
'\.

o

.The views, conclusions, or recommendations expressed in this document do not J)eces·
sarily reflect the official views or policies of agencies of the United States Government.
This document was produced by SDC and III in performance
of contract AF"19(628)-5l66 with the ~ectronic Systems
Division. Air Force Systems Command. in performance of
ARPA Order 773 for the Advanced Research Pro~ect8 Agency

TECHNICAL
~5::~~~tion Processing Techniques O@[ijct

¥[~~ I[I~ a~gpa!l RELEASE s ~~~~12
~. ~ III System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 90406

Information International Inc. I 200 Sixth Street I Cambridge, Massachusetts 02142
for J. I. Schwartz

DATE 4/13/66 PAGE l' OF~PAGES

LISP Edit Program LISPED

ABSTRACT

This document describes the LISPED program.
which is a context editor for LISP data and
exists as a separate program under ttme
sharing.

INTRODUCTION

LISPED is a context editor for LISP data. It
exists as a separate version of LISP contain
ing master function LISPEDIT together with its
sublidiary function STRINGED and approximately
fifty additional subsidiary functions used by
LISPEDIT and STRINGED.

LISPEDIT was written by Lowell Hawkinson of
Information International. Incorporated. to
facilitate the LISP 2 effort. on which III is
working under subcontract to System Development
Corpor~tion.

13 April 1966 2

CONTENTS

Section

1. LISPED Modes · ·
1.1 LISPEDIT · · · · · • ·
1.2 LISPEDIT Commands · · •

2. STRINGED • · · · ·
2.1 Token String Equivalent of an

S-Expression · · · •
2.2 Visualization of the Token String

2.3 Format of Commands · • · · • ·
2.4 Fragment Arguments · · · ·
2.5 STRINGED Commands · · · • · · ·
3. LISPED Functions · • • •

4. Library Files and Data Structures

Tables

Table 1 LISPEDIT Commands

Table 2 STRINGED Commands

·
·
·
•

·

·
•

Page

3

4

4

8

9

9

10

11

12

18

19

5

13

TM-2337/100/01
I "-

~-

(j

o

13 April 1966 3 TM-2337/100/01

1. LISPED MODES

LISPED operates in three modes. LISPEDIT and Evalquote modes are described in
the remainder of Section 1. STRINGED is described in Section 2. Within the
descriptions. the following notations will be utilized.

LISPEDIT

Evalquote

STRINGED

f means LISP library file name. A file name is any
LISP literal atom. It serves no other purpose than
to identify a particular file.

t means either a single file name or a list of file
names enclosed in parentheses.

This is the normal mode in which LISPED is entered. Any
error encountered within LISPEDIT returns to LISPEDIT mode.

The Evalquote mode is similar to the normal mode of operation
of Q-32 LISP. operating successive pairs of S-expressions
and printing out the results. Evalquote is entered from
LISPEDIT by the command EVQ, and continues until either EXIT
or LISPEDIT is given as the first. S-expression to Evalquote,
in which case LISPEDIT mode resumes. An error occurring in
Evalquote mode returns to Evalquote mode.

The STRINGED mode is entered from LISPEDIT by means of the
commands INPUT, EDIT or STRINGED. The function available
in STRINGED mode are described in Section 2. STRINGED mode
continues until the EXIT command is accepted by STRINGED
(either the FILE command followed by EXIT, or else
EXIT EXIT must be used). An error occurring within STRINGED
returns to STRINGED mode.

The system is relatively foolproof in that library files are protected from
damage in the event of LISP unwind. After an unwind, the system always
returns to the same state in LISPEDIT or STRINGEDIT which it was in before
the error occurred.

LISPED is. in general, a talkative system and most of the messages printed
out have a relatively simple interpretation.

13 April 1966 4 TM-2337/10010l

1.1 LISPEDIT

LISPEDIT is the normal mode in which LISPED is entered. If the system is clear.
the entrance into LISPEDIT is signified only by a double bell. If the system
is re-entered following an error. the statement

LISPEDIT RECOVERY II FILES SAVED

is given followed by two bells to indicate that LISPEDIT is ready for input.

The LISPEDIT mode may be used for inputting and editing LISP data. reading LISP
data from tape. performing general file maintenance operations. and runnin~ and
testing of LISP programs.

The LISPEDIT commands are listed in Table 1 and descr:i.bed in Section 1.2.

