Draft 5' :
TM-226o/oox7oo Lo s
Clark Weissman

LISP II PROJECT

Memo No. 16

LISP II Input/Output

|l. _ ABSTRACT

This document specifies the philosophy and mechanics of
LISP II I/0. It supersedes LISP II Project Memos 5 and 8.

Draft

Section

1.
1.1
1.2

2.

2.1

2.2
| 2.3

6.
6.1
6.2
6.3
6.k
6.5

i m-éaéo/oo:x/oo

INDEX
Contents Page

INTRODUCTION t
Design Objectives
Design Tharacteristics

} L ES ”“'*_

FILE CRFATION: OPEN ﬁ e

File Nam ?M 1 o .
e i & o ﬁ

File Description

Reserved I/O;dmj_ﬁ.g;a,- /\rmwuw

FILE PURGING: SHUT
Function Call =
File Disposition

FILE SELECTION: INPUT, OUTPUT
Function Calls ng

Selection Mechanics

TERMTNATOR FUNCTIONS: ENDIN, ENDOUT,
ENDINR, ENDOUTR

Line Terminators

Record Terminators

o,
BASIC PRIMITIVE Ef . Nt

READCH

PRINCH
PRINTCKEN
PRINSTRING
PRIN and PRINT

(g hwﬁk et

(e Printin

" Section

6.6
6.7
6.8

Te
7nl
T.2

T3

8.

INDEX (Continued)

Contents
READ
SYMPRIN and SYMPRINT

REAIWORD and PRINTWORD

FILE CONTROL PRIMITIVES

File Positioning: TAB, ROLL,
Format Initialization: HORIZONTAL, VERTICAL

/ﬂd CLEAR .
Format Interrogation: COLUMN IOSTATUS

CHARACTER CONVERSION TABLES

TM-2260/00%/00

i

aua;;mmxm

it ¥
Chorp 0

Draft -2- TM-2260,/00x /00

1. INTRODUCTION

This memo specifies the philosophy and mechanics of input/output in LISP II.
The design is derived from ideas proposed in earlier memos, but principelly
from implemented ideas contained in the Q-32 LISP 1.5 I/0 package.

1.1 DESIGN OBJECTIVES }
LISP II is designed for maximum on-line interactive operation within a time-

sharing system environment. Ths principal communication and control device
will be a reactive typewriter or on-line keyboard. However, tO enable

practical operation with quantities of -information than can be conveniently
accommodated by keyboard devices, disc, tape, and other bulk memory stores
must be accessable to LISP II users, and in & uniform and convenient form.
Furthermore, the language implementation must not be biased toward any
particular I/0 configuration by preempting, a priori, valuable core storage

for particular device buffering. Finally, I/O mist be machine independent

from the user's point of view, thereby allowing program compatibility between
various LISP I1I implementations.

1.2 DESIGN CHARACTERISTICS

In keeping with the functional logic of LISP, I/0 will be performed by
evaluation of pseudo functions and LAP primitives; but evaluation for effect
rather than for value. The effect will be to configure or manipulate internal
I/0 data structures. Time-sharing systems recognize the organizational
elegance of blocking date into files, and they provide extensive I/0 facilities
for 1/0 file management. LISP II I/0 wi;l capitalize on these facilities by
representing its I/O data as files. By so interfacing with the monitoring
environment, LISP II gains the advantage of simplified I/0 mechanics, and
standerdization of I/O functions. :

1.2.1 Files

A file is the principal date structure for addressing LISP II input and output
data. The user, through the provided I/0 functions, will be able to create,
delete, position, select, and read or print files dynamically, at run-time,

AN

Draft -3- TM-2260/00x/00

for the complete spectrum of physical devices available to his system. A file

is device-dependent, but direction-independent, and may be used as both an
input and an output file; and with caution, both simultaneously.

l.2.2 Records

Files are blocked into records that are themselves blocked into lines. Recordsr

and lines are of variable size and number, depending on the user's choice and' .
the physical device being addressed. Only one record for each different file

can be in core at any one time to reduce buffer storage overhead. One may
consider the data record as a "cursor" positioned appropriately over the file.]
For symbolic data files the record is structured internally as & LISP II tggng; =
Binary data files are structured as octal arrays. i

1.2.3 Lines

Blocking of symbolic records into lines 1s & necessary concession for format
campatibility with printing hardware. Thus, all symbolic data fileé will be
formatted and can be listed)subject to time-sharing monitor limitations. Line
length is fixed for each file when it is created. The number of characters
may be specified by the user, within meaningful limits for the device in
question, or by default will be assumed to be 72, the maximum number compatible
with all printer devices.

Since line formatting is usually controlled by special characters imbedded in
the data, and since there are no standards for these characters for different
devices at a given installation, line formatting will be controlled internally
by LISP II with an appropriate collection of control words stored in an integer
array associated with each file. These control words will be used to remove

or insert control characters of the appropriafe type for the device being
accessed at such times as the string representation of the data record %s
transferred into or out of core. We call this "post string processing" and

it is the only I/O area dependent upon machine, monitor, or device configuratidn.f
Post-atriﬁg-processing permits us to represent data records as strings that

Draft k- TM-2260/00x,/00

contain no control characters, and thus are device independent. By segregating
control from data, device independent record-strings provide a high degree of
procéssing freedom necessary for uniform and powerful I/0.

l.2.4 Words
Binary records are not blocked. Such records are, however, camposed of machine
words. By equating words with lines, file control may be likened to that for

symbolic records. Externally, binary data records do not contain any control
information.

Draft -5+ TM-2260/00x /00

2. FILE CREATION: OPEN

A file may be created at any time by evaluating the function OPEN. OPEN
establishes all necessary cammunication linkages between LISP II and the
time-sharing monitor. In particular it does the following things, though
not necessarily in the order given:

1. It creates an internal STRING, of size sufficient to contain
one data record for the designated file.
c>ofrn¢-/ﬁé -0 /ro -¢47«wg??“*”7L'
2. It creates arf INTEGER Jarray and sets its contents with
format control information for the file.

