
o

o

o

, .
The views, conclusions, or recommendations expressed in this document do not neces·
sarily reflect the official views or policies of agencies of the UnIted States Government. 1[M1]c 2110/10i/OO(DRAFT)
Th1s document was l):roducecLby SOO aDd III in 1)ertormance '
"of contract AF 19(~2ti)-51f>O with the, Electronic S¥at.ems
'Division. Air Force Systems Command. in performance of'
,ARPA Order 77~ for the Advanced· :neIEta:rch' Or1.1ectl Alenet "

AUTHOR ~ ~ • .a.... /~,,,
M. 'L~~ , •-;
E. Berkeley

TEC~, V J' c\, c....c:C a~(t ~V1\,~

a working paper
System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 90406

Information International Inc. I 200 Sixth Street I Cambridge, Massachusetts 02142

LISP 2 PRIMER

Abatract

for J. I. Schwartz
DATE PAG.£ l' OF ~PAGES

15 July 1900

(Page 2 blank)

This document is an incomplete preliminary draft being
circulated to provide potential users with information
concerning the programming language LISP 2 currently
being developed by Sy.tem Development Corporation and
Information International. Incorporated.

SDC and III accept no responsibility for the technical
correctness of the information contained her~in. and
its circulation is permitted at this time'tor'the sole
purpose of meeting requests for information' on 'LISP 2.'

.. '"

f4
IE] a§
aeJ

0 ~
~ =jj=lJ
=u=v 9 J)
L-C!

r' '

o 15 July 1966 3 TM-2710/101/00 (DRAFT)

CONTENTS

Page
Chapter 1 INTRODUCTlON 4

Chapter 2 IDENTIFIERS, ATOMS, AND S.;.EXPRESSIONS 6

Chapter 3 SOME ILLUSTRATIONS OF PROGRAMMING IN LISP 2 22

Chapter 4 ARITHMETICAL:EXPRESSIONS 29

Chapter 5 SIMPLE: EXPRESSIONS 44

Chapter 6 CONDITIONAL: EXPRESSIONS 55

Chapter 7 FUNCTION:DEFINITIONS AND RECURSION 62

Chapter 8 THE LOGICAL:OPERATORS 71

Chapter 9 BLOCK:EXPRESSIONS AND STATEMENTS '77

0 Chapter 10 BLOCKS 89

Chapter 11 ARRAYS 100

Chapter 12 FOR: STATEMENTS 111

Chapter 13 FLUID: VARIABLES 119

Chapter 14 LOCATIVE TRANSMISSION OF PARAMETERS 125

Chapter 15 TYPES AND DECLARATIONS

Problem Sets and Answers 138

Chapter 2 138

Chapter 4 145

Chapter 5 150

Chapter 6 155

Chapter 7 157

0 Chapter 8 160

Chapter 9 162

Chapter 10 164

, ,.

15 July 1966 4 TM-2710/101/00(DRAFT)

CHAPTER 1

INTRODUCTION

The purpose of this LISP 2 Primer is to provide an understanding of the.

main features of the Programming language LISP 2.

The Primer is one of the two main sources of information on LISP 2; the

other is the LIS~ 2 Reference Manual. These two books serve different

purposes in making information about LISP 2 available to the interested

reader and prospective programmer.

The Reference Manual is intended to be a full description of the language.

It contains a complete and concise definition of each aspect of the language,

and its arrangement is systemat-ic; significant details are not omitted.

This makes the Reference Manual difficult to read through, especially for a

potential user who is not familiar with other LISP systems, or with computer

programming in general. Also, the Reference Manual contains many cross

references. and many explanations that seem unmotivated until some other

explanation is read elsewhere. The Reference Manual is much easier to under

stand if one first acquires some understanding of the main features of LISP 2.

The Primer is intended to give an understanding of the main features of LISP 2.

Unlike the Reference Manual, the Primer is intended to be read from beginning to·

end in the order in which it is written. The Primer makes only a few assumptions

about what the reader already knows-~ainly, a little mathematic,o all of which

is taught in high school. If in addition one has calculus or logiC, some of the

examples will appear more interesting, but neither subject is necessary.

In describing the LISP 2 source language, all non-primitive syntactic entities are

written in italics. If the entity is composed of more than one word, the words

are joined by italicized colons. For example, the terms identifier and

bZock:expression are non-primitive syntactic entities, and thus are italicized.

c

o

c

o

o

o

------------------- ------.---

.. r

l' July 1966 5 TM-2710/101/00(DRAFT)

The Primer seeks to present LISP 2 in such a way that reasons for introducing

new concepts are made clear, and the programmer's knowledge of LISP 2 techniques

is developed gradually. This way of explaining is inconsistent with the method

of arranging subject matter into a logical classification of topics and subtopics,

and then explaining each topic fully before proceeding to the next. Therefore.

you, the reader, should be aware that while each explanation in the Primer is

correct, it is rarely complete, and usually there are possibilities that have

not been mentioned. Also, many topics have been omitted from the Primer altogether,

and their explanations can be found only be consulting the Reference Manual.

For example. one of the first LISP 2 concepts discussed in the Primer is

identifie~t and examples of identifie~B are given~ But nowhere in the Primer

appears any explanation which would sUSlest that the entities A.B. and %N{«N

are acceptable identifie~B. For a complete definition of identifiB~, therefore,

see the Reference Manual.

The LISP language is founded on mathematical logic, and. in particular, on a

part of logic known as recursive function theory. However, the theoretical

concepts needed are not difficult or advanced, and are presented completely in

the Primer. It is recommended that you understand the ideas presented in Chapter

2 before reading further in the Primer. It is also recommended that you solve

the exercises in each chapter, obtaining the correct answers, before reading

further in the Primer.

Finally, it is recommended that as you read this Primer, you keep in mind the

types of data that will occur in the problems you want to handle, and the types

of processes you wish to perform on the data. Then you should be able to decide

whether a given capability in LISP 2 is relevant to your problem or not. It is

hoped that some of the examples may suggest possibilities to you.

"15 July 1966 6 TM-2710/l0l/00(DRAFT)

CHAPTER 2.

IDENTIFIERS" ATOMS, AND S-EXPRESSIONS

If you are familiar with LISP, you may skip this chapter except for noting that:

(l) the definition of an atom is broad; (2) an identifier is a type of atom

but not all atoms are identifiers; (3) the booteans TRUE and FALSE are atoms

but not identifiers, and (4) the predicate ATOM is true for all types of atoms.

2.1 SYMBOLIC DATA PROCESSING

The data that are processed by a computer programming language can be classified

into two broad divisions, numerical and symbolic. An example of a numerical (or

numeric) datum is:

2.5

An example of a symbolic datum is:

(THIS IS A LIST)

The processing of numerical data is a well-established science. Basic

operations on numbers, such as addition. multiplication, and comparison of two

numbers to see which is greater, are taught in elementary school. The solving

of many kinds of equations, and many useful applications of numerical processing

are taught in high school. The science of dealing with numbers is presented in

a logically rigorous manner in college courses.

The processing of symbolic data, however, is not a well-established sc~ence.

In fact, the processing of symbolic data has only begun to be a science; and

the development of this science has been called forth by the advance of computer

programming. Among the computer programming languages, LISP is one of the few

in which the processing of symbolic data is treated just as systematically and

scientifically as the processing of numerical data is treated in all computer

languages.

...

o

o

0

..". t.> ..

15 July 1966 7 TM-27l0/l0l/00(DRAFl'J

For symbolic data processing, just as for numeric data processing, there is a

basic set of skills and a mathematical theory. These skills and theory take

a particular form in the LISP system for symbolic data processing. The mathe

matical theory is beyond the scope of this Primer but is briefly summarized in

an appenclix to the Reference Manual. The basic skills of symbolic data proces-"

sing could easily be taught in elementary school; but nowadays, of course. they

are not. It is the purpose of this chapter of the Primer to present them.

2.2 IDE1I7.'IF IERS
In dealing with symbolic processing, we recognize certain sequences of characters

called identifiers. Identifiers have the following properties:

Identifiers are the basic units of symbolic data (i.e.,

identifiers are the words of the language).

I~tifiB~s are composed of sequences of signs, the elements

of the LISP alphabet. Sign means a letter, a numeraZ, or a

mark. Letter means one of the 26 letters of the English

alphabet, written in the form of a Roman capital (A, B ••• Z).

Numeral means one of the ten Arabic numerals (0, 1 ••• 9).
Mark means one mark, each associated with a name or names

in the following list:

+ plus :sign
minus: sign
spaoe" blank

period. deoimal:poin~ dot. LISP:dot. dot:operator
, oomma

= equaZs:sign
(Zeft:parenthBsis
) right:parBnthBsis

quote. apostrophe
fenoe

'.) ~

. 15 July 1966 8 TM-2710/101/00(DRAFT)

•

CQZon

• semi:coZon . ,
+ Ze ft: arrOlA1

t up:arrOlA1

• asterisk

< Zess:than:sign

> greater: than: sign

/ s'Lash

\ reverse:sZash

Out of identifiers we may make aore and more complicated

units of symbolic data.

An identifier is spelled in the same way (made up of the

same signs on each occurrence.)

Identifiers that are not spelled the same way have no necessary

or intrinsic relation to each other. Thus, for example, as

identifiers, ABC and ABCX are as unrelated as ABC and RQ.

There are a number of ways to compose acceptable identifiers in LISP, so that

we can name what we want to talk about. All these ways. however. are limited

by the fact that we have to use the equivalent of a typewriter key not only

to compose identifiers but also for all other signs in LISP.

So there are rules for constructing identifiers. These are the rules (although

these are not all the rules.)nevertheless, at the start they are a sufficient

set.

•

A sequence of signs that satisfies the following three

rules is an identifier.
The only signs that may be in the sequence are Zettel's and

Arabic nwneraZs.

/~\ , ,

~.'

o

0

o

15 July 1966 9 TM-2710/101/00(DRAFT)

A spaae is not acceptable as a sign in an idQnt~;rier; thus THE is not

acceptable, and the intended identifier must instead be written THE.

The first sign of the sequence is a tetter.

The sequence is not.broken up in any way, such as DY the

insertion of spaaes or hyphens or punctuation marks or

by printing or writing on two different lines.

Under these rules we can see that the following are acceptable examples of

identifiers:

A
ITEMl6

T222

XYZ

ABC
CHICAGO

The following are not acceptable identifiers:

LOS -ANGELES

LOS ANGELES

5ABC

x Y Z

The minus:sign or hyphen is not allowed in

an identifier.

The spaae prevents this sequence from being

a single identifier.
The first sign may not be a nume~Z.

This is not one identifier. It could be

considered ~s three identifiers.

I_titwp. are uled in many ways in LISP. The most important use of an

identifier is as a name for something. IdBntifiezts are used to name many

different types of entities; Just how, is made clear in succeeding chapters.

15 July 1966 10 TM-2710!101!00(DRAFT)

2.3 ATOMS

One of the e%pressions that is acceptable in LISP 2 is called ~~.

The definition of atom is introduced gradually. At this point we can say:

Every identifier is an atom.

Intuitively, an atom in LISP is something like a word in language; an atom

like a word, is made up of acceptable signs in acceptable ways, and it is

treated as a basic unit of discourse. In this chapter, most examples of atoms

are identifiers. In addition, any statement made in this chapter about atoms is

true for all kinds. of atoms.

2.4 S.EXPRESSIONS

The most general type of datum in LISP 2 is the S-expression. The term is derived

from "symbolic expression", but S-expression has a specific technical meaning.

S-expressions are the most important kind of datum in LISP, and they are the

main subject of this chapter.

We can define S-expression quite simply in terms of atom and a mark which is

called the LISP:dot and is written as a period with a space on each side. The

following rules apply:

Rule 1: Every atom is an S-expression.

Rule 2: If x and y stand for S.e::cpressions ,then (x • y) is an S-e:cpression.

In the expression (x • y) the period is called the dot:operator or the LISP:dot.

This is an example of what is known to mathematicians as an inductive definition.

The way in which it works is illustrated by the following example, in which we

show that (M2 • (X • M2» is an S-expression.

X is an identifier. Therefore. it is an atom. Therefore,

by Rule 1 it is an S-e::cpression.

c)

• M2 is an S-e::cpressiob by the same reasoning. C
• Since both X and M2 are S~e%pr-e88ion8. it follows by Rule 2

that (X • M2) is an S-e::cpression.
Since both M2 and (X • M2) are S-e::cpressions~ it follows by

Rule 2 that (M2 • (X • M2» i; an S-e::cpression

o

o

o

15 July 1966 II TM.2710/l0l/00(DRAFT)

One simple detail needs to be stressed here. The pePiod (.) is used in

several different ways in LISP 2. When it is used as in Rule 2 above to combine

S-exppessions, it is always written with a space before it, and a spaoe after it.

Failure to do this may result in an incorrect S-~pession.

Examples of S-exppessions:
A

(A • B)

«A. B) • (e • D»
(NEWYORK • (KANSASeITY • SANFRANeISeO»
(A • (B • (e • D»)

«(A 0 B) • C) • D)

The last two examples are different S-~~ssions because the paP8ntheses occur

in a different pattern.

Some examples of entities that are not S-~pessions follow, together with their

explanation:

A 0 B
(A 0 B • C)

(A • B»

Problem Set 1:

Without papentheses, this is not an S-B=ppession.
If an S-ezppession is to contain three S-ezppessions

with two dots, then two of the S-e=ppessions and

the dot between them must be enclosed in another

set of pa~entheses: thus. «A. B) • e) or

(A • (B • e» are acceptable,

The number of Ze!t:paPentheses must be equal to the

number of ~ght:~entheses.

Which of the follOWing are S-~~s8ions?

a. UVW

b. (A. B • C)

c. (A. Be)

d. «(A. B) 0 C) • E) • (F • (Go H»)
eo «A. B) • (c • D) 0 (E • F»

fo «X»»

Answers; See page 1~8

15 July 1966 12 TM-27l0/l0l/00(DRAFT)

FUNCTIONS

We may' have functions in algebra. so we may have functions in LISP. An

example of a function in algebra and a function in LISP is subtraction. The

operation of subtraction in algebra is such that given any two numbers A and B. a third

number C is produced which is the result of subtracting B from A. The operation

of any fUnotion in LISP is such that given one or more data Which are called the

arguments of the fUnction, another datum is produced which is the result of the

operation of the function on the arguments. This result is called the value of

the function.

In LISP the arguments and vaZue of a function may be numbers or atoms or

S-ezpressions, etc., or any mixture of them. as for example a function which

operates on an S-~ression and tells the number of atoms in that S-ezpression.

It is a common convention in mathemaiics to write the arguments of a function

with parentheses around the group of arguments and commas to separate them.

Thus, we could write in LISP:

DIFFERENCE (A. B)

If the identifier DIFFERENCE had been appropriately defined, this would mean in

LISP the result of A minus B.

It is possib.le in LISP for a function to have no arguments. Suppose FN is such

a function. Then the fact that FN has no arguments. may be indicated in LISP by

writing nothing at all between the Zeft:parenthesis and the right:parenthesis, thus:

FN ()

2.6 QUOTE

In LISP, when an S-~ztession is used as the argument of a function, it is

preceded by a quote (an apostztophe).

For example:

FN (. A) The S-ezpztession A is the argument of FN.
FN ('(C • R» The S-e3:pression (C • R) is the argument of FN.

The reasons for this procedure are given in Chapter 5; here in Chapter 2, this

procedure has no consequences that create difficulties.

c

C:
---'

c

o

/-------"

I I
~

o

15 July 1966 13 TM-2110/101/00(DRAFT

THE FUNCTION CONS

As was said earlier. if x and y stand for two S-expressions. then (x • y)

is an S-ezpression. where the dot is the LISP:dot. CONS is a function

of two arguments such that if its two argument~ are x and y, then its vatue is (x • y).

For example:

CONS ('A, 'B) is (A • B)

For another example:

CONS('A, '(B. C» is (A • (B • C»

Note that the outer pair of parentheses following CONS delimits the arguments

of CONS, while the inner pair of parentheses are essential parts of the

S-ezpr8ssion (B • C), the result of CONS operating on 'B and 'C. This

example may be read aloud as follows:

The value of CONS of quote A comma quote B dot C is A dot (pause) B dot C.

Here are more examples of the operation of CONS:

CONS('(A. B),'(ORANGE • VIOLET» is «A. B) • (ORANGE. VIOLET»

CONS('Xl, CONS ('X2, CONS('X3, 'x4)}) is (Xl. (X2 • (X3 • x4»)

CONS(CONS(CONS('Xl,'X2),'X3),'X4) is «(Xl. X2) • X3) • x4)

Problem Set 2:

Evaluate each of these expressions.

a. CONS('WINE, 'CHEESE)

b. CONS('TUOLUMNE, CONS('SANJOAQUIN,'KINGS»

c. CONS('(A. B),'(C • D»

d. CONS(CONS('A, 'B). CONS ('C'D»

e. CONS('(A. B), COD('C,'D»

Answers: See pages 138, 139

15 July 1966 14 TM-27l0/l0l/00(DRAFT}

2.8 THE FUNCTIONS CAR AND CDR

Whereas CONS is a funotion that puts S-e:t:pressions together. CAR (pronounced

"car") and CDR (pronounced "could-er") are funotions that take apart S-e:&pressions

(that are not atoms). Any S-e:t:pression is either an atom or not an atom. If

z is an S-expression that is not an atom. it must be of the form (x • y) where

x and yare S-e:t:pressions.

By definition, CAR of z is x and CDR of Z is y. CAR and CDR are not defined

when their arguments are atoms.

For example:

CAR(tA) is undefined

CAR('{A. B» is A

CAR('(A. (B • C)}) is A

CDR('(A 8 (B • e))) is (B • c)

CDR ('(A • B» is B

CAR(CDR{t(A. (B • C») is CAR('(B • C» which is B

CAR(CDR('A • B») is CAR(tB) which is undefined

CDR(CDR('(A • (B • C»» is CDR('(B • C» which is C

The names CAR and CDR arose as mnemonics in the early development of LISP, and

have continued in use because they are short and easy to say. because they are

symmetrical, and because they easily form longer names of functions involving

several CARs and CDRs in succession: For example. CAAR is a funotion meaning

CAR of CAR of. CADR is a jUnotion meaning CAR of CDR of • and CDADR is a

funotion meaning CDR of CDR of CAR of CDR of ,etc. CADR{'(A • (B • e») is

eAR(CDR('(A. (B • C»».which is eAR('(B • C» which is B. Observe that in

expressions using CADR or in e:t:pressions such as CAR(CDR('(A • (B • C»». the

CDR or D operation is done before the CAR or A operation •

.
For example:

CDAAR('«(W. X) • Y) • Z» means CDR(CAR(CAR('«(W • X) • y) • Z»» which 1s X. c

,r--'

(~

o

15 July 1966 15 TM-2710/101/00(DRAFT)

Problem Set 3:
Evaluate each of thes'e 6Zpl'essions. (Some of them may be undefined.)

a.

b.

c.

d.

e.

f.

g.

h.

1.

J.
k.

1.

m.

n.

o.

CAR('A)
CDR (, (A • B»

CAR(CDR('(STRAVINSKY. (BARTOK. SIBELIUS»»

CDR(CAR(CAR('«(HAT • TIE) • SHIRT) • JACKET»»

CAR(CDR('«AQUITAINE • GASCONY) • ARAGON»)

CAR (CONS ('A, 'B»

CAR(CDR(CONS('(A • B), ,(C. D»»

CONS(CAR('(A • B», CDR('(C • D»)

CONS(CAR('(A. B»,CAR('C • D»)

CONS(tA, CAR('(C • D»)

CADR('(A • B»

CADR('(SHRIMP • (LOBSTER. CRAB»)

CAAR(CONS(CONS('A.'B),'C»

CDDR(CONS('A,'(B • C»)

CONS(CAAR('«A • B) • C», CONS('D, CDDR('(E • (F • G»»)

Answers: See pages 139, 140

2.9 BOOLEANS AND PREDICATES

A boo'Lean is a type of atom. There are exactly two boo'L6ans. namely TRUE and

FALSE. They are very like "true" and "false" in ordinary language. Because

booZeans are atoms, they are also S-6~r6ssions. However, they are not id6ntifi6l'S.

A function in LISP 2 is called a pr6dicat6 if its values are always one or the

other booZ6an.

In programming, it is frequently necessary to choose between alternatives according

to whether a given condition is true or false. The use of booZ6ans and p1'6dicates
in this process is illustrated further on.

15 July 1966 16 TM-27l0/l0l/00(DRAFT)

The boolean FALSE is also expressed by either one of two other names:

NIL

()

NIL is not an identifiep; it is another name for the boolean FALSE. FALSE,

NIL and () are absolutely equivalent names for the same booZ.ean; it is a

matter of indifference which one is used at any time.

2.10 LIST: NOTATION

The notation for writing S-e:ppessions that has been introduced SO far is known

as dOt:notation. It is 'not very convenient for representing symbolic data

because of the larger number of dots and parentheses required. There is another

notation called Z.ist:notation which allows one to write many S-e~pessiona more

conveniently than in dOt:notation.

It is important to understand that no new type of S-~ression is being

introduced in this way: instead we h~ve a new way of writing S-e~pessions that

have already been introduced.

Given any S-e~pession in list:notation, it is always possible to write the

same S-e~pession in dOt:notation. However. the converse is not always true.

Definition:

Given (xl x2 ••• Xn) where xl' x2 ••• are S-~PBssions. then this by

definition is the same S-exppession as (Xl' (x2 •••• (xn • NIL) ••• ». The form

(xl x2 •••• Xn) is called a list.
f
Examples:

(A M D H) is the same as (A • (M • (D • (H • NIL»»

(A B) i~ the same as (A • (B • NIL»

(A) is the same as (A • NIL)

() is the same as NIL

•.

o

o

0

15 July 1966 17 TM-2710/101/00(DRAFT)

The list:notation (A B) and the dot:notation (A • (B • NIL) are equivalent names

for exactly the same S-expression; either may be used.

Lists may occur within lists to any desired depth. For example,

«ABC) (DEF) (GHI»

is a list of lists (to depth 2.) At each depth, the list stands for an

expression using dot:notation according to the definition given above.

For example, consider the S-expression «A B C) (D E F) (G H I». According

to the rule:

Then

(A B C) is the same S-expression as (A (B (C NIL»)

(D E F) is the same S-expression as (D • (E • (F • NIL»)

(G H I) is the same S-expression as (G (H (I NIL»)

«A B C) (D E F) (G H I» can be written as:

«A. (B • (C • NIL») (D • (E • (F • NIL») (G • (H • (I • NIL»»

Here dot:notation and list:notation have been mixed, and this is acceptable

also. To put this into pure dot:notation, we observe that it is of the form (x y z) and

rewrite it in the form (x • (y • (z • NIL»). This gives us:

«A. (B • (C • NIL») • «D. (E • (F • NIL») • «G. (H • (I • NIL») • NIL»)

List:notation. where it can be used, is obviously compact and convenient.

Problem Set 4:

Rewrite each of the following S-expressions using only dot:notation.

a. (A)

b. ((A))

c. (HE MADE THE STARS ALSO)

d. (() (A) (A A»

e. (A (A) «A»)

15 July 1966 18 TM-27l0/l01/00(DRAFT)

Rewrite each of the following S-expressionsusing ~iBt:notation as much

as possible:

f. «A. NIL) • «(B. NIL) • NIL) • NIL)

g. «A. NIL). «B. NIL) • NIL»

h. (A. B)

i. ««A. NIL) • NIL) • NIL) • NIL)

j • ((X • NIL) • « NIL • Y) • NIL»

Answers: See pages 140, 141

There is another mixed notation that the programmer may never use. but which

from time to time appears on computer output. An S-e~reBBion of the form

(xl x2 ••• xn_l • xn) is. the same as the S-~preBsion (xl • (x2 '0' (Xn_l 0 Xn)

• o. ».

Example:

(A B • C) is the same as (A • (B • C».

The behavior of the funations CAR, CDR and CONS on Zists can always be determined

by translating the arguments into dot:notation, evaluating, and then, if desired

translating back into Zist:notation.

Example:

CDR (, (A B C»

CDR('(A. (B 0 (C. NIL»» is (B, (C. NIL» which can be

written in Zist:notation as (B C). Therefore, CDR('(A B C» is (B C) .