1.2 LISPEDIT COMMANDS

LISPEDIT accepts the 16 commands given in Table 1. Commands other than OPEN
and SHUT are followed by their arguments without parentheses. A final space
must always be used except in the case of a list type argum'-'nt.

OPEN (filename unit optional)
OPEN works in LISPEDIT mode exactly the same way it works in
LISP Mod. 2.6 or in Evalquote mode of LISPED. Filename is a
literal atom; unit is either DISC (or DISK) or a tape reel
number; and optIOnal is either absent or WRITE if a tape file
is to be opened for writing or PERM if filename is a previously
existing disc file and ~ is DISK.

Files opened in either Evalquote mode or LISPEDIT mode can be
read in either mode.

In LISPEDIT mode. the response to OPEN is

10 FILE filename OPENED II CONTINUE

SHUT (filename optional)
SHUT works in LISPEDIT mode exactly the way it works in
LISP Mod, 2.6 or in Evalquote of LISPED. Optional is either
DELETE for a disc file to be deleted t or else is abser:t,

Files opened in either LISPEDIT mode or Evalquote mode can
be shut in either mode.

In LISPEDIT mode. the response to SHUT is

10 FILE filename SHUT II CONTINUF

()

.~.
I

\

13 April 1966 5 TM-2337/l00/0l

Table 1. LISPEDIT Commands

Name Arguments -
COMBINE f f f

DELETE R,

EDIT f

EVQ

FILES

INPUT

LIST f

OPEN (filename unit optional)

READ filename n

REORDER R,

0
RUN f

RUNS PEAK f

SHUT (filename optional)

STRINGED f

WRITE filename n R,

o

13 April 1966 6 TM-2337/100/01

READ filename n

Reads the nth file from file filename and adds the contents
to the list of current library files. (Note that if filename
refers to a disc file, n must be 1. If filename refers to a
tape file, then no check is made to see that there are n
physical files on the reel. When done, the READ command prints
the message

FILES READ FROM filename II CONTINUE

WRITE filename n t

INPUT

If filename refers to a disc file, n must be either 1, to
rewrite the file, or 2, to append the current library files
onto the end of the previous ,library .. files en diac.

I·

If filename refers to a tape file, then WRITE rewinds the
tape. skips (n-l) physical files, then writes. Note that no
check is made to assure that there are (n-l) physical files
on the tape.

After the file is positioned, then if t is any atom, e.g.,
ALL, all current library files are written onto it.

If ! = (fl f2 ••• f n), where f l , f2 ••• fn are names of

library files, then the library files f l , f2 ••• fn are

written in that order onto the output file filename. After
writing the output file, WRITE writes an end-of-file on the
output device. and prints out the message

FILES WRITTEN ONTO filename II CONTINUE

INPUT causes LISPED to go into the STRINGED mode with an
initially empty string. The only acceptable STRINGED command
which can reasonably be used at this point is INSERT to enter
new 'LISP data into a system. This data will be of use only
if eventually a FILE command is given to supply it with a
file name.

EDIT f
This is the same as INPUT except that the STRINGED is entered
with the string equivalent to the file named f.

STRINGED f
This is identical to the command EDIT f.

()

/"\
,)

o

o

o

13 April 1966 7 TM-2337/100/01

RUN~EAK f
The file named f, which must consist of Evalquote pairs, is
operated. Each successive pair of S-expressions in the file
f is passed to Evalquote and the results printed.

RUN f

FILES

This is the same as RUNSPEAK except that the Evalquote output
is not printed.

This command results in printout of a list of names of all
current files.

DELETE R.

REORDER

COMBINE

R. can be either a single library file name or a list of library
file names. After checking appropriately to see that these
names are all names of files in the system and that the user
really wanted to delete these files, this command will cause
the library file or files to be deleted. In response to
question from DELETE, a user should respond with either YES
or NO.

R.
If t is a single file name, the named file is placed at the
end of the list of current files. If R. is a list of file names,
these files are removed from the current list of active files
and placed in the order named at the end of the list of files.

The contents of fl and f2 are concatenated and inserted as a

new file named f
3

- If a file named f3 is already in the

system, the new file named f3 will replace it.

LIST f
The command LIST f causes the contents of file f to be printed,
one S-expression per line, with a line skipped between
S-expressions.

13 April 1966 8 TM-23371100101

2.