. 3¢ It creates a FORMAL array and sets its contents with necessary
primitives for formatting and post -string -processing.

k. It declares information to the time-sharing monitor for it
to allocate and establish communication linkages with the
external storage medium designated for the file.

5. It appends to the property list of the file's name, under
the property "I1/0," a 1list of descriptive information about
the file.

6. It maintains a list of all OPENed file names, as the value
of FLUID variable FILES., which it returns as the value of
OPEN and uses to check for redundant or conflicting file names.

OPEN is & function of two arguments and has the form,

(OPEN file name, file description)

Draft - £- ‘ TM~-2260/00x/00

2.1 FILE NAME)
The first‘argument of OPEN is the name of the file being created. This name
must be a quoted LISP II identifier. The first ? characters of the name will

Q-
be used byALISP II as the internal name for the file in establishing its h

canmmunication linkages with the time-sharing monitor. Therefore, the first A?
characters must be unique among all previously OPENed files. For file names
less than‘%“?%aracters, OPEN will still use a 6?character name by filling the
remaining character positions with blanks.

2.2 FILE DESCRIPTION

The second argument of OPEN is a list of flags and dotted pairs of attributes
and values, in property list format, completely describing the file in all its
dimensions. A file's dimensions are given by its Unit, Form, Connection,
Protection, Identification, and Format.

Except for special, non-standard 1/0 operations, the user need not concern
himself with the construction of a file description list, for he may use one
of a set of reserved I/O identifiers for the second argument of OPEN. There
is one identifier for each type of I/0 unit available to the system, and each
evaluates to a preset file description list for that unit type. This file
description list is sufficient for most standard I/O operations.

The current reserved I/0O identifiers are:

TTY.

DISC.
TAPE.
CORE,

—

Draft -T- _ TM-2260/00x/00

2.2.1 Unit

A file is unit dependent, as LISP II uses the unit type of a file for
establishing the proper communication linkages with the time -sharing monitor,
and for setting up the correct post-string-proceasing for the file. Thus,
one element of the file description list must be a dotted pair designating

the unit type. For example, the dotted peilr

(UNTT . TTY) .
will designate the on-line typewriter or Teletype as the unit for a particular
file by the presence of the jdentifier TTY as the CDR of the dotted pair. This
dotted pair may exist as any top-level element of the file description list
because a search is performed on the elements of file description lists for an

element whose CAR is the identifier UNIT . Similarly,

(UNIT . DISC)
(UNIT . TAPE)
(UNTT . CORE)
(UNIT . CRT)
will designate disc, tape, core, and CRT (SCOPE display), respectively, as

the unit for a file.

The ability to specify core as a unit enriches LISP II I/0. With this
capability 1t 1is possible to print input files, read output files, copy 1/0
files, and perform text formatting completely within LISP II source language,
to name but a few of the possible applications. (It is also pbssible to
perform these techniques without core as & unit; however, the-flexibility is

provided with a minimum of cost.)

2.2.2 Form
Symbolic data will be represented internally in LISP IT as 84bit ASCII

characters. However, not all external media use this standard and conversion

will be required. These conversions will be performed by primitives as part
of post-string-processing.

Draft -8- TM-2260,/00x/00

For Q-32 LISP II, we will need at least two types of symbolic converters , de
cneLow-pinary~data. These converters are designated by the value of the
attribute FORM in the file description list. These values may be ASCII, BCD,
or BINARY, which specify the FORM of the data on the external device. Q-32
Teletypes use a 12-bit representation of ASCII 8-bit code. The dotted pair
(FORM . ASCII)
will be used to call forth a 12-bit to 8-bit (for input) or a 8-bit to 12-bit
(for output) converter. Similarly,
(FORM . BCD)
will be used to call forth a 6-bit to 8-bit, or 8-bit to 6-bit converter. The

specific conversions are given in section 8.
(FORM . BINARY)
specifies & binary file, and no conversion is necessary as a simple binary

anmd frasana »

record will be transferred toﬂthe file.

2.2.3 Connection

When OPEN establishes communication linkages with the time-sharing monitor,

it is necessary for LISP to tell the monitor how to "connect" with the external
file. If the file is & new file, that is, one being created by LISP, the monitor
will allocate storage for the file on the requested external device, and connect
LISP to the file so created. On the other hand, if the file already exists

and is in the monitor's file inventory, it is an old file, and LISP must be
connected to that particular file. For LISP II to make known its connection
intent to the monitor, a flag is optionally placed on the file de?ﬁi?@fﬁf?

list. The flag is the quoted identifier NEW or OLD. If no such flagAis —te
found, NEW is‘assumed by default. :

2.2.k4 Protection
File security is a fierce problem in time-sharing systems and data files must
be protected by the monitor from inadvertent and malicious acquisition by '
unauthorized persons. In LISP II, the presence of the dotted pair

(PROTECT . ¥%)
in the file descriptiop list, is used to convey necessary "keys" to lock

(Re&v WRITE)

Draft -9- TM-2260/00x,/00

or unlock various protected files. The nature of the variable X is dependent
upon the protection schemes provided by the monitor.

The Q-32 time-sharing monitor does not, currently, possess any protection
mechanisms, and so the dotted pair designating file protection will be ignored
in Q-32 LISP II. For other LISP II implementations, the variable ¥ can
designate a password, a protection code, an executable protection function,

a change of protection code, or combinations of these, as permitted by the
monitor.

2.2.5 Identification ; :
This parameter is optional, and used where it is desired to identify a specific
physical unit. The dotted pair is of the form |

(y . 2)
where y and z may take on the following values for Q-32 LISP II.

Unit y z Comment
TAPE REEL n < 9999 Physical reel number.
CRT SCOPE 1 <ns<6 Physical scope number.