Problem Set 5:

Evaluate each of these expresBions:

a. CAR (, (A B C»

b. CADR (, (A B C»

c. CADDR (, (A B C»

d. CDR (, (A Be)

e. CDDR(• (A B C»

f. CDDDR(• (A B C»

·.

o

o

o

15 July 1966 19 TM.2710/101/00(DR).FT)

g. CAAR ('(ABC))

h. CONS ('A, ' (B C»

i. CONS('A, CONS ('J?, '(C»)

j • CONS('A, CONS('B, CONS('C, NIL»)

k. CONS('(A B),'(C D»

1. CONS(CONS('A, NIL), NIL)

m. CDAR (, ((A B) (C D»)

Answers: See pages 141, 142

2.11 THE PREDICATE EQUALS

The prediaate EQUALS or = has the same meaning in LISP as it has in ordinary

mathematics. For example, it is true that 'A = 'A, but it is not true that

'A = tB.

When evaluating an expression of the form x=y, the vatue is TRUE if x and yare

the same S-expression and FALSE otherwise. Two S-e.zpress-tonB may be the same

even if they do not look the same, because one is written in tist:notation and

the other is written in dot:notation. In this case, the vatu6 of x=y is true.

Examples:

'(A B) = '(A B) is TRUE

'(A)= '(A • NIL) is !RUE

, (A • B) = '(A B) is FALSE

CONS('A='A, 'B) is (TRUE. B)

CONS('A, 'B='C} is (A • FALSE) or (A • NIL) or (A)

Problem Set 6:

Evaluate the following expressions.

a. '(HELLO THERE BILL) = '(HELLO THERE JOE)

b. FALSE=()

c. NIL=()

d. '(A (B • C}) = '((A • B) • C)

e • CAR (, (A B» = CADR (, (B A»

f. CONS(CONS('(A B), '(C D»,'A = 'B)

Answers: See pages 142, 143
-- ._._-----,., ,.-------------

15 July 1966 20 TM-2710/l0l/00(DRAFT)

2.12 The PREDICATE ATOM

The pl'edicate ATOM has the vaZue TRUE is its al'gwnent is an atom, and the

vaZue FALSE if its al'gument is not an atom. Remember that identifiel's. bool,eans.

and other things not yet defined are atoms.

Examples:
ATOM{'A) is TRUE

ATOM{ '(A • B» is FALSE
ATOM(, (A» is FALSE

ATOM('(» is TRUE (because () is FALSE which is a bool,ean)

ATOM(CAR('(A B C») is ATOM('A) ~ich is TRUE

Problem Set 7:

Evaluate the following e:t:pl'essions.

a. ATOM ('TUVWXYZ)

b. ATOM('A) = ATOM('B)

c. ATOM(CDR('A B»}

d. ATOM('A = '(B C»

e. ATOM(CAR (CONS(CAR('(A B)}, CDR('(C D»»)

Answers: See page 143

2.13 THE FUNCTION LIST

LIST is a function that has an indefinite number of al'guments. It may .have
zero, one or more al'guments.

Examples:

LIST(xl , ••• Xn) has the same vaZue as CONS(xl , ••• CONS(xn, NIL) •••)

LIST('A, 'B , 'C}has tbe same val,ue as CONS('A, CONS('B, CONS('C, NIL»)
which is (A B C)

LIST('A) has the same vaZue as CONS('A, NIL) which is (A)

LIST() is () or NIL

LIST{LIST (LIST('A»} is (((A»)

LIST('(A B), '(C D» is «A B) (G D»

l!
.\

; \ -eo ... ~

o

c

~---~----- ---

15 July 1966 21 TM-2710/l01/00(DRAFT)

Problem Set 8:

Evaluate the following BXppessions;

a. LIST('A, 'B, I (C D»

b. CAR(LIST('A, 'B, 'C»

c. CAR(LIST('(A B C»)

d. ATOM(LIST('A»

e. LIST(I A, 'B)=CONS('A, CONS ('B, NIL»

Answers: See pages 143, 144

2.14 TBB PREDICATE NULL

The ppedioate NULL has the vaLue TRUE if its aPgument is the booLean FALSE and

has the vaLue FALSE if its apgument is anything e18e.

o Examples:

o

NULL(FALSE) is TRUE

NULL«» is TRUE

NULL(NIL) is TRUE

NULL(TRUE) is FALSE

NULL('A) is FALSE

NULL('«(A B C» (D») is FALSE

NULL(CDDR('A B») is TRUE

Problem Set 9:

Evaluate the following ezppessions.

a. NULL(CADDR('(A (B C) D»)

b. CONS(' A ,NULL ('A))

c. NULL(LIST ())

d. NULL(CDR(LIST 'A»)

Answers: See page 144

15 July 1966 22 TM-2710/101/00(DRAFT)

CHAPTER 3

SOME ILLUSTRATIONS OF PROGRAMMING IN LISP 2

This chapter contains several LISP 2 pPOgrams--miniature. but complete

The text explains how the programs are organized and the results they produce.

It should be possible to understand the sense o~ these illustrative programs,

even though not enough in~ormation has yet been given for the reader to write

a program himself.

3.1 A PROGRAM TO SOLVE QUADRATIC EQUATIONS

We shall write a program in LISP 2 that solves quadratic equations of the form

ax2 + bx + c = 0

To use this program on any occasion, you need tb type in the name of the program

(suppose we call it QUADSOLVE) and the numbers a, b, and c. If the equation

has real roots, the program replies by typing out the numbers that are the

solutions for xi otherwise it types out the report COMPLEX.

The program that we shall express in LISP 2 can be summarized by the following

algorithm in English:

Stet) 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Compute b2 _ 4ac, and call it w.

If w is negative, then type out the word COMPLEX and

halt; otherwise go to step 3.

Compute (-b+IW)/2a and print the value

Compute (-b-IW)/2a and print the value •.

Type out the phrase PROBLEM SOLVED.

Halt.

Let us suppose that you are working at a time-shared computer ~aeility. and that

you have just called LISP 2. The computer now waits for you to type something.

First, you type the following funotion:definition of the LISP 2 funotion

QUADSOLVE, which solves quadratic equations using the algorithm just stated:

. /

o

o

15 July 1966 23

FUNCTION QUADSOLVE(A,B,C) BEGIN REAL Wi

V+-B+2.4*A*C;

IF W <.0 THEN RETURN 'COMPLEX';

PRINT ((-B+SQRT(W))/(2*A»;

PRINT«-B.SQRT(W»/(2*A»;

RETURN 'PROBLEM SOLVED';

END;

TM .. 2710/l0l/00(DRAFT)

When these lines have been typed, the waiting LISP 2 computer system has

absorbed the function:definition of the funotion QUADSOLVE. You may then

call QUADSOLVE and use it.

For example, suppose you desire to solve the particular quadratic equation

2 3x +3x+4=o. You type:

QUADSOLVE (3,3,4);

2 This requests the solutions of 3x +3x+4=o. There are no real solutions to

this equation; therefore the program prints out:

COMPLEX

LISP 2 is then ready for your next example, which might be:

QUADSOLVE(3,7,4);

This does have solutions, and the progPam replies:

-1.0

-0.75

PROBLEM SOLVED

Let us now comment on the components of jUnotion:definition and explain their

meaning.

15 Ju:1.y 1966

Component

FUNCTION

QUADSOLVE

(A,B.C)

BEGIN ••• END

REAL W

W+Bt2-4*A*C

24 ~-27l0/10l/00{DRAFT)

Meaning

This informs the LISP 2 system that a. function:definition

is being presented.

This is the name of the function being defined. AnY' name.

of course. can be chosen that has not already been given a

meaning in the LISP 2 system.

This is a Zist of the names of the arsumentR or th~
argument:parameters of QUADSOLVE. It specifies that

QUADSOLVE has three arguments~ and that they are called

A. Band C.respectivelY" They could. of course, have

been called M, N, and P or any other names, but then these

other names would have. to be used consistently throughout

the rest of the tunotion:definition.
These t~~ words along with whatever goes between

them constitute the main part of the funotion:definition.
It is called the body. The main entities inside the body
are either decZarations or statements. TheY' are separated

by semi:ooZons.
W is called an internaZ:parameter. REAL W is a

deoZaration that says that the vaZues for Ware

real numbers in the mathematical sense. and floating

point numbers in the computer sense.

This is an assignment:statement. It saY's that W is

assigned the lIa~ue of B2_4AC. The Zeft:arrow means "is

assigned the vaZue of". The up-arro1J mea.s "raised to the

the power •••• ". Bt2 means B2. The asterisk means

"multiplied by". 4*A*C means 4AC. Although no mathematical

parentheses appear around Bt2.4*A*C. the Zeft:arrow implies

these parentheses.

o

o

C)

o

15 July 1966 25 ~4-2710/101/00(DRAFT)

IF W<O THEN RETURN NCOMPLEXN

This is a conditionaZ:statement. The Zess:than:sign
«) is used to say that if W is less than 0, then

the computation is complete and the vaZue of the

function QUADSOLVE is the word COMPLEX. The word

RETURN means "this is the end of the computation of

this function, and the'I)«Zue of the function is what

follows." NCOMPLEXN consisting of the word COMPLEX

inside two fences (N) is called a stping. A stping

is basically a sequence of characters handled as a

constant unit and not having any other meaning in

the LISP 2 system.

PRINT((.B+SQRT(W»/(2*A»

This is another statement. It says "print out the

vaZue ,of the ezppession (-B+rw) /2A". SQRT is a function
in the LISP 2 system that gives square root.

RETUR!(#PROBLEM SOLVEDH #PROBLEM SOLVED# is another stping that is returned

as PROBLEM SOLVED by the computation as a result.

END. END indicates the end of the body. When the semi:coZon
following END is typed, the entire function:definition
is absorbed by the LISP 2 system.

These comments are not intended as complete explanations. They serve only as

a very brief illustration of a LISP 2 7)X'Ogpam •

This illustrative progpam, if it had been written in any of several other

algebraic compiler languages, would have looked quite similar. But the next

examples of progpams illustrate programming techniques peculiar to LISP 2.

15 July 1966 26 ~4-27l0/l0l/00(DRAFT)

Po PROGRAM TO COMPUTE THE FACTORIAL OFA NUMBER

Mathematically, the factorial of a positive integer is the product of all the

integers starting from 1, and up to and including the given integer. The

factorial of 0 is 1 by definition. The factorial of a negative integer is

undefined. The factorial of n is usually written in mathematics as nl,

the exclamation point being read as "factorial." For example,

61 = 6 x 5 x 4 x 3 x 2 x 1, which is 120.

The following funotion:definition expresses FACTORIAL in LISP 2:

FUNCTION FACTORIAL(N) BEGIN INTEGER K,L.

K + O.
L + 1;

A: IF K = N THEN RETURN L;

K + K+l.

L + L*K.
GO A;
END;

There are some new features in this program, and they may be briefly explained:

Component

INTEGER K,L

A:

GOA

Meaning

This is a deoZaPation. It says that K and Lare

intepnaZ:pa~etep8 ana that their vaZues are

integer8.

This is a ZabeZ. It labels the 8tatement followi~ as

being the 8tatement named A.

This is a gO:8tatement. It causes the program to

continue by jumping to 8tatement A and proceeding

from there.

We shall now give an alternative definition for the fUnction FACTORIAL.

This alternative uses a fundamental concept of LISP 2 called recursion.

Consider the following definition of factorial in English: "The factorial

of 0 is 1; the factorial of any positive integer is that in~eger times the

factorial of the next smaller integer."

c

o

c

o

o

15 July 1966 27 ~{-27l0/101/00(DRAFT)

This definition is not a circular definition; it is a recursive:definition

because factorial for one argument is defined in terms of factorial for

another argument, and the entire sequence of arguments comes to an end. For

example, if we want to know what 5! is, the definition tells us that it i8 5

times 41, and additional uses of the definition tell us what other factorials

are. The apparent circularity ends when the last case is resolved. For

example:

51 = 5 x 41

= 5 x 4 x 3!

= 5 x 4 x 3 x 2!

= 5 x 4 x 3 x 2 x l!

= 5 x 4 x 3 x 2 x 1 x 01

= 5 x 4 x 3 x 2 x 1 x 1

= 120

This way of defining factorial in English suggests a LISP funotion:definition program
for FACTORIAL that is also recursive. It is written as follows:

FUNCTION FACTORIAL(N) IF N=O THEN 1 ELSE N*FACTORIAL (N-l)i

Like most recursive:definitions, it is both extremely compact and powerful.

It is equivalent to the previous LISP 2 funotion:definition in the sense that

it always gives the same answer.

Having given this funotion:definition, we m~ type:

FACTORIAL(7)/(FACTORIAL(5)*FACTORIAL(7-5»;

and the program replies:

21

which is correct, since 71 divided by 51 times 2! equals 21

The ability to create recursive:definitions .1.S a skill that can be developed by o practlce. Recursive:definitions are a very powerful feature of LISP programming;

therefore,the examples in this Primer emphasizes them.

15 July 1966 28 TM-27l0/l0l/00{DRAFT)

A PROGRAM TO DETERMINE MEMBERSHIP IN A LIST

The following example processes symbolic data, whereas the previous ones

processed numbers. We shall use as an example a function related to Zists:

the function MEllBER. An element is a member of a Hst if and only if that

element is present in the list. This function has two arguments, which are

an element and a Hst •.. It is a predicate because its only vaZues are TRUE

and FALSE. If the element is a member of the Hst, then the vaZue of MEMBER

is TRUE, otherwise the vaLue of MEMBER is FALSE.

FUliCTIOlI MEMBER (E ,L)

IF NULL (L) THEN FALSE

ELSE IF E=CAR (L) THEN TRUE

ELSE MEMBER (E,CDR(L»;

Let us trace through this fUnction:definition step by step:

The word FUNCTION means that we are defining a function

The name of the function is MEMBER.

The two variab 1,es of which MEMBER isa function are E

(which stands for an element) and L (which stands for a List).

IF NULL (L) means "if L is empty,"

THEN. FALSE means "the function has the value FALSE for this case. It

IF EaCAR(L) means "if the element E is the first element of the Hst

L",
THEN TRUE means "the function has the value TRUE in this case~"

ELSE MEMBER (E, CDR(L)) means "in other cases, discard the first

from the Zist L and apply the same definition over again

to the rest of the Zist L."

For example, consider MEMBER ('A, '(A B C». In this case the second if:cZause

produces true, and so MEMBER has the value TRUE.

For another example. consider MEMBER (fB, t (A B cD. In this case, the first

c'

time through, with L set at (A B C), we obtain no decision, and so we go through C'
a second time with L set at (B C). This time we do obtain a decision,.true, because

B = CARt(B C».

Further examples of function definitions and programs using LISP 2 are given in

subsequent places in this Primer.

o

o

15 July 1966 29 TM.2710/101/00(DRAFT)

CHAPTER. 4

ARITHMETICAL:EXPRESSIONS

An expPB88ion can be roughly explained by saying that it is something that

can be evaluated to yield a va7;ue • For example, 3+4 is an 8ZpPB88i.on; the

vaZue it yields is 7. However, -A(X/» { is not an ~pe88ion because it

is simply a collection of signs that has not been defined to have a meaning.

Also. GO A is not an e~pession. because even though it causes something to

happen. it nevertheless does not yield a vaZue.

In fact. GO A is called a statement. In a later

chapter, the concepts of expP6s8ion and statement are further explained and

clarified. The distinction between the two concepts is essential.

Another example of an e~res8ion is A+3. This ezpres8ion may be evaluated

and yields a vaZue; however, the vaZue is dependent on the meaning given to A

by lome particular context. Outside of a particular context there i8 no

reason to give any particular vaZue to A. The nature of the context that

i gives meaning to A is discussed later, but some idea of its nature may be

o

gained by studying the examples in this chapter.

NUMBERS

A number is an e~ression. It is an e~res8ion because it can be evaluated.

and the vaZue it yields is itself.

Several different types of numbers are used in LISP 2. The two most important

types, integers and reaZ:numbers are described here.

4.2 INTEGERS
An integer, sometimes called a ~hoZe:number, is a numbep with no fractional

part. It may be positive, negative or zero.

15 July 1966 30 TM-27l0/10l!00(DRAFT

In LISP 2 an integep may be:

Examples:

(1) A sequence of one or more of the nume~t8 o through 9. or

(2) A ptu8:8i~ (+) followed by a sequence of nume~t8 as

in (1) above, or

(3) A minu8:8ign (.) followed by a sequence of numel'at8 as in (1)

above.

(4) The same as in (1). (2) or (3) above. followed by the

Zettel' E followed by a sequence of one or more

numeraZs.

5

+37
... 0

299

-80

007

lE9 (lxlO9)

... 7E3 (_7xl03)

3E4 (3X104)

30E3 (30xl03)

+3E4 (3X104)

30000 (3X104)

The last 4 examples are all equivalent.

Examples that are incorrect in LISP 2:

E2 An integel' must have at least one num.e~t that is not

to the right of the E. (E2 is an identifiel'.)

2E+6 In the case of an intege~. a 8ign is not permitted to

the right of the Zettel' E.

lE1El

6E

Only one E is permitted.

The E must be followed by at least one nume1'aZ. c

o

"--"--"~----~----"---"----"------- -- ------

15 July 1966 31 TM-27l0/101/00{DRAFT)

In LISP 2 there is a limitation on the maximum size of an integer (whether

positive or negative). This limitation depends on the computer being used.

An integer with a pLus:sign is equivalent to the same number without a sign.

Thus, 3, +3, and 003 are all equivalent.

In LISP 2 an integer that ends in several zeros can be written using a more

abbreviated notation using the Letter E to indicate an exponent. For example,

-720000000 can be more conveniently written as -72E7, meaning -72 times 107 •

4.3 REAL: NUMBERS

In LISP 2, reaL:numbers differ from integers in several ways. Reat:numbers

may have fractional parts (for example, 1.75); they may often be extremely

large as compared with manageable integers (for example, 2.5E22); they may be

(-~) very small (for example, .000000098). ,_/

o

The definition of a reaL:number is a little more complicated than the definition

of an integer. It is worth noting that integers never have deoimaL:points

while reaL:numbers always have deoimaL:points.

A reaZ:number has three parts of which the first and third are optional:

Part 1 consists of a pLus:sign (+) or a minus:sign{-). This part

may be omitted.

Part 2 consists of several numeraLs, followed by a deoim~Z!point.

followed by several numeraLs. There may be no numerats to the left

of the deoimaL:point or there may be no numeraLs to the right of the

deoimaZ:point, but not both of these conditions may be true at once.

In other words, there must be at least one numeraL either to the

left or the right of the deoimaZ:point.

15 July 1966 32 TM-27l0/l0l/00(DRAFT)

• Part 3 consists of the l,etup E followed by an integel' that does

not contain the tettep E itself. The integep may have a pl,us:sign

or a minus:sign. This part may be omitted.

The Zettel' E followed by an integep k means that the preceding numbep is to

be multiplied by 10 raised to the kth power. For example, .05E3 means .05

multiplied by 103, which is 50.0; and 1.E-6 means 1. times 10-6, which is

.000001.

Examples:

2.87

2.87E-3

.03E4

30.E4

30.+E4

Examples that are incorrect in LISP 2 are:

4.4

.El

3

2E3

3.2El.5

There must be a numeral, on one side or the

other of the deaimal,:point

There must be a deaimaZ:point

There must be a deaimal,:point to the left of the E

Bo deoimaZ:point is permitted to the right of E

ARITHMETIC: OPERATORS

Certain maPks in LISP 2 are combined to form aPithmetia:opepatops that stand

for familiar operations often performed on numbers. Some of these

apithmetia:ope~toPB are:

Apithmetia:opepatop

+

•
/
-:

Meaning

Addition or plus

subtraction or minus

multiplication or times

division or divided by c==
integer division (example: 14-:3 equals 4)

---------------- --- ------------ ------------

C)

(--- ...

------./)

o

15 July 1966 33 TM-27l0/l0l/00(DRAFT)

\ integer remainder (example: 14\3 equals 2)

+ exponentiation (example: 5 + 3 equals 125)

These arithmetia:operators permit us to form more arithmetia:eXDressions.

Rule A for Forming Arithmetia:Expre8sions:

Let x and y be arithmetia:e~ressions. Then each of the following is also

an arithmetia:expression:

+x plus x

x+y x plus Y

-x minus x

x-y x minus y

x*y x times y

x/y x divided by y

x-:y the result of inte~er division of x by Y

x \ y the result of integer remainder of x by y

Jety x to the power y

(x) meaning the same as x but grouped by parentheses

This rule is recursive. Accordin~ to this rule, each of the followin~ examples

is an arithmetia:expression. If you do not understand why this is so, please refer

to the discussion of reauFSive:definitions in paragraph 2.4.

Examples of arithmetia:expressions:

35

2.7E4

---2

x*y
12-:A

A+B*C

(A+B)*C

(A+B*C)

15 July 1966

A/A/A/3
A
A+5

u-v
5/3
A+2.0

A+(B*C)

«A+B))*' «C»)

«(2»)

34 TM-27l0/l0l/00(DRAFT)

The meaning of some of these expressions may not be clear until the end of

this chapter.

In LISP 2, arithmetio:expressions may contain a mixture of integers and

rea'L:nwnbers. It is not necessary to keep them separated in any way. The

following rules determine what happens in various cases.

Rule 1: When the operations of addition (+), subtraction (-),

negation (also -), and multiplication (*) are performed, the value

is an integer if all of the arguments are integers. The value is a

rea'L:number, if at least one argument is a rea'L:number.

Examples:

2+3 is 5
2+3.0 is 5.0
lE2 + 3 is 103

1.5*1.5 is 2.25
1.E2-2.E-2 is 99.98

Rule 2: When the operation of division (I) is performed, the value is

always rea'L. The division is carried out to the limitation of the

accuracy of the computer on which it is performed.

c

o

o

o

--~-------~~~-

15 July 1966 35 TM-27l0/l0l/00(DRAFT)

Examples I

1/3 is .3333333333

6/3 is 2.0

5.0/2 is 2.5

2.5/2.5 is 1.0

(exactly how many 3's occur depends

on the capacity of the computer)

Rule 3: When integer division (-:) and integer remainder (\) are performed,

the result is always an integer.

The integer quotient is defined as being the integral number of times

that the divisor goes into the dividend. This may be a positive or negative

integer or zero.

The remainder is what is left over after this process has been performed.

The remainder always has the same sign as the dividend.

These de~initions have been chosen so that the following identity holds

exactly:

dividend = (divisor * quotient) + remainder

I~ either argument o~ an expression containing an integer division or

integer remainder operator is a real:number, th~ argument is converted to an

integer by the process of rounding to the nearest integer (see below). The

rounding happens before the operation -: or \ is performed. This procedure

sometimes has peculiar consequences. For example, 3.4-:1.7 is the same as 3-:2 which

is 1. while of course 3.4/1.7 is 2.0

Examples:

5-:2 is 2

5\2 is 1

-5-:-2 is 2

-5\-2 is -1

-5-: 2 is -2
5\2 is -1

5-: -2 is -2

5\-2 is 1

5.0-:2.0 is 2

5.0\2.0 is 1

15 July 1966 TM-27l0/10l/00(DRAFT)

3.4-: 1.7 is 1

3.4\1.7 is 1

Rule 4: If x and y are two ~p~e88ion8. then x t y is x raised to the exponent y.

Examples:
2 t 3 is 8

3 t 2 is 9

If x. y. and z are three exp~e88ion8. then x t y t z is s t (y t z).

Examples:
2 t 3 t 2 is 2 t (3 t 2). which is 2 t 9, which is 512

(2 + 3) t 2 is 8 + 2, which is 64

What about the type of the result, and special cases invOlving zero? The

specifications are shown in Table 1. Here Ii is any numbe~, i is an integer,

and r is a real:nwnbe~.

Case Subcase -
a t i i > 0

a t i i = 0, a ; 0
a t i i = 0, a = 0
at i i < 0, a ; 0
a t i i < 0, a = 0
a t r a > 0
at r

a • 0, r > 0
at r

a • 0 , r s 0
at r a < 0

Examples:

10 t 7
10 + 30

is 10000000

is lE30

o t 0 is undefined

o t 1.37 is 0

Table 1

Type and Remarks

same type as a; if the result

(or small), it is expressed as

1, of the same type as a

undefined

of type real

undefined

exp (r log a), of type real e
0.0, of type real

undefined

always undefined

1 6 is e2.5 loge 13.76 3.7 t 2.5

is too big

a rea 1.:number

o

..