The EVQ command causes LISPED to enter the Evalquote mode
in which success.ive pairs of S-expressions input from the
teletype are passed to Evalquote and the results printed
on the teletype. The Evalquote mode is similar to the
normal operating mode of LISP 1.5. However, the LISP SAVE
function will save the current version of LISPED in the
current state. This will cause a minor inconvenience when
the saved version is loaded. The system will automatically
go into the EVQ mode and an EXIT will have to be taken to
get into LISPEDIT mode.

If the LISPEDIT system is saved using the TSS SAVE function,
i.e., ISAVE name or I SAVE , then when the saved version is
loaded the LISPED system will print out

LISPEDIT RECOVERY RECOVERY II FILES SAVED

followed by

mode MODE II

where mode is the mode in which the system was, saved •
EVQ mode continues until EXIT or LISPEDIT is given as a
command to Evalquote.

STRINGED

STRINGED i$ a context editing program which is used to update an existing
LISP file or to generate a new one.

When STRINGED is entered from its parent program LISPEDIT, the file to be
edited (a series of S-expressions, possibly empty) is converted into the
equivalent token string. This string may then be examined and operated on
through successive commands input on the teletype and interpretively executed
by STRINGED. Whenever a desired transformation of the string has been
achieved, a command to file the series of S-expressions equivalent to it
may be given. Finally, after all desired editing and filing of the string,
has been completed, STRINGED may be exited and control returned to LISPEDIT.

(j

(\
~)

o

o

<)

13 April 1966 9 Tiv1-2337/100/01

2.1 TOKEN STRING EQ,UIVALEHT OF AN S-EXPRESSION

The rules for converting an S-expression to its equivalent token string (from
which may also be inferred an inverse transfor~ation) are expressed in the
table below:

e.g.,

2.2

where x is
x* is the
LP is the
RP is the
1ST is the -

S-ex;f2ression x

NIL

non-NIL atom

(a
l

a
2

a) n

(al
a

2 . . . a
n-l

an S-expression
token string equivalent to x
atom "left parenthesis"
atom "right parenthesis"
atom "dot"

token string x*

. a)
n

LP RP --
x

!!E. a l * a 2 *

~ a l * a 2*

...

...
a * RP n

a * D'r a * RP n-l - n

(A (B NIL) • C) LP A LP B LP RP RP DT C RP ----
VISUALIZATION OF THE TOt:EH srrRING

At any moment during the editing of the token string, there is a particular
portion thereof whose boundaries serve as reference points for whatever action
may be called for by the next STRINGED command. This portion of the string is
termed the object fragment (or simply the fragment, abbreviated as FR). Th~
object fragment may be empty, or it may include the entire string (which also
could be empty).

The token string with its object fragment sub-string should be visualized as in
Fig. 2.1. The symbol "t" denotes here an arbitrary token (parenthesis, dot, or
other LISP atom). Definitions for left boundary (LB), right boundary (RB), head,
and tail are self-evident from the diagram. The directions backwards and
forw~mean "towards the head" and "towards the tail," respectively. These
six terms will be used extensively in the descriptions of STRINGED commands
(Section 2.5).

13 April 1966

left
beundar~' <:

(LB)

~
ttt ••• ·tt

ebject
. fragment

(FR)

10

right
-------~~ boundary

---------------------- 7
RB) .

t t t t t t t t t t t t t

TM-2337/100/01

••• t t ••• t t

head --= token
backwards---------------- ------------forward,----3>~tail string

Fig. 2.1 Token String, Object Fragment

2.3 FORMAT OF COMMANDS

Cemmands to STRINGED are input, one after anether. on the teletype. As many
cemmands as fit may be entered en a single line; conversely, any cemmand which
would overflow a single line may be continued onto as many additional lines as
are necessary.

Each command consists of a name follewed by a specific number (zero, one, or
two) ef arguments. When input;" names and arguments must always be fellewed by
ene or mere blanks. even when they occ~ as final items in a line. (The
algerithm fer making the input line_toJline transition •. to be followed
reflexively, is: type blank and carriage retUrn; allow>any output responses to.
be printed; await deuble bell signal.)

The name ef a STRINGED cemmand is a LISP identifier. All but two. ef the cemmands
(exceptiens are FILE and EXIT) have two interchangeable names: the first is

, ,q.escrintive of the action 91_.the command. the second is a one-(er two.)
, character:·'-a~r8viation,'

Each argument ef a command is ef one of three types:

n integer
c label
s fragment

An'. integer arg,ument is simply a LISP fixed-point number. A label argument
is any LISP atom ether than / er $. A fragment argument has several pessible
fermats, which are discussed in detail in the next sectien. Sheuld a particular
command be given an argument ef the wrong type. an apprepriate diagnestic will
be printed and the remainder ef the input line will be ignored.

r"',
\ /

(j

(
----..."