DISC NAME identifier Disc file name where different
‘ ' from the first argument of
OPEN, will be used as the
name of the file.

For other LISP II implementations, y and z may take on other values and
meanings s necessary. '

2.2.6 Format

The last dimension of a file to be considered is its format. By format, we
mean the external organization of the file, particularly 1ts‘blpcked structure
and its printed structure. Within the physical limitations of the hardware,
the user may, optionally, control these formats; otherwise by default, the

Draft -10- TM-2260,/00x,/00

system will set the necessary parameters.

2.2.6.1 RECORD. The first format parameter, RECORD, specifies the number
of lines to be blocked in each record. This parameter can not be changed

over the life of a file. The dotted pair is of the form
(P3CCED . z)

4

where n is tne integer mumber of Lines.

For Q-32 LISP II, and most time-sharing systems in general, it is desirable

to read or write maximum sized records for faster I/O. The following table
specifies the upper bound on n for Q-32 LISP II units.

Unit n Max n Default Comment
TTY 1l 1 Record = 1 line of T2 characters.
TAPE 30 30 /‘i;/-’ e = card image of T2 characters.
20 Line = 120 characters.
optional Line = binary word.
DIsC 50 50 Line = card image of T2 characters.
] Line = 120 characters. |
CRT 680 n 680 Lne-—’:binaxyword lsns3

‘Ddfault will consider a CORE
file =1 record =1 line of
optional character size-

CORE optional 1

2.2,6.2 Page Format. For symbolic files only, the format can stipulate

the structure of a printed page. The page 1s logically considered to have

T LIS
two directions -E%Bx%z}ontal %&sured in columns fram 1 to 120, and vertical

measured in lines from 1 to 50--with three control points in each direction (’W St

as shown in Figure 1. , MW

’ Draft -11- TM-2260/00x/00

Cafcot
COLUMNS [
LINES 123)+ P) 2 o 9 8 o 8. s o 9 2 o ° o ¢ 120

1 .

e MMrCoe |

3| e RMG < TOP
by v

: lg— U tine
] . e BOI'
‘ e— PAGE
50

Figure 1. Page Format Controls

In the horizontal direction these control points are (1) the left margin (1mMc),
(2) the right margin (RMG), (3) end the maximum w@ (%uf’. The vertical
direction can be considered symmetric with the horizontal direction and the
controls are TOP, BOT, and PAGE, respectively. In all cases, these controls
_are integer quantities which refer to column or line numbers. Though,
apparently more valuable for formatting output, these controls are also

effective for reading formatted input information.

Draft -12- TM-2260/00x /00

2.2.6.3 Horizontal Control. IMG specifies the left most character position
for each line, and all tabbing operations, as specified by primitive TAB below,
are relative to this margin. It is, therefore, possible to format & line of

" text on output and position that format, left justified, at any column on the

pege by appropriate setting of IMG.

RMG acts like the bell on a typewriter and warns the user that he is nearing
the maximum column of the line. The user may respond to such a RMG overflow
condition by taking remedial actions such as hypenation, restoring the carriage,
entering further characters until a blank occurs, etc. The procedure for
responding to RMG overflow is discussed in peragraph 2.2.6.5 below.

MAXCo L

—EIE specifies the highest column in a line, and thus gives the maximum number
of characters per ﬂ%ﬁec.ab%§reas IMG and RMG may vary to achieve various for-
matting effects, LINE as with RECORD will be constant over the life of a file,
as these two parameters are used by LISP for structuring the internal string-
representation of a file.

To specify these parameters, the dotted pair has the form

(HORIZONTAL . (X ¥ z)) MAxCo ”%[c
Y-

where X, y, and z are the integer values for IMG, RMG, and R¥E, respective :
2.2.6.4 Vertical Control. TOP specifies the first line of a page, and
may be used to position a group of lines of text any whg;'e on the page. The
primitive ROLL, as noted below, will advence the line controls relative to
TOP. '

BOT designates the last line of a page, in a fashion analogous to RMG. Upon
BOT overflow the user may desire to extend the number of lines, or he may |
desire to advance to the nexﬁ page. He may desire to print a header on the
next page or a trailer on the current page prior to completing the printing
that induced the overflow. (See paragraph 2.2.6.5.)

G

Draft 13- ' TM-2260/00x,/00

PAGE designates the highest line of a page and thus the maximum number of lines
per page. PAGE overflow can occur and is treated like BOT overflow.

To specify these perameters, the dotted pair has the form
(VERTICAL . (X vy z))
where X, y, and z are the integer values for TOP, BOT, and PAGE, respectively.

2.2.6.5 Overflow. There are five overflow conditions: RMG overflow, LINE
overflow, BOT overflow, PAGE overflow, and RECORD overflow. Except for LINE
and RECORD overflow, which are LISP's responsibility, overflow responses are,
optionally, under the user's control by specification of procedures to be
evaluated at overflow time. The form for this specification is

(OVERFLOW . (X ¥ z))
where x,iy, and z are FORMAL parameters corresponding to the procedures for
RMG overflow, BOT overflow, and PAGE overflow, respectively.

A FORMAL parameter for overflow
with side effects. The side effects are the effects the user is after, such as

changing the margins, or printing a header or trailer. Fhremsgdue-BRFE~foriire
B o o WWW&«L‘[#W

' ' ¢ 30, READE # oo eI A '
i I\ rﬂlow vxll ontinue using%ge é@?renﬁ ‘state of all control
parameters. The snate of these parameters will be unchanged unless they have

been modified by such primitives as TAB, ROLL, ENDOUT, ENDIN, ENDOUTR, ENDINR,
PRINCH, READCH, etc., evaluated as the side effect of the overflow procedure.

The primitives HORIZONTAL and VERTICAL, as described later, permit dynamic
setting of a file's format controls, including the overflow procedures.

Q Draft ~1k- TM-2260/00x/00

2.2.6.6 Format Defaults. If some or all format parameters are absent,
default values will be set automatically by OPEN as noted below.

