPUT,

and EN1>CX1l' chains throush FLUID" LOCATIVE variables set up by 00T1V.l', both

perform essentially the :following act ions:

1. Increment SUMLINE by one

2. If SUMLINE > RECORD, call <}R, otherwise

/' 3. Set CURCOL=LMG, :for symbolIc fUes only

4. Set LINELOC-LINELOC+WPL

.;~-

.,
:W'l

Draft -23- 'I'M -2260 / 00x/ 00

5.2 RECORD TERMINATORS

The functions ENDINR and ENDCUl'R are seldan called explicitly by the user, but

rather, are called by other I/O functions, such 8S by the line terminators above.

they are evaluated they terminate the tile record currently in core. For ENDINR,
that means loading another record from the external medium; for ENDOUTR, it means

dumping the current core record onto the external medium. To achieve these

operations it is necessary for the record terminators to invoke post-string

processes that:

(1) read or write a raw external core image frem or to external

medium,

(2) delete or insert requisit format information, and

(3) translate raw character codes f'rom12-to-8 bits, 8-to .. 12 bits,

6-to-8 bits, 8-to-6 bits, etc. from tape, TeletY]e, and disc

standards

The required post-string processing is determined and parameterized by OPEN

from the file description, mechanized by mPUT or OUTPUT from the OPEN para

meters, and invoked by these record terminators.

Though performed in different order, ENDINR and ENDOUTR perform essentially the

same following actions:

1. Clear record-string (to blanks for symbolic files, to zero

for binary files)

2. Load or dtmlp external core image

3. Perform post-string processing

4.. Set CURCOL=LMG, for symbolic files only

5. Set SUMLINE=l

6. Set LINELOC=record-string location+(TOP*WPL)

..

Dra:rt -24- TM-2260/00x/OO

Note that the record terminators 9.0 not invoke the line terminators, and so any

partially filled line will be lost a:rter a record terminator is evaluated.

Also note that the line terminators invoke the record terminators only when

record overflow is encountered. When reading blocked records, it is sometimes

desirable to explicitly ev9.luate ENDINR before a record is :f'ul.ly read, thus

initializing the file controls to the first line of the next record. When

printing blocked records, a final ENDOUTR should be evaluated before quitting

for the day, or before SHUT is evaluated, else any data in a partially filled

record will be lost •

",

Draft -25- TM-2260/00x/oo

6. BASIC PRIMIT;ryES

All the I/O prtmitives noted in this section affect only the file selected

by INPUT or 0Ul'PUT. Because of this, these primitives themselves are file

independent and may be used as conveniently on disc files as on tape or
I

Teletype files.

As a mnemonic aid, all print primitives that drop the tit" in their names,

e • g., PRIN, PRINCH, etc., do not evaluate ENDOOT and do not terminate the

current line. Those that use the full spelling of "print" in their names

92. terminate the current line by evaluating a final mDOOT. In general, all

read primitives do not evaluate ENDIN, and do not terminate the current line.

6.1 READCH

READCH. is a fUnction of' no arguments. It reads the current character of the

line and returns that character as aane-character identifier; it also

increments CURCOL by one. All format and overflow conditions, as specified

for the file selected, will be invoked. If line or record overflow is

encountered, the next line or record will be positiooed by ENDIN or ENDnm,

respectively, but the value of READCH will be FALSE. Thus, RFADCH can be

used as a semi -predicate to test for line or record boundaries. Since both

these conditions return FALSE, primitive IOSTATtJS, discussed below, can be

used to remove the ambiguity, where necessary.

READCH will also return FALSE if it is impossible to read the next character

because a physical (tape) or logical (disc) end-of-flle Was encountered.

Again, IOSTATUS can be used to clarify the nature of the read failure.

6.2 PRINCH

PRINCH is a function of one argument, a one-character identifier that is also

returned as its value. The print name (a single character) is entered in the

line at the current column, and CURCOL is incremented by one. All format

and overflow controls ~ in effect\.I~;;' ~ecord ::;:;~

~O

, .
"",.' ... _., ~_ . .,.....-_~. '.'"' ___ • ___ M __ "_~")<I·· ... !~-·,··,··;.;.".;4c:~~.b;~:

.,

Draft -26- TM-226o/00x/oo

encruntered, EN1XXJT or ENOOUTR will be evaluated.. For symmetry with HEAOCH,

PRINCH will accept FALSE as its argument, that is treated by PRINCH as a

line termination, i.e.,

(PRmCH FALSE) !! (ENDOOT) •

Note that PRINCH, normally, does not call ENDOOT, except for line overflow

and a FALSE argument.