, J
, I

o

o

o

13 April 1966 11 TM-23311l0010l

2.4 FRAGMENT ARGUMENTS

A fragment argument of a STRINGED command has four distinct formats, each of
which specifies some particular fragment (sequence of tokens) as its value.
These formats, paired with their corresponding values, are listed in the table
below. Symbol t denotes an arbitrary token (parenthesis, dot, or other LISP
atom). Symbol f denotes the name of a LISP file.

format of s

I I

I $ f

I c

tt ... tt I

value of s

empty

copy of file f

saved fragment under label c

non-empty input fragment
t t ••• t t

In the input of a fragment argument, two syntactic rules involving the delimiter
blank must be observed.

(1) I and $ must always be separated by one or more blanks

(2) two adjacent tokens (t t) must be separated by one or
more blanks when neither is a parenthesis

A saved fragment (third format above) is one which, by some previous command,
had been copied from the then current FRand saved for future use under a label
c. The saving of FR may be called for explicitly by means of the LABEL command
(see its description in Section 2.5).

Should a fragment be saved under a label which is already in use, the new value
will supersede (and in fact replace) the old. Thus, only the most recently
input and deleted fragments are available at any given moment under a given
label.

There are three particular tokens (namely I, $1, and ***) which are used as
delimiters within an input fragment (fourth format above). All other tokens
(parenthesis, dot, or other legitimate LISP atom) are taken literally.

(1) I is the terminal delimiter of an input fragment and must be
preceded by at least one literal token.

(2) $1 is an escape delimiter. If it is not the first token in an
input fragment, and is not immediately preceded by ***, the
command preceding $1 will not be executed, a diagnostic will
be printed and the remainder of the input line will be ignored.

13 April 1966 12 TM-2337/l00/0l

(3) *** indicates that the token immediately following it is
to be taken literally, even if it would normally be inter
preted as a delimiter, e.g., token / is written *** /

2.5 STRINGED COMMANDS

The commands available within STRINGED are listed in Table 2, and are described
below.

The command descriptions given below are presented in a standard format. The
heading displays, in order, the name of the command, its abbreviation, and an
abbreviated specification of the arguments (where n, c, s, and a dash denote
integer, label, string, and no arguments, respectively). The first paragraph
describes the action of the command when conditions are such that it may be
properly carried out. The second paragraph (if any) indicates the conditions
required for execution of the command, and what will happen if they are not
fulfilled. The assumption is made in the descriptions that all arguments have
been correctly entered; where this is not the case a diagnostic will be printed,
execution of the command will not be attempted, and the remainder of the input
line will be ignored (see Sections 2.3 and 2.4).

The reader is referred to the diagram and definitions in Section 2.2, since all
commands are described in terms of them.

EXIT

FILE

STRINGED is exited and control returned to the supervisory program
LISPEDIT. A message confirming successful exit is printed.

If, however, this command was not immediately preceded by a success
ful FILE command or unsuccessful EXIT command, STRINGED will not be
exited, a diagnostic message will be printed, and FR will remain
unchanged. This interlock feature prevents a premature, accidental
exit from STRINGED. To leave STRINGED without having filed the
token string, two EXIT commands must be issued.

f
The complete token string is first converted into the particular
series of S-expressions equivalent to it and then is filed under
library file name f for future reference by LISPEDIT commands. If
a LISP library file named f already exists, it will be replaced by
the newly generated one. A message confirming successful filing
is printed, and FR remains unchanged. (See Section I for descrip
tions of LISPEDIT commands and Section 4 for a description of LISP
library files.