0

o

15 July 1966 31 TM-27l0/10l/oo(DRAFT)

-4 + 2 is 16
14 t 2.0 is undefined

8 t o is 1
8.0 t o is eO, is 1.0

Probl_ set 10:

Evaluate each of these aFithmetio:e:pPBssions using the following table

to deter,mine the vaZues of the vaFiabZes occurring in the ezppessions

a.

b.

c.

d.
e.

f.

g.

VaPiabZe

A-l

A+B

BtA

C-:D
c/D

A*C

D-:l.O

A

B

C

D

Answers: See page 145

4.5 PRECEDENCE

Value

2

-3.0

-5
7.5

The fact that many aFithmetic:~essions are recursive (see Section 4.4)

sometimes makes their meaning ambiguous. For example, consider A + B * C. How

is this to be evaluated? Suppose that A is 2, B is 3 and C is 4. If we take the

e:ppession to mean (A + B) * C, then the ~ppess'on becomes (2+3) * 4, which

equals 20. If we take the e:ppession to mean A + (B • C), then the e:r:pNssion

becomes 2 + (3 * 4). which equals 14. In a programming language this kind of o aabiguity is intolerable; to remove it we use a set of coaventions called the

rules of precedence.

15 July 1966 38 TM-2710/101/00(DRAFT)

Precedence rules are dependent upon the operators used in the expre88ion~ If

an operator appears interspersed between its operands, it is called an

infi%:ope1'ator. If the operator precedes its operands. it is called a

We can state many of the rules of precedence quite simply using Table 2 and

some additional statements.

Rank or Precedence

6

5

4

3

2

1

Table 2

PN[i% and Inti%:9perato!'8

CAR, CDR

arithmetie:operato1's within
. t * e;cpr>e881-onB. " • +. -

equals (=), Ze88:than «).
gNater:than (».
not:equaZ (/=),

'Les8:than:or:equaZ «=).
greater:than:or:equa'L (>=)

ATOM, NULL

the booZean:opemtors,
AND. OR, NOT. etc.

the infi%:opemtor for CONS
which is spaee dot spaee

For More Details, See

Section 5.3
Section 4.4

Section 5.4

Section 5.1
Chapter 8

Section 5.3

o

,

o 15 July 1966 39 TM-27l0/l0l/00(DRAFT)

All operators of higher rank according to this table take precedence over

opePators of lower rank. For example, CAR A + B means (CAR A) + B since

CAR (rank 6) has higher rank than plus (rank 5). But A • B + C means

CONS (A. B+C) since plus (rank 5) takes precedence over the dot for CONS

(rank 1).

Within rank 5, the rules of precedence are as follows:

Rank or Precedence

3

2

1

Table 3

FUnations and OpePators

t (raising to an exponent)

* (times), / (divided by), -:
(integer-divide) , \ (remainder)

+ (plus), - (minus)

o In a case of equal rank, operations are regularly grouped in sequence from

left to right:

o

For example:

(1) A + B - C + D means «A + B) - C) + D (and does not mean

(A + B) - (C+D). for example)

(2) A/B/C/D means «A/B)/C)/D

The one exception is that raising to an exponent (t) is grouped from right

to left. Thus AtBtCtD means At(Bt(CtD».

More information on precedence is explained in later chapters, but there is

a simple and universal rule that can always be followed: When in doubt,

put in enough parentheses to be unambiguous.

15 July 1966 40 TM.2710/101/00(DRAFT)

Problem Set 11:

Examine each e~resBion. (1) Insert parentheses and produce an equivalent

expression which if there were no precedence rules would be completely

unambiguous. (2) Evaluate this expression using the table to determine

the vaZues of the variabZes occurring within the erpression.

Answers:

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

1.

m.

A-3*C

(A .. 3)*C

A-(3*C)

Dtet A

A+B*C+D

A*B+C*D

-D+A

-(D+A)

-D-A

6/3/2

6/(3/2)

6/(3*2)

6/3*2

Variab1..e

A

B

C

D

See pages 146. 147

Va1..ue

5

2.5

1

-6

C:
/

o

o

o

-------~-

15 Ju:lr,. 1966 41 TM-2710/101/00(DRAFT)

4.6 ARITHMETIO FUNCTIONS

Certain operations on numbeps are written in the form '''funation,- (cwgument. aPgument •

••• • aPgument) " rather than expressinp: the function as an infi:c:operatop or

ppefi:c:operatop. Note that the 2rguments are grouped using parentheses and commas

If there are no argumsnts, then it is correct to write fn(). If there are one

or more a,rtguments, then there will be one less comma (,), than there are aPguments.
The ellipsis (•••) is not part of the LISP 2 language. It is merely a device used

in this text for designating a Zist of indefinite length.

Examples:

COS(A-3)

MAX(A,B,C)

ABS(X)*w

ROUND(M)

The following is a partial catalogue of arithmetic:functions available in LISP 2:

f,unation

ABS{X)

SIGN(X)

Number of Arguments

1

1

indefinite

Description

The absolute value of X is -X if X
is negative, and X otherwise. The

type (integep or peaZ) of ABS(X) is
the same as the type of X.

The arithmetic sign of X is 1 if X is
positive, 0 if X is zero (any zero
including -0), and -1 if X is negative.

The maximum of the Xi 1s the largest··
~st positive) value. If at least
one argument of MAX is peaZ, then the
value is peaZ. (e.g., MAX(2.0,5) is
5.0)

. ----

15 July 1966

ROUND(X)

ENTlER(X)

SQ,RT(X)

1

1

1

42 TM-27l0/l0l/00(DRJ,FT)

The minimum of the Xi is the smallest (mo~t

negative) value. If at least one aflgwnent

of MIN is reaZ, the vaZue is real.

X is rounded to the nearest integefl by the

formula: ROUND(X) = ENTlER (X + .5).

The entier of X is the largest integefl that

is not greater than X. For example, ENTlER

(2.7) is 2. ENTIER(-2.7) is -3.

If X is not negative, then the square root

of X is its non-negative root. If X is

negative, then SQRT(X) is not defined. The

value of SQRT is always fleal.

Other aflithmetie:functions are EXP, LOG, SIN, COS, and ARCTAN.

Problem Set 12:

Evaluate the following ezpzoessions using the table to determine the values of the

variab le s •

VafliabZe Value

A 2

B 3.0

C 4

D ... o.oE6

E -1

F 2.5

a. ABS(A)

b. ABS(E)

c. SIGN(-B)

d. SlGN(D)

e. MAX(A,-B)