6.3 PRINTOKEN

PRlNroKEN is a function of one argument, a LISP II token (see TM-226o/~/OO,

LISP II PROJECT MEMO NO. 11, "The Syntax of Tokens") that 1s also returned

as its value. The print name of the tOken is entered in the line, starting

at the current column. All fonnat and overflow controls are in effect with

ENroJ'l' autanatically called if line overflow is encountered. PRINTacEN does

not nonnally call ENDOt1l', and after evaluation, CURCOL marks the column of

the line following the last character of the token's print name.

Many tokens, such as numbers, Booleans, and special tokens, have no print

names. For these cases special primitives, such as TOSTRG and PRINSTRmG,

will be called to print these tokens. (TOSTRG is a conversion function that

converts any token to a string.)

Note that PRINTOKEN does not apply special primitives for tokens with

unusual spellings. For such cases, it is the user's responsibility to

evaluate TOSTRG and SYMPRIN himself.

6.4 PRINSTRING

PRmSTRmG is a function of one argument, a LISP II string, that is also

returned as its value. The string is taken literally as its print name and

entered in the line starting at the current column,as if each character in

the string were printed with PRmCH. All format and overflow controls are

in effect with ENDOUT automatically called if line overflow 1s encountered~

PRINSTRING does, not normally call ENDOOT, and after evaluation CURCOL marks

l, ___---___ # ___ ___

Draft -27'" TM-2260/00x/OO

the column of the line following the last character of the string.

For users wishing to print a string with unusual. spellings so that it has

READ synmetry, i. e., can be read back in by LISP as a string, they shouJ.d

use SYMPRIN, which provides this special. formatting. For example,

(PRINS'l'RING '#ABC 'D/I) prints as ABC'D

whereas

(SYMPRIN '#ABC'D//:) prints as #ABC"D/I

6.5 PRIN AND PRINT

PRINT is PRIN plus a final ENDOOT. Therefore, we shall need only specify

PRIN. PRIN is analogous to Q';32 LISP 1.5 PRINO, except tlBt it handles all

legal LISP II data types.

PRIN is a function of one argument, an S-expression, that 1s al.so the value

of PRIN. Starting at the current column, ~ enters left and right parentheses.,

dots (set off with blanks), and print names for all tokens in the S-expression,

in list-notation format. Token print names are entered in the line by the

primitive PRINTacEN, thus there is no special action taken for unusually

spelled tokens.

All format and overflow controls are in effect with ENDOUT automatically

cal.led if line overflow is encountered. PaIN does not terD11nate with a final

ENDOUT, as d~s PRllfr; therefore, after evaluation, CURCOL marks the column

of the line following the last character of the S-expression.

6.6 READ

READ is a function of !!2. arguments • Its value 1s the next S -expression in

the file beginning at the current column. It line overflow occurs, READ

automatically calls ENDIN. READ does not normally terminate 'With ENDIN, and

therefore CURCOLmarks tlienext column following the last character of the

S-expression read. All other format and overflow controls are in effect.

'.

Draft -28- TM-2?60/00x/OO

READ operates by CONSing tokens into list structure as directed by the

* structure of the S-expression seen. READ calls upon a Finite State Machine

to supply these tokens. The Finite State Machine uses RFADCH to read

characters in the file which it converts into LISP II tokens. Thus, READ

does not directly concern itself with the processes of searching and main

taining the OBLIST, CaJIpOsing numbers, making strings, and the like. These

are more efficiently performed by the Finite State Machine.

6.7 SYMPRlN AND SYMPRlNT

SYMPRINT is SYMPRlN plus a final ENDOOT. Therefore, we need only specify

SYMPRIN. ,

SYMPRlN is a symmetric PRINSTRING whose ar~ent and value are a LISP It

string. It is symmetric because it prints the string such that the print

out, when read back in by LISP, will yield, internally, the identical string.