If a syntax error is detected during the conversion from token
string to S-expressions (i.e., if the string contains unmatched
parentheses or dots out of context), no filing will occur, a diag
nostic will be printed, LB will be set to the point at which the
error was detected, RB will be set to the tail of the string, and
the remainder of the current input line will be ignored.

n

(j

()

",'

o
13 April 1966 13 TM-2337/100/01

Table 2. STRINGED Commands

ABBREV. NAME ARGill1ENTS

A ADVANCE n

B BOUND s

D DELETE

E ECHO

F FIND s

H STASH s

HK STASHKEEP s

I INSERT s

IK INSERTKEEP s

L LABEL c

0
II NEXrr

0 ONEXPR

P PRINT

R REPLACE s

S SUBSTITUTE n s

T TOP

U OUTEXPR

V1 HHOLE

X EXTEND n

Z POSITION

EXIT

FILE f

o

13 April 1966 14 TM-2337/l00/0l

ECHO E

PRINT

WHOLE

The "echo switch" (initially off) is flipped, from off to on
or vice versa, depending upon its current state. While the
echo switch is on, a PRINT command is implied after every
executed command which does not call for the printing of FR.
This feature allows the editing process to be monitored
st ep-by-st ep.

P
FR is printed in full or elliptically, depending upon its
length (number of tokens within it). If the label is less
than 17, FR is printed in its entirety (PRINT in this case
is identical to the command WHOLE). If, however~ FR
includes 17 or more tokens, only the first eight and last
eight of these, separated by the ellipsis symbol " ••• ",
are printed. Thus, whatever the length of FR, PRINT will,
in general, produce only one line to represen~ it. FR
remains unchanged.

W
FR is printed in full, whatever its length may be. Should
FR be empty, a blank line will appear. FR is unchanged.

POSITION Z

LABEL

A message is printed which indicates the location of LB
relative to the string head, the length of FR, and the
total length of the token string. The specific format of
this message is:

POSITION a LENGTH b TOTAL c

where a = number of tokens between string head and LB
b = length of FR (number of tokens therein)
c = length of the token string

FR remains unchanged.

L c
A copy of FR is saved under label c for future reference as
a saved fragment argument. If a saved fragment labeled c
already exists, it will be replaced by the current FR.
FR remains unchanged. (See Section 2.4 for a full descrip
tion of saved fragments.)

f\
, j

o

o

o

13 April 1966 15 TM-2337/100/01

TOP

NEXT

ONEXPR

Ot1l'EXPR

ADVANCE

T
LB andRB are set to the string head and tail, respectively. Thus.
after execution of this command, FR will include the entire token
string.

N
La is set to the previous RB; RB is reset to the tail of the
string. Thus. after execution of a NEXT command, FR becomes that
part of the token string which was forward of (to the right of)
the old FR. NEXT in combination with the ONEXPR command is
particularly useful for skipping over S-expressions.

o
RB is moved. either forward or backward, suc~ that there will
be exactly one S-expression between LB and RB; LB remains
unchanged. After execution of this command. therefore, FR will
contain a single S-expression.

If it is syntactically impossible to construct an S-expression
beginning at LB and reading forward (i.e •• if LB is at the
tail of the string. if the first token forward of LB is a
right parenthesis. if an out-of-context dot is encountered. etc.).
a diagnostic message will be printed. LB will be set to the
point at which the syntax error was detected. RN will be set
to the tail of the string, and the new FR will be elliptically
printed. The user is cautioned to be prepared for such a
contingency.

U
OUTEXPR is identical to ONEXPR. except for the fact that. if
a legitimate S-expression is found. it will be printed in its
entirety (using the LISP function PRINT).

A n
LB is moved forward (backward) n (-n) tokens, where n is a
positive (negative) integer. except that if such movement
would take LB past the tail (head) of the strin~, then LB
is set at the tail (head). RB remains unchanged unless LB
is moved past (i.e" to the right of) it, in which case it
is set to the tail of the strin~. In short. LB is moved
n tokens (n positive for forward direction) with appropriate
resolutions being ma.de in impossi'ble s i tuat ions.

13 April 1966 16 TM-2337/l00/0l

EXTEND

DELETE

STASH

X n
RB is moved forward (backward) n (-n) tokens, where n is a
positive (negative) integer, except that if such movement would
carry RB past the string tail (LB), then RB is ·set at the tail
(LB); LB remains unmoved. Thus, EXTEND does to RB what ADVANCE
does for LB, except that, whereas LB can be advanced past RB,
RB can not be extended back through LB. In short, RB is moved
n tokens (n positive for forward direction), but not past LB or
the tail of the string.

D
FR is deleted from the string, LB remains at the point of the
deletion, and RB is reset to the same point. Thus, after
execution of a DELETE command, FR is empty.

H s
String argument s is inserted into the string at LB; FR is set
to the inserted fragment. Thus, the new FR is a fragment input
to the ~ of the old FR.