c


~~~------------------

0 
15 July 1966 43 TM-2710/101/00(DRAFT) 

f. MAX(A.-C) 
g. MIN(A.E) 

h. ROUND(F) 

i. ENTIER(F) 

J. ROUND{-F) 
k. ENTIER(-F) 

1. SQRT(C) 

m. SQRT(E) 

n. ABS(A)+ABS(B)*ABS(C) 

o. -ROUND(E)-ROUND{D) 
p. ROUND (-F + .3) 

Answers: See pages 147, 148 149 

(-----.. 
U 

o 



15 July 1966 44 TM-2710/101/00(DRAFT) 

CHAPrER 5. SIMPLE: EXPRESSIONS 

5.1 NUMBERS AS A'IONS 

In Chapter 2 we stated the rule that identifiers and booZeans are atoms. We 

now wish to extend this rule by stating that integers and reaZ:numbers are also 

atoms. As a result, numbers may occur within S-e:x:pressions in Various ways •. 

Examples of Atoms: 

ABC (an identifier) 

TRUE (8. booZean) 

2.5E6 (a reaZ:number) 

-50 (an integer) 

Examples of S-e:x:pressions: 

2.5 

(A (6 TRUE) 7.2) 

(A 6 B) 

(y , 2.6) 

(3.4) 

(3 . 4) 

The last two examples are not equivalent. The s_e:x:pression (3.4) is a List of 

one element consisting of the reaZ:number 3.4 (three, deoimaZ:point, four); 

whereas (3 . 4) is the CONS value of 3 and 4. 

The predioate ATOM is TRUE if its argument is any type of atom. There are other 

predioates that can be used to distinguish the different types of atoms. 

IDP(X) is TRUE if and only if X is an identifier. 

BOOLP(X) is TRUE if and only if X if a booZean. 

NUMBP(X) is TRUE if and only if X is a number; intBgers and reaZ:numbers 

are both numbers. 

c; 



o 

0 

o 

---~---~~~~~-~~- ~-~-.----~----~-- ~~~---~ -------

15 July 1966 

INTP(X) if TRUE if and only if X is an intege~. 

REALP(X) is TRUE if and only if X is a ~eat:numbe~. 

Problem Set ·13. Evaluate the following_e:I:P~e88ion8. 

a. CAR(' (A B C» 

b. CADR( 1(4 5 6» 

c. CDR( 1(1 2» 

d. ArroM(500) 

e. REALP(7) 

f. REALP(CAR('(3.54.5») 

g. CAR(' (1.1» 

h. CAR('(l • 1» 

1- ATOM( I (7» 

j. NUMBP(CAR('(7») 

k. CONS( '(1 2) ,·(3 4» 

Answers: See page 150 

5.2 CONSTANTS AND VARIABLES 

TM.2710/101/00{DRAFT) 

A datum is an S-e:::pres8ion. Thus a nwnbe~ is a datum. because numbers are atoms, 

which are in turn S-ezp~essions. We refer to a p~gz'tZ11I in a computer language 

such as LISP 2 as "data processor." A LISP 2 pl'Ogztam performs various· operations 

(processes) on its data. which are nwnbe~s, identifie~s, composite S-e:Dp~es8i.ons, etc. 

A constant is a datum occuring within a p~g~. It stands for itself as distinct 

from a va~iab'Le, which stands for something else. For example, in the e%p%'ession 

X+3, X is av~iab'Le which must stand for some numbB~ in order for addition to be 

performed, but 3 is a constant. It only means the nwnbe~ 3, because numbe~sare 

never used in LISP 2 as variab'Les; instead, idSntifie~s are used as variabZes. 



15 July 1966 46 TM-2TIO/I01/OO(DRAFT) 

Now what do we do if an identifie~ is to be used as a oonstant? To overcome 

this problem, we use a convention: we put an apostpophe (or single quote mark) 

in front of the identifier, and then the identifier refers to itself and not to 

something else. This mark is called quote, and the operation is called quoting. 

For example, the identifier ANSWER refers to some variable which supposedly is 

the answer to some problem; but if we want the word ANSWER itself written in 

part of the printout of a solution, then when we issue that instruction, we put 

a quote mark in front, and write 'ANSWER. Then this actual word itself is printed 

where instructed. In the same way, 'A means the atom A itself; but A with no 

quote mark is an identifier which is a variable referring to something else. 

For another example, in the expression: 

CONS (A,'A) 

the first A is a variable that may stand for any S-expression, while the second 

A is a constant, and means A itself. 

The following rule specifies when an apostrophe (I) should be used to make a 

constant. 

Definition: A constant is either 

(1) an apostrophe (') followed by any S-expression, or 

(2) a boo 'Lean, or 

(3) a number. 

Since a number is an S-expression, this rule tells us that '3 is a constant. 

But 3 is also a constant (without the apostrophe). Thus, the apostrophe is 

permitted but not required for numbers and boo 'Leans and it is generally omitted. 

The apostrophe is required whenever an identifier or a non-atomic S-expression is 

used as a constant. 

CI 



o 

0 

o 

.. _ ........ - .-~--------~---

15 July 1966 47 TM-2710!lOl!OO(DRAFT) 

Problem Set 14 

Evaluate each of the following ~~e88ion8, using the table to determine the vaZues 

of the v~iabZes occurring in the e:p~e88ion8. 

Va~iabZe VaZue 

A X 

B NIL 

C 3.5 

D (A 4) 

E A 

a. CONS(A,B) 

b. CONS ( 'A,B) 

c. CONS(E,'B) 

d. CDR (D) 

e. C+CADR(D) 

f. SQRT(CADR(D» 

g. CONS(E,C) 

h. CONS(C,B) 

i. C+2 

Answers: See pages 151, 152 

LISP OPERATORS 

CAR, CDR and their compositions (such as CDAR, CADADR, etc.) ~ be used as 

p~efi=:operato~8 without the need to enclose their a~guments in parentheses. 

Their precedence is highest. So the following examples should be clear. 



15 July 1966 

Examples: 

CAR A 

CADRB+C 

CONS(CAR A, CAR B) 

48 

means 

means 

and not 

means 

TM-2710/101/00(DRAFT) 

CAR(A) 

CADR(B) + C 

CADR(B + C) 

CONS(CAR(A), CAR(B» 

The infix:operator spaae dot spaae means CONS. It has a precedence which is 

lower than the precedence of any other operator; and if two or more CONS dots 

occur together, they are grouped from right to left. 

Examples~ 

A • B means CONS(A, B) 

A • B • C means CONS(A, CONS(B, C) ) 

and not CONS(CONS(A, B), C) 

CAR A • CDR B means CONS(CAR(A), CDR(B» 

and not CAR (CONS (A, CDR(B») 

A+B • C means CONS (A+B, C) 

and not A+CONS(B" C) 

Problem Set 15. 

Rewrite each expression adding enough parentheses to determine the correct 

grouping. Then evaluate them using the table to determine the values of the 

variables. 

VariabZe Val-ue 

W 4 

X (A B) 

y ro 

'" 
Z (2) 

(~ 
\._/ 

C -' 



----- ------------

0 
15 July 1966 49 TM-2710/101/00(DRAPT) 

a. W • NIL 

b. Y • X 

c. W*3 • CAR Z 

d. CAR Z+2 

e. CAR X • CDR Z 

f. Y • NIL 

g. 'Y • NIL 

Answers: See page 152 

5.4 EOOLEAN:EXPRESSIONS 

As stated earlier, a predicate is a function whose value is TRUE or FALSE. 

o Using ppetlicateswe can form an ~ression whose vaZue is TRUE or FALSE. These 

are called booZean:e~ressions. 

o 

The predicates introduced in Chapter 2 were ATOM and = (meaning equal). Also, 

the predicates IDP, BOOLP, HUMBP, INTP, andREALP have also been defined. There 

is another set of basic predicates known as the arithmetic:r6Lation:ope~tors. 

Each of these is an inf~:ope~tor. 

Operator Meaning 

= is equal to 

/= is not equal to 

< is less than 

is less than or equal to 

> is greater than 

is greater than or equal to 



15 July 1966 50 TM-27l0/l01/00(DRAFT) 

The reason that the opel'atol' = is here listed again is that when it was first 

mentioned, it was defined only for atoms, not al'ithmetio:e:cpl'BssioruJ • 

Equality (=) may be used to test any two data and is TRUE if they are equal; and 

FALSE, otherwise. If a l'eal:nwnbel' and an integer are numerically equal, then 

the value of = is TRUE; for example, 3.0=3 is TRUE. 

Inequality (/=) is TRUE when = is FALSE, and FALSE when = is TRUE. 

The other four relations are def.lned only when their arguments are numbers, since 

it is not meaningful to ask if one S-e3:pression is greater than another. 

Problem Set 16. 

Evaluate these e~pl'esBiona using the table to determine the values of the 

variables. 

VariabZe VaZue 

A 3 

B 2.4 

C 3.0 

D A 

E (X y) 

a. A=3 

b. A=C 

c. D=A 

d. B>=C 

e. E='X . 'Yo NIL 

f. 'A=D 

g. CAR E='X 

h. 0<:8<=3 

i. 2<C+3<7 

j. 2<A<3 

C:! 



o 

C) 

o 

15 July 1966 51 TM-2710/l0l/00(DRAFT) 

Answers: See pages 153, 154 

THE GRAMMAR AND SYNTAX OF SIMPLE:EXPRESSIONS , -

The purpose of this section is to describe part of the grammar and syntax of 

LISP 2 accurately. 

The terms arithmeti~:expression, boolean expression, etc., classify expressions 

according to the type of datum they have as values. From a broader point of 

view, however, all expressionscan be classified as being simple:expressions, 

~onditional:expressions, or bloak:expressions, and every expression belongs in 

exactly one of these three classes. Conditional: express ions and bloak:expressions 

are not discussed in this chapter but are discussed later. What is a simple:expression? 

In order to define simpZe:expression, we shall make use of the concept of a 

primary. The definitions of primary and simpZe:expression are interdependent. 

Definition 1: Each of the following is a primary: 

(1) A aonstant; 

(2) A variable; 

(3) A form. A form is a funation name followed by a Zeft:papenthesis~ 

followed by the arguments of the funation separated from each 

other by commas, and followed by a right:parenthesis. For 

example, FN{'A, B*C) is a fol'm; 

(4) A aonditionaZ:expression (see Chapter 6) enclosed in a pair 

of parentheses ; 

(5) A simpZe:expression (let's take this on faith for a few more 

paragraphs) enclosed in a pair of papentheses. For example, 

(A+B) or (G-SQRT(M». 



15 July 1966 52 TM-2710/10l/00(DRAFT) 

It follows from this definition that a primary is an expression which, whenever 

it occurs, is unambiguous. The simpZe:e:epression A+B is not a Iprimary , because 

in some contexts it is ambiguous. For example, placed in the context A+B*c, 

the symbols A+B no longer mean the expression A+B, because A+B*c means A+(B*C). 

Definition 2: Each of the following is a simple:expression: 

(1) A primary; 

(2) A prefix:operator followed by a simple:expression; 

(3) A simple:e:epression followed by an infix:operator followed by 

a simp le: expression. 

These rules simply generalize the rule for forming arithmetia:expressions in 

Chapter 4. 

The simple:expressions that result from these rules ~ be ambiguous. To 

prevent ambiguity, it is necessary to consider the rules of precedence to determine 

how simple:expressions are to be grouped. These rules are summarized below: 

Rule 1: CAR, CDR, and their compositions have the highest precedence. They 

capture the smallest possible expression to the right of them. For example, 

CAR AtB means (CAR A)tB. 

Rule 2: Arithmetia:operators are next in the hierarchy of precedence. Within 

the class of arithmetia:operators, there is a subhierarchy: 

Rule 2a: t has the highest precedence, and atbtc is grouped as at(btc). 

Rule 2b: *,/,-:, and \ are next. When these occur together, they are 

grouped from left to right. a/b*c is grouped a.s (a/b)*c. a*b/c*d is 

grouped as «a*b)/c)*d and not as (a*b)/(c*d). 

o 



o 

o 

15 July 1966 53 TM-2710/101/00(DRAFT) 

Rule 2c: + and - have the lowest precedence among the arithmetio:ope~tors 

When these occur together, they are grouped fram left to right. 

a-b+c is grouped as (a-b)+c. a+b-c+d is grouped as «a+b)-c)+d and 

not as (a+b)-(c+d). 

Rule 3: The reZation:operators =, /=, <, >, <= and >= are lower in precedence 

then arithmetio:operator. These reZation:operators are all on the same level 

of precedence and may be so arranged; for example, ~b=C<d means that sSb, b=c, 

and c<d. 

Rule 4: ATOM and NULL may be used as prefi:r::operators, that is, without always 

putting parentheses around their arguments. The precedence of ATOM and NULL is 

lOi.,er than the re lation: operators • 

Rule 5: The ZogioaZ:operators NOT, AND, OR, XOR, IMPLIES and EQUIV as a group 

have next lower precedence. Their relative precedence is explained in a later 

chapter. 

Rule 6: The infi:r::operator for CONS which is • (spaoe, dot, spaoe) has the 

lowest precedence of all. In other words, group everything else first. Finally, 

a . b • c is grouped from right to left as a • (b • c) and not from left to right 

as (a • b) • c. 

Problem Set 17 

Examine each simpZe:expression below. Then rewrite it adding sufficient parentheses 

to make it unambiguous assuming no rules of precedence. 



15 July 1966 54 TM-2710/101/00(DRAFT) 

a. CAR A+B 

b. CAR A+CDR B*C 

c. A-B/C/D+E 

d. A-B/C*DfE 

e. CAR X='A 

f. O<CAR A:B+SIN(Y)<5 

g. A+BtCtCADR D 

h. X • 'A • FN(X,Y,CDR Z*W) 

i. ATOM X=y 

j. NULL U • NULL CAR X+Y 

Answers: See page 154 



o 

o 

15 July 1966 55 TM-2710/101/00(DRAFT) 

CHAPrER 6. CONDITIONAL:EXPRESSIONS 

Consider the problem of describing the function which is Y of X shown in the 

graph of Figure 1. 

It is not natural to write a simple:expression that gives the value of Y as a 

funation of X. However, the following aonditional:expression describes it 

precisely: 

IF X<O THEN Xt2 ELSE IF X<l THEN 2*X ELSE 2 

The aonditional:expression is a means by which a computer progrRm can make a 

choice between several alternatives depending upon conditions that are determined 

at the time in the program's execution when the choice is to be made. 

6.1 THE ACCEPrED FORM OF CONDITIONAL:EXPRES8IONS 

A aonditional:expression is written either in the form 

IF Pl THEN el 

or in the form 

IF PI THEN el ELSE e2 

where Pl is any expression (including a aonditional:expression), el is an 

unconditional:expression (that is, it must be either a simpZe:expression or a 

bloak:expression) and e is any expression (and therefore may be another , 2 

aonditionaZ:expression). 

The expression between the IF and the THEN is called ananteaedent; the expression 

between the THEN and the ELSE, or following the ELSE, is called a. aonsequent. 

Examples of aonditional:expressions : 

IF ATOM X THEN X ELSE CAR X 

IF X=Y THEN 5 



.. 

15 July 1966 
TM_2710/101/00(DRAFT) 

\ 

l.f .... ' -~ r 

;.' .. -" .......... -.... ~ ................. ". . •... -"'-
I 

~ I 

I 

I 
.... \ ....... "", --. -... . .1 

j 

I 

I : .. -: ·---r--l 
i Y = ;l~.-- ---I .... · 

- ,·--··i ,.. . ... .. ~ -.- "-" ~ 
I I I I 

-x () i.---~~'....L-..' _~o£-_ .. __ l... __ --,---!---. .L.">< 
~"t. -/ 

~~. __ ...4. 

I 

I: 
I r--, , 

.... __ .. ;--+-
, 

r---" , 

t 

Figure 1. Bxample of the use of a ~onditionaZ:expression for describing 

precisely the r,raph y = f(x), where the body of f(x) is: 

IF X <0 THEN X+2 ELSE IF X <1 THEN 2*X ELSE 2 

o 



o 

o 

o 

15 July 1966 57 TM-2710/101/00(DRAFT) 

The provision that el cannot be a conditionat:smpPBBBion is a trivial restriction; 

its purpose is to make 9ZppeBsions unambiguous. If a conditionat:empPtlBBion is 

enclosed by a pair of pa~entheses, then it becomes a BimptB:e~PBBBion and this 

Bimpte:exppeBBion m~ be used as consequent el • 

Example: 

IF x>o THEN (IF Y>O THEN FN (X,Y) ELSE FN(X,-Y» ELSE Z 

Since e2 may be any kind of e~p~es8ion including a conditionat:e~ppe88ion, we are 

permitted to write conditionat:exp~eBsions with many antecedentB and conBequents. 

Examples: 

IF A THEN B ELSE IF C THEN D ELSE IF E THEN F ELSE G 

IF A THEN B ELSE IF C THEN D ELSE IF E THEN F 

Since Pl may be a conditionat:e~p~ession, conditional:~peBsions may be nested 

within each other. 

Examples: 

IF IF X=5 THEN Y=3 ELSE Y<X THEN FN(X, Y) 

IF IF IF A THEN B ELSE C THEN D ELSE E THEN F 

6.2 THE EVALUATION OF CONDITIONAL:. EXPRESSIONS 

The following rules apply to the evaluation of conditionat:e:pPB8BionB' 

1. The parts of the exppeBsion are evaluated in order from left to right. 

2. Only those parts of the conditional:e:r:ppession that are needed to 

deter.mine a vaZue are evaluated. 

3. Each antecedent is evaluated in succession until one is found that 

evaluates to be true. For this purpose, the bootean FALSE (for 

which NIL and () are equivalents) is considered to be false, while 
----_ ... _ .. _ •.... _ ... 



15 JulY' 1966 58 TM-2710/101/00(DRAFT) 

Ex9lD.ples: 

any other datum. is considered to be true. Usually the anteaedents 

are chosen to be booLean:expressions so that their value are TRUE 

or FALSE. 

4. If an anteaedent evaluates to FALSE, then the corresponding aonsequent 

is skipped over and is not evaluated. If an anteaedent evaluates 

to TRUE, then the corresponding aonsequent is evaluated, and this 

value is the value of the aonditionaZ:expression. The remaining 

anteaedents and aonsequents in the same aonditionaZ:expression , 

if any, are not evaluated. 

5. If a aonditionaZ:expression ends with ELSE en and if all of the 

preceding anteaedents are false, then e is evaluated, and its 
n 

6. 

value is the value of the aonditionaZ:expression. 

If a aonditionaZ:expression ends with ELSE IF p THEN e and if 
n n 

all of the anteaedents including p are false, then the value of 
n 

the aonditionaZ:expression is undefined, and an error condition 

results. 

In the following examples, suppose the variabZes are bo~d by the following 

table: 

w 5 

X A 

Y (A • B) 

z (3 4 5) 

Example 1: 

IF w<4 THEN X ELSE IF CADR Z<W THEN Y ELSE NIL 



o 

o 

o 

15 July 1966 59 TM-2710/101/00(DRAFT) 

Steps in evaluation: 

Example 2: 

Example 3: 

Example 4: 

Example 5: 

1. w<4 is FALSE: therefore skip over X. 

2. CADR Z<W is TRUE because 4<5; therefore the vaZue of Y which is 

(A • B) is the vaZue of the oonditionaZ:e~ression. 

3. The part ELSE NIL is not considered. 

IF w<4 THEN I B 

The value is B. 

IF w<4 THEN I B 

The vaZue is undefined. 

IF X THEN W 

The value of X is 5 which is not FALSE, and is taken as true; the vaZue 

of the oonditionaZ:expression is A. 

IF W=CADDR Z THEN (IF X=CAR Y THEN Wt2 ELSE 10) ELSE 20 

Steps in evaluation: 

1. CADDR Z is 5 and this =W. Take the oonsequent. 

2. CAR Y is A and this =X. Take the oonsequent. 

3. Wt2 is W squared, which is 5 squared, which is 25. 



15 July 1966 60 TM-27l0/l0l/00(DRAFT) 

Example 6: 

IF IF X= Y THEN w>4 ELSE w<4 ~EN I B ELSE I e 

Steps in evaluation: Think of IF ( •••••• ) THEN 'B ELSE 'e 

1. X is not equal to Y. Take what follows the first ELSE. 

2. W is not less than 4. Therefore ( •••••• ) evaluates to FALSE. 

Take what follows the second ELSE. 

3. 'e evaluates to e. 

6.3 OMISSION OF ELSE 

If the rese~ed:word ELSE is immediately followed by the reserved:word IF, then 

that ELSE may be omitted because there is no ambiguity. 

Example: 

IF A THEN B ELSE IF e THEN D ELSE E 

may be shortened to 

IF A THEN B IF e THEN D ELSE E 

The second ELSE may not be omitted because it is not followed by an IF. 

Problem Set 18 

Evaluate the following expressions using the list of values for variables. 

REALP means "is a J:leaZ:nwnber"; SQRT means "the sCluare root Of"; SIGN means "the 

cd 0'1") f)f." 

VariabZe VaZue 

A 5 
B 2.0 

e (7 14) 
X (3 • 9) C 
y (A B C) 

Z (A e) 



· /~ 

o 15 July 1966 61 TM-2710/101/00(DRAFT) 

o Answers: 

o 

a. IF A=5.0 THEN B 

b. IF REALP(Z) THEN C ELSE IF REALP(B) THEN (IF CAR At2=CDR A THEN Y 

ELSE Z) ELSE X 

c • IF IF CAR C=7 THEN FALSE ELSE TRUE THEN Z 

d. IF A=B THEN A=B ELSE A=B 

e. IF C THEN A 

f. IF SIGN(B)=SIGN(A) THEN (IF SQRT(CDR X)=CAR(X) THEN I A ELSE A) 

ELSE 'B 

g. IF CAR Y=CAR Z THEN 'ELSE ELSE I IF 

h. IF TRUE THEN 'IF IF 'IF THEN I THEN 

See pages 155, 156 



15 July 1966 62 TM-2710/101/00(DRAFT) 

CHAPTER 1. 

FUllCTION:DEFINITIONS AND RECURSION 

After you understand this chapter, you should be able to write simple LISP programs. 

This chapter explains how to make a series of related funct1:on:delinitions, how 

the process called recursion works, and how to define some fUnct~ons and how to 

use these functions to operate on some simple data. There is more to these 

topics than is explained here. 

7.1 FUNCTION: DEFINITIONS 

A function:definition is a deaLa~tion that the programmer makes to the LISP 

system. The deaLa~tion names a function, specifies its arguments, specifies what 

computation is to be performed. and what is to be the vaZue of the function. 

Each function:definition has two parts, the heading and the body. Each 

funation:definition includes a semi:coLon which terminates the definition. The 

system then holds this definition in memory, and at the appropriate time compiles 

it into efficient machine code so that it can be executed. 

THE HEADING 

The heading of a function has the form: 

FUNCTION name (al , ••• , an)j 

This consists of several parts, the first part of the heading is the constantl 

identifisp FUNCTION, which is a Y'eserved:lJJord. Then comes the particular name 

of the function that is being defined. The name of the function is an identifiere. 

Then comes the aregument:parametere:List. If there are no aregument:pareameteres, one 

must still write ( ). The aregument:pareameteres are identifieres. If there are two 

or more argument8~ they must be separated from each other by oommas. The last 

part or the heading is a semi:coZon.. It is optional. 

C" 
./ 



o 

o 

o 

-.-~-~-.--------

15 July 1966 63 TM-27l0/l0l/00(DFAFT) 

Examples of headings of funotion:definitions: 

FUNCTION READ( ); 

FUNCTION CUBE (X) 

FUNCTION SUBST (Xl, X2, X3); 

THE BODY 

The body of a funotion:definition is always an e:r:pl'ession. It may be any kind 

of expression. SimpZe:expressions and oonditionaZ:expressions are defined in 

Cha;ters 4 through 6. The third kind, bZock:e:r:pressions, are defined in Chapter 

9. Examples of funotion:definitions: 

Each definition has a heading and a body, and is followed by a semi:aoZon: 

7.4 

FUNCTION CUBE(X) Xt3; 

FUNCTION HYPOTENUSE(SIDE1,tSIDE2)i SQRT(SIDElt2+SIDE2t2)i 

FUNCTION PUT(X,Y,L) CAR X • CDR Y • Li 

EVALUATION OF FUNCTIONS 

A funotion is called, or invoked, by the evaluation of a foPm- which begins with 

the function name. For example, suppose that the form HYPOTENUSE(3,4) is to be 

evaluated. The numbers 3 and 4 are the a:rogument of HYPOTENUSE. A foPm that 

calls a funotion must have as many a1"guments as the funotion has argument:pa:roamete1"s. 
The a:roguments- are paired with the argwnent:pazeamet6rs in the order in which they are 

written. Thus, the argument 3 is paired with the azegument:pazeameter SIDE1, and the 

argument 4 is paired with the argument:parameter SIDE2. 

The evaluation of a fUnction consists of evaluating the e:pression which is its 

body. This e:t:pression usually contains variabZes which are argument:pareameters of 

the funotion. The values associated with these variabZes are the a1"guments that 

are paired with them. We speak of this association as bindings. This is an 

incomplete explanation of bindings, which is covered more fully in section 10.2, 

but it is sufficient for the present. 



15 July 1966 64 TM-27l0/l0l/00(DRAFT) 

To continue the preceding example, the function HYPOTENUSE is evaluated by 

evaluating the expression SQRT(SIDElt2+SIDE2t2). The current bindings of SIDE1 

and SIDE2 are 3 and 4 respectively; therefore the value of the expression and 

the value of HYPOTENUSE is 5.0. 

The body of one function may contain forms that call or invoke other funotions. 

These in turn may call other funotions. This may occur to any depth. Sometimes 

a function calls itself, either directly or by means of several funotion calls 

that eventually call the first funotion. This process is known as reoursive: 

definition or recursion and is not only permitted, but is encouraged as a standard 

technique in LISP. It was illustrated earlier (Chapter 3.) by the definition of. 

FACTORIAL, and is discussed below. 

It is important to distinguish an argument from an argument:parameter. It is also 

important to distinguish an argument from the expression which is used to compute 

the argument. This expression is the one that occurs in the argument:position of 

the form that calls the fUnction, not in the function itself and is called an 

argument:expression. The following example should make this clear. 

Consider for example the funotion DIAG which is defined to compute the diagonal of 

a rectangular prism given the three dimensions of the prism. 

FUNCTION DIAG(XiYi~) HYPOTENUSE(HYPOTENUSE(X,Y),Z); 

Now suppose that we evaluate the expression DIAG(3,4,l2). The arguments of DIAG 

are 3, 4 and 12, and these correspond to the argument:parameters X, Y and Z, respec

tively. The inner call to HYPOTENUSE must be performed first in order to obtain a 

necessary argument for the outer call. The argument:expressions are X and Y; these 

are evaluated t~ obtain the arguments, which are 3 and 4. The arguments are what 

are transmitted to HYPOTENUSE. Once HYPOTENUSE has been called, the variabZes X and 

Yare no longer relevant--on1y the values 3 and 4 obtained from this evaluation are 

relevant. 



o 

_ .... _._--------

15 July 1966 

_._-'-- ------- .. _----------_._---------._._--- .--~--

n4-2710/101/00(DRAFT) 

Within the bOdy of HYPOTENUSE, the ~guments are available as the vaZues of 

the argument:pammeters SIDEl and SIDE2. The ~gument:parametel's X and Y of 

DIAG have no meaning within the body o~ HYPOTENUSE. They are bound to the 

values 3 and 4 only within the body of DIAG. 

The value of the inner call to HYPOTENUSE is 5.0. So the arguments for the 

second call to HYPOTENUSE are 5.0 and la respectively. The first aztgument 5.0 

was obtained by the evaluation of the expression HYPOTENUSE(X,Y). The second 

al'gument was.obtained from DIAG as the value of the vaztiabZe Z. 

Similar remarks apply to the second call to HYPOTENUSE. The bindings of SIDEl 

and SIDE2 this time are 5.0 and 12 respectively. 

The value of DIAG(3.4.12) is 13.0 

o Note: This description of ~gument evaluation and transmission applies to 

arguments ,transmitted by value only. The other alternative in LISP known &s 

transmission.by location is treated in a later chapter. Al'gumentsare always 

transmitted by value unless specified otherwise. You may ignore this distinction 

for the present. 

o 

Problem Set 19. 

In this problem set, several function:definitions are given, and a table of 

bindings for free:'VaZ'iables is given. The problem is to evaluate the e:epl'BBBionB 
that follow, using the function:definitions and the table of variabZe :bindings 
when necessary. 

When a variabZe occurs within the body of a funct~on. and this vaztiabZe is an 

argument:parameter of the function, the proper binding for the v~iabte is the 

~gument corresponding to its use as an ~gument:pa!'QTl1eter. Only if you cannot 

obtain a binding for a variabZe in this way, make use of the table of val'iabZe: 
bindings. 

function:delinitions: 

FUNCTION POLY(X); 2*Xt2+3*X-5. 

FUNCTION CHOOSE(X.Y) IF X-O THEN Y ELSE Y-X; 

FUNCTION TAKE(X,Y) IF ATOM X THEN Y ELSE IF ATOM Y THEN NIL ELSE CAR 
X • CDR Y; 

---~-.... ~.-- .. ---........ . 



15 July 1966 66 TM-2710/l0l/00(DRAFT) 

FUNCTION MAKE(X) ; X • Z; 

Table of bindings: 

VariabZe Binding 

U 'A 

X 3 

Z 7 

Expressions to be evaluated: 

a. POLY(3) 

b. POLY(Z) 

c. CHOOSE(1,-4) 

d. CHOOSE(POLY(Z)-114,X) 

e. MAKE(U) 

f. TAKE(U,Z) 

g. LIST(U, TAKE(X • Z, IF POLY(l)<l THEN '(D E) ELSE '(F G» 

Answers: See pages 157, 158 

7.5 RECURSION 

We shall give tl~ree examples of definition by recursion; the first is numerical, the 

second is symbolic, and the third !las an argument which is a list, and gives an 

integer:vaZue. 

The important thing to keep in mind is that the argument:parameters of a function 

generally have different bindings each time that the function is called. 



o 15 July 1966 67 TM-2710!lOl!OO(DRAFT) 

7.5.1 EXAMPLE 1: THE FIBONACCI SERIES 

The Fibonacci series is a sequence of integers. The first two terms are 1 and 1, 

respectively. After that, each term of the series is the sum of the preceding 

two terns. The Fibonacci sequence begins therefore 1, 1, 2, 3, 5, 8, 13, 21, ••• 

The funation FIBB defined here gives the nth term of the sequence. 

FUNCTION FIBB(N) IF N=l THEN 1 ELSE IF N=2 THEN 1 ELSE FIBB(N-l)+FIBB(N-2); 

Suppose we evaluate FIBB(4). The definition tells us that FIBB(4) is'FIBB(3)+ 

FIBB(2). FIBB(3) is defined to be FIBB(2)+FIBB(1). The computations ofFIBB(l) 

and FIBB(2) are not recursive and yield the vaLues 1 and 1 immediately. The 

o evaluation of FIBB(4) is shown 'schematically in the following diagram: 

FIBBU):='l 

Recursive definitions do not alw'ays terminate. For example, the computation 

of FIBB(O) according to the above definition will never terminate. The computation 

continues with the depth of recursion getting deeper and deeper until lack of 

computer memory or lack of time causes an error condition in the computer. 

o 



15 July 1966 68 TM-2710/101/00(DRAFT) 

There is no general rule possible for determining whether a recursive computation 

will terminate or not. Therefore, the programmer must underst~d the particular 

type of recursion he is using and why he expects the recursive computation to 

terminate on the type of data being operated on. This understanding can be 

acquired with practice. The exercises in this Primer provide a start in this 

direction. 

The le~to-right sequence for evaluating aonditionat:exp~essions is essential 

for thereaupsive:definition to operate properly. For example, consider the 

evaluation of FIBB(l). Substituting 1 for N in the body of the definition gives: 

IF 1=1 THEN 1 ELSE IF 1=2 THEN 1 ELSE FIBB(O)+FIBB(-l) 

If all the parts of the aonditionaZ:exp~ession had to be evaluated first, before 

a choice between the parts was made, then the computation would not terminate, 

and so no vaZue could be obtained for it. 

EW1PLE 2~ SUBSTITUTION 

Suppose we want to substitute a given S-exp~ession for each instance of a given 

identifie~ in another S-e:x:p~ession. The funation SUBST does this. We define 

SUBST(X,Y,Z) as the result of "Substitute the S-e:pzoession x for a.ll occurrences 

of the identifie~ y in the S-e:x:pl'ession z." An example is: 

SUBST(' (THE TREE) ,'OBJECT,' ({THE MAN) SAW OBJECT» is «THE MAN) SAW (THE TREE» 

The definition of SUBST in LISP 2 is: 

FUNCTION SUBST (X,Y,Z) IF ATOM Z THEN (IF Z=Y THEN X ELSE Z) ELSE 

SUBST(X,Y,CAR Z) • SUBST(X,Y,CDR Z); 

CI 



o 

0 

o 

---- - -- -- - ---------

15 July 1966 TM-2710/101/00(DRAFT) 

Another example is SUBST(.'Q, :fB, I «A B) B C». The value is «A Q) Q C). This 

is demonstrated in painstaking detail ~y the following account of the 11 calla 

to SUBST necessary to comp~ete this computation. 

(2) (7) 
1. SUBST(IQ,'B,'«A B) B C)=SUBST('Q,IB,I(A B» • SUBST('Q,IB,'(B C»='«A Q) Q C) 

2. 
(3) 4) 

SOOST( 'Q, 'B' (A B}}=SOOST( 'Q, 'B, 'A) • S~ST( IQ, 'B, I (B})=' (A Q) 

3. SUBST( 'Q, 'B, 'A)='A 
(5) (6) 

4. SOOST( 'Q, IB, ' (B) ) =BOOST { 'Q, 'B. ',B) • SUBST( 'Q. 'B ,NIL)= I {Q} 

5. SOOST( 'Q, 'B, 'B)='Q 

6. SOOST('Q,'B,NIL)=NIL 
( 8) {9} 

7. SOOST( 'Q, 'B,' {B c} )=SUBST{ 'Q, 'B, 'B) • SUBST{ 'Q, 'B, '(C»=f (Q C) 

8. SOOST( 'Q, 'B, 'B)='Q 

9. 
(10) (11) 

SOOST('Q,,'B,'(C»= SUBST('Q,'B,'C) • SUBST('Q.'C,NIL)=,(C) 

10. SUBST('Q,'B,'C)='C 

11. SOOST('Q,'B,NIL)=NIL 

It is interesting to note that the ~gument:parametep Z is bound to many different 

apgwnents in the 11 calls to SOOST, but that the ~gument:pal'ameteps X and Y do not 

change. This is a fairly common occurrence. 

7.5.3 EXAMPLE 3: LENGTH OF A LIST 

The length of a list is equal to the number of elements in the list. For 

example, the length of the "List (.A 4 (B C» is 3 because there are 3 elements 

in the li.t (the substructure of the element (B C) is irrelevant). The length of 

the empty "List ( ) is O. The definition of LENGTH is: 



15 July 1966 10 TM-2TIO/I01/OO(DRAFT) C' 

FUNCTION LENGTH(L) IF NULL L THEN 0 ELSE LENG'I'H(CDR L)+l; 

The evaluation of LENGTH ( I (A 4 (B C») -proceeds as fol19wS: 

LENGTH( 'CA 4 (B C» )-LENGTH (I (4 (B C» )+1 

=LENGTH( " (13 C» )+l+l=LENGTH (' ( ) )+1+1+1 

-0 + 1 + 1 + 1=3 

Problem Set 20 

a. The following definition-of FIBB uses an auxiliary /unction FIBB1. It gives the 

same answers as the definition in Example 1. Why does this definition lead to more 

efficient computation of FlBB for large argumsnts? 

FUNCTION FlBB (N); FIBBl (N ,1,2) ; 

FUNCTION FIBB1(X,Y,Z) IF X=l THEN Y ELSE FIBB1(X-l,Z,Y+Z)i 

b. Is there any set of arguments for which SUBST, as defined in Example 2, 

does not converge? Why or why not? 

c. Define the recursive function COUNT having one argument. The argument may be 

any S-e:tpression. The vaZue of COUNT is the number of atoms (not Just identifiers) 

in the argument. 

Answers: See pages 158, 159 

c 



o 

o 

o 

- - -... -.------~~ 

15 July 1966 71 TM-2710/101/00(DRAFT) 

CHAPTER 8 

THE LOGICAL:OPERATORS 

The six ZogiaaZ:operators of LISP 2 are AND, OR, NOT, IMPLIES, XOR, and EQUIV. 

They may be regarded as functions whose arguments are booZean and whose vaZue is 

also booZean. But some of them (AND, OR, IMPLIES) differ in an· importan~ way 

from funations. These three operators have the property that their arguments are 

evaluated from left to right, and that only as many arguments as are necessary to 

determine the vaZue of the booZean are evaluated. In this respect, they are 

more like aonditionaZ:expressions than functions. 

8.1 !'ill! 

The booZean NOT has one argument. The vaZue of NOT is TRUE if its argument is 

FALSE (or NIL or (», and FALSE (or NIL or (» if its argument is anything else. 

As with conditionaZ:expressions,' any argwnent except FALSE is regarded as 

equivalent to TRUE. 

The expression 

NOT e 

is equivalent in meaning to the conditionaZ:expression 

IF e THEN FALSE ELSE TRUE 

NOT is a prefix:operator; therefore it is permissible to write either 

NOT (e) 

or 

NOT e 

The precedence of NOT is highest of the ZogicaZ:operators. 

The operator NULL is identical with NOT both in meaning and in precedence. 



15 July 1966 72 TM-2710/101/00(DRAFT) 

8.2 AND 

The operator AND has an indefinite number of arguments. It is either a prefix: 

()pEJJf't:ff:or or an infix:operator: one may write either 

or 

e l AND ••• AND en 

The precedence of AND is below that of NOT but hi~her than that 

of the other four ~ogiaa~:operators. 

The 

e1 and e2 .•.• AND en 

is equivalent in meaning to the expression 

IF NOT e1 THEN FALSE IF NOT e2 THEN FALSE •••• ELSE en 

In other words, the 

AND e 
n 

has the va~ue TRUE if each e1 is evaluated and the va~ues are all true (not FALSE), 

but if the evaluation of any e1 is FALSE, then the vaLue of the entire expression 

is FALSE, and the remaining e. to the right of this one are not evaluated. 
~ 

AND ( ) (meaning AND of no arguments) has by convention the vaLue TRUE. 

8.3 OR 

The operator OR has an indefinite number of arguments and it is either an infix 

or prefix: operator. One may write either 

or 



o 

o 

o 

15 July 1966 73 TM-2710/101/00(DRAFT) 

The precedence of OR is fourth of the ZogicaZ:operators: below NOT, AND, XOR; 

above IMPLIES and EQUIV. 

The expression 

el OR ••• OR en 

is equivalent in meaning to the expression 

IF el THEN TRUE ELSE IF e2 THEN TRUE ••• ELSE en 

In other words, the expression 

el OR ••• OR en 

has the vaZue TRUE if at least one el has a true.vaZue. In this case, the 

remaining el to the right of this one are not evaluated. If all of the el 

evaluate to FALSE, then the vaZue of the entire expression is FALSE. 

OR ( ) (meaning OR of no arguments has by convention the vaZue FALSE.) 

8.4 

As an example of the use of the ZogicaZ:connectives, we shall give another 

definition of MEMBER: 

FUNCTION MEMBER(X,L) NOT NULL L AND (X=CAR L OR MEMBER(X,CDR L)); 

The recursion in this definition terminates only because AND and OR have the 

property of not .evaluating arguments further to the right of the one that 

determines their vaZue. 

The parentheses around the OR expression are necessary because AND has a higher 

precedence than OR, and if the parentheses were miSSing, then AND woUld capture 

X=CAR L as its argument on the right. 

Problem Set 21. 

(1) Insert parentheses in the following LISP 2 expressions in such a way that 

they are unambiguous assuming no rules of precedence. 



15 July 1966 74 

(2) Evaluate the following exppessionsusing the table: 

VapiabZe 

A 

B 

e 

x 
y 

z 

a. CAR Y + eADR y=e AND A 

b. B AND 2+2=4 

c. • A OR 2+2=5 

d. NOT A OR B OR X=Y 

e. IF A OR B THEN e 

f. IF e THEN e ELSE 'e 

g. NOT (A AND B) 

h. NOT A AND B 

Answers: See -pages 160, 161 

8.5 IMPLIES 

VaZue 

TRUE 

( ) 

A 

(3 4) 

(A B) 

TM-2710!lOl!OO(DBAFT) /", 
L 

IMPLIES is a binapy:opepato~. It may be written either as a p~efix:opepator as 

in 

or as an infix:operator as in 

c' 



o 

o 

~~~~~ ~--- ~- ~--~~-.--~~--------~~~~---~---~~--.~-~--.. -----.-----

15 July 1966 75 TM-27l0/l~1/00(DRAFT)

For those who are logicians, the meaning of 'IMPLIES is almost "material.1mplication."

For those who are not logicians, the meaning of IMPLIES is almost the meaning

according to the following table of cases:

False False True

False True True

True False False

True True True

We say "almost" because in LISP 2 the evaluation procedure does not evaluate e2

unless el is true. This evaluation procedure is different from the evaluation

procedure in logic.

The evaluation procedure for IMPLIES is the folloWing:

el is evaluated. If its value is FALSE, then the value of

el IMPLIES e2

is TRUE. otherwise, e2 is evaluated, and its value is the value of the entire

erproession.

el IMPLIES e2

is thus equivalent in meaning to the aonditi,onal:erproession

IF el THEN e2 ELSE TRUE

IMPLIES has next to the bottom precedence of the Zogiaal:operatoros.

8.6 XOR

o XOR has an indefinite number of aroguments. It mB¥ be written as

XOR(el ,e2 ••• ,en)

or as

15 July 1966 76 TM-2710/101/00(DRAFT)

Unlike AND, OR, and IMPLIES, XOR evaluates all of its arguments in no specified

order. If the number of arguments that are true is odd, then the vaZue of XOR

is TRUE; otherwise the vaZue of XOR if FALSE. XOR has third rank in the precedence

of the ZogicaZ:operators.