For most strings, SYMPRIN could be defined by the effect· of the following:

(PRINCH tl/:)

(PRlNSTRlNG X)

(PRINCH 'I)

However, for strings with unusual spellings, i.e., strings containing the

characters quote mark ('), fence (I/:) ,percent Sign (~), or carriage return

(@), SYMPRIN must quote these characters to remove syntactic 8.Dlbiguity.

For example,

(PRlNSTRING '#A1iB#) prints as Af,B
and

(SYMPRIN '#A1.iB#) prints as #A'tj,PI

* . Finite State Machine specification will be published as a separate document

and is not covered herein.

>"" ',',"
..... ~"~.,,.,....,:...

Draft -29- TM-226o/00x/OO

Now if #A ''1iB# is read by LISP, it yields the internal string '#Atf,BIf, whereas

reading A~ would probably cause an error, since B is not a legal character

follOWing the percent sign,which is used as an escape character.

As far as format control and overflow, SYMPRlN works exactly as does PRINSTRING.

6.8 REAnlORD AND PRINTWORD

These two primitives are to be used with binary files exclusively. ENDIN and

ENDOUT for HEADWORD and PRIN'IWORD, respectively, are always invoked since a

word and a line are equivalent for binary files.

REAI1NOHD is a' function of !!2. arguments, whose value for Q-32 LISP II is a

16-digit octal number contained at the current word of the octal arrays for

the record. READWORD advances control to the next word, after evaluation ..

PRINTWORD is a function of one argument, an octal number, that is returned as

the value of the function. PRIN'rWORD enters the octal number into the current

word of the octal array for the record and advances control to the next word.

•

Dra:t't -30· TM-2260/00x/OO'

7. FILE CONTROL PRIMITIVES

These primitives permit dynamic file positioning, format initialization and

interrogation. By appropriate utilization of these primitives, the user can

retain absoJ.ute control of his fUes. He can canpoae pr1vate overflow

functions, adjust printed output for various degrees of formality. Though

not provided herein, these primitives will be used to create private and

public "pretty print" procedures for S-expression, Intermediate Language, .
and Source I.e.nguage outpJ.t.

7·1 FILE POSITIOOmG: TAB, ROLL, AND POSITION

The structure of a fUe is the hierarchy of FILE, RECORD, PAGE, LINE, and

column. The user has freedan of movement within these structures by use of

the three primitives TAB, ROLL, and POSITION. He may use these primitives

regardless of whether the specified file is selected as the current file or
not.

7.1.1 ~

TAB is a function of two arguments that poSitions the current column of the

current line. It has the form

(TAB file~name, column)

The first argument, file name, is the name of a previously OPENed file. That

fUe need not be currently selected.

The second argument, column, is a positive or negative decimal integer,

relative to the le:t't margin (LMO) ,that is set as the new value of CURCOL.

The negative value is permitted since the TAB operation is always taken

relative to the le:t't margin (:r..m). The restrictions on column can be

expressed by

CURCOL .-(:r..m + column), if'

1 ~ (IMG + column) f) LINE,

Draft -31- TM-226o/00x/OO

Like a typewriter carriage, if (LM) + column) exceeds either upper or lower

bound, CURC9L will be set to LINE or 1, respectively.

By permitting negative values for column, the user may enter information to

the left of the left margin. High values for column, Le., (LGM + column) >

RMG, allow information to be entered beyond the right margin without inducing

right margin overflow. _In both these cases, then, TAB can be used as a

"margin release II for the current line only, whef4 1M} and RMG and column are

Pt-epcHl:y set~~C!'+t....a ~~ 'H"""" jW(+~~ lJ ~ i~d:iQ~~J:...""';'"
J

The value of TAB is a decimal integer corresponding to the value of the current

column· (relative to LMG) prior to the TAB action. In fact, the value is that

returned by the interrogation primitive COLUMN, discussed below. By canbining

column positioning with interrogation, the user is provided additional format .:

control..r~ TA-e. t~ j-k.~ • .-~ ~ ~f'~j\,J~rP::. T'AQ ~~:$%~~,

Finally, TAB can be used to backup within a line for various purposes that

include over printing, setting variable fields within a preset header, etc.