STASHKEEP HK s

INSERT

This command is identical to STASH except that, after its
execution, FR will contain the old FR as well as the newly
inserted fragment.

I s
String argument s is inserted into the string at RB; FR is set
to the inserted fragment. Thus, the new FR is a fragment input
to the right of (forward of) the old FR. INSERT is equivalent
to a NEXT followed by a STASH.

INSERTKEEP IK s

REPLACE

FIND

This command is identical to INSERT except that, after its
execution, FR will contain the old FR as well as the newly
inserted fragment.

R s
The old FR is replaced by string argument s, which becomes the
new FR. Thus, the new FR is a fragment input to replace the
old FR. REPLACE is equivalent .to a DELETE followed by INSERT
or STASH.

F s
Beginning at LB. a search is made in the forward direction (to
the right) until a portion of the string is encountered which is
identical to t he string argument s. FR is then set to that

()
\ /

(l

o

o

13 April 1 966 17 TM-2337/100/01

BOUND

portion. Two numerical tokens are deemed identical if and
only if they are equal both in value and in type (LISP predicate
*EQN is used here). FIND is probably the most useful of the
stringed commands for purposes of editing.

If a portion of the string identical to s is not found forward
of LB, a diagnostic message will be printed, and FR will remain
unchanged. The user is cautioned to be prepared for this
contingency.

B s
BOUND is identical to FIND except that, where the search has been
successful, instead of setting FR to merely the found fragment,
FR is set to that portion of the string which begins at the
original LB and extends to the right boundary of the found fragment.
This may be stated even more simply--BOUND is identical to FIND
except that under no circumstances is LB allowed to be moved. A
particular use of BOUND in conjunction with FIND is in setting FR
to a long portion of the string. FIND is first employed to
locate the left boundary thereof, then a BOUND command is given
to set the right boundary without having to change the left one.

SUBSTITUTE S n s
String argument S replaces FR and the next n-l string portions
identical to FR, searching to the right with FIND. Algorith
mically, execution of the command involves the following loop:
REPLACE current FR by a copy of s, use NEXT to move past the
replacement, FIND portion identical to the original FR. repeat
if FIND command was successful and decremented n is non-zero,
otherwise terminate with FR set to the last replacement made.
SUBSTITUTE is used generally for th~ee purposes: multiple substi
tution, multiple deletion and multiple replication. For multiple
substitution. the first instance of the fragment to be replaced
must be located (using FIND), and then a SUBSTITUTE command
given with the replacement fragment and number of replacements
to be made as arguments. Multiple deletion is accomplished
similarly with an empty fragment being entered as the string
argument of SUBSTITUTE. For multiple replication. the point at
which the copies are to be placed is located, a FIND command with
an empty argument is issued (FR becomes an empty fragment situated
at the prior LB of FR), and finally a SUBSTITUTE command is given
with n as the number of copies of the string argument to be
produced (upon termination, FR will be set to the rightmost of
the copies).

13 April 1966 18 TM-2337/l00/01

If argument n is not an integer greater than zero, a diagnostic
message is printed and FR remains unchanged. If a search fails
at any time before n reaches zero, the action of StffiSTITUTE is
effectively terminated by the action of the FIND.

3.

LISPED

LISPED FUNCTIONS

uses the following functions whose names are visible to the user:

LISPEDIT
TEDFILER
TED SEEKER
STRINGED

All other functions, macros, and special variables have had their names
removed both to save space and to avoid conflicts with the user.

Property lists of variables TFL, SVD and SSP are used by LISPED
indicators SID and TED.

under the

4. LIBRARY FILES AND DATA STRUCrrURES

The data files maintained by LISPEDIT consist of a list of S-expressions
(library file) stored on the proper~y list of the atom TFL under the property
TED. Each library file consists of a sin~le S-expression whose CAR is the
file name and whose CDR is a list of the contents of the file. To be com
patible with RUN, RilliSPEAK and LOADEXP, the contents of a file should be a
series of Evalquote pairs.