8.7 EQUIV

EQUIV has an indefinite number of arg~nts. It may be written as

or as

el EQUIV ••• EQUIV en

It has lowest precedence of the ZogicaZ:operatorso

All of the arguments of EQUIV are evaluated in no specified order. The vaZue of

EQUIV is TRUE if all of its arguments are tr~e, or if all of its arguments are

FALSE. In any other case, the vaZue of EQUIV is FALSE.

o

o

o

15 July 1966 77

CHAPTER 9

BLOCK:EXPRESSIONS AND STATEMENTS

TM-27l0/l0l/00(DRAFT)

So far we have described how to write LISP ppogpams using recursive function:

definitions. It can be proved that any computation can be described by recursive

function:definitiona; however, often it is easier to describe a computation in

some other way. We need, in addition to re~ursion, a W8¥ of writing a series

of statements that perform certain operations, and a way of controlling the

order in which those statements are executed.

For a concrete example of this pOint, see the two different ways given in

Chapter 3, Section 3.2 for defining the function FACTORIAL. The first definition

uses statements; the second definition uses recursion. The first method, although

longer to write, compiles into a smaller and faster-running program. Most old

time LISP programmers however prefer the second method, recursion, which is

mathematically more elegant, and is an important distinguishing feature of all

LISP systems.

9.1 BLOCK: EXPRESSIONS

For developing the second method, two new kinds of entities that are not

expressions are needed--decZ.apations "and statements. Statements are described

fully in this chapter, but decZ.aPations are described only briefly here; they are

described more fully later.

A context is needed in which statements and decZapations can occur. The

bZock:exppession provides such a context. It is a special kind of exppession that

contains decZ.aPations and statements inside it.

15 July 1966

Definition:

A bZoak:exppession has the form

78

••• ;5 END n

TM~2710/101/00{DRAFT)

In this form each dl is a deaZaration, and each sl is a statement. Either m or

n may be 0; that is, there may be no deaZapations or no statements or both. All

the deaZarations must precede all the statements in a bZoak:expP6ssion. The

deaZapations and statements are separated from each other by semi:coZons; there

is one less semi:aoZon than the total number of deaZapations and statements.

9.2 DECLARATIONS

There are several kinds of deaZapationsj one kind of deaZaration that is suitable

in this context is known as the intemaZ:paramet(fJ:r:deaZaration •

Definition:

An intemaZ:parametep:deaLa:ration may have one of the following forms (there

are others):

or

or

or

INTEGER vl ' ••. , vn

REAL vl ' ••• t vn

BOOLEAN vl ' ••• , v n

where each vl is a va:riabZe. The four words in capital letters denote the data:

type of the val"iab Ze •

o

C,
"

15 July 1966 79 TM-27l0/l0l/00(DRAFT)

If there are two or more variabZes following the word SYMBOL (or INTEGER or REAL

or. BOOLEAN), then they are separated from each other by commas. An internal:

:parameter:decZaration is almost alw~s followed by a semi:coZon since another

decZaration or a statement is to follow; however, the semi:coZon is not regarded

as being part of the decZaration.

Example of a bZock:expression with internaZ:parameter:declarations:

BEGIN REAL X, Y; INTEGER Z; SYMBOL Al, A2; ••• END

where ••• represents some statements.

The internaZ:parameter:decZaration has the following effects on the program:

(1) The variabZes mentioned in the declaration are declared to be

c=J internaZ:parameters which can be referenced throughout the bZock:expression (or

bZock) in which the decZaration occurs. One may refer to a variable either to

o

obtain its vaZue or to change its vaZue. Thus the internat:parameters may be

used as storage places for data.

(2) If an internaZ:parameter is declared to be of type SYMBOL, then

its vaZue may be any type of datum. (That is, any type of datUm may be stored

in it.) If the internaZ:parameter is of type INTEGER, REAL or BOOLEAN, then its

vaZue may be only a datum of the specified type.

(3) As soon as the bZock is entered, the internaZ:parameter is

assigned an initial vaZue. Of course, this initial vaZue may be changed almost

immediately by what the programmer writes, and it may be ignored entirely. The

initial vaZue depends upon the type of the variabZe as follows:

15 July 1966 80 TM-27l0/l01/00(DRAFT)
c~

Type Initial VaZue

SYMBOL NIL

INTEGER 0

REAL 0.0

BOOLEAN FALSE

9.3 STATEMENTS

The statements within a bZoak are normally executed in sequence starting with the

first one. The sequence in which statements are executed may be controlled by

several means; the simplest of these is the

go: statement

The kinds of statements which will be described in this chapter are:

assignment: statements

aonditionaZ:statements

go: statements

empty: statements

l"eturn:.statements

simpZe:statements

Some more kinds of statements are described later.

o

l . /, .. ,

o
15 July 1966 81 TM.2710/101/00(DRAFT)

9.4 ASSIGNMENT: STATEMENTS

The assignment:statement is a statement that causes a value to be assigned to a

parameter. The assignment:statement has the form

where v is a variable and e is an expression.

The expression e is evaluated firstj then its value is stored in the variable v.

The previous value of v is lost at that point.

For example, suppose A has the value 5, and one executes the assignment:statement

A~At2. The expression on the right is evaluated with A having the value 5. The

value of the expression is 25. This is now assigned as the new value of A. The

~ old vaZue of A is lost.

o

An assignment:statement occurring inside the body of a function: definition may

change the value of an argument:parameter (see beloW) instead of changing the

vaZue of an internal:parameter. This change remains in effect throughout the

evaluation of the function.

An assignment:statement may be used as an expression, in which case it is called

an assignment:expression. The assignment:expression has the same effect as the

assignment:statement, but the assignment:expression also has a value. The value

of an assignment:expression is the value of its right half.

Example (of an assignment:statement):

A~B"""Xt2+3

15 July 1966 82 TM-2710!lOl!OO(DRAFT)

The portion of this assignment:statement to the right of the first Zsfz:a~~ow is an

assignment:e:x:p~ession B+Xt2+3. The effect of this statement is to assign the

vaLue x2+3 to both A and B.

The Zeft:a~~ow behaves somewhat as if it '\Tere an infix:ope~ato~,

but a rather peculiar one. On the left, it has high precedence. It grasps the

smallest possible e:x:p~ession it can find. On the right, it has very low precedence,

lower even than the LISP dot • It grasps as much as possible.

Example:

A+OAR C+D • E

means the same as:

In other 'Words, this e:x:p~ession CONSes D and E and puts the result in C. It

then takes CAR of this which is D again, and puts this inA •

. ,
9.5 THE CONDITIONAL:STATEMENT

A aonditionaL:statement is like a aonditionaL:e:x:p~ession; the only difference is

that its consequents are statements rather than e:x:p~essions.

Definition:

A condi tiona Z: statement has one of the following forms:

or

where p is an e:x:p~ession, e1 is a basic:statement (see below), and e2 is any

statement.

o

o

o

15 July 1966 83 TM-2710/101/00{DRAFT)

A basia:statement is any kind of statement except a aonditionaZ:statement or a

for:statement (which is explained later). The restriction that a statement must

be basia is trivial and intended only to avoid certain kinds of ambiguity. A

aonditionaL:statement enclosed by BEGIN ••• END, is changed into a basia:statement.

Examples of aonditionaZ:statements:

IF A=O THEN GO L

IF P THEN N-A+l ELSE A A-l

IF A<B THEN GO M ELSE IF A>B GO N ELSE IF B=O GO L

IF A THEN BEGIN IF B THEN X-+-l ELSE x--2 END ELSE GO L

The following rules apply to the execution of aonditionaL:statements.

(1) The anteaedents are evaluated from left to right until one is

found whose value is TRUE (or in fact, any datum other than FALSE).

(2) When an anteaedent is found that is true, the corresponding aonsequent

is executed. The rest of the aonditional:statement is ignored.

(3) If a aonditional:statement ends in ELSE sn' and if all the

preceding antecedents are false, then sn is executed.

(4) If a aonditionaZ:statement ends in IF p THEN s and if all the
n n

anteaedents including Pn are false, then nothing is executed, and the program

proceeds in the normal manner. This is not an error condition in contrast to the

analoguous situation for aonditionaZ:expressions.

(5) ConditionaZ:statements are not expressions; therefore they never

have values.

15 July 1966 84 TM-27l0/l0l/00(DRAFT)

9.6 LABELS

A LabeL is a means of giving a name to a statement. Identifiers are used as

LabeLs.

Definition: A LabeLed:statement has the form

lb:s

where lb is a Zabel and s is a statement.

Examples of ZabeZed:statements:

A: IF X=Y THEN GO A

B: ~X+l

c: GO A

The kind of a statement is not changed by labeling the statement. Thus the first

statement above is a oonditional:statement, whether labeled or not.

9.7 GO: STATEMENTS

The go:statement has the form

GO lb

where lb is a Zabel.

The effect of a go:statement,GO lb,is to cause execution of the program to

continue at the statement labeled lb; the program proceeds from there in the

normal way.

There are certain restrictions as to where in a program it is possible to go

from a given location. These restrictions follow common sense and exclude cases c'
where the execution of a go:statement could be poorly defined. They will be

discussed later. The following interesting example is quite permissable however:

o

o

15 July 1966 85 TM-27l0!lOl/OO(DRAFT)

GO A;

IF X=O THEN ~2*Y ELSE A: IF X<=O THEN 'Y'-Z;

If the go:statement is executed and if X=O at the time, then ~Z will be executed.

If one started at the beginning of the conditional:statement with X=O, ~2*Y

would be executed.

9.8 THE VALUE OF A BLOCK:EXPRESSIONj RETURN:STATEMENTS

A block:expression must have a value because it is an expression. Block:expressions

may obtain values in two different ways.

The first way occurs when the block:expression ends because it has run out of

statements to execute. This happens when the last statement has been executed

and is not a go: statement. The word END follows, but is not a statement. In

this case, the evaluation of the block:expression is terminated and the vaZue is

NIL. This is the usual way of ending a block: expression when the vaZue is not

being used for any purpose.

Sometimes,however,the last statement in a block:expression is a go: statement.

To get out of the block, one needs to branch to some point after this statement.

The empty:statement is useful for this purpose. For example, here is a block:

expression with an empty: statement used as a way out:

BEGIN •• ~ IF TERMINALCONDITION THEN GO B; ••• GO A; B:; END

15 July 1966 86 TM-21l0/l0l/00(DRAFT)

An emptyistatement is specified by two consecutive semi:coZons with no statements

between them. Since a ZabeZ is not a statement it may intervene as in the above

example. The empty:statement is here represented by:

; B: ;

The second way to obtain a vaZue for a bZock:expression is to use a return:

:statement.

Definition: A retu~:statement has the form

where e is an expression.

A return:statement may occur in any statement context Within a bZock:expression;

for example, it may appear as one of the consequents of a conditionaZ:statement.

Also there may be several retu~:statement within one bZock:e~pression. As

soon as one of them is executed, the following happens:

(1) The e~pression e is evaluated

(2) The bZock:expression is terminated. No further statements are

executed no matter where one is in the bZock.

(3) The vaZue of e is the vaZue of the entire bZock:expression.

9.9 SIMPLE: STATEMENTS

A simpZe:expression may be used as a statement, in which case it 1s called a

simp Ze: statement. The only way to tell that it is a statement is the context in

which it appears. A simpZe:statement alWB¥s occurs in a context which has the

property that even if the simpZe:expression were to produce a vaZue the vaZue . , .

would be ignored.

c

o

C)

o

15 July 1966 87 TM-2710!lOl!OO(DRAFT)

Since the va~ue of a simp~e:statement is ignored, the only reason for executing

it is to produce an effect, for example, PRINT(X).

9.9.1 EXAMPLE AND PROBLEMS

Example: Define REV which is a function that reverses a List and all its subLists •

Thus,

REV (I«A B C) (D E)))

is

«E D) (C B A))

Here is a definition of REV:

FUNCTION REV(X) BEnIN SYMBOL Y;

A: IF NULL X THEN· RETURN Y ELSE IF ATOM X THEN RE'l'URN X;

~ REV(CAR X) • Y ;

J{'-CDR X;

END • ,

This example has several interesting features:

(1) This definition uses both recursion and iteration of a loop of

statements--the two most important means of controlling a repetitive process.

Recursion is used to apply the function REV to subLists at all levels. But the

job of reversing any one level is done by means of an open loop of statements.

(2) It illustrates the use of an assignment:statement to set the

argument:paPamete~ X, and another assignment:statement to set the inte~aL:

:pa~amete~ Y.

15 July 1966 88 TM-2710/101/00(DRAFT)

(3) Each time the function REV is entered recursively, a new argument:

~aramet6r X and a new internaZ:parameter Yare created. The different copies

of X and Y have independent vaZue and do not interfere with each other. Only

the innermost X and Yare available at any given "time, but when a particular

recursion is terminated, the immediately previous X and Yare accessible once

more, unchanged from when they were last accessible.

Problem Rp.t 22.

a. Define REV using recursion and without using bZock:expressions and

statements.

b. Define REV by means of a single non-recursive function:definition

using bZock:expressions and statements.

c. Define the LISP function SINE(X,N) that computes an approximation

to the sin of X by summing the first N terms of the sequence

(Do not use the LISP system function SIN.)

Answers: See pages 162, 163

o

o

15 July 1966 89 TM-2710/101/00(DRAFT)

CHAPTER 10.

BLOCKS

Many entities in LISP 2 can be classified into three kinds; e%p~88ion8,

statement8, or decZaPations. This distinction is important and needs to be

mastered by a user of the language. To some extent, these kinds of entities

are like interrogative, imperative. and declarative sentences, respectively,

in English. However, this analogy cannot be carried too far.

An exp~e88ion in LISP can be evaluated; that is. it has a vaZue' which can be

computed. For example. the value of 3+4 is 7. In the same way, an interrogative

sentence in English can be answered; that is, it has an answer or calls for an

answer.

A statement in LISP is a request or command that some process be performed.

For example GO J is a 8tatement requesting execution of the process beginning

at J. In the same way. an imperative sentence in English is a request or

command that some action be performed or that some state exist; that is, it

calls for some action to be performed or for some state to exist. For example,

"Give me that list" or "Be careful."

A declaration in LISP informs the computer of some fact or condition. For

example. REAL M,says that there will be an internaZ:pa~ete~ in the pPOg~

and that it will have ~eal:vaZue8. In the same way. in English, a declarative

sentence (also called an indicative sentence) tells or provides information.

For example. "M will be a variable in this program, with real values."

15 July 1966 90 TM-2710!lOl/OO(DRAFT)

Both in LISP and in English the classification is sometimes more nominal than

actual, and is determined more by the way in which an entity occurs in its

surroundings (by the grammar and syntax) than by meaning (the semantic context).

For example, in LISP the eValuation of an exppession may not only yield a vaZue

but cause certain other things to happen. These are called side:el~ects.

Similarly in English, a sentence which is interrogative in form may be declara-

tive in substance. For example, the interrogative "Why isn't the butter on the

table?" may mean the imperative "Please put the butter on the table"; the

speaker is not really interested in knowing why the butter is not on the table.

Another example is the interrogative: "How much more of this nonsense do I have

to listen to?" This means the declarative "I don't want to listen to any more

of this because I consider it to be nonsense." The speaker does not want to

be answered "About 15 minutes more nonsense."

Both in LISP and in English one can argue in favor of linguistic purity. But

impure use of the language will remain and spread because it is often convenient

and direct, and often economical.

In LISP, it is always possible to classify entities into exp~ssions, state-

ments, and decZapations, by analyzing the syntax. But it is not always possible

to do this by examining a single entity. Usually one must consider the context

in which it appears. Thus we shall be referring to a statement:context and an

exppession:aontext. (In LISP, deaZar-ations present no problem. They can always

be distinguished by their first words regardless of context.)

What contexts have been encountered so far? One is the context of the body of

a funation:definition. This is always an expression. Therefore, whatever

c\

o

o

'0

15 July 1966 91 TM.2710/101/00(DRAFT)

appears after the heading of a function:definition is in an ~~ssicn:aonte~t.

At the top level of a LISP pPOg~, one may write ~ressions but not statements.

Therefore, this 1s an exp~ssion:context.

10.1 BLOCKS

A b"tock has precisely the following syntax:

BEGIN dl ; d2; ••• dm; sl; s2; ••• sn END

where each dl is a dec"taration and each sl is a statement. Either m or n or

both could be O.

A block consists of the rese~ed:~rd BEGIN, followed by some deaZarations,

followed by some statements, followed by the rese~ed:~rd END. All the

declarations in a block come before any of the statements. The dec"ta~tions

and statements are separated from each other by semi·:ao Zons.

How is a block to be classified? If a b"tock appears in an e~~ssion:context

then it is an expression, and specifically it is called a bZock:e~~ssion.

If a block appears in a statement:context, then there are two possibilities.

If it bas no decLarations, then it is called a compound:statement; if it has

one or more dec"tamtions, then it is called a bZock:statement. This classifica

tion is summed up in the following table:

Context:

Dec"taztations:

none

at least one

CLASSIFICATION OF BLOCKS

expression:context

b"tock:~~ssion

bJock:~~ssion

statement:context

compound: statement

bZock:statement

-------------- --------

15 July 1966 92 TM-27l0/l0l/00(DRAFT)

A block:~ression maybe used on any level as the body of a function:definition,

or it may be used on the top level as an ~ression. Within the block:empression

there ~ be statements (including block:statements and compound:statements).

From this specification, it follovs that vhen blocks appear nested one within

the other as in:

BEGIN ••• ••• END
BEGIN ••• • •• END

BEGIN ••• END

the outermost one, at least, must be a blook:e~res8ion.

10.2 VARIABLES~ BINDINGS~ AND SCOPES

A variable (to repeat vhat vas said earlier) is an identifier used within a

program to denote some value. For example. the variable M may turn out to have

the value 4.

A variable may be mentioned in anyone of four vays. It may be mentioned in

order to bind it either as an argwflent:parameter (see Chapter 7) or as an internal:

~arameter (see Chapter 9). It may be mentioned for the purpose of changing it.

It may be mentioned for the purpose of making use of its value. This is summarized

in the folloving table:

MENTIONS OF VARIABLES

Type of Mention

to bind it as an aztgWllent:parametep

to bind it as an intemal:parametep

to change it

for its value

Example

FUNCTION FI{X)

INTEGER X;

X+-3;

X + 3;

•••

c

o

o

o

15 July 1966 93 TM-2110/101/ 00(SRAFT)

Every bi:nding of a var>iab'Le has associated with it a scope. The scope is a ,

region of program within which that particular binding of a vanab'Le may be

referenced either to change the var>iabl.e or to evaluate it. The scope must be

thought of as something dynamic: it starts to exist when it is activated, and

it stops existing when some fixed piece of a prog~ is finished.

Rule 1: When a variabl.e is bound as an argument:parameter of a function, the

scope of the binding is the body of the function:definition (but not including

the scope of any other binding of the same variab'Le that is inside the first

binding). The scope exists as soon as the fUnction is entered, and ceases to

exist when the vaLue of the function has been computed and control returns to

the point from which the function was called.

Example:

FUNCTION FN(X) 3*X+5;

FN(2);

The variabl.e X is bound as an argument:paztameter. The scope of the binding is

the body of the function:definition. namely 3*X+5. However, merely making a

function:definition does not activate the scope. When the function FN is

called with the aPgwnent· 2, then the binding of X is activated. and throughout

its scope it has the vaZue 2.

Rule 2: When a variabZe is bound as an intemal.:pazoameter, the scope of the

binding is all the statements (but not the decl.~tions) of the bLock in which

o the dec'Lamtion is made. but not including the scope. of any other binding of

the same var>iab'Le inside the first binding. The scope of the binding exists

just prior to the execution of the first statement of the btock, and continues

until the b'Lock is left.

15 July 1966 TM-2710/101/00(DRAFT)

Example 1:

Example 2:

first· binding as an ar~nt:pa~eter

I second third binding as internaZ:parameter
J J . .

FUNCTION G(X) BEGIN H(X); BEGIN REAL X; H(X); BEGIN INTEGER (X);
L 1 II 2 I

H(X) END END END
3 IWW

1._1_1 ,saope of first binding

2 , saope of second binding

3 ,saope of third binding

~inding as argwnent:parcuneter

FUNCTION FN(X) 3*X+5;
I ___ _j

I"\. saope as argument:parcuneter

BEGIN INTEGER ~.IX~ 6; PRINT (FN(X+l» END~

binding as internaZ:pa~ete~ ~aope as internaZ:parcuneter

Let us repeat that the definition of a funation defines the saope of its argwnent:

:parcuneter, but does not activate it. The entity that follows the funotion:definition FN

"is a bZook:e:cpression. It has an internaZ:pa~eterX. The execution of the

bZook activates the binding of X. At first, X has the vaZue 0, but this is

immediately changed to 6. The e:cpression X+l is then evaluated. This happens

before the funotion FN is called. The vaZue of this e:cpression is 7. The

funotion FN is called with the argwnent 7. At this point, the argwnent:parameter

X is activated and has the vaZue 7. The vaZ.ue of FN (which gets printed) is

26, and not 23.

Example 3:

BEGIN SYMBOL XiX + 'A; BEGIN SYMBOL X; X + 'B; PRINT (X) END;PRINT (X) END;
. . .

If you concluded that B would be printed first and then A, the conclusion was

correct, and your analysis was probably correct.

o

o

15 July 1966 95 TM-27l0!lOl!OO(DRAFT)

Each binding must be regarded as having an independent existence. When the

second binding is activated, the first one continues to exist but within the

scope of the second binding it cannot be referenced. When the scope of the second

binding ends, the first one still exists and has not been ~hanged.

A decZaration such as

REAL X;

may be made at the top level of a LISP p~g~. In this case, the vaPiable and

its associated value exist indefinitely.

10.3 RETURN: STATEMENTS

A retUPn:statement is of the form RETURN w. The return:statement must be used

inside a block:e~ression. The effect of the retuPn:statement is to terminate

a bZock:e~re8sion and cause the block:~pression to take the value of w. If

two bZock:e~ressions are nested, then the execution of a retum:statement

that is inside both of them terminates only the innermost one. However, when

a bZock:statement or compound:statement is nested inside a block:e~ression,

control passes outward through these and the block:e~ression that is outside

them is terminated. Thereserved:word RETURN always terminates a block:ezpreBsion.

Example 1:

FUNCTION FN(X) BEGIN BEGIN RETURN X END END;

The inner block is a compound:statement. The outer bZock is a bZock:e:r:pNssion.

The RETURN terminates the outer block and X is the val.ue of FH(X). So the

function:definition defines an identity:function.

Example 2:

FUNCTION FN(Xr BEGIN ATOM BEGIN RETURN X END END;

15 July 1966 TM-27l0/l0l/00(DRAFT)

The inner block is a block:exppession, because it is the apgument of ATOM,

and aPguments are always exppessions. ATOM BEGIN RETURN X END is a simple:

: statement. Its vaLue is true if X is atomic, but this is irrelevant. There

are no fUrther statements in the outer block, and no RETURN from it. So the

value of FN is always NIL.

10.4 RESTRICTIONS ON GO:STATE~NTS

There are certain restrictions on the use of go:statements. The rules are:

(1) A go:statement may not be used to enter a block:statement·from

a point outside it.

(2) A go:statement may not be used either to go into an exppession

from a point outside it or to go out of an exppession from

a point inside it.

These rules have the following consequences for blocks.

GO:STATE~NT RESTRICTIONS

.' Type of Block May Enter? May Leave?

bLock:exppession no no

compound: statement yes yes

block:statement no yes

If one were to enter a bZock:statement by means of a go:statement, this would

put the internaZ:paPameters of the bZock:statement into an ambiguous condition.

Since a compound:statement has no internaZ:parameteps specific to it, the problem

does not arise there.

The body of a iunction:definition is an expression; therefore one may not enter

or leave the body of a function:definition by means of a go:statement.

o

o

o

15 July 1966 97 TM-2710/101/00(DRAFT)

Problem Set 23:

Examine the statement GO A in each ot the following miniature p~~s and

decide whether or not it is legal, and why or why not.

a. FUNCTION FN(X) BEGIN A: RETURN G(X) END;

FUNCTION G(X) BEGIN GO A END;

b. BEGIN INTEGER I;

c.