Item Default Value

RECORD See paragraph 2.2.6.1

IMG 1

RMG e 7%

LINE T2

TOP 1

BOT PAGE S/

PAGE 50

RMG overflow RGO WO P

BOT overflow BOEG— MNop
‘I' PAGE overflow BEPO— MO~

The overflow functions RMGO and BOTO access and adjust four system parameters
that control the internalvcolumn, line, and record logic. These parameters are:

currentcolumn number

pént line number of this page f
ent line number of this record/

location current line of this
record

The actions of RMGO e described in English as follows:

‘RMGO:

,f ' AN

iR T

—%w—-Belen._:hlxa..Bnalaa&MSE.

The system actions for LINE and RECORD overflow are similar to RMGO and BOTO
except that necessary mechanisms for loading or dumping of records from or to
the external medium must be activated conditionally by use of the functions
ENDIN, ENDOUT, ENDINR, and ENDOUTR.

2.3 RESERVED I/0 IDENTIFIERS
This paragraph gives the complete structure of the file description list
(second argument of OPEN) for each reserved I/0 identifier.

2.3.1 TTY.

((uNTT . TTY) (FORM . ASCII) (RECORD . 1)
(HORIZONTAL . (1 72 T2)))

2.3.2 DISC.

((untr . DISC) (FORM . ASCII) (RECORD . 50)
(HORIZONTAL . (1 72 72)) (VERTICAL . (1 50 50))
. (OVERFLOW . (RMGO BOTO BOTO)))

*WPL is a file parameter set to 1 for binary files and computed once by OPEN

for symbolic files as G‘gg'l) + 1, where CPW (characters per word) is a
system constant equal to 6 for Q-32 LISP II.

Draft -16- TM-2260/00x/00

2.3.3 TAPE.

((UNIT . TAPE) (FORM . ASCII) (RECORD . 30)
(HORIZONTAL . (1 72 72)) (VERTICAL . (1 50 50))
(OVERFLOW . (RMGO BOTC BOTO)))

2.3.4 CORE.

((UNIT . CORE) (FORM . ASCII) (RECORD . 1))

NOTE: CORE may be treated like other I/O units; however, considering that all
internal files are a string of record size, CORE as an I/O unit, if restricted
to a file of one record in size, with the record being only one line of
characters, can be used to create internal strings for special formatting
purposes. Thus CORE. contains no HORIZONTAL, VERTICAL, or OVERFLOW parameters.
The last two items would be meaningless for a one-line file; however, HORIZONTAL
is necessary to specify the parameter LINE. We shall discuss how this and other
parameters can be appended to the reserved I/0 identifier in paragraph 2.3.6.

2.3.5 CRT.
((uNIT . CRT) (FORM . BINARY) (RECORD . 680))

2.3.6 Extensions
The reserved I/O identifiers do not necessarily satisfy all the required
parameters of a file description. For example, if the UNIT of a file to be
OPENed is TAPE, a REEL paraemeter is required. Similarly, if the file is CORE,
LINE must be given as part of the parameter HORIZONTAL. These extensions can
be provided by CONSing them to the value of the reserved I/0 identifier when
OPEN is called. , For the above e es
(OPENQ%EO1\)(CONS(Q?I‘{;:EL 1234). TAPE.)) re

A » °
will OPEN a file named TAPEOL fﬁfmcggysical reel numbered 123%. Similarly,
(om‘ﬁﬁ‘ﬁmwr)(cms f?nomzmm . (1 360 360)))0033.))'
will open a core file named PRETTYP that is a line (a character string) of
360 characters.

w

Draft -17- m—2260/00x/oo

This technique of CONSing parameters to the reserved I/0 identifier is also
quite useful for OPENing non-standard dimensioned files. For example

(OPEN 'DISCFILE (CONS 'OLD DISC.))
will OPEN a disc file named DISCFILE by connecting to an existing permanent
disc file in the Time-Sharing System inventory, as the flag OLD designates
the OLD connection mode. The 8bsence of a connection mode flag in DISC. and
other reserved I/0 identifiers allows them to be used for OPENing new files,
as NEW is implied by default. Other examples such as those below are also
possible.

(OPEN 'TAPEB (CONS '(FORM . BINARY) TAPE.))
(OPEN 'TTYFILE (CONS '(HORIZONTAL . (10 60 T2)) TTY.))

Draft -18- T™M-2260,/00x/00

3. FILE PURGING: SHUT

A file created by OPEN may be purged fram LISP II by evaluating the function
SHUT. SHUT breaks all the communication linkages and deletes all internal
structures--arrays, strings, and variables--dynamically established by OPEN.
Before purging the file, SHUT communicates to the time-sharing monitor the
disposition of the file; i.e., add file to permanent inventory, delete all

file references, change protection mode of file, change file name, etc. The
value of SHUT is the value of the FLUID variable FILES., which is a list of the
names of all currently OPENed files.

3.1 FUNCTION CALL
SHUT 1is a function of two arguments, and has the form
(sHuT file-na.me% file-disposition)

The file name must be a quoted LISP II identifier naming an actively OPENed
file; i.e., a file name previously used with OPEN. If

(MEMBER file-name;FILES.) = FALSE
SHUT acts as a NOP. %

3.2 FILE DISPOSITION
The second argument of SHUT is a list of dotted pairs of attributes and values
specifying the disposition of the file.

3.2.1 FILE P
The dotted pair
(FOE . X)

is used to communicate to the time-sharing monitor the inventory action desired
for the file. The action desired is specified by variable X. For Q-32 LISP II,
ﬁx may take on the values SAVE or DELETE . SAVEd files are inventoried and may

be accessed at a later date by the use of the flag OLD as the connection mode

of an OPEN call. DELETEd files will not be inventoried end will disappear. If
the CDR of the FILE peir is DELETE, no further disposition parameters are meaning -
ful.