The corresponding tape format consists of one S-expression containing each
library file. For example, suppose that there are two files LIBI and LIB2
containing

CSET(AA 2) EVALl (AA)

and

DEFINE (((NILF (LAMBDA () ())) (Ol~EP (LAMBDA (J) (EQUAL J I)))))

respectively. The LISP library files would appear on tape or disc as

(LIBI CSET (AA 2) EVALI (AA))

(LIB2 DEFINE (((NILF (LAMBDA () ()}) (ONEP (LAMBDA (J) (EQUAL J]))))))

End-of-file

\ ,;

(~
\ /

('\
)

o

o

o

13 April 1966 19
(last page)

TM-2337/l00/0l

After the LISPED READ command is performed. the property list of TFL contains
the list

«LIBI CSET (AA 2) EVALI (AA»

(LIB2 DEFINE «(NILF (LAMBDA NIL NIL»

(ONEP (LAMBDA (J) (EQUAL J 1»»» EOF)

under the property TED and the value of TFL is the same list.

After the series of commands

INPUT

I SPECIAL «A B C» /

FILE LIB3 EXIT

the new file. (LIB3 SPECIAL «A B C». is spliced into the property list
ahead of the EOF.

Two functions exist within LISPEDIT to provide access to the contents of
files from within Evalquote mode.

TEDSEEKER (t.) yields the library file 1f
as the entire' S-expression whose CAR is
name of the file, f.

TEDFlLER (tf) enters the library file tf into
the list of files under the name f given as the CAR of tf.

13 April 1966
NAME

E. WALL tR
G. WEINWURM
G. WEISBOR~
C. WEISSMAN
G~ WILEY
s. WILKS
R. WYLl YS
J. YOlT
M. DRAPER
E. Ln'NICK
T. RUGGLES
J. SCROOOmS
w. WILLIAMS

A(11)

TM ... 2337/l00/0l
ROOM

fAL LS CHUi{CH
2312
4~24

2~14

2<:i59
FALLS CHURCH
9636
FAl LS CHURCH

2041
4035
9124
FALLS CHURCH
2313

/\
\ /

()

f· c;i}.)·
"'~.'

~

C:~

0

0

,
J

C~:; 13 April 1966
e DISTRIBUTION LIST

NAf·iE

STEPHANIE ACKLEY
M. ALMQUIST
s. ARANDA
B. BARANC iK
R. BARE
J. BARN ETT
P. BART RAN
D. BEEl ER
J. BURGER
MYRNA BERNI CK
B. BICHEL
o. BLANKENSHI P
M. BLAUER
R. BLE! ER
M. BLEIER
E. BOOK
D. BORETA
BOB BOSAK
s. BO~'li'4 AN
H. BRAT MAN
J. BREEN
R. BRE~-l ER
~J. R. BRUSO
s. BROWN
A. BUHS TED
J. BURG ER
H. BURNAUGH
M. CALL AHAN
G. CANTLEY
H. CART ER
P. CHANEY
A. CHAPMAN
E. CLARK
H. CLARK
v. COHEN
N. COLES
B. CONL EV
R. COOK
H. COZIER
B. CROSSLEY
w. CUt-1M INS
w. DENN IS
P. DESIMONE
B •. DILLER
R. DINSMORE
G. DOBBS
vi. DOBRUSKY
c. P. DONAHUE
D. DRUKEY

TM-2337/l00/01

ROOM

2056
9623
2033
2.105
12058
2059
2336
2230
9919
9018
DAYTON
9517
PARAtJ1US
2317
2324
2332
2062
2041
2322
1137
FALLS CHURCH
OMAHA
7120
2045
FALLS CHURCH
9919
9630
4569
FALLS CHURCH
DAYTON
9917
8235
2338
2231
2326
12058
9521
5178
2224
3757
10080
2055
2316
4025
2220
2111
2117
9529
2105

'l~ A~il 19~6" TM .. ~3~7/100/01 ...
'~

~ :NAME ROOM'.
'j

K.t.'\MCCONLOGUE 9439 /~

ROSALIND MCCRAKE'N 8629)
J. MCDONALD' ;:" ~3029
P •. ,.,CIS AAt~.';:, :~': '. i320,
8." MOORE' FALLS CHUl{CH
·W.'MOORE .. '91'11
c. MOSMANtf 313<1
E. "VER '51) 2227
1;. N~WLANOS 4172
P. NEWMAN COLORADO SPR INGS
M. O·ICO NNOR 12058
L. PAGE 5250
F. PALMER FALLS CHURCH
s. PERLMAN 11913
D. PERRY 2060
H. PERS TE IN 2334 ... PETE RKA 2060
R. PETE RSON COLORADO ~pl{ ING S (NORAO)

F. POAGE PARAMUS
J. B. PORGES 2063
B. REYNOLDS 2021
J. REYNOLDS 2226

--D. R,ICHHOND LEX ING ION l..