7.1.2
ROLL is a

page in a

ROLL -
function of two arguments

fashion analogous to TAB.

(ROLL file name, line)

that positions the current line of' the

It has the form

The first argument 1 file name, is the name of a previously OPENed file. The

second argument, line, is a positive or negative decimal integer, relative

to the top of the ~ge (TOP), that is set as the new value of CURLINE. As

with TAB, appropriate values of TOP, BOl', and line can be used to override

overflow margin controls <I

I

;'1

la, .-

Dra:rt -,32-

The restrictions on line can be expressed by

CURLINE ... (TOP + line) , if

1 s; (TOP + line) S; PAGE

TM-2260/00x/OO

CURLINE will be set to the extremes PAGE, or 1 if the value of line forces

the quantity (TOP + line) to exceed these limits.

The value of ROLL is a decimal integer corresponding to the value of the

current line (relative to TOP) prior to the ROLL action. In fact the value

is exactly that returned by LlNE,discussed below. A ~ ~ ~ Lc..
~ ~ ~~ -~ ;". ~ II- ~...., 1J~4-1-&.. ... <

7.1.3 POSITION

POSITIOO' is a function of two arguments that positions the current record of

the fUe. It also allows varioos termination marks, e.g., end-of-fUe, end

of -tape, to be written in the file. It has the form

(POSITION rUe-name, action)

where file name is as noted with TAB and ROLL above. The second argument,

action, is a positive decimal integer action code for a file operation. The

value of POSITION depends on the value of the action desired. The legal

action codes, values, and their meanings are given in the follOWing schedule.

For many fUes, particularly TrY, CRl', and CORE units, POSITION acts as a NOP

with a value of NIL. NIL is also returned for illegal action codes. For

POSITION, a record corresponds to a record on tape, and a sector on disc.

Furthermore, many physical files, sepa.rated by an end -of -fUe mark, may exist

on tapej however, only one fUe. is permitted on disc. Therefore, it is

impossible to POSITIOO beyond a disc end-of-file, but ;you can POSlTIOO' past

a tape end-of-file,at your own risk.

.. -

•
Action Code

1

2

Action

Skip to line 1 of next record

Skip to line 1 of next tape
file - o~ to the end -of -f'ile
mark of this disc file

3 Write an end-of-file mark at
current line of file.

4

5·

Write an end-of-tape mark at
current line of tape file;
action 3 for disc files

Backup to line 1 of file
(rewind)

6 Backup to line 1 of prior
record

1 Back to last line (just
before end-of-file) of prior
tape file; action 5 for disc
files

,f. < a < I Currently illegal for Q-32
LISP II

•

•

e
Value

'EOF, if next record is an end-of-fi~e

n, the number of non-EOF records skipped.

'EOT, if next record is an end-or-tape

If EOF encountered, tape positioned after
EOF mark, disc positioned at EOF mark (can
be written over it)

file name

NIL

~
III

~

I
W
W

•

~

~
~
8

:'.

Draft TM-2260!eox!OO ,

7.2 FORMAT nUTIALIZATION: HORIZ<:mAL, VERTICAL AND CLEAR

As described in section 2.2.6, it is possible for the user to initialize format
I

control parameters at the time the file is OPENed. With the prWtives described

here, the user may dynamically initialize many of these parameters after the

file is OPENed. Furthermore, it is not necessary for the file specified to be

the current file selected.

7.2.1 HORIzarrAL

HORIZONTAL is a function of two arguments, that change the horizontal control

parameters of the file. The form of the call is

(HORIZONTAL file-name, parameter list)

The fUe name is as previously defined. The format parameters are contained

e in the parameter list that has the form

\ .

(LMG, RMJ, RMJ overflow function)

Each of these parameters has been previously described. To repeat, LMG is a

positive decimal integer specifying the left margin; RMG is a positive decimal

integer specifying the right margin; the overflow function is a FORMAL para

meter 1:;0 be invoked by LISP at such times as right margin overflow occurs.