END

BEGIN REAL X; GO A END;

BEGIN A: If- 3 END

BEGIN INTEGER I;

BEGIN GO A END;

BEGIN REAL X; A: I~ 3 END

END

d. BEGIN INTEGER I;

BEGIN GO A END;

BEGIN A: I+-3 END

e~ BEGIN GO A; FN(BEGIN A: ; RETURN X END) END

f. BEGIN -BEGIN GO A END; BEGIN A:;END END

Answers: See pages 164, 165

10.5 TYPICAL USES FOR BLOCKS

(1) A oompound:statement groups several statements together for execution one

after another. One use of this technique is as a oonsequent of a oonditionat:

statement when several things are to be done if a condition is satisfied.

15 July 1966 98 TM-27l0/l01/00(DRAFT)

Example:

IF X=O THEN BEGIN Y+- 5; GO A END;

Without aompound:statements, one would have to use a circumlocution (or

"program around it") such as:

IFX/=O THEN GO,B; Y+5; 'GO Aj B:

(2) A oondi tiona 1- : statement cannot be used as the oonsequent of another

aonditionaZ:statement following the word THEN. This restriction can be overcome

by turning the first aonditionaZ:statement into a oompound:statement with one

statement inside it.

Incorrect: C)
.. /

IF A THEN IF B THEN GO X ELSE GO Y ELSE GO Z;

Correct:

IF A THEN BEGIN IF B THEN GO X ELSE GO Y END ELSE GO Z;

(3) A b1-ook:expression is commonly used as the body of a funation:definition

when the vaLue of the funation is computed by means of statement programming

rather than recursion. For an example of this, study the definition of REV in

Chapter 9.

(4) A b1-ook:e:t:pression may be used to avoid several repetitions of the same

computation.

Example 1:

X~ BEGIN REAL Y; Y~ A1'2-3*A+Bt2; RETURN LIST {Y, Y-3, SQRT (y» END;

Alternatively, this could have been written: '

X~ LIST (At 2-3*A+B"t2, At2-3*A+B1' 2-3 , SQRT (1¢2,-3*A+B't2));

the first program runs faster.

./~
.J

15 July 1966 99 TM-2710/10l/00(DRAFT)

o
(5) A btock:~tatement may also be used to avoid several repetitions of the'

same computation.

Example 2:

BEGIN SYMBOL Yi

Y~-FN (IF X-3*R"O THEN CAR (L) ELSE M • CAR (N»;

, V·.,:- CADR Y;

I. W~-CDDR Y

~D;

o

o

----_. __ - .. _----_

15 July 1966 100 TM-2710/101/00(DRAFT)

CHAPTER 11.

ARRAYS

An array in LISP 2 is an indexed collection of data having one or more dimensions.

We shall explain this further presently. In the meantime, let us note that this

is different from an array in some other programming languages. In FORTRAN,

for example, an array is an indexed collection of variables; the difference is

not trivial.

For an example in LISP 2, let us consider a 3 by 4 by 5 reaZ:array. This is a

collection of reaZ:data, specifically, a collection of exactly 60 reaZ:n~bers.

It is a 3-dimensionaZ indexed collection of reaZ:numbers. This means that every

element of the collection is identified by specifying in sequence three integers

called the three aoordinates of the element. If the three aoordinates are called

x, y and z, then the aoordinates must satisfy l~x <:3, l<y <4,

11.1 OPERATIONS

What are the basic operations that may be performed on an array? An array in

LISP 2 is regarded as a single datum and is defined as a type of atom. Accordingly,

an array may be the argument or vaZue of a function and it may be incorporated

into a nonatomic S-expression. In addition, any specific element of an array

may be obtained or may be changed.

Since the allocation of storage space in LISP 2 is completely dynamic, arrays

do not have to be declared in advance. They may be declared at any time and

discarded at any time. As soon as an ar~y is discarded, the space it occupied

in memory is available for other purposes.

o

o

o

-------------- - ---._------------ ----------

15 July 1966 101 ~2710/101/00(DRAFT)

11.2 ONE WAY OF DECLARING ARRAYS

One of the ways of declaring an tlPmy is upon entry to a b'tock. The following

information must be stated:

(1) The type of the aPray. Some of the army:types are:

booZean:array

integer: array

reaZ:array

symboZ:aPray

An integer:army has only integers as its elements, etc. A

symboZ:army may have any type of data for its elements

including other a~y8.

(2) The size of the array. The specification must give the number

of dimensions, and the bounds of each dimension. The bcund of

a dimension is always a positive integer.

(3) The data out of which the array is initially composed. This

is determined as soon as the type and size are declared:

Type of Army

booZean:array

integer: array

reaZ:array

symbo Z: array

Initial Data

all elements are FALSE

all elements are 0

all elements are 0.0

all elements are NIL

Of course, the data in such an a~y are promptly changed during the course of

a computation using it.

For example, at the beginning of a bZook, suppose we wish to declare a reaZ:

~Pay:variabZe called A containing a 3-dimensionaZ reaZ:~ywhose bounds are

3, 4, and 5,respect1vely. We would write:

15 July 1966 102 TM-2710/101/00(DRAFT)

REAL ARRAY A(3,4,5)

In the place of the number 4, for example, we could put an expression which

would evaluate to the correct integer bound.

For another example:

SYMBOL ARRAY A(5), B(X+2), C(FN(W»

This decLaration declares three one-dimensionaZ arrays named A, B, and C of

type SYMBOL. The size of the dimension of A is 5. The size of the dimension

of B is equal to X plus 2. The size of the dimension of C is equal to FN of W.

The second two sizes can only be determined at run time.

We should note that:

1. All the arrays specified in anyone decLaration must be of the

same type.

2. They may each have any number of dimensions.

3. The number of dimensions is implied by the number of expressions

specifying bounds.

4. A bound does not have to be a predeclared integer. Instead, it

can be any expression that can be evaluated to yield an integer

at the time that the array is activated. This can, for example,

be a different integer each time the array is activated.

5. When an array:decLaration is placed among the decLarations of a

bLock, the array:variabZe and associated array are active Just

before the first statement of the bLock is activated and continue

active until the bLock is terminated. The same considerations of

binding and soope apply to array:variabZes as apply to ordinary

variabLes (see Chapter 10).

6. An array:decLaration may be made on the top level of a LISP 2

c

o

o

15 July 1966 103 TM-2710/101/00(DRAFT)

program rather than inside a bZock. In this case, the a~y

remains in existence all the time the LISP 2 program is in the

computer.

11.3 HOW TO OBTAIN AN ARRAY:ELEMENT

Suppose that a 3-dimensionaZ peaZ:a~y whose bounds are 3, 4 and ~respectively

is associated with the peal:apPay:vapiable A. Then the element whose coopdinates

are I, J and K may be referred to as

A(I,J,K)

I, J, and K are called subscPipt:exppessions. They must evaluate to positive

integeps, and must not be greater than their respective bounds. Any ~ppessions

that have these properties may be used as apray:subscPipt:exppessions.

Example 1: A(2, IF p=o THEN Q-l ELSE Q, R)

Example 2: A (3, BEGIN RETURN 4 END, 5)

An aPray:vaPiabZe followed by its subscPipt:exppessions enclosed in parentheses

and separated from each other by commas is a 101'111. In fact it is impossible to

tell by examining a fom whether it begins with an ~y:vaPiabZe or a function:

:name. Foms are primaries and consequently they are also sUnpZe:e:r:pressions

(see Chapter 5).

When a f01'l11 composed of an a~ay:variable and subscPipt:e:r:pressions is evaluated,

the sUbscPipt:expressions are evaluated first. If there are the correct number

of subscPipt:expressions and if each sUbscPipt:e:r:pression is within bounds~ then

o the value of the fom is the specified element of the apray.

11.4 HOW TO CHANGE AN ELEMENT OF AN ARRAY

To change an element of an apray, we write a f01'l11 with the a~ay:name and subscript:

15 July 1966 104 TM-27l0/l0l/00(DRAFT)

:expressions and use it as the left side of an assignment:statement or assignment:

:expression:

Example 1: This sets the a~ay element with coordinates 2, 2,

A(2,2,2) + 3.14159 and 2 to the vaZue 3.14159.

Examj>le 2:

Z(I,K) + X(I,J)*Y(J,K) This sets the a~ay:ez.ement of Z with coordinate I

and K equal to the product of the arPay:eZement of X

with coordinates I and J and the a~ay:eZement of Y

with coordinates J and K.

11.5 A MATRIX MULTIPLICATION PROGRAM

Suppose we wish to define in LISP 2 a function MM, a program that multiplies two

matrices. We shall assume that we have available, two functions called VREADIN

and VREADOUT that read the data from an external device into or out of an a~y,

respectively.

The argument8 X, Y and Z of MM specify that a matrix of dimensions X by Y is

to be multiplied by a matrix of dimensions Y by Z.

Here is the definition:

FUNCTION MM(X,Y,Z) BEGIN REAL ARRAY A(X,Y), B(Y,Z), C{X,Z);

INTEGER I,J,K;

VREADIN (A) ;

VREADIN(B);

r<-l;

R: J~l;

s: K~l;

C!
~~

o

15 July 1966 105 TM_2710/101/00(DRAFT)

T: C(I,K)+- C(I,K)+A(I,J)*B(J,K);

IF K< Z THEN BEGIN K~ K+l; GO TEND;

IF J < Y THEN BEGIN J ~ J+l; GO SEND;

IF I< X THEN BEGIN I~I+l; GO REND;

VREADOUT(C)

END

11.6 PROCESSING AN ARRAY AS A SINGLE DATUM

An arPay in LISP 2 does not necessarily have a name. This is because an a~y

is a datum. The situation is quite analogous to any other type of data~ say

reaL:numbers. If 5.0 is the vaZue of the reaZ:variable X, then we may refer

to X and mean 5. But at some other time, X may not mean 5. In other words,

an array may be a constant, or an array may be denoted by a variabLe, and

either may be part of an S-expression.

The following example consists of a list, one of whose elements is an array.

The square:brackets refer either to a row of an array or a sub:~y or the

array as a Whole.

(A 3 (INTEGER [1,0] , [0,1]])

The third element of this list is a 2 by2 integer:array which is denoted mathe

matically as the matrix:

In regard to transmission of arrays or array:eZements, there are some points to

o be stated. If FN is a function of' one argument, and if A is a 2-dimensionaZ:

~y, then FN(A(I,J» is an expression that obtains the i,jth element·ot A; this

expression transmits this datum to FN, which then computes the appropriate vaZue.

Also, an entire arPay may be transmitted as an argument, or assigned to an
------,------' .. '--'~--.-

15 July 1966 106 TM-2710/101/00(DRAFT}

aPray:variabte by an assignment:statement. In the following example we define

a function of an apray:vapiable X, and then read in an appay and give it to

the function as an argument.

Example:

FUNCTION FN(X} REAL ARRAY X; body;

REAL ARRAY A;

A ~ READARRAY ();

FN(A);

In the above example we have employed READARRAY to stand for a pPOgpam devised

by a user which reads in an al'l'ay from an input file. Since this functionlhas

no aPguments, () is used. READARRAY fills in all the elements of the al'Pay

that it creates.

The new techniques appearing in this example are explained in the following state-

ments.

(1) If a function is to receive an entire al'l'ay as an aPgument corresponding

to a certain al'gument:pa~tel' (X in the above example), this condition should

be declared in a declaration appearing after the argument:papametep:list, and

before the body of the function:definition; REAL ARRAY X in the above example.

The general form of this decLaration is:

type ARRAY vl ' ••• vn

where type is BOOLEAN, INTEGER, REAL, or SYMBOL; and the v i are one or more

variables. The decLaration is followed by a semi:coLon to separate it from the

next declamtion or the body of the function:definition.

C~

o 15 July 1966 107 TM-27l0/l01/00(DRAFT)

A more complete description of the kinds of decZarations that may be made

after the apgument:papametep:Zist in the function:decLaration is given in

Chapter 15.

(2) The decZapation REAL ARRAY A in the above example specifies that A is

a vaPiabZe of type peaZ:appay. It does not, however, place a peaZ:aPPay filled

with floating-point zeros (O.O's) in A. To do this, if n is the number of

dimensions, we write REAL ARRAY A(el , ••• en)' Or we make use of READARRAY in

the example.

(3) If an appay:type:vaPiabZe is used as the left side of an assignment:

o ~tatement (or assignment:exppession) without subscPipt:exppessions (in the

line A~ READARRAY () of the example}, then the entire arpay (in this case,

the current vaZue of A) is to be replaced with a new army which is the vaZue

of the right half of the assignment:statement (or assignment:exp~ssion).

In the case of A~ READARRAY (), there was no aPPay in A to begin with; but

an aPPay is placed in A by the function READARRAY which by the user's definition

has an a~y as its vaZue. (There is no LISP system:function called READARRAY

because it would depend too much on the particular machine configuration.)

If one assigns NIL to an army:vaPiabZe, then the army that was in it, if any,

is discarded, and the storage space occupied by the army is released.

(4) If an apgument:pat'CUTIetera of a funation is of an arpay:type, then the

o argument transmitted to it must be an arpay of such type. The fom FN{A) in

the preceding example calls the function FN and presents to it the army that

15 July 1966 ~o8 TM-2710/101/00(DRAFT)

is the value of A. This array as it is being transmitted is no longer referred

to as the value of the variable A, but within the body of FN, is referred to

as the value of the argument:parameter X.

11. 7 BASIC FUNCTIONS FOR ARRAYS

The predicate ARRAYP(X) is true if X is an array and false otherwise.

The following functions allow one to obtain useful information about arraY8.

In the description below, assume that A is an argument which is an array, and

I is an integer:argument.

ARRAYTYPE(A) can be used to find the type of an array. Its value is an identifier

such as BOOLEAN, INTEGER, REAL or SYMBOL.

ARRAYDIM(A) specifies the number of dimen8ions of its argument. Its value is

an integer.

ARRAYSIZE(A,I) specifies the bound of a particular dimension. The argument I

specifies the dimension about which one is inquiring. The vaLue of ARRAY SIZE

is an integer.

(~: The following function has not been fully specified. A possible imple-

mentation is described below because it is useful for the purposes of this

primer. It or something similar to it will be implemented.)

The function MAKEARRAY can be used to create a new array.

MAKEARRAY (dl , ••• , dn , type) C:'
MAKEARRAY has an indefinite number of arguments. The first group of arguments

are integer8 and specify successively the bounds of the new array to be created.

The number of bounds implicitly specifies how many dimen8ions the array has. The

o

o

15 July 1966 109 TM-27l0/ll0/00(DRAFT)

type of the ~ay is specified by the last argument. which is an identifier:

BOOLEAN, etc. The vaZue of MAKEARRAY will be an array of the specified type

and size. Its initial data will all be FALSE, 0, 0.0, or NIL according to the

type.

An example: Matrix multiplication

The following is a definition of a function that performs matrix multiplication.

Unlike the previous example, it is a genuine function. It receives two arrays

as its arguments and has their matrix product as its vaZue.

FUNCTION MXMPLY(A,B) REAL ARRAY A, B; BEGIN

REAL ARRAY C;

INTEGER I,J,K,X,Y,Z;

X ~ARRAYDIM(A,l) ;

Z ~ARRAYDIM(B,2);

IF (Y'f-- ARRAYDIM(A,2» /= ARRAYDIM(B,l) THEN RETURN

#ERROR - SECOND DIMENSION OF ARRAY 1 IS NOT THE SAME SIZE AS

FIRST DIMENSION OF ARRAY 2#;

C <E-- MAKEARRAY (X, z, 'REAL) ;

1<:-' --1;

R: J~l;

S: K~-l;

T: C{ I,K) ~ C(I ,K)+A(I,J)*B(J ,K);

IF K < Z THEN BEGIN K~ K+l; GO TEND;

IF J < Y THEN BEGIN J~-' -J+l; GO SEND;

IF I < X THEN BEGIN I~ Hl; GO REND;

RETURN C

END;

15 July 1966 110 TM-27l0/l0l/00(DRAFT)

Folloving are some comments:

REAL ARRAY C specifies an array:varoiabl,e but doesn't put an

array in it.

Six variables, namely I, J, K, L, M, and N, are declared as

integer:parameters;

A, Bare argument:parameters; C is an internal:parameter;

X. Z are set to the outer dimensions of matrix multiplication;

Y is set to the second dimension of the first matrix A by an

drgument:expression •

The value of the assignment:expression is compared to the first dimension of B.

They must be equal or the value of MXMPLY vill be a string reporting the error.

(This is not a recommended way of handling errors.) -
The example contains an instance of MAKEARRAY. Its arguments are two integers

and an identifier which is quoted in this case, because it is constant and

always refers to real:type.

o

o

o

------ ---------- - -- ---------------- ._-------

15 July 1966 111 TM-27l0/l0l/00(DRAFT)

CHAPTER 12

FOR STATEMENTS

This chapter is a temporary one and will be replaced in the next edition of

the Primer. It differs from the rest of the Primer in not being written in a

tutorial style, not having any examples, and in its use of intermediate

language. It supplants the chapter on FOR statements in the March 1966

preliminary draft of the Reference Manual.

Each type of FOR statement is herein illustrated both in source language and

in intermediate language. The semantics of each kind of FOR statement is then

completely defined by translating it into a block. This is a complete descrip-

tion of the semantics of the FOR statement because the LISP 2 compiler does in

fact replace the FOR statement by the corresponding block via macro expansion.

Some of the FOR statements expand into compo_und statements, and some expand

into block statements. It is correspondingly legal or illegal to transfer into

the FOR statement. A FOR statement is never an expression, and it does not

have a defined value. It is alw~s possible to transfer out of a FOR statement

if other conditions permit.

In the statement schemas that follow, the following symbols are used:

var

exp

ae

bool

gl, g2 •••

st

to mean any variable

to mean any expression

to mean any arithmetic expression

to mean any Boolean expression

to mean identifiers generated at the time of the
macro expansion

to mean any statement ____ __

15 July 1966 112 TM-2710/101/00(DRAFT)

12.1 GENERAL CONSIDERATIONS

A FOR statement is a means by which the programmer can specify a program loop

controlled in various ways, without explicitly writing out the loop. It is a

shorthand notation, and does not permit anything which could not be done without

FOR statements but at greater length.

Every FOR statement has a variable associated with it called the control

variable. The control variable always appears in the FOR statement immediately

after the word FOR and can be recognized accordingly.

FOR var •••

The FOR variable is never declared or bound by the FOR statement itself. When

the control variable is mentioned within the FOR statement,the binding in effect

at this time must be the same one as immediately outside of the FOR statement.

The value of the variable at the time of entry into the FOR statement may be

used inside the FOR statement in certain cases. The last value assigned to the

control variable inside the FOR statement is available after the FOR statement

has been executed.

The general form of the FOR statement in source language is:

FOR var for-element while-exp unless-exp DO st

In intermediate lnaguage it is:

(FOR var for-element wh-ile-exp unless-exp st)

In this schema, var stands for the control variable. The different types of

FOR elements are explained in the succeeding sections. The statement st is

called the object statement of the FOR statement. The object statement and the

WHILE and UNLESS expressions are discussed below.

~.
I •

~--.... /

C)

c

o 15 July 1966 113 TM-27l0/l0l/00(DRAFT)

The object statement may be any type of statement including another FOR state

ment. It is executed repeatedly in a closed loop until the loop is terminated

for one of several reasons. One way of terminating a FOR statement is to

transfer from within the object statement to a label outside of the FOR state-

mente A RETURN statement may be used similarly.

The WHILE expression has the form:

WHILE bool

(WHILE bool)

or else it is omitted.

of the object statement.

(in source language)

(in intermediate language)

Tke expression bool is evaluated prior to each execution

If the value of bool is FALSE, then the FOR statement

c=J is terminated immediately.

The UNLESS expression has the form:

UNLESS bool (in source language)

(UNLESS bool) (in intermediate language)

or else it is omitted. The expression bool is evaluated prior to the execution

of the object statement. If its value is TRUE, then the execution of the object

statement is omitted for this one pass through the loop. The FOR statement is

~ terminated by this action.

Either the WHILE expression or the UNLESS expression or both may be omitted.

If they are both present, then the WHILE expression is written first and performed

first

o 12.2 THE EMPTY FOR ELEMENT

sl: FOR var while-exp unless-exp'DO st

il: (FOR var () while-exp unless-exp st)

15 July 1966

expansion:

(BLOCK ()

LW

s u

st

(GO L)

114 TM-2710/101/00(DRAFT)

In this expansion (and others) the symbols L. LU. and LW are labels which are

genids manufactured at the time that the macro expansion is performed. The

statements sand s are present only if the WHILE expression and the UNLESS w u

expression correspondingly are present in the FOR statement. They have the

forms:

s : (IF (NOT bool) (GO lw)}
w

s: (IF bool (GO lull
u

where the boolean expressions from the WHILE expression or the UNLESS expression

correspondingly are used.

The FOR statement with an empty FOR element is the one instance in which the

control variable has no significance.

Example:

61: FOR A WHILE B<20 UNLESS C DO BC-FN()+1

il: (FOR A () (WHILE (LS B 20» (UNLESS C) (SET B (PLUS (FN) 1»)

expansion:

(BLOCK ()

L LU (IF (NOT (LS B 20» (GO LW»

(IF C (GO LU})

G

o

15 July 1966

LW)

(SET B (PLUS (FN) 1»

(GO L)

115 TM-27l0/l0l/00(DRAFT)

This expansion is literally correct except for the replacement of L, LW and

LU by genids. (This example is worthless as a programming example.)

12.3 THE LOOP FOR ELEMENT

sl: FOR var LOOP exp while-exp unless-exp DO st

il: (FOR var (LOOP exp) while-exp unless-exp st)

expansion:

(BLOCK (.)

L LU (SET var exp)

st

(GO L)

LW)

The LOOP element resets the control variable for each iteration of the loop.

The initial value of var is unimportant unless it is used somewhere in the

eValuation of expo

12.4 THE RESET FOR ELEMENT

sl: FOR var~ expl RESET exp2 while-exp unless-exp DO st

il: (FOR var (RESET expl exp2) while-exp unless-exp st)

15 July 1966 116 TM-2710!lOl!OO(DRAFT)

expansion:

(BLOCK ()

(SET var expl)

L s
w

st

LU (SET var exp2)

(GO L)

LW)

The RESET element differs from the LOOP element in that the control variable

can be set to an initial value via a different computation (expl) than the

computation (exp2) that resets it.

If the previous value of var is to be used on the first iteration, then expl

should be yare In source language, this may be omitted as follows:

.sl: FOR var RESET exp2 while-exp un1ess-exp DO st

i1: (FOR var (RESET var exp2) while-exp unless-exp st)

12.5 THE IN AND ON FOR ELEMENTS

81: IN FOR var ON exp while-exp unless-exp DO st

il: IN (FOR var(Qi exp) while-exp unless-exp st)

expansion:

(BLOCK ({Gl SYMBOL exp»

Ll (IF (NUL Gl) (GO L2»

(SET var (CAR Gl))
Gl

~
'\ .
\\ ..

o

o

15 July 1966

LU (SET Gl (CDR Gl»

(GO Ll)

LW L2)

111 TM-21l0!lOl!OO(DRAFT)

The IN (ON) FOR element executes the loop as many times as the length of the

list which is the value of the expression exp. In successive executions of the

loop, the control variable is set to successive elements of (remaining segments

of) the lis"t.

12.6 THE STEP FOR ELEMENT

sl: FOR var expl STEP exp2 UNTIL rel exp3 while-exp unless-exp DO st

il: (FOR var (STEP expl exp2 rel exp3) while-exp unless-exp st)

There are six possible relations (rel) in source language which translate into

six corresponding relations in intermediate language:

sl il

< LS

< = LEQ

> GR

> = GEQ

= EQ

/= NQ

The following omissions of parts of the statement are permitted:

1: If "~expl" is omitted in source language, then expl in

intermediate language is var.

2: If "UNTIL rel exp3" is omitted in source language, then rel

and exp3 are omitted in intermediate language.

15 July 1966 118 TM-2710!lOl/OO(DRAFT)

expansion:

(BLOCK «Gl ASSIGNED exp2) (G2 ASSIGNED exp3)*)

(SET var expl)**

Ll (IF (rel var G2) (GO L2»**

s w

st

LU (SET var (PLUS var G2»

(GO Ll)

LW L2

* Omitted if there is no exp3.

** Omitted if this reads (SET var var).

12.7

The variable var may be replaced by any locative with exactly those consequences

implied by the macro expansion.

c

o

o

15 July 1966 119 TM-2TIO!lOl!OO(DRAFT)

CHAPTER 13.