J. ROSE NBAUM 3725
T. ROWAN 2115
N. SANDIN 1419
D. SAVITT 5209 /

...--..
\

M. SCHAEfER 2424
(
\)

R. SCHAUB COLORADO SPRINGS
J. SCHEID 4511
'We SCHOENE 20068
v. SCHORRE 9024
J. I. SCHWARTZ 2123
J. SCROGGINS FALLS CHURCH
s. SHAFFER 9121
s. SHAP IRO 4364
MARY ANN ~HAW 2056
H. SI LB ERMAN 9518
8. SIMMONS 99G8
A. SKRUKRUD COLORADO SPRINGS
J. SLAYBAUGH 8629
J. SHIT·H DAY TQ'l
G. S. STANTON (10) PARAMU::>
R. H. STEARNS FALLS t:.HURCH
T. STEEL 9532
E. STEF FERUD 9134
F. SlEO 2039
R. 'H. S TERNECK 2045
K. TH'EJ ING PARAMlJ S
R. TQTSCHEK 9017
A. TSCHEKAlOFF 2211 v. R. UNRUH 2411
A. VORHAUS 2213

(-)

13 Apr.i1 1966
NAt"'lE

L. OURH AM
PAT EDD Y
D. E!)TAVAI\
J. FARE LL
S. Ff:1NGLLU
C. F I AL A (3)
LEAH FIN\::
DONNA Flklh
B. F I TZ GLt{AlD
E. FOOT[
c. FOX
B. FREE MAi~
CHUCK F KY L

L. GALLt:N~Ui~

L. GILL;':~P1L
M. GO(TjLh
G. GRAN'
JUHN GU lL~~1URN
D. HAl"G<::klY·
J. HALE
J. HANNA
H. HARM Aj~
L. HAWK 1 f'4:::'u j\j (4)
J. HOLIS ::'Lt-~
K. A. H Ul LLJ jy'iB
s. HOLL tl~
R. HOU~ TLI ...
M. HOwAKL
R. HOWAKU
A. lRVI NL
H. HOWELL
H. IS51 Ti
J. JAFf L

D. JAMl ESUN
BART JO Nt::)
s. KAt~E: I,,, (50 copies)
c. KElL CGG
D. KEMPEK
PH Y lL IS K L j\~ j'ljE U Y
T. KDtSKc
T. KRl:8~

c. KRIB ~
P. KRll:)~

B. KROU S~
N. LARK ~
C. LAWS ON
R. LINDE
D. LOND t.
R. LONG
w. lUCA ~
H. MANE Luwl fl
D. MARS H
L. B. Me CAbE
J. MCCAFfl..:KIY

(D - 100)

ROOM

2424
242 :5
9';)27
3753
912_.
BOL 1
23S6
231.)
4451
2• ·~/+ d

22~2

1181
9523
992,j
5220
711 ;J

2\ .. 40
'-)725
9Jll
2)'td
Z IlJ
9,)21

TM-2j37/100/01

9711
2314
OMAHA
fALLS (,HUi<.LH
4367
2)6u
2 :>4
1139
9912
2213')
24143
LEX IN~lUN
2231
2it)9

222H
9932
2419
2 115
2d54
2,23
1232
93,J7
4361
1218
2229
9730
992b
OMAHA
9716
95J6
375}
LEX IN.., 101

• ,

..

	SDC-TM-2337_100_000001_a
	SDC-TM-2337_100_000001_b
	SDC-TM-2337_100_000002_a
	SDC-TM-2337_100_000002_b
	SDC-TM-2337_100_000003_a
	SDC-TM-2337_100_000003_b
	SDC-TM-2337_100_000004_a
	SDC-TM-2337_100_000004_b
	SDC-TM-2337_100_000005_a
	SDC-TM-2337_100_000005_b
	SDC-TM-2337_100_000006_a
	SDC-TM-2337_100_000006_b
	SDC-TM-2337_100_000007_a
	SDC-TM-2337_100_000007_b
	SDC-TM-2337_100_000008_a
	SDC-TM-2337_100_000008_b
	SDC-TM-2337_100_000009_a
	SDC-TM-2337_100_000009_b
	SDC-TM-2337_100_000010_a
	SDC-TM-2337_100_000010_b
	SDC-TM-2337_100_000011_a
	SDC-TM-2337_100_000011_b
	SDC-TM-2337_100_000012_a
	SDC-TM-2337_100_000012_b