-

Draft - -19- TM-2260/00x/00

3.2.2 NAME
The dotted pair

(NAME . file name)
may be used to change the name of the SAVEd file in the Time-Sharing System
inventory. If this parameter is absent, the file name under which the file
was OPENed, will be used. In either case, SHUT may be forced to query the
on-line user for a new file name if the file name (a name local to LISP)
conflicts with a file already existant in the inventory.

3.2.3 PROTECT
The dotted pair
(PROTECT . y)

may be used to change the file protection of the SAVEd file. If this parameter
is absent, the protection mode under which the file was OPENed will be used.

For Q-32 LISP II, this parameter will be ignored until such time as file
protection mechanisms are installed in the time-sharing monitor.

3.2.4 110G
The dotted pair
(Lo . z)

may be used fo log & one line message on the operator's console. The variable
z 18 that message, in the form of an S-expression. LOG is useful for giving
directions, labels to tapes, etc. to console operators when necessary.

Draft -20- TM-2260/00x/00

ho - FILE SELECTION: INPUT, OUTPUT

Once a file has been OPENed it may be selected as the current input or output
file by evaluating one of the functions INPUT or OUTPUT. Once a file is
selected, all I/0 primitives act only on that file. Thus it is possible to
compose a LISP II1 pfogram that is unit, form, format, etc. independent by »
supplying the name of a file as the argument for the program. Such a capability »
is quite powerful for debugging purposes where the checkout is simplified with
an on-line Teletype file for a program that ultimately requires a tape or disc
file.

L.l FUNCTION CALLS
The file selection calls are of the form

(INPUT file name)

(OUTPUT file name)
where file name is the name of the file used in a previous OPEN call. INPUT is
the function used for selecting input files for reading. OUTPUT is the function
used for selecting output files for printing. The value of INPUT or OUTPUT is
the file name previously selected. By using INFUT or OUTPUT as the right part
of an assignment statement, one can save the name of the prior selected file

fqr subsequent reselection; e.g.,

|||

X «<—— (OUTPUT 'TTYFILE)

m————
vet———

—(—&——mx)

Draft -21- TM-2260/00x/00

W

’\'M* or
4.2 SELECTION MECHANICS 2~ ‘

When a file is OPENed, three internal arrays are created and initialized by
OPEN and placed on the property list of the file name. They are:

1. The data record string
2. An INTEGER array of format control variables
3. A FORMAL array of overflow, and post-string processing functions.

When a file is selected, INPUT or OUTPUT retrieves the locations of these arrays
from the property 1list of the file, and binds vafious locaﬁ;ons within these
arrays to a family of FLUID, L 5 variables. Subsequent use of read and
print functioné chain through these FLUID, LOCATIVE variables to reference and
change the stored data values. In this way no extraneous data copying is |
necessary, and yet all control variables ar fected at a common location

relative to each file, i.e., the internal arrays.

Since all modified control variables are uniforml fected at one point,
selection and de-selection of files has no<:9fect itself on the state of the
file; i.e., the state of its control parameters. This is required if de-
selection of files is to be permitted freely in the middle of lines and records.
Recall, that a partial line or record exists only by the state of the file's

control parameters.

Finally, there exist a number of I/0 functions that allow the user to adjust
e file's control parameters explicitly; e.g., TAB, ROLL, HORIZONTAL, VERTICAL,
etc. These functions affect the file's internal arrays directly and may be
used without concern as to whether the file is or is not selected.

@

Draft -22- TM-2260/00x/00

5. TERMINATOR FUNCTIONS: ENDIN, ENDOUT, ENDINR, ENDOUTR

There are four I/0 functions--ENDIN, ENDOUT, ENDINR, ENDOUTR--whose sole purpose

is to keep I/0 data flowing through the system. They relate to line and record - .
control for input and output of the selected file. "

£

input output

line ENDIN ENDOUT
record ENDINR ENDOUTR

In effect, they are similar to the actions of TERPRI and TEREAD of LISP 1.5.
They are functions of no arguments and no values, and are evaluated for their
side effects only. When evaluated they chain through the FILUID, LOCATIVE
variables set up by INPUT or OUTPUT to housekeep the three primary file control
parameters, CURCOL, SUMLINE, and LINELOC.

5.1 LINE TERMINATORS

The functions ENDIN and ENDOUT are used to terminate reading and printing,
respectively, the current line of a file, and advance the control logic to the
next line, if it exists. If it does exist, i.e., SUMLINE > RECORD, we have
record overflow and the appropriate record terminator--ENDINR or ENDOUTR for

input and output, respectively--is invoked.

Realizing that ENDIN chains through FLUID, LOCATIVE variables set up by INPUT,
and ENDOUT chains through FIUID, LOCATIVE variables set up by OUTPUT, both
perform essentially the following actions:

l. Increment SUMLINE by one
2. If SUMLINE > RECORD gvp] VT
. , call R R, otherwise

.~~~ 3. Set CURCOL=LMG, for symbolic files only
L, Set LINELOC=LINELOC+WPL

5.2 RECORD TERMINATORS

The functions ENDINR and ENDOUTR are seldom called explicitly by the user, but
rather, are called by other I/0 functions, such as by the line terminators above. When
they are evaluated they terminate the file record currently in core. For ENDINR, a
that means loading another record from the external medium; for ENDOUTR, it means
dumping the current core record onto the external medium. To achleve these

operations it 1is necessary for the record terminators to invoke post-string
processes that:

(1) read or write a raw external core image fram or to external
medium,

(2) delete or insert requisit format information, and

(3) translate raw character codes from 12-to-8 bits, 8-to-12 bits,
6-to-8 bits, 8-to-6 bits, etc. from tape, Teletype, and disc
standards ‘

The required post-string processing is determined and parameterized by OPEN
from the file description, mechanized by INPUT or OUTPUT from the OPEN para-
meters, and invoked by these record terminators.