~~ ~~J;...::f~~~ ~ (L."'\t1 j tM?1' IlM(..tJ)
The',legal values for lID and RMJ is expressed by

~~~IM-t. 
1 s: I..Mi < RMG gr;::; ilil 

"Jt ~ ~t$~ t:)f/ttMJAJ/--=p ~ , 
If~ire inequalities are Violated, HORIzelNTAL acts as a HOP, 8M l'e'i\H'IAliL a 

---Vi~e-"'49LlU;t,~bea.;1Re ta. fiWee li&llR! :1:8 H::hrned a e tAe:CtmctiQD value. -,:--. "', 
IVdiE:'-.k> ~ It.N\GtO~I'Je."l1e ........ JQ.C!.~1'" ~ l-'A.I£.1~ IZjk6i~~ 

~ ~t.A. 1-1 N~ ~ ~ ~~ ~ ~eC.(l'?C4(" 
7.2.2 VERTICAL":!,, 1C/fI.~~t..tNEJ 1Cfit$r~~'~~U~~.", ...•. 
VERTICAL is.a functiOn of two arguments, that change the vertical control -i ~Ol:". 
parameters of the fUe. The form of the call 1s ~~~~ 

(VERTICAL fUe Jl8D1e, parameter list) 



Draft -35-

where the arguments are similar to those of HORIZOOTAL; However, the elements 

of the parameter list are somewhat different. 

(TOP, BCYl', PAGE, BC1.l' overflow fUnct ion, PAGE overflow funct ion) 

is the form of the 'PIlrameter list, with the parameters having the same 

definitions as given previously. Reviewing these, TOP and BCYl' are positive 

decimal integers specifying the upper and lower page boundaries, respectively. 

PAGE is also a positive decimal integer specif'ying the maximum lines per page. 

The overflow functions are FORMAL parameters that are invoked at a bottom 

margin, and maximum line per page over1'l0ll. 

The legal values for TOP, BCYl', and PAGE is expressed by 
.........-:~~~ 

1 ~ TOP < BC1.l' ~ P:~' .' 
:I.t,-.wfo~j"""""'- ~ ~ .M~1 
If these inequalities are violat , VERTICAL acts as a NOP ..... rebwiUI a 
VQ3.l1P of NIL. atberw'se i_e file IMid@ 1B fetwIl8i .8 tbe fupct10p 'W]li8'. 

f'..)-c;:;t6'; ~oT ~ 44 ';?' PJfHFzE.. ~ 'H,.w.A~G(~'~ ~ ~ 44 '.' 'hlHi'~,.'/;..J u...~ ~f. r;/ ~oT:;:.PRt7£/&""" 
7 .2.3. CLEAR ...J.. ~ ";_A ~ 12 C4M. ~"t,..VI,..,.. """""'., 130'" 4 C(,M".r,. ~ ~ Mt:.. 
CLEAR is a function of one argument, file name, as above, and has no value .. 

CLEAR clearS the internal record of the file named to all blankS for symbolic 

files, and to all zero words for binary files. CLEAR is provided as a 

convenience to the user. 

7.3 FORMAT INTERROGATION: COLUMN, LINE, IOSTATUS 
When performing variOUS format sensitive read or print operations, it is 

particularly helptul to know where you are now. These pr1m.1tives allow the 

user to interrogate his file for this information. 

COLUMN 
COLUMN is a tunction of one argument, file name, as above, that returns the 

value of the current column of the line relative to the lett margin. The 

val.ue returned can be expressed as ~ 

(CURCOL - I.HJ) ~-n=::{ W~ ~ 
, , 



Draf't 

LINE 

-36-
(last page) 

LINE is a function, of one argument, file name as above, that returns the, 

value of the current line of the page, relative to the top of the page. 

The value returned can be expressed as 

(CURLINE - TOP) 

IOSTATUS 

i 
i 

IOSTATUS is a fUnction of no arguments. It returns as its value, a decimal 

integer code value designating the status of the last I/O action for either 

the input or output selected file. IOSTATUS must be used immediately follOlling .. 

any read or print primitive to test the status of the transfer. This if? 

particularly valuable for reading, as it can resolve the cause. of FALSE during , 
READCH, or whether EOF or ECYI' returned by READ were literal data in the file, 

or READ's output response to an end-of-file, or end-of-file condit.ion. 

The current Q-32 LISP II code values are: 

Value Status Condition 

1 end-of-line 

2 end-of-file 

3 end -of -'t'ape 

Ii > 3 error conditions 