FLUID: VARIABLES

Every variabZe in LISP 2 has one of three storage:modes. The three storage:

modes are Ze3!icaZ, fiui4 and own. The storage:mode of a vaztiabZe is independent

of the type of the vanabZe. Thus a va1'iabZe may be l'eaZ and fiuid, or symboZ

and Ze%ioaZ, etc. All va1'iabZes that have been considered so far in this Primer

are Z~caZ, because that is the storage:mode that is assumed by the system

unless the user specifies otherwise. The storage:mode own is described in the

Reference Manual. Here we shall describe fiuid:variabZes and distinguish them

from Ze%icaZ:variabZes.

13.1 EXAMPLES OF FLUID AND LEXICAL:VARIABLES

The properties of ZexicaZ and fluid:variabZes are explained in Table 13.1.

If the Type
of Va1'iabZe
is:

ZezicaZ

f1,uid

ZexicaZ

fiuid

And the Type
of Binding
is:

as an al"gu
ment:
parametel'

"

an an intel'
naZ:
pal'ametel'

Table 13.1

Then the Scope
of the Binding
is:

the body of the
funotion being
defined

the entire
pl'O(Jl'aI7I

the sequence of
statement in
the bZock in
which the
binding was made

the entire
pl'()gram

And the Dura
tion of the
Binding ia:

while the body
is being
evaluated

"

while these
statements
are being
executed

"

See
Example No.

1

2

3

4

We should note that any mention of a val'iabZe lies (or should lie) within the

scope of exactly one binding of that vanabZe. In a case where the mention of a

15 . July 1966 120 'IM-2710/101/00{DRAFT)

variabLe lies within the saopes of several bindings, it is the innermost binding

which takes priority, then the next outer binding, and so on.

Example 1. This is an example of Ze:x:iaaZ:variabZes used as argument:paPamete'l's.

FUNCTION MEMBER (X,L);

NOT NULL X AND

(X = CAR L OR MEMBER (X, CDR L»;

In this case both X and L are Le:x:ioaZ:a'l'gument:paramete'l's. The saope of their

binding is from the first semi:aoZon to the second semi:aoZon. The time of their

binding is while the body (the portion of the prog~ between the two semi:aoZons)

is being evaluated. Only while the body is being evaluated can X and L be known.

Example 2. This example contains two fLuid:variabZes used as aPgument:pa'l'amete'l's,

and two Le:doaL:vaPiabZes used as a'l'gwnent:paPamete'l'8.

FUNCTION SUBST(X,Y,Z) FLUID X,Y; SUBST1(Z);

FUNCTION SUBST1(W) IF ATOM W THEN (IF W=Y THEN X ELSE W)

ELSE(SUBST1(CAR W) • SUBST1(CDR W»;

This is the same funotion SUBST that was defined in Chapter 3, but here the

definition is a different one, making use of an auxiliary function called SUBST1.

SUBST is not recursive in this definition; it binds the three variabLes X, Y, and

Z. SUBSTl is recursive and binds W, the binding for W changing for each recursion.

However, SUBSTl must use the first two va'l'iabZes X and Y. SUBSTl is not within

the ZexioaZ:soope of SUBST. but since the argument:pa'l'a11lete'l's X and Y of SUBST

are declared to be fZuid, then they may be accessed anywhere in the p'l'ogram while

the body of SUBST is being evaluated. This includes the time during which SUBSTI

is being computed because SUBST still has not been finished.

o

o

15 July 1966 121 TM-27l0/l0l/00(DRAFT)

We say that SUBSTl is within the jtuid:scope of SUBST when SUBST calls SUBST1.

If SUBSTl were called from some other function, however, then SUBSTl would not

be wi thin the jtuid : scope of SUBST and it would not be able to take hold of the

bindings of X and Y. Thus the concept of f'Luid:scope is a highly dynamic one,

and depends upon conditions that cannot in general be anticipated before the

progr-aJn is run.

When a var-iab'Le is mentioned in a function:definition without its being bound

in that definition either as an ar-gument:par-ameter- or as an inter-na'L:par-ameter,

then it is called a fr-ee:var-iab'Le. Fr-ee:var-iab'Les are automatically and

necessarily f'Luid.

In the definition of SUBST1, X and Yare fr-ee:var-iab'Les. They are not azaguments

of SUBST1, but they are referenced for va'Lue. The only reason they have va'Lues

is that SUBSTl is called by SUBST which binds X and Y as jtuid:var-iab'Les. If

the dec'Lar-ation FLUID X, Y were missing in the definition of SUBST, then the

va~ues of these bindings could not be used in SUBSTl. If this dea'La1'ation were

missing, X and Y would become 'Le%iaa'L:var-iab'Les in SUBST, and could be referenced

only from within SUBST.

Example 3. This example contains two 'Le~iaa'L:var-iab'Les as inter-na'L:p~eters.

FUNCTION REVERSE (X) BEGIN SYMBOL Y;

A: IF NULL X THEN RETURN Y;

Y+- (y • CAR X);

o X~CDR X;

GO A; END;

This progl'am of statements produces the reverse of a 'List, a 'tist in the reverse

order.

15 July 1966 .122 TM-27l0/l01/00(DRAFT)

X and Y are Ze~caZ:variabZes used as intepnaZ:parameteps. Their binding exists

spatially in the sequence of statements in the bZock where they are bound, and

exists in time while those statements are being executed.

Example 4. The following artificial example may explain some points about the

sC!ope of vanab Zes •

FUNCTION P(X) FLUID X; Q();

FUNCTION R(Y); p(y);

FUNCTION Q(); PRINT(X • '0);

FUNCTION J(Y); FLUID Y; K();

FUNCTION K(); BEGIN FLUID SYMBOL X; X -+- Y; Q() END;

p('A);

R('B);

J('C);

When this progpam is run, the S-ezpPBssions (A • D) (B • D) and (C • D) are

printed in that order. Here is the description of its operation.

(1) Function P binds the jLuid:variabZe X to the va'Lue A. The

A can then be picked up as the va'Lue of thefpee:variabZe X that

occurs in function Q.

(2) Function R transmits its argument (which is B) to function P.

Function Pthenbinds B to the f'Luid:variab'Le X, where it is

picked up by Q.

(3) Function J binds C to the jLuid:argument:parametep Y. It then

calls K whicb has no arguments. K has a jLuid:intePna'L:papa

meter X which is initially bound to NIL. It then becomes bound

to C because of the assignment:statement which picks up the

c

c

C:i

o 15 July 1966 123 TM-27l0/l0l/00(DRAFT)

Example 5.

value of the free:v~iable Y and assigns this to X. The C

is then picked up by Q.

FUNCTION L(X) BEGIN SYMBOL FLUID Y; Yf--(X • NIL); MCX);

FUNCTION M(Y) N();

FUNCTION N() PRINT ('B. y);

DC'A); END ;

In this case, the fUnction N prints (B A) and not (B • A). The variable Y

occurs free in N, and the value of Y must be the most recent ftuid:binding of

(--') Y that is still in effect. This is the intemat:pal"ametel' Y declared in L.
~

o

The Y of funotion M is not fluid (because it is not declared to be ftuid and

therefore it is not the value of Y that will be used.

A fZuid:v~iable may have only one type regardless of the area in the pro~

where it is used. Thus the following two dec~ations, if made in one program,

are incompatible even if they may be in different subsections of the same

progl'Q1Tl :

Incompatible deolarations:

FLUID INTEGER X;

FLUID REAL ARRAY X;

It is a common programming convention in LISP to choose longer, more uncommon

names for ftuid:variables because their scopes are so wide, and one may run into

collision problems among fluid:variables. Single:Zetter:identifier8 are

commonly used for Ze~cal:val'iable8.

- -~~-.-----------

15 July 1966 124 TM-2710/101/00(DRAFT)

13.2 FLUID: DECLARATIONS
To declare that an, argument:parameter or several argument:parameters are

fLuid, we put the dea Zaration

FLUID vl ' ••• , vn

after the argument:parameter:Zist and before the body of the funation:defini

tion. This function:definition may be combined with others that may properly

be put in this position, such as

FLUID REAL ARRAY X, Y

This dec"Laration is always followed by a semi:aoZon.

To declare that an internaZ:parameteris fZuid, we write

FLUID vl ' ••• , vn

but it is usual to combine this with another deaZaration such as a type:

decZaration.

Ex~le 6. Suppose we have three internaZ:parameters X, Y and Z with the follow

ing dec Zarations :

FLUID SYMBOL X;

FLUID REAL ARRAY Yi

REAL ARRAY Z;

The statement that X is of type SYMBOL and has storage:mode fZuid can be stated

either by FLUID SYMBOL X or by SYMBOL FLUID Xt or by SYMBOL X; FLUID X.

The order of the declaratory words makes no difference so long as all thedeclara

tory words precede all the variabZes to which they apply. The set of decZarations

above could be rewritten as follows with the same effect:

FLUID X, Y;

SYMBOL X;

REAL ARRAY Y, Z;

c

15 July 1966 125 TM-2710/101/00(DRAFT)

CHAPTER 14.

LOCATIVE TRANSMISSION OF PARAMETERS

Every pa~ameter in LISP has a type, and a sto~age:mode, and in addition what is

called a t~ansmission:mode. There are two t~ansmission:modes, called trans

mission:by:value and t~ansmiBBion:by:loaation. This latter is abbreviated to

the ~e8erved:word LOC. All the parameters considered up to this point in this

Primer have been t~an8mitted:by:value. This is the most common mode. For this

reason the t~8mi88ion:modeassumed. unless the programmer declares otherwise,

C=) is transmisBion:by:value.

o

We will discuss here a~gument:pa~ameters having loa:transmi8sion,mode. The

case of internal:pa~amete~s having loa:t~smisBion:mode is rare and outside of

the province of the Primer.

14.1 ARGUMENTS TRANSMITTED BY VALUE

First, let us consider an example which reviews some terms.

Example 1:

FUNCTION FN(X) Xt2+3*X;

Wf-3;

FN(W-7);

a. Argument:Expression. In this example FN is defined as x2 + 3x; then W is

set at 3; and FN of W-7 is called. In this example, W-7 is an expression

used to compute an argument for the funation FN. W-7 is not itself the

argument; we call W-7 an a~gument:exp~ession.

15 July 1966 126 TM-2710/10l/00(DRAFT)

b. Argument. The argument of FN in this example is -4, because -4 is the

vatue of the argument:expression W-7 when W is set at 3.

c. Argument:parameter. The argument:parameter of FN is the variab'Le X. Its

vaZue 3 while the body of FN is being evaluated, is the argument -4. The

argument:parameter X has vaZue:transmission:mode; what X means is determined

by finding the vaZue of X. (This is true because there is no deoZaration

specifying that the transmission:mode should be 1.00; furthermore, as we

shall see, a deoZaration LOC would be illegal in this case.)

Having reviewed this vocabulary, we can now state a rule for transmitting

arguments by vaZue.

Rule: If an argument:parameter has vaZue:transmission:mode, then at the time

the funotion is called, the argument:e~res8ion corresponding to that argument:

parameter is evaluated, and the resulting vaZue is transmitted to the funotion

as the argument.

We note that the evaluation of the argument:expres8ion to yield an apgument is

performed prior to the call to the function.

The term transmission:by:va'Lue is justified by the fact that it is the argument

and not the argument:expres8ion that is transmitted. Thus, in the preceding

example, the function FN receives the argument -4; there it is immaterial that

the variab'Le W was in any way related to the method by which -4 was determined.

14.2 ARGUMENTS TlWIS1·lITTED BY LOCATION

Let us n01-' try to explain the Zoc:tl'an8mif!f~ion:rr!ode. We shall begin with another

example.

~.

o

o

15 July 1966 127 TM-27l0!lOl!OO(DRAFT)

Example 2:

FUNCTION FN(X) INTEGER LOC X; X~ 5;

BEGIN INTEGER Y;

END;

FN(Y);

PRINT(Y)

What will be the result of executing this prog~am? Let us analyze the steps:

(1) The function FN is defined. X is declared intege~ and

Zocative. Then X is set equal to 5.

(2) A bZock:exp~e88ion is entered; the internal:pa~ete~ Y is

declared of type INTEGER; it is assigned the vaZue 3.

(3) Now TI~ is called from within the block:exp~88ion. Corres-

ponding to the a~gument:pa~ete~ we have the a~gument:

e:r:p~88ion Y. But Y is !!2i evaluated to produce 3 as an

a~gument for FN. Instead, the binding of Y itself is trans-

mitted t i.e., the location of the vaZue of Y.

(4) When the a88ignment:8tatement X~5 is executed, X is not

bound to a value; instead it is bound indirectly to another binding,

namely the binding of Y. Therefore, it is as if the statement

Yt- 5 were executed.

(5) This changes the binding of Y in the bZock:e=p~e88ion, so that

its vaZue is now 5. Consequently, 5 is what is printed.

If an ~gument:pa~amete~ has ZoC:t~smi88ion:mode, severe restrictions are imposed

on its argument:e:r:p~e88ion.

15 July 1966 128 TM-2710/10l/00(DRAFT}

One cannot in general use any exppession. For example, consider

FUNCTION FN(X) INTEGER LOC X; X~5;

One cannot call FN by FN(3) because this would mean that the assignment:

exppession would then read 3~ 5 which is nonsense. Even FN(:y+4) is illegal.

This would make the assignment:statement read Y+4f--5. One could claim that

this means Y~ 9 but in LISP, it does not, because the assignment:statement

is not intended as a device for solving implicit equations.

Two possibilities are permitted here (others are discussed in the Reference

Manual). First, the argument may be a vaPiabZe of the same type as the

Zocative:al'gwnen!;:parametep. So one may write FN(Y) but only if Y is a

val'iabZe of type INTEGER. If Y were of type REAL, this would be illegal.

Secondly, if the Zocative:papametel' is of a simple type (such as INTEGER, REAL,

etc., but not n rEGER ARRAY etc.) then one may use as an azegument:exppes8ion a

val'iabZe of the corresponding al'pay:type, with subscripts. Thus if A is a

variabLe of typ(INTEGER ARRAY, one may write FN(A(L-3, M*4». The aproay:

8ubscpipt:exppe."sions (L-3 and M*4 in this case) are evaluated before FN is

called, and a r'ference to the element A(l,l) is transmitted to FN that makes

X correspond wi ;h the particular element of the integep:aPl'ay that has been

specified.

Example 3.

FUNcrION FN(X) INTEGER LOC X; X~5;

BEGIN INTEGER ARRAY A(6,7);

INTEGER I,J;

If--3;

J~4;

C:
/

o

15 July 1966

END;

PRINT (A(2,l»;

FN{A(I-l,J-I» ;

PRINT(A(I-l,I-2»

129 TM-2710/101/00(DRAFT)

The first nwnber printed is 0; the second is 5. Thevariabte A is bound to a

6 by 7 integer:array whose data are all 0' s. The call to FN binds X not to

the datum 0 in the 2,1 location, but to the 2,1 location itself,because X is

LOC. The assignment:statement in the body of FN X~5 has the meaning or inter

pretation A(2,1)~5.

The following example illustrates one of the peculiar properties of a parameter

that is both fLuid and Zoc. Example:

FUNCTION FN(Y) FLUID LOC Yt G();

MICTION G() Y~'B;

BEGIN SYMBOL X;

END;

X~'A;

FN(X) ;

PRINT(X)

This program prints B. When FN is called from within the b7,ock:ezpression, X

is not evaluated. Instead, the binding of X is transmitted as the binding of

Y because Y is Zoe. When G is called, the free:variab7,e Y in G is within the

scope of the argument :parameter Y (of FN) because the argument :parameter is

fiuid. Thus the assignment:statement in G may be read as X~'B and refers to

the internaZ:parameter X of the btock:e:rpression. But this is only because Y

in FN is both fiuid and 1.0c.

15 July 1966 130 TM-2710/101/00(DRAFT)

The reader may, at this point, be puzzled as to how to treat the rule 2 which

states that an argwnent:parameter that is Zoe, and its corresponding argument:

expression must correspond in type. Until now, it has not been stated that

every variabLe has a type. Yet this is indeed the case. Usually the type of

a variabZe is determined without the programmer being very much aware of it.

But it is important to understand that every variabZe always has a type, and

that there are rules for determining this. This is treated in the next

chapter.

C,
,/

o
15 July 1966 131 TM-2710/10l/00(DRAFT)

CHAPTER 15.

TYPES AND DECLARATIONS

15.1 TYPES OF VARIABLES

Every datum has a type, and every variabZe has a type, but the type of a

datum is a little different than the type of a val'iabZe.

The type of a datum is always deducible by looking at the datum. For example,

the type of 2.5E3 is ~eaZ. and this is clear from the way in which 2.5E3 is

written. Of course. a symboZic:datum (type SYMBOL) is any datum at all; so

o 2.5E3 is also a symboZic:datum. although 2.5E3 is regularly considered to be

a ~aZ:datum since this is more specific.

The type of a val'iabZe is an intrinsic property of the v~iab'Le. It amounts

to a restriction on the type of datum that may .be assigned to that variab'Le as

a vaZue. Thus, if A is a ~aZ:va1'iabZ~ its vaZue must always be a ~a'L:numbe~; ,

if B is a symboZic:variabZe, its vaZues can be any datum at all.

What is the advantage of having variab'Les of different types? Why not let all

val'iabZes be of type SYMBOL?

The first answer is that when a variabZe is used with ~ay:subsc~ipts following

it. the variab'Le cannot be of type SYMBOL. The LISP 2 compiler requires that it

be a specific ~~ay:type of variab'Le. ~ee Chapter 11.) A similar requirement is

o true of val'iabZes that designate functions as aztguments. a case which is

discussed later.

15 July 1966 132 TM-2710!101!00(DRAFT)

The "second reason is efficiency. If arithmetic types of data, such as intege'P,

~ac, and octaZ, are specified for va'Piabces, then the programmer (in return

for restricting himself to assign only data of the specified type as vacues for

that va'PiabZe) thus informs the compiler; and the compiler can generate more

efficient code. The decZa'Pations allow the compiler to assume what kind of

datum is in a va'PiabZe; and therefore the test to determine type does not have

to be made each time the va'PiabZe is referenced as the p~g~ is executed.

In a case where a P'Po~~ does only numerical computation, and all the va'PiabZes

are declared to be of a'Pithmetic:types, the program may run 30 to 100 times

faster than a p'Pog'Pam which performs the same computation with all va'PiabZes

of type lJymbo Z •

15.2 DECL~TIONS FOR ARGUMENT:PARAMETERS

The deccarations for a~ent:paramete'Ps are those that specify type, storage:

mode, and tmnsmission:mode. These decZarations follow directly after the

a'Pgument:paPamete'P:Zist of the fUnction and before its body. Each one is
\

followed by a semi:coZon. . They may be grouped in any convenient way; the order

is riot significant.

Each decZa'Pation begins with one or more key words which specify type tmns

mission:mode, and storage:mode. They are followed by a list of partamete%'s. If

there is more than one pa'Pamete'P, then they are se~arated from each other by

commas. (The key words are not separated from each other or from the first

va'PiabZe by any punctuation.) Each va'Piabce mentioned must be one of the

parqmete%'s in the p~te'P:cist preceding the decca'Pations.

' ...

o

o

C)

o

15 July 1966

Some of the key words are:

Example:

BOOLEAN

INTEGER

REAL

SYMBOL

BOOLEAN ARRAY

INTEGER ARRAY

REAL ARRAY

SYMBOL ARRAY

133

FLUID

OWN

.TM-2710/101/00(DRAFT)

LOC

FUNCTION FN(V,W,X,Y,Z) REAL LOC V, W; SYMBOL X; FLUID V, Z;

REAL Y. Z; LOC Y; ••• body •••

This example could have been written:

FUNCTION FN(V,W,X.Y,Z) REAL LOC FLUID V; REAL LOC W; SYMBOL Xi

REAL LOC Yi REAL FLUID Z; ••• body •.•

Incorrect example:

FUNCTION G(X,Y) SYMBOL X,Yj REAL LOC Y,Z; ••• body •••

It is inconsistent to assign two types to the pa~amete~ Y. It is also incorrect

to mention a variabLe Z which is not an a~gument:paramete~ of G.

15.3 DECLARATIONS FOR INTERNAL:PARAMETERS

DecZ~ation8 for intePnaL:p~amete~8 follow the word BEGIN at the beginning of

a bLock. The rules for these are similar to the rules for decZ~tion8 of

~gument:p~amete~8. There are some differences however.

15 Jul;y 1966 134 TM-2710/101/00{DRAFT)

An internaL:paPameter must be mentioned at least once if the program is to

notice it at all. At a minimum, the type of a variabLe can be declared--if

there is nothing else that you wish to declare.

Unlike argument:parameters, internaL:parameters are subject to initialization.

The initialization may be specified by the user or not. If not, a default

initialization will be made by the LISP system. The default initialization

depends upon the type of the variabLe, and will be NIL, 0, 0.0, etc., accordingly.

An explicit assumption is made using what looks like an assignment:statement.

Example:

REAL A~-2.5. B, C~X-Y;

This decLaration specifies three var~abLes as being reaZ:internaZ:parameters.

A is initialized to 2.5. B is initialized to 0.0. C is initialized to the

vaZue of the expression X-Yo

The initializing ezp~ssion may be any kind of expression. All the initializing

expressions are evaluated before any of the bindings of the internaZ:parameters

become effective. One consequence of this is illustrated by the following

example.

FUNCTION FN(X) BEGIN SYMBOL X(-'A, Yf- X; RETtJRN Y END; F'N('B);

The value of FN in this case il B. The argument:parameter X has as its vaZue

the identifier B. The inte:r-na~:parameter X is initialized to the identifier A.

When the initialization of Y is computed, the binding of the internaZ:parameter

X is not in effect yet. (Its scope starts with the word RETURN.) ThuQ, the X

referred to in Y~X must be the argument:parameter X, and so Y gets initialized

to B.

o

o

o

15 July 1966 135 TM-27l0/l0l/00(DRAFT)

15.4 DEFAULT: DECLARATIONS

It would be tedious if the programmer were to specify the type~ storage:mode~

and tmnsmission:mode of each pammetel'. Fortunately this is not the case.

The system is able to deduce these in most cases by a set of rules called the

defauZt:decZarations. If the programmer wishes, he may over-ride these by

making specific decZarations.

Rule 1: If no decZal'ation specifies otherwise, then a pammetel' has vaZue:trans-

mission:mode.

Rule 2: .If no declaration specifies otherwise, then a pal'ametel' has ZexicaZ:

stol'age:mode.

Rule 3: There is a type specified as being the current section:types. (See

Sections in the LISP 2 Reference Manual.) The section:type does not change
it

until the programmer changes/by means of a section:decZaration. Initially, the

section:type is SYMBOL. If no type:decZal'ation is made for a parameter~ its

type is the section:type.

15.5 VALUE: TYPE: DECLARATIONS

If a function always has a vaZue which is of some specific type~ then a

declaration informing the compiler of this fact increases the efficiency of

the p~gram. This decZaration is ~ade just before the word FUNCTION.

Example:

REAL FUNCTION SIN (X) •••

This declal'ation restricts the values of SIN to being l'eaZ:numbers; it makes

SIN a more efficient progl'am than if its value were not so specified.

15 July 1966 136 TM.2710/l0l/00(DRAFT)

When no value:type is specified, the section:type is assumed to be the vaZue:

type. If the section:type is SYMBOL, this creates no problems. But if the

section:type is, say, INTEGER and if a function is to have S-expressions as

values, it is necessary to specify SYMBOL FUNCTION •••

When a function is never executed to have a value, but only for its effect,

then the declaration NOVALUE FUNCTION may be used.

15.6 FREE: DECLARATIONS

Free:declarations are declarations that are not made within function:definitions

or blocks, but on the top level of LISP.

The declaration

REAL X, Y;

specifies that the fluid:variables X and Yare of type REAL. Every parameter X

or Y which is specified as being fluid, and every free mention of X and Y must

refer to the real:variables X and Y which of course are fluid.

These variables also have a universal scope in some sense. If they are referred

to free in a context in which they are not within the f7,uid:scope of any

binding of them as argument:parameters or intePnaZ:parameters, then it is this

top level that is referred to. This gives the programmer a way of using, non-

recursively, variables that can retain vaZues from one part of a program to the

next.