Though performed in different order, ENDINR and ENDOUTR perform essentially the
same following actions:

1. Clear record-string (to blanks for symbolic files, to zero
for binary files)

. Load or dump external core image

Perform post-string processing

Set CURCOL=LMG, for symbolic files only

Set SUMLINE=1 ‘

Set LINELOC=record-string location+(TOP¥WPL)

A WV F W P

.

Draft -2 - TM-2260/00x,/00

Note that the record terminators do not invoke the line terminators, and so any
partially filled line will be lost after a record terminator is evaluated.

Also note that the line terminafors invoke the record terminators only when
record overflow is encountered. When reading blocked records, it is sometimes
desirable to explicitly evaluate ENDINR before a record is fully read, thus
initializing the file controls to the first line of the next record. When
printing blocked records, a final ENDOUTR should be evaluated before quitting
for the day, or before SHUT is evaluated, else any data in a partially filled

record will be lost. vy o .
ke SNPTE N e fute il
/Y@A” IN % .

Draft -25- TM-2260/00x/00

6. BASIC PRIMITIVES :
All the I/0 primitives noted in this section affect only the file selected
by INPUT or OUTPUT. Because of this, these primitives themselves are file

independent and may be used as conveniently on disc files as on tape or

Teletype filés.

As a mnemonic aid, all print primitives that drop the "t" in their names,
e.g., PRIN, PRINCH, etc., do not evaluate ENDOUT and do not terminate the
current line. Those that use the full spelling of "print" in their names
do terminate the current line by evaluating a’final ENDOUT. In general, all
read primitives do not evaluate ENDIN, end do not terminate the current line.

6.1 READCH

READCH is a function of no arguments. It reads the current character of the
line and returns that character as a one-character identifier; it also
increments CURCOL by one. All format and overflow conditions, as specified
for the file selected, will be invoked. If line or record overflow is
encountered, the next line or record will be positioned by ENDIN or ENDINR,
respectively, but the value of READCH will be FALSE. Thus, READCH can be
used as & semi-predicate to test for line or record boundaries. Since both.
these conditions return FALSE, primitive IOSTATUS, discussed below, can be
used to remove the ambiguity, where necessary.

READCH will also return FALSE if it is impossible to read the next character
because & physical (tape) or logical (disc) end-of-file was encountered.
Again, IOSTATUS can be used to clarify the nature of the read failure.

6.2 PRINCH

PRINCH is a function of one ergument, a one-character identifier that is also
returned as its value. The print name (a single character) is entered in the
line at the current column, and CURCOL is incremented by one. All format
and overflow controls are in effect\\~1f line or record overflow is

ot e

Draft -26- TM-2260/00x/00

encountered, ENDOUT or ENDOUTR will be evaluated. For symmetry with READCH,
PRINCH will accept FALSE as its argument, that is treated by PRINCH as a
line termination, i.e.,

(PRINCH FALSE) = (ENDOUT) .

Note that PRINCH, normally, does not call ENDOUT, except for line overflow
and a FALSE argument.

6.3 PRINTOKEN

_PRINTOKEN is & function of one argument, a LISP II token (see TM-2260/004/00,

LISP II PROJECT MEMO NO. 11, "The Syntax of Tokens") that is also returned
as its value. The print name of the token is entered in the line, starting
at the current column. All format and overflow controls are in effect with
ENDOUT automatically called if line overflow is encountered. FPRINTOKEN does
not normally call ENDOUT, and after evaluation, CURCOL marks the column of
the line following the last character of the token's print name.

Many tokens, such as numbers, Boolesns, and special tokens, have no print
names. For these cases special primitives, such as TOSTRG and PRINSTRING,
will be called to print these tokens. (TOSTRG is a conversioﬁ’function that
converts any token to a string.)

Note that PRINTOKEN does not apply special primitives for tokens with
unusual spellings. For such cases, it is the user's responsibility to
evaluate TOSTRG and SYMPRIN himself.

6.4 PRINSTRING

PRINSTRING is a function of one argument, a LISP II string, that is also
returned as its value. The string is taken literally as its print name and
entered in the line starting at the current column,as if each character in
the string were printed with PRINCH. All format and overflow controls are
in effect with ENDOUT automatically called if line overflow is encountered.
PRINSTRING does not normally call ENDOUT, and after evaluation CURCOL marks

Draft -27- TM-2260/00x/00

the column of the line following the last character of the string.

For users wishing to print a string with unusual spellings so that it has
READ symmetry, i.e., can be read back in by LISP as a string, they should
use SYMPRIN, which provides this special formatting. For example,

(PRINSTRING '#ABC'D#) prints as ABC'D

whereas
(SYMPRIN '#ABC'D#) prints as #ABC''D#

6.5 PRIN AND PRINT

PRINT is PRIN plus a final ENDOUT. Therefore, we shall need only specify
PRIN. PRIN is analogous to Q-32 LISP 1.5 PRINO, except that it handles all
legal LISP II data types.

PRIN is a function of oné argument, an S-expression, that is also the wvalue

of PRIN. Starting at the current column, PRIN enters left and right parentheses,
dots (set off with blanks), and print names for all tokens in the S-expression,
in list-notation format. Token print names are entered in the line by the
primitive PRINTOKEN, thus there 1s no special action taken for unusually

spelled tokens.

All format and overflow controls are in effect with ENDOUT automatically
called if line overflow is encountered. PRIN does not terminate with & final
ENDOUT, as doés PRINT; therefore, after evaluation, CURCOL marks the column
of the line following the last character of the S-expression.

6.6 READ

READ is a function of no arguments. Its value is the next S-expression in
the file beginning at the current column. If line overflow occurs, READ
automatically calls ENDIN. READ does not normally terminate with ENDIN, and
therefore CURCOL marks the next column following the last character of the
S-expression read. All other format and overflow controls are in effect.

Draft -28- TM-2260/00x /00

READ operates by CONSing tokens into list structure as directed by the
structure of the S-expression seen. READ calls upon a Finite State Machine*
to supply these tokens. The Finite State Machine uses READCH to read
characters in the file which it converts into LISP II tokens. Thus, READ
does not directly concern itself with the processes of searching and main-
taining the OBLIST, composing numbers, making strings, and the like. These
are more efficiently performed by the Finite State Machine.

6.7 SYMPRIN AND SYMPRINT
SYMPRINT is SYMPRIN plus a final ENDOUT. Therefore, we need only specify
SYMPRIN.

SYMPRIN is a symmetric PRINSTRING whose argument and value are a LISP II
string. It is symmetric because it prints the string such that the print-
out, when read back in by LISP, will yield, internally,the identical string.
For most strings, SYMPRIN could be defined by the effect of the following:

(PRINCH '#)
(PRINSTRING X)
(PRINCH '#)

However, for strings with unusual spellings, i.e., strings containing the

characters quote mark ('), fence (#), percent sign (%), or carriage return
((:)), SYMPRIN must quote these characters to remove syntactic ambiguity.
For example,

(PRINSTRING ‘#A%B#) prints as A%B

and

(SYMPRIN '#A%B#) prints as #A'%Bf#

*Finite State Machine specification will be published as a separate document

and is not covered herein.

Draft \ -29- TM-2260/00x,/00

Now if #A'%B# is read by LISP, it ylelds the internal string '#A%B#, whereas
reading A%B would probably cause an error, since B is not a legal character
following the percent sign,which 1s used as an escape character.

As far as format control and overflow, SYMPRIN works exactly as does PRINSTRING.

6.8 READWORD AND PRINTWORD

These two primitives are to be used with binary files exclusively. ENDIN and
ENDOUT for READWORD and PRINTWORD, respectively, are always invoked since a
wor@ and a line are equivalent for binary files.

READWORD is a‘ function of no arguments, whose value for Q-32 LISP II is a
16-digit octal number contained at the current word of the octal arrays for
the record. READWORD advances control to the next word, after evaluation.

PRINTWORD is a function of one argument, an octal number, that is returned as
the value of the function. PRINTWORD enters the octal number into the current
word of the octal array for the record and advances control to the next word.

Draft -30- TM-2260/00x/00

7. FILE CONTROL PRIMITIVES

These primitives permit dynamic file positioning, format initialization and
interrogation. By appropriate utilization of these primitives, the user can
retain absolute control of his files. He can compose privete overflow
functions, adjust printed output for various degrees of formality. Though
hot provided herein, these primitives will be used to create private and .

public "pretty print" procedures for S-expression, Intermediate Language,
and Source Language output.

T.1 FILE POSITIONING: TAB, ROLL, AND POSITION

The structure of a file is the hierarchy of FILE, RECORD, PAGE, LINE, and
column. The user has freedom of movement within these structures by use of
the three primitives TAB, ROLL, and POSITION. He may use these primitives
regardless of whether the specified file 1s selected as the current file or

not.

T.1.1 . TAB
TAB is & function of two arguments that positions the current column of the
current line. It has the form

(TAB file-name, column)

The first argument, file name, is the name of a previously OPENed file. That
file need not be currently selected.

The secand argument, column, is & positive or negative decimal integer, ‘
relative to the left margin (LMG),that is set as’the new value of CURCOL.
The negative value is permitted since the TAB operation is always taken
relative to the left margin (LMG). The restrictions on column can be

expressed by
CURCOL ~(IMG + column), if

1 < (IMG + column) %) LINE

Draft ' -31- TM-2260/00x/00

Like a typewriter carriage, if (LMG + column) exceeds either upper or lower
bound, CURCOL will be set to LINE or 1, respectively.

By permitting negative values for column, the user may enter information to
the left of the left margin. High values for column, i.e., (LGM + column) >
RMG, allow information to be entered beyond the right margin without inducing
right margin overflow. In both these cases, then, TAB can be used as a

margin release" for the current line only, whem IMG end RMG and column are
preperty set ot aalototloin M Pt fxtateume 1, oned M’:&“" ee il

The value of TAB is a decimal integer corresponding to the value of the current
column-(relative to LMG) prior to the TAB action. In fact, the value is that

returned by the interrogation primitive COLUMN, discussed below. By combining
column positioning with interrogation, the user is provided additional format
control. I£ TA® {&«Qo y2.q. e file Vg, ot cbemed | TAB Anfonna oty i

Finally, TAB can be used to ‘backup within a line for varlious purposes that
include over printing, setting variable fields within & preset header, etc.

T.l.2 ROLL
ROLL is a function of two arguments that positions the current line of the
page in a fashion analogous to TAB. It has the form

(ROLL file name, line)

The first argument, file name, is the name of a previously OPENed file. The
second argument, line, is a positive or negative decimal integer, relative
to the top of the page (TOP), that is set as the new value of CURLINE. As
with TAB, aeppropriate values of TOP, BOT, and line can be used to override

overflow margin controls.

Draft -30- TM-2260/00x/00

The restrictions on line can be expressed by

CURLINE ~ (TOP + line) , if
1 < (TOP + line) < PAGE

CURLINE will be set to the extremes PAGE, or 1 if the value of line forces
the quantity (TOP + line) to exceed these limits.

The value of ROLL is a decimal integer corresponding to the value of the
current line (relative to TOP) prior to the ROLL action. In fact the value

1s exactly that returned by LINE, discussed below. A et poditds potlnicn iy ba
Sy Ty """éf“u S MM&- W,—&y Qﬁ’ﬁ#—fﬁv&
T.1.3 POSITION

POSITION is a function of two arguments that positions the current record of
the file. It alsc allows various terminstion marks, &.g., end-of-file, end-
of-tape, to be written in the file. It has the form

(POSITION file-name, action)
where file name is as noted with TAB and ROLL above. The second argument,
action, is a positive decimal integer action code for a file operation. The
value of POSITION depends on the value of the action desired. The legal
action codes, values, and their meanings are given in the following schedule.