We remind the user that all occurrences of any fluid:variab7,e must be of the

same type. Note that there may be a Zerica7,:parameter called X which is not

of type REAL.

c

o

o

o

15 July 1966 137 TM-2710/101/00

The dec Zapation

REAL FLUID X,Y;

means something different. It means not only that all fZ.uid and free references

to X and Y refer to a reaZ:vapiabZe, but that in addition, all references to

any X and Y refer to a fZuid:reaZ:va~abZe. Thu~ it over-rides the convention

that a parameter is of ZeroioaZ:storage:mode unless otherwise stated. Once this

decZaration is made. all variabZes X and Yare fZuid.

15 July 1966 138

PROBLEM: SETS AND ANSWERS

CHAPTER 2

PROBLEH SET 1

Which of the following are S-e:x:pressions?

a. UVW

b. (A • B • C)

c. (A • BC)

d. ««A. B) • C) • E) • (F. (G. H»)

e. «A. B) • (C • D) • (E • F»

f. «X))

Answers:

a. Yes

b. No

c. Yes

d. Yes

e. No

f. No

PROBLEM SET 2

Evaluate each of these expressions:

a. CONS ('WINE, ' CHEESE)

b. CONS('TUOLUMNE, CONS('SANJOAQUIN, 'KINGS))

c. CONS ('(A. B) • '(C. D})

d. CONS (CONS ('{A, ' 'B) , CONS ('C, 'D))

e. CONS (, (A • B), CONS (' C , 'D) }

TM-2710/l01/00(DRAFT)

C,i

o 15 July 1966 139 TM-2710/101/00(DRAFT)

Answers:

a. (WINE. CHEESE)

b. (TUOLUMNE. (SANJOAQUIN • KINGS»

c. «A. B) • (C • D»

d. «A. B) • (C • D»

e. «A. B) • (C • D»

PROBLEM SET 3

Evaulate each of these e:ppessions. (Some of them may be undefined.)

a. CAR('A)

b. CDR('(A. B»

(J c. CAR(CDR('(STRAVINSKY. (BARTOK. SIBELIUS»»

d. CDR(CAR(CAR('«(HAT. TIE) • SHIRT) • JACKET»»

e. CAR(CDR('«AQUITAINE. GASCONY) • ARAGON»)

f. CAR(CONS('A, 'B»

g. CAR(CDR(CONS('(A. B),'(C • D}}})

h. CONS(CAR('(A. B»,CDR('(C • D»)

i. CONS(CAR('(A. B»,CAR('(C • D}}}

j. CONS('A,CAR('(C. D}}}

k. CADR (' (A • B»

1. CADR('(SHRIMP. (LOBSTER. CRAB}})

m. CAAR(CONS(CONS('A,'B},'C}}

n. CDDR(CONS('(A,'(B. C}}}

o o. CONS(CAAR('«A. B) • C}},CONS('D,CDDR('(E • (F • G»})}

Answers:

a. undefined

b. B
r

------- - ------------------ -...... ~- ---.- ----------------- - --- ------------- -

15 July 1966 140 TM-2710/l0l/00{DRAFT)

c. BARTOK

d. TIE

e. undefined

f. A

g. C

h. (A • D)

i. (A C)

j. (A • C)

k. undefined

1. LOBSTER

m. A
,,~./

n. C

o. (A • (D • G))

PROBLEM SE'l' 4

Rewrite each of these following S-e:x:p'l'essions using only dot:notation.

a. (A)

b. «A»

c. (HE HADE THE STARS ALSO)

d. (0 (A) (A A»

e. (A (A) «A»)

Rewrite each of the following S-exp'l'essions using Zist:notation as much as

possible:

f. «A. NIL) • « (B • NIL) • NIL) • NIL)

g. «A. NIL) • «B. NIL) • NIL»

h. (A. B)

i. « «A • NIL) • NIL) • NIL) • NIL)

o

o

o

15 July 1966 TM-2710/101/00(DRAFT)

J. «X. NIL) • «NIL. Y) • NIL»

Answers:

a. (A. NIL)

b. «A. NIL) • NIL)

c. (HE. (MADE • (THE • (STARS • (ALSO • NIL»»)

d. (NIL. «A. NIL) • «A. (A • NIL» • NIL»)

e. ({A. NIL) {{A. (A. NIL» • {(A. {A. (A. NIL») • NIL»)

f. «A) ({B»)

g. ({A). «B»)

h. (A. B)

i. ({«A»»

j. ({X). «NIL. y»)

PROBLEM SET 5

Evaluate each of these expressions:

a. CAR('(A B C»

b. CADR (, (A B C»

c. CADDR{'{A B C»

d. CDR('(A Be»

e. eDDR('(A B C»

f. CDDDR('(A B C»

g. CAAR('(A B C»

h. CONS (, A, '(Be))

i. CONS('A, CONS('B, ,(C»)

J. CONS('A, CONS('B, CONS('C, NIL»)

k. CONS('(A B),'(C D»

1. CONS(CONS('A, NIL), NIL)

m. CDAR('«A B) (C D»)

15 July 1966 142 TM-2710/101/00(DRAFT)

c'
Answers:

a. A

b. B

c. e

d. (B e)

e. (e)

f. NIL

g. undefined

h. (A • (B e» = (A B e)

i. (A • (B • (e») = (A B e)

J. (A B e)

k. «A B) • (e D)

1. ((A»

m. (B)

PROBLEM SET 6

EValuate the following expressions:

a. '(HELLO THERE BILL) = '(HELLO ~IERE JOE)

b. FALSE=()

c. NIL=()

d. t(A (B • e» = '{(A. B) • e)

e. eAR('(A B» = eADR('(B A»

f. eONs(eONS('(A B).·(e D»,'A = 'B)

.Answers: o
a. FALSE

b. TRUE

c. TRUE

-------------------- ----------------------

o 15 July 1966 143 .TM-2710/l0l/00(DRAFT}

d. FALSE

e. TRUE

f. «(A B) • (C D»)

PROBLEM SET 7

Evaluate the following exppessions:

a. ATOM('TUVWXYZ)

b. ATOM('A) = ATOM('B)

c. ATOM{CDR('{A B»)

d. ATOM{'A = '(B C})

e. ATOM{CAR(eONS(CAR('(A B}}, CDR('{C D»}})

0
Answers:

a. TRUE

b. FALSE

c. FALSE

d. TRUE

e. TRUE

PROBLEM SET 8

Evaluate the following exppessions:

a.. LIST ('A, t B , qc D»

b. CAR(LIST(IA, IB, 'C»

c. eAR(LIST('{A B C»)

0 d. ATOM(LIST('A»

e. LIST{'A, 'B) = CONS('A, eONS{ 'B, NIL»

15 July 1966 TM-2710/101/00(DRAFT)

Answers:

a. (AB(CD»

b. A

c. (A B C)

d. FALSE

e. TRUE

PROBLEM SET 9

Evaluate the following expressions:

a. NULL (CADDR ('(A (B C) D»)

b. CONS ('A, NULL ('A»

c. NULL (LIST ()) c
d. NULL (CDR (LI ST 'A»)

Answers:

a. FALSE

b. (A)

c. FALSE

d. TRUE

o

0

o

15 July- 1966

CHAPTER 4

PROBLEM SET 10

145 TM-2710/101/00(DRAFT)

Evaluate each of these aFithmetic:e:r:pressions using the following table to

determine the vaZues of the variabZes occurring in the e:r:p~essions.

VariabZe VaZue

A 2

B -3.0

C -5

D 7.5

a. A-l

b. A+B

c. BtA

d. C-:D

e. C/D

f. A*C

g. D-:l.O

Answers:

a. 1

b. -1.0

c. 9.0

d. 0

e. -.6666666667 if computer'provides 10 decimal digits

f. -10

g. 8

15 July 1966 146 TM-2710/101/00(DRAFT)

PROBLEM SET 11

Examine each e~ression. (1) Insert parentheses and produce an equivalent

e~ression which if there were no precedence rules would be completely unambiguous.

(2) Evaluate this expression using the table to determine the va~ues of the

variabLes occurring within the expression.

a. A-3*C

b. (A-3)*C

c. A-(3*C)

d. D'tC1'A

e. A+B*C+D

f. A*B+C*D

g. -D+A

h. .(D+A)

i. -D-A

j. 6/3/2

k. 6/(3/2)

1. 6/(3*2)

m. 6/3*2

VariabLe

A

B

C

D

Va~ue

5

2.5

1

-6

c'

4

15 July 1966 147 TM-27l0/l01/00(DRAFT) o
Answers:

(1) (2)

a. A-(3*C) 2

b. (A-3)*C 2

c. A-(3*C) 2

d. Dt(CtA) -6

e. (A+(B*C»+D 1.5

f. (A*B)+(C*D) 6.5

g. (-D)+A 11

h. -(D+A) 1

i. (-D)-A 1

0 j. (6/3)/2 1.0

k. 6/(3/2) 4.0

1. 6/(3*2) 1.0

m. (6/3)*2 4.0

PROBLEM SET 12

Evaluate the following e~pes8ions using the table to determine the va'Lues of

the vaPiab'Les.

VaPiabZe Va'Lue

A 2

B 3.0

C 4

D -0.oE6

0 E -1

F 2.5

/ ---------------------

~ I

15 July 1966 148 TM-2710/101/00(DRAFT)

a. ABS(A)

b. ABS(E)

c. SIGN(-B)

d. SIGN(D)

e. MAX(A,-B)

f. MAX(A,-C)

g. MIN(A,E)

h. ROUND(F)

i. ENTIER(F)

j. ROUND(-F)

k. ENTIER(-F)

1. SQRT(C)

m. SQRT(E)

n. ABS(A)+ABS(B)*ABS(C)

o. -ROUND(E)-ROUND(D)

p. ROUND (-F + .3)
Answers:

a. 2

b. 1

c. -1

d. 0

e. 2.0

f. 2

g. -1

h. 3

i. 2

j. -2

k. -3

... --.------ --------

-1

15 July 1966 .
TM-2710/101/00(DRAFT) o

1. 2

m. undefined

n. 14.0

o. 1

p. -2.0

o

o

............... _ _._ _ ... -~-------~-----.

15 July 1966 150 TM-2710!lOl!OO(DRAFT)

CHAPTER 5

PROBLEN SET 13

Evaluate the following expressions:

a. CAR (, (A B C»

b. CADR (, (4 5 6»

c. CDR('(1 2»

d. ATOM(500)

e. REALP(7)

f. REALP(CAR('(3.54.5»)

g. CAR (, (1.1))

h. CAR (, (1 • 1))

i. ATOM('(7»

j. NUMBP (CAR (, (7)))

k. CONS('(l 2) ,'(3 4»

Answers:

a. A

b. 5

c. (2)

d. TRUE

e. FALSE

f. TRUE

g. 1.1

h. 1

i. FALSE

j. TRUE

k. «12)34)

/:'
.1

15 July 1966 151 TM-2710/101/00(DRAFT)

u
PROBLEM SET 14

Evaluate each of the following expressions, using the table to determine the

vaLues of the variables occurring in the expressions.

VariabLe Value

A X

B NIL

C 3.5

D (A 4)

E A

a. CONS(A,B)

C) b. CONS (• A,B)

~. CONS (E, 'B)

d. CDR(D)

e. C + CADR(D)

f. SQRT(CADR(D))

g. CONS(E,C)

h. CONS(C,B)

i. C+2

Answers:

a. (X • NIL) , which equals (X)

b. (A • NIL) • which equals (A)

c. (A • B)

0 d. (4)

e. 7.5

f. 2.0

g. (A • 3.5)

15 July 1966 152

h. (3.5. NIL), which equals (3.5)

1. 5.5

PROBLEM SET 15

TM-2710/101/00(DRAFT)

Rewrite each expression adding enough parentheses to determine the correct

grouping. Then evaluate them using the table to determine the vaZueB of the

variabZes.

Answers:

a. W • NIL

b. Y • X

c. W*3 • CAR Z

d. CAR Z + 2

e. CAR X • CDR Z

f. Y • NIL

g. 'Y • NIL

(1)

a. W. NIL

b. Y. X

Variable

W

X

Y

Z

c. (W*3). (CAR Z)

d. (CAR Z) + 2

e. (CAR X) • (CDR Z)

f. Y. NIL

g. 'Y. NIL

Value

4

(A B)

C

(2)

(2)

(4 • NIL), which equals (4)

(c • (A B», which equals (C A B)

(12 • 2)

4

(A • NIL) , which equals (A)

(C • NIL) , which equals (C)

(Y • NIL), which equals (y)

C

C

G

0

o

15 July 1966 153 TM.2710/101/00(DRAFT)

PROBLEf-1 SET 16

EValuate these expressions using the table to determine the value' of the

variabl.es.

Vapiabl.e VaZue

A 3

B 2.4

C 3.0

D A

E (X y)

a. A = 3

b. A = C

c. D = A

d. B)= C

e. E :: 'X • 'Y • NIL

f. 'A = D

g. CAR E = 'X

h. o <B<= 3

i. 2<.C + 3<7

j. 2<.A<.3

Answers:

a. TRUE

b. TRUE

c. FALSE

d. FALSE

e. {NIL • (Y • NIL», which equals (NIL Y)

f. TRUE

g. TRUE

15 July 1966 154 TM-2710/101/00(DRAFT)

h. TRUE

i. TRUE

j. FALSE

PROBLEM SET 17

Examine each simpZe:expression below. Then rewrite it adding sufficient

parentheses to make it unambiguous assuming no rules of precedence.

a. CAR A + B

b. CAR A + CDR B*C

c. A-B/C/D+E

d. A-B/C*D'} E

e. CAR X = 'A

f. a <. = CAR A = B + SIN (Y) < 5

g. A + B l' C t CADR D

h. X • 'A • FN(X,Y,CDR Z*W)

i. ATOM X = Y

j. NULL U • NULL CAR X + Y

Answers:

a. (CAR A) + B

b. (CAR A) + «CDR B)*C)

c. (A-((B/D)/D))+E

d. (A-((B/C)*(D ~ E»)

e. (CAR X) = 'A

f. o < = (CAR A) = (B + SIN (y)) < 5

g. A+(B'(ct(CADR D»)

h. X • ('A. FN(X,Y,«CDRZ)*W»)

i. (ATOM X) = y

j. «NULL U) • (NULL«CAR X) _+ y»)

c

c

o

(' U

--.-~-- ... ---

15 July 1966 155 TM-27l0!lOl!OO(DRAFT)

CHAPTER 6

PROBLEM SET 18

Evaluate the following e~~e88ions using the list of vaZue8 for v~iabZe8.

REALP means "is a l'eaZ:numbe~"; SQRT means "the square root of"; SIGN means

"the sign of."

Answers:

V~iabZe VaZue

A 5

B 2.0

C (7 14)

X (3 • 9)

y (A B C)

Z (A C)

a. IF A = 5.0 THEN B

b. IF REALP (z) THEN C ELSE IF REALP(B} THEN (IF CAR A+2 = CDR A THEN Y

ELSE z) ELSE X

c. IF IF CAR C = 7 THEN FALSE ELSE TRUE THEN Z

d. IF A = B THEN A = B ELSE A = B

e. IF C THEN A

f. IF SIGN(B) = SIGN(A} THEN (IF SQRT{CDR X) = CAR(X) THEN fA ELSE A)

ELSE 'B

g. IF CAR Y = CAR Z THEN 'ELSE ELSE • IF

h. IF TRUE THEN 'IF IF 'IF THEN • THEN

a. 2.0

b. (A C)

c. UNDEFINED

d. FALSE
.•.......................... ---

15 July 1966 156 TM-2710/101/00{DRAFT)

e. 5

f. A

g. ELSE

h. IF

o

o

o

15 July 1966

CHAPTER 7

PROBLEM SET 19

157 TM-27l0/101/00(DRAFT)

In this problem set, several function:definitions are given, and a table of

bindings for free:variabZes is given. The problem is to evaluate the expressions

that follow using the function:definitions and the table of variabZe:bindings

where necessary.

When a variabLe occurs within the body of a function, and this variabZe is an

argument:parameter of the function, the proper binding for the variabZe is the

argument corresponding to its use as an argument:parameter. Only when you cannot

obtain a binding for a variabLe in this way, make use of the table of variabZe:

bindings.

FUNCTION POLY(X} ; 2*xt2+3*x-5;

FUNCTION CHOOSE(X,Y) IF X = 0 THEN Y ELSE Y-X;

FUNCTION TAKE(X,Y) IF ATOM X THEN Y ELSE IF ATOM Y THEN NIL ELSE CAR X • CDR Y

FUNCTION MAKE(X} ; X • Z;

Table of bindings:

Expressions to be evaluated:

a. POLY(3)

b. POLY(Z)

c. CHOOSE(1,-4)

VariabLe

U

X

Z

Binding

'A

3

7

15 July 1966 158 TM-2710/101/00(DRAFT)

d. CHOOSE(POLY(Z)-114,x)

e. MAKE(U)

f. TAKE(U,Z)

g. LIST(U, TAKE(X • Z. IF POLY(l)<l THEN t(D E) ELSE '(F G»

Answers:

a. 22

b. 114

c. -5

d. 3

e. (A • 7)

f. 7

g. (A (3E»

PROBLEM SET 20

a. The following definition of FIBB uses an auxiliary funation FIBB1. It gives

the same answers as the definition in Example 1. Why does this definition

lead to more efficient computation of FIBB for large arguments?

FUNCTION FIBB(N) ; FIBB1(N,1,2);

F1lllCTION FIBB1(X,Y.Z) IF X = 1 THEN Y ELSE FIBB1(X-l,Z,Y+Z);

b. Is there any set of arguments for which SUBST as defined in Example 2 will

not converge? Why or why not?

c. Define the recursive funation COUNT having one argument. The argument may

be any S-expression. The vaZue of COUNT is the number of atoms (not just

identifiers) in the argument.

c'

c

o 15 July 1966 159 TM-2710/101/00(DRAFT)

Answers:

a. This definition is more efficient than the previous one because it avoids

computing FIBB of any number more than once.

If the first definition is used to compute FlBB(4), for example, it calls

FlBB(3) and FIBB(2), FIBB(3) calls FIBB(2) and FlBB(l). Thus FlBB(2) has

been called twice. For large apguments. of FlBB, this redundancy grows

swiftly.

b. No. When Z is atomic, SUBST terminates explicitly with no more recursion.

When Z is not atomic, SUBST is defined recursively in terms of SUBST of

c=J CAR{Z) and SUBST of CDR(Z).

o

The process of taking successive CAR's and CDR'd of an S-e%pression and

stopping when one reaches atoms, always terminates.

c. FUNCTION COUNT (X); IF ATOM (X) THEN 1 ELSE COUNT (CAR X) + COUNT (CDR X);

15 July 1966

CHAPTER 8

PROBLEM SET 21

160 TM-27l0/l0l/00(DRAFT)

(1) Insert parentheses in the following LISP 2 ~res8ions in such a way that

they are unambiguous assuming no rules of precedence. (2) Evaluate the e~~ssions

using the table:

Answers:

a.

b.

c.

d.

e.

f.

g.

h.

Vanab'Le

A

B

C

X

y

Z

CAR Y + CADR Y = C AND A

B AND 2+2 = 4

A OR 2+2 = 5

NOT A OR B OR X = Y

IF A OR B THEN C

IF C THEN C ELSE 'c

lWT(A AND B)

NOT A AND B

(1)

a. «(CAR y) + (CADR Y» = C) AND A

b. B AND (2+2 = 4)

c. A OR (2+2 = 5)

Va'Lue

TRUE

() ,

7.0 .

A

(3 4)

(A B)

(2)

TRUE

NIL

TRUE

c'

C

c'

o 15 July 1966

d. «NOT A) OR B) OR (X = y)

e. IF (A OR B) THEN e

f. IF e THEN e ELSE 'e

g. NOT (A AND B)

h. (NOT A) AND B

o

NIL

7.0

7.0

TRUE

NIL

TM-2710/101/00{DRAFT)

15 July 1966 TM-2710/101/00(DRAFT)

C;-lAP'l'l:;P' 9

a. Defin f ' REV u.s i.ng recursion and without using btoak:e:r:p:ressions and

b. Define REV 1):/ mearw of a. single non-recursive funation:definition

using Uo(}k:e!xp't'essions a.nd statements ..

c. Define the LISP funation SINE(X,N) that computes an approximation

to the sin of X by summing the first N terms of the sequence

sin (X)=X/l!-x3/3!-x5/5!-x7/7! ••••

(Do not use the LISP system funation SIN.)

a. FUNCTION REV(X); REV1(X.NIL);

F'UNCTION REV1(X.Y); IF NULL X THEN Y ELSE REV1(CDR X, REV(CAR X) • Y);

c

c'

o

o

15 July 1966 163 TM-2110/100/01(DRAFT)

b. FUNCTION REV(X); BEGIN SYMBOL Y,U,V;

A: IF NULL X THEN (IF NULL U THEN RETURN Y ELSE GO B);

U<-X • U;

Vof-Y • V;

Y"~ NIL;

X~ CAR X;

IF NOT ATOM X THEN GO A ELSE Y~X;

B: Y~Y. CAR V;

X+-- CDAR U;

U<.- CDR U;

Vr" CDR V;

GO A

END;

C. FUNCTION SINE(X,N)jBEGIN INTEGER I; REAL A;

I~l;

A~O;

L: IF I> N THEN RETURN A;

A,-A + X t (2*I-1)/FACTORIAL(2*I_1);

H--I + 1;

GO L

END;

15 July 1966 164 TM-2710!lOl/OO(DRAFT)

CHAPTER 10

PROBLEM SET 23

Examine the statement GO A in each of the following miniature programs and

decide whether or not it is legal, and why or why not.

Answers:

a. IiUNCTION FN(X) BEGIN A: RETURN G(X) END;

FUNCTION G(X) BEGIN GO A END;

b. BEGIN INTEGER Y;

BEGIN REAL X; GO A END;

BEGIN A: Y<:-3 END

END

c. BEGIN INTEGER Y;

BEGIN GO A END;

BEGIN REAL X; A: Y+- 3 END

END

d. BEGIN INTEGER Y;

BEGIN GO A END

BEGIN A: Y~3 END

e. BEGIN GO A; FN(BEGIN A: RETURN X END) END

f. BEGIN -BEGIN GO A END; BEGIN A: END END

a.· Illegal for two reasons. Each b~ock in the example is a bZock:

ezpression because each is the body of a function:definition.

It is illegal for a go:statement (I) to transfer out of an

c

c

o

C)

o

15 July 1966 165
(Last Page)

TM-2710/100/01(DRAJT)

e:l:pNssionand (2) to transfer into an e:l:pzeession.

b. Legal. A go:statement may transfer out of a bZock:statement and

into a compound:statement.

c. Illegal. A go:statement may transfer out of a compound:statement,

but it may not transfer into a bZock:statement.

d. Legal. A go:statement may transfer out of a compound:statement

and into another compound:statement.

e. Illegal. The argument of FN is a bZock:e:l:pzeession and a go:

statement may not transfer into it.

f. Illegal. Theminus:sign (-) before a bZock determines that the

bZock is a bZock:6:l:pression; a go:statement may not transfer out

of it.

-~----------------------- -------- --- ----------------------------- -- ---- ---

I

/

.'OJ

.. '

~."
,'\ "-

';1.5 July 1966 TM-2710/101/00(DRAFT) (,

" Distribution

B. Barancik 2105
J. Barnett 2025
R. Berman 4317
E~ Book' , 2332
R. Bosak 2013
J. Burger 9919
D. Drukey 2105
Marsha Drapkin 9723 (2)
S. Feingold 9525
D. Firth 2310
M. Howard 2042
H. Howell 9912
A. Irvine 9627
E. Jacobs 2344
B. Jones 2231
S. Kameny(50) 2009
R. Long 9913

A E. Myer 2227 p;
28 M. Perstein 2334 dB ,r'--
~ D. Perry 2042 ~.\

-"' ' ~-...... "

c' F1f=1l V. Schorre 2330 =u=il
y-' =={] J. Schwartz 2123 ! _J]

R. Simmons 9439
~

" ,

19734 E. Stefferud
A. Vorhaus 2213
C. Weissman(10) 2214 I

R. Wolfson 2368

c

	Contents
	1 Introduction
	2 Identifiers, Atoms, & S-Expressions
	3 Some Illustrations of Programming in LISP 2
	4 Arithmetical:Expressions
	5 Simple:Expressions
	6 Conditional:Expressions
	7 Function:Definitions and Recursion
	8 The Logical:Operators
	9 Block:Expressions and Statements
	10 Blocks
	11 Arrays
	12 FOR Statements
	13 Fluid:Variables
	14 Locative Transmission of Parameters
	15 Types and Declarations
	Problem Sets and Answers
	Distribution