For many files, particularly TTY, CRT, and CORE units, POSITION acts as a NOP
with a value of NIL. NIL is also returned for illegal action codes. For
POSITION, a record corresponds to a record on tape, and a sector on disc.
Furthermore, many physical files, separated by an end-of-file mark, may exist
on tape; however, only one file is permitted on disc. Therefore, it is
impossible to POSITION beyond a disc end-of-file, but you can POSITION past
a tape end-of-file,at your own risk.

Action Code

Action

Skip to line 1 of next record

Skip to line 1 of next tape
file - or to the end-of file
mark of this disc file

Write an end-of-file mark at
current line of file.

Write an end-of-tape mark at
current line of tape file;
action 3 for disc files

Backup to line 1 of file
(rewind)

Backup to line 1 of prior
record

Back to last line (just
before end-of-file) of prior
tape file; action 5 for disc
files

Currently illegal for Q-32
LISP II

Value

'EOF, if next record is an end-of-file
n, the number of nonfEOF records skipped.
'EQOT, if next record is an end-of-tape

If EOF encountered, tape positioned after
EOF mark, disc positioned at EOF mark (can
be written over it)

file name

NIL

wexg

i
n
N
N
o

g
~~
o
o

Draft - -3h- TM-2260/00x,/00

T.2 FORMAT INITIALIZATION: HORIZONTAL, VERTICAL AND CLEAR

As described in section 2.2.6, it is possible for the user to initialize format
control parameters at the time the file is OPENed. With the primitives described;“"
here, the user may dynamically initialize many of these parameters after the v‘
file is OPENed. Furthermore, it is not necessary for the file specified to be

the current file selected.

T.2.1 HORIZONTAL
HORIZONTAL is & function of two arguments, that change the horizontal control
- parameters of the file. The form of the call is

(HORIZONTAL file-name, parameter list)

The file name is as previously defined. The format parameters are contained
. - in the parameter list that has the form

(LMG, RMG, RMG overflow function)

Each of these parameters has been previously described. To repeat, IMG is a
positive decimal integer specifying the left margin; RMG is & positive decimal
integer specifying the right margin; the overflow function is a FORMAL para-
meter to be invoked by LISP at such times as right margin overflow occurs. ,

WM s, awwﬁy"‘e‘fg’w"'&*“ o (em G, kMG, My)

The legal values for LMG and RMG 1s expressed by

| 1 < IMG < RMG t ’jg,
‘2f P, it R, o050 ed o i iy oon ot
If therée inequalities are violated, HORIZANTAL acts as & NOP, aad-metuwrns a
alue. 7

No"fﬁ %W&MQOM&,&&‘W ~meG rwv‘\h&.&éﬁ'%&"‘& "”“ﬁ}m,{a/n e Y .
AN AdKLl, bt NE m»eﬂdwf ARl MM g ~nafrcarcic
T.2.2 VERTICAL —f;{ MG s LINE, AN G ontn florcrtasmt 1mwﬂ4/ﬂﬁ~m»%wvw eun

VERTICAL is .a function of two arguments, that change the vertical control :
. o f the call is s
parameters of the file The form o boer mot L C%Muc. ‘

(VERTICAL file name, parameter list)

. Draft -35- ' | TM-éeéo/OOx/oe o

where the arguments are similar to those of HORIZONTAL. However, the elements
of the parameter list are samewhat different. '

(TOP, BOT, PAGE, BOT overflow functionm, PAGE overflow function)
{8 the form of the parameter list, with the parameters ha*‘fing the same
definitions as given previously. Reviewing these, TOP and BOT are positive
decimal integers specifying the upper and lower page boundaries, respectively.
PAGE is also a positive decimal integer specifying the maximum lines per page.
The overflow functions are FORMAL parameters that are invoked at & bottom

margin, and maximum line per page overflov.

The legal values for TOP, BOT, and PAGE is expressed by

1 € TOP < BOT (% M’Vé’ .
N Y
I’f "'W:?ﬁ‘)wj AN = M‘V’%%’“‘““ e O,Ml\/v«ww{p’ /
If these inequalities are violated, VERTICAL acts as 8 NOP. amé T ebarTIs-a o

N .

Uﬂ%’xf ISOTM;HH. > PAGE oond] Flund BGTWW‘MMWM,‘ o

) » = € BOM

1.2.3 CLEAR Y T puist, T BOT=PAE,
LERER Cam etetnn, weth Bo7 occars s beofora, PrEL..

CLEAR is a function of one argument, file name, &8 above, and has no value.

CLEAR clears the internal record of the file named to all blanks for symbolic
files, and to all zero words for binary files. CLEAR is provided as &

convenience to the user.

T3 FORMAT INTERROGATION : COLUMN, LINE, IOSTATUS

When performing various format sensitive read or print operations, it 1s
particularly helpful to know where you are now. These primitives allow the
user to interrogate his file for this information.

T.3.1 COLUMN '
COLUMN is a function of one argument, file name, 88 above, that returns the
value of the current column of the line relative to the left margin. The

value returned can be expressed

ag
(CURCOL - LMG) Mmu g

-36- - . ™M-2260/00x/00
(last page) v

T.3.2 LINE
LINE is a function of one argument, file name as above, that returns the.
value of the current line of the page, relative to the top of the page.

The value returned can be expressed as

(CURLINE - TOP) S

Te3.3 TOSTATUS

IOSTATUS is a function of no arguments. It returns as its value, a decimal
integer code value designating the status of the last I/O action for either

the input or output selected file. IOSTATUS must be used immediately following.
any read or print primitive to test the status of the transfer. This is
particularly valuable for reading, as it can resolve the cause.of FALSE during
READCH, or whether EOF or EOT returned by READ were literal data in the file,

or READ's output response to an end-of-file, or end-of-file condition.

The current Q-32 LISP II code values are:

Value Status Condition
1 end-of -line
2 end-of -file
3 end -of “tape

error conditions

=]
Vv
w

